Commit Graph

70 Commits

Author SHA1 Message Date
Lincoln Stein
a48abfacf4 make config migrator into an instance; refactor location of get_config() 2024-05-02 23:45:34 -04:00
psychedelicious
2d7b8c2a1b fix(backend): do not round image dims to 64 in controlnet processor resize
Rounding the dims results in control images that are subtly different than the input. We round to the nearest 8px later, there's no need to round now.
2024-04-30 08:10:59 -04:00
psychedelicious
6b0bf59682 feat(backend): update nms util to make blur/thresholding optional 2024-04-25 13:20:09 +10:00
Lincoln Stein
e93f4d632d
[util] Add generic torch device class (#6174)
* introduce new abstraction layer for GPU devices

* add unit test for device abstraction

* fix ruff

* convert TorchDeviceSelect into a stateless class

* move logic to select context-specific execution device into context API

* add mock hardware environments to pytest

* remove dangling mocker fixture

* fix unit test for running on non-CUDA systems

* remove unimplemented get_execution_device() call

* remove autocast precision

* Multiple changes:

1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
   context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
   choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.

* add deprecation warnings to choose_torch_device() and choose_precision()

* fix test crash

* remove app_config argument from choose_torch_device() and choose_torch_dtype()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-15 13:12:49 +00:00
psychedelicious
f0b1bb0327 feat(nodes): redo tile infill
The previous algorithm errored if the image wasn't divisible by the tile size. I've reimplemented it from scratch to mitigate this issue.

The new algorithm is simpler. We create a pool of tiles, then use them to create an image composed completely of tiles. If there is any awkwardly sized space on the edge of the image, the tiles are cropped to fit.

Finally, paste the original image over the tile image.

I've added a jupyter notebook to do a smoke test of infilling methods, and 10 test images.

The other infill algorithms can be easily tested with the notebook on the same images, though I didn't set that up yet.

Tested and confirmed this gives results just as good as the earlier infill, though of course they aren't the same due to the change in the algorithm.
2024-04-05 08:49:13 +11:00
blessedcoolant
3c195d74a5 fix: bypass edge pixels which cannot transform to tile size
Still need to fix this somehow
2024-04-05 08:49:13 +11:00
blessedcoolant
32a6b758cd wip: Initial Infill Methods Refactor 2024-04-05 08:49:13 +11:00
psychedelicious
a6283b9fb6 tidy: "fit_image_to_resolution" -> "resize_image_to_resolution" 2024-03-21 07:02:57 -07:00
psychedelicious
64fb15e117 chore: ruff 2024-03-21 07:02:57 -07:00
psychedelicious
e2d7b514e0 tidy: correct attributions for controlnet processors 2024-03-21 07:02:57 -07:00
psychedelicious
c36d12a50f feat: adaptation of Lineart Anime processor
Adapted from https://github.com/huggingface/controlnet_aux
2024-03-21 07:02:57 -07:00
psychedelicious
c7f8fe4d5e feat: adaptation of Lineart processor
Adapted from https://github.com/huggingface/controlnet_aux
2024-03-21 07:02:57 -07:00
psychedelicious
ffb41c3616 feat: adaptation of HED processor
Adapted from controlnet repo
2024-03-21 07:02:57 -07:00
psychedelicious
611006b692 feat: adaptation of Canny processor
Adapted from controlnet processors package

fix: do final resize in canny processor

canny
2024-03-21 07:02:57 -07:00
psychedelicious
ca496f0380 feat: add image utils
These all support controlnet processors.

- `pil_to_cv2`
- `cv2_to_pil`
- `pil_to_np`
- `np_to_pil`
- `normalize_image_channel_count` (a readable version of `HWC3` from the controlnet repo)
- `fit_image_to_resolution` (a readable version of `resize_image` from the controlnet repo)
- `non_maximum_suppression` (a readable version of `nms` from the controlnet repo)
- `safe_step` (a readable version of `safe_step` from the controlnet repo)
2024-03-21 07:02:57 -07:00
psychedelicious
040ea8f41b tidy: do not show msg when loading NSFW checker 2024-03-20 15:05:25 +11:00
psychedelicious
2eacbb4d9d fix(nodes): do not load NSFW checker model on startup
Just check if the path exists to determine if it is "available". When needed, load it.
2024-03-20 15:05:25 +11:00
psychedelicious
b378cfcb46 cleanup: remove unused scripts, cruft
App runs & tests pass.
2024-03-20 15:05:25 +11:00
psychedelicious
982b513af3 tidy(config): move a few get_config calls to inside the functions where they are needed 2024-03-19 09:24:28 +11:00
psychedelicious
60492500db chore: ruff 2024-03-19 09:24:28 +11:00
psychedelicious
897fe497dc fix(config): use new get_config across the app, use correct settings 2024-03-19 09:24:28 +11:00
psychedelicious
b4182b190f fix(config): use new config.patchmatch 2024-03-19 09:24:28 +11:00
psychedelicious
22ac204678 fix(config): fix invisible_watermark handling
This setting was hardcoded to True. Simplified logic around it to not have a conditional that does nothing.
2024-03-19 09:24:28 +11:00
psychedelicious
fbe3afa5e1 fix(config): fix nsfw_checker handling
This setting was hardcoded to True. Rework logic around it to not conditionally check the setting.
2024-03-19 09:24:28 +11:00
psychedelicious
fed1f983db fix(nodes): depth anything processor (#5956)
We were passing a PIL image when we needed to pass the np image.

