mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Compare commits
231 Commits
dev/ci/upd
...
Convert-Mo
Author | SHA1 | Date | |
---|---|---|---|
efabf250d7 | |||
7025c00581 | |||
7ea995149e | |||
f9710dd6ed | |||
4e7dd7d3f6 | |||
20ca9e1fc1 | |||
8a8b09a953 | |||
9e4e386c9b | |||
eca1e449a8 | |||
ffaadb9d05 | |||
8adff96e29 | |||
7593dc19d6 | |||
b7c5a39685 | |||
bd1b84f7d0 | |||
eadfd239a8 | |||
8d75e50435 | |||
1d9c115225 | |||
30af20a056 | |||
cc21fb216c | |||
6fe62a2705 | |||
da87378713 | |||
b6f5267385 | |||
f9e78d3c64 | |||
b7b5bd1b46 | |||
9a3727d3ad | |||
d68c14516c | |||
9f4d39aa42 | |||
84b801d88f | |||
2fc70c509b | |||
34fb1c4b19 | |||
80bdd550cf | |||
7ef0d2aa35 | |||
2359b92b46 | |||
a404fb2d32 | |||
513eb11616 | |||
d2c9140e69 | |||
d95fe5925a | |||
835922ea8f | |||
e1e5266fc3 | |||
5e4457445f | |||
0221ca8f49 | |||
cf36e4029e | |||
c8a98a9a22 | |||
38ecca9362 | |||
c4681774a5 | |||
050add58d2 | |||
3d60c958c7 | |||
f5df150097 | |||
dac82adb5b | |||
b72c9787a9 | |||
2623941d91 | |||
d3a7fea939 | |||
5a7b687c84 | |||
0020457fc7 | |||
658b556544 | |||
37da0fc075 | |||
6d3e8507cc | |||
0e9470503f | |||
d2ebc6741b | |||
026d3260b4 | |||
1103ab2844 | |||
11b2076b46 | |||
78533714e3 | |||
691e1bf829 | |||
47a088d685 | |||
63db3fc22f | |||
ad0bb3f61a | |||
8f8cd90787 | |||
d796ea7bec | |||
e5b7dd63e9 | |||
af060188bd | |||
4270e7ae25 | |||
60a565d7de | |||
78cf70eaad | |||
eebaa50710 | |||
7d582553f2 | |||
4d6eea7e81 | |||
f44593331d | |||
3d9ecbf3c7 | |||
032aa1d59c | |||
35e0863bdb | |||
14070d674e | |||
108ce06c62 | |||
da364f3444 | |||
df5ba75c14 | |||
e4fb9cb33f | |||
65b527eb20 | |||
7dc9d18052 | |||
5013a4b9f3 | |||
f929359322 | |||
6522c71971 | |||
9c1e65f3a3 | |||
ebec200ba6 | |||
e559730b6e | |||
0acb8ed85d | |||
8c1c9cd702 | |||
0ece4686aa | |||
af95cef7f9 | |||
1eca7a918a | |||
9e6b958023 | |||
f7b99d93ae | |||
85d03dcd90 | |||
032555bcfe | |||
4caa1f19b2 | |||
95d4bd3012 | |||
037078c8ad | |||
6de2f66b50 | |||
cd7b248eda | |||
6d8c077f4e | |||
97127e560e | |||
27dc07d95a | |||
f7dc171c4f | |||
4b957edfec | |||
46ca7718d9 | |||
b928d7a6e6 | |||
8a836247c8 | |||
95c3644564 | |||
799cd07174 | |||
9af385468d | |||
3487388788 | |||
9a383e456d | |||
805f9f8f4a | |||
52aa0c9bbd | |||
7f5f4689cc | |||
a3f81f4b98 | |||
15c59e606f | |||
40d4cabecd | |||
3493c8119b | |||
c1e7460d39 | |||
3ffff023b2 | |||
f9384be59b | |||
6cf308004a | |||
d1029138d2 | |||
06b5800d28 | |||
483f2ccb56 | |||
93ced0bec6 | |||
4333852c37 | |||
3baa230077 | |||
9e594f9018 | |||
b0c41b4828 | |||
e0d6946b6b | |||
bf7ea8309f | |||
54b65f725f | |||
8ef49c2640 | |||
f488b1a7f2 | |||
d2edb7c402 | |||
f0a3f07b45 | |||
b42b630583 | |||
31a78d571b | |||
fdc2232ea0 | |||
e94d0b2d40 | |||
75ccbaee9c | |||
2848c8397c | |||
fe8b5193de | |||
3d1470399c | |||
fcf9c63049 | |||
7bfb5640ad | |||
15e57e3a3d | |||
279468c0e8 | |||
c565812723 | |||
ec6c8e2a38 | |||
77f2690711 | |||
c4b3a24ed7 | |||
33c69359c2 | |||
864f4bb4af | |||
5365f42a04 | |||
3dc60254b9 | |||
027a8562d7 | |||
34f3a0f0e3 | |||
d0bac1675e | |||
4e56c962f4 | |||
4ef0e43759 | |||
6945d10297 | |||
4d6cef7ac8 | |||
a7786d5ff2 | |||
6c1de975d9 | |||
a1079e455a | |||
5457c7f069 | |||
b8c1a3f96c | |||
cee8e85f76 | |||
09f166577e | |||
bcc21531fb | |||
da4eacdffe | |||
6102e560ba | |||
ff3aa57117 | |||
49db6f4fac | |||
20f6a597ab | |||
04c453721c | |||
350ffecc1f | |||
b0557aa16b | |||
1c9429a6ea | |||
206e6b1730 | |||
357cee2849 | |||
0b49997bb6 | |||
5e09dd380d | |||
c7303adb0d | |||
ed1f096a6f | |||
6ab5d28cf3 | |||
a75148cb16 | |||
f7bbc4004a | |||
cee21ca082 | |||
08ec12b391 | |||
ff5e2a9a8c | |||
e0b9b5cc6c | |||
aca4770481 | |||
5d5157fc65 | |||
fb6ef61a4d | |||
ee24ad7b13 | |||
f8e90ba3f0 | |||
ad0b70ca23 | |||
7dfa135b2c | |||
beeaa05658 | |||
6b6d654f60 | |||
853c83d0c2 | |||
1809990ed4 | |||
79d49853d2 | |||
bd0ad59c27 | |||
cce40acba5 | |||
bc9491ab69 | |||
f28632980d | |||
b909bac0dc | |||
42d938fda5 | |||
8f80ba9520 | |||
25ce47c44f | |||
afd2e32092 | |||
742ed19d66 | |||
29c2ada23c | |||
e4196bbe5b | |||
15ffb53e59 | |||
90054ddf0d | |||
9ecca13229 |
20
.github/workflows/test-invoke-pip.yml
vendored
20
.github/workflows/test-invoke-pip.yml
vendored
@ -80,12 +80,7 @@ jobs:
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: set test prompt to main branch validation
|
||||
if: ${{ github.ref == 'refs/heads/main' }}
|
||||
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> ${{ matrix.github-env }}
|
||||
|
||||
- name: set test prompt to Pull Request validation
|
||||
if: ${{ github.ref != 'refs/heads/main' }}
|
||||
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
|
||||
run:echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
|
||||
|
||||
- name: setup python
|
||||
uses: actions/setup-python@v4
|
||||
@ -105,12 +100,6 @@ jobs:
|
||||
id: run-pytest
|
||||
run: pytest
|
||||
|
||||
- name: set INVOKEAI_OUTDIR
|
||||
run: >
|
||||
python -c
|
||||
"import os;from invokeai.backend.globals import Globals;OUTDIR=os.path.join(Globals.root,str('outputs'));print(f'INVOKEAI_OUTDIR={OUTDIR}')"
|
||||
>> ${{ matrix.github-env }}
|
||||
|
||||
- name: run invokeai-configure
|
||||
id: run-preload-models
|
||||
env:
|
||||
@ -129,15 +118,20 @@ jobs:
|
||||
HF_HUB_OFFLINE: 1
|
||||
HF_DATASETS_OFFLINE: 1
|
||||
TRANSFORMERS_OFFLINE: 1
|
||||
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
|
||||
run: >
|
||||
invokeai
|
||||
--no-patchmatch
|
||||
--no-nsfw_checker
|
||||
--from_file ${{ env.TEST_PROMPTS }}
|
||||
--precision=float32
|
||||
--always_use_cpu
|
||||
--outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
|
||||
--from_file ${{ env.TEST_PROMPTS }}
|
||||
|
||||
- name: Archive results
|
||||
id: archive-results
|
||||
env:
|
||||
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: results
|
||||
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -201,6 +201,8 @@ checkpoints
|
||||
# If it's a Mac
|
||||
.DS_Store
|
||||
|
||||
invokeai/frontend/web/dist/*
|
||||
|
||||
# Let the frontend manage its own gitignore
|
||||
!invokeai/frontend/web/*
|
||||
|
||||
|
@ -247,8 +247,8 @@ class InvokeAiInstance:
|
||||
pip[
|
||||
"install",
|
||||
"--require-virtualenv",
|
||||
"torch",
|
||||
"torchvision",
|
||||
"torch~=2.0.0",
|
||||
"torchvision>=0.14.1",
|
||||
"--force-reinstall",
|
||||
"--find-links" if find_links is not None else None,
|
||||
find_links,
|
||||
|
@ -7,7 +7,6 @@ from typing import types
|
||||
|
||||
from ..services.default_graphs import create_system_graphs
|
||||
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
|
||||
from ...backend import Globals
|
||||
from ..services.model_manager_initializer import get_model_manager
|
||||
from ..services.restoration_services import RestorationServices
|
||||
from ..services.graph import GraphExecutionState, LibraryGraph
|
||||
@ -42,17 +41,8 @@ class ApiDependencies:
|
||||
|
||||
invoker: Invoker = None
|
||||
|
||||
@staticmethod
|
||||
def initialize(config, event_handler_id: int, logger: types.ModuleType=logger):
|
||||
Globals.try_patchmatch = config.patchmatch
|
||||
Globals.always_use_cpu = config.always_use_cpu
|
||||
Globals.internet_available = config.internet_available and check_internet()
|
||||
Globals.disable_xformers = not config.xformers
|
||||
Globals.ckpt_convert = config.ckpt_convert
|
||||
|
||||
# TO DO: Use the config to select the logger rather than use the default
|
||||
# invokeai logging module
|
||||
logger.info(f"Internet connectivity is {Globals.internet_available}")
|
||||
logger.info(f"Internet connectivity is {config.internet_available}")
|
||||
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
|
||||
@ -72,7 +62,6 @@ class ApiDependencies:
|
||||
services = InvocationServices(
|
||||
model_manager=get_model_manager(config,logger),
|
||||
events=events,
|
||||
logger=logger,
|
||||
latents=latents,
|
||||
images=images,
|
||||
metadata=metadata,
|
||||
@ -85,6 +74,8 @@ class ApiDependencies:
|
||||
),
|
||||
processor=DefaultInvocationProcessor(),
|
||||
restoration=RestorationServices(config,logger),
|
||||
configuration=config,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
create_system_graphs(services.graph_library)
|
||||
|
@ -83,7 +83,7 @@ async def get_thumbnail(
|
||||
status_code=201,
|
||||
)
|
||||
async def upload_image(
|
||||
file: UploadFile, request: Request, response: Response
|
||||
file: UploadFile, image_type: ImageType, request: Request, response: Response
|
||||
) -> ImageResponse:
|
||||
if not file.content_type.startswith("image"):
|
||||
raise HTTPException(status_code=415, detail="Not an image")
|
||||
@ -99,21 +99,21 @@ async def upload_image(
|
||||
filename = f"{uuid.uuid4()}_{str(int(datetime.now(timezone.utc).timestamp()))}.png"
|
||||
|
||||
saved_image = ApiDependencies.invoker.services.images.save(
|
||||
ImageType.UPLOAD, filename, img
|
||||
image_type, filename, img
|
||||
)
|
||||
|
||||
invokeai_metadata = ApiDependencies.invoker.services.metadata.get_metadata(img)
|
||||
|
||||
image_url = ApiDependencies.invoker.services.images.get_uri(
|
||||
ImageType.UPLOAD, saved_image.image_name
|
||||
image_type, saved_image.image_name
|
||||
)
|
||||
|
||||
thumbnail_url = ApiDependencies.invoker.services.images.get_uri(
|
||||
ImageType.UPLOAD, saved_image.image_name, True
|
||||
image_type, saved_image.image_name, True
|
||||
)
|
||||
|
||||
res = ImageResponse(
|
||||
image_type=ImageType.UPLOAD,
|
||||
image_type=image_type,
|
||||
image_name=saved_image.image_name,
|
||||
image_url=image_url,
|
||||
thumbnail_url=thumbnail_url,
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and Kent Keirsey (https://github.com/hipsterusername)
|
||||
|
||||
import shutil
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Annotated, Any, List, Literal, Optional, Union
|
||||
|
||||
from fastapi.routing import APIRouter, HTTPException
|
||||
@ -47,10 +47,8 @@ class CreateModelResponse(BaseModel):
|
||||
|
||||
class ConversionRequest(BaseModel):
|
||||
name: str = Field(description="The name of the new model")
|
||||
info: CkptModelInfo = Field(description="The converted model info")
|
||||
save_location: str = Field(description="The path to save the converted model weights")
|
||||
|
||||
|
||||
class ConvertedModelResponse(BaseModel):
|
||||
name: str = Field(description="The name of the new model")
|
||||
info: DiffusersModelInfo = Field(description="The converted model info")
|
||||
@ -124,6 +122,95 @@ async def delete_model(model_name: str) -> None:
|
||||
logger.error(f"Model not found")
|
||||
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
||||
|
||||
# TODO: Refactor these support functions below to live somewhere more appropriate
|
||||
|
||||
def get_model_info(model_name: str):
|
||||
model_info = ApiDependencies.invoker.services.model_manager.model_info(
|
||||
model_name=model_name
|
||||
)
|
||||
if not model_info:
|
||||
raise HTTPException(status_code=404, detail=f"Unable to retrieve model info for '{model_name}'")
|
||||
return model_info
|
||||
|
||||
|
||||
def ckpt_validate(model_info: dict, model_name: str):
|
||||
if "weights" not in model_info:
|
||||
raise HTTPException(status_code=404, detail=f"Model '{model_name}' is not a valid checkpoint model")
|
||||
|
||||
|
||||
def get_paths(model: ConversionRequest, root: Path) -> tuple:
|
||||
model_info = get_model_info(model.name)
|
||||
ckpt_path = Path(model_info.weights)
|
||||
config_path = Path(model_info.config)
|
||||
|
||||
if not ckpt_path.is_absolute():
|
||||
ckpt_path = Path(root, ckpt_path)
|
||||
|
||||
if config_path and not config_path.is_absolute():
|
||||
config_path = Path(root, config_path)
|
||||
|
||||
return ckpt_path, config_path
|
||||
|
||||
|
||||
def get_diffusers_path(convert_request: ConversionRequest, model_name: str) -> Path:
|
||||
if convert_request.save_location == "root":
|
||||
diffusers_path = Path(global_converted_ckpts_dir(), f"{model_name}_diffusers")
|
||||
elif convert_request.save_location == "custom" and convert_request.save_location is not None:
|
||||
diffusers_path = Path(convert_request.save_location, f"{model_name}_diffusers")
|
||||
else:
|
||||
raise ValueError("Invalid save_location value")
|
||||
|
||||
if diffusers_path.exists():
|
||||
shutil.rmtree(diffusers_path)
|
||||
|
||||
return diffusers_path
|
||||
|
||||
|
||||
@models_router.post(
|
||||
"/{model_to_convert}",
|
||||
operation_id="convert_model",
|
||||
responses={
|
||||
200: {
|
||||
"model_response": "Model converted successfully.",
|
||||
}
|
||||
},
|
||||
)
|
||||
async def convert_model(convert_request: ConversionRequest) -> ConvertedModelResponse:
|
||||
"""Convert Model"""
|
||||
|
||||
opt=Args()
|
||||
args = opt.parse_args()
|
||||
|
||||
# Set the root directory for static files and relative paths
|
||||
args.root_dir = os.path.expanduser(args.root_dir or "..")
|
||||
if not os.path.isabs(args.outdir):
|
||||
args.outdir = os.path.join(args.root_dir, args.outdir)
|
||||
|
||||
# normalize the config directory relative to root
|
||||
if not os.path.isabs(opt.conf):
|
||||
opt.conf = os.path.normpath(os.path.join(Globals.root, opt.conf))
|
||||
model_info = get_model_info(convert_request.name)
|
||||
ckpt_validate(model_info, convert_request.name)
|
||||
ckpt_path, original_config_file = get_paths(convert_request, Globals.root)
|
||||
diffusers_path = get_diffusers_path(convert_request, convert_request.name)
|
||||
|
||||
ApiDependencies.invoker.services.model_manager.convert_and_import(
|
||||
ckpt_path,
|
||||
diffusers_path,
|
||||
model_name=convert_request.name,
|
||||
model_description=model_info.description,
|
||||
vae=None,
|
||||
original_config_file=original_config_file,
|
||||
commit_to_conf=opt.conf,
|
||||
)
|
||||
|
||||
model_info = get_model_info(convert_request.name)
|
||||
convert_response = ConvertedModelResponse(name=f"{convert_request.name}_diffusers", info=model_info)
|
||||
|
||||
print(f">> Model Converted: {convert_request.name}")
|
||||
|
||||
return convert_response
|
||||
|
||||
|
||||
# @socketio.on("convertToDiffusers")
|
||||
# def convert_to_diffusers(model_to_convert: dict):
|
||||
|
@ -13,11 +13,11 @@ from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.middleware import EventHandlerASGIMiddleware
|
||||
from pydantic.schema import schema
|
||||
|
||||
from ..backend import Args
|
||||
from .api.dependencies import ApiDependencies
|
||||
from .api.routers import images, sessions, models
|
||||
from .api.sockets import SocketIO
|
||||
from .invocations.baseinvocation import BaseInvocation
|
||||
from .services.config import InvokeAIAppConfig
|
||||
|
||||
# Create the app
|
||||
# TODO: create this all in a method so configuration/etc. can be passed in?
|
||||
@ -33,30 +33,25 @@ app.add_middleware(
|
||||
middleware_id=event_handler_id,
|
||||
)
|
||||
|
||||
# Add CORS
|
||||
# TODO: use configuration for this
|
||||
origins = []
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=origins,
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
socket_io = SocketIO(app)
|
||||
|
||||
config = {}
|
||||
|
||||
# initialize config
|
||||
# this is a module global
|
||||
app_config = InvokeAIAppConfig()
|
||||
|
||||
# Add startup event to load dependencies
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
config = Args()
|
||||
config.parse_args()
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=app_config.allow_origins,
|
||||
allow_credentials=app_config.allow_credentials,
|
||||
allow_methods=app_config.allow_methods,
|
||||
allow_headers=app_config.allow_headers,
|
||||
)
|
||||
|
||||
ApiDependencies.initialize(
|
||||
config=config, event_handler_id=event_handler_id, logger=logger
|
||||
config=app_config, event_handler_id=event_handler_id, logger=logger
|
||||
)
|
||||
|
||||
|
||||
@ -126,7 +121,6 @@ app.openapi = custom_openapi
|
||||
# Override API doc favicons
|
||||
app.mount("/static", StaticFiles(directory="static/dream_web"), name="static")
|
||||
|
||||
|
||||
@app.get("/docs", include_in_schema=False)
|
||||
def overridden_swagger():
|
||||
return get_swagger_ui_html(
|
||||
@ -144,17 +138,16 @@ def overridden_redoc():
|
||||
redoc_favicon_url="/static/favicon.ico",
|
||||
)
|
||||
|
||||
# Must mount *after* the other routes else it borks em
|
||||
app.mount("/", StaticFiles(directory="invokeai/frontend/web/dist", html=True), name="ui")
|
||||
|
||||
def invoke_api():
|
||||
# Start our own event loop for eventing usage
|
||||
# TODO: determine if there's a better way to do this
|
||||
loop = asyncio.new_event_loop()
|
||||
config = uvicorn.Config(app=app, host="0.0.0.0", port=9090, loop=loop)
|
||||
config = uvicorn.Config(app=app, host=app_config.host, port=app_config.port, loop=loop)
|
||||
# Use access_log to turn off logging
|
||||
|
||||
server = uvicorn.Server(config)
|
||||
loop.run_until_complete(server.serve())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
invoke_api()
|
||||
|
@ -285,3 +285,19 @@ class DrawExecutionGraphCommand(BaseCommand):
|
||||
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
|
||||
plt.axis("off")
|
||||
plt.show()
|
||||
|
||||
class SortedHelpFormatter(argparse.HelpFormatter):
|
||||
def _iter_indented_subactions(self, action):
|
||||
try:
|
||||
get_subactions = action._get_subactions
|
||||
except AttributeError:
|
||||
pass
|
||||
else:
|
||||
self._indent()
|
||||
if isinstance(action, argparse._SubParsersAction):
|
||||
for subaction in sorted(get_subactions(), key=lambda x: x.dest):
|
||||
yield subaction
|
||||
else:
|
||||
for subaction in get_subactions():
|
||||
yield subaction
|
||||
self._dedent()
|
||||
|
@ -11,9 +11,10 @@ from pathlib import Path
|
||||
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ...backend import ModelManager, Globals
|
||||
from ...backend import ModelManager
|
||||
from ..invocations.baseinvocation import BaseInvocation
|
||||
from .commands import BaseCommand
|
||||
from ..services.invocation_services import InvocationServices
|
||||
|
||||
# singleton object, class variable
|
||||
completer = None
|
||||
@ -131,13 +132,13 @@ class Completer(object):
|
||||
readline.redisplay()
|
||||
self.linebuffer = None
|
||||
|
||||
def set_autocompleter(model_manager: ModelManager) -> Completer:
|
||||
def set_autocompleter(services: InvocationServices) -> Completer:
|
||||
global completer
|
||||
|
||||
if completer:
|
||||
return completer
|
||||
|
||||
completer = Completer(model_manager)
|
||||
completer = Completer(services.model_manager)
|
||||
|
||||
readline.set_completer(completer.complete)
|
||||
# pyreadline3 does not have a set_auto_history() method
|
||||
@ -153,7 +154,7 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
|
||||
readline.parse_and_bind("set skip-completed-text on")
|
||||
readline.parse_and_bind("set show-all-if-ambiguous on")
|
||||
|
||||
histfile = Path(Globals.root, ".invoke_history")
|
||||
histfile = Path(services.configuration.root_dir / ".invoke_history")
|
||||
try:
|
||||
readline.read_history_file(histfile)
|
||||
readline.set_history_length(1000)
|
||||
|
@ -4,13 +4,14 @@ import argparse
|
||||
import os
|
||||
import re
|
||||
import shlex
|
||||
import sys
|
||||
import time
|
||||
from typing import (
|
||||
Union,
|
||||
get_type_hints,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, ValidationError
|
||||
from pydantic.fields import Field
|
||||
|
||||
|
||||
@ -19,8 +20,7 @@ from invokeai.app.services.metadata import PngMetadataService
|
||||
from .services.default_graphs import create_system_graphs
|
||||
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
|
||||
|
||||
from ..backend import Args
|
||||
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers
|
||||
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, SortedHelpFormatter
|
||||
from .cli.completer import set_autocompleter
|
||||
from .invocations.baseinvocation import BaseInvocation
|
||||
from .services.events import EventServiceBase
|
||||
@ -34,7 +34,7 @@ from .services.invocation_services import InvocationServices
|
||||
from .services.invoker import Invoker
|
||||
from .services.processor import DefaultInvocationProcessor
|
||||
from .services.sqlite import SqliteItemStorage
|
||||
|
||||
from .services.config import get_invokeai_config
|
||||
|
||||
class CliCommand(BaseModel):
|
||||
command: Union[BaseCommand.get_commands() + BaseInvocation.get_invocations()] = Field(discriminator="type") # type: ignore
|
||||
@ -64,7 +64,7 @@ def add_invocation_args(command_parser):
|
||||
|
||||
def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
|
||||
# Create invocation parser
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = argparse.ArgumentParser(formatter_class=SortedHelpFormatter)
|
||||
|
||||
def exit(*args, **kwargs):
|
||||
raise InvalidArgs
|
||||
@ -189,24 +189,25 @@ def invoke_all(context: CliContext):
|
||||
|
||||
|
||||
def invoke_cli():
|
||||
config = Args()
|
||||
config.parse_args()
|
||||
# this gets the basic configuration
|
||||
config = get_invokeai_config()
|
||||
|
||||
# get the optional list of invocations to execute on the command line
|
||||
parser = config.get_parser()
|
||||
parser.add_argument('commands',nargs='*')
|
||||
invocation_commands = parser.parse_args().commands
|
||||
|
||||
# get the optional file to read commands from.
|
||||
# Simplest is to use it for STDIN
|
||||
if infile := config.from_file:
|
||||
sys.stdin = open(infile,"r")
|
||||
|
||||
model_manager = get_model_manager(config,logger=logger)
|
||||
|
||||
# This initializes the autocompleter and returns it.
|
||||
# Currently nothing is done with the returned Completer
|
||||
# object, but the object can be used to change autocompletion
|
||||
# behavior on the fly, if desired.
|
||||
set_autocompleter(model_manager)
|
||||
|
||||
events = EventServiceBase()
|
||||
|
||||
output_folder = config.output_path
|
||||
metadata = PngMetadataService()
|
||||
|
||||
output_folder = os.path.abspath(
|
||||
os.path.join(os.path.dirname(__file__), "../../../outputs")
|
||||
)
|
||||
|
||||
# TODO: build a file/path manager?
|
||||
db_location = os.path.join(output_folder, "invokeai.db")
|
||||
|
||||
@ -226,6 +227,7 @@ def invoke_cli():
|
||||
processor=DefaultInvocationProcessor(),
|
||||
restoration=RestorationServices(config,logger=logger),
|
||||
logger=logger,
|
||||
configuration=config,
|
||||
)
|
||||
|
||||
system_graphs = create_system_graphs(services.graph_library)
|
||||
@ -241,9 +243,17 @@ def invoke_cli():
|
||||
# print(services.session_manager.list())
|
||||
|
||||
context = CliContext(invoker, session, parser)
|
||||
set_autocompleter(services)
|
||||
|
||||
while True:
|
||||
command_line_args_exist = len(invocation_commands) > 0
|
||||
done = False
|
||||
|
||||
while not done:
|
||||
try:
|
||||
if command_line_args_exist:
|
||||
cmd_input = invocation_commands.pop(0)
|
||||
done = len(invocation_commands) == 0
|
||||
else:
|
||||
cmd_input = input("invoke> ")
|
||||
except (KeyboardInterrupt, EOFError):
|
||||
# Ctrl-c exits
|
||||
@ -368,6 +378,9 @@ def invoke_cli():
|
||||
invoker.services.logger.warning('Invalid command, use "help" to list commands')
|
||||
continue
|
||||
|
||||
except ValidationError:
|
||||
invoker.services.logger.warning('Invalid command arguments, run "<command> --help" for summary')
|
||||
|
||||
except SessionError:
|
||||
# Start a new session
|
||||
invoker.services.logger.warning("Session error: creating a new session")
|
||||
|
@ -3,12 +3,12 @@
|
||||
from typing import Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
import numpy.random
|
||||
from pydantic import Field
|
||||
|
||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
InvocationConfig,
|
||||
InvocationContext,
|
||||
BaseInvocationOutput,
|
||||
)
|
||||
@ -50,11 +50,11 @@ class RandomRangeInvocation(BaseInvocation):
|
||||
default=np.iinfo(np.int32).max, description="The exclusive high value"
|
||||
)
|
||||
size: int = Field(default=1, description="The number of values to generate")
|
||||
seed: Optional[int] = Field(
|
||||
seed: int = Field(
|
||||
ge=0,
|
||||
le=np.iinfo(np.int32).max,
|
||||
description="The seed for the RNG",
|
||||
default_factory=lambda: numpy.random.randint(0, np.iinfo(np.int32).max),
|
||||
le=SEED_MAX,
|
||||
description="The seed for the RNG (omit for random)",
|
||||
default_factory=get_random_seed,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
|
||||
|
@ -16,8 +16,6 @@ from compel.prompt_parser import (
|
||||
Fragment,
|
||||
)
|
||||
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
|
||||
class ConditioningField(BaseModel):
|
||||
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
|
||||
@ -100,9 +98,10 @@ class CompelInvocation(BaseInvocation):
|
||||
|
||||
# TODO: support legacy blend?
|
||||
|
||||
prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(prompt_str)
|
||||
conjunction = Compel.parse_prompt_string(prompt_str)
|
||||
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
|
||||
|
||||
if getattr(Globals, "log_tokenization", False):
|
||||
if context.services.configuration.log_tokenization:
|
||||
log_tokenization_for_prompt_object(prompt, tokenizer)
|
||||
|
||||
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
|
||||
|
@ -1,15 +1,17 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
from functools import partial
|
||||
from typing import Literal, Optional, Union
|
||||
from typing import Literal, Optional, Union, get_args
|
||||
|
||||
import numpy as np
|
||||
from torch import Tensor
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.models.image import ImageField, ImageType
|
||||
from invokeai.app.models.image import ColorField, ImageField, ImageType
|
||||
from invokeai.app.invocations.util.choose_model import choose_model
|
||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||
from invokeai.backend.generator.inpaint import infill_methods
|
||||
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
|
||||
from .image import ImageOutput, build_image_output
|
||||
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
|
||||
@ -17,7 +19,8 @@ from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ..util.step_callback import stable_diffusion_step_callback
|
||||
|
||||
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
|
||||
|
||||
INFILL_METHODS = Literal[tuple(infill_methods())]
|
||||
DEFAULT_INFILL_METHOD = 'patchmatch' if 'patchmatch' in get_args(INFILL_METHODS) else 'tile'
|
||||
|
||||
class SDImageInvocation(BaseModel):
|
||||
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
|
||||
@ -44,15 +47,13 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
|
||||
# TODO: consider making prompt optional to enable providing prompt through a link
|
||||
# fmt: off
|
||||
prompt: Optional[str] = Field(description="The prompt to generate an image from")
|
||||
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
|
||||
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed)
|
||||
steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image")
|
||||
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
|
||||
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
|
||||
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
|
||||
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
cfg_scale: float = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="lms", description="The scheduler to use" )
|
||||
model: str = Field(default="", description="The model to use (currently ignored)")
|
||||
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
|
||||
# fmt: on
|
||||
|
||||
# TODO: pass this an emitter method or something? or a session for dispatching?
|
||||
@ -148,7 +149,6 @@ class ImageToImageInvocation(TextToImageInvocation):
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
)
|
||||
mask = None
|
||||
|
||||
if self.fit:
|
||||
image = image.resize((self.width, self.height))
|
||||
@ -165,7 +165,6 @@ class ImageToImageInvocation(TextToImageInvocation):
|
||||
outputs = Img2Img(model).generate(
|
||||
prompt=self.prompt,
|
||||
init_image=image,
|
||||
init_mask=mask,
|
||||
step_callback=partial(self.dispatch_progress, context, source_node_id),
|
||||
**self.dict(
|
||||
exclude={"prompt", "image", "mask"}
|
||||
@ -197,7 +196,6 @@ class ImageToImageInvocation(TextToImageInvocation):
|
||||
image=result_image,
|
||||
)
|
||||
|
||||
|
||||
class InpaintInvocation(ImageToImageInvocation):
|
||||
"""Generates an image using inpaint."""
