Compare commits

...

220 Commits

Author SHA1 Message Date
1f608d3743 add v2.3 branch to push trigger (#3363)
Update the push trigger with the branch which should deploy the docs,
also bring over the updates to the workflow from the v2.3 branch and:

- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method (`pip install ".[docs]"`)
2023-05-08 16:26:06 -04:00
df024dd982 bring changes from v2.3 branch over
- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method
2023-05-08 21:50:00 +02:00
45da85765c add v2.3 branch to push trigger 2023-05-08 21:10:20 +02:00
8618e41b32 Deploy documentation from v2.3 branch rather than main (#3356)
This PR instructs github to deploy documentation pages from the v2.3
branch.
2023-05-07 21:43:44 +12:00
4687f94141 Merge branch 'main' into actions/mkdocs-deploy 2023-05-07 21:43:18 +12:00
440912dcff feat(ui): make base log level debug 2023-05-07 15:36:37 +10:00
8b87a26e7e feat(ui): support collect nodes 2023-05-07 15:36:37 +10:00
44ae93df3e Deploy documentation from v2.3 branch rather than main 2023-05-06 23:56:04 -04:00
2b213da967 add -y to the automated install instructions (#3349)
hi there, love the project! i noticed a small typo when going over the
install process.

when copying the automated install instructions from the docs into a
terminal, the line to install the python packages failed as it was
missing the `-y` flag.
2023-05-06 13:34:37 -04:00
e91e1eb9aa Merge branch 'main' into patch-1 2023-05-06 13:34:12 -04:00
b24129fb3e Fix logger namespace clash in web server (#3344)
This PR fixes a bug that appeared in the legacy web server after the
logging PR was merged.

closes #3343
2023-05-06 08:35:13 -04:00
350b1421bb Merge branch 'main' into lstein/bugfix/logger-namespace 2023-05-06 08:14:44 -04:00
f01c79a94f add -y to the automated install instructions
when copying the automated install instructions from the docs into a terminal, the line to install the python packages failed as it was missing the `-y` flag.
2023-05-05 21:28:00 -04:00
463f6352ce Add compel node and conditioning field type (#3265)
Done as I said in title, but need to test(and understand) how cli works,
as previously it uses single prompt and now it's positive and negative.
2023-05-06 13:05:04 +12:00
a80fe05e23 Rename compel node 2023-05-05 21:30:16 +03:00
58d7833c5c Review changes 2023-05-05 21:09:29 +03:00
5012f61599 Separate conditionings back to positive and negative 2023-05-05 15:47:51 +03:00
85c33823c3 Merge branch 'main' into feat/compel_node 2023-05-05 14:41:45 +12:00
c83a112669 Fix inpaint node (#3284)
Seems like this is the only change needed for the existing inpaint code
to work as a node. Kyle said on Discord that inpaint shouldn't be a
node, so feel free to just reject this if this code is going to be gone
soon.
2023-05-05 14:41:13 +12:00
e04ada1319 Merge branch 'main' into patch-1 2023-05-05 10:38:45 +10:00
d866dcb3d2 close #3343 2023-05-04 20:30:59 -04:00
81ec476f3a Revert seed field addition 2023-05-04 21:50:40 +03:00
1e6adf0a06 Fix default graph and test 2023-05-04 21:14:31 +03:00
7d221e2518 Combine conditioning to one field(better fits for multiple type conditioning like perp-neg) 2023-05-04 20:14:22 +03:00
56d3cbead0 Merge branch 'main' into feat/compel_node 2023-05-04 00:28:33 +03:00
5e8c97f1ba [Enhancement] Regularize logging messages (#3176)
# Intro

This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions:

```
 ### A critical error
 *** A non-fatal error
 ** A warning
  >> Informational message
        | Debugging message
```

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add InvokeAI's
informational message decorations, while `ialog.error("foo")` will add
the decorations.
    