Closes #5956
2024-03-14 20:14:53 +11:00
blessedcoolant
af660163ca chore: cleanup DepthAnything code 2024-03-13 20:35:52 +05:30
psychedelicious
dd9daf8efb chore: ruff 2024-03-01 10:42:33 +11:00
Lincoln Stein
a23dedd2ee make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-03-01 10:42:33 +11:00
blessedcoolant
e82c21b5ba chore: rename DWPose to DW Openpose 2024-02-12 11:12:45 -05:00
blessedcoolant
f8e566d62a cleanup: unused util functions 2024-02-12 11:12:45 -05:00
blessedcoolant
f588b95c7f cleanup: remove unused code from the DWPose implementation 2024-02-12 11:12:45 -05:00
blessedcoolant
7d80261d47 chore: Add code attribution for the DWPoseDetector 2024-02-12 11:12:45 -05:00
blessedcoolant
67cbfeb33d feat: Add output image resizing for DWPose 2024-02-12 11:12:45 -05:00
blessedcoolant
675c73c94f fix: ruff lint errors 2024-02-12 11:12:45 -05:00
blessedcoolant
0a27b0379f feat: Initial implementation of DWPoseDetector 2024-02-12 11:12:45 -05:00
psychedelicious
c5f069a255 feat(backend): remove dependency on basicsr
`basicsr` has a hard dependency on torchvision <= 0.16 and is unmaintained. Extract the code we need from it and remove the dep.

Closes #5108
2024-02-11 08:34:54 +11:00
blessedcoolant
35184dbd86 fix: incorrect local file path 2024-01-24 03:37:16 +05:30
blessedcoolant
92fb09c4df fix: Move the models to any folder to avoid boot warnings 2024-01-24 03:35:37 +05:30
blessedcoolant
7cb49e65bd feat: Add Resolution to DepthAnything 2024-01-23 14:13:50 -06:00
blessedcoolant
6a2eb1d2e4 fix: Change the path of the annotator folder to annotators
Just making this change in case there are other models added to the folder in the future
2024-01-23 14:13:50 -06:00
blessedcoolant
c859eb865e fix: lint & other minor issues 2024-01-23 14:13:50 -06:00
blessedcoolant
8f5e2cbcc7 feat: Add Depth Anything PreProcessor 2024-01-23 14:13:50 -06:00
psychedelicious
7653d21cf5 feat(backend): rename realesrgan class & upscale method 2023-11-28 07:58:22 +11:00
psychedelicious
46a2d83b84 feat(backend): organise realesrgan code, add license
- Moved util to own folder
- BSD3 License for RealESRGAN repo added
2023-11-28 07:58:22 +11:00
psychedelicious
2192210910 feat(nodes): remove dependency on realesrgan
We used the `RealESRGANer` utility class from the repo. It handled model loading and tiled upscaling logic.

Unfortunately, it hasn't been updated in over a year, had no types, and annoyingly printed to console.

I've adapted the class, cleaning it up a bit and removing the bits that are not relevant for us.

Upscaling functionality is identical.
2023-11-28 07:58:22 +11:00
psychedelicious
513fceac82 chore: ruff check - fix pycodestyle 2023-11-11 10:55:33 +11:00
psychedelicious
3a136420d5 chore: ruff check - fix flake8-comprensions 2023-11-11 10:55:23 +11:00
psychedelicious
252c9a5f5a fix(backend): fix nsfw/watermarker util types 2023-10-18 09:08:13 +11:00
psychedelicious
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00
Lincoln Stein
0420874f56 reimplement the old invokeai-metadata command 2023-09-20 13:49:29 -04:00