|
||||
|
||||
@ -205,6 +203,17 @@ class InpaintInvocation(ImageToImageInvocation):
|
||||
|
||||
# Inputs
|
||||
mask: Union[ImageField, None] = Field(description="The mask")
|
||||
seam_size: int = Field(default=96, ge=1, description="The seam inpaint size (px)")
|
||||
seam_blur: int = Field(default=16, ge=0, description="The seam inpaint blur radius (px)")
|
||||
seam_strength: float = Field(
|
||||
default=0.75, gt=0, le=1, description="The seam inpaint strength"
|
||||
)
|
||||
seam_steps: int = Field(default=30, ge=1, description="The number of steps to use for seam inpaint")
|
||||
tile_size: int = Field(default=32, ge=1, description="The tile infill method size (px)")
|
||||
infill_method: INFILL_METHODS = Field(default=DEFAULT_INFILL_METHOD, description="The method used to infill empty regions (px)")
|
||||
inpaint_width: Optional[int] = Field(default=None, multiple_of=8, gt=0, description="The width of the inpaint region (px)")
|
||||
inpaint_height: Optional[int] = Field(default=None, multiple_of=8, gt=0, description="The height of the inpaint region (px)")
|
||||
inpaint_fill: Optional[ColorField] = Field(default=ColorField(r=127, g=127, b=127, a=255), description="The solid infill method color")
|
||||
inpaint_replace: float = Field(
|
||||
default=0.0,
|
||||
ge=0.0,
|
||||
|
@ -1,5 +1,6 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import io
|
||||
from typing import Literal, Optional
|
||||
|
||||
import numpy
|
||||
@ -32,14 +33,12 @@ class ImageOutput(BaseInvocationOutput):
|
||||
# fmt: off
|
||||
type: Literal["image"] = "image"
|
||||
image: ImageField = Field(default=None, description="The output image")
|
||||
width: Optional[int] = Field(default=None, description="The width of the image in pixels")
|
||||
height: Optional[int] = Field(default=None, description="The height of the image in pixels")
|
||||
width: int = Field(description="The width of the image in pixels")
|
||||
height: int = Field(description="The height of the image in pixels")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"required": ["type", "image", "width", "height", "mode"]
|
||||
}
|
||||
schema_extra = {"required": ["type", "image", "width", "height"]}
|
||||
|
||||
|
||||
def build_image_output(
|
||||
@ -54,7 +53,6 @@ def build_image_output(
|
||||
image=image_field,
|
||||
width=image.width,
|
||||
height=image.height,
|
||||
mode=image.mode,
|
||||
)
|
||||
|
||||
|
||||
|
233
invokeai/app/invocations/infill.py
Normal file
233
invokeai/app/invocations/infill.py
Normal file
@ -0,0 +1,233 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
from typing import Literal, Optional, Union, get_args
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
from PIL import Image, ImageOps
|
||||
from pydantic import Field
|
||||
|
||||
from invokeai.app.invocations.image import ImageOutput, build_image_output
|
||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||
from invokeai.backend.image_util.patchmatch import PatchMatch
|
||||
|
||||
from ..models.image import ColorField, ImageField, ImageType
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
InvocationContext,
|
||||
)
|
||||
|
||||
|
||||
def infill_methods() -> list[str]:
|
||||
methods = [
|
||||
"tile",
|
||||
"solid",
|
||||
]
|
||||
if PatchMatch.patchmatch_available():
|
||||
methods.insert(0, "patchmatch")
|
||||
return methods
|
||||
|
||||
|
||||
INFILL_METHODS = Literal[tuple(infill_methods())]
|
||||
DEFAULT_INFILL_METHOD = (
|
||||
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
|
||||
)
|
||||
|
||||
|
||||
def infill_patchmatch(im: Image.Image) -> Image.Image:
|
||||
if im.mode != "RGBA":
|
||||
return im
|
||||
|
||||
# Skip patchmatch if patchmatch isn't available
|
||||
if not PatchMatch.patchmatch_available():
|
||||
return im
|
||||
|
||||
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
|
||||
im_patched_np = PatchMatch.inpaint(
|
||||
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
|
||||
)
|
||||
im_patched = Image.fromarray(im_patched_np, mode="RGB")
|
||||
return im_patched
|
||||
|
||||
|
||||
def get_tile_images(image: np.ndarray, width=8, height=8):
|
||||
_nrows, _ncols, depth = image.shape
|
||||
_strides = image.strides
|
||||
|
||||
nrows, _m = divmod(_nrows, height)
|
||||
ncols, _n = divmod(_ncols, width)
|
||||
if _m != 0 or _n != 0:
|
||||
return None
|
||||
|
||||
return np.lib.stride_tricks.as_strided(
|
||||
np.ravel(image),
|
||||
shape=(nrows, ncols, height, width, depth),
|
||||
strides=(height * _strides[0], width * _strides[1], *_strides),
|
||||
writeable=False,
|
||||
)
|
||||
|
||||
|
||||
def tile_fill_missing(
|
||||
im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
|
||||
) -> Image.Image:
|
||||
# Only fill if there's an alpha layer
|
||||
if im.mode != "RGBA":
|
||||
return im
|
||||
|
||||
a = np.asarray(im, dtype=np.uint8)
|
||||
|
||||
tile_size_tuple = (tile_size, tile_size)
|
||||
|
||||
# Get the image as tiles of a specified size
|
||||
tiles = get_tile_images(a, *tile_size_tuple).copy()
|
||||
|
||||
# Get the mask as tiles
|
||||
tiles_mask = tiles[:, :, :, :, 3]
|
||||
|
||||
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
|
||||
tmask_shape = tiles_mask.shape
|
||||
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
|
||||
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
|
||||
tiles_mask = tiles_mask > 0
|
||||
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
|
||||
|
||||
# Get RGB tiles in single array and filter by the mask
|
||||
tshape = tiles.shape
|
||||
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
|
||||
filtered_tiles = tiles_all[tiles_mask]
|
||||
|
||||
if len(filtered_tiles) == 0:
|
||||
return im
|
||||
|
||||
# Find all invalid tiles and replace with a random valid tile
|
||||
replace_count = (tiles_mask == False).sum()
|
||||
rng = np.random.default_rng(seed=seed)
|
||||
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[
|
||||
rng.choice(filtered_tiles.shape[0], replace_count), :, :, :
|
||||
]
|
||||
|
||||
# Convert back to an image
|
||||
tiles_all = tiles_all.reshape(tshape)
|
||||
tiles_all = tiles_all.swapaxes(1, 2)
|
||||
st = tiles_all.reshape(
|
||||
(
|
||||
math.prod(tiles_all.shape[0:2]),
|
||||
math.prod(tiles_all.shape[2:4]),
|
||||
tiles_all.shape[4],
|
||||
)
|
||||
)
|
||||
si = Image.fromarray(st, mode="RGBA")
|
||||
|
||||
return si
|
||||
|
||||
|
||||
class InfillColorInvocation(BaseInvocation):
|
||||
"""Infills transparent areas of an image with a solid color"""
|
||||
|
||||
type: Literal["infill_rgba"] = "infill_rgba"
|
||||
image: Optional[ImageField] = Field(default=None, description="The image to infill")
|
||||
color: Optional[ColorField] = Field(
|
||||
default=ColorField(r=127, g=127, b=127, a=255),
|
||||
description="The color to use to infill",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
|
||||
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
|
||||
infilled = Image.alpha_composite(solid_bg, image)
|
||||
|
||||
infilled.paste(image, (0, 0), image.split()[-1])
|
||||
|
||||
image_type = ImageType.RESULT
|
||||
image_name = context.services.images.create_name(
|
||||
context.graph_execution_state_id, self.id
|
||||
)
|
||||
|
||||
metadata = context.services.metadata.build_metadata(
|
||||
session_id=context.graph_execution_state_id, node=self
|
||||
)
|
||||
|
||||
context.services.images.save(image_type, image_name, infilled, metadata)
|
||||
return build_image_output(
|
||||
image_type=image_type,
|
||||
image_name=image_name,
|
||||
image=image,
|
||||
)
|
||||
|
||||
|
||||
class InfillTileInvocation(BaseInvocation):
|
||||
"""Infills transparent areas of an image with tiles of the image"""
|
||||
|
||||
type: Literal["infill_tile"] = "infill_tile"
|
||||
|
||||
image: Optional[ImageField] = Field(default=None, description="The image to infill")
|
||||
tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
|
||||
seed: int = Field(
|
||||
ge=0,
|
||||
le=SEED_MAX,
|
||||
description="The seed to use for tile generation (omit for random)",
|
||||
default_factory=get_random_seed,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
|
||||
infilled = tile_fill_missing(
|
||||
image.copy(), seed=self.seed, tile_size=self.tile_size
|
||||
)
|
||||
infilled.paste(image, (0, 0), image.split()[-1])
|
||||
|
||||
image_type = ImageType.RESULT
|
||||
image_name = context.services.images.create_name(
|
||||
context.graph_execution_state_id, self.id
|
||||
)
|
||||
|
||||
metadata = context.services.metadata.build_metadata(
|
||||
session_id=context.graph_execution_state_id, node=self
|
||||
)
|
||||
|
||||
context.services.images.save(image_type, image_name, infilled, metadata)
|
||||
return build_image_output(
|
||||
image_type=image_type,
|
||||
image_name=image_name,
|
||||
image=image,
|
||||
)
|
||||
|
||||
|
||||
class InfillPatchMatchInvocation(BaseInvocation):
|
||||
"""Infills transparent areas of an image using the PatchMatch algorithm"""
|
||||
|
||||
type: Literal["infill_patchmatch"] = "infill_patchmatch"
|
||||
|
||||
image: Optional[ImageField] = Field(default=None, description="The image to infill")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
|
||||
if PatchMatch.patchmatch_available():
|
||||
infilled = infill_patchmatch(image.copy())
|
||||
else:
|
||||
raise ValueError("PatchMatch is not available on this system")
|
||||
|
||||
image_type = ImageType.RESULT
|
||||
image_name = context.services.images.create_name(
|
||||
context.graph_execution_state_id, self.id
|
||||
)
|
||||
|
||||
metadata = context.services.metadata.build_metadata(
|
||||
session_id=context.graph_execution_state_id, node=self
|
||||
)
|
||||
|
||||
context.services.images.save(image_type, image_name, infilled, metadata)
|
||||
return build_image_output(
|
||||
image_type=image_type,
|
||||
image_name=image_name,
|
||||
image=image,
|
||||
)
|
@ -1,11 +1,13 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import random
|
||||
from typing import Literal, Optional
|
||||
from typing import Literal, Optional, Union
|
||||
import einops
|
||||
from pydantic import BaseModel, Field
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.util.choose_model import choose_model
|
||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
|
||||
@ -13,7 +15,9 @@ from ...backend.model_management.model_manager import ModelManager
|
||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
||||
from ...backend.image_util.seamless import configure_model_padding
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
|
||||
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
|
||||
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||
import numpy as np
|
||||
from ..services.image_storage import ImageType
|
||||
@ -37,41 +41,55 @@ class LatentsField(BaseModel):
|
||||
class LatentsOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output latents"""
|
||||
#fmt: off
|
||||
type: Literal["latent_output"] = "latent_output"
|
||||
type: Literal["latents_output"] = "latents_output"
|
||||
|
||||
# Inputs
|
||||
latents: LatentsField = Field(default=None, description="The output latents")
|
||||
width: int = Field(description="The width of the latents in pixels")
|
||||
height: int = Field(description="The height of the latents in pixels")
|
||||
#fmt: on
|
||||
|
||||
|
||||
def build_latents_output(latents_name: str, latents: torch.Tensor):
|
||||
return LatentsOutput(
|
||||
latents=LatentsField(latents_name=latents_name),
|
||||
width=latents.size()[3] * 8,
|
||||
height=latents.size()[2] * 8,
|
||||
)
|
||||
|
||||
class NoiseOutput(BaseInvocationOutput):
|
||||
"""Invocation noise output"""
|
||||
#fmt: off
|
||||
type: Literal["noise_output"] = "noise_output"
|
||||
|
||||
# Inputs
|
||||
noise: LatentsField = Field(default=None, description="The output noise")
|
||||
width: int = Field(description="The width of the noise in pixels")
|
||||
height: int = Field(description="The height of the noise in pixels")
|
||||
#fmt: on
|
||||
|
||||
|
||||
# TODO: this seems like a hack
|
||||
scheduler_map = dict(
|
||||
ddim=diffusers.DDIMScheduler,
|
||||
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
|
||||
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
|
||||
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_euler=diffusers.EulerDiscreteScheduler,
|
||||
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
|
||||
k_heun=diffusers.HeunDiscreteScheduler,
|
||||
k_lms=diffusers.LMSDiscreteScheduler,
|
||||
plms=diffusers.PNDMScheduler,
|
||||
)
|
||||
def build_noise_output(latents_name: str, latents: torch.Tensor):
|
||||
return NoiseOutput(
|
||||
noise=LatentsField(latents_name=latents_name),
|
||||
width=latents.size()[3] * 8,
|
||||
height=latents.size()[2] * 8,
|
||||
)
|
||||
|
||||
|
||||
SAMPLER_NAME_VALUES = Literal[
|
||||
tuple(list(scheduler_map.keys()))
|
||||
tuple(list(SCHEDULER_MAP.keys()))
|
||||
]
|
||||
|
||||
|
||||
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
|
||||
scheduler_class = scheduler_map.get(scheduler_name,'ddim')
|
||||
scheduler = scheduler_class.from_config(model.scheduler.config)
|
||||
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
|
||||
|
||||
scheduler_config = model.scheduler.config
|
||||
if "_backup" in scheduler_config:
|
||||
scheduler_config = scheduler_config["_backup"]
|
||||
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
|
||||
scheduler = scheduler_class.from_config(scheduler_config)
|
||||
|
||||
# hack copied over from generate.py
|
||||
if not hasattr(scheduler, 'uses_inpainting_model'):
|
||||
scheduler.uses_inpainting_model = lambda: False
|
||||
@ -102,17 +120,13 @@ def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_c
|
||||
return x
|
||||
|
||||
|
||||
def random_seed():
|
||||
return random.randint(0, np.iinfo(np.uint32).max)
|
||||
|
||||
|
||||
class NoiseInvocation(BaseInvocation):
|
||||
"""Generates latent noise."""
|
||||
|
||||
type: Literal["noise"] = "noise"
|
||||
|
||||
# Inputs
|
||||
seed: int = Field(ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", default_factory=random_seed)
|
||||
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed)
|
||||
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
|
||||
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
|
||||
|
||||
@ -131,9 +145,7 @@ class NoiseInvocation(BaseInvocation):
|
||||
|
||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||
context.services.latents.set(name, noise)
|
||||
return NoiseOutput(
|
||||
noise=LatentsField(latents_name=name)
|
||||
)
|
||||
return build_noise_output(latents_name=name, latents=noise)
|
||||
|
||||
|
||||
# Text to image
|
||||
@ -149,11 +161,10 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
noise: Optional[LatentsField] = Field(description="The noise to use")
|
||||
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
|
||||
scheduler: SAMPLER_NAME_VALUES = Field(default="lms", description="The scheduler to use" )
|
||||
model: str = Field(default="", description="The model to use (currently ignored)")
|
||||
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
||||
model: str = Field(default="", description="The model to use (currently ignored)")
|
||||
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
|
||||
# fmt: on
|
||||
|
||||
# Schema customisation
|
||||
@ -218,7 +229,7 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
h_symmetry_time_pct=None,#h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=None#v_symmetry_time_pct,
|
||||
),
|
||||
).add_scheduler_args_if_applicable(model.scheduler, eta=None)#ddim_eta)
|
||||
).add_scheduler_args_if_applicable(model.scheduler, eta=0.0)#ddim_eta)
|
||||
return conditioning_data
|
||||
|
||||
|
||||
@ -250,9 +261,7 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
|
||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||
context.services.latents.set(name, result_latents)
|
||||
return LatentsOutput(
|
||||
latents=LatentsField(latents_name=name)
|
||||
)
|
||||
return build_latents_output(latents_name=name, latents=result_latents)
|
||||
|
||||
|
||||
class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
@ -260,6 +269,10 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
|
||||
type: Literal["l2l"] = "l2l"
|
||||
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
|
||||
strength: float = Field(default=0.5, description="The strength of the latents to use")
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
@ -271,10 +284,6 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
},
|
||||
}
|
||||
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
|
||||
strength: float = Field(default=0.5, description="The strength of the latents to use")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
noise = context.services.latents.get(self.noise.latents_name)
|
||||
latent = context.services.latents.get(self.latents.latents_name)
|
||||
@ -287,7 +296,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
|
||||
model = self.get_model(context.services.model_manager)
|
||||
conditioning_data = self.get_conditioning_data(model)
|
||||
conditioning_data = self.get_conditioning_data(context, model)
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
|
||||
@ -295,11 +304,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
latent, device=model.device, dtype=latent.dtype
|
||||
)
|
||||
|
||||
timesteps, _ = model.get_img2img_timesteps(
|
||||
self.steps,
|
||||
self.strength,
|
||||
device=model.device,
|
||||
)
|
||||
timesteps, _ = model.get_img2img_timesteps(self.steps, self.strength)
|
||||
|
||||
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
||||
latents=initial_latents,
|
||||
@ -315,9 +320,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
|
||||
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||
context.services.latents.set(name, result_latents)
|
||||
return LatentsOutput(
|
||||
latents=LatentsField(latents_name=name)
|
||||
)
|
||||
return build_latents_output(latents_name=name, latents=result_latents)
|
||||
|
||||
|
||||
# Latent to image
|
||||
@ -384,8 +387,8 @@ class ResizeLatentsInvocation(BaseInvocation):
|
||||
latents: Optional[LatentsField] = Field(description="The latents to resize")
|
||||
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
|
||||
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
|
||||
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
@ -402,7 +405,7 @@ class ResizeLatentsInvocation(BaseInvocation):
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.set(name, resized_latents)
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
return build_latents_output(latents_name=name, latents=resized_latents)
|
||||
|
||||
|
||||
class ScaleLatentsInvocation(BaseInvocation):
|
||||
@ -413,8 +416,8 @@ class ScaleLatentsInvocation(BaseInvocation):
|
||||
# Inputs
|
||||
latents: Optional[LatentsField] = Field(description="The latents to scale")
|
||||
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
|
||||
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
|
||||
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
@ -432,4 +435,48 @@ class ScaleLatentsInvocation(BaseInvocation):
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.set(name, resized_latents)
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
return build_latents_output(latents_name=name, latents=resized_latents)
|
||||
|
||||
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
|
||||
type: Literal["i2l"] = "i2l"
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The image to encode")
|
||||
model: str = Field(default="", description="The model to use")
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["latents", "image"],
|
||||
"type_hints": {"model": "model"},
|
||||
},
|
||||
}
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
image = context.services.images.get(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
|
||||
# TODO: this only really needs the vae
|
||||
model_info = choose_model(context.services.model_manager, self.model)
|
||||
model: StableDiffusionGeneratorPipeline = model_info["model"]
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
latents = model.non_noised_latents_from_image(
|
||||
image_tensor,
|
||||
device=model._model_group.device_for(model.unet),
|
||||
dtype=model.unet.dtype,
|
||||
)
|
||||
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.set(name, latents)
|
||||
return build_latents_output(latents_name=name, latents=latents)
|
||||
|
@ -3,8 +3,14 @@
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
import numpy as np
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
InvocationContext,
|
||||
InvocationConfig,
|
||||
)
|
||||
|
||||
|
||||
class MathInvocationConfig(BaseModel):
|
||||
@ -21,19 +27,21 @@ class MathInvocationConfig(BaseModel):
|
||||
|
||||
class IntOutput(BaseInvocationOutput):
|
||||
"""An integer output"""
|
||||
#fmt: off
|
||||
|
||||
# fmt: off
|
||||
type: Literal["int_output"] = "int_output"
|
||||
a: int = Field(default=None, description="The output integer")
|
||||
#fmt: on
|
||||
# fmt: on
|
||||
|
||||
|
||||
class AddInvocation(BaseInvocation, MathInvocationConfig):
|
||||
"""Adds two numbers"""
|
||||
#fmt: off
|
||||
|
||||
# fmt: off
|
||||
type: Literal["add"] = "add"
|
||||
a: int = Field(default=0, description="The first number")
|
||||
b: int = Field(default=0, description="The second number")
|
||||
#fmt: on
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntOutput:
|
||||
return IntOutput(a=self.a + self.b)
|
||||
@ -41,11 +49,12 @@ class AddInvocation(BaseInvocation, MathInvocationConfig):
|
||||
|
||||
class SubtractInvocation(BaseInvocation, MathInvocationConfig):
|
||||
"""Subtracts two numbers"""
|
||||
#fmt: off
|
||||
|
||||
# fmt: off
|
||||
type: Literal["sub"] = "sub"
|
||||
a: int = Field(default=0, description="The first number")
|
||||
b: int = Field(default=0, description="The second number")
|
||||
#fmt: on
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntOutput:
|
||||
return IntOutput(a=self.a - self.b)
|
||||
@ -53,11 +62,12 @@ class SubtractInvocation(BaseInvocation, MathInvocationConfig):
|
||||
|
||||
class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
|
||||
"""Multiplies two numbers"""
|
||||
#fmt: off
|
||||
|
||||
# fmt: off
|
||||
type: Literal["mul"] = "mul"
|
||||
a: int = Field(default=0, description="The first number")
|
||||
b: int = Field(default=0, description="The second number")
|
||||
#fmt: on
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntOutput:
|
||||
return IntOutput(a=self.a * self.b)
|
||||
@ -65,11 +75,26 @@ class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
|
||||
|
||||
class DivideInvocation(BaseInvocation, MathInvocationConfig):
|
||||
"""Divides two numbers"""
|
||||
#fmt: off
|
||||
|
||||
# fmt: off
|
||||
type: Literal["div"] = "div"
|
||||
a: int = Field(default=0, description="The first number")
|
||||
b: int = Field(default=0, description="The second number")
|
||||
#fmt: on
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntOutput:
|
||||
return IntOutput(a=int(self.a / self.b))
|
||||
|
||||
|
||||
class RandomIntInvocation(BaseInvocation):
|
||||
"""Outputs a single random integer."""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["rand_int"] = "rand_int"
|
||||
low: int = Field(default=0, description="The inclusive low value")
|
||||
high: int = Field(
|
||||
default=np.iinfo(np.int32).max, description="The exclusive high value"
|
||||
)
|
||||
# fmt: on
|
||||
def invoke(self, context: InvocationContext) -> IntOutput:
|
||||
return IntOutput(a=np.random.randint(self.low, self.high))
|
||||
|
@ -4,10 +4,11 @@ from invokeai.backend.model_management.model_manager import ModelManager
|
||||
def choose_model(model_manager: ModelManager, model_name: str):
|
||||
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
|
||||
logger = model_manager.logger
|
||||
if model_manager.valid_model(model_name):
|
||||
model = model_manager.get_model(model_name)
|
||||
else:
|
||||
if model_name and not model_manager.valid_model(model_name):
|
||||
default_model_name = model_manager.default_model()
|
||||
logger.warning(f"\'{model_name}\' is not a valid model name. Using default model \'{default_model_name}\' instead.")
|
||||
model = model_manager.get_model()
|
||||
logger.warning(f"{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead.")
|
||||
else:
|
||||
model = model_manager.get_model(model_name)
|
||||
|
||||
return model
|
||||
|
@ -1,5 +1,5 @@
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
from typing import Optional, Tuple
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@ -27,3 +27,13 @@ class ImageField(BaseModel):
|
||||
|
||||
class Config:
|
||||
schema_extra = {"required": ["image_type", "image_name"]}
|
||||
|
||||
|
||||
class ColorField(BaseModel):
|
||||
r: int = Field(ge=0, le=255, description="The red component")
|
||||
g: int = Field(ge=0, le=255, description="The green component")
|
||||
b: int = Field(ge=0, le=255, description="The blue component")
|
||||
a: int = Field(ge=0, le=255, description="The alpha component")
|
||||
|
||||
def tuple(self) -> Tuple[int, int, int, int]:
|
||||
return (self.r, self.g, self.b, self.a)
|
||||
|
521
invokeai/app/services/config.py
Normal file
521
invokeai/app/services/config.py
Normal file
@ -0,0 +1,521 @@
|
||||
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
|
||||
|
||||
'''Invokeai configuration system.
|
||||
|
||||
Arguments and fields are taken from the pydantic definition of the
|
||||
model. Defaults can be set by creating a yaml configuration file that
|
||||
has a top-level key of "InvokeAI" and subheadings for each of the
|
||||
categories returned by `invokeai --help`. The file looks like this:
|
||||
|
||||
[file: invokeai.yaml]
|
||||
|
||||
InvokeAI:
|
||||
Paths:
|
||||
root: /home/lstein/invokeai-main
|
||||
conf_path: configs/models.yaml
|
||||
legacy_conf_dir: configs/stable-diffusion
|
||||
outdir: outputs
|
||||
embedding_dir: embeddings
|
||||
lora_dir: loras
|
||||
autoconvert_dir: null
|
||||
gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth
|
||||
Models:
|
||||
model: stable-diffusion-1.5
|
||||
embeddings: true
|
||||
Memory/Performance:
|
||||
xformers_enabled: false
|
||||
sequential_guidance: false
|
||||
precision: float16
|
||||
max_loaded_models: 4
|
||||
always_use_cpu: false
|
||||
free_gpu_mem: false
|
||||
Features:
|
||||
nsfw_checker: true
|
||||
restore: true
|
||||
esrgan: true
|
||||
patchmatch: true
|
||||
internet_available: true
|
||||
log_tokenization: false
|
||||
Web Server:
|
||||
host: 127.0.0.1
|
||||
port: 8081
|
||||
allow_origins: []
|
||||
allow_credentials: true
|
||||
allow_methods:
|
||||
- '*'
|
||||
allow_headers:
|
||||
- '*'
|
||||
|
||||
The default name of the configuration file is `invokeai.yaml`, located
|
||||
in INVOKEAI_ROOT. You can replace supersede this by providing any
|
||||
OmegaConf dictionary object initialization time:
|
||||
|
||||
omegaconf = OmegaConf.load('/tmp/init.yaml')
|
||||
conf = InvokeAIAppConfig(conf=omegaconf)
|
||||
|
||||
By default, InvokeAIAppConfig will parse the contents of `sys.argv` at
|
||||
initialization time. You may pass a list of strings in the optional
|
||||
`argv` argument to use instead of the system argv:
|
||||
|
||||
conf = InvokeAIAppConfig(arg=['--xformers_enabled'])
|
||||
|
||||
It is also possible to set a value at initialization time. This value
|
||||
has highest priority.
|
||||
|
||||
conf = InvokeAIAppConfig(xformers_enabled=True)
|
||||
|
||||
Any setting can be overwritten by setting an environment variable of
|
||||
form: "INVOKEAI_<setting>", as in:
|
||||
|
||||
export INVOKEAI_port=8080
|
||||
|
||||
Order of precedence (from highest):
|
||||
1) initialization options
|
||||
2) command line options
|
||||
3) environment variable options
|
||||
4) config file options
|
||||
5) pydantic defaults
|
||||
|
||||
Typical usage:
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.invocations.generate import TextToImageInvocation
|
||||
|
||||
# get global configuration and print its nsfw_checker value
|
||||
conf = InvokeAIAppConfig()
|
||||
print(conf.nsfw_checker)
|
||||
|
||||
# get the text2image invocation and print its step value
|
||||
text2image = TextToImageInvocation()
|
||||
print(text2image.steps)
|
||||
|
||||
Computed properties:
|
||||
|
||||
The InvokeAIAppConfig object has a series of properties that
|
||||
resolve paths relative to the runtime root directory. They each return
|
||||
a Path object:
|
||||
|
||||
root_path - path to InvokeAI root
|
||||
output_path - path to default outputs directory
|
||||
model_conf_path - path to models.yaml
|
||||
conf - alias for the above
|
||||
embedding_path - path to the embeddings directory
|
||||
lora_path - path to the LoRA directory
|
||||
|
||||
In most cases, you will want to create a single InvokeAIAppConfig
|
||||
object for the entire application. The get_invokeai_config() function
|
||||
does this:
|
||||
|
||||
config = get_invokeai_config()
|
||||
print(config.root)
|
||||
|
||||
# Subclassing
|
||||
|
||||
If you wish to create a similar class, please subclass the
|
||||
`InvokeAISettings` class and define a Literal field named "type",
|
||||
which is set to the desired top-level name. For example, to create a
|
||||
"InvokeBatch" configuration, define like this:
|
||||
|
||||
class InvokeBatch(InvokeAISettings):
|
||||
type: Literal["InvokeBatch"] = "InvokeBatch"
|
||||
node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources')
|
||||
cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources')
|
||||
|
||||
This will now read and write from the "InvokeBatch" section of the
|
||||
config file, look for environment variables named INVOKEBATCH_*, and
|
||||
accept the command-line arguments `--node_count` and `--cpu_count`. The
|
||||
two configs are kept in separate sections of the config file:
|
||||
|
||||
# invokeai.yaml
|
||||
|
||||
InvokeBatch:
|
||||
Resources:
|
||||
node_count: 1
|
||||
cpu_count: 8
|
||||
|
||||
InvokeAI:
|
||||
Paths:
|
||||
root: /home/lstein/invokeai-main
|
||||
conf_path: configs/models.yaml
|
||||
legacy_conf_dir: configs/stable-diffusion
|
||||
outdir: outputs
|
||||
...
|
||||
'''
|
||||
import argparse
|
||||
import pydoc
|
||||
import typing
|
||||
import os
|
||||
import sys
|
||||
from argparse import ArgumentParser
|
||||
from omegaconf import OmegaConf, DictConfig
|
||||
from pathlib import Path
|
||||
from pydantic import BaseSettings, Field, parse_obj_as
|
||||
from typing import Any, ClassVar, Dict, List, Literal, Type, Union, get_origin, get_type_hints, get_args
|
||||
|
||||
INIT_FILE = Path('invokeai.yaml')
|
||||
LEGACY_INIT_FILE = Path('invokeai.init')
|
||||
|
||||
# This global stores a singleton InvokeAIAppConfig configuration object
|
||||
global_config = None
|
||||
|
||||
class InvokeAISettings(BaseSettings):
|
||||
'''
|
||||
Runtime configuration settings in which default values are
|
||||
read from an omegaconf .yaml file.
|
||||
'''
|
||||
initconf : ClassVar[DictConfig] = None
|
||||
argparse_groups : ClassVar[Dict] = {}
|
||||
|
||||
def parse_args(self, argv: list=sys.argv[1:]):
|
||||
parser = self.get_parser()
|
||||
opt, _ = parser.parse_known_args(argv)
|
||||
for name in self.__fields__:
|
||||
if name not in self._excluded():
|
||||
setattr(self, name, getattr(opt,name))
|
||||
|
||||
def to_yaml(self)->str:
|
||||
"""
|
||||
Return a YAML string representing our settings. This can be used
|
||||
as the contents of `invokeai.yaml` to restore settings later.
|
||||
"""
|
||||
cls = self.__class__
|
||||
type = get_args(get_type_hints(cls)['type'])[0]
|
||||
field_dict = dict({type:dict()})
|
||||
for name,field in self.__fields__.items():
|
||||
if name in cls._excluded():
|
||||
continue
|
||||
category = field.field_info.extra.get("category") or "Uncategorized"
|
||||
value = getattr(self,name)
|
||||
if category not in field_dict[type]:
|
||||
field_dict[type][category] = dict()
|
||||
# keep paths as strings to make it easier to read
|
||||
field_dict[type][category][name] = str(value) if isinstance(value,Path) else value
|
||||
conf = OmegaConf.create(field_dict)
|
||||
return OmegaConf.to_yaml(conf)
|
||||
|
||||
@classmethod
|
||||
def add_parser_arguments(cls, parser):
|
||||
if 'type' in get_type_hints(cls):
|
||||
settings_stanza = get_args(get_type_hints(cls)['type'])[0]
|
||||
else:
|
||||
settings_stanza = "Uncategorized"
|
||||
|
||||
env_prefix = cls.Config.env_prefix if hasattr(cls.Config,'env_prefix') else settings_stanza.upper()
|
||||
|
||||
initconf = cls.initconf.get(settings_stanza) \
|
||||
if cls.initconf and settings_stanza in cls.initconf \
|
||||
else OmegaConf.create()
|
||||
|
||||
# create an upcase version of the environment in
|
||||
# order to achieve case-insensitive environment
|
||||
# variables (the way Windows does)
|
||||
upcase_environ = dict()
|
||||
for key,value in os.environ.items():
|
||||
upcase_environ[key.upper()] = value
|
||||
|
||||
fields = cls.__fields__
|
||||
cls.argparse_groups = {}
|
||||
|
||||
for name, field in fields.items():
|
||||
if name not in cls._excluded():
|
||||
current_default = field.default
|
||||
|
||||
category = field.field_info.extra.get("category","Uncategorized")
|
||||
env_name = env_prefix + '_' + name
|
||||
if category in initconf and name in initconf.get(category):
|
||||
field.default = initconf.get(category).get(name)
|
||||
if env_name.upper() in upcase_environ:
|
||||
field.default = upcase_environ[env_name.upper()]
|
||||
cls.add_field_argument(parser, name, field)
|
||||
|
||||
field.default = current_default
|
||||
|
||||
@classmethod
|
||||
def cmd_name(self, command_field: str='type')->str:
|
||||
hints = get_type_hints(self)
|
||||
if command_field in hints:
|
||||
return get_args(hints[command_field])[0]
|
||||
else:
|
||||
return 'Uncategorized'
|
||||
|
||||
@classmethod
|
||||
def get_parser(cls)->ArgumentParser:
|
||||
parser = PagingArgumentParser(
|
||||
prog=cls.cmd_name(),
|
||||
description=cls.__doc__,
|
||||
)
|
||||
cls.add_parser_arguments(parser)
|
||||
return parser
|
||||
|
||||
@classmethod
|
||||
def add_subparser(cls, parser: argparse.ArgumentParser):
|
||||
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
|
||||
|
||||
@classmethod
|
||||
def _excluded(self)->List[str]:
|
||||
return ['type','initconf']
|
||||
|
||||
class Config:
|
||||
env_file_encoding = 'utf-8'
|
||||
arbitrary_types_allowed = True
|
||||
case_sensitive = True
|
||||
|
||||
@classmethod
|
||||
def add_field_argument(cls, command_parser, name: str, field, default_override = None):
|
||||
field_type = get_type_hints(cls).get(name)
|
||||
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
|
||||
if category := field.field_info.extra.get("category"):
|
||||
if category not in cls.argparse_groups:
|
||||
cls.argparse_groups[category] = command_parser.add_argument_group(category)
|
||||
argparse_group = cls.argparse_groups[category]
|
||||
else:
|
||||
argparse_group = command_parser
|
||||
|
||||
if get_origin(field_type) == Literal:
|
||||
allowed_values = get_args(field.type_)
|
||||
allowed_types = set()
|
||||
for val in allowed_values:
|
||||
allowed_types.add(type(val))
|
||||
allowed_types_list = list(allowed_types)
|
||||
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
|
||||
|
||||
argparse_group.add_argument(
|
||||
f"--{name}",
|
||||
dest=name,
|
||||
type=field_type,
|
||||
default=default,
|
||||
choices=allowed_values,
|
||||
help=field.field_info.description,
|
||||
)
|
||||
|
||||
elif get_origin(field_type) == list:
|
||||
argparse_group.add_argument(
|
||||
f"--{name}",
|
||||
dest=name,
|
||||
nargs='*',
|
||||
type=field.type_,
|
||||
default=default,
|
||||
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
|
||||
help=field.field_info.description,
|
||||
)
|
||||
else:
|
||||
argparse_group.add_argument(
|
||||
f"--{name}",
|
||||
dest=name,
|
||||
type=field.type_,
|
||||
default=default,
|
||||
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
|
||||
help=field.field_info.description,
|
||||
)
|
||||
def _find_root()->Path:
|
||||
if os.environ.get("INVOKEAI_ROOT"):
|
||||
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
|
||||
elif (
|
||||
os.environ.get("VIRTUAL_ENV")
|
||||
and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists()
|
||||
or
|
||||
Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists()
|
||||
)
|
||||
):
|
||||
root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve()
|
||||
else:
|
||||
root = Path("~/invokeai").expanduser().resolve()
|
||||
return root
|
||||
|
||||
class InvokeAIAppConfig(InvokeAISettings):
|
||||
'''
|
||||
Generate images using Stable Diffusion. Use "invokeai" to launch
|
||||
the command-line client (recommended for experts only), or
|
||||
"invokeai-web" to launch the web server. Global options
|
||||
can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by
|
||||
setting environment variables INVOKEAI_<setting>.
|
||||
'''
|
||||
#fmt: off
|
||||
type: Literal["InvokeAI"] = "InvokeAI"
|
||||
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
|
||||
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
|
||||
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server')
|
||||
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server')
|
||||
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server')
|
||||
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server')
|
||||
|
||||
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
|
||||
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
|
||||
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
|
||||
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
|
||||
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
|
||||
restore : bool = Field(default=True, description="Enable/disable face restoration code", category='Features')
|
||||
|
||||
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
|
||||
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
|
||||
max_loaded_models : int = Field(default=2, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
|
||||
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
|
||||
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
|
||||
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
|
||||
|
||||
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
|
||||
autoconvert_dir : Path = Field(default=None, description='Path to a directory of ckpt files to be converted into diffusers and imported on startup.', category='Paths')
|
||||
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
|
||||
embedding_dir : Path = Field(default='embeddings', description='Path to InvokeAI textual inversion aembeddings directory', category='Paths')
|
||||
gfpgan_model_dir : Path = Field(default="./models/gfpgan/GFPGANv1.4.pth", description='Path to GFPGAN models directory.', category='Paths')
|
||||
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
|
||||
lora_dir : Path = Field(default='loras', description='Path to InvokeAI LoRA model directory', category='Paths')
|
||||
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
|
||||
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
|
||||
|
||||
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
|
||||
embeddings : bool = Field(default=True, description='Load contents of embeddings directory', category='Models')
|
||||
#fmt: on
|
||||
|
||||
def __init__(self, conf: DictConfig = None, argv: List[str]=None, **kwargs):
|
||||
'''
|
||||
Initialize InvokeAIAppconfig.
|
||||
:param conf: alternate Omegaconf dictionary object
|
||||
:param argv: aternate sys.argv list
|
||||
:param **kwargs: attributes to initialize with
|
||||
'''
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# Set the runtime root directory. We parse command-line switches here
|
||||
# in order to pick up the --root_dir option.
|
||||
self.parse_args(argv)
|
||||
if conf is None:
|
||||
try:
|
||||
conf = OmegaConf.load(self.root_dir / INIT_FILE)
|
||||
except:
|
||||
pass
|
||||
InvokeAISettings.initconf = conf
|
||||
|
||||
# parse args again in order to pick up settings in configuration file
|
||||
self.parse_args(argv)
|
||||
|
||||
# restore initialization values
|
||||
hints = get_type_hints(self)
|
||||
for k in kwargs:
|
||||
setattr(self,k,parse_obj_as(hints[k],kwargs[k]))
|
||||
|
||||
@property
|
||||
def root_path(self)->Path:
|
||||
'''
|
||||
Path to the runtime root directory
|
||||
'''
|
||||
if self.root:
|
||||
return Path(self.root).expanduser()
|
||||
else:
|
||||
return self.find_root()
|
||||
|
||||
@property
|
||||
def root_dir(self)->Path:
|
||||
'''
|
||||
Alias for above.
|
||||
'''
|
||||
return self.root_path
|
||||
|
||||
def _resolve(self,partial_path:Path)->Path:
|
||||
return (self.root_path / partial_path).resolve()
|
||||
|
||||
@property
|
||||
def output_path(self)->Path:
|
||||
'''
|
||||
Path to defaults outputs directory.
|
||||
'''
|
||||
return self._resolve(self.outdir)
|
||||
|
||||
@property
|
||||
def model_conf_path(self)->Path:
|
||||
'''
|
||||
Path to models configuration file.
|
||||
'''
|
||||
return self._resolve(self.conf_path)
|
||||
|
||||
@property
|
||||
def legacy_conf_path(self)->Path:
|
||||
'''
|
||||
Path to directory of legacy configuration files (e.g. v1-inference.yaml)
|
||||
'''
|
||||
return self._resolve(self.legacy_conf_dir)
|
||||
|
||||
@property
|
||||
def cache_dir(self)->Path:
|
||||
'''
|
||||
Path to the global cache directory for HuggingFace hub-managed models
|
||||
'''
|
||||
return self.models_dir / "hub"
|
||||
|
||||
@property
|
||||
def models_dir(self)->Path:
|
||||
'''
|
||||
Path to the models directory
|
||||
'''
|
||||
return self._resolve("models")
|
||||
|
||||
@property
|
||||
def embedding_path(self)->Path:
|
||||
'''
|
||||
Path to the textual inversion embeddings directory.
|
||||
'''
|
||||
return self._resolve(self.embedding_dir) if self.embedding_dir else None
|
||||
|
||||
@property
|
||||
def lora_path(self)->Path:
|
||||
'''
|
||||
Path to the LoRA models directory.
|
||||
'''
|
||||
return self._resolve(self.lora_dir) if self.lora_dir else None
|
||||
|
||||
@property
|
||||
def autoconvert_path(self)->Path:
|
||||
'''
|
||||
Path to the directory containing models to be imported automatically at startup.
|
||||
'''
|
||||
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
|
||||
|
||||
@property
|
||||
def gfpgan_model_path(self)->Path:
|
||||
'''
|
||||
Path to the GFPGAN model.
|
||||
'''
|
||||
return self._resolve(self.gfpgan_model_dir) if self.gfpgan_model_dir else None
|
||||
|
||||
# the following methods support legacy calls leftover from the Globals era
|
||||
@property
|
||||
def full_precision(self)->bool:
|
||||
"""Return true if precision set to float32"""
|
||||
return self.precision=='float32'
|
||||
|
||||
@property
|
||||
def disable_xformers(self)->bool:
|
||||
"""Return true if xformers_enabled is false"""
|
||||
return not self.xformers_enabled
|
||||
|
||||
@property
|
||||
def try_patchmatch(self)->bool:
|
||||
"""Return true if patchmatch true"""
|
||||
return self.patchmatch
|
||||
|
||||
@staticmethod
|
||||
def find_root()->Path:
|
||||
'''
|
||||
Choose the runtime root directory when not specified on command line or
|
||||
init file.
|
||||
'''
|
||||
return _find_root()
|
||||
|
||||
|
||||
class PagingArgumentParser(argparse.ArgumentParser):
|
||||
'''
|
||||
A custom ArgumentParser that uses pydoc to page its output.
|
||||
It also supports reading defaults from an init file.
|
||||
'''
|
||||
def print_help(self, file=None):
|
||||
text = self.format_help()
|
||||
pydoc.pager(text)
|
||||
|
||||
def get_invokeai_config(cls:Type[InvokeAISettings]=InvokeAIAppConfig,**kwargs)->InvokeAISettings:
|
||||
'''
|
||||
This returns a singleton InvokeAIAppConfig configuration object.