# Usage:

This is a thin wrapper around the standard Python logging module. It can
be used in several ways:


## Module-level logging style
 
This style logs everything through a single default logging object and
is identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus to
logging:
    
```
      import invokeai.backend.util.logging as logger
    
      logger.debug('this is a debugging message')
      logger.info('this is a informational message')
      logger.log(level=logging.CRITICAL, 'get out of dodge')

      logger.disable(level=logging.INFO)
      logger.basicConfig(filename='/var/log/invokeai.log')
      logger.error('this will be logged to console and to invokeai.log')
```    

Internally these functions all go through a custom logging object named
"invokeai". You can access it to perform additional customization in
either of these ways:

```
logger = logger.getLogger()
logger = logger.getLogger('invokeai')
```
    
## Object-oriented style

For more control, the logging module's object-oriented logging style is
also supported. The API is identical to the vanilla logging usage. In
fact, the only thing that has changed is that the getLogger() method
adds a custom formatter to the log messages.
    
```
     import logging
     from invokeai.backend.util.logging import InvokeAILogger
    
     logger = InvokeAILogger.getLogger(__name__)
     fh = logging.FileHandler('/var/invokeai.log')
     logger.addHandler(fh)
     logger.critical('this will be logged to both the console and the log file')
```

## Within the nodes API

From within the nodes API, the logger module is stored in the `logger`
slot of InvocationServices during dependency initialization. For
example, in a router, the idiom is:

```
from ..dependencies import ApiDependencies
logger = ApiDependencies.invoker.services.logger
logger.warning('uh oh')
```

Currently, to change the logger used by the API, one must change the
logging module passed to `ApiDependencies.initialize()` in `api_app.py`.
However, this will eventually be replaced with a method to select the
preferred logging module using the configuration file (dependent on
merging of PR #3221)
2023-05-03 15:00:05 -04:00
4687ad4ed6 Merge branch 'main' into enhance/invokeai-logs 2023-05-03 13:36:06 -04:00
994b247f8e feat(ui): do not persist gallery images
- I've sorted out the issues that make *not* persisting troublesome, these will be rolled out with canvas
- Also realized that persisting gallery images very quickly fills up localStorage, so we can't really do it anyways
2023-05-03 23:41:48 +10:00
0419f50ab0 chore(ui): bump react-virtuoso
- Resolves an issue with gallery not rendering all items
2023-05-02 20:15:29 +10:00
f9f40adcdc fix(nodes): fix t2i graph
Removed width and height edges.
2023-05-02 13:11:28 +10:00
3264d30b44 feat(nodes): allow multiples of 8 for dimensions 2023-05-02 12:01:52 +10:00
4d885653e9 feat(ui): tidy 2023-05-02 11:27:08 +10:00
475b6bef53 feat(ui): use windowing for gallery
vastly improves the gallery performance when many images are loaded.

- `react-virtuoso` to do the virtualized list
- `overlayscrollbars` for a scrollbar
2023-05-02 11:27:08 +10:00
d39de0ad38 fix(nodes): fix duplicate Invoker start/stop events 2023-05-01 18:24:37 -04:00
d14a7d756e nodes-api: enforce single thread for the processor
On hyperthreaded CPUs we get two threads operating on the queue by
default on each core. This cases two threads to process queue items.
This results in pytorch errors and sometimes generates garbage.

Locking this to single thread makes sense because we are bound by the
number of GPUs in the system, not by CPU cores. And to parallelize
across GPUs we should just start multiple processors (and use async
instead of threading)

