Commit Graph

370 Commits

Author SHA1 Message Date
Ryan Dick
b961495b57 Move LatentsToImageInvocation to its own file. No functional changes. 2024-06-05 13:53:53 -04:00
Ryan Dick
b35cde7db7 Move ImageToLatentsInvocation to its own file. No functional changes. 2024-06-05 13:47:38 -04:00
Ryan Dick
103e34691b Move ScaleLatentsInvocation and ResizeLatentsInvocation to their own file. No functional changes. 2024-06-05 11:05:44 -04:00
Ryan Dick
0d90999a19 Move BlendLatentsInvocation to its own file. No functional changes. 2024-06-05 11:04:17 -04:00
Ryan Dick
4cefa48307 Move CropLatentsCoreInvocation to its own file. No functional changes. 2024-06-05 10:53:24 -04:00
Ryan Dick
6ade5df25c Move IdealSizeInvocation to its own file. No functional changes. 2024-06-05 10:47:26 -04:00
psychedelicious
14372e3818 fix(nodes): blend latents with weight=0 with DPMSolverSDEScheduler
- Pass the seed from `latents_a` to the output latents. Fixed an issue where using `BlendLatentsInvocation` could result in different outputs during denoising even when the alpha or slerp weight was 0.

## Explanation

`LatentsField` has an optional `seed` field. During denoising, if this `seed` field is not present, we **fall back to 0 for the seed**. The seed is used during denoising in a few ways:

1. Initializing the scheduler.

The seed is used in two places in `invokeai/app/invocations/latent.py`.

The `get_scheduler()` utility function has special handling for `DPMSolverSDEScheduler`, which appears to need a seed for deterministic outputs.

`DenoiseLatentsInvocation.init_scheduler()` has special handling for schedulers that accept a generator - the generator needs to be seeded in a particular way. At the time of this commit, these are the Invoke-supported schedulers that need this seed:
  - DDIMScheduler
  - DDPMScheduler
  - DPMSolverMultistepScheduler
  - EulerAncestralDiscreteScheduler
  - EulerDiscreteScheduler
  - KDPM2AncestralDiscreteScheduler
  - LCMScheduler
  - TCDScheduler

2. Adding noise during inpainting.

If a mask is used for denoising, and we are not using an inpainting model, we add noise to the unmasked area. If, for some reason, we have a mask but no noise, the seed is used to add noise.

I wonder if we should instead assert that if a mask is provided, we also have noise.

This is done in `invokeai/backend/stable_diffusion/diffusers_pipeline.py` in `StableDiffusionGeneratorPipeline.latents_from_embeddings()`.

When we create noise to be used in denoising, we are expected to set `LatentsField.seed` to the seed used to create the noise. This introduces some awkwardness when we manipulate any "latents" that will be used for denoising. We have to pass the seed along for every operation.

If the wrong seed or no seed is passed along, we can get unexpected outputs during denoising. One notable case relates to blending latents (slerping tensors).

If we slerp two noise tensors (`LatentsField`s) _without_ passing along the seed from the source latents, when we denoise with a seed-dependent scheduler*, the schedulers use the fallback seed of 0 and we get the wrong output. This is most obvious when slerping with a weight of 0, in which case we expect the exact same output after denoising.

*It looks like only the DPMSolver* schedulers are affected, but I haven't tested all of them.

Passing the seed along in the output fixes this issue.
2024-06-05 00:02:52 +10:00
Lincoln Stein
756108f6bd Update invokeai/app/invocations/latent.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-03 11:41:47 -07:00
Lincoln Stein
68d628dc14 use zip to iterate over image prompts and adapters 2024-06-03 11:41:47 -07:00
Lincoln Stein
493f81788c added a few comments to document design choices 2024-06-03 11:41:47 -07:00
Lincoln Stein
f13427e3f4 refactor redundant code and fix typechecking errors 2024-06-03 11:41:47 -07:00
Lincoln Stein
e28737fc8b add check for congruence between # of ip_adapters and image_prompts 2024-06-03 11:41:47 -07:00
Lincoln Stein
7391c126d3 handle case of no IP adapters requested 2024-06-03 11:41:47 -07:00
Lincoln Stein
1c59fce6ad reduce peak VRAM memory usage of IP adapter 2024-06-03 11:41:47 -07:00
Lincoln Stein
532f82cb97
Optimize RAM to VRAM transfer (#6312)
* avoid copying model back from cuda to cpu

* handle models that don't have state dicts

* add assertions that models need a `device()` method

* do not rely on torch.nn.Module having the device() method

* apply all patches after model is on the execution device

* fix model patching in latents too

* log patched tokenizer

* closes #6375

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-05-24 17:06:09 +00:00
blessedcoolant
da61396b1c cleanup: seamless unused older code cleanup 2024-05-13 08:11:08 +10:00
blessedcoolant
dce8b88aaf fix: change eta only for TCD Scheduler 2024-05-01 12:47:46 +05:30
blessedcoolant
1bdcbe3284 cleanup: use dict update to actually update the scheduler keyword args 2024-05-01 12:22:39 +05:30
blessedcoolant
2ddb82200c fix: Manually update eta(gamma) to 1.0 for TCDScheduler
seems to work best with invoke at 4 steps
2024-05-01 01:20:53 +05:30
dunkeroni
f262b9032d fix: changed validation to not error on connection 2024-04-28 12:48:56 -04:00
dunkeroni
71c3197eab fix: denoise latents accepts CFG lists as input 2024-04-28 12:48:56 -04:00
psychedelicious
1bef13db37 feat(nodes): restore unet check on CreateGradientMaskInvocation
Special handling for inpainting models
2024-04-23 07:32:53 -04:00
dunkeroni
bc12d6654e chore: comments and ruff 2024-04-23 07:32:53 -04:00
dunkeroni
6d7c8d5f57 remove unet test 2024-04-23 07:32:53 -04:00
dunkeroni
781de914f4 fix threshhold 2024-04-23 07:32:53 -04:00
dunkeroni
c094bad233 add unet check in gradient mask node 2024-04-23 07:32:53 -04:00
dunkeroni
0063014f2b gradient mask node test for inpaint 2024-04-23 07:32:53 -04:00
blessedcoolant
6bab040d24 Merge branch 'main' into ip-adapter-style-comp 2024-04-16 21:14:06 +05:30
Lincoln Stein
e93f4d632d
[util] Add generic torch device class (#6174)
* introduce new abstraction layer for GPU devices