|
||||
'''
|
||||
global global_config
|
||||
if global_config is None or type(global_config)!=cls:
|
||||
global_config = cls(**kwargs)
|
||||
return global_config
|
@ -49,12 +49,13 @@ def create_text_to_image() -> LibraryGraph:
|
||||
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
|
||||
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
|
||||
|
||||
# TODO: Uncomment this when we are ready to fix this up to prevent breaking changes
|
||||
graphs: list[LibraryGraph] = list()
|
||||
|
||||
text_to_image = graph_library.get(default_text_to_image_graph_id)
|
||||
# text_to_image = graph_library.get(default_text_to_image_graph_id)
|
||||
|
||||
# TODO: Check if the graph is the same as the default one, and if not, update it
|
||||
#if text_to_image is None:
|
||||
# # TODO: Check if the graph is the same as the default one, and if not, update it
|
||||
# #if text_to_image is None:
|
||||
text_to_image = create_text_to_image()
|
||||
graph_library.set(text_to_image)
|
||||
|
||||
|
@ -135,6 +135,7 @@ class GraphInvocationOutput(BaseInvocationOutput):
|
||||
|
||||
# TODO: Fill this out and move to invocations
|
||||
class GraphInvocation(BaseInvocation):
|
||||
"""Execute a graph"""
|
||||
type: Literal["graph"] = "graph"
|
||||
|
||||
# TODO: figure out how to create a default here
|
||||
@ -162,6 +163,7 @@ class IterateInvocationOutput(BaseInvocationOutput):
|
||||
|
||||
# TODO: Fill this out and move to invocations
|
||||
class IterateInvocation(BaseInvocation):
|
||||
"""Iterates over a list of items"""
|
||||
type: Literal["iterate"] = "iterate"
|
||||
|
||||
collection: list[Any] = Field(
|
||||
|
@ -270,4 +270,5 @@ class DiskImageStorage(ImageStorageBase):
|
||||
) # TODO: this should refresh position for LRU cache
|
||||
if len(self.__cache) > self.__max_cache_size:
|
||||
cache_id = self.__cache_ids.get()
|
||||
if cache_id in self.__cache:
|
||||
del self.__cache[cache_id]
|
||||
|
@ -10,6 +10,7 @@ from .image_storage import ImageStorageBase
|
||||
from .restoration_services import RestorationServices
|
||||
from .invocation_queue import InvocationQueueABC
|
||||
from .item_storage import ItemStorageABC
|
||||
from .config import InvokeAISettings
|
||||
|
||||
class InvocationServices:
|
||||
"""Services that can be used by invocations"""
|
||||
@ -21,6 +22,7 @@ class InvocationServices:
|
||||
queue: InvocationQueueABC
|
||||
model_manager: ModelManager
|
||||
restoration: RestorationServices
|
||||
configuration: InvokeAISettings
|
||||
|
||||
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
|
||||
graph_library: ItemStorageABC["LibraryGraph"]
|
||||
@ -40,6 +42,7 @@ class InvocationServices:
|
||||
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
|
||||
processor: "InvocationProcessorABC",
|
||||
restoration: RestorationServices,
|
||||
configuration: InvokeAISettings=None,
|
||||
):
|
||||
self.model_manager = model_manager
|
||||
self.events = events
|
||||
@ -52,3 +55,4 @@ class InvocationServices:
|
||||
self.graph_execution_manager = graph_execution_manager
|
||||
self.processor = processor
|
||||
self.restoration = restoration
|
||||
self.configuration = configuration
|
||||
|
@ -20,9 +20,18 @@ class MetadataLatentsField(TypedDict):
|
||||
latents_name: str
|
||||
|
||||
|
||||
class MetadataColorField(TypedDict):
|
||||
"""Pydantic-less ColorField, used for metadata parsing"""
|
||||
r: int
|
||||
g: int
|
||||
b: int
|
||||
a: int
|
||||
|
||||
|
||||
|
||||
# TODO: This is a placeholder for `InvocationsUnion` pending resolution of circular imports
|
||||
NodeMetadata = Dict[
|
||||
str, str | int | float | bool | MetadataImageField | MetadataLatentsField
|
||||
str, None | str | int | float | bool | MetadataImageField | MetadataLatentsField | MetadataColorField
|
||||
]
|
||||
|
||||
|
||||
|
@ -2,27 +2,25 @@ import os
|
||||
import sys
|
||||
import torch
|
||||
from argparse import Namespace
|
||||
from invokeai.backend import Args
|
||||
from omegaconf import OmegaConf
|
||||
from pathlib import Path
|
||||
from typing import types
|
||||
|
||||
import invokeai.version
|
||||
from .config import InvokeAISettings
|
||||
from ...backend import ModelManager
|
||||
from ...backend.util import choose_precision, choose_torch_device
|
||||
from ...backend import Globals
|
||||
|
||||
# TODO: Replace with an abstract class base ModelManagerBase
|
||||
def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
|
||||
if not config.conf:
|
||||
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
||||
if not os.path.exists(config_file):
|
||||
def get_model_manager(config: InvokeAISettings, logger: types.ModuleType) -> ModelManager:
|
||||
model_config = config.model_conf_path
|
||||
if not model_config.exists():
|
||||
report_model_error(
|
||||
config, FileNotFoundError(f"The file {config_file} could not be found."), logger
|
||||
config, FileNotFoundError(f"The file {model_config} could not be found."), logger
|
||||
)
|
||||
|
||||
logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}")
|
||||
logger.info(f'InvokeAI runtime directory is "{Globals.root}"')
|
||||
logger.info(f'InvokeAI runtime directory is "{config.root}"')
|
||||
|
||||
# these two lines prevent a horrible warning message from appearing
|
||||
# when the frozen CLIP tokenizer is imported
|
||||
@ -32,20 +30,7 @@ def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
|
||||
import diffusers
|
||||
|
||||
diffusers.logging.set_verbosity_error()
|
||||
|
||||
# normalize the config directory relative to root
|
||||
if not os.path.isabs(config.conf):
|
||||
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
|
||||
|
||||
if config.embeddings:
|
||||
if not os.path.isabs(config.embedding_path):
|
||||
embedding_path = os.path.normpath(
|
||||
os.path.join(Globals.root, config.embedding_path)
|
||||
)
|
||||
else:
|
||||
embedding_path = config.embedding_path
|
||||
else:
|
||||
embedding_path = None
|
||||
|
||||
# migrate legacy models
|
||||
ModelManager.migrate_models()
|
||||
@ -58,11 +43,11 @@ def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
|
||||
else choose_precision(device)
|
||||
|
||||
model_manager = ModelManager(
|
||||
OmegaConf.load(config.conf),
|
||||
OmegaConf.load(config.model_conf_path),
|
||||
precision=precision,
|
||||
device_type=device,
|
||||
max_loaded_models=config.max_loaded_models,
|
||||
embedding_path = Path(embedding_path),
|
||||
embedding_path = embedding_path,
|
||||
logger = logger,
|
||||
)
|
||||
except (FileNotFoundError, TypeError, AssertionError) as e:
|
||||
@ -73,12 +58,10 @@ def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
|
||||
|
||||
# try to autoconvert new models
|
||||
# autoimport new .ckpt files
|
||||
if path := config.autoconvert:
|
||||
model_manager.autoconvert_weights(
|
||||
conf_path=config.conf,
|
||||
weights_directory=path,
|
||||
if config.autoconvert_path:
|
||||
model_manager.heuristic_import(
|
||||
config.autoconvert_path,
|
||||
)
|
||||
logger.info('Model manager initialized')
|
||||
return model_manager
|
||||
|
||||
def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
|
||||
|
@ -1,3 +1,4 @@
|
||||
import time
|
||||
import traceback
|
||||
from threading import Event, Thread, BoundedSemaphore
|
||||
|
||||
@ -6,6 +7,7 @@ from .invocation_queue import InvocationQueueItem
|
||||
from .invoker import InvocationProcessorABC, Invoker
|
||||
from ..models.exceptions import CanceledException
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
__invoker_thread: Thread
|
||||
__stop_event: Event
|
||||
@ -34,8 +36,14 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
try:
|
||||
self.__threadLimit.acquire()
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
|
||||
except Exception as e:
|
||||
logger.debug("Exception while getting from queue: %s" % e)
|
||||
|
||||
if not queue_item: # Probably stopping
|
||||
# do not hammer the queue
|
||||
time.sleep(0.5)
|
||||
continue
|
||||
|
||||
graph_execution_state = (
|
||||
@ -124,7 +132,16 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
# Queue any further commands if invoking all
|
||||
is_complete = graph_execution_state.is_complete()
|
||||
if queue_item.invoke_all and not is_complete:
|
||||
try:
|
||||
self.__invoker.invoke(graph_execution_state, invoke_all=True)
|
||||
except Exception as e:
|
||||
logger.error("Error while invoking: %s" % e)
|
||||
self.__invoker.services.events.emit_invocation_error(
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
node=invocation.dict(),
|
||||
source_node_id=source_node_id,
|
||||
error=traceback.format_exc()
|
||||
)
|
||||
elif is_complete:
|
||||
self.__invoker.services.events.emit_graph_execution_complete(
|
||||
graph_execution_state.id
|
||||
|
@ -1,5 +1,13 @@
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_timestamp():
|
||||
return int(datetime.datetime.now(datetime.timezone.utc).timestamp())
|
||||
|
||||
|
||||
SEED_MAX = np.iinfo(np.int32).max
|
||||
|
||||
|
||||
def get_random_seed():
|
||||
return np.random.randint(0, SEED_MAX)
|
||||
|
@ -1,7 +1,6 @@
|
||||
"""
|
||||
Initialization file for invokeai.backend
|
||||
"""
|
||||
from .generate import Generate
|
||||
from .generator import (
|
||||
InvokeAIGeneratorBasicParams,
|
||||
InvokeAIGenerator,
|
||||
@ -12,5 +11,3 @@ from .generator import (
|
||||
)
|
||||
from .model_management import ModelManager, SDModelComponent
|
||||
from .safety_checker import SafetyChecker
|
||||
from .args import Args
|
||||
from .globals import Globals
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -19,10 +19,10 @@ import warnings
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from shutil import get_terminal_size
|
||||
from typing import get_type_hints
|
||||
from urllib import request
|
||||
|
||||
import npyscreen
|
||||
import torch
|
||||
import transformers
|
||||
from diffusers import AutoencoderKL
|
||||
from huggingface_hub import HfFolder
|
||||
@ -38,34 +38,40 @@ from transformers import (
|
||||
|
||||
import invokeai.configs as configs
|
||||
|
||||
from ...frontend.install.model_install import addModelsForm, process_and_execute
|
||||
from ...frontend.install.widgets import (
|
||||
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
|
||||
from invokeai.frontend.install.widgets import (
|
||||
CenteredButtonPress,
|
||||
IntTitleSlider,
|
||||
set_min_terminal_size,
|
||||
)
|
||||
from ..args import PRECISION_CHOICES, Args
|
||||
from ..globals import Globals, global_cache_dir, global_config_dir, global_config_file
|
||||
from .model_install_backend import (
|
||||
from invokeai.backend.config.legacy_arg_parsing import legacy_parser
|
||||
from invokeai.backend.config.model_install_backend import (
|
||||
default_dataset,
|
||||
download_from_hf,
|
||||
hf_download_with_resume,
|
||||
recommended_datasets,
|
||||
)
|
||||
from invokeai.app.services.config import (
|
||||
get_invokeai_config,
|
||||
InvokeAIAppConfig,
|
||||
)
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
|
||||
# --------------------------globals-----------------------
|
||||
config = get_invokeai_config()
|
||||
|
||||
Model_dir = "models"
|
||||
Weights_dir = "ldm/stable-diffusion-v1/"
|
||||
|
||||
# the initial "configs" dir is now bundled in the `invokeai.configs` package
|
||||
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
|
||||
|
||||
Default_config_file = Path(global_config_dir()) / "models.yaml"
|
||||
SD_Configs = Path(global_config_dir()) / "stable-diffusion"
|
||||
Default_config_file = config.model_conf_path
|
||||
SD_Configs = config.legacy_conf_path
|
||||
|
||||
Datasets = OmegaConf.load(Dataset_path)
|
||||
|
||||
@ -73,17 +79,12 @@ Datasets = OmegaConf.load(Dataset_path)
|
||||
MIN_COLS = 135
|
||||
MIN_LINES = 45
|
||||
|
||||
PRECISION_CHOICES = ['auto','float16','float32','autocast']
|
||||
|
||||
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
|
||||
# This is the InvokeAI initialization file, which contains command-line default values.
|
||||
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
|
||||
# or renaming it and then running invokeai-configure again.
|
||||
# Place frequently-used startup commands here, one or more per line.
|
||||
# Examples:
|
||||
# --outdir=D:\data\images
|
||||
# --no-nsfw_checker
|
||||
# --web --host=0.0.0.0
|
||||
# --steps=20
|
||||
# -Ak_euler_a -C10.0
|
||||
"""
|
||||
|
||||
|
||||
@ -96,14 +97,13 @@ If you installed manually from source or with 'pip install': activate the virtua
|
||||
then run one of the following commands to start InvokeAI.
|
||||
|
||||
Web UI:
|
||||
invokeai --web # (connect to http://localhost:9090)
|
||||
invokeai --web --host 0.0.0.0 # (connect to http://your-lan-ip:9090 from another computer on the local network)
|
||||
invokeai-web
|
||||
|
||||
Command-line interface:
|
||||
Command-line client:
|
||||
invokeai
|
||||
|
||||
If you installed using an installation script, run:
|
||||
{Globals.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
|
||||
{config.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
|
||||
|
||||
Add the '--help' argument to see all of the command-line switches available for use.
|
||||
"""
|
||||
@ -216,11 +216,11 @@ def download_realesrgan():
|
||||
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
|
||||
|
||||
model_dest = os.path.join(
|
||||
Globals.root, "models/realesrgan/realesr-general-x4v3.pth"
|
||||
config.root, "models/realesrgan/realesr-general-x4v3.pth"
|
||||
)
|
||||
|
||||
wdn_model_dest = os.path.join(
|
||||
Globals.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
|
||||
config.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
|
||||
)
|
||||
|
||||
download_with_progress_bar(model_url, model_dest, "RealESRGAN")
|
||||
@ -243,7 +243,7 @@ def download_gfpgan():
|
||||
"./models/gfpgan/weights/parsing_parsenet.pth",
|
||||
],
|
||||
):
|
||||
model_url, model_dest = model[0], os.path.join(Globals.root, model[1])
|
||||
model_url, model_dest = model[0], os.path.join(config.root, model[1])
|
||||
download_with_progress_bar(model_url, model_dest, "GFPGAN weights")
|
||||
|
||||
|
||||
@ -253,7 +253,7 @@ def download_codeformer():
|
||||
model_url = (
|
||||
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
|
||||
)
|
||||
model_dest = os.path.join(Globals.root, "models/codeformer/codeformer.pth")
|
||||
model_dest = os.path.join(config.root, "models/codeformer/codeformer.pth")
|
||||
download_with_progress_bar(model_url, model_dest, "CodeFormer")
|
||||
|
||||
|
||||
@ -295,7 +295,7 @@ def download_vaes():
|
||||
# first the diffusers version
|
||||
repo_id = "stabilityai/sd-vae-ft-mse"
|
||||
args = dict(
|
||||
cache_dir=global_cache_dir("hub"),
|
||||
cache_dir=config.cache_dir,
|
||||
)
|
||||
if not AutoencoderKL.from_pretrained(repo_id, **args):
|
||||
raise Exception(f"download of {repo_id} failed")
|
||||
@ -306,7 +306,7 @@ def download_vaes():
|
||||
if not hf_download_with_resume(
|
||||
repo_id=repo_id,
|
||||
model_name=model_name,
|
||||
model_dir=str(Globals.root / Model_dir / Weights_dir),
|
||||
model_dir=str(config.root / Model_dir / Weights_dir),
|
||||
):
|
||||
raise Exception(f"download of {model_name} failed")
|
||||
except Exception as e:
|
||||
@ -321,8 +321,7 @@ def get_root(root: str = None) -> str:
|
||||
elif os.environ.get("INVOKEAI_ROOT"):
|
||||
return os.environ.get("INVOKEAI_ROOT")
|
||||
else:
|
||||
return Globals.root
|
||||
|
||||
return config.root
|
||||
|
||||
# -------------------------------------
|
||||
class editOptsForm(npyscreen.FormMultiPage):
|
||||
@ -332,7 +331,7 @@ class editOptsForm(npyscreen.FormMultiPage):
|
||||
def create(self):
|
||||
program_opts = self.parentApp.program_opts
|
||||
old_opts = self.parentApp.invokeai_opts
|
||||
first_time = not (Globals.root / Globals.initfile).exists()
|
||||
first_time = not (config.root / 'invokeai.yaml').exists()
|
||||
access_token = HfFolder.get_token()
|
||||
window_width, window_height = get_terminal_size()
|
||||
for i in [
|
||||
@ -366,7 +365,7 @@ class editOptsForm(npyscreen.FormMultiPage):
|
||||
self.outdir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name="(<tab> autocompletes, ctrl-N advances):",
|
||||
value=old_opts.outdir or str(default_output_dir()),
|
||||
value=str(old_opts.outdir) or str(default_output_dir()),
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
use_two_lines=False,
|
||||
@ -381,17 +380,17 @@ class editOptsForm(npyscreen.FormMultiPage):
|
||||
editable=False,
|
||||
color="CONTROL",
|
||||
)
|
||||
self.safety_checker = self.add_widget_intelligent(
|
||||
self.nsfw_checker = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="NSFW checker",
|
||||
value=old_opts.safety_checker,
|
||||
value=old_opts.nsfw_checker,
|
||||
relx=5,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.nextrely += 1
|
||||
for i in [
|
||||
"If you have an account at HuggingFace you may paste your access token here",
|
||||
'to allow InvokeAI to download styles & subjects from the "Concept Library".',
|
||||
"If you have an account at HuggingFace you may optionally paste your access token here",
|
||||
'to allow InvokeAI to download restricted styles & subjects from the "Concept Library".',
|
||||
"See https://huggingface.co/settings/tokens",
|
||||
]:
|
||||
self.add_widget_intelligent(
|
||||
@ -435,17 +434,10 @@ class editOptsForm(npyscreen.FormMultiPage):
|
||||
relx=5,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.xformers = self.add_widget_intelligent(
|
||||
self.xformers_enabled = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Enable xformers support if available",
|
||||
value=old_opts.xformers,
|
||||
relx=5,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.ckpt_convert = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Load legacy checkpoint models into memory as diffusers models",
|
||||
value=old_opts.ckpt_convert,
|
||||
value=old_opts.xformers_enabled,
|
||||
relx=5,
|
||||
scroll_exit=True,
|
||||
)
|
||||
@ -480,19 +472,30 @@ class editOptsForm(npyscreen.FormMultiPage):
|
||||
self.nextrely += 1
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value="Directory containing embedding/textual inversion files:",
|
||||
value="Directories containing textual inversion and LoRA models (<tab> autocompletes, ctrl-N advances):",
|
||||
editable=False,
|
||||
color="CONTROL",
|
||||
)
|
||||
self.embedding_path = self.add_widget_intelligent(
|
||||
self.embedding_dir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name="(<tab> autocompletes, ctrl-N advances):",
|
||||
name=" Textual Inversion Embeddings:",
|
||||
value=str(default_embedding_dir()),
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
use_two_lines=False,
|
||||
labelColor="GOOD",
|
||||
begin_entry_at=40,
|
||||
begin_entry_at=32,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.lora_dir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name=" LoRA and LyCORIS:",
|
||||
value=str(default_lora_dir()),
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
use_two_lines=False,
|
||||
labelColor="GOOD",
|
||||
begin_entry_at=32,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.nextrely += 1
|
||||
@ -559,9 +562,9 @@ class editOptsForm(npyscreen.FormMultiPage):
|
||||
bad_fields.append(
|
||||
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
|
||||
)
|
||||
if not Path(opt.embedding_path).parent.exists():
|
||||
if not Path(opt.embedding_dir).parent.exists():
|
||||
bad_fields.append(
|
||||
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_path).parent)} is an existing directory."
|
||||
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
|
||||
)
|
||||
if len(bad_fields) > 0:
|
||||
message = "The following problems were detected and must be corrected:\n"
|
||||
@ -577,13 +580,13 @@ class editOptsForm(npyscreen.FormMultiPage):
|
||||
|
||||
for attr in [
|
||||
"outdir",
|
||||
"safety_checker",
|
||||
"nsfw_checker",
|
||||
"free_gpu_mem",
|
||||
"max_loaded_models",
|
||||
"xformers",
|
||||
"xformers_enabled",
|
||||
"always_use_cpu",
|
||||
"embedding_path",
|
||||
"ckpt_convert",
|
||||
"embedding_dir",
|
||||
"lora_dir",
|
||||
]:
|
||||
setattr(new_opts, attr, getattr(self, attr).value)
|
||||
|
||||
@ -591,6 +594,9 @@ class editOptsForm(npyscreen.FormMultiPage):
|
||||
new_opts.license_acceptance = self.license_acceptance.value
|
||||
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
|
||||
|
||||
# widget library workaround to make max_loaded_models an int rather than a float
|
||||
new_opts.max_loaded_models = int(new_opts.max_loaded_models)
|
||||
|
||||
return new_opts
|
||||
|
||||
|
||||
@ -628,15 +634,14 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
|
||||
|
||||
|
||||
def default_startup_options(init_file: Path) -> Namespace:
|
||||
opts = Args().parse_args([])
|
||||
opts = InvokeAIAppConfig(argv=[])
|
||||
outdir = Path(opts.outdir)
|
||||
if not outdir.is_absolute():
|
||||
opts.outdir = str(Globals.root / opts.outdir)
|
||||
opts.outdir = str(config.root / opts.outdir)
|
||||
if not init_file.exists():
|
||||
opts.safety_checker = True
|
||||
opts.nsfw_checker = True
|
||||
return opts
|
||||
|
||||
|
||||
def default_user_selections(program_opts: Namespace) -> Namespace:
|
||||
return Namespace(
|
||||
starter_models=default_dataset()
|
||||
@ -690,70 +695,61 @@ def run_console_ui(
|
||||
# -------------------------------------
|
||||
def write_opts(opts: Namespace, init_file: Path):
|
||||
"""
|
||||
Update the invokeai.init file with values from opts Namespace
|
||||
Update the invokeai.yaml file with values from current settings.
|
||||
"""
|
||||
# touch file if it doesn't exist
|
||||
if not init_file.exists():
|
||||
with open(init_file, "w") as f:
|
||||
f.write(INIT_FILE_PREAMBLE)
|
||||
|
||||
# We want to write in the changed arguments without clobbering
|
||||
# any other initialization values the user has entered. There is
|
||||
# no good way to do this because of the one-way nature of
|
||||
# argparse: i.e. --outdir could be --outdir, --out, or -o
|
||||
# initfile needs to be replaced with a fully structured format
|
||||
# such as yaml; this is a hack that will work much of the time
|
||||
args_to_skip = re.compile(
|
||||
"^--?(o|out|no-xformer|xformer|no-ckpt|ckpt|free|no-nsfw|nsfw|prec|max_load|embed|always|ckpt|free_gpu)"
|
||||
)
|
||||
# fix windows paths
|
||||
opts.outdir = opts.outdir.replace("\\", "/")
|
||||
opts.embedding_path = opts.embedding_path.replace("\\", "/")
|
||||
new_file = f"{init_file}.new"
|
||||
try:
|
||||
lines = [x.strip() for x in open(init_file, "r").readlines()]
|
||||
with open(new_file, "w") as out_file:
|
||||
for line in lines:
|
||||
if len(line) > 0 and not args_to_skip.match(line):
|
||||
out_file.write(line + "\n")
|
||||
out_file.write(
|
||||
f"""
|
||||
--outdir={opts.outdir}
|
||||
--embedding_path={opts.embedding_path}
|
||||
--precision={opts.precision}
|
||||
--max_loaded_models={int(opts.max_loaded_models)}
|
||||
--{'no-' if not opts.safety_checker else ''}nsfw_checker
|
||||
--{'no-' if not opts.xformers else ''}xformers
|
||||
--{'no-' if not opts.ckpt_convert else ''}ckpt_convert
|
||||
{'--free_gpu_mem' if opts.free_gpu_mem else ''}
|
||||
{'--always_use_cpu' if opts.always_use_cpu else ''}
|
||||
"""
|
||||
)
|
||||
except OSError as e:
|
||||
print(f"** An error occurred while writing the init file: {str(e)}")
|
||||
|
||||
os.replace(new_file, init_file)
|
||||
|
||||
if opts.hf_token:
|
||||
HfLogin(opts.hf_token)
|
||||
# this will load current settings
|
||||
config = InvokeAIAppConfig()
|
||||
for key,value in opts.__dict__.items():
|
||||
if hasattr(config,key):
|
||||
setattr(config,key,value)
|
||||
|
||||
with open(init_file,'w', encoding='utf-8') as file:
|
||||
file.write(config.to_yaml())
|
||||
|
||||
# -------------------------------------
|
||||
def default_output_dir() -> Path:
|
||||
return Globals.root / "outputs"
|
||||
|
||||
return config.root / "outputs"
|
||||
|
||||
# -------------------------------------
|
||||
def default_embedding_dir() -> Path:
|
||||
return Globals.root / "embeddings"
|
||||
return config.root / "embeddings"
|
||||
|
||||
# -------------------------------------
|
||||
def default_lora_dir() -> Path:
|
||||
return config.root / "loras"
|
||||
|
||||
# -------------------------------------
|
||||
def write_default_options(program_opts: Namespace, initfile: Path):
|
||||
opt = default_startup_options(initfile)
|
||||
opt.hf_token = HfFolder.get_token()
|
||||
write_opts(opt, initfile)
|
||||
|
||||
# -------------------------------------
|
||||
# Here we bring in
|
||||
# the legacy Args object in order to parse
|
||||
# the old init file and write out the new
|
||||
# yaml format.
|
||||
def migrate_init_file(legacy_format:Path):
|
||||
old = legacy_parser.parse_args([f'@{str(legacy_format)}'])
|
||||
new = InvokeAIAppConfig(conf={})
|
||||
|
||||
fields = list(get_type_hints(InvokeAIAppConfig).keys())
|
||||
for attr in fields:
|
||||
if hasattr(old,attr):
|
||||
setattr(new,attr,getattr(old,attr))
|
||||
|
||||
# a few places where the field names have changed and we have to
|
||||
# manually add in the new names/values
|
||||
new.nsfw_checker = old.safety_checker
|
||||
new.xformers_enabled = old.xformers
|
||||
new.conf_path = old.conf
|
||||
new.embedding_dir = old.embedding_path
|
||||
|
||||
invokeai_yaml = legacy_format.parent / 'invokeai.yaml'
|
||||
with open(invokeai_yaml,"w", encoding="utf-8") as outfile:
|
||||
outfile.write(new.to_yaml())
|
||||
|
||||
legacy_format.replace(legacy_format.parent / 'invokeai.init.old')
|
||||
|
||||
# -------------------------------------
|
||||
def main():
|
||||
@ -810,7 +806,8 @@ def main():
|
||||
opt = parser.parse_args()
|
||||
|
||||
# setting a global here
|
||||
Globals.root = Path(os.path.expanduser(get_root(opt.root) or ""))
|
||||
global config
|
||||
config.root = Path(os.path.expanduser(get_root(opt.root) or ""))
|
||||
|
||||
errors = set()
|
||||
|
||||
@ -818,19 +815,26 @@ def main():
|
||||
models_to_download = default_user_selections(opt)
|
||||
|
||||
# We check for to see if the runtime directory is correctly initialized.
|
||||
init_file = Path(Globals.root, Globals.initfile)
|
||||
if not init_file.exists() or not global_config_file().exists():
|
||||
initialize_rootdir(Globals.root, opt.yes_to_all)
|
||||
old_init_file = Path(config.root, 'invokeai.init')
|
||||
new_init_file = Path(config.root, 'invokeai.yaml')
|
||||
if old_init_file.exists() and not new_init_file.exists():
|
||||
print('** Migrating invokeai.init to invokeai.yaml')
|
||||
migrate_init_file(old_init_file)
|
||||
config = get_invokeai_config() # reread defaults
|
||||
|
||||
|
||||
if not config.model_conf_path.exists():
|
||||
initialize_rootdir(config.root, opt.yes_to_all)
|
||||
|
||||
if opt.yes_to_all:
|
||||
write_default_options(opt, init_file)
|
||||
write_default_options(opt, new_init_file)
|
||||
init_options = Namespace(
|
||||
precision="float32" if opt.full_precision else "float16"
|
||||
)
|
||||
else:
|
||||
init_options, models_to_download = run_console_ui(opt, init_file)
|
||||
init_options, models_to_download = run_console_ui(opt, new_init_file)
|
||||
if init_options:
|
||||
write_opts(init_options, init_file)
|
||||
write_opts(init_options, new_init_file)
|
||||
else:
|
||||
print(
|
||||
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'
|
||||
|
390
invokeai/backend/config/legacy_arg_parsing.py
Normal file
390
invokeai/backend/config/legacy_arg_parsing.py
Normal file
@ -0,0 +1,390 @@
|
||||
# Copyright 2023 Lincoln D. Stein and the InvokeAI Team
|
||||
|
||||
import argparse
|
||||
import shlex
|
||||
from argparse import ArgumentParser
|
||||
|
||||
SAMPLER_CHOICES = [
|
||||
"ddim",
|
||||
"ddpm",
|
||||
"deis",
|
||||
"lms",
|
||||
"pndm",
|
||||
"heun",
|
||||
"heun_k",
|
||||
"euler",
|
||||
"euler_k",
|
||||
"euler_a",
|
||||
"kdpm_2",
|
||||
"kdpm_2_a",
|
||||
"dpmpp_2s",
|
||||
"dpmpp_2m",
|
||||
"dpmpp_2m_k",
|
||||
"unipc",
|
||||
]
|
||||
|
||||
PRECISION_CHOICES = [
|
||||
"auto",
|
||||
"float32",
|
||||
"autocast",
|
||||
"float16",
|
||||
]
|
||||
|
||||
class FileArgumentParser(ArgumentParser):
|
||||
"""
|
||||
Supports reading defaults from an init file.
|
||||
"""
|
||||
def convert_arg_line_to_args(self, arg_line):
|
||||
return shlex.split(arg_line, comments=True)
|
||||
|
||||
|
||||
legacy_parser = FileArgumentParser(
|
||||
description=
|
||||
"""
|
||||
Generate images using Stable Diffusion.
|
||||
Use --web to launch the web interface.
|
||||
Use --from_file to load prompts from a file path or standard input ("-").
|
||||
Otherwise you will be dropped into an interactive command prompt (type -h for help.)
|
||||
Other command-line arguments are defaults that can usually be overridden
|
||||
prompt the command prompt.
|
||||
""",
|
||||
fromfile_prefix_chars='@',
|
||||
)
|
||||
general_group = legacy_parser.add_argument_group('General')
|
||||
model_group = legacy_parser.add_argument_group('Model selection')
|
||||
file_group = legacy_parser.add_argument_group('Input/output')
|
||||
web_server_group = legacy_parser.add_argument_group('Web server')
|
||||
render_group = legacy_parser.add_argument_group('Rendering')
|
||||
postprocessing_group = legacy_parser.add_argument_group('Postprocessing')
|
||||
deprecated_group = legacy_parser.add_argument_group('Deprecated options')
|
||||
|
||||
deprecated_group.add_argument('--laion400m')
|
||||
deprecated_group.add_argument('--weights') # deprecated
|
||||
general_group.add_argument(
|
||||
'--version','-V',
|
||||
action='store_true',
|
||||
help='Print InvokeAI version number'
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--root_dir',
|
||||
default=None,
|
||||
help='Path to directory containing "models", "outputs" and "configs". If not present will read from environment variable INVOKEAI_ROOT. Defaults to ~/invokeai.',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--config',
|
||||
'-c',
|
||||
'-config',
|
||||
dest='conf',
|
||||
default='./configs/models.yaml',
|
||||
help='Path to configuration file for alternate models.',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--model',
|
||||
help='Indicates which diffusion model to load (defaults to "default" stanza in configs/models.yaml)',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--weight_dirs',
|
||||
nargs='+',
|
||||
type=str,
|
||||
help='List of one or more directories that will be auto-scanned for new model weights to import',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--png_compression','-z',
|
||||
type=int,
|
||||
default=6,
|
||||
choices=range(0,9),
|
||||
dest='png_compression',
|
||||
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
|
||||
)
|
||||
model_group.add_argument(
|
||||
'-F',
|
||||
'--full_precision',
|
||||
dest='full_precision',
|
||||
action='store_true',
|
||||
help='Deprecated way to set --precision=float32',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--max_loaded_models',
|
||||
dest='max_loaded_models',
|
||||
type=int,
|
||||
default=2,
|
||||
help='Maximum number of models to keep in memory for fast switching, including the one in GPU',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--free_gpu_mem',
|
||||
dest='free_gpu_mem',
|
||||
action='store_true',
|
||||
help='Force free gpu memory before final decoding',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--sequential_guidance',
|
||||
dest='sequential_guidance',
|
||||
action='store_true',
|
||||
help="Calculate guidance in serial instead of in parallel, lowering memory requirement "
|
||||
"at the expense of speed",
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--xformers',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
default=True,
|
||||
help='Enable/disable xformers support (default enabled if installed)',
|
||||
)
|
||||
model_group.add_argument(
|
||||
"--always_use_cpu",
|
||||
dest="always_use_cpu",
|
||||
action="store_true",
|
||||
help="Force use of CPU even if GPU is available"
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--precision',
|
||||
dest='precision',
|
||||
type=str,
|
||||
choices=PRECISION_CHOICES,
|
||||
metavar='PRECISION',
|
||||
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
|
||||
default='auto',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--ckpt_convert',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
dest='ckpt_convert',
|
||||
default=True,
|
||||
help='Deprecated option. Legacy ckpt files are now always converted to diffusers when loaded.'
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--internet',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
dest='internet_available',
|
||||
default=True,
|
||||
help='Indicate whether internet is available for just-in-time model downloading (default: probe automatically).',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--nsfw_checker',
|
||||
'--safety_checker',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
dest='safety_checker',
|
||||
default=False,
|
||||
help='Check for and blur potentially NSFW images. Use --no-nsfw_checker to disable.',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--autoimport',
|
||||
default=None,
|
||||
type=str,
|
||||
help='Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--autoconvert',
|
||||
default=None,
|
||||
type=str,
|
||||
help='Check the indicated directory for .ckpt/.safetensors weights files at startup and import as optimized diffuser models',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--patchmatch',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
default=True,
|
||||
help='Load the patchmatch extension for outpainting. Use --no-patchmatch to disable.',
|
||||
)
|
||||
file_group.add_argument(
|
||||
'--from_file',
|
||||
dest='infile',
|
||||
type=str,
|
||||
help='If specified, load prompts from this file',
|
||||
)
|
||||
file_group.add_argument(
|
||||
'--outdir',
|
||||
'-o',
|
||||
type=str,
|
||||
help='Directory to save generated images and a log of prompts and seeds. Default: ROOTDIR/outputs',
|
||||
default='outputs',
|
||||
)
|
||||
file_group.add_argument(
|
||||
'--prompt_as_dir',
|
||||
'-p',
|
||||
action='store_true',
|
||||
help='Place images in subdirectories named after the prompt.',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--fnformat',
|
||||
default='{prefix}.{seed}.png',
|
||||
type=str,
|
||||
help='Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-s',
|
||||
'--steps',
|
||||
type=int,
|
||||
default=50,
|
||||
help='Number of steps'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-W',
|
||||
'--width',
|
||||
type=int,
|
||||
help='Image width, multiple of 64',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-H',
|
||||
'--height',
|
||||
type=int,
|
||||
help='Image height, multiple of 64',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-C',
|
||||
'--cfg_scale',
|
||||
default=7.5,
|
||||
type=float,
|
||||
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--sampler',
|
||||
'-A',
|
||||
'-m',
|
||||
dest='sampler_name',
|
||||
type=str,
|
||||
choices=SAMPLER_CHOICES,
|
||||
metavar='SAMPLER_NAME',
|
||||
help=f'Set the default sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
|
||||
default='k_lms',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--log_tokenization',
|
||||
'-t',
|
||||
action='store_true',
|
||||
help='shows how the prompt is split into tokens'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-f',
|
||||
'--strength',
|
||||
type=float,
|
||||
help='img2img strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'-T',
|
||||
'-fit',
|
||||
'--fit',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)',
|
||||
)
|
||||
|
||||
render_group.add_argument(
|
||||
'--grid',
|
||||
'-g',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help='generate a grid'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--embedding_directory',
|
||||
'--embedding_path',
|
||||
dest='embedding_path',
|
||||
default='embeddings',
|
||||
type=str,
|
||||
help='Path to a directory containing .bin and/or .pt files, or a single .bin/.pt file. You may use subdirectories. (default is ROOTDIR/embeddings)'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--lora_directory',
|
||||
dest='lora_path',
|
||||
default='loras',
|
||||
type=str,
|
||||
help='Path to a directory containing LoRA files; subdirectories are not supported. (default is ROOTDIR/loras)'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--embeddings',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
default=True,
|
||||
help='Enable embedding directory (default). Use --no-embeddings to disable.',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--enable_image_debugging',
|
||||
action='store_true',
|
||||
help='Generates debugging image to display'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--karras_max',
|
||||
type=int,
|
||||
default=None,
|
||||
help="control the point at which the K* samplers will shift from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts). Set to 0 to use LatentDiffusion for all step values, and to a high value (e.g. 1000) to use Karras for all step values. [29]."
|
||||
)
|
||||
# Restoration related args
|
||||
postprocessing_group.add_argument(
|
||||
'--no_restore',
|
||||
dest='restore',
|
||||
action='store_false',
|
||||
help='Disable face restoration with GFPGAN or codeformer',
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--no_upscale',
|
||||
dest='esrgan',
|
||||
action='store_false',
|
||||
help='Disable upscaling with ESRGAN',
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--esrgan_bg_tile',
|
||||
type=int,
|
||||
default=400,
|
||||
help='Tile size for background sampler, 0 for no tile during testing. Default: 400.',
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--esrgan_denoise_str',
|
||||
type=float,
|
||||
default=0.75,
|
||||
help='esrgan denoise str. 0 is no denoise, 1 is max denoise. Default: 0.75',
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'--gfpgan_model_path',
|
||||
type=str,
|
||||
default='./models/gfpgan/GFPGANv1.4.pth',
|
||||
help='Indicates the path to the GFPGAN model',
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--web',
|
||||
dest='web',
|
||||
action='store_true',
|
||||
help='Start in web server mode.',
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--web_develop',
|
||||
dest='web_develop',
|
||||
action='store_true',
|
||||
help='Start in web server development mode.',
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
"--web_verbose",
|
||||
action="store_true",
|
||||
help="Enables verbose logging",
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
"--cors",
|
||||
nargs="*",
|
||||
type=str,
|
||||
help="Additional allowed origins, comma-separated",
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--host',
|
||||
type=str,
|
||||
default='127.0.0.1',
|
||||
help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.'