Fixes #3289
2023-05-01 18:24:37 -04:00
b050c1bb8f use logger in ApiDependencies 2023-05-01 16:27:44 -04:00
276dfc591b feat(ui): disable w/h when img2img & not fit 2023-05-01 17:28:22 +10:00
b49d76ebee feat(nodes): fix image to image fit param
it was ignored previously.
2023-05-01 17:28:22 +10:00
a6be44789b fix(ui): progress image rerender, checkbox 2023-05-01 11:16:49 +10:00
a4313c26cb fix: Do not hide Preview button & color code it 2023-05-01 11:16:49 +10:00
d4b250d509 feat(ui): Add auto show progress previews setting 2023-05-01 11:16:49 +10:00
29743a9e02 fix(ui): next/prev image buttons 2023-05-01 11:16:49 +10:00
fecb77e344 feat(ui): dndkit --> rnd for draggable 2023-05-01 11:16:49 +10:00
779671753d feat(ui): tweak floating preview 2023-05-01 11:16:49 +10:00
d5e152b35e fix(ui): ignore events after canceling session 2023-05-01 11:16:49 +10:00
270657a62c feat(ui): gallery & progress image refactor 2023-05-01 11:16:49 +10:00
3601b9c860 feat(ui): revamp status indicator 2023-05-01 11:16:49 +10:00
c8fe12cd91 feat(ui): init image tweaks 2023-05-01 11:16:49 +10:00
deae5fbaec fix(ui): socket event types 2023-05-01 11:16:49 +10:00
5b558af2b3 fix(ui): fix metadata viewer scroll 2023-05-01 11:16:49 +10:00
4150d5306f chore(ui): regen api client 2023-05-01 11:16:49 +10:00
8c2e4700f9 feat(ui): persist gallery state 2023-05-01 11:16:49 +10:00
adaecada20 fix(ui): fix current image seed button 2023-05-01 11:16:49 +10:00
258895bcc9 feat(ui): being dismantling old sio stuff, fix recall seed/prompt/init
- still need to fix up metadataviewer's recall features
2023-05-01 11:16:49 +10:00
2eb7c25bae feat(ui): clean up and simplify socketio middleware 2023-05-01 11:16:49 +10:00
2e4e9434c1 fix(ui): fix initial image for uploads 2023-05-01 11:16:49 +10:00
0cad204e74 feat(ui): add error handling for linear graph generation 2023-05-01 11:16:49 +10:00
0bc2edc044 Merge branch 'main' into enhance/invokeai-logs 2023-04-29 11:00:18 -04:00
16488e7db8 fix tests 2023-04-29 10:59:50 -04:00
974841926d logger is a interchangeable service 2023-04-29 10:48:50 -04:00
8db20e0d95 rename log to logger throughout 2023-04-29 09:43:40 -04:00
d00d29d6b5 feat(ui): update settings modal 2023-04-29 18:28:19 +10:00
dc976cd665 feat(ui): add switch for logging 2023-04-29 18:28:19 +10:00
6d6b986a66 feat(ui): remove Console and redux logging state 2023-04-29 18:28:19 +10:00
bffdede0fa feat(ui): improve log messages 2023-04-29 18:28:19 +10:00
a4c258e9ec feat(ui): add roarr logger 2023-04-29 18:28:19 +10:00
8d837558ac fix(ui): fix spelling of systemPersistDenylist.ts 2023-04-29 18:28:19 +10:00
e673ed08ec fix(ui): restore missing chakra-cli package
(amending to try and get the workflow to run)
2023-04-29 12:21:11 +10:00
f0e07bff5a fix bad logging path in config script 2023-04-28 15:39:00 -04:00
3ec06a1fc3 Merge branch 'main' into enhance/invokeai-logs 2023-04-28 10:10:33 -04:00
6b79e2b407 Merge branch 'main' into enhance/invokeai-logs
- resolve conflicts
- remove unused code identified by pyflakes
2023-04-28 10:09:46 -04:00
0eed9dbc44 fix(ui): fix packaging import issue (#3294)
I accidentally merged a broken #3292 (merge conflicts incorrectly
resolved). Fixing it
2023-04-29 00:39:56 +12:00
53c7832fd1 fix(ui): fix packaging import issue 2023-04-28 22:37:51 +10:00
ca1cc0e2c2 feat(ui): rerender mitigation sweep 2023-04-28 22:00:18 +10:00
5d8728c7ef feat(ui): persist socket session ids and re-sub on connect 2023-04-28 22:00:18 +10:00
a8cec4c7e6 fix(ui): improve schema parsing error handling 2023-04-28 22:00:18 +10:00
2b5ccdc55f build(ui): treeshake lodash via lodash-es 2023-04-28 21:56:43 +10:00
d92d5b5258 build(ui): fix types exports 2023-04-28 21:56:43 +10:00
a591184d2a build(ui): remove unneeded types file 2023-04-28 21:56:43 +10:00
ee881e4c78 build(ui): add react/react-dom peer deps 2023-04-28 21:56:43 +10:00
61fbb24e36 feat(ui): set up for packaging 2023-04-28 21:56:43 +10:00
d582949488 feat(ui): rename main app components 2023-04-28 21:56:43 +10:00
de574eb4d9 chore(ui): upgrade all packages 2023-04-28 21:56:43 +10:00
bfd90968f1 chore(ui): tidy npm structure 2023-04-28 21:56:43 +10:00
4a924c9b54 feat(nodes): hardcode resize latents downsampling 2023-04-28 09:52:09 +10:00
0453d60c64 fix(nodes): fix slatents and rlatents bugs 2023-04-28 09:52:09 +10:00
c4f4f8b1b8 fix(nodes): remove unused width and height from t2l 2023-04-28 09:52:09 +10:00
3e80eaa342 feat(nodes): add resize and scale latents nodes
- this resize/scale latents is what is needed for hires fix
- also remove unused `seed` from t2l
2023-04-28 09:52:09 +10:00
00a0cb3403 fix(ui): update exported types 2023-04-28 09:20:09 +10:00
ea93cad5ff fix(ui): update to match change in route params 2023-04-28 09:19:03 +10:00
4453a0d20d feat(ui): remove toasts for network bc we have status to tell us 2023-04-28 09:18:19 +10:00
1e837e3c9d fix(ui): add formatted neg prompt for linear nodes (#3282)
* fix(ui): add formatted neg prompt for linear nodes