* add unit test for device abstraction

* fix ruff

* convert TorchDeviceSelect into a stateless class

* move logic to select context-specific execution device into context API

* add mock hardware environments to pytest

* remove dangling mocker fixture

* fix unit test for running on non-CUDA systems

* remove unimplemented get_execution_device() call

* remove autocast precision

* Multiple changes:

1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
   context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
   choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.

* add deprecation warnings to choose_torch_device() and choose_precision()

* fix test crash

* remove app_config argument from choose_torch_device() and choose_torch_dtype()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-15 13:12:49 +00:00
blessedcoolant
d4393e4170 chore: linter fixes 2024-04-13 12:14:45 +05:30
blessedcoolant
6ea183f0d4 wip: Initial Implementation IP Adapter Style & Comp Modes 2024-04-13 11:09:45 +05:30
psychedelicious
026d095afe fix(nodes): do not set seed on output latents from denoise latents
`LatentsField` objects have an optional `seed` field. This should only be populated when the latents are noise, generated from a seed.

`DenoiseLatentsInvocation` needs a seed value for scheduler initialization. It's used in a few places, and there is some logic for determining the seed to use with a series of fallbacks:
- Use the seed from the noise (a `LatentsField` object)
- Use the seed from the latents (a `LatentsField` object - normally it won't have a seed)
- Use `0` as a final fallback

In `DenoisLatentsInvocation`, we set the seed in the `LatentsOutput`, even though the output latents are not noise.

This is normally fine, but when we use refiner, we re-use the those same latents for the refiner denoise. This causes that characteristic same-seed-fried look on the refiner pass.

Simple fix - do not set the field in the output latents.
2024-04-11 07:21:50 -04:00
Ryan Dick
0bdbfd4d1d Add support for IP-Adapter masks. 2024-04-09 15:06:51 -04:00
Ryan Dick
2e27ed5f3d Pass IP-Adapter scales through the cross_attn_kwargs pathway, since they are the same for all attention layers. This change also helps to prepare for adding IP-Adapter region masks. 2024-04-09 15:06:51 -04:00
Ryan Dick
4a828818da Remove support for Prompt-to-Prompt cross-attention control (aka .swap()). This feature is not widely used. It does not work with SDXL and is incompatible with IP-Adapter and regional prompting. The implementation is also intertwined with both text embedding and the UNet attention layers, resulting in a high maintenance burden. For all of these reasons, we have decided to drop support. 2024-04-09 10:57:02 -04:00
Ryan Dick
182810337c Add utility to_standard_float_mask(...) to convert various mask formats to a standardized format. 2024-04-09 08:12:12 -04:00
Ryan Dick
338bf808d6 Rename MaskField to be a generice TensorField. 2024-04-09 08:12:12 -04:00
Ryan Dick
5b5a4204a1 Fix dimensions of mask produced by ExtractMasksAndPromptsInvocation. Also, added a clearer error message in case the same error is introduced in the future. 2024-04-09 08:12:12 -04:00
Ryan Dick
dc64fec771 Add support for lists of prompt embeddings to be passed to the DenoiseLatents invocation, and add handling of the conditioning region masks in DenoiseLatents. 2024-04-09 08:12:12 -04:00
Ryan Dick
d1e45585d0 Add TextConditioningRegions to the TextConditioningData data structure. 2024-04-09 08:12:12 -04:00
Ryan Dick
e354c29b52 Rename ConditioningData -> TextConditioningData. 2024-04-09 08:12:12 -04:00
Ryan Dick
a7f363e654 Split ip_adapter_conditioning out from ConditioningData. 2024-04-09 08:12:12 -04:00
Ryan Dick
9b2162e564 Remove scheduler_args from ConditioningData structure. 2024-04-09 08:12:12 -04:00
Jonathan
3659219f46
Fix IdealSizeInvocation (#6145) 2024-04-05 08:38:40 +11:00
blessedcoolant
79f7b61dfe fix: cleanup across various ip adapter files 2024-04-03 12:39:52 +05:30
blessedcoolant
b1c8266e22 feat: add base model recognition for ip adapter safetensor files 2024-04-03 12:39:52 +05:30
psychedelicious
29b04b7e83 chore: bump nodes versions
Bump all nodes in prep for v4.0.0.
2024-03-20 10:28:07 +11:00
psychedelicious
897fe497dc fix(config): use new get_config across the app, use correct settings 2024-03-19 09:24:28 +11:00
Brandon Rising
8d2a4db902 Found another instance of expecting a mid_block on the decoder in a vae 2024-03-12 12:11:38 -04:00
Brandon Rising
7b393656de Update l2i invoke and seamless to support AutoencoderTiny, remove attention processors if no mid_block is detected 2024-03-12 12:00:24 -04:00