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--port',
|
||||
type=int,
|
||||
default='9090',
|
||||
help='Web server: Port to listen on'
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--certfile',
|
||||
type=str,
|
||||
default=None,
|
||||
help='Web server: Path to certificate file to use for SSL. Use together with --keyfile'
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--keyfile',
|
||||
type=str,
|
||||
default=None,
|
||||
help='Web server: Path to private key file to use for SSL. Use together with --certfile'
|
||||
)
|
||||
web_server_group.add_argument(
|
||||
'--gui',
|
||||
dest='gui',
|
||||
action='store_true',
|
||||
help='Start InvokeAI GUI',
|
||||
)
|
@ -19,13 +19,15 @@ from tqdm import tqdm
|
||||
|
||||
import invokeai.configs as configs
|
||||
|
||||
from ..globals import Globals, global_cache_dir, global_config_dir
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
from ..model_management import ModelManager
|
||||
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
||||
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
# --------------------------globals-----------------------
|
||||
config = get_invokeai_config()
|
||||
Model_dir = "models"
|
||||
Weights_dir = "ldm/stable-diffusion-v1/"
|
||||
|
||||
@ -47,12 +49,11 @@ Config_preamble = """
|
||||
|
||||
|
||||
def default_config_file():
|
||||
return Path(global_config_dir()) / "models.yaml"
|
||||
return config.model_conf_path
|
||||
|
||||
|
||||
def sd_configs():
|
||||
return Path(global_config_dir()) / "stable-diffusion"
|
||||
|
||||
return config.legacy_conf_path
|
||||
|
||||
def initial_models():
|
||||
global Datasets
|
||||
@ -121,8 +122,9 @@ def install_requested_models(
|
||||
|
||||
if scan_at_startup and scan_directory.is_dir():
|
||||
argument = "--autoconvert"
|
||||
initfile = Path(Globals.root, Globals.initfile)
|
||||
replacement = Path(Globals.root, f"{Globals.initfile}.new")
|
||||
print('** The global initfile is no longer supported; rewrite to support new yaml format **')
|
||||
initfile = Path(config.root, 'invokeai.init')
|
||||
replacement = Path(config.root, f"invokeai.init.new")
|
||||
directory = str(scan_directory).replace("\\", "/")
|
||||
with open(initfile, "r") as input:
|
||||
with open(replacement, "w") as output:
|
||||
@ -150,7 +152,7 @@ def get_root(root: str = None) -> str:
|
||||
elif os.environ.get("INVOKEAI_ROOT"):
|
||||
return os.environ.get("INVOKEAI_ROOT")
|
||||
else:
|
||||
return Globals.root
|
||||
return config.root
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
@ -183,7 +185,7 @@ def all_datasets() -> dict:
|
||||
# look for legacy model.ckpt in models directory and offer to
|
||||
# normalize its name
|
||||
def migrate_models_ckpt():
|
||||
model_path = os.path.join(Globals.root, Model_dir, Weights_dir)
|
||||
model_path = os.path.join(config.root, Model_dir, Weights_dir)
|
||||
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
|
||||
return
|
||||
new_name = initial_models()["stable-diffusion-1.4"]["file"]
|
||||
@ -228,7 +230,7 @@ def _download_repo_or_file(
|
||||
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
|
||||
repo_id = mconfig["repo_id"]
|
||||
filename = mconfig["file"]
|
||||
cache_dir = os.path.join(Globals.root, Model_dir, Weights_dir)
|
||||
cache_dir = os.path.join(config.root, Model_dir, Weights_dir)
|
||||
return hf_download_with_resume(
|
||||
repo_id=repo_id,
|
||||
model_dir=cache_dir,
|
||||
@ -239,9 +241,9 @@ def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_from_hf(
|
||||
model_class: object, model_name: str, cache_subdir: Path = Path("hub"), **kwargs
|
||||
model_class: object, model_name: str, **kwargs
|
||||
):
|
||||
path = global_cache_dir(cache_subdir)
|
||||
path = config.cache_dir
|
||||
model = model_class.from_pretrained(
|
||||
model_name,
|
||||
cache_dir=path,
|
||||
@ -417,7 +419,7 @@ def new_config_file_contents(
|
||||
stanza["height"] = mod["height"]
|
||||
if "file" in mod:
|
||||
stanza["weights"] = os.path.relpath(
|
||||
successfully_downloaded[model], start=Globals.root
|
||||
successfully_downloaded[model], start=config.root
|
||||
)
|
||||
stanza["config"] = os.path.normpath(
|
||||
os.path.join(sd_configs(), mod["config"])
|
||||
@ -456,7 +458,7 @@ def delete_weights(model_name: str, conf_stanza: dict):
|
||||
|
||||
weights = Path(weights)
|
||||
if not weights.is_absolute():
|
||||
weights = Path(Globals.root) / weights
|
||||
weights = Path(config.root) / weights
|
||||
try:
|
||||
weights.unlink()
|
||||
except OSError as e:
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -31,6 +31,7 @@ from ..util.util import rand_perlin_2d
|
||||
from ..safety_checker import SafetyChecker
|
||||
from ..prompting.conditioning import get_uc_and_c_and_ec
|
||||
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||||
from ..stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
|
||||
downsampling = 8
|
||||
|
||||
@ -71,19 +72,6 @@ class InvokeAIGeneratorOutput:
|
||||
# we are interposing a wrapper around the original Generator classes so that
|
||||
# old code that calls Generate will continue to work.
|
||||
class InvokeAIGenerator(metaclass=ABCMeta):
|
||||
scheduler_map = dict(
|
||||
ddim=diffusers.DDIMScheduler,
|
||||
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
|
||||
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
|
||||
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
||||
k_euler=diffusers.EulerDiscreteScheduler,
|
||||
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
|
||||
k_heun=diffusers.HeunDiscreteScheduler,
|
||||
k_lms=diffusers.LMSDiscreteScheduler,
|
||||
plms=diffusers.PNDMScheduler,
|
||||
)
|
||||
|
||||
def __init__(self,
|
||||
model_info: dict,
|
||||
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
|
||||
@ -175,14 +163,20 @@ class InvokeAIGenerator(metaclass=ABCMeta):
|
||||
'''
|
||||
Return list of all the schedulers that we currently handle.
|
||||
'''
|
||||
return list(self.scheduler_map.keys())
|
||||
return list(SCHEDULER_MAP.keys())
|
||||
|
||||
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
|
||||
return generator_class(model, self.params.precision)
|
||||
|
||||
def get_scheduler(self, scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
|
||||
scheduler_class = self.scheduler_map.get(scheduler_name,'ddim')
|
||||
scheduler = scheduler_class.from_config(model.scheduler.config)
|
||||
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
|
||||
|
||||
scheduler_config = model.scheduler.config
|
||||
if "_backup" in scheduler_config:
|
||||
scheduler_config = scheduler_config["_backup"]
|
||||
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
|
||||
scheduler = scheduler_class.from_config(scheduler_config)
|
||||
|
||||
# hack copied over from generate.py
|
||||
if not hasattr(scheduler, 'uses_inpainting_model'):
|
||||
scheduler.uses_inpainting_model = lambda: False
|
||||
@ -226,10 +220,10 @@ class Inpaint(Img2Img):
|
||||
def generate(self,
|
||||
mask_image: Image.Image | torch.FloatTensor,
|
||||
# Seam settings - when 0, doesn't fill seam
|
||||
seam_size: int = 0,
|
||||
seam_blur: int = 0,
|
||||
seam_size: int = 96,
|
||||
seam_blur: int = 16,
|
||||
seam_strength: float = 0.7,
|
||||
seam_steps: int = 10,
|
||||
seam_steps: int = 30,
|
||||
tile_size: int = 32,
|
||||
inpaint_replace=False,
|
||||
infill_method=None,
|
||||
|
@ -4,6 +4,7 @@ invokeai.backend.generator.inpaint descends from .generator
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from typing import Tuple, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -59,7 +60,7 @@ class Inpaint(Img2Img):
|
||||
writeable=False,
|
||||
)
|
||||
|
||||
def infill_patchmatch(self, im: Image.Image) -> Image:
|
||||
def infill_patchmatch(self, im: Image.Image) -> Image.Image:
|
||||
if im.mode != "RGBA":
|
||||
return im
|
||||
|
||||
@ -75,18 +76,18 @@ class Inpaint(Img2Img):
|
||||
return im_patched
|
||||
|
||||
def tile_fill_missing(
|
||||
self, im: Image.Image, tile_size: int = 16, seed: int = None
|
||||
) -> Image:
|
||||
self, im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
|
||||
) -> Image.Image:
|
||||
# Only fill if there's an alpha layer
|
||||
if im.mode != "RGBA":
|
||||
return im
|
||||
|
||||
a = np.asarray(im, dtype=np.uint8)
|
||||
|
||||
tile_size = (tile_size, tile_size)
|
||||
tile_size_tuple = (tile_size, tile_size)
|
||||
|
||||
# Get the image as tiles of a specified size
|
||||
tiles = self.get_tile_images(a, *tile_size).copy()
|
||||
tiles = self.get_tile_images(a, *tile_size_tuple).copy()
|
||||
|
||||
# Get the mask as tiles
|
||||
tiles_mask = tiles[:, :, :, :, 3]
|
||||
@ -127,7 +128,9 @@ class Inpaint(Img2Img):
|
||||
|
||||
return si
|
||||
|
||||
def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image:
|
||||
def mask_edge(
|
||||
self, mask: Image.Image, edge_size: int, edge_blur: int
|
||||
) -> Image.Image:
|
||||
npimg = np.asarray(mask, dtype=np.uint8)
|
||||
|
||||
# Detect any partially transparent regions
|
||||
@ -206,15 +209,15 @@ class Inpaint(Img2Img):
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
conditioning,
|
||||
init_image: PIL.Image.Image | torch.FloatTensor,
|
||||
mask_image: PIL.Image.Image | torch.FloatTensor,
|
||||
init_image: Image.Image | torch.FloatTensor,
|
||||
mask_image: Image.Image | torch.FloatTensor,
|
||||
strength: float,
|
||||
mask_blur_radius: int = 8,
|
||||
# Seam settings - when 0, doesn't fill seam
|
||||
seam_size: int = 0,
|
||||
seam_blur: int = 0,
|
||||
seam_size: int = 96,
|
||||
seam_blur: int = 16,
|
||||
seam_strength: float = 0.7,
|
||||
seam_steps: int = 10,
|
||||
seam_steps: int = 30,
|
||||
tile_size: int = 32,
|
||||
step_callback=None,
|
||||
inpaint_replace=False,
|
||||
@ -222,7 +225,7 @@ class Inpaint(Img2Img):
|
||||
infill_method=None,
|
||||
inpaint_width=None,
|
||||
inpaint_height=None,
|
||||
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
|
||||
inpaint_fill: Tuple[int, int, int, int] = (0x7F, 0x7F, 0x7F, 0xFF),
|
||||
attention_maps_callback=None,
|
||||
**kwargs,
|
||||
):
|
||||
@ -239,7 +242,7 @@ class Inpaint(Img2Img):
|
||||
self.inpaint_width = inpaint_width
|
||||
self.inpaint_height = inpaint_height
|
||||
|
||||
if isinstance(init_image, PIL.Image.Image):
|
||||
if isinstance(init_image, Image.Image):
|
||||
self.pil_image = init_image.copy()
|
||||
|
||||
# Do infill
|
||||
@ -250,8 +253,8 @@ class Inpaint(Img2Img):
|
||||
self.pil_image.copy(), seed=self.seed, tile_size=tile_size
|
||||
)
|
||||
elif infill_method == "solid":
|
||||
solid_bg = PIL.Image.new("RGBA", init_image.size, inpaint_fill)
|
||||
init_filled = PIL.Image.alpha_composite(solid_bg, init_image)
|
||||
solid_bg = Image.new("RGBA", init_image.size, inpaint_fill)
|
||||
init_filled = Image.alpha_composite(solid_bg, init_image)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Non-supported infill type {infill_method}", infill_method
|
||||
@ -269,7 +272,7 @@ class Inpaint(Img2Img):
|
||||
# Create init tensor
|
||||
init_image = image_resized_to_grid_as_tensor(init_filled.convert("RGB"))
|
||||
|
||||
if isinstance(mask_image, PIL.Image.Image):
|
||||
if isinstance(mask_image, Image.Image):
|
||||
self.pil_mask = mask_image.copy()
|
||||
debug_image(
|
||||
mask_image,
|
||||
|
@ -1,122 +0,0 @@
|
||||
"""
|
||||
invokeai.backend.globals defines a small number of global variables that would
|
||||
otherwise have to be passed through long and complex call chains.
|
||||
|
||||
It defines a Namespace object named "Globals" that contains
|
||||
the attributes:
|
||||
|
||||
- root - the root directory under which "models" and "outputs" can be found
|
||||
- initfile - path to the initialization file
|
||||
- try_patchmatch - option to globally disable loading of 'patchmatch' module
|
||||
- always_use_cpu - force use of CPU even if GPU is available
|
||||
"""
|
||||
|
||||
import os
|
||||
import os.path as osp
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
Globals = Namespace()
|
||||
|
||||
# Where to look for the initialization file and other key components
|
||||
Globals.initfile = "invokeai.init"
|
||||
Globals.models_file = "models.yaml"
|
||||
Globals.models_dir = "models"
|
||||
Globals.config_dir = "configs"
|
||||
Globals.autoscan_dir = "weights"
|
||||
Globals.converted_ckpts_dir = "converted_ckpts"
|
||||
|
||||
# Set the default root directory. This can be overwritten by explicitly
|
||||
# passing the `--root <directory>` argument on the command line.
|
||||
# logic is:
|
||||
# 1) use INVOKEAI_ROOT environment variable (no check for this being a valid directory)
|
||||
# 2) use VIRTUAL_ENV environment variable, with a check for initfile being there
|
||||
# 3) use ~/invokeai
|
||||
|
||||
if os.environ.get("INVOKEAI_ROOT"):
|
||||
Globals.root = osp.abspath(os.environ.get("INVOKEAI_ROOT"))
|
||||
elif (
|
||||
os.environ.get("VIRTUAL_ENV")
|
||||
and Path(os.environ.get("VIRTUAL_ENV"), "..", Globals.initfile).exists()
|
||||
):
|
||||
Globals.root = osp.abspath(osp.join(os.environ.get("VIRTUAL_ENV"), ".."))
|
||||
else:
|
||||
Globals.root = osp.abspath(osp.expanduser("~/invokeai"))
|
||||
|
||||
# Try loading patchmatch
|
||||
Globals.try_patchmatch = True
|
||||
|
||||
# Use CPU even if GPU is available (main use case is for debugging MPS issues)
|
||||
Globals.always_use_cpu = False
|
||||
|
||||
# Whether the internet is reachable for dynamic downloads
|
||||
# The CLI will test connectivity at startup time.
|
||||
Globals.internet_available = True
|
||||
|
||||
# Whether to disable xformers
|
||||
Globals.disable_xformers = False
|
||||
|
||||
# Low-memory tradeoff for guidance calculations.
|
||||
Globals.sequential_guidance = False
|
||||
|
||||
# whether we are forcing full precision
|
||||
Globals.full_precision = False
|
||||
|
||||
# whether we should convert ckpt files into diffusers models on the fly
|
||||
Globals.ckpt_convert = True
|
||||
|
||||
# logging tokenization everywhere
|
||||
Globals.log_tokenization = False
|
||||
|
||||
|
||||
def global_config_file() -> Path:
|
||||
return Path(Globals.root, Globals.config_dir, Globals.models_file)
|
||||
|
||||
|
||||
def global_config_dir() -> Path:
|
||||
return Path(Globals.root, Globals.config_dir)
|
||||
|
||||
|
||||
def global_models_dir() -> Path:
|
||||
return Path(Globals.root, Globals.models_dir)
|
||||
|
||||
|
||||
def global_autoscan_dir() -> Path:
|
||||
return Path(Globals.root, Globals.autoscan_dir)
|
||||
|
||||
|
||||
def global_converted_ckpts_dir() -> Path:
|
||||
return Path(global_models_dir(), Globals.converted_ckpts_dir)
|
||||
|
||||
|
||||
def global_set_root(root_dir: Union[str, Path]):
|
||||
Globals.root = root_dir
|
||||
|
||||
|
||||
def global_cache_dir(subdir: Union[str, Path] = "") -> Path:
|
||||
"""
|
||||
Returns Path to the model cache directory. If a subdirectory
|
||||
is provided, it will be appended to the end of the path, allowing
|
||||
for Hugging Face-style conventions. Currently, Hugging Face has
|
||||
moved all models into the "hub" subfolder, so for any pretrained
|
||||
HF model, use:
|
||||
global_cache_dir('hub')
|
||||
|
||||
The legacy location for transformers used to be global_cache_dir('transformers')
|
||||
and global_cache_dir('diffusers') for diffusers.
|
||||
"""
|
||||
home: str = os.getenv("HF_HOME")
|
||||
|
||||
if home is None:
|
||||
home = os.getenv("XDG_CACHE_HOME")
|
||||
|
||||
if home is not None:
|
||||
# Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in Hugging Face Hub Client Library.
|
||||
# See: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/environment_variables#xdgcachehome
|
||||
home += os.sep + "huggingface"
|
||||
|
||||
if home is not None:
|
||||
return Path(home, subdir)
|
||||
else:
|
||||
return Path(Globals.root, "models", subdir)
|
@ -6,7 +6,7 @@ be suppressed or deferred
|
||||
"""
|
||||
import numpy as np
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
class PatchMatch:
|
||||
"""
|
||||
@ -21,9 +21,10 @@ class PatchMatch:
|
||||
|
||||
@classmethod
|
||||
def _load_patch_match(self):
|
||||
config = get_invokeai_config()
|
||||
if self.tried_load:
|
||||
return
|
||||
if Globals.try_patchmatch:
|
||||
if config.try_patchmatch:
|
||||
from patchmatch import patch_match as pm
|
||||
|
||||
if pm.patchmatch_available:
|
||||
|
@ -33,12 +33,11 @@ from PIL import Image, ImageOps
|
||||
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import global_cache_dir
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
|
||||
CLIPSEG_SIZE = 352
|
||||
|
||||
|
||||
class SegmentedGrayscale(object):
|
||||
def __init__(self, image: Image, heatmap: torch.Tensor):
|
||||
self.heatmap = heatmap
|
||||
@ -84,14 +83,15 @@ class Txt2Mask(object):
|
||||
|
||||
def __init__(self, device="cpu", refined=False):
|
||||
logger.info("Initializing clipseg model for text to mask inference")
|
||||
config = get_invokeai_config()
|
||||
|
||||
# BUG: we are not doing anything with the device option at this time
|
||||
self.device = device
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
CLIPSEG_MODEL, cache_dir=global_cache_dir("hub")
|
||||
CLIPSEG_MODEL, cache_dir=config.cache_dir
|
||||
)
|
||||
self.model = CLIPSegForImageSegmentation.from_pretrained(
|
||||
CLIPSEG_MODEL, cache_dir=global_cache_dir("hub")
|
||||
CLIPSEG_MODEL, cache_dir=config.cache_dir
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
|
@ -26,7 +26,7 @@ import torch
|
||||
from safetensors.torch import load_file
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import global_cache_dir, global_config_dir
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
from .model_manager import ModelManager, SDLegacyType
|
||||
|
||||
@ -47,6 +47,7 @@ from diffusers import (
|
||||
LDMTextToImagePipeline,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
UniPCMultistepScheduler,
|
||||
StableDiffusionPipeline,
|
||||
UNet2DConditionModel,
|
||||
)
|
||||
@ -73,7 +74,6 @@ from transformers import (
|
||||
|
||||
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
||||
|
||||
|
||||
def shave_segments(path, n_shave_prefix_segments=1):
|
||||
"""
|
||||
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
||||
@ -842,7 +842,7 @@ def convert_ldm_bert_checkpoint(checkpoint, config):
|
||||
|
||||
def convert_ldm_clip_checkpoint(checkpoint):
|
||||
text_model = CLIPTextModel.from_pretrained(
|
||||
"openai/clip-vit-large-patch14", cache_dir=global_cache_dir("hub")
|
||||
"openai/clip-vit-large-patch14", cache_dir=get_invokeai_config().cache_dir
|
||||
)
|
||||
|
||||
keys = list(checkpoint.keys())
|
||||
@ -897,7 +897,7 @@ textenc_pattern = re.compile("|".join(protected.keys()))
|
||||
|
||||
|
||||
def convert_paint_by_example_checkpoint(checkpoint):
|
||||
cache_dir = global_cache_dir("hub")
|
||||
cache_dir = get_invokeai_config().cache_dir
|
||||
config = CLIPVisionConfig.from_pretrained(
|
||||
"openai/clip-vit-large-patch14", cache_dir=cache_dir
|
||||
)
|
||||
@ -969,7 +969,7 @@ def convert_paint_by_example_checkpoint(checkpoint):
|
||||
|
||||
|
||||
def convert_open_clip_checkpoint(checkpoint):
|
||||
cache_dir = global_cache_dir("hub")
|
||||
cache_dir = get_invokeai_config().cache_dir
|
||||
text_model = CLIPTextModel.from_pretrained(
|
||||
"stabilityai/stable-diffusion-2", subfolder="text_encoder", cache_dir=cache_dir
|
||||
)
|
||||
@ -1092,7 +1092,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
:param vae: A diffusers VAE to load into the pipeline.
|
||||
:param vae_path: Path to a checkpoint VAE that will be converted into diffusers and loaded into the pipeline.
|
||||
"""
|
||||
|
||||
config = get_invokeai_config()
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
verbosity = dlogging.get_verbosity()
|
||||
@ -1105,7 +1105,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
else:
|
||||
checkpoint = load_file(checkpoint_path)
|
||||
|
||||
cache_dir = global_cache_dir("hub")
|
||||
cache_dir = config.cache_dir
|
||||
pipeline_class = (
|
||||
StableDiffusionGeneratorPipeline
|
||||
if return_generator_pipeline
|
||||
@ -1129,25 +1129,23 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
|
||||
if model_type == SDLegacyType.V2_v:
|
||||
original_config_file = (
|
||||
global_config_dir() / "stable-diffusion" / "v2-inference-v.yaml"
|
||||
config.legacy_conf_path / "v2-inference-v.yaml"
|
||||
)
|
||||
if global_step == 110000:
|
||||
# v2.1 needs to upcast attention
|
||||
upcast_attention = True
|
||||
elif model_type == SDLegacyType.V2_e:
|
||||
original_config_file = (
|
||||
global_config_dir() / "stable-diffusion" / "v2-inference.yaml"
|
||||
config.legacy_conf_path / "v2-inference.yaml"
|
||||
)
|
||||
elif model_type == SDLegacyType.V1_INPAINT:
|
||||
original_config_file = (
|
||||
global_config_dir()
|
||||
/ "stable-diffusion"
|
||||
/ "v1-inpainting-inference.yaml"
|
||||
config.legacy_conf_path / "v1-inpainting-inference.yaml"
|
||||
)
|
||||
|
||||
elif model_type == SDLegacyType.V1:
|
||||
original_config_file = (
|
||||
global_config_dir() / "stable-diffusion" / "v1-inference.yaml"
|
||||
config.legacy_conf_path / "v1-inference.yaml"
|
||||
)
|
||||
|
||||
else:
|
||||
@ -1209,6 +1207,8 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
||||
elif scheduler_type == "dpm":
|
||||
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
||||
elif scheduler_type == 'unipc':
|
||||
scheduler = UniPCMultistepScheduler.from_config(scheduler.config)
|
||||
elif scheduler_type == "ddim":
|
||||
scheduler = scheduler
|
||||
else:
|
||||
@ -1297,7 +1297,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
)
|
||||
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
||||
"CompVis/stable-diffusion-safety-checker",
|
||||
cache_dir=global_cache_dir("hub"),
|
||||
cache_dir=config.cache_dir,
|
||||
)
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
"CompVis/stable-diffusion-safety-checker", cache_dir=cache_dir
|
||||
|
@ -36,8 +36,6 @@ from omegaconf import OmegaConf
|
||||
from omegaconf.dictconfig import DictConfig
|
||||
from picklescan.scanner import scan_file_path
|
||||
|
||||
from invokeai.backend.globals import Globals, global_cache_dir
|
||||
|
||||
from transformers import (
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
@ -49,9 +47,9 @@ from diffusers.pipelines.stable_diffusion.safety_checker import (
|
||||
from ..stable_diffusion import (
|
||||
StableDiffusionGeneratorPipeline,
|
||||
)
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
from ..util import CUDA_DEVICE, ask_user, download_with_resume
|
||||
|
||||
|
||||
class SDLegacyType(Enum):
|
||||
V1 = auto()
|
||||
V1_INPAINT = auto()
|
||||
@ -100,6 +98,7 @@ class ModelManager(object):
|
||||
if not isinstance(config, DictConfig):
|
||||
config = OmegaConf.load(config)
|
||||
self.config = config
|
||||
self.globals = get_invokeai_config()
|
||||
self.precision = precision
|
||||
self.device = torch.device(device_type)
|
||||
self.max_loaded_models = max_loaded_models
|
||||
@ -292,7 +291,7 @@ class ModelManager(object):
|
||||
"""
|
||||
# if we are converting legacy files automatically, then
|
||||
# there are no legacy ckpts!
|
||||
if Globals.ckpt_convert:
|
||||
if self.globals.ckpt_convert:
|
||||
return False
|
||||
info = self.model_info(model_name)
|
||||
if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")):
|
||||
@ -502,13 +501,13 @@ class ModelManager(object):
|
||||
|
||||
# TODO: scan weights maybe?
|
||||
pipeline_args: dict[str, Any] = dict(
|
||||
safety_checker=None, local_files_only=not Globals.internet_available
|
||||
safety_checker=None, local_files_only=not self.globals.internet_available
|
||||
)
|
||||
if "vae" in mconfig and mconfig["vae"] is not None:
|
||||
if vae := self._load_vae(mconfig["vae"]):
|
||||
pipeline_args.update(vae=vae)
|
||||
if not isinstance(name_or_path, Path):
|
||||
pipeline_args.update(cache_dir=global_cache_dir("hub"))
|
||||
pipeline_args.update(cache_dir=self.globals.cache_dir)
|
||||
if using_fp16:
|
||||
pipeline_args.update(torch_dtype=torch.float16)
|
||||
fp_args_list = [{"revision": "fp16"}, {}]
|
||||
@ -560,10 +559,9 @@ class ModelManager(object):
|
||||
width = mconfig.width
|
||||
height = mconfig.height
|
||||
|
||||
if not os.path.isabs(config):
|
||||
config = os.path.join(Globals.root, config)
|
||||
if not os.path.isabs(weights):
|
||||
weights = os.path.normpath(os.path.join(Globals.root, weights))
|
||||
root_dir = self.globals.root_dir
|
||||
config = str(root_dir / config)
|
||||
weights = str(root_dir / weights)
|
||||
|
||||
# Convert to diffusers and return a diffusers pipeline
|
||||
self.logger.info(f"Converting legacy checkpoint {model_name} into a diffusers model...")
|
||||
@ -578,11 +576,7 @@ class ModelManager(object):
|
||||
|
||||
vae_path = None
|
||||
if vae:
|
||||
vae_path = (
|
||||
vae
|
||||
if os.path.isabs(vae)
|
||||
else os.path.normpath(os.path.join(Globals.root, vae))
|
||||
)
|
||||
vae_path = str(root_dir / vae)
|
||||
if self._has_cuda():
|
||||
torch.cuda.empty_cache()
|
||||
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
@ -614,9 +608,7 @@ class ModelManager(object):
|
||||
)
|
||||
|
||||
if "path" in mconfig and mconfig["path"] is not None:
|
||||
path = Path(mconfig["path"])
|
||||
if not path.is_absolute():
|
||||
path = Path(Globals.root, path).resolve()
|
||||
path = self.globals.root_dir / Path(mconfig["path"])
|
||||
return path
|
||||
elif "repo_id" in mconfig:
|
||||
return mconfig["repo_id"]
|
||||
@ -864,25 +856,16 @@ class ModelManager(object):
|
||||
model_type = self.probe_model_type(checkpoint)
|
||||
if model_type == SDLegacyType.V1:
|
||||
self.logger.debug("SD-v1 model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v1-inference.yaml"
|
||||
)
|
||||
model_config_file = self.globals.legacy_conf_path / "v1-inference.yaml"
|
||||
elif model_type == SDLegacyType.V1_INPAINT:
|
||||
self.logger.debug("SD-v1 inpainting model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root,
|
||||
"configs/stable-diffusion/v1-inpainting-inference.yaml",
|
||||
)
|
||||
model_config_file = self.globals.legacy_conf_path / "v1-inpainting-inference.yaml",
|
||||
elif model_type == SDLegacyType.V2_v:
|
||||
self.logger.debug("SD-v2-v model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
|
||||
)
|
||||
model_config_file = self.globals.legacy_conf_path / "v2-inference-v.yaml"
|
||||
elif model_type == SDLegacyType.V2_e:
|
||||
self.logger.debug("SD-v2-e model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v2-inference.yaml"
|
||||
)
|
||||
model_config_file = self.globals.legacy_conf_path / "v2-inference.yaml"
|
||||
elif model_type == SDLegacyType.V2:
|
||||
self.logger.warning(
|
||||
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
|
||||
@ -909,9 +892,7 @@ class ModelManager(object):
|
||||
self.logger.debug(f"Using VAE file {vae_path.name}")
|
||||
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
|
||||
|
||||
diffuser_path = Path(
|
||||
Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem
|
||||
)
|
||||
diffuser_path = self.globals.root_dir / "models/converted_ckpts" / model_path.stem
|
||||
model_name = self.convert_and_import(
|
||||
model_path,
|
||||
diffusers_path=diffuser_path,
|
||||
@ -1044,9 +1025,7 @@ class ModelManager(object):
|
||||
"""
|
||||
yaml_str = OmegaConf.to_yaml(self.config)
|
||||
if not os.path.isabs(config_file_path):
|
||||
config_file_path = os.path.normpath(
|
||||
os.path.join(Globals.root, config_file_path)
|
||||
)
|
||||
config_file_path = self.globals.model_conf_path
|
||||
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
|
||||
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
||||
outfile.write(self.preamble())
|
||||
@ -1078,7 +1057,8 @@ class ModelManager(object):
|
||||
"""
|
||||
# Three transformer models to check: bert, clip and safety checker, and
|
||||
# the diffusers as well
|
||||
models_dir = Path(Globals.root, "models")
|
||||
config = get_invokeai_config()
|
||||
models_dir = config.root_dir / "models"
|
||||
legacy_locations = [
|
||||
Path(
|
||||
models_dir,
|
||||
@ -1090,8 +1070,8 @@ class ModelManager(object):
|
||||
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14",
|
||||
),
|
||||
]
|
||||
legacy_locations.extend(list(global_cache_dir("diffusers").glob("*")))
|
||||
|
||||
legacy_cache_dir = config.cache_dir / "../diffusers"
|
||||
legacy_locations.extend(list(legacy_cache_dir.glob("*")))
|
||||
legacy_layout = False
|
||||
for model in legacy_locations:
|
||||
legacy_layout = legacy_layout or model.exists()
|
||||
@ -1113,7 +1093,7 @@ class ModelManager(object):
|
||||
|
||||
# transformer files get moved into the hub directory
|
||||
if cls._is_huggingface_hub_directory_present():
|
||||
hub = global_cache_dir("hub")
|
||||
hub = config.cache_dir
|
||||
else:
|
||||
hub = models_dir / "hub"
|
||||
|
||||
@ -1152,13 +1132,12 @@ class ModelManager(object):
|
||||
if str(source).startswith(("http:", "https:", "ftp:")):
|
||||
dest_directory = Path(dest_directory)
|
||||
if not dest_directory.is_absolute():
|
||||
dest_directory = Globals.root / dest_directory
|
||||
dest_directory = self.globals.root_dir / dest_directory
|
||||
dest_directory.mkdir(parents=True, exist_ok=True)
|
||||
resolved_path = download_with_resume(str(source), dest_directory)
|
||||
else:
|
||||
if not os.path.isabs(source):
|
||||
source = os.path.join(Globals.root, source)
|
||||
resolved_path = Path(source)
|
||||
source = self.globals.root_dir / source
|
||||
resolved_path = source
|
||||
return resolved_path
|
||||
|
||||
def _invalidate_cached_model(self, model_name: str) -> None:
|
||||
@ -1208,7 +1187,7 @@ class ModelManager(object):
|
||||
path = name_or_path
|
||||
else:
|
||||
owner, repo = name_or_path.split("/")
|
||||
path = Path(global_cache_dir("hub") / f"models--{owner}--{repo}")
|
||||
path = self.globals.cache_dir / f"models--{owner}--{repo}"
|
||||
if not path.exists():
|
||||
return None
|
||||
hashpath = path / "checksum.sha256"
|
||||
@ -1228,7 +1207,7 @@ class ModelManager(object):
|
||||
sha.update(chunk)
|
||||
hash = sha.hexdigest()
|
||||
toc = time.time()
|
||||
self.logger.debug(f"sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
|
||||
self.logger.debug(f"sha256 = {hash} ({count} files hashed in {toc - tic:4.2f}s)")
|
||||
with open(hashpath, "w") as f:
|
||||
f.write(hash)
|
||||
return hash
|
||||
@ -1269,8 +1248,8 @@ class ModelManager(object):
|
||||
using_fp16 = self.precision == "float16"
|
||||
|
||||
vae_args.update(
|
||||
cache_dir=global_cache_dir("hub"),
|
||||
local_files_only=not Globals.internet_available,
|
||||
cache_dir=self.globals.cache_dir,
|
||||
local_files_only=not self.globals.internet_available,
|
||||
)
|
||||
|
||||
self.logger.debug(f"Loading diffusers VAE from {name_or_path}")
|
||||
@ -1308,7 +1287,7 @@ class ModelManager(object):
|
||||
|
||||
@classmethod
|
||||
def _delete_model_from_cache(cls,repo_id):
|
||||
cache_info = scan_cache_dir(global_cache_dir("hub"))
|
||||
cache_info = scan_cache_dir(get_invokeai_config().cache_dir)
|
||||
|
||||
# I'm sure there is a way to do this with comprehensions
|
||||
# but the code quickly became incomprehensible!
|
||||
@ -1325,9 +1304,10 @@ class ModelManager(object):
|
||||
|
||||
@staticmethod
|
||||
def _abs_path(path: str | Path) -> Path:
|
||||
globals = get_invokeai_config()
|
||||
if path is None or Path(path).is_absolute():
|
||||
return path
|
||||
return Path(Globals.root, path).resolve()
|
||||
return Path(globals.root_dir, path).resolve()
|
||||
|
||||
@staticmethod
|
||||
def _is_huggingface_hub_directory_present() -> bool:
|
||||
|
@ -16,67 +16,59 @@ from compel.prompt_parser import (
|
||||
FlattenedPrompt,
|
||||
Fragment,
|
||||
PromptParser,
|
||||
Conjunction,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
from ..stable_diffusion import InvokeAIDiffuserComponent
|
||||
from ..util import torch_dtype
|
||||
|
||||
|
||||
def get_uc_and_c_and_ec(
|
||||
prompt_string, model, log_tokens=False, skip_normalize_legacy_blend=False
|
||||
):
|
||||
def get_uc_and_c_and_ec(prompt_string,
|
||||
model: InvokeAIDiffuserComponent,
|
||||
log_tokens=False, skip_normalize_legacy_blend=False):