* remove conditional

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-27 15:05:35 -04:00
0f95f7cea3 Fix inpaint node
Seems like this is the only change needed for the existing inpaint node to work.
2023-04-27 11:03:07 -07:00
0b0068ab86 Merge branch 'main' into feat/compel_node 2023-04-27 14:53:10 +03:00
31c7fa833e feat(ui): simplify image display 2023-04-27 14:10:44 +10:00
db16ca0079 fix(ui): Current Image Buttons position 2023-04-27 14:10:44 +10:00
a824f47bc6 fix(nodes): use absolute path when deleting 2023-04-27 14:10:44 +10:00
99392debe8 feat(ui): refactor DeleteImageModal
- refactor the component
- use translations
- add config for systems where deleted images are not sent to bin (only changes the messaging)
2023-04-27 14:10:44 +10:00
0cc739afc8 feat(nodes): use send2trash to delete images, fix thumbnail_path 2023-04-27 14:10:44 +10:00
0ab62b0343 feat(ui): "blacklist" -> "denylist" 2023-04-27 14:10:44 +10:00
75d25dd5cc feat(ui): restore image deletion functionality 2023-04-27 14:10:44 +10:00
2e54da13d8 chore(ui): regen api client 2023-04-27 14:10:44 +10:00
f34f416bf5 fix(ui): handle floats in NumberInputFieldComponent 2023-04-27 14:10:44 +10:00
021c63891d fix(ui): fix config types and merging 2023-04-27 14:10:44 +10:00
a968862e6b feat(ui): Move img2img badge info to top right 2023-04-27 14:10:44 +10:00
a08189d457 ui: Match styling of img2img to the rest of the accordions 2023-04-27 14:10:44 +10:00
0a936696c3 feat(ui): add config slice, configuration default values 2023-04-27 14:10:44 +10:00
55e33eaf4c docs: add note on README about migration (#3277) 2023-04-27 13:17:43 +12:00
3da5fb223f docs: add note on README about migration 2023-04-27 11:05:32 +10:00
a3c5a664e5 fix(ui): update UI to handle uploads with alternate URLs (#3274) 2023-04-26 07:14:08 -07:00
b638fb2f30 fix(ui): use name in response instead of parsing out of URL to handle alternative URLs 2023-04-26 09:48:16 -04:00
c1b10b2222 feat(ui): open in new tab @ hoverable image 2023-04-26 12:40:10 +10:00
bee29714d9 fix(ui): fix templates not refreshing correctly 2023-04-26 12:40:10 +10:00
d40d5276dd feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
568f0aad71 feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
38474fa9d4 feat(ui): add lil spinner to loading 2023-04-26 12:17:01 +10:00
f7f974a28b fix(ui): fix inverted conditional 2023-04-26 12:17:01 +10:00
3c150b384c fix(ui): fix export of ApplicationFeature type 2023-04-26 12:17:01 +10:00
65816049ba feat(ui): add secret loading screen override button 2023-04-26 12:17:01 +10:00
c1c881ded5 feat(ui): support disabledFeatures, add nicer loading
- `disabledParametersPanels` -> `disabledFeatures`
- handle disabling `faceRestore`, `upscaling`, `lightbox`, `modelManager` and OSS header links/buttons
- wait until models are loaded to hide loading screen
- also wait until schema is parsed if `nodes` is an enabled tab
2023-04-26 12:17:01 +10:00
82c4dd8b86 fix(api): return same URL on location header 2023-04-26 06:29:30 +10:00
711d09a107 feat(nodes): add get_uri method to image storage
- gets the external URI of an image
2023-04-26 06:29:30 +10:00
74013b6611 fix(nodes): address feedback 2023-04-26 06:29:30 +10:00
790f399986 feat(nodes): tidy images routes 2023-04-26 06:29:30 +10:00
73cdd36594 feat(nodes): raise HTTPExceptions instead of returning Reponses 2023-04-26 06:29:30 +10:00
50ac3eb28d feat(nodes): add delete_image & delete_images routes 2023-04-26 06:29:30 +10:00
d753cff91a Undo debug message 2023-04-25 13:18:50 +03:00
89f1909e4b Update default graph 2023-04-25 13:11:50 +03:00
37916a22ad Use textual inversion manager from pipeline, remove extra conditioning info for uc 2023-04-25 12:53:13 +03:00
76e5d0595d fix(ui): fix no progress images when gallery is empty (#3268)
When gallery was empty (and there is therefore no selected image), no
progress images were displayed.