|
||||
# lazy-load any deferred textual inversions.
|
||||
# this might take a couple of seconds the first time a textual inversion is used.
|
||||
model.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
|
||||
prompt_string
|
||||
)
|
||||
model.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(prompt_string)
|
||||
|
||||
tokenizer = model.tokenizer
|
||||
compel = Compel(
|
||||
tokenizer=tokenizer,
|
||||
compel = Compel(tokenizer=model.tokenizer,
|
||||
text_encoder=model.text_encoder,
|
||||
textual_inversion_manager=model.textual_inversion_manager,
|
||||
dtype_for_device_getter=torch_dtype,
|
||||
truncate_long_prompts=False
|
||||
truncate_long_prompts=False,
|
||||
)
|
||||
|
||||
config = get_invokeai_config()
|
||||
|
||||
# get rid of any newline characters
|
||||
prompt_string = prompt_string.replace("\n", " ")
|
||||
(
|
||||
positive_prompt_string,
|
||||
negative_prompt_string,
|
||||
) = split_prompt_to_positive_and_negative(prompt_string)
|
||||
legacy_blend = try_parse_legacy_blend(
|
||||
positive_prompt_string, skip_normalize_legacy_blend
|
||||
)
|
||||
positive_prompt: Union[FlattenedPrompt, Blend]
|
||||
if legacy_blend is not None:
|
||||
positive_prompt = legacy_blend
|
||||
else:
|
||||
positive_prompt = Compel.parse_prompt_string(positive_prompt_string)
|
||||
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(
|
||||
negative_prompt_string
|
||||
)
|
||||
positive_prompt_string, negative_prompt_string = split_prompt_to_positive_and_negative(prompt_string)
|
||||
|
||||
if log_tokens or getattr(Globals, "log_tokenization", False):
|
||||
log_tokenization(positive_prompt, negative_prompt, tokenizer=tokenizer)
|
||||
legacy_blend = try_parse_legacy_blend(positive_prompt_string, skip_normalize_legacy_blend)
|
||||
positive_conjunction: Conjunction
|
||||
if legacy_blend is not None:
|
||||
positive_conjunction = legacy_blend
|
||||
else:
|
||||
positive_conjunction = Compel.parse_prompt_string(positive_prompt_string)
|
||||
positive_prompt = positive_conjunction.prompts[0]
|
||||
|
||||
negative_conjunction = Compel.parse_prompt_string(negative_prompt_string)
|
||||
negative_prompt: FlattenedPrompt | Blend = negative_conjunction.prompts[0]
|
||||
|
||||
tokens_count = get_max_token_count(model.tokenizer, positive_prompt)
|
||||
if log_tokens or config.log_tokenization:
|
||||
log_tokenization(positive_prompt, negative_prompt, tokenizer=model.tokenizer)
|
||||
|
||||
c, options = compel.build_conditioning_tensor_for_prompt_object(positive_prompt)
|
||||
uc, _ = compel.build_conditioning_tensor_for_prompt_object(negative_prompt)
|
||||
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
|
||||
|
||||
tokens_count = get_max_token_count(tokenizer, positive_prompt)
|
||||
|
||||
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
||||
tokens_count_including_eos_bos=tokens_count,
|
||||
cross_attention_control_args=options.get("cross_attention_control", None),
|
||||
)
|
||||
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(tokens_count_including_eos_bos=tokens_count,
|
||||
cross_attention_control_args=options.get(
|
||||
'cross_attention_control', None))
|
||||
return uc, c, ec
|
||||
|
||||
|
||||
def get_prompt_structure(
|
||||
prompt_string, skip_normalize_legacy_blend: bool = False
|
||||
) -> (Union[FlattenedPrompt, Blend], FlattenedPrompt):
|
||||
@ -87,18 +79,17 @@ def get_prompt_structure(
|
||||
legacy_blend = try_parse_legacy_blend(
|
||||
positive_prompt_string, skip_normalize_legacy_blend
|
||||
)
|
||||
positive_prompt: Union[FlattenedPrompt, Blend]
|
||||
positive_prompt: Conjunction
|
||||
if legacy_blend is not None:
|
||||
positive_prompt = legacy_blend
|
||||
positive_conjunction = legacy_blend
|
||||
else:
|
||||
positive_prompt = Compel.parse_prompt_string(positive_prompt_string)
|
||||
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(
|
||||
negative_prompt_string
|
||||
)
|
||||
positive_conjunction = Compel.parse_prompt_string(positive_prompt_string)
|
||||
positive_prompt = positive_conjunction.prompts[0]
|
||||
negative_conjunction = Compel.parse_prompt_string(negative_prompt_string)
|
||||
negative_prompt: FlattenedPrompt|Blend = negative_conjunction.prompts[0]
|
||||
|
||||
return positive_prompt, negative_prompt
|
||||
|
||||
|
||||
def get_max_token_count(
|
||||
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
|
||||
) -> int:
|
||||
@ -245,22 +236,21 @@ def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_t
|
||||
logger.info(f"[TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
|
||||
logger.debug(f"{discarded}\x1b[0m")
|
||||
|
||||
|
||||
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]:
|
||||
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Conjunction]:
|
||||
weighted_subprompts = split_weighted_subprompts(text, skip_normalize=skip_normalize)
|
||||
if len(weighted_subprompts) <= 1:
|
||||
return None
|
||||
strings = [x[0] for x in weighted_subprompts]
|
||||
weights = [x[1] for x in weighted_subprompts]
|
||||
|
||||
pp = PromptParser()
|
||||
parsed_conjunctions = [pp.parse_conjunction(x) for x in strings]
|
||||
flattened_prompts = [x.prompts[0] for x in parsed_conjunctions]
|
||||
|
||||
return Blend(
|
||||
prompts=flattened_prompts, weights=weights, normalize_weights=not skip_normalize
|
||||
)
|
||||
|
||||
flattened_prompts = []
|
||||
weights = []
|
||||
for i, x in enumerate(parsed_conjunctions):
|
||||
if len(x.prompts)>0:
|
||||
flattened_prompts.append(x.prompts[0])
|
||||
weights.append(weighted_subprompts[i][1])
|
||||
return Conjunction([Blend(prompts=flattened_prompts, weights=weights, normalize_weights=not skip_normalize)])
|
||||
|
||||
def split_weighted_subprompts(text, skip_normalize=False) -> list:
|
||||
"""
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from ..globals import Globals
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
pretrained_model_url = (
|
||||
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
|
||||
@ -17,11 +17,11 @@ class CodeFormerRestoration:
|
||||
def __init__(
|
||||
self, codeformer_dir="models/codeformer", codeformer_model_path="codeformer.pth"
|
||||
) -> None:
|
||||
if not os.path.isabs(codeformer_dir):
|
||||
codeformer_dir = os.path.join(Globals.root, codeformer_dir)
|
||||
|
||||
self.model_path = os.path.join(codeformer_dir, codeformer_model_path)
|
||||
self.codeformer_model_exists = os.path.isfile(self.model_path)
|
||||
self.globals = get_invokeai_config()
|
||||
codeformer_dir = self.globals.root_dir / codeformer_dir
|
||||
self.model_path = codeformer_dir / codeformer_model_path
|
||||
self.codeformer_model_exists = self.model_path.exists()
|
||||
|
||||
if not self.codeformer_model_exists:
|
||||
logger.error("NOT FOUND: CodeFormer model not found at " + self.model_path)
|
||||
@ -71,9 +71,7 @@ class CodeFormerRestoration:
|
||||
upscale_factor=1,
|
||||
use_parse=True,
|
||||
device=device,
|
||||
model_rootpath=os.path.join(
|
||||
Globals.root, "models", "gfpgan", "weights"
|
||||
),
|
||||
model_rootpath = self.globals.root_dir / "gfpgan" / "weights"
|
||||
)
|
||||
face_helper.clean_all()
|
||||
face_helper.read_image(bgr_image_array)
|
||||
|
@ -7,14 +7,13 @@ import torch
|
||||
from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
class GFPGAN:
|
||||
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
|
||||
self.globals = get_invokeai_config()
|
||||
if not os.path.isabs(gfpgan_model_path):
|
||||
gfpgan_model_path = os.path.abspath(
|
||||
os.path.join(Globals.root, gfpgan_model_path)
|
||||
)
|
||||
gfpgan_model_path = self.globals.root_dir / gfpgan_model_path
|
||||
self.model_path = gfpgan_model_path
|
||||
self.gfpgan_model_exists = os.path.isfile(self.model_path)
|
||||
|
||||
@ -33,7 +32,7 @@ class GFPGAN:
|
||||
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
cwd = os.getcwd()
|
||||
os.chdir(os.path.join(Globals.root, "models"))
|
||||
os.chdir(self.globals.root_dir / 'models')
|
||||
try:
|
||||
from gfpgan import GFPGANer
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
import os
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
@ -7,7 +6,8 @@ from PIL import Image
|
||||
from PIL.Image import Image as ImageType
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
config = get_invokeai_config()
|
||||
|
||||
class ESRGAN:
|
||||
def __init__(self, bg_tile_size=400) -> None:
|
||||
@ -30,12 +30,8 @@ class ESRGAN:
|
||||
upscale=4,
|
||||
act_type="prelu",
|
||||
)
|
||||
model_path = os.path.join(
|
||||
Globals.root, "models/realesrgan/realesr-general-x4v3.pth"
|
||||
)
|
||||
wdn_model_path = os.path.join(
|
||||
Globals.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
|
||||
)
|
||||
model_path = config.root_dir / "models/realesrgan/realesr-general-x4v3.pth"
|
||||
wdn_model_path = config.root_dir / "models/realesrgan/realesr-general-wdn-x4v3.pth"
|
||||
scale = 4
|
||||
|
||||
bg_upsampler = RealESRGANer(
|
||||
|
@ -15,7 +15,7 @@ from transformers import AutoFeatureExtractor
|
||||
|
||||
import invokeai.assets.web as web_assets
|
||||
import invokeai.backend.util.logging as logger
|
||||
from .globals import global_cache_dir
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
from .util import CPU_DEVICE
|
||||
|
||||
class SafetyChecker(object):
|
||||
@ -26,10 +26,11 @@ class SafetyChecker(object):
|
||||
caution = Image.open(path)
|
||||
self.caution_img = caution.resize((caution.width // 2, caution.height // 2))
|
||||
self.device = device
|
||||
config = get_invokeai_config()
|
||||
|
||||
try:
|
||||
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
||||
safety_model_path = global_cache_dir("hub")
|
||||
safety_model_path = config.cache_dir
|
||||
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
||||
safety_model_id,
|
||||
local_files_only=True,
|
||||
|
@ -18,15 +18,15 @@ from huggingface_hub import (
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
class HuggingFaceConceptsLibrary(object):
|
||||
def __init__(self, root=None):
|
||||
"""
|
||||
Initialize the Concepts object. May optionally pass a root directory.
|
||||
"""
|
||||
self.root = root or Globals.root
|
||||
self.config = get_invokeai_config()
|
||||
self.root = root or self.config.root
|
||||
self.hf_api = HfApi()
|
||||
self.local_concepts = dict()
|
||||
self.concept_list = None
|
||||
@ -58,7 +58,7 @@ class HuggingFaceConceptsLibrary(object):
|
||||
self.concept_list.extend(list(local_concepts_to_add))
|
||||
return self.concept_list
|
||||
return self.concept_list
|
||||
elif Globals.internet_available is True:
|
||||
elif self.config.internet_available is True:
|
||||
try:
|
||||
models = self.hf_api.list_models(
|
||||
filter=ModelFilter(model_name="sd-concepts-library/")
|
||||
|
@ -33,8 +33,7 @@ from torchvision.transforms.functional import resize as tv_resize
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
from typing_extensions import ParamSpec
|
||||
|
||||
from invokeai.backend.globals import Globals
|
||||
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
from ..util import CPU_DEVICE, normalize_device
|
||||
from .diffusion import (
|
||||
AttentionMapSaver,
|
||||
@ -44,7 +43,6 @@ from .diffusion import (
|
||||
from .offloading import FullyLoadedModelGroup, LazilyLoadedModelGroup, ModelGroup
|
||||
from .textual_inversion_manager import TextualInversionManager
|
||||
|
||||
|
||||
@dataclass
|
||||
class PipelineIntermediateState:
|
||||
run_id: str
|
||||
@ -348,10 +346,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
"""
|
||||
if xformers is available, use it, otherwise use sliced attention.
|
||||
"""
|
||||
config = get_invokeai_config()
|
||||
if (
|
||||
torch.cuda.is_available()
|
||||
and is_xformers_available()
|
||||
and not Globals.disable_xformers
|
||||
and not config.disable_xformers
|
||||
):
|
||||
self.enable_xformers_memory_efficient_attention()
|
||||
else:
|
||||
@ -509,10 +508,13 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
run_id=None,
|
||||
callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
|
||||
if self.scheduler.config.get("cpu_only", False):
|
||||
scheduler_device = torch.device('cpu')
|
||||
else:
|
||||
scheduler_device = self._model_group.device_for(self.unet)
|
||||
|
||||
if timesteps is None:
|
||||
self.scheduler.set_timesteps(
|
||||
num_inference_steps, device=self._model_group.device_for(self.unet)
|
||||
)
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=scheduler_device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
infer_latents_from_embeddings = GeneratorToCallbackinator(
|
||||
self.generate_latents_from_embeddings, PipelineIntermediateState
|
||||
@ -545,6 +547,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
additional_guidance = []
|
||||
extra_conditioning_info = conditioning_data.extra
|
||||
with self.invokeai_diffuser.custom_attention_context(
|
||||
self.invokeai_diffuser.model,
|
||||
extra_conditioning_info=extra_conditioning_info,
|
||||
step_count=len(self.scheduler.timesteps),
|
||||
):
|
||||
@ -726,11 +729,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
run_id=None,
|
||||
callback=None,
|
||||
) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
timesteps, _ = self.get_img2img_timesteps(
|
||||
num_inference_steps,
|
||||
strength,
|
||||
device=self._model_group.device_for(self.unet),
|
||||
)
|
||||
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength)
|
||||
result_latents, result_attention_maps = self.latents_from_embeddings(
|
||||
latents=initial_latents if strength < 1.0 else torch.zeros_like(
|
||||
initial_latents, device=initial_latents.device, dtype=initial_latents.dtype
|
||||
@ -756,13 +755,19 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
return self.check_for_safety(output, dtype=conditioning_data.dtype)
|
||||
|
||||
def get_img2img_timesteps(
|
||||
self, num_inference_steps: int, strength: float, device
|
||||
self, num_inference_steps: int, strength: float, device=None
|
||||
) -> (torch.Tensor, int):
|
||||
img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components)
|
||||
assert img2img_pipeline.scheduler is self.scheduler
|
||||
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
|
||||
if self.scheduler.config.get("cpu_only", False):
|
||||
scheduler_device = torch.device('cpu')
|
||||
else:
|
||||
scheduler_device = self._model_group.device_for(self.unet)
|
||||
|
||||
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=scheduler_device)
|
||||
timesteps, adjusted_steps = img2img_pipeline.get_timesteps(
|
||||
num_inference_steps, strength, device=device
|
||||
num_inference_steps, strength, device=scheduler_device
|
||||
)
|
||||
# Workaround for low strength resulting in zero timesteps.
|
||||
# TODO: submit upstream fix for zero-step img2img
|
||||
@ -796,9 +801,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
if init_image.dim() == 3:
|
||||
init_image = init_image.unsqueeze(0)
|
||||
|
||||
timesteps, _ = self.get_img2img_timesteps(
|
||||
num_inference_steps, strength, device=device
|
||||
)
|
||||
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength)
|
||||
|
||||
# 6. Prepare latent variables
|
||||
# can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents
|
||||
|
@ -10,6 +10,7 @@ import diffusers
|
||||
import psutil
|
||||
import torch
|
||||
from compel.cross_attention_control import Arguments
|
||||
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
||||
from diffusers.models.attention_processor import AttentionProcessor
|
||||
from torch import nn
|
||||
|
||||
@ -352,8 +353,7 @@ def restore_default_cross_attention(
|
||||
else:
|
||||
remove_attention_function(model)
|
||||
|
||||
|
||||
def override_cross_attention(model, context: Context, is_running_diffusers=False):
|
||||
def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: Context):
|
||||
"""
|
||||
Inject attention parameters and functions into the passed in model to enable cross attention editing.
|
||||
|
||||
@ -372,15 +372,13 @@ def override_cross_attention(model, context: Context, is_running_diffusers=False
|
||||
indices = torch.arange(max_length, dtype=torch.long)
|
||||
for name, a0, a1, b0, b1 in context.arguments.edit_opcodes:
|
||||
if b0 < max_length:
|
||||
if name == "equal": # or (name == "replace" and a1 - a0 == b1 - b0):
|
||||
if name == "equal":# or (name == "replace" and a1 - a0 == b1 - b0):
|
||||
# these tokens have not been edited
|
||||
indices[b0:b1] = indices_target[a0:a1]
|
||||
mask[b0:b1] = 1
|
||||
|
||||
context.cross_attention_mask = mask.to(device)
|
||||
context.cross_attention_index_map = indices.to(device)
|
||||
if is_running_diffusers:
|
||||
unet = model
|
||||
old_attn_processors = unet.attn_processors
|
||||
if torch.backends.mps.is_available():
|
||||
# see note in StableDiffusionGeneratorPipeline.__init__ about borked slicing on MPS
|
||||
@ -388,21 +386,8 @@ def override_cross_attention(model, context: Context, is_running_diffusers=False
|
||||
else:
|
||||
# try to re-use an existing slice size
|
||||
default_slice_size = 4
|
||||
slice_size = next(
|
||||
(
|
||||
p.slice_size
|
||||
for p in old_attn_processors.values()
|
||||
if type(p) is SlicedAttnProcessor
|
||||
),
|
||||
default_slice_size,
|
||||
)
|
||||
slice_size = next((p.slice_size for p in old_attn_processors.values() if type(p) is SlicedAttnProcessor), default_slice_size)
|
||||
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
|
||||
return old_attn_processors
|
||||
else:
|
||||
context.register_cross_attention_modules(model)
|
||||
inject_attention_function(model, context)
|
||||
return None
|
||||
|
||||
|
||||
def get_cross_attention_modules(
|
||||
model, which: CrossAttentionType
|
||||
|
@ -5,11 +5,12 @@ from typing import Any, Callable, Dict, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers import UNet2DConditionModel
|
||||
from diffusers.models.attention_processor import AttentionProcessor
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
from .cross_attention_control import (
|
||||
Arguments,
|
||||
@ -17,8 +18,8 @@ from .cross_attention_control import (
|
||||
CrossAttentionType,
|
||||
SwapCrossAttnContext,
|
||||
get_cross_attention_modules,
|
||||
override_cross_attention,
|
||||
restore_default_cross_attention,
|
||||
setup_cross_attention_control_attention_processors,
|
||||
)
|
||||
from .cross_attention_map_saving import AttentionMapSaver
|
||||
|
||||
@ -31,7 +32,6 @@ ModelForwardCallback: TypeAlias = Union[
|
||||
Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor],
|
||||
]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class PostprocessingSettings:
|
||||
threshold: float
|
||||
@ -72,31 +72,43 @@ class InvokeAIDiffuserComponent:
|
||||
:param model: the unet model to pass through to cross attention control
|
||||
:param model_forward_callback: a lambda with arguments (x, sigma, conditioning_to_apply). will be called repeatedly. most likely, this should simply call model.forward(x, sigma, conditioning)
|
||||
"""
|
||||
config = get_invokeai_config()
|
||||
self.conditioning = None
|
||||
self.model = model
|
||||
self.is_running_diffusers = is_running_diffusers
|
||||
self.model_forward_callback = model_forward_callback
|
||||
self.cross_attention_control_context = None
|
||||
self.sequential_guidance = Globals.sequential_guidance
|
||||
self.sequential_guidance = config.sequential_guidance
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def custom_attention_context(
|
||||
self, extra_conditioning_info: Optional[ExtraConditioningInfo], step_count: int
|
||||
cls,
|
||||
unet: UNet2DConditionModel, # note: also may futz with the text encoder depending on requested LoRAs
|
||||
extra_conditioning_info: Optional[ExtraConditioningInfo],
|
||||
step_count: int
|
||||
):
|
||||
do_swap = (
|
||||
extra_conditioning_info is not None
|
||||
and extra_conditioning_info.wants_cross_attention_control
|
||||
old_attn_processors = None
|
||||
if extra_conditioning_info and (
|
||||
extra_conditioning_info.wants_cross_attention_control
|
||||
):
|
||||
old_attn_processors = unet.attn_processors
|
||||
# Load lora conditions into the model
|
||||
if extra_conditioning_info.wants_cross_attention_control:
|
||||
cross_attention_control_context = Context(
|
||||
arguments=extra_conditioning_info.cross_attention_control_args,
|
||||
step_count=step_count,
|
||||
)
|
||||
old_attn_processor = None
|
||||
if do_swap:
|
||||
old_attn_processor = self.override_cross_attention(
|
||||
extra_conditioning_info, step_count=step_count
|
||||
setup_cross_attention_control_attention_processors(
|
||||
unet,
|
||||
cross_attention_control_context,
|
||||
)
|
||||
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if old_attn_processor is not None:
|
||||
self.restore_default_cross_attention(old_attn_processor)
|
||||
if old_attn_processors is not None:
|
||||
unet.set_attn_processor(old_attn_processors)
|
||||
# TODO resuscitate attention map saving
|
||||
# self.remove_attention_map_saving()
|
||||
|
||||
|
1
invokeai/backend/stable_diffusion/schedulers/__init__.py
Normal file
1
invokeai/backend/stable_diffusion/schedulers/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .schedulers import SCHEDULER_MAP
|
23
invokeai/backend/stable_diffusion/schedulers/schedulers.py
Normal file
23
invokeai/backend/stable_diffusion/schedulers/schedulers.py
Normal file
@ -0,0 +1,23 @@
|
||||
from diffusers import DDIMScheduler, DPMSolverMultistepScheduler, KDPM2DiscreteScheduler, \
|
||||
KDPM2AncestralDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, \
|
||||
HeunDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, UniPCMultistepScheduler, \
|
||||
DPMSolverSinglestepScheduler, DEISMultistepScheduler, DDPMScheduler
|
||||
|
||||
SCHEDULER_MAP = dict(
|
||||
ddim=(DDIMScheduler, dict()),
|
||||
ddpm=(DDPMScheduler, dict()),
|
||||
deis=(DEISMultistepScheduler, dict()),
|
||||
lms=(LMSDiscreteScheduler, dict()),
|
||||
pndm=(PNDMScheduler, dict()),
|
||||
heun=(HeunDiscreteScheduler, dict(use_karras_sigmas=False)),
|
||||
heun_k=(HeunDiscreteScheduler, dict(use_karras_sigmas=True)),
|
||||
euler=(EulerDiscreteScheduler, dict(use_karras_sigmas=False)),
|
||||
euler_k=(EulerDiscreteScheduler, dict(use_karras_sigmas=True)),
|
||||
euler_a=(EulerAncestralDiscreteScheduler, dict()),
|
||||
kdpm_2=(KDPM2DiscreteScheduler, dict()),
|
||||
kdpm_2_a=(KDPM2AncestralDiscreteScheduler, dict()),
|
||||
dpmpp_2s=(DPMSolverSinglestepScheduler, dict()),
|
||||
dpmpp_2m=(DPMSolverMultistepScheduler, dict(use_karras_sigmas=False)),
|
||||
dpmpp_2m_k=(DPMSolverMultistepScheduler, dict(use_karras_sigmas=True)),
|
||||
unipc=(UniPCMultistepScheduler, dict(cpu_only=True))
|
||||
)
|
@ -7,7 +7,6 @@
|
||||
This is the backend to "textual_inversion.py"
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
@ -47,8 +46,7 @@ from tqdm.auto import tqdm
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
# invokeai stuff
|
||||
from ..args import ArgFormatter, PagingArgumentParser
|
||||
from ..globals import Globals, global_cache_dir
|
||||
from invokeai.app.services.config import InvokeAIAppConfig,PagingArgumentParser
|
||||
|
||||
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
||||
PIL_INTERPOLATION = {
|
||||
@ -90,8 +88,9 @@ def save_progress(
|
||||
|
||||
|
||||
def parse_args():
|
||||
config = InvokeAIAppConfig(argv=[])
|
||||
parser = PagingArgumentParser(
|
||||
description="Textual inversion training", formatter_class=ArgFormatter
|
||||
description="Textual inversion training"
|
||||
)
|
||||
general_group = parser.add_argument_group("General")
|
||||
model_group = parser.add_argument_group("Models and Paths")
|
||||
@ -112,7 +111,7 @@ def parse_args():
|
||||
"--root_dir",
|
||||
"--root",
|
||||
type=Path,
|
||||
default=Globals.root,
|
||||
default=config.root,
|
||||
help="Path to the invokeai runtime directory",
|
||||
)
|
||||
general_group.add_argument(
|
||||
@ -127,7 +126,7 @@ def parse_args():
|
||||
general_group.add_argument(
|
||||
"--output_dir",
|
||||
type=Path,
|
||||
default=f"{Globals.root}/text-inversion-model",
|
||||
default=f"{config.root}/text-inversion-model",
|
||||
help="The output directory where the model predictions and checkpoints will be written.",
|
||||
)
|
||||
model_group.add_argument(
|
||||
@ -528,6 +527,7 @@ def get_full_repo_name(
|
||||
|
||||
|
||||
def do_textual_inversion_training(
|
||||
config: InvokeAIAppConfig,
|
||||
model: str,
|
||||
train_data_dir: Path,
|
||||
output_dir: Path,
|
||||
@ -580,7 +580,7 @@ def do_textual_inversion_training(
|
||||
|
||||
# setting up things the way invokeai expects them
|
||||
if not os.path.isabs(output_dir):
|
||||
output_dir = os.path.join(Globals.root, output_dir)
|
||||
output_dir = os.path.join(config.root, output_dir)
|
||||
|
||||
logging_dir = output_dir / logging_dir
|
||||
|
||||
@ -628,7 +628,7 @@ def do_textual_inversion_training(
|
||||
elif output_dir is not None:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
models_conf = OmegaConf.load(os.path.join(Globals.root, "configs/models.yaml"))
|
||||
models_conf = OmegaConf.load(config.model_conf_path)
|
||||
model_conf = models_conf.get(model, None)
|
||||
assert model_conf is not None, f"Unknown model: {model}"
|
||||
assert (
|
||||
@ -640,7 +640,7 @@ def do_textual_inversion_training(
|
||||
assert (
|
||||
pretrained_model_name_or_path
|
||||
), f"models.yaml error: neither 'repo_id' nor 'path' is defined for {model}"
|
||||
pipeline_args = dict(cache_dir=global_cache_dir("hub"))
|
||||
pipeline_args = dict(cache_dir=config.cache_dir)
|
||||
|
||||
# Load tokenizer
|
||||
if tokenizer_name:
|
||||
|
@ -4,17 +4,16 @@ from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from torch import autocast
|
||||
|
||||
from invokeai.backend.globals import Globals
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
CPU_DEVICE = torch.device("cpu")
|
||||
CUDA_DEVICE = torch.device("cuda")
|
||||
MPS_DEVICE = torch.device("mps")
|
||||
|
||||
|
||||
def choose_torch_device() -> torch.device:
|
||||
"""Convenience routine for guessing which GPU device to run model on"""
|
||||
if Globals.always_use_cpu:
|
||||
config = get_invokeai_config()
|
||||
if config.always_use_cpu:
|
||||
return CPU_DEVICE
|
||||
if torch.cuda.is_available():
|
||||
return torch.device("cuda")
|
||||
@ -33,7 +32,8 @@ def choose_precision(device: torch.device) -> str:
|
||||
|
||||
|
||||
def torch_dtype(device: torch.device) -> torch.dtype:
|
||||
if Globals.full_precision:
|
||||
config = get_invokeai_config()
|
||||
if config.full_precision:
|
||||
return torch.float32
|
||||
if choose_precision(device) == "float16":
|
||||
return torch.float16
|
||||
|
@ -2,34 +2,37 @@
|
||||
|
||||
"""invokeai.util.logging
|
||||
|
||||
Logging class for InvokeAI that produces console messages that follow
|
||||
the conventions established in InvokeAI 1.X through 2.X.
|
||||
Logging class for InvokeAI that produces console messages
|
||||
|
||||
|
||||
One way to use it:
|
||||
Usage:
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
logger = InvokeAILogger.getLogger(__name__)
|
||||
logger.critical('this is critical')
|
||||
logger.error('this is an error')
|
||||
logger.warning('this is a warning')
|
||||
logger.info('this is info')
|
||||
logger.debug('this is debugging')
|
||||
logger = InvokeAILogger.getLogger(name='InvokeAI') // Initialization
|
||||
(or)
|
||||
logger = InvokeAILogger.getLogger(__name__) // To use the filename
|
||||
|
||||
logger.critical('this is critical') // Critical Message
|
||||
logger.error('this is an error') // Error Message
|
||||
logger.warning('this is a warning') // Warning Message
|
||||
logger.info('this is info') // Info Message
|
||||
logger.debug('this is debugging') // Debug Message
|
||||
|
||||
Console messages:
|
||||
### this is critical
|
||||
*** this is an error ***
|
||||
** this is a warning
|
||||
>> this is info
|
||||
| this is debugging
|
||||
[12-05-2023 20]::[InvokeAI]::CRITICAL --> This is an info message [In Bold Red]
|
||||
[12-05-2023 20]::[InvokeAI]::ERROR --> This is an info message [In Red]
|
||||
[12-05-2023 20]::[InvokeAI]::WARNING --> This is an info message [In Yellow]
|
||||
[12-05-2023 20]::[InvokeAI]::INFO --> This is an info message [In Grey]
|
||||
[12-05-2023 20]::[InvokeAI]::DEBUG --> This is an info message [In Grey]
|
||||
|
||||
Another way:
|
||||
import invokeai.backend.util.logging as ialog
|
||||
ialogger.debug('this is a debugging message')
|
||||
Alternate Method (in this case the logger name will be set to InvokeAI):
|
||||
import invokeai.backend.util.logging as IAILogger
|
||||
IAILogger.debug('this is a debugging message')
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
|
||||
# module level functions
|
||||
def debug(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().debug(msg, *args, **kwargs)
|
||||
@ -55,49 +58,47 @@ def disable(level=logging.CRITICAL):
|
||||
def basicConfig(**kwargs):
|
||||
InvokeAILogger.getLogger().basicConfig(**kwargs)
|
||||
|
||||
def getLogger(name: str=None)->logging.Logger:
|
||||
def getLogger(name: str = None) -> logging.Logger:
|
||||
return InvokeAILogger.getLogger(name)
|
||||
|
||||
|
||||
class InvokeAILogFormatter(logging.Formatter):
|
||||
'''
|
||||
Repurposed from:
|
||||
https://stackoverflow.com/questions/14844970/modifying-logging-message-format-based-on-message-logging-level-in-python3
|
||||
Custom Formatting for the InvokeAI Logger
|
||||
'''
|
||||
crit_fmt = "### %(msg)s"
|
||||
err_fmt = "*** %(msg)s"
|
||||
warn_fmt = "** %(msg)s"
|
||||
info_fmt = ">> %(msg)s"
|
||||
dbg_fmt = " | %(msg)s"
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(fmt="%(levelno)d: %(msg)s", datefmt=None, style='%')
|
||||
# Color Codes
|
||||
grey = "\x1b[38;20m"
|
||||
yellow = "\x1b[33;20m"
|
||||
red = "\x1b[31;20m"
|
||||
cyan = "\x1b[36;20m"
|
||||
bold_red = "\x1b[31;1m"
|
||||
reset = "\x1b[0m"
|
||||
|
||||
# Log Format
|
||||
format = "[%(asctime)s]::[%(name)s]::%(levelname)s --> %(message)s"
|
||||
## More Formatting Options: %(pathname)s, %(filename)s, %(module)s, %(lineno)d
|
||||
|
||||
# Format Map
|
||||
FORMATS = {
|
||||
logging.DEBUG: cyan + format + reset,
|
||||
logging.INFO: grey + format + reset,
|
||||
logging.WARNING: yellow + format + reset,
|
||||
logging.ERROR: red + format + reset,
|
||||
logging.CRITICAL: bold_red + format + reset
|
||||
}
|
||||
|
||||
def format(self, record):
|
||||
# Remember the format used when the logging module
|
||||
# was installed (in the event that this formatter is
|
||||
# used with the vanilla logging module.
|
||||
format_orig = self._style._fmt
|
||||
if record.levelno == logging.DEBUG:
|
||||
self._style._fmt = InvokeAILogFormatter.dbg_fmt
|
||||
if record.levelno == logging.INFO:
|
||||
self._style._fmt = InvokeAILogFormatter.info_fmt
|
||||
if record.levelno == logging.WARNING:
|
||||
self._style._fmt = InvokeAILogFormatter.warn_fmt
|
||||
if record.levelno == logging.ERROR:
|
||||
self._style._fmt = InvokeAILogFormatter.err_fmt
|
||||
if record.levelno == logging.CRITICAL:
|
||||
self._style._fmt = InvokeAILogFormatter.crit_fmt
|
||||
log_fmt = self.FORMATS.get(record.levelno)
|
||||
formatter = logging.Formatter(log_fmt, datefmt="%d-%m-%Y %H:%M:%S")
|
||||
return formatter.format(record)
|
||||
|
||||
# parent class does the work
|
||||
result = super().format(record)
|
||||
self._style._fmt = format_orig
|
||||
return result
|
||||
|
||||
class InvokeAILogger(object):
|
||||
loggers = dict()
|
||||
|
||||
@classmethod
|
||||
def getLogger(self, name:str='invokeai')->logging.Logger:
|
||||
def getLogger(self, name: str = 'InvokeAI') -> logging.Logger:
|
||||
if name not in self.loggers:
|
||||
logger = logging.getLogger(name)
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
@ -4,17 +4,21 @@ from .parse_seed_weights import parse_seed_weights
|
||||
|
||||
SAMPLER_CHOICES = [
|
||||
"ddim",
|
||||
"k_dpm_2_a",
|
||||
"k_dpm_2",
|
||||
"k_dpmpp_2_a",
|
||||
"k_dpmpp_2",
|
||||
"k_euler_a",
|
||||
"k_euler",
|
||||
"k_heun",
|
||||
"k_lms",
|
||||
"plms",
|
||||
# diffusers:
|
||||
"ddpm",
|
||||
"deis",
|
||||
"lms",
|
||||
"pndm",
|
||||
"heun",
|
||||
'heun_k',
|
||||
"euler",
|
||||
"euler_k",
|
||||
"euler_a",
|
||||
"kdpm_2",
|
||||
"kdpm_2_a",
|
||||
"dpmpp_2s",
|
||||
"dpmpp_2m",
|
||||
"dpmpp_2m_k",
|
||||
"unipc",
|
||||
]
|
||||
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,497 +0,0 @@
|
||||
"""
|
||||
Readline helper functions for invoke.py.
|
||||
You may import the global singleton `completer` to get access to the
|
||||
completer object itself. This is useful when you want to autocomplete
|
||||
seeds:
|
||||
|
||||
from invokeai.frontend.CLI.readline import completer
|
||||
completer.add_seed(18247566)
|
||||
completer.add_seed(9281839)
|
||||
"""
|
||||
import atexit
|
||||
import os
|
||||
import re
|
||||
|
||||
from ...backend.args import Args
|
||||
from ...backend.globals import Globals
|
||||
from ...backend.stable_diffusion import HuggingFaceConceptsLibrary
|
||||
|
||||
# ---------------readline utilities---------------------
|
||||
try:
|
||||
import readline
|
||||
|
||||
readline_available = True
|
||||
except (ImportError, ModuleNotFoundError) as e:
|
||||
print(f"** An error occurred when loading the readline module: {str(e)}")
|
||||
readline_available = False
|
||||
|
||||
IMG_EXTENSIONS = (".png", ".jpg", ".jpeg", ".PNG", ".JPG", ".JPEG", ".gif", ".GIF")
|
||||
WEIGHT_EXTENSIONS = (".ckpt", ".vae", ".safetensors")
|
||||
TEXT_EXTENSIONS = (".txt", ".TXT")
|
||||
CONFIG_EXTENSIONS = (".yaml", ".yml")
|
||||
COMMANDS = (
|
||||
"--steps",
|
||||
"-s",
|
||||
"--seed",
|
||||
"-S",
|
||||
"--iterations",
|
||||
"-n",
|
||||
"--width",
|
||||
"-W",
|
||||
"--height",
|
||||
"-H",
|
||||
"--cfg_scale",
|
||||
"-C",
|
||||
"--threshold",
|
||||
"--perlin",
|
||||
"--grid",
|
||||
"-g",
|
||||
"--individual",
|
||||
"-i",
|
||||
"--save_intermediates",
|
||||
"--init_img",
|
||||
"-I",
|
||||
"--init_mask",
|
||||
"-M",
|
||||
"--init_color",
|
||||
"--strength",
|
||||
"-f",
|
||||
"--variants",
|
||||
"-v",
|
||||
"--outdir",
|
||||
"-o",
|
||||
"--sampler",
|
||||
"-A",
|
||||
"-m",
|
||||
"--embedding_path",
|
||||
"--device",
|
||||
"--grid",
|
||||
"-g",
|
||||
"--facetool",
|
||||
"-ft",
|
||||
"--facetool_strength",
|
||||
"-G",
|
||||
"--codeformer_fidelity",
|
||||
"-cf",
|
||||
"--upscale",
|
||||
"-U",
|
||||
"-save_orig",
|
||||
"--save_original",
|
||||
"--log_tokenization",
|
||||
"-t",
|
||||
"--hires_fix",
|
||||
"--inpaint_replace",
|
||||
"-r",
|
||||
"--png_compression",
|
||||
"-z",
|
||||
"--text_mask",
|
||||
"-tm",
|
||||
"--h_symmetry_time_pct",
|
||||
"--v_symmetry_time_pct",
|
||||
"!fix",
|
||||
"!fetch",
|
||||
"!replay",
|
||||
"!history",
|
||||
"!search",
|
||||
"!clear",
|
||||
"!models",
|
||||
"!switch",
|
||||
"!import_model",
|
||||
"!optimize_model",
|
||||
"!convert_model",
|
||||
"!edit_model",
|
||||
"!del_model",
|
||||
"!mask",
|
||||
"!triggers",
|
||||
)
|
||||
MODEL_COMMANDS = (
|
||||
"!switch",
|
||||
"!edit_model",
|
||||
"!del_model",
|
||||
)
|
||||
CKPT_MODEL_COMMANDS = ("!optimize_model",)
|
||||
WEIGHT_COMMANDS = (
|
||||
"!import_model",
|
||||
"!convert_model",
|
||||
)
|
||||
IMG_PATH_COMMANDS = ("--outdir[=\s]",)
|
||||
TEXT_PATH_COMMANDS = ("!replay",)
|
||||
IMG_FILE_COMMANDS = (
|
||||
"!fix",
|
||||
"!fetch",
|
||||
"!mask",
|
||||
"--init_img[=\s]",
|
||||
"-I",
|
||||
"--init_mask[=\s]",
|
||||
"-M",
|
||||
"--init_color[=\s]",
|
||||
"--embedding_path[=\s]",
|
||||
)
|
||||
|
||||
path_regexp = "(" + "|".join(IMG_PATH_COMMANDS + IMG_FILE_COMMANDS) + ")\s*\S*$"
|
||||
weight_regexp = "(" + "|".join(WEIGHT_COMMANDS) + ")\s*\S*$"
|
||||
text_regexp = "(" + "|".join(TEXT_PATH_COMMANDS) + ")\s*\S*$"
|
||||
|
||||
|
||||
class Completer(object):
|
||||
def __init__(self, options, models={}):
|
||||
self.options = sorted(options)
|
||||
self.models = models
|
||||
self.seeds = set()
|
||||
self.matches = list()
|
||||
self.default_dir = None
|
||||
self.linebuffer = None
|
||||
self.auto_history_active = True
|
||||
self.extensions = None
|
||||
self.concepts = None
|
||||
self.embedding_terms = set()
|
||||
return
|
||||
|
||||
def complete(self, text, state):
|
||||
"""
|
||||
Completes invoke command line.
|
||||
BUG: it doesn't correctly complete files that have spaces in the name.
|
||||
"""
|
||||
buffer = readline.get_line_buffer()
|
||||
|
||||
if state == 0:
|
||||
# extensions defined, so go directly into path completion mode
|
||||
if self.extensions is not None:
|
||||
self.matches = self._path_completions(text, state, self.extensions)
|
||||
|
||||
# looking for an image file
|
||||
elif re.search(path_regexp, buffer):
|
||||
do_shortcut = re.search("^" + "|".join(IMG_FILE_COMMANDS), buffer)
|
||||
self.matches = self._path_completions(
|
||||
text, state, IMG_EXTENSIONS, shortcut_ok=do_shortcut
|
||||
)
|
||||
|
||||
# looking for a seed
|
||||
elif re.search("(-S\s*|--seed[=\s])\d*$", buffer):
|
||||
self.matches = self._seed_completions(text, state)
|
||||
|
||||
# looking for an embedding concept
|
||||
elif re.search("<[\w-]*$", buffer):
|
||||
self.matches = self._concept_completions(text, state)
|
||||
|
||||
# looking for a model
|
||||
elif re.match("^" + "|".join(MODEL_COMMANDS), buffer):
|
||||
self.matches = self._model_completions(text, state)
|
||||
|
||||
# looking for a ckpt model
|
||||
elif re.match("^" + "|".join(CKPT_MODEL_COMMANDS), buffer):
|
||||
self.matches = self._model_completions(text, state, ckpt_only=True)
|
||||
|
||||
elif re.search(weight_regexp, buffer):
|
||||
self.matches = self._path_completions(
|
||||
text,
|
||||
state,
|
||||
WEIGHT_EXTENSIONS,
|
||||
default_dir=Globals.root,
|
||||
)
|
||||
|
||||
elif re.search(text_regexp, buffer):
|
||||
self.matches = self._path_completions(text, state, TEXT_EXTENSIONS)
|
||||
|
||||
# This is the first time for this text, so build a match list.
|
||||
elif text:
|
||||
self.matches = [s for s in self.options if s and s.startswith(text)]
|
||||
else:
|
||||
self.matches = self.options[:]
|
||||
|
||||
# Return the state'th item from the match list,
|
||||
# if we have that many.
|
||||
try:
|
||||
response = self.matches[state]
|
||||
except IndexError:
|
||||
response = None
|
||||
return response
|
||||
|
||||
def complete_extensions(self, extensions: list):
|
||||
"""
|
||||
If called with a list of extensions, will force completer
|
||||
to do file path completions.
|
||||
"""
|
||||
self.extensions = extensions
|
||||
|
||||
def add_history(self, line):
|
||||
"""
|
||||
Pass thru to readline
|
||||
"""
|
||||
if not self.auto_history_active:
|
||||
readline.add_history(line)
|
||||
|
||||
def clear_history(self):
|
||||
"""
|
||||
Pass clear_history() thru to readline
|
||||
"""
|
||||
readline.clear_history()
|
||||
|
||||
def search_history(self, match: str):
|
||||
"""
|
||||
Like show_history() but only shows items that
|
||||
contain the match string.
|
||||
"""
|
||||
self.show_history(match)
|
||||
|
||||
def remove_history_item(self, pos):
|
||||
readline.remove_history_item(pos)
|
||||
|
||||
def add_seed(self, seed):
|
||||
"""
|
||||
Add a seed to the autocomplete list for display when -S is autocompleted.
|
||||
"""
|
||||
if seed is not None:
|
||||
self.seeds.add(str(seed))
|
||||
|
||||
def set_default_dir(self, path):
|
||||
self.default_dir = path
|
||||
|
||||
def set_options(self, options):
|
||||
self.options = options
|
||||
|
||||
def get_line(self, index):
|
||||
try:
|
||||
line = self.get_history_item(index)
|
||||
except IndexError:
|
||||
return None
|
||||
return line
|
||||
|
||||
def get_current_history_length(self):
|
||||
return readline.get_current_history_length()
|
||||
|
||||
def get_history_item(self, index):
|
||||
return readline.get_history_item(index)
|
||||
|
||||
def show_history(self, match=None):
|
||||
"""
|
||||
Print the session history using the pydoc pager
|
||||
"""
|
||||
import pydoc
|
||||
|
||||
lines = list()
|
||||
h_len = self.get_current_history_length()
|
||||
if h_len < 1:
|
||||
print("<empty history>")
|
||||
return
|
||||
|
||||
for i in range(0, h_len):
|
||||
line = self.get_history_item(i + 1)
|
||||
if match and match not in line:
|
||||
continue
|
||||
lines.append(f"[{i+1}] {line}")
|
||||
pydoc.pager("\n".join(lines))
|
||||
|
||||
def set_line(self, line) -> None:
|
||||
"""
|
||||
Set the default string displayed in the next line of input.
|
||||
"""
|
||||
self.linebuffer = line
|
||||
readline.redisplay()
|
||||
|
||||
def update_models(self, models: dict) -> None:
|
||||
"""
|
||||
update our list of models
|
||||
"""
|
||||
self.models = models
|
||||
|
||||
def _seed_completions(self, text, state):
|
||||
m = re.search("(-S\s?|--seed[=\s]?)(\d*)", text)
|
||||
if m:
|
||||
switch = m.groups()[0]
|
||||
partial = m.groups()[1]
|
||||
else:
|
||||
switch = ""
|
||||
partial = text
|
||||
|
||||
matches = list()
|
||||
for s in self.seeds:
|
||||
if s.startswith(partial):
|
||||
matches.append(switch + s)
|
||||
matches.sort()
|
||||
return matches
|
||||
|
||||
def add_embedding_terms(self, terms: list[str]):
|
||||
self.embedding_terms = set(terms)
|
||||
if self.concepts:
|
||||
self.embedding_terms.update(set(self.concepts.list_concepts()))
|
||||
|
||||
def _concept_completions(self, text, state):
|
||||
if self.concepts is None:
|
||||
# cache Concepts() instance so we can check for updates in concepts_list during runtime.
|
||||
self.concepts = HuggingFaceConceptsLibrary()
|
||||
self.embedding_terms.update(set(self.concepts.list_concepts()))
|
||||
else:
|
||||
self.embedding_terms.update(set(self.concepts.list_concepts()))
|
||||
|
||||
partial = text[1:] # this removes the leading '<'
|
||||
if len(partial) == 0:
|
||||
return list(self.embedding_terms) # whole dump - think if user wants this!
|
||||
|
||||
matches = list()
|
||||
for concept in self.embedding_terms:
|
||||
if concept.startswith(partial):
|
||||
matches.append(f"<{concept}>")
|
||||
matches.sort()
|
||||
return matches
|
||||
|
||||
def _model_completions(self, text, state, ckpt_only=False):
|
||||
m = re.search("(!switch\s+)(\w*)", text)
|
||||
if m:
|
||||
switch = m.groups()[0]
|
||||
partial = m.groups()[1]
|
||||
else:
|
||||
switch = ""
|
||||
partial = text
|
||||
matches = list()
|
||||
for s in self.models:
|
||||
format = self.models[s]["format"]
|
||||
if format == "vae":
|
||||
continue
|
||||
if ckpt_only and format != "ckpt":
|
||||
continue
|
||||
if s.startswith(partial):
|
||||
matches.append(switch + s)
|
||||
matches.sort()
|
||||
return matches
|
||||
|
||||
def _pre_input_hook(self):
|
||||
if self.linebuffer:
|
||||
readline.insert_text(self.linebuffer)
|
||||
readline.redisplay()
|
||||
self.linebuffer = None
|
||||
|
||||
def _path_completions(
|
||||
self, text, state, extensions, shortcut_ok=True, default_dir: str = ""
|
||||
):
|
||||
# separate the switch from the partial path
|
||||
match = re.search("^(-\w|--\w+=?)(.*)", text)
|
||||
if match is None:
|
||||
switch = None
|
||||
partial_path = text
|
||||
else:
|
||||
switch, partial_path = match.groups()
|
||||
|
||||
partial_path = partial_path.lstrip()
|
||||
|
||||
matches = list()
|
||||
path = os.path.expanduser(partial_path)
|
||||
|
||||
if os.path.isdir(path):
|
||||
dir = path
|
||||
elif os.path.dirname(path) != "":
|
||||
dir = os.path.dirname(path)
|
||||
else:
|
||||
dir = default_dir if os.path.exists(default_dir) else ""
|
||||
path = os.path.join(dir, path)
|
||||
|
||||
dir_list = os.listdir(dir or ".")
|
||||
if shortcut_ok and os.path.exists(self.default_dir) and dir == "":
|
||||
dir_list += os.listdir(self.default_dir)
|
||||
|
||||
for node in dir_list:
|
||||
if node.startswith(".") and len(node) > 1:
|
||||
continue
|
||||
full_path = os.path.join(dir, node)
|
||||
|
||||
if not (node.endswith(extensions) or os.path.isdir(full_path)):
|
||||
continue
|
||||
|
||||
if path and not full_path.startswith(path):
|
||||
continue
|
||||
|
||||
if switch is None:
|
||||
match_path = os.path.join(dir, node)
|
||||
matches.append(
|
||||
match_path + "/" if os.path.isdir(full_path) else match_path
|
||||
)
|
||||
elif os.path.isdir(full_path):
|
||||
matches.append(
|
||||
switch + os.path.join(os.path.dirname(full_path), node) + "/"
|
||||
)
|
||||
elif node.endswith(extensions):
|
||||
matches.append(switch + os.path.join(os.path.dirname(full_path), node))
|
||||
|
||||
return matches
|
||||
|
||||
|
||||
class DummyCompleter(Completer):
|
||||
def __init__(self, options):
|
||||
super().__init__(options)
|
||||
self.history = list()
|
||||
|
||||
def add_history(self, line):
|
||||
self.history.append(line)
|
||||
|
||||
def clear_history(self):
|
||||
self.history = list()
|
||||
|
||||
def get_current_history_length(self):
|
||||
return len(self.history)
|
||||
|
||||
def get_history_item(self, index):
|
||||
return self.history[index - 1]
|
||||
|
||||
def remove_history_item(self, index):
|
||||
return self.history.pop(index - 1)
|
||||
|
||||
def set_line(self, line):
|
||||
print(f"# {line}")
|
||||
|
||||
|
||||
def generic_completer(commands: list) -> Completer:
|
||||
if readline_available:
|
||||
completer = Completer(commands, [])
|
||||
readline.set_completer(completer.complete)
|
||||
readline.set_pre_input_hook(completer._pre_input_hook)
|
||||
readline.set_completer_delims(" ")
|
||||
readline.parse_and_bind("tab: complete")
|
||||
readline.parse_and_bind("set print-completions-horizontally off")
|
||||
readline.parse_and_bind("set page-completions on")
|
||||
readline.parse_and_bind("set skip-completed-text on")
|
||||
readline.parse_and_bind("set show-all-if-ambiguous on")
|
||||
else:
|
||||
completer = DummyCompleter(commands)
|
||||
return completer
|
||||
|
||||
|
||||
def get_completer(opt: Args, models=[]) -> Completer:
|
||||
if readline_available:
|
||||
completer = Completer(COMMANDS, models)
|
||||
|
||||
readline.set_completer(completer.complete)
|
||||
# pyreadline3 does not have a set_auto_history() method
|
||||
try:
|
||||
readline.set_auto_history(False)
|
||||
completer.auto_history_active = False
|
||||
except:
|
||||
completer.auto_history_active = True
|
||||
readline.set_pre_input_hook(completer._pre_input_hook)
|
||||
readline.set_completer_delims(" ")
|
||||
readline.parse_and_bind("tab: complete")
|
||||
readline.parse_and_bind("set print-completions-horizontally off")
|
||||
readline.parse_and_bind("set page-completions on")
|
||||
readline.parse_and_bind("set skip-completed-text on")
|
||||
readline.parse_and_bind("set show-all-if-ambiguous on")
|
||||
|
||||
outdir = os.path.expanduser(opt.outdir)
|
||||
if os.path.isabs(outdir):
|
||||
histfile = os.path.join(outdir, ".invoke_history")
|
||||
else:
|
||||
histfile = os.path.join(Globals.root, outdir, ".invoke_history")
|
||||
try:
|
||||
readline.read_history_file(histfile)
|
||||
readline.set_history_length(1000)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
except OSError: # file likely corrupted
|
||||
newname = f"{histfile}.old"
|
||||
print(
|
||||
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
|
||||
)
|
||||
os.replace(histfile, newname)
|
||||
atexit.register(readline.write_history_file, histfile)
|
||||
|
||||
else:
|
||||
completer = DummyCompleter(COMMANDS)
|
||||
return completer
|
@ -1,30 +0,0 @@
|
||||
'''
|
||||
This is a modularized version of the sd-metadata.py script,
|
||||
which retrieves and prints the metadata from a series of generated png files.
|
||||
'''
|
||||
import sys
|
||||
import json
|
||||
from invokeai.backend.image_util import retrieve_metadata
|
||||
|
||||
|
||||
def print_metadata():
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: file2prompt.py <file1.png> <file2.png> <file3.png>...")
|
||||
print("This script opens up the indicated invoke.py-generated PNG file(s) and prints out their metadata.")
|
||||
exit(-1)
|
||||
|
||||
filenames = sys.argv[1:]
|
||||
for f in filenames:
|
||||
try:
|
||||
metadata = retrieve_metadata(f)
|
||||
print(f'{f}:\n',json.dumps(metadata['sd-metadata'], indent=4))
|
||||
except FileNotFoundError:
|
||||
sys.stderr.write(f'{f} not found\n')
|
||||
continue
|
||||
except PermissionError:
|
||||
sys.stderr.write(f'{f} could not be opened due to inadequate permissions\n')
|
||||
continue
|
||||
|
||||
if __name__== '__main__':
|
||||
print_metadata()
|
||||
|
@ -23,7 +23,6 @@ from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals, global_config_dir
|
||||
|
||||
from ...backend.config.model_install_backend import (
|
||||
Dataset_path,
|
||||
@ -41,11 +40,13 @@ from .widgets import (
|
||||
TextBox,
|
||||
set_min_terminal_size,
|
||||
)
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
|
||||
# minimum size for the UI
|
||||
MIN_COLS = 120
|
||||
MIN_LINES = 45
|
||||
|
||||
config = get_invokeai_config()
|
||||
|
||||
class addModelsForm(npyscreen.FormMultiPage):
|
||||
# for responsive resizing - disabled
|
||||
@ -453,9 +454,9 @@ def main():
|
||||
opt = parser.parse_args()
|
||||
|
||||
# setting a global here
|
||||
Globals.root = os.path.expanduser(get_root(opt.root) or "")
|
||||
config.root = os.path.expanduser(get_root(opt.root) or "")
|
||||
|
||||
if not global_config_dir().exists():
|
||||
if not (config.conf_path / '..' ).exists():
|
||||
logger.info(
|
||||
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
|
||||
)
|
||||
|
@ -8,7 +8,6 @@ import argparse
|
||||
import curses
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
import warnings
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
@ -20,20 +19,13 @@ from diffusers import logging as dlogging
|
||||
from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from ...backend.globals import (
|
||||
Globals,
|
||||
global_cache_dir,
|
||||
global_config_file,
|
||||
global_models_dir,
|
||||
global_set_root,
|
||||
)
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.services.config import get_invokeai_config
|
||||
from ...backend.model_management import ModelManager
|
||||
from ...frontend.install.widgets import FloatTitleSlider
|
||||
|
||||
DEST_MERGED_MODEL_DIR = "merged_models"
|
||||
|
||||
config = get_invokeai_config()
|
||||
|
||||
def merge_diffusion_models(
|
||||
model_ids_or_paths: List[Union[str, Path]],
|
||||
@ -60,7 +52,7 @@ def merge_diffusion_models(
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
model_ids_or_paths[0],
|
||||
cache_dir=kwargs.get("cache_dir", global_cache_dir()),
|
||||
cache_dir=kwargs.get("cache_dir", config.cache_dir),
|
||||
custom_pipeline="checkpoint_merger",
|
||||
)
|
||||
merged_pipe = pipe.merge(
|
||||
@ -94,7 +86,7 @@ def merge_diffusion_models_and_commit(
|
||||
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
||||
"""
|
||||
config_file = global_config_file()
|
||||
config_file = config.model_conf_path
|
||||
model_manager = ModelManager(OmegaConf.load(config_file))
|
||||
for mod in models:
|
||||
assert mod in model_manager.model_names(), f'** Unknown model "{mod}"'
|
||||
@ -106,7 +98,7 @@ def merge_diffusion_models_and_commit(
|
||||
merged_pipe = merge_diffusion_models(
|
||||
model_ids_or_paths, alpha, interp, force, **kwargs
|
||||
)
|
||||
dump_path = global_models_dir() / DEST_MERGED_MODEL_DIR
|
||||
dump_path = config.models_dir / DEST_MERGED_MODEL_DIR
|
||||
|
||||
os.makedirs(dump_path, exist_ok=True)
|
||||
dump_path = dump_path / merged_model_name
|
||||
@ -126,7 +118,7 @@ def _parse_args() -> Namespace:
|
||||
parser.add_argument(
|
||||
"--root_dir",
|
||||
type=Path,
|
||||
default=Globals.root,
|
||||
default=config.root,
|
||||
help="Path to the invokeai runtime directory",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -398,7 +390,7 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
|
||||
class Mergeapp(npyscreen.NPSAppManaged):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
conf = OmegaConf.load(global_config_file())
|
||||
conf = OmegaConf.load(config.model_conf_path)
|
||||
self.model_manager = ModelManager(
|
||||
conf, "cpu", "float16"
|
||||
) # precision doesn't really matter here
|
||||
@ -429,7 +421,7 @@ def run_cli(args: Namespace):
|
||||
f'No --merged_model_name provided. Defaulting to "{args.merged_model_name}"'
|
||||
)
|
||||
|
||||
model_manager = ModelManager(OmegaConf.load(global_config_file()))
|
||||
model_manager = ModelManager(OmegaConf.load(config.model_conf_path))
|
||||
assert (
|
||||
args.clobber or args.merged_model_name not in model_manager.model_names()
|
||||
), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.'
|
||||
@ -440,9 +432,9 @@ def run_cli(args: Namespace):
|
||||
|
||||
def main():
|
||||
args = _parse_args()
|
||||
global_set_root(args.root_dir)
|
||||
config.root = args.root_dir
|
||||
|
||||
cache_dir = str(global_cache_dir("hub"))
|
||||
cache_dir = config.cache_dir
|
||||
os.environ[
|
||||
"HF_HOME"
|
||||
] = cache_dir # because not clear the merge pipeline is honoring cache_dir
|
||||
|
@ -21,14 +21,17 @@ from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.globals import Globals, global_set_root
|
||||
|
||||
from ...backend.training import do_textual_inversion_training, parse_args
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
from ...backend.training import (
|
||||
do_textual_inversion_training,
|
||||
parse_args
|
||||
)
|
||||
|
||||
TRAINING_DATA = "text-inversion-training-data"
|
||||
TRAINING_DIR = "text-inversion-output"
|
||||
CONF_FILE = "preferences.conf"
|
||||
|
||||
config = None
|
||||
|
||||
class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
resolutions = [512, 768, 1024]
|
||||
@ -122,7 +125,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
value=str(
|
||||
saved_args.get(
|
||||
"train_data_dir",
|
||||
Path(Globals.root) / TRAINING_DATA / default_placeholder_token,
|
||||
config.root_dir / TRAINING_DATA / default_placeholder_token,
|
||||
)
|
||||
),
|
||||
scroll_exit=True,
|
||||
@ -135,7 +138,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
value=str(
|
||||
saved_args.get(
|
||||
"output_dir",
|
||||
Path(Globals.root) / TRAINING_DIR / default_placeholder_token,
|
||||
config.root_dir / TRAINING_DIR / default_placeholder_token,
|
||||
)
|
||||
),
|
||||
scroll_exit=True,
|
||||
@ -241,9 +244,9 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
placeholder = self.placeholder_token.value
|
||||
self.prompt_token.value = f"(Trigger by using <{placeholder}> in your prompts)"
|
||||
self.train_data_dir.value = str(
|
||||
Path(Globals.root) / TRAINING_DATA / placeholder
|
||||
config.root_dir / TRAINING_DATA / placeholder
|
||||
)
|
||||
self.output_dir.value = str(Path(Globals.root) / TRAINING_DIR / placeholder)
|
||||
self.output_dir.value = str(config.root_dir / TRAINING_DIR / placeholder)
|
||||
self.resume_from_checkpoint.value = Path(self.output_dir.value).exists()
|
||||
|
||||
def on_ok(self):
|
||||
@ -284,7 +287,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
return True
|
||||
|
||||
def get_model_names(self) -> Tuple[List[str], int]:
|
||||
conf = OmegaConf.load(os.path.join(Globals.root, "configs/models.yaml"))
|
||||
conf = OmegaConf.load(config.root_dir / "configs/models.yaml")
|
||||
model_names = [
|
||||
idx
|
||||
for idx in sorted(list(conf.keys()))
|
||||
@ -367,7 +370,7 @@ def copy_to_embeddings_folder(args: dict):
|
||||
"""
|
||||
source = Path(args["output_dir"], "learned_embeds.bin")
|
||||
dest_dir_name = args["placeholder_token"].strip("<>")
|
||||
destination = Path(Globals.root, "embeddings", dest_dir_name)
|
||||
destination = config.root_dir / "embeddings" / dest_dir_name
|
||||
os.makedirs(destination, exist_ok=True)
|
||||
logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}")
|
||||
shutil.copy(source, destination)
|
||||
@ -383,7 +386,7 @@ def save_args(args: dict):
|
||||
"""
|
||||
Save the current argument values to an omegaconf file
|
||||
"""
|
||||
dest_dir = Path(Globals.root) / TRAINING_DIR
|
||||
dest_dir = config.root_dir / TRAINING_DIR
|
||||
os.makedirs(dest_dir, exist_ok=True)
|
||||
conf_file = dest_dir / CONF_FILE
|
||||
conf = OmegaConf.create(args)
|
||||
@ -394,7 +397,7 @@ def previous_args() -> dict:
|
||||
"""
|
||||
Get the previous arguments used.
|
||||
"""
|
||||
conf_file = Path(Globals.root) / TRAINING_DIR / CONF_FILE
|
||||
conf_file = config.root_dir / TRAINING_DIR / CONF_FILE
|
||||
try:
|
||||
conf = OmegaConf.load(conf_file)
|
||||
conf["placeholder_token"] = conf["placeholder_token"].strip("<>")
|
||||
@ -420,7 +423,7 @@ def do_front_end(args: Namespace):
|
||||
save_args(args)
|
||||
|
||||
try:
|
||||
do_textual_inversion_training(**args)
|
||||
do_textual_inversion_training(get_invokeai_config(),**args)
|
||||
copy_to_embeddings_folder(args)
|
||||
except Exception as e:
|
||||
logger.error("An exception occurred during training. The exception was:")
|
||||
@ -430,13 +433,20 @@ def do_front_end(args: Namespace):
|
||||
|
||||
|
||||
def main():
|
||||
global config
|
||||
|
||||
args = parse_args()
|
||||
global_set_root(args.root_dir or Globals.root)
|
||||
config = get_invokeai_config(argv=[])
|
||||
|
||||
# change root if needed
|
||||
if args.root_dir:
|
||||
config.root = args.root_dir
|
||||
|
||||
try:
|
||||
if args.front_end:
|
||||
do_front_end(args)
|
||||
else:
|
||||
do_textual_inversion_training(**vars(args))
|
||||
do_textual_inversion_training(config,**vars(args))
|
||||
except AssertionError as e:
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
|
@ -1,13 +0,0 @@
|
||||
{
|
||||
"plugins": [
|
||||
[
|
||||
"transform-imports",
|
||||
{
|
||||
"lodash": {
|
||||
"transform": "lodash/${member}",
|
||||
"preventFullImport": true
|
||||
}
|
||||
}
|
||||
]
|
||||
]
|
||||
}
|
4
invokeai/frontend/web/.gitignore
vendored
4
invokeai/frontend/web/.gitignore
vendored
@ -35,3 +35,7 @@ stats.html
|
||||
!.yarn/releases
|
||||
!.yarn/sdks
|
||||
!.yarn/versions
|
||||
|
||||
# Yalc
|
||||
.yalc
|
||||
yalc.lock
|
@ -5,6 +5,7 @@ import { PluginOption, UserConfig } from 'vite';
|
||||
import dts from 'vite-plugin-dts';
|
||||
import eslint from 'vite-plugin-eslint';
|
||||
import tsconfigPaths from 'vite-tsconfig-paths';
|
||||
import cssInjectedByJsPlugin from 'vite-plugin-css-injected-by-js';
|
||||
|
||||
export const packageConfig: UserConfig = {
|
||||
base: './',
|
||||
@ -16,9 +17,10 @@ export const packageConfig: UserConfig = {
|
||||
dts({
|
||||
insertTypesEntry: true,
|
||||
}),
|
||||
cssInjectedByJsPlugin(),
|
||||
],
|
||||
build: {
|
||||
chunkSizeWarningLimit: 1500,
|
||||
cssCodeSplit: true,
|
||||
lib: {
|
||||
entry: path.resolve(__dirname, '../src/index.ts'),
|
||||
name: 'InvokeAIUI',
|
||||
@ -30,6 +32,7 @@ export const packageConfig: UserConfig = {
|
||||
globals: {
|
||||
react: 'React',
|
||||
'react-dom': 'ReactDOM',
|
||||
'@emotion/react': 'EmotionReact',
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -15,15 +15,3 @@ The `postinstall` script patches a few packages and runs the Chakra CLI to gener
|
||||
### Patch `@chakra-ui/cli`
|
||||
|
||||
See: <https://github.com/chakra-ui/chakra-ui/issues/7394>
|
||||
|
||||
### Patch `redux-persist`
|
||||
|
||||
We want to persist the canvas state to `localStorage` but many canvas operations change data very quickly, so we need to debounce the writes to `localStorage`.
|
||||
|
||||
`redux-persist` is unfortunately unmaintained. The repo's current code is nonfunctional, but the last release's code depends on a package that was removed from `npm` for being malware, so we cannot just fork it.
|
||||
|
||||
So, we have to patch it directly. Perhaps a better way would be to write a debounced storage adapter, but I couldn't figure out how to do that.
|
||||
|
||||
### Patch `redux-deep-persist`
|
||||
|
||||
This package makes blacklisting and whitelisting persist configs very simple, but we have to patch it to match `redux-persist` for the types to work.
|
||||
|
@ -37,7 +37,7 @@ From `invokeai/frontend/web/` run `yarn install` to get everything set up.
|
||||
Start everything in dev mode:
|
||||
|
||||
1. Start the dev server: `yarn dev`
|
||||
2. Start the InvokeAI UI per usual: `invokeai --web`
|
||||
2. Start the InvokeAI Nodes backend: `python scripts/invokeai-new.py --web # run from the repo root`
|
||||
3. Point your browser to the dev server address e.g. <http://localhost:5173/>
|
||||
|
||||
### Production builds
|
||||
|
@ -21,7 +21,6 @@
|
||||
"scripts": {
|
||||
"prepare": "cd ../../../ && husky install invokeai/frontend/web/.husky",
|
||||
"dev": "concurrently \"vite dev\" \"yarn run theme:watch\"",
|
||||
"dev:nodes": "concurrently \"vite dev --mode nodes\" \"yarn run theme:watch\"",
|
||||
"dev:host": "concurrently \"vite dev --host\" \"yarn run theme:watch\"",
|
||||
"build": "yarn run lint && vite build",
|
||||
"api:web": "openapi -i http://localhost:9090/openapi.json -o src/services/api --client axios --useOptions --useUnionTypes --exportSchemas true --indent 2 --request src/services/fixtures/request.ts",
|
||||
@ -63,11 +62,13 @@
|
||||
"@dagrejs/graphlib": "^2.1.12",
|
||||
"@emotion/react": "^11.10.6",
|
||||
"@emotion/styled": "^11.10.6",
|
||||
"@floating-ui/react-dom": "^2.0.0",
|
||||
"@fontsource/inter": "^4.5.15",
|
||||
"@reduxjs/toolkit": "^1.9.5",
|
||||
"@roarr/browser-log-writer": "^1.1.5",
|
||||
"chakra-ui-contextmenu": "^1.0.5",
|
||||
"dateformat": "^5.0.3",
|
||||
"downshift": "^7.6.0",
|
||||
"formik": "^2.2.9",
|
||||
"framer-motion": "^10.12.4",
|
||||
"fuse.js": "^6.6.2",
|
||||
@ -88,17 +89,14 @@
|
||||
"react-i18next": "^12.2.2",
|
||||
"react-icons": "^4.7.1",
|
||||
"react-konva": "^18.2.7",
|
||||
"react-konva-utils": "^1.0.4",
|
||||
"react-redux": "^8.0.5",
|
||||
"react-rnd": "^10.4.1",
|
||||
"react-transition-group": "^4.4.5",
|
||||
"react-resizable-panels": "^0.0.42",
|
||||
"react-use": "^17.4.0",
|
||||
"react-virtuoso": "^4.3.5",
|
||||
"react-zoom-pan-pinch": "^3.0.7",
|
||||
"reactflow": "^11.7.0",
|
||||
"redux-deep-persist": "^1.0.7",
|
||||
"redux-dynamic-middlewares": "^2.2.0",
|
||||
"redux-persist": "^6.0.0",
|
||||
"redux-remember": "^3.3.1",
|
||||
"roarr": "^7.15.0",
|
||||
"serialize-error": "^11.0.0",
|
||||
"socket.io-client": "^4.6.0",
|
||||
@ -118,6 +116,7 @@
|
||||
"@types/node": "^18.16.2",
|
||||
"@types/react": "^18.2.0",
|
||||
"@types/react-dom": "^18.2.1",
|
||||
"@types/react-redux": "^7.1.25",
|
||||
"@types/react-transition-group": "^4.4.5",
|
||||
"@types/uuid": "^9.0.0",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
@ -143,6 +142,7 @@
|
||||
"terser": "^5.17.1",
|
||||
"ts-toolbelt": "^9.6.0",
|
||||
"vite": "^4.3.3",
|
||||
"vite-plugin-css-injected-by-js": "^3.1.1",
|
||||
"vite-plugin-dts": "^2.3.0",
|
||||
"vite-plugin-eslint": "^1.8.1",
|
||||
"vite-tsconfig-paths": "^4.2.0",
|
||||
|
@ -1,24 +0,0 @@
|
||||
diff --git a/node_modules/redux-deep-persist/lib/types.d.ts b/node_modules/redux-deep-persist/lib/types.d.ts
|
||||
index b67b8c2..7fc0fa1 100644
|
||||
--- a/node_modules/redux-deep-persist/lib/types.d.ts
|
||||
+++ b/node_modules/redux-deep-persist/lib/types.d.ts
|
||||
@@ -35,6 +35,7 @@ export interface PersistConfig<S, RS = any, HSS = any, ESS = any> {
|
||||
whitelist?: Array<string>;
|
||||
transforms?: Array<Transform<HSS, ESS, S, RS>>;
|
||||
throttle?: number;
|
||||
+ debounce?: number;
|
||||
migrate?: PersistMigrate;
|
||||
stateReconciler?: false | StateReconciler<S>;
|
||||
getStoredState?: (config: PersistConfig<S, RS, HSS, ESS>) => Promise<PersistedState>;
|
||||
diff --git a/node_modules/redux-deep-persist/src/types.ts b/node_modules/redux-deep-persist/src/types.ts
|
||||
index 398ac19..cbc5663 100644
|
||||
--- a/node_modules/redux-deep-persist/src/types.ts
|
||||
+++ b/node_modules/redux-deep-persist/src/types.ts
|
||||
@@ -91,6 +91,7 @@ export interface PersistConfig<S, RS = any, HSS = any, ESS = any> {
|
||||
whitelist?: Array<string>;
|
||||
transforms?: Array<Transform<HSS, ESS, S, RS>>;
|
||||
throttle?: number;
|
||||
+ debounce?: number;
|
||||
migrate?: PersistMigrate;
|
||||
stateReconciler?: false | StateReconciler<S>;
|
||||
/**
|
@ -1,116 +0,0 @@
|
||||
diff --git a/node_modules/redux-persist/es/createPersistoid.js b/node_modules/redux-persist/es/createPersistoid.js
|
||||
index 8b43b9a..184faab 100644
|
||||
--- a/node_modules/redux-persist/es/createPersistoid.js
|
||||
+++ b/node_modules/redux-persist/es/createPersistoid.js
|
||||
@@ -6,6 +6,7 @@ export default function createPersistoid(config) {
|
||||
var whitelist = config.whitelist || null;
|
||||
var transforms = config.transforms || [];
|
||||
var throttle = config.throttle || 0;
|
||||
+ var debounce = config.debounce || 0;
|
||||
var storageKey = "".concat(config.keyPrefix !== undefined ? config.keyPrefix : KEY_PREFIX).concat(config.key);
|
||||
var storage = config.storage;
|
||||
var serialize;
|
||||
@@ -28,30 +29,37 @@ export default function createPersistoid(config) {
|
||||
var timeIterator = null;
|
||||
var writePromise = null;
|
||||
|
||||
- var update = function update(state) {
|
||||
- // add any changed keys to the queue
|
||||
- Object.keys(state).forEach(function (key) {
|
||||
- if (!passWhitelistBlacklist(key)) return; // is keyspace ignored? noop
|
||||
+ // Timer for debounced `update()`
|
||||
+ let timer = 0;
|
||||
|
||||
- if (lastState[key] === state[key]) return; // value unchanged? noop
|
||||
+ function update(state) {
|
||||
+ // Debounce the update
|
||||
+ clearTimeout(timer);
|
||||
+ timer = setTimeout(() => {
|
||||
+ // add any changed keys to the queue
|
||||
+ Object.keys(state).forEach(function (key) {
|
||||
+ if (!passWhitelistBlacklist(key)) return; // is keyspace ignored? noop
|
||||
|
||||
- if (keysToProcess.indexOf(key) !== -1) return; // is key already queued? noop
|
||||
+ if (lastState[key] === state[key]) return; // value unchanged? noop
|
||||
|
||||
- keysToProcess.push(key); // add key to queue
|
||||
- }); //if any key is missing in the new state which was present in the lastState,
|
||||
- //add it for processing too
|
||||
+ if (keysToProcess.indexOf(key) !== -1) return; // is key already queued? noop
|
||||
|
||||
- Object.keys(lastState).forEach(function (key) {
|
||||
- if (state[key] === undefined && passWhitelistBlacklist(key) && keysToProcess.indexOf(key) === -1 && lastState[key] !== undefined) {
|
||||
- keysToProcess.push(key);
|
||||
- }
|
||||
- }); // start the time iterator if not running (read: throttle)
|
||||
+ keysToProcess.push(key); // add key to queue
|
||||
+ }); //if any key is missing in the new state which was present in the lastState,
|
||||
+ //add it for processing too
|
||||
|
||||
- if (timeIterator === null) {
|
||||
- timeIterator = setInterval(processNextKey, throttle);
|
||||
- }
|
||||
+ Object.keys(lastState).forEach(function (key) {
|
||||
+ if (state[key] === undefined && passWhitelistBlacklist(key) && keysToProcess.indexOf(key) === -1 && lastState[key] !== undefined) {
|
||||
+ keysToProcess.push(key);
|
||||
+ }
|
||||
+ }); // start the time iterator if not running (read: throttle)
|
||||
+
|
||||
+ if (timeIterator === null) {
|
||||
+ timeIterator = setInterval(processNextKey, throttle);
|
||||
+ }
|
||||
|
||||
- lastState = state;
|
||||
+ lastState = state;
|
||||
+ }, debounce)
|
||||
};
|
||||
|
||||
function processNextKey() {
|
||||
diff --git a/node_modules/redux-persist/es/types.js.flow b/node_modules/redux-persist/es/types.js.flow
|
||||
index c50d3cd..39d8be2 100644
|
||||
--- a/node_modules/redux-persist/es/types.js.flow
|
||||
+++ b/node_modules/redux-persist/es/types.js.flow
|
||||
@@ -19,6 +19,7 @@ export type PersistConfig = {
|
||||
whitelist?: Array<string>,
|
||||
transforms?: Array<Transform>,
|
||||
throttle?: number,
|
||||
+ debounce?: number,
|
||||
migrate?: (PersistedState, number) => Promise<PersistedState>,
|
||||
stateReconciler?: false | Function,
|
||||
getStoredState?: PersistConfig => Promise<PersistedState>, // used for migrations
|
||||
diff --git a/node_modules/redux-persist/lib/types.js.flow b/node_modules/redux-persist/lib/types.js.flow
|
||||
index c50d3cd..39d8be2 100644
|
||||
--- a/node_modules/redux-persist/lib/types.js.flow
|
||||
+++ b/node_modules/redux-persist/lib/types.js.flow
|
||||
@@ -19,6 +19,7 @@ export type PersistConfig = {
|
||||
whitelist?: Array<string>,
|
||||
transforms?: Array<Transform>,
|
||||
throttle?: number,
|
||||
+ debounce?: number,
|
||||
migrate?: (PersistedState, number) => Promise<PersistedState>,
|
||||
stateReconciler?: false | Function,
|
||||
getStoredState?: PersistConfig => Promise<PersistedState>, // used for migrations
|
||||
diff --git a/node_modules/redux-persist/src/types.js b/node_modules/redux-persist/src/types.js
|
||||
index c50d3cd..39d8be2 100644
|
||||
--- a/node_modules/redux-persist/src/types.js
|
||||
+++ b/node_modules/redux-persist/src/types.js
|
||||
@@ -19,6 +19,7 @@ export type PersistConfig = {
|
||||
whitelist?: Array<string>,
|
||||
transforms?: Array<Transform>,
|
||||
throttle?: number,
|
||||
+ debounce?: number,
|
||||
migrate?: (PersistedState, number) => Promise<PersistedState>,
|
||||
stateReconciler?: false | Function,
|
||||
getStoredState?: PersistConfig => Promise<PersistedState>, // used for migrations
|
||||
diff --git a/node_modules/redux-persist/types/types.d.ts b/node_modules/redux-persist/types/types.d.ts
|
||||
index b3733bc..2a1696c 100644
|
||||
--- a/node_modules/redux-persist/types/types.d.ts
|
||||
+++ b/node_modules/redux-persist/types/types.d.ts
|
||||
@@ -35,6 +35,7 @@ declare module "redux-persist/es/types" {
|
||||
whitelist?: Array<string>;
|
||||
transforms?: Array<Transform<HSS, ESS, S, RS>>;
|
||||
throttle?: number;
|
||||
+ debounce?: number;
|
||||
migrate?: PersistMigrate;
|
||||
stateReconciler?: false | StateReconciler<S>;
|
||||
/**
|
@ -25,7 +25,7 @@
|
||||
"common": {
|
||||
"hotkeysLabel": "Hotkeys",
|
||||
"themeLabel": "Theme",
|
||||
"languagePickerLabel": "Language Picker",
|
||||
"languagePickerLabel": "Language",
|
||||
"reportBugLabel": "Report Bug",
|
||||
"githubLabel": "Github",
|
||||
"discordLabel": "Discord",
|
||||
@ -54,7 +54,7 @@
|
||||
"img2img": "Image To Image",
|
||||
"unifiedCanvas": "Unified Canvas",
|
||||
"linear": "Linear",
|
||||
"nodes": "Nodes",
|
||||
"nodes": "Node Editor",
|
||||
"postprocessing": "Post Processing",
|
||||
"nodesDesc": "A node based system for the generation of images is under development currently. Stay tuned for updates about this amazing feature.",
|
||||
"postProcessing": "Post Processing",
|
||||
@ -102,7 +102,8 @@
|
||||
"generate": "Generate",
|
||||
"openInNewTab": "Open in New Tab",
|
||||
"dontAskMeAgain": "Don't ask me again",
|
||||
"areYouSure": "Are you sure?"
|
||||
"areYouSure": "Are you sure?",
|
||||
"imagePrompt": "Image Prompt"
|
||||
},
|
||||
"gallery": {
|
||||
"generations": "Generations",
|
||||
@ -449,13 +450,14 @@
|
||||
"cfgScale": "CFG Scale",
|
||||
"width": "Width",
|
||||
"height": "Height",
|
||||
"sampler": "Sampler",
|
||||
"scheduler": "Scheduler",
|
||||
"seed": "Seed",
|
||||
"imageToImage": "Image to Image",
|
||||
"randomizeSeed": "Randomize Seed",
|
||||
"shuffle": "Shuffle",
|
||||
"shuffle": "Shuffle Seed",
|
||||
"noiseThreshold": "Noise Threshold",
|
||||
"perlinNoise": "Perlin Noise",
|
||||
"noiseSettings": "Noise",
|
||||
"variations": "Variations",
|
||||
"variationAmount": "Variation Amount",
|
||||
"seedWeights": "Seed Weights",
|
||||
@ -470,6 +472,8 @@
|
||||
"scale": "Scale",
|
||||
"otherOptions": "Other Options",
|
||||
"seamlessTiling": "Seamless Tiling",
|
||||
"seamlessXAxis": "X Axis",
|
||||
"seamlessYAxis": "Y Axis",
|
||||
"hiresOptim": "High Res Optimization",
|
||||
"hiresStrength": "High Res Strength",
|
||||
"imageFit": "Fit Initial Image To Output Size",
|
||||
@ -527,7 +531,8 @@
|
||||
"useCanvasBeta": "Use Canvas Beta Layout",
|
||||
"enableImageDebugging": "Enable Image Debugging",
|
||||
"useSlidersForAll": "Use Sliders For All Options",
|
||||
"autoShowProgress": "Auto Show Progress Images",
|
||||
"showProgressInViewer": "Show Progress Images in Viewer",
|
||||
"antialiasProgressImages": "Antialias Progress Images",
|
||||
"resetWebUI": "Reset Web UI",
|
||||
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
|
||||
"resetWebUIDesc2": "If images aren't showing up in the gallery or something else isn't working, please try resetting before submitting an issue on GitHub.",
|
||||
@ -535,7 +540,10 @@
|
||||
"consoleLogLevel": "Log Level",
|
||||
"shouldLogToConsole": "Console Logging",
|
||||
"developer": "Developer",
|
||||
"general": "General"
|
||||
"general": "General",
|
||||
"generation": "Generation",
|
||||
"ui": "User Interface",
|
||||
"availableSchedulers": "Available Schedulers"
|
||||
},
|
||||
"toast": {
|
||||
"serverError": "Server Error",
|
||||
@ -544,13 +552,14 @@
|
||||
"canceled": "Processing Canceled",
|
||||
"tempFoldersEmptied": "Temp Folder Emptied",
|
||||
"uploadFailed": "Upload failed",
|
||||
"uploadFailedMultipleImagesDesc": "Multiple images pasted, may only upload one image at a time",
|
||||
"uploadFailedUnableToLoadDesc": "Unable to load file",
|
||||
"uploadFailedInvalidUploadDesc": "Must be single PNG or JPEG image",
|
||||
"downloadImageStarted": "Image Download Started",
|
||||
"imageCopied": "Image Copied",
|
||||
"imageLinkCopied": "Image Link Copied",
|
||||
"problemCopyingImageLink": "Unable to Copy Image Link",
|
||||
"imageNotLoaded": "No Image Loaded",
|
||||
"imageNotLoadedDesc": "No image found to send to image to image module",
|
||||
"imageNotLoadedDesc": "Could not find image",
|
||||
"imageSavedToGallery": "Image Saved to Gallery",
|
||||
"canvasMerged": "Canvas Merged",
|
||||
"sentToImageToImage": "Sent To Image To Image",
|
||||
@ -645,7 +654,8 @@
|
||||
"betaClear": "Clear",
|
||||
"betaDarkenOutside": "Darken Outside",
|
||||
"betaLimitToBox": "Limit To Box",
|
||||
"betaPreserveMasked": "Preserve Masked"
|
||||
"betaPreserveMasked": "Preserve Masked",
|
||||
"antialiasing": "Antialiasing"
|
||||
},
|
||||
"ui": {
|
||||
"showProgressImages": "Show Progress Images",
|
||||
|
@ -1,46 +1,44 @@
|
||||
import ImageUploader from 'common/components/ImageUploader';
|
||||
import ProgressBar from 'features/system/components/ProgressBar';
|
||||
import SiteHeader from 'features/system/components/SiteHeader';
|
||||
import ProgressBar from 'features/system/components/ProgressBar';
|
||||
import InvokeTabs from 'features/ui/components/InvokeTabs';
|
||||
|
||||
import useToastWatcher from 'features/system/hooks/useToastWatcher';
|
||||
|
||||
import FloatingGalleryButton from 'features/ui/components/FloatingGalleryButton';
|
||||
import FloatingParametersPanelButtons from 'features/ui/components/FloatingParametersPanelButtons';
|
||||
import { Box, Flex, Grid, Portal, useColorMode } from '@chakra-ui/react';
|
||||
import { Box, Flex, Grid, Portal } from '@chakra-ui/react';
|
||||
import { APP_HEIGHT, APP_WIDTH } from 'theme/util/constants';
|
||||
import ImageGalleryPanel from 'features/gallery/components/ImageGalleryPanel';
|
||||
import GalleryDrawer from 'features/gallery/components/GalleryPanel';
|
||||
import Lightbox from 'features/lightbox/components/Lightbox';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import {
|
||||
memo,
|
||||
PropsWithChildren,
|
||||
useCallback,
|
||||
useEffect,
|
||||
useState,
|
||||
} from 'react';
|
||||
import { memo, ReactNode, useCallback, useEffect, useState } from 'react';
|
||||
import { motion, AnimatePresence } from 'framer-motion';
|
||||
import Loading from 'common/components/Loading/Loading';
|
||||
import { useIsApplicationReady } from 'features/system/hooks/useIsApplicationReady';
|
||||
import { PartialAppConfig } from 'app/types/invokeai';
|
||||
import { useGlobalHotkeys } from 'common/hooks/useGlobalHotkeys';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { useLogger } from 'app/logging/useLogger';
|
||||
import ProgressImagePreview from 'features/parameters/components/ProgressImagePreview';
|
||||
import ParametersDrawer from 'features/ui/components/ParametersDrawer';
|
||||
import { languageSelector } from 'features/system/store/systemSelectors';
|
||||
import i18n from 'i18n';
|
||||
import Toaster from './Toaster';
|
||||
import GlobalHotkeys from './GlobalHotkeys';
|
||||
|
||||
const DEFAULT_CONFIG = {};
|
||||
|
||||
interface Props extends PropsWithChildren {
|
||||
interface Props {
|
||||
config?: PartialAppConfig;
|
||||
headerComponent?: ReactNode;
|
||||
setIsReady?: (isReady: boolean) => void;
|
||||
}
|
||||
|
||||
const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
|
||||
useToastWatcher();
|
||||
useGlobalHotkeys();
|
||||
const log = useLogger();
|
||||
const App = ({
|
||||
config = DEFAULT_CONFIG,
|
||||
headerComponent,
|
||||
setIsReady,
|
||||
}: Props) => {
|
||||
const language = useAppSelector(languageSelector);
|
||||
|
||||
const currentTheme = useAppSelector((state) => state.ui.currentTheme);
|
||||
const log = useLogger();
|
||||
|
||||
const isLightboxEnabled = useFeatureStatus('lightbox').isFeatureEnabled;
|
||||
|
||||
@ -48,23 +46,33 @@ const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
|
||||
|
||||
const [loadingOverridden, setLoadingOverridden] = useState(false);
|
||||
|
||||
const { setColorMode } = useColorMode();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
useEffect(() => {
|
||||
i18n.changeLanguage(language);
|
||||
}, [language]);
|
||||
|
||||
useEffect(() => {
|
||||
log.info({ namespace: 'App', data: config }, 'Received config');
|
||||
dispatch(configChanged(config));
|
||||
}, [dispatch, config, log]);
|
||||
|
||||
useEffect(() => {
|
||||
setColorMode(['light'].includes(currentTheme) ? 'light' : 'dark');
|
||||
}, [setColorMode, currentTheme]);
|
||||
|
||||
const handleOverrideClicked = useCallback(() => {
|
||||
setLoadingOverridden(true);
|
||||
}, []);
|
||||
|
||||
useEffect(() => {
|
||||
if (isApplicationReady && setIsReady) {
|
||||
setIsReady(true);
|
||||
}
|
||||
|
||||
return () => {
|
||||
setIsReady && setIsReady(false);
|
||||
};
|
||||
}, [isApplicationReady, setIsReady]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<Grid w="100vw" h="100vh" position="relative" overflow="hidden">
|
||||
{isLightboxEnabled && <Lightbox />}
|
||||
<ImageUploader>
|
||||
@ -76,7 +84,7 @@ const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
|
||||
w={APP_WIDTH}
|
||||
h={APP_HEIGHT}
|
||||
>
|
||||
{children || <SiteHeader />}
|
||||
{headerComponent || <SiteHeader />}
|
||||
<Flex
|
||||
gap={4}
|
||||
w={{ base: '100vw', xl: 'full' }}
|
||||
@ -84,11 +92,13 @@ const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
|
||||
flexDir={{ base: 'column', xl: 'row' }}
|
||||
>
|
||||
<InvokeTabs />
|
||||
<ImageGalleryPanel />
|
||||
</Flex>
|
||||
</Grid>
|
||||
</ImageUploader>
|
||||
|
||||
<GalleryDrawer />
|
||||
<ParametersDrawer />
|
||||
|
||||
<AnimatePresence>
|
||||
{!isApplicationReady && !loadingOverridden && (
|
||||
<motion.div
|
||||
@ -121,8 +131,10 @@ const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
|
||||
<Portal>
|
||||
<FloatingGalleryButton />
|
||||
</Portal>
|
||||
<ProgressImagePreview />
|
||||
</Grid>
|
||||
<Toaster />
|
||||
<GlobalHotkeys />
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
|
@ -0,0 +1,44 @@
|
||||
import { Flex, Spinner, Tooltip } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { memo } from 'react';
|
||||
|
||||
const selector = createSelector(systemSelector, (system) => {
|
||||
const { isUploading } = system;
|
||||
|
||||
let tooltip = '';
|
||||
|
||||
if (isUploading) {
|
||||
tooltip = 'Uploading...';
|
||||
}
|
||||
|
||||
return {
|
||||
tooltip,
|
||||
shouldShow: isUploading,
|
||||
};
|
||||
});
|
||||
|
||||
export const AuxiliaryProgressIndicator = () => {
|
||||
const { shouldShow, tooltip } = useAppSelector(selector);
|
||||
|
||||
if (!shouldShow) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<Flex
|
||||
sx={{
|
||||
alignItems: 'center',
|
||||
justifyContent: 'center',
|
||||
color: 'base.600',
|
||||
}}
|
||||
>
|
||||
<Tooltip label={tooltip} placement="right" hasArrow>
|
||||
<Spinner />
|
||||
</Tooltip>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(AuxiliaryProgressIndicator);
|
@ -2,7 +2,15 @@ import { createSelector } from '@reduxjs/toolkit';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { shiftKeyPressed } from 'features/ui/store/hotkeysSlice';
|
||||
import {
|
||||
setActiveTab,
|
||||
toggleGalleryPanel,
|
||||
toggleParametersPanel,
|
||||
togglePinGalleryPanel,
|
||||
togglePinParametersPanel,
|
||||
} from 'features/ui/store/uiSlice';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import React, { memo } from 'react';
|
||||
import { isHotkeyPressed, useHotkeys } from 'react-hotkeys-hook';
|
||||
|
||||
const globalHotkeysSelector = createSelector(
|
||||
@ -20,7 +28,11 @@ const globalHotkeysSelector = createSelector(
|
||||
|
||||
// TODO: Does not catch keypresses while focused in an input. Maybe there is a way?
|
||||
|
||||
export const useGlobalHotkeys = () => {
|
||||
/**
|
||||
* Logical component. Handles app-level global hotkeys.
|
||||
* @returns null
|
||||
*/
|
||||
const GlobalHotkeys: React.FC = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { shift } = useAppSelector(globalHotkeysSelector);
|
||||
|
||||
@ -36,4 +48,40 @@ export const useGlobalHotkeys = () => {
|
||||
{ keyup: true, keydown: true },
|
||||
[shift]
|
||||
);
|
||||
|
||||
useHotkeys('o', () => {
|
||||
dispatch(toggleParametersPanel());
|
||||
});
|
||||
|
||||
useHotkeys(['shift+o'], () => {
|
||||
dispatch(togglePinParametersPanel());
|
||||
});
|
||||
|
||||
useHotkeys('g', () => {
|
||||
dispatch(toggleGalleryPanel());
|
||||
});
|
||||
|
||||
useHotkeys(['shift+g'], () => {
|
||||
dispatch(togglePinGalleryPanel());
|
||||
});
|
||||
|
||||
useHotkeys('1', () => {
|
||||
dispatch(setActiveTab('txt2img'));
|
||||
});
|
||||
|
||||
useHotkeys('2', () => {
|
||||
dispatch(setActiveTab('img2img'));
|
||||
});
|
||||
|
||||
useHotkeys('3', () => {
|
||||
dispatch(setActiveTab('unifiedCanvas'));
|
||||
});
|
||||
|
||||
useHotkeys('4', () => {
|
||||
dispatch(setActiveTab('nodes'));
|
||||
});
|
||||
|
||||
return null;
|
||||
};
|
||||
|
||||
export default memo(GlobalHotkeys);
|
@ -1,18 +1,13 @@
|
||||
import React, { lazy, memo, PropsWithChildren, useEffect } from 'react';
|
||||
import React, {
|
||||
lazy,
|
||||
memo,
|
||||
PropsWithChildren,
|
||||
ReactNode,
|
||||
useEffect,
|
||||
} from 'react';
|
||||
import { Provider } from 'react-redux';
|
||||
import { PersistGate } from 'redux-persist/integration/react';
|
||||
import { store } from 'app/store/store';
|
||||
import { persistor } from '../store/persistor';
|
||||
import { OpenAPI } from 'services/api';
|
||||
import '@fontsource/inter/100.css';
|
||||
import '@fontsource/inter/200.css';
|
||||
import '@fontsource/inter/300.css';
|
||||
import '@fontsource/inter/400.css';
|
||||
import '@fontsource/inter/500.css';
|
||||
import '@fontsource/inter/600.css';
|
||||
import '@fontsource/inter/700.css';
|
||||
import '@fontsource/inter/800.css';
|
||||
import '@fontsource/inter/900.css';
|
||||
|
||||
import Loading from '../../common/components/Loading/Loading';
|
||||
import { addMiddleware, resetMiddlewares } from 'redux-dynamic-middlewares';
|
||||
@ -28,9 +23,17 @@ interface Props extends PropsWithChildren {
|
||||
apiUrl?: string;
|
||||
token?: string;
|
||||
config?: PartialAppConfig;
|
||||
headerComponent?: ReactNode;
|
||||
setIsReady?: (isReady: boolean) => void;
|
||||
}
|
||||
|
||||
const InvokeAIUI = ({ apiUrl, token, config, children }: Props) => {
|
||||
const InvokeAIUI = ({
|
||||
apiUrl,
|
||||
token,
|
||||
config,
|
||||
headerComponent,
|
||||
setIsReady,
|
||||
}: Props) => {
|
||||
useEffect(() => {
|
||||
// configure API client token
|
||||
if (token) {
|
||||
@ -57,13 +60,15 @@ const InvokeAIUI = ({ apiUrl, token, config, children }: Props) => {
|
||||
return (
|
||||
<React.StrictMode>
|
||||
<Provider store={store}>
|
||||
<PersistGate loading={<Loading />} persistor={persistor}>
|
||||
<React.Suspense fallback={<Loading />}>
|
||||
<ThemeLocaleProvider>
|
||||
<App config={config}>{children}</App>
|
||||
<App
|
||||
config={config}
|
||||
headerComponent={headerComponent}
|
||||
setIsReady={setIsReady}
|
||||
/>
|
||||
</ThemeLocaleProvider>
|
||||
</React.Suspense>
|
||||
</PersistGate>
|
||||
</Provider>
|
||||
</React.StrictMode>
|
||||
);
|
||||
|
@ -1,4 +1,8 @@
|
||||
import { ChakraProvider, extendTheme } from '@chakra-ui/react';
|
||||
import {
|
||||
ChakraProvider,
|
||||
createLocalStorageManager,
|
||||
extendTheme,
|
||||
} from '@chakra-ui/react';
|
||||
import { ReactNode, useEffect } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { theme as invokeAITheme } from 'theme/theme';
|
||||
@ -9,15 +13,8 @@ import { greenTeaThemeColors } from 'theme/colors/greenTea';
|
||||
import { invokeAIThemeColors } from 'theme/colors/invokeAI';
|
||||
import { lightThemeColors } from 'theme/colors/lightTheme';
|
||||
import { oceanBlueColors } from 'theme/colors/oceanBlue';
|
||||
import '@fontsource/inter/100.css';
|
||||
import '@fontsource/inter/200.css';
|
||||
import '@fontsource/inter/300.css';
|
||||
import '@fontsource/inter/400.css';
|
||||
import '@fontsource/inter/500.css';
|
||||
import '@fontsource/inter/600.css';
|
||||
import '@fontsource/inter/700.css';
|
||||
import '@fontsource/inter/800.css';
|
||||
import '@fontsource/inter/900.css';
|
||||
|
||||
import '@fontsource/inter/variable.css';
|
||||
import 'overlayscrollbars/overlayscrollbars.css';
|
||||
import 'theme/css/overlayscrollbars.css';
|
||||
|
||||
@ -32,6 +29,8 @@ const THEMES = {
|
||||
ocean: oceanBlueColors,
|
||||
};
|
||||
|
||||
const manager = createLocalStorageManager('@@invokeai-color-mode');
|
||||
|
||||
function ThemeLocaleProvider({ children }: ThemeLocaleProviderProps) {
|
||||
const { i18n } = useTranslation();
|
||||
|
||||
@ -51,7 +50,11 @@ function ThemeLocaleProvider({ children }: ThemeLocaleProviderProps) {
|
||||
document.body.dir = direction;
|
||||
}, [direction]);
|
||||
|
||||
return <ChakraProvider theme={theme}>{children}</ChakraProvider>;
|
||||
return (
|
||||
<ChakraProvider theme={theme} colorModeManager={manager}>
|
||||
{children}
|
||||
</ChakraProvider>
|
||||
);
|
||||
}
|
||||
|
||||
export default ThemeLocaleProvider;
|
||||
|
65
invokeai/frontend/web/src/app/components/Toaster.ts
Normal file
65
invokeai/frontend/web/src/app/components/Toaster.ts
Normal file
@ -0,0 +1,65 @@
|
||||
import { useToast, UseToastOptions } from '@chakra-ui/react';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { toastQueueSelector } from 'features/system/store/systemSelectors';
|
||||
import { addToast, clearToastQueue } from 'features/system/store/systemSlice';
|
||||
import { useCallback, useEffect } from 'react';
|
||||
|
||||
export type MakeToastArg = string | UseToastOptions;
|
||||
|
||||
/**
|
||||
* Makes a toast from a string or a UseToastOptions object.
|
||||
* If a string is passed, the toast will have the status 'info' and will be closable with a duration of 2500ms.
|
||||
*/
|
||||
export const makeToast = (arg: MakeToastArg): UseToastOptions => {
|
||||
if (typeof arg === 'string') {
|
||||
return {
|
||||
title: arg,
|
||||
status: 'info',
|
||||
isClosable: true,
|
||||
duration: 2500,
|
||||
};
|
||||
}
|
||||
|
||||
return { status: 'info', isClosable: true, duration: 2500, ...arg };
|
||||
};
|
||||
|
||||
/**
|
||||
* Logical component. Watches the toast queue and makes toasts when the queue is not empty.
|
||||
* @returns null
|
||||
*/
|
||||
const Toaster = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const toastQueue = useAppSelector(toastQueueSelector);
|
||||
const toast = useToast();
|
||||
useEffect(() => {
|
||||
toastQueue.forEach((t) => {
|
||||
toast(t);
|
||||
});
|
||||
toastQueue.length > 0 && dispatch(clearToastQueue());
|
||||
}, [dispatch, toast, toastQueue]);
|
||||
|
||||
return null;
|
||||
};
|
||||
|
||||
/**
|
||||
* Returns a function that can be used to make a toast.
|
||||
* @example
|
||||
* const toaster = useAppToaster();
|
||||
* toaster('Hello world!');
|
||||
* toaster({ title: 'Hello world!', status: 'success' });
|
||||
* @returns A function that can be used to make a toast.
|
||||
* @see makeToast
|
||||
* @see MakeToastArg
|
||||
* @see UseToastOptions
|
||||
*/
|
||||
export const useAppToaster = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const toaster = useCallback(
|
||||
(arg: MakeToastArg) => dispatch(addToast(makeToast(arg))),
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
return toaster;
|
||||
};
|
||||
|
||||
export default Toaster;
|
@ -1,17 +1,28 @@
|
||||
// TODO: use Enums?
|
||||
|
||||
export const DIFFUSERS_SCHEDULERS: Array<string> = [
|
||||
export const SCHEDULERS = [
|
||||
'ddim',
|
||||
'plms',
|
||||
'k_lms',
|
||||
'dpmpp_2',
|
||||
'k_dpm_2',
|
||||
'k_dpm_2_a',
|
||||
'k_dpmpp_2',
|
||||
'k_euler',
|
||||
'k_euler_a',
|
||||
'k_heun',
|
||||
];
|
||||
'lms',
|
||||
'euler',
|
||||
'euler_k',
|
||||
'euler_a',
|
||||
'dpmpp_2s',
|
||||
'dpmpp_2m',
|
||||
'dpmpp_2m_k',
|
||||
'kdpm_2',
|
||||
'kdpm_2_a',
|
||||
'deis',
|
||||
'ddpm',
|
||||
'pndm',
|
||||
'heun',
|
||||
'heun_k',
|
||||
'unipc',
|
||||
] as const;
|
||||
|
||||
export type Scheduler = (typeof SCHEDULERS)[number];
|
||||
|
||||
export const isScheduler = (x: string): x is Scheduler =>
|
||||
SCHEDULERS.includes(x as Scheduler);
|
||||
|
||||
// Valid image widths
|
||||
export const WIDTHS: Array<number> = Array.from(Array(64)).map(
|
||||
|
@ -1,26 +1,20 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { defaultSelectorOptions } from 'app/store/util/defaultMemoizeOptions';
|
||||
import { validateSeedWeights } from 'common/util/seedWeightPairs';
|
||||
import { initialCanvasImageSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { generationSelector } from 'features/parameters/store/generationSelectors';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
export const readinessSelector = createSelector(
|
||||
[
|
||||
generationSelector,
|
||||
systemSelector,
|
||||
initialCanvasImageSelector,
|
||||
activeTabNameSelector,
|
||||
],
|
||||
(generation, system, initialCanvasImage, activeTabName) => {
|
||||
[generationSelector, systemSelector, activeTabNameSelector],
|
||||
(generation, system, activeTabName) => {
|
||||
const {
|
||||
prompt,
|
||||
shouldGenerateVariations,
|
||||
seedWeights,
|
||||
initialImage,
|
||||
seed,
|
||||
isImageToImageEnabled,
|
||||
} = generation;
|
||||
|
||||
const { isProcessing, isConnected } = system;
|
||||
@ -34,7 +28,7 @@ export const readinessSelector = createSelector(
|
||||
reasonsWhyNotReady.push('Missing prompt');
|
||||
}
|
||||
|
||||
if (isImageToImageEnabled && !initialImage) {
|
||||
if (activeTabName === 'img2img' && !initialImage) {
|
||||
isReady = false;
|
||||
reasonsWhyNotReady.push('No initial image selected');
|
||||
}
|
||||
@ -64,10 +58,5 @@ export const readinessSelector = createSelector(
|
||||
// All good
|
||||
return { isReady, reasonsWhyNotReady };
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
equalityCheck: isEqual,
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
defaultSelectorOptions
|
||||
);
|
||||
|
@ -1,209 +1,209 @@
|
||||
// import { AnyAction, Dispatch, MiddlewareAPI } from '@reduxjs/toolkit';
|
||||
// import * as InvokeAI from 'app/types/invokeai';
|
||||
// import type { RootState } from 'app/store/store';
|
||||
// import {
|
||||
// frontendToBackendParameters,
|
||||
// FrontendToBackendParametersConfig,
|
||||
// } from 'common/util/parameterTranslation';
|
||||
// import dateFormat from 'dateformat';
|
||||
// import {
|
||||
// GalleryCategory,
|
||||
// GalleryState,
|
||||
// removeImage,
|
||||
// } from 'features/gallery/store/gallerySlice';
|
||||
// import {
|
||||
// generationRequested,
|
||||
// modelChangeRequested,
|
||||
// modelConvertRequested,
|
||||
// modelMergingRequested,
|
||||
// setIsProcessing,
|
||||
// } from 'features/system/store/systemSlice';
|
||||
// import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
// import { Socket } from 'socket.io-client';
|
||||
import { AnyAction, Dispatch, MiddlewareAPI } from '@reduxjs/toolkit';
|
||||
import * as InvokeAI from 'app/types/invokeai';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import {
|
||||
frontendToBackendParameters,
|
||||
FrontendToBackendParametersConfig,
|
||||
} from 'common/util/parameterTranslation';
|
||||
import dateFormat from 'dateformat';
|
||||
import {
|
||||
GalleryCategory,
|
||||
GalleryState,
|
||||
removeImage,
|
||||
} from 'features/gallery/store/gallerySlice';
|
||||
import {
|
||||
generationRequested,
|
||||
modelChangeRequested,
|
||||
modelConvertRequested,
|
||||
modelMergingRequested,
|
||||
setIsProcessing,
|
||||
} from 'features/system/store/systemSlice';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
import { Socket } from 'socket.io-client';
|
||||
|
||||
// /**
|
||||
// * Returns an object containing all functions which use `socketio.emit()`.
|
||||
// * i.e. those which make server requests.
|
||||
// */
|
||||
// const makeSocketIOEmitters = (
|
||||
// store: MiddlewareAPI<Dispatch<AnyAction>, RootState>,
|
||||
// socketio: Socket
|
||||
// ) => {
|
||||
// // We need to dispatch actions to redux and get pieces of state from the store.
|
||||
// const { dispatch, getState } = store;
|
||||
/**
|
||||
* Returns an object containing all functions which use `socketio.emit()`.
|
||||
* i.e. those which make server requests.
|
||||
*/
|
||||
const makeSocketIOEmitters = (
|
||||
store: MiddlewareAPI<Dispatch<AnyAction>, RootState>,
|
||||
socketio: Socket
|
||||
) => {
|
||||
// We need to dispatch actions to redux and get pieces of state from the store.
|
||||
const { dispatch, getState } = store;
|
||||
|
||||
// return {
|
||||
// emitGenerateImage: (generationMode: InvokeTabName) => {
|
||||
// dispatch(setIsProcessing(true));
|
||||
return {
|
||||
emitGenerateImage: (generationMode: InvokeTabName) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
|
||||
// const state: RootState = getState();
|
||||
const state: RootState = getState();
|
||||
|
||||
// const {
|
||||
// generation: generationState,
|
||||
// postprocessing: postprocessingState,
|
||||
// system: systemState,
|
||||
// canvas: canvasState,
|
||||
// } = state;
|
||||
const {
|
||||
generation: generationState,
|
||||
postprocessing: postprocessingState,
|
||||
system: systemState,
|
||||
canvas: canvasState,
|
||||
} = state;
|
||||
|
||||
// const frontendToBackendParametersConfig: FrontendToBackendParametersConfig =
|
||||
// {
|
||||
// generationMode,
|
||||
// generationState,
|
||||
// postprocessingState,
|
||||
// canvasState,
|
||||
// systemState,
|
||||
// };
|
||||
const frontendToBackendParametersConfig: FrontendToBackendParametersConfig =
|
||||
{
|
||||
generationMode,
|
||||
generationState,
|
||||
postprocessingState,
|
||||
canvasState,
|
||||
systemState,
|
||||
};
|
||||
|
||||
// dispatch(generationRequested());
|
||||
dispatch(generationRequested());
|
||||
|
||||
// const { generationParameters, esrganParameters, facetoolParameters } =
|
||||
// frontendToBackendParameters(frontendToBackendParametersConfig);
|
||||
const { generationParameters, esrganParameters, facetoolParameters } =
|
||||
frontendToBackendParameters(frontendToBackendParametersConfig);
|
||||
|
||||
// socketio.emit(
|
||||
// 'generateImage',
|
||||
// generationParameters,
|
||||
// esrganParameters,
|
||||
// facetoolParameters
|
||||
// );
|
||||
socketio.emit(
|
||||
'generateImage',
|
||||
generationParameters,
|
||||
esrganParameters,
|
||||
facetoolParameters
|
||||
);
|
||||
|
||||
// // we need to truncate the init_mask base64 else it takes up the whole log
|
||||
// // TODO: handle maintaining masks for reproducibility in future
|
||||
// if (generationParameters.init_mask) {
|
||||
// generationParameters.init_mask = generationParameters.init_mask
|
||||
// .substr(0, 64)
|
||||
// .concat('...');
|
||||
// }
|
||||
// if (generationParameters.init_img) {
|
||||
// generationParameters.init_img = generationParameters.init_img
|
||||
// .substr(0, 64)
|
||||
// .concat('...');
|
||||
// }
|
||||
// we need to truncate the init_mask base64 else it takes up the whole log
|
||||
// TODO: handle maintaining masks for reproducibility in future
|
||||
if (generationParameters.init_mask) {
|
||||
generationParameters.init_mask = generationParameters.init_mask
|
||||
.substr(0, 64)
|
||||
.concat('...');
|
||||
}
|
||||
if (generationParameters.init_img) {
|
||||
generationParameters.init_img = generationParameters.init_img
|
||||
.substr(0, 64)
|
||||
.concat('...');
|
||||
}
|
||||
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Image generation requested: ${JSON.stringify({
|
||||
// ...generationParameters,
|
||||
// ...esrganParameters,
|
||||
// ...facetoolParameters,
|
||||
// })}`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// emitRunESRGAN: (imageToProcess: InvokeAI._Image) => {
|
||||
// dispatch(setIsProcessing(true));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Image generation requested: ${JSON.stringify({
|
||||
...generationParameters,
|
||||
...esrganParameters,
|
||||
...facetoolParameters,
|
||||
})}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitRunESRGAN: (imageToProcess: InvokeAI._Image) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
|
||||
// const {
|
||||
// postprocessing: {
|
||||
// upscalingLevel,
|
||||
// upscalingDenoising,
|
||||
// upscalingStrength,
|
||||
// },
|
||||
// } = getState();
|
||||
const {
|
||||
postprocessing: {
|
||||
upscalingLevel,
|
||||
upscalingDenoising,
|
||||
upscalingStrength,
|
||||
},
|
||||
} = getState();
|
||||
|
||||
// const esrganParameters = {
|
||||
// upscale: [upscalingLevel, upscalingDenoising, upscalingStrength],
|
||||
// };
|
||||
// socketio.emit('runPostprocessing', imageToProcess, {
|
||||
// type: 'esrgan',
|
||||
// ...esrganParameters,
|
||||
// });
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `ESRGAN upscale requested: ${JSON.stringify({
|
||||
// file: imageToProcess.url,
|
||||
// ...esrganParameters,
|
||||
// })}`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// emitRunFacetool: (imageToProcess: InvokeAI._Image) => {
|
||||
// dispatch(setIsProcessing(true));
|
||||
const esrganParameters = {
|
||||
upscale: [upscalingLevel, upscalingDenoising, upscalingStrength],
|
||||
};
|
||||
socketio.emit('runPostprocessing', imageToProcess, {
|
||||
type: 'esrgan',
|
||||
...esrganParameters,
|
||||
});
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `ESRGAN upscale requested: ${JSON.stringify({
|
||||
file: imageToProcess.url,
|
||||
...esrganParameters,
|
||||
})}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitRunFacetool: (imageToProcess: InvokeAI._Image) => {
|
||||
dispatch(setIsProcessing(true));
|
||||
|
||||
// const {
|
||||
// postprocessing: { facetoolType, facetoolStrength, codeformerFidelity },
|
||||
// } = getState();
|
||||
const {
|
||||
postprocessing: { facetoolType, facetoolStrength, codeformerFidelity },
|
||||
} = getState();
|
||||
|
||||
// const facetoolParameters: Record<string, unknown> = {
|
||||
// facetool_strength: facetoolStrength,
|
||||
// };
|
||||
const facetoolParameters: Record<string, unknown> = {
|
||||
facetool_strength: facetoolStrength,
|
||||
};
|
||||
|
||||
// if (facetoolType === 'codeformer') {
|
||||
// facetoolParameters.codeformer_fidelity = codeformerFidelity;
|
||||
// }
|
||||
if (facetoolType === 'codeformer') {
|
||||
facetoolParameters.codeformer_fidelity = codeformerFidelity;
|
||||
}
|
||||
|
||||
// socketio.emit('runPostprocessing', imageToProcess, {
|
||||
// type: facetoolType,
|
||||
// ...facetoolParameters,
|
||||
// });
|
||||
// dispatch(
|
||||
// addLogEntry({
|
||||
// timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
// message: `Face restoration (${facetoolType}) requested: ${JSON.stringify(
|
||||
// {
|
||||
// file: imageToProcess.url,
|
||||
// ...facetoolParameters,
|
||||
// }
|
||||
// )}`,
|
||||
// })
|
||||
// );
|
||||
// },
|
||||
// emitDeleteImage: (imageToDelete: InvokeAI._Image) => {
|
||||
// const { url, uuid, category, thumbnail } = imageToDelete;
|
||||
// dispatch(removeImage(imageToDelete));
|
||||
// socketio.emit('deleteImage', url, thumbnail, uuid, category);
|
||||
// },
|
||||
// emitRequestImages: (category: GalleryCategory) => {
|
||||
// const gallery: GalleryState = getState().gallery;
|
||||
// const { earliest_mtime } = gallery.categories[category];
|
||||
// socketio.emit('requestImages', category, earliest_mtime);
|
||||
// },
|
||||
// emitRequestNewImages: (category: GalleryCategory) => {
|
||||
// const gallery: GalleryState = getState().gallery;
|
||||
// const { latest_mtime } = gallery.categories[category];
|
||||
// socketio.emit('requestLatestImages', category, latest_mtime);
|
||||
// },
|
||||
// emitCancelProcessing: () => {
|
||||
// socketio.emit('cancel');
|
||||
// },
|
||||
// emitRequestSystemConfig: () => {
|
||||
// socketio.emit('requestSystemConfig');
|
||||
// },
|
||||
// emitSearchForModels: (modelFolder: string) => {
|
||||
// socketio.emit('searchForModels', modelFolder);
|
||||
// },
|
||||
// emitAddNewModel: (modelConfig: InvokeAI.InvokeModelConfigProps) => {
|
||||
// socketio.emit('addNewModel', modelConfig);
|
||||
// },
|
||||
// emitDeleteModel: (modelName: string) => {
|
||||
// socketio.emit('deleteModel', modelName);
|
||||
// },
|
||||
// emitConvertToDiffusers: (
|
||||
// modelToConvert: InvokeAI.InvokeModelConversionProps
|
||||
// ) => {
|
||||
// dispatch(modelConvertRequested());
|
||||
// socketio.emit('convertToDiffusers', modelToConvert);
|
||||
// },
|
||||
// emitMergeDiffusersModels: (
|
||||
// modelMergeInfo: InvokeAI.InvokeModelMergingProps
|
||||
// ) => {
|
||||
// dispatch(modelMergingRequested());
|
||||
// socketio.emit('mergeDiffusersModels', modelMergeInfo);
|
||||
// },
|
||||
// emitRequestModelChange: (modelName: string) => {
|
||||
// dispatch(modelChangeRequested());
|
||||
// socketio.emit('requestModelChange', modelName);
|
||||
// },
|
||||
// emitSaveStagingAreaImageToGallery: (url: string) => {
|
||||
// socketio.emit('requestSaveStagingAreaImageToGallery', url);
|
||||
// },
|
||||
// emitRequestEmptyTempFolder: () => {
|
||||
// socketio.emit('requestEmptyTempFolder');
|
||||
// },
|
||||
// };
|
||||
// };
|
||||
socketio.emit('runPostprocessing', imageToProcess, {
|
||||
type: facetoolType,
|
||||
...facetoolParameters,
|
||||
});
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Face restoration (${facetoolType}) requested: ${JSON.stringify(
|
||||
{
|
||||
file: imageToProcess.url,
|
||||
...facetoolParameters,
|
||||
}
|
||||
)}`,
|
||||
})
|
||||
);
|
||||
},
|
||||
emitDeleteImage: (imageToDelete: InvokeAI._Image) => {
|
||||
const { url, uuid, category, thumbnail } = imageToDelete;
|
||||
dispatch(removeImage(imageToDelete));
|
||||
socketio.emit('deleteImage', url, thumbnail, uuid, category);
|
||||
},
|
||||
emitRequestImages: (category: GalleryCategory) => {
|
||||
const gallery: GalleryState = getState().gallery;
|
||||
const { earliest_mtime } = gallery.categories[category];
|
||||
socketio.emit('requestImages', category, earliest_mtime);
|
||||
},
|
||||
emitRequestNewImages: (category: GalleryCategory) => {
|
||||
const gallery: GalleryState = getState().gallery;
|
||||
const { latest_mtime } = gallery.categories[category];
|
||||
socketio.emit('requestLatestImages', category, latest_mtime);
|
||||
},
|
||||
emitCancelProcessing: () => {
|
||||
socketio.emit('cancel');
|
||||
},
|
||||
emitRequestSystemConfig: () => {
|
||||
socketio.emit('requestSystemConfig');
|
||||
},
|
||||
emitSearchForModels: (modelFolder: string) => {
|
||||
socketio.emit('searchForModels', modelFolder);
|
||||
},
|
||||
emitAddNewModel: (modelConfig: InvokeAI.InvokeModelConfigProps) => {
|
||||
socketio.emit('addNewModel', modelConfig);
|
||||
},
|
||||
emitDeleteModel: (modelName: string) => {
|
||||
socketio.emit('deleteModel', modelName);
|
||||
},
|
||||
emitConvertToDiffusers: (
|
||||
modelToConvert: InvokeAI.InvokeModelConversionProps
|
||||
) => {
|
||||
dispatch(modelConvertRequested());
|
||||
socketio.emit('convertToDiffusers', modelToConvert);
|
||||
},
|
||||
emitMergeDiffusersModels: (
|
||||
modelMergeInfo: InvokeAI.InvokeModelMergingProps
|
||||
) => {
|
||||
dispatch(modelMergingRequested());
|
||||
socketio.emit('mergeDiffusersModels', modelMergeInfo);
|
||||
},
|
||||
emitRequestModelChange: (modelName: string) => {
|
||||
dispatch(modelChangeRequested());
|
||||
socketio.emit('requestModelChange', modelName);
|
||||
},
|
||||
emitSaveStagingAreaImageToGallery: (url: string) => {
|
||||
socketio.emit('requestSaveStagingAreaImageToGallery', url);
|
||||
},
|
||||
emitRequestEmptyTempFolder: () => {
|
||||
socketio.emit('requestEmptyTempFolder');
|
||||
},
|
||||
};
|
||||
};
|
||||
|
||||
// export default makeSocketIOEmitters;
|
||||
export default makeSocketIOEmitters;
|
||||
|
||||
export default {};
|
||||
|
4
invokeai/frontend/web/src/app/store/actions.ts
Normal file
4
invokeai/frontend/web/src/app/store/actions.ts
Normal file
@ -0,0 +1,4 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
|
||||
export const userInvoked = createAction<InvokeTabName>('app/userInvoked');
|
8
invokeai/frontend/web/src/app/store/constants.ts
Normal file
8
invokeai/frontend/web/src/app/store/constants.ts
Normal file
@ -0,0 +1,8 @@
|
||||
export const LOCALSTORAGE_KEYS = [
|
||||
'chakra-ui-color-mode',
|
||||
'i18nextLng',
|
||||
'ROARR_FILTER',
|
||||
'ROARR_LOG',
|
||||
];
|
||||
|
||||
export const LOCALSTORAGE_PREFIX = '@@invokeai-';
|
@ -0,0 +1,36 @@
|
||||
import { canvasPersistDenylist } from 'features/canvas/store/canvasPersistDenylist';
|
||||
import { galleryPersistDenylist } from 'features/gallery/store/galleryPersistDenylist';
|
||||
import { resultsPersistDenylist } from 'features/gallery/store/resultsPersistDenylist';
|
||||
import { uploadsPersistDenylist } from 'features/gallery/store/uploadsPersistDenylist';
|
||||
import { lightboxPersistDenylist } from 'features/lightbox/store/lightboxPersistDenylist';
|
||||
import { nodesPersistDenylist } from 'features/nodes/store/nodesPersistDenylist';
|
||||
import { generationPersistDenylist } from 'features/parameters/store/generationPersistDenylist';
|
||||
import { postprocessingPersistDenylist } from 'features/parameters/store/postprocessingPersistDenylist';
|
||||
import { modelsPersistDenylist } from 'features/system/store/modelsPersistDenylist';
|
||||
import { systemPersistDenylist } from 'features/system/store/systemPersistDenylist';
|
||||
import { uiPersistDenylist } from 'features/ui/store/uiPersistDenylist';
|
||||
import { omit } from 'lodash-es';
|
||||
import { SerializeFunction } from 'redux-remember';
|
||||
|
||||
const serializationDenylist: {
|
||||
[key: string]: string[];
|
||||
} = {
|
||||
canvas: canvasPersistDenylist,
|
||||
gallery: galleryPersistDenylist,
|
||||
generation: generationPersistDenylist,
|
||||
lightbox: lightboxPersistDenylist,
|
||||
models: modelsPersistDenylist,
|
||||
nodes: nodesPersistDenylist,
|
||||
postprocessing: postprocessingPersistDenylist,
|
||||
results: resultsPersistDenylist,
|
||||
system: systemPersistDenylist,
|
||||
// config: configPersistDenyList,
|
||||
ui: uiPersistDenylist,
|
||||
uploads: uploadsPersistDenylist,
|
||||
// hotkeys: hotkeysPersistDenylist,
|
||||
};
|
||||
|
||||
export const serialize: SerializeFunction = (data, key) => {
|
||||
const result = omit(data, serializationDenylist[key]);
|
||||
return JSON.stringify(result);
|
||||
};
|
@ -0,0 +1,38 @@
|
||||
import { initialCanvasState } from 'features/canvas/store/canvasSlice';
|
||||
import { initialGalleryState } from 'features/gallery/store/gallerySlice';
|
||||
import { initialResultsState } from 'features/gallery/store/resultsSlice';
|
||||
import { initialUploadsState } from 'features/gallery/store/uploadsSlice';
|
||||
import { initialLightboxState } from 'features/lightbox/store/lightboxSlice';
|
||||
import { initialNodesState } from 'features/nodes/store/nodesSlice';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import { initialPostprocessingState } from 'features/parameters/store/postprocessingSlice';
|
||||
import { initialConfigState } from 'features/system/store/configSlice';
|
||||
import { initialModelsState } from 'features/system/store/modelSlice';
|
||||
import { initialSystemState } from 'features/system/store/systemSlice';
|
||||
import { initialHotkeysState } from 'features/ui/store/hotkeysSlice';
|
||||
import { initialUIState } from 'features/ui/store/uiSlice';
|
||||
import { defaultsDeep } from 'lodash-es';
|
||||
import { UnserializeFunction } from 'redux-remember';
|
||||
|
||||
const initialStates: {
|
||||
[key: string]: any;
|
||||
} = {
|
||||
canvas: initialCanvasState,
|
||||
gallery: initialGalleryState,
|
||||
generation: initialGenerationState,
|
||||
lightbox: initialLightboxState,
|
||||
models: initialModelsState,
|
||||
nodes: initialNodesState,
|
||||
postprocessing: initialPostprocessingState,
|
||||
results: initialResultsState,
|
||||
system: initialSystemState,
|
||||
config: initialConfigState,
|
||||
ui: initialUIState,
|
||||
uploads: initialUploadsState,
|
||||
hotkeys: initialHotkeysState,
|
||||
};
|
||||
|
||||
export const unserialize: UnserializeFunction = (data, key) => {
|
||||
const result = defaultsDeep(JSON.parse(data), initialStates[key]);
|
||||
return result;
|
||||
};
|
@ -0,0 +1,30 @@
|
||||
import { AnyAction } from '@reduxjs/toolkit';
|
||||
import { isAnyGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { forEach } from 'lodash-es';
|
||||
import { Graph } from 'services/api';
|
||||
|
||||
export const actionSanitizer = <A extends AnyAction>(action: A): A => {
|
||||
if (isAnyGraphBuilt(action)) {
|
||||
if (action.payload.nodes) {
|
||||
const sanitizedNodes: Graph['nodes'] = {};
|
||||
|
||||
// Sanitize nodes as needed
|
||||
forEach(action.payload.nodes, (node, key) => {
|
||||
// Don't log the whole freaking dataURL
|
||||
if (node.type === 'dataURL_image') {
|
||||
const { dataURL, ...rest } = node;
|
||||
sanitizedNodes[key] = { ...rest, dataURL: '<dataURL>' };
|
||||
} else {
|
||||
sanitizedNodes[key] = { ...node };
|
||||
}
|
||||
});
|
||||
|
||||
return {
|
||||
...action,
|
||||
payload: { ...action.payload, nodes: sanitizedNodes },
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
return action;
|
||||
};
|
@ -0,0 +1,11 @@
|
||||
export const actionsDenylist = [
|
||||
'canvas/setCursorPosition',
|
||||
'canvas/setStageCoordinates',
|
||||
'canvas/setStageScale',
|
||||
'canvas/setIsDrawing',
|
||||
'canvas/setBoundingBoxCoordinates',
|
||||
'canvas/setBoundingBoxDimensions',
|
||||
'canvas/setIsDrawing',
|
||||
'canvas/addPointToCurrentLine',
|
||||
'socket/generatorProgress',
|
||||
];
|
@ -0,0 +1,3 @@
|
||||
export const stateSanitizer = <S>(state: S): S => {
|
||||
return state;
|
||||
};
|
@ -0,0 +1,54 @@
|
||||
import {
|
||||
createListenerMiddleware,
|
||||
addListener,
|
||||
ListenerEffect,
|
||||
AnyAction,
|
||||
} from '@reduxjs/toolkit';
|
||||
import type { TypedStartListening, TypedAddListener } from '@reduxjs/toolkit';
|
||||
|
||||
import type { RootState, AppDispatch } from '../../store';
|
||||
import { addInitialImageSelectedListener } from './listeners/initialImageSelected';
|
||||
import { addImageResultReceivedListener } from './listeners/invocationComplete';
|
||||
import { addImageUploadedListener } from './listeners/imageUploaded';
|
||||
import { addRequestedImageDeletionListener } from './listeners/imageDeleted';
|
||||
import { addUserInvokedCanvasListener } from './listeners/userInvokedCanvas';
|
||||
import { addUserInvokedNodesListener } from './listeners/userInvokedNodes';
|
||||
import { addUserInvokedTextToImageListener } from './listeners/userInvokedTextToImage';
|
||||
import { addUserInvokedImageToImageListener } from './listeners/userInvokedImageToImage';
|
||||
import { addCanvasSavedToGalleryListener } from './listeners/canvasSavedToGallery';
|
||||
import { addCanvasDownloadedAsImageListener } from './listeners/canvasDownloadedAsImage';
|
||||
import { addCanvasCopiedToClipboardListener } from './listeners/canvasCopiedToClipboard';
|
||||
import { addCanvasMergedListener } from './listeners/canvasMerged';
|
||||
|
||||
export const listenerMiddleware = createListenerMiddleware();
|
||||
|
||||
export type AppStartListening = TypedStartListening<RootState, AppDispatch>;
|
||||
|
||||
export const startAppListening =
|
||||
listenerMiddleware.startListening as AppStartListening;
|
||||
|
||||
export const addAppListener = addListener as TypedAddListener<
|
||||
RootState,
|
||||
AppDispatch
|
||||
>;
|
||||
|
||||
export type AppListenerEffect = ListenerEffect<
|
||||
AnyAction,
|
||||
RootState,
|
||||
AppDispatch
|
||||
>;
|
||||
|
||||
addImageUploadedListener();
|
||||
addInitialImageSelectedListener();
|
||||
addImageResultReceivedListener();
|
||||
addRequestedImageDeletionListener();
|
||||
|
||||
addUserInvokedCanvasListener();
|
||||
addUserInvokedNodesListener();
|
||||
addUserInvokedTextToImageListener();
|
||||
addUserInvokedImageToImageListener();
|
||||
|
||||
addCanvasSavedToGalleryListener();
|
||||
addCanvasDownloadedAsImageListener();
|
||||
addCanvasCopiedToClipboardListener();
|
||||
addCanvasMergedListener();
|
@ -0,0 +1,33 @@
|
||||
import { canvasCopiedToClipboard } from 'features/canvas/store/actions';
|
||||
import { startAppListening } from '..';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { copyBlobToClipboard } from 'features/canvas/util/copyBlobToClipboard';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'canvasCopiedToClipboardListener' });
|
||||
|
||||
export const addCanvasCopiedToClipboardListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: canvasCopiedToClipboard,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const state = getState();
|
||||
|
||||
const blob = await getBaseLayerBlob(state);
|
||||
|
||||
if (!blob) {
|
||||
moduleLog.error('Problem getting base layer blob');
|
||||
dispatch(
|
||||
addToast({
|
||||
title: 'Problem Copying Canvas',
|
||||
description: 'Unable to export base layer',
|
||||
status: 'error',
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
copyBlobToClipboard(blob);
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,33 @@
|
||||
import { canvasDownloadedAsImage } from 'features/canvas/store/actions';
|
||||
import { startAppListening } from '..';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { downloadBlob } from 'features/canvas/util/downloadBlob';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'canvasSavedToGalleryListener' });
|
||||
|
||||
export const addCanvasDownloadedAsImageListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: canvasDownloadedAsImage,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const state = getState();
|
||||
|
||||
const blob = await getBaseLayerBlob(state);
|
||||
|
||||
if (!blob) {
|
||||
moduleLog.error('Problem getting base layer blob');
|
||||
dispatch(
|
||||
addToast({
|
||||
title: 'Problem Downloading Canvas',
|
||||
description: 'Unable to export base layer',
|
||||
status: 'error',
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
downloadBlob(blob, 'mergedCanvas.png');
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,88 @@
|
||||
import { canvasMerged } from 'features/canvas/store/actions';
|
||||
import { startAppListening } from '..';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { imageUploaded } from 'services/thunks/image';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
import { deserializeImageResponse } from 'services/util/deserializeImageResponse';
|
||||
import { setMergedCanvas } from 'features/canvas/store/canvasSlice';
|
||||
import { getCanvasBaseLayer } from 'features/canvas/util/konvaInstanceProvider';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'canvasCopiedToClipboardListener' });
|
||||
|
||||
export const addCanvasMergedListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: canvasMerged,
|
||||
effect: async (action, { dispatch, getState, take }) => {
|
||||
const state = getState();
|
||||
|
||||
const blob = await getBaseLayerBlob(state, true);
|
||||
|
||||
if (!blob) {
|
||||
moduleLog.error('Problem getting base layer blob');
|
||||
dispatch(
|
||||
addToast({
|
||||
title: 'Problem Merging Canvas',
|
||||
description: 'Unable to export base layer',
|
||||
status: 'error',
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
const canvasBaseLayer = getCanvasBaseLayer();
|
||||
|
||||
if (!canvasBaseLayer) {
|
||||
moduleLog.error('Problem getting canvas base layer');
|
||||
dispatch(
|
||||
addToast({
|
||||
title: 'Problem Merging Canvas',
|
||||
description: 'Unable to export base layer',
|
||||
status: 'error',
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
const baseLayerRect = canvasBaseLayer.getClientRect({
|
||||
relativeTo: canvasBaseLayer.getParent(),
|
||||
});
|
||||
|
||||
const filename = `mergedCanvas_${uuidv4()}.png`;
|
||||
|
||||
dispatch(
|
||||
imageUploaded({
|
||||
imageType: 'intermediates',
|
||||
formData: {
|
||||
file: new File([blob], filename, { type: 'image/png' }),
|
||||
},
|
||||
})
|
||||
);
|
||||
|
||||
const [{ payload }] = await take(
|
||||
(action): action is ReturnType<typeof imageUploaded.fulfilled> =>
|
||||
imageUploaded.fulfilled.match(action) &&
|
||||
action.meta.arg.formData.file.name === filename
|
||||
);
|
||||
|
||||
const mergedCanvasImage = deserializeImageResponse(payload.response);
|
||||
|
||||
dispatch(
|
||||
setMergedCanvas({
|
||||
kind: 'image',
|
||||
layer: 'base',
|
||||
image: mergedCanvasImage,
|
||||
...baseLayerRect,
|
||||
})
|
||||
);
|
||||
|
||||
dispatch(
|
||||
addToast({
|
||||
title: 'Canvas Merged',
|
||||
status: 'success',
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,40 @@
|
||||
import { canvasSavedToGallery } from 'features/canvas/store/actions';
|
||||
import { startAppListening } from '..';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { imageUploaded } from 'services/thunks/image';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'canvasSavedToGalleryListener' });
|
||||
|
||||
export const addCanvasSavedToGalleryListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: canvasSavedToGallery,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const state = getState();
|
||||
|
||||
const blob = await getBaseLayerBlob(state);
|
||||
|
||||
if (!blob) {
|
||||
moduleLog.error('Problem getting base layer blob');
|
||||
dispatch(
|
||||
addToast({
|
||||
title: 'Problem Saving Canvas',
|
||||
description: 'Unable to export base layer',
|
||||
status: 'error',
|
||||
})
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(
|
||||
imageUploaded({
|
||||
imageType: 'results',
|
||||
formData: {
|
||||
file: new File([blob], 'mergedCanvas.png', { type: 'image/png' }),
|
||||
},
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,59 @@
|
||||
import { requestedImageDeletion } from 'features/gallery/store/actions';
|
||||
import { startAppListening } from '..';
|
||||
import { imageDeleted } from 'services/thunks/image';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { clamp } from 'lodash-es';
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'addRequestedImageDeletionListener' });
|
||||
|
||||
export const addRequestedImageDeletionListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: requestedImageDeletion,
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const image = action.payload;
|
||||
if (!image) {
|
||||
moduleLog.warn('No image provided');
|
||||
return;
|
||||
}
|
||||
|
||||
const { name, type } = image;
|
||||
|
||||
if (type !== 'uploads' && type !== 'results') {
|
||||
moduleLog.warn({ data: image }, `Invalid image type ${type}`);
|
||||
return;
|
||||
}
|
||||
|
||||
const selectedImageName = getState().gallery.selectedImage?.name;
|
||||
|
||||
if (selectedImageName === name) {
|
||||
const allIds = getState()[type].ids;
|
||||
const allEntities = getState()[type].entities;
|
||||
|
||||
const deletedImageIndex = allIds.findIndex(
|
||||
(result) => result.toString() === name
|
||||
);
|
||||
|
||||
const filteredIds = allIds.filter((id) => id.toString() !== name);
|
||||
|
||||
const newSelectedImageIndex = clamp(
|
||||
deletedImageIndex,
|
||||
0,
|
||||
filteredIds.length - 1
|
||||
);
|
||||
|
||||
const newSelectedImageId = filteredIds[newSelectedImageIndex];
|
||||
|
||||
const newSelectedImage = allEntities[newSelectedImageId];
|
||||
|
||||
if (newSelectedImageId) {
|
||||
dispatch(imageSelected(newSelectedImage));
|
||||
} else {
|
||||
dispatch(imageSelected());
|
||||
}
|
||||
}
|
||||
|
||||
dispatch(imageDeleted({ imageName: name, imageType: type }));
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,46 @@
|
||||
import { deserializeImageResponse } from 'services/util/deserializeImageResponse';
|
||||
import { startAppListening } from '..';
|
||||
import { uploadAdded } from 'features/gallery/store/uploadsSlice';
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { imageUploaded } from 'services/thunks/image';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { initialImageSelected } from 'features/parameters/store/actions';
|
||||
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
|
||||
import { resultAdded } from 'features/gallery/store/resultsSlice';
|
||||
|
||||
export const addImageUploadedListener = () => {
|
||||
startAppListening({
|
||||
predicate: (action): action is ReturnType<typeof imageUploaded.fulfilled> =>
|
||||
imageUploaded.fulfilled.match(action) &&
|
||||
action.payload.response.image_type !== 'intermediates',
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { response } = action.payload;
|
||||
const { imageType } = action.meta.arg;
|
||||
|
||||
const state = getState();
|
||||
const image = deserializeImageResponse(response);
|
||||
|
||||
if (imageType === 'uploads') {
|
||||
dispatch(uploadAdded(image));
|
||||
|
||||
dispatch(addToast({ title: 'Image Uploaded', status: 'success' }));
|
||||
|
||||
if (state.gallery.shouldAutoSwitchToNewImages) {
|
||||
dispatch(imageSelected(image));
|
||||
}
|
||||
|
||||
if (action.meta.arg.activeTabName === 'img2img') {
|
||||
dispatch(initialImageSelected(image));
|
||||
}
|
||||
|
||||
if (action.meta.arg.activeTabName === 'unifiedCanvas') {
|
||||
dispatch(setInitialCanvasImage(image));
|
||||
}
|
||||
}
|
||||
|
||||
if (imageType === 'results') {
|
||||
dispatch(resultAdded(image));
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,54 @@
|
||||
import { initialImageChanged } from 'features/parameters/store/generationSlice';
|
||||
import { Image, isInvokeAIImage } from 'app/types/invokeai';
|
||||
import { selectResultsById } from 'features/gallery/store/resultsSlice';
|
||||
import { selectUploadsById } from 'features/gallery/store/uploadsSlice';
|
||||
import { t } from 'i18next';
|
||||
import { addToast } from 'features/system/store/systemSlice';
|
||||
import { startAppListening } from '..';
|
||||
import { initialImageSelected } from 'features/parameters/store/actions';
|
||||
import { makeToast } from 'app/components/Toaster';
|
||||
|
||||
export const addInitialImageSelectedListener = () => {
|
||||
startAppListening({
|
||||
actionCreator: initialImageSelected,
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
if (!action.payload) {
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({ title: t('toast.imageNotLoadedDesc'), status: 'error' })
|
||||
)
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
if (isInvokeAIImage(action.payload)) {
|
||||
dispatch(initialImageChanged(action.payload));
|
||||
dispatch(addToast(makeToast(t('toast.sentToImageToImage'))));
|
||||
return;
|
||||
}
|
||||
|
||||
const { name, type } = action.payload;
|
||||
|
||||
let image: Image | undefined;
|
||||
const state = getState();
|
||||
|
||||
if (type === 'results') {
|
||||
image = selectResultsById(state, name);
|
||||
} else if (type === 'uploads') {
|
||||
image = selectUploadsById(state, name);
|
||||
}
|
||||
|
||||
if (!image) {
|
||||
dispatch(
|
||||
addToast(
|
||||
makeToast({ title: t('toast.imageNotLoadedDesc'), status: 'error' })
|
||||
)
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(initialImageChanged(image));
|
||||
dispatch(addToast(makeToast(t('toast.sentToImageToImage'))));
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,88 @@
|
||||
import { invocationComplete } from 'services/events/actions';
|
||||
import { isImageOutput } from 'services/types/guards';
|
||||
import {
|
||||
buildImageUrls,
|
||||
extractTimestampFromImageName,
|
||||
} from 'services/util/deserializeImageField';
|
||||
import { Image } from 'app/types/invokeai';
|
||||
import { resultAdded } from 'features/gallery/store/resultsSlice';
|
||||
import { imageReceived, thumbnailReceived } from 'services/thunks/image';
|
||||
import { startAppListening } from '..';
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
|
||||
|
||||
const nodeDenylist = ['dataURL_image'];
|
||||
|
||||
export const addImageResultReceivedListener = () => {
|
||||
startAppListening({
|
||||
predicate: (action) => {
|
||||
if (
|
||||
invocationComplete.match(action) &&
|
||||
isImageOutput(action.payload.data.result)
|
||||
) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
},
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
if (!invocationComplete.match(action)) {
|
||||
return;
|
||||
}
|
||||
|
||||
const { data, shouldFetchImages } = action.payload;
|
||||
const { result, node, graph_execution_state_id } = data;
|
||||
|
||||
if (isImageOutput(result) && !nodeDenylist.includes(node.type)) {
|
||||
const name = result.image.image_name;
|
||||
const type = result.image.image_type;
|
||||
const state = getState();
|
||||
|
||||
// if we need to refetch, set URLs to placeholder for now
|
||||
const { url, thumbnail } = shouldFetchImages
|
||||
? { url: '', thumbnail: '' }
|
||||
: buildImageUrls(type, name);
|
||||
|
||||
const timestamp = extractTimestampFromImageName(name);
|
||||
|
||||
const image: Image = {
|
||||
name,
|
||||
type,
|
||||
url,
|
||||
thumbnail,
|
||||
metadata: {
|
||||
created: timestamp,
|
||||
width: result.width,
|
||||
height: result.height,
|
||||
invokeai: {
|
||||
session_id: graph_execution_state_id,
|
||||
...(node ? { node } : {}),
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
dispatch(resultAdded(image));
|
||||
|
||||
if (state.gallery.shouldAutoSwitchToNewImages) {
|
||||
dispatch(imageSelected(image));
|
||||
}
|
||||
|
||||
if (state.config.shouldFetchImages) {
|
||||
dispatch(imageReceived({ imageName: name, imageType: type }));
|
||||
dispatch(
|
||||
thumbnailReceived({
|
||||
thumbnailName: name,
|
||||
thumbnailType: type,
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
if (
|
||||
graph_execution_state_id ===
|
||||
state.canvas.layerState.stagingArea.sessionId
|
||||
) {
|
||||
dispatch(addImageToStagingArea(image));
|
||||
}
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,164 @@
|
||||
import { startAppListening } from '..';
|
||||
import { sessionCreated, sessionInvoked } from 'services/thunks/session';
|
||||
import { buildCanvasGraphComponents } from 'features/nodes/util/graphBuilders/buildCanvasGraph';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { canvasGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { imageUploaded } from 'services/thunks/image';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
import { Graph } from 'services/api';
|
||||
import {
|
||||
canvasSessionIdChanged,
|
||||
stagingAreaInitialized,
|
||||
} from 'features/canvas/store/canvasSlice';
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
import { getCanvasData } from 'features/canvas/util/getCanvasData';
|
||||
import { getCanvasGenerationMode } from 'features/canvas/util/getCanvasGenerationMode';
|
||||
import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
|
||||
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'invoke' });
|
||||
|
||||
/**
|
||||
* This listener is responsible for building the canvas graph and blobs when the user invokes the canvas.
|
||||
* It is also responsible for uploading the base and mask layers to the server.
|
||||
*/
|
||||
export const addUserInvokedCanvasListener = () => {
|
||||
startAppListening({
|
||||
predicate: (action): action is ReturnType<typeof userInvoked> =>
|
||||
userInvoked.match(action) && action.payload === 'unifiedCanvas',
|
||||
effect: async (action, { getState, dispatch, take }) => {
|
||||
const state = getState();
|
||||
|
||||
// Build canvas blobs
|
||||
const canvasBlobsAndImageData = await getCanvasData(state);
|
||||
|
||||
if (!canvasBlobsAndImageData) {
|
||||
moduleLog.error('Unable to create canvas data');
|
||||
return;
|
||||
}
|
||||
|
||||
const { baseBlob, baseImageData, maskBlob, maskImageData } =
|
||||
canvasBlobsAndImageData;
|
||||
|
||||
// Determine the generation mode
|
||||
const generationMode = getCanvasGenerationMode(
|
||||
baseImageData,
|
||||
maskImageData
|
||||
);
|
||||
|
||||
if (state.system.enableImageDebugging) {
|
||||
const baseDataURL = await blobToDataURL(baseBlob);
|
||||
const maskDataURL = await blobToDataURL(maskBlob);
|
||||
openBase64ImageInTab([
|
||||
{ base64: maskDataURL, caption: 'mask b64' },
|
||||
{ base64: baseDataURL, caption: 'image b64' },
|
||||
]);
|
||||
}
|
||||
|
||||
moduleLog.debug(`Generation mode: ${generationMode}`);
|
||||
|
||||
// Build the canvas graph
|
||||
const graphComponents = await buildCanvasGraphComponents(
|
||||
state,
|
||||
generationMode
|
||||
);
|
||||
|
||||
if (!graphComponents) {
|
||||
moduleLog.error('Problem building graph');
|
||||
return;
|
||||
}
|
||||
|
||||
const { rangeNode, iterateNode, baseNode, edges } = graphComponents;
|
||||
|
||||
// Upload the base layer, to be used as init image
|
||||
const baseFilename = `${uuidv4()}.png`;
|
||||
|
||||
dispatch(
|
||||
imageUploaded({
|
||||
imageType: 'intermediates',
|
||||
formData: {
|
||||
file: new File([baseBlob], baseFilename, { type: 'image/png' }),
|
||||
},
|
||||
})
|
||||
);
|
||||
|
||||
if (baseNode.type === 'img2img' || baseNode.type === 'inpaint') {
|
||||
const [{ payload: basePayload }] = await take(
|
||||
(action): action is ReturnType<typeof imageUploaded.fulfilled> =>
|
||||
imageUploaded.fulfilled.match(action) &&
|
||||
action.meta.arg.formData.file.name === baseFilename
|
||||
);
|
||||
|
||||
const { image_name: baseName, image_type: baseType } =
|
||||
basePayload.response;
|
||||
|
||||
baseNode.image = {
|
||||
image_name: baseName,
|
||||
image_type: baseType,
|
||||
};
|
||||
}
|
||||
|
||||
// Upload the mask layer image
|
||||
const maskFilename = `${uuidv4()}.png`;
|
||||
|
||||
if (baseNode.type === 'inpaint') {
|
||||
dispatch(
|
||||
imageUploaded({
|
||||
imageType: 'intermediates',
|
||||
formData: {
|
||||
file: new File([maskBlob], maskFilename, { type: 'image/png' }),
|
||||
},
|
||||
})
|
||||
);
|
||||
|
||||
const [{ payload: maskPayload }] = await take(
|
||||
(action): action is ReturnType<typeof imageUploaded.fulfilled> =>
|
||||
imageUploaded.fulfilled.match(action) &&
|
||||
action.meta.arg.formData.file.name === maskFilename
|
||||
);
|
||||
|
||||
const { image_name: maskName, image_type: maskType } =
|
||||
maskPayload.response;
|
||||
|
||||
baseNode.mask = {
|
||||
image_name: maskName,
|
||||
image_type: maskType,
|
||||
};
|
||||
}
|
||||
|
||||
// Assemble!
|
||||
const nodes: Graph['nodes'] = {
|
||||
[rangeNode.id]: rangeNode,
|
||||
[iterateNode.id]: iterateNode,
|
||||
[baseNode.id]: baseNode,
|
||||
};
|
||||
|
||||
const graph = { nodes, edges };
|
||||
|
||||
dispatch(canvasGraphBuilt(graph));
|
||||
moduleLog({ data: graph }, 'Canvas graph built');
|
||||
|
||||
// Actually create the session
|
||||
dispatch(sessionCreated({ graph }));
|
||||
|
||||
// Wait for the session to be invoked (this is just the HTTP request to start processing)
|
||||
const [{ meta }] = await take(sessionInvoked.fulfilled.match);
|
||||
|
||||
const { sessionId } = meta.arg;
|
||||
|
||||
if (!state.canvas.layerState.stagingArea.boundingBox) {
|
||||
dispatch(
|
||||
stagingAreaInitialized({
|
||||
sessionId,
|
||||
boundingBox: {
|
||||
...state.canvas.boundingBoxCoordinates,
|
||||
...state.canvas.boundingBoxDimensions,
|
||||
},
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
dispatch(canvasSessionIdChanged(sessionId));
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,24 @@
|
||||
import { startAppListening } from '..';
|
||||
import { buildImageToImageGraph } from 'features/nodes/util/graphBuilders/buildImageToImageGraph';
|
||||
import { sessionCreated } from 'services/thunks/session';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { imageToImageGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'invoke' });
|
||||
|
||||
export const addUserInvokedImageToImageListener = () => {
|
||||
startAppListening({
|
||||
predicate: (action): action is ReturnType<typeof userInvoked> =>
|
||||
userInvoked.match(action) && action.payload === 'img2img',
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const state = getState();
|
||||
|
||||
const graph = buildImageToImageGraph(state);
|
||||
dispatch(imageToImageGraphBuilt(graph));
|
||||
moduleLog({ data: graph }, 'Image to Image graph built');
|
||||
|
||||
dispatch(sessionCreated({ graph }));
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,24 @@
|
||||
import { startAppListening } from '..';
|
||||
import { sessionCreated } from 'services/thunks/session';
|
||||
import { buildNodesGraph } from 'features/nodes/util/graphBuilders/buildNodesGraph';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { nodesGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'invoke' });
|
||||
|
||||
export const addUserInvokedNodesListener = () => {
|
||||
startAppListening({
|
||||
predicate: (action): action is ReturnType<typeof userInvoked> =>
|
||||
userInvoked.match(action) && action.payload === 'nodes',
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const state = getState();
|
||||
|
||||
const graph = buildNodesGraph(state);
|
||||
dispatch(nodesGraphBuilt(graph));
|
||||
moduleLog({ data: graph }, 'Nodes graph built');
|
||||
|
||||
dispatch(sessionCreated({ graph }));
|
||||
},
|
||||
});
|
||||
};
|
@ -0,0 +1,24 @@
|
||||
import { startAppListening } from '..';
|
||||
import { buildTextToImageGraph } from 'features/nodes/util/graphBuilders/buildTextToImageGraph';
|
||||
import { sessionCreated } from 'services/thunks/session';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { textToImageGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'invoke' });
|
||||
|
||||
export const addUserInvokedTextToImageListener = () => {
|
||||
startAppListening({
|
||||
predicate: (action): action is ReturnType<typeof userInvoked> =>
|
||||
userInvoked.match(action) && action.payload === 'txt2img',
|
||||
effect: (action, { getState, dispatch }) => {
|
||||
const state = getState();
|
||||
|
||||
const graph = buildTextToImageGraph(state);
|
||||
dispatch(textToImageGraphBuilt(graph));
|
||||
moduleLog({ data: graph }, 'Text to Image graph built');
|
||||
|
||||
dispatch(sessionCreated({ graph }));
|
||||
},
|
||||
});
|
||||
};
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user