- fix by correcting the logic in CurrentImageDisplay
- also fix app crash introduced by fixing the first bug
2023-04-25 17:48:24 +12:00
f03cb8f134 fix(ui): fix no progress images when gallery is empty 2023-04-25 15:00:54 +10:00
c2a0e8afc3 [Bugfix] prevent cli crash (#3132)
Prevent legacy CLI crash caused by removal of convert option
    
- Compensatory change to the CLI that prevents it from crashing when it
tries to import a model.
- Bug introduced when the "convert" option removed from the model
manager.
2023-04-25 03:55:33 +01:00
31a904b903 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:28:45 +01:00
c174cab3ee [Bugfix] fixes and code cleanup to update and installation routines (#3101)
- Fix the update script to work again and fixes the ambiguity between
when a user wants to update to a tag vs updating to a branch, by making
these two operations explicitly separate.
- Remove dangling functions and arguments related to legacy checkpoint
conversion. These are no longer needed now that all legacy models are
either converted at import time, or on-the-fly in RAM.
2023-04-25 03:28:23 +01:00
fe12938c23 update to diffusers 0.15 and fix code for name changes (#3201)
- This is a port of #3184 to the main branch
2023-04-25 03:23:24 +01:00
4fa5c963a1 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:10:51 +01:00
48ce256ba2 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-25 02:49:59 +01:00
8cb2fa8600 Restore log_tokenization check 2023-04-25 04:29:17 +03:00
8f460b92f1 Make latent generation nodes use conditions instead of prompt 2023-04-25 04:21:03 +03:00
d99a08a441 Add compel node and conditioning field type 2023-04-25 03:48:44 +03:00
7555b1f876 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly (#3256)
I noticed that the current invokeai-new.py was using almost all of a CPU
core. After a bit of profileing I noticed that there were many thousands
of calls to epoll() which suggested to me that something wasn't sleeping
properly in asyncio's loop.

A bit of further investigation with Python profiling revealed that the
__dispatch_from_queue() method in FastAPIEventService
(app/api/events.py:33) was also being called thousands of times.

I believe the asyncio.sleep(0.001) in that method is too aggressive (it
means that the queue will be polled every 1ms) and that 0.1 (100ms) is
still entirely reasonable.
2023-04-24 19:35:27 +12:00
a537231f19 Merge branch 'main' into reduce-event-polling 2023-04-24 19:14:10 +12:00
8044d1b840 translationBot(ui): update translation (Turkish)
Currently translated at 11.3% (58 of 512 strings)

translationBot(ui): added translation (Turkish)

Co-authored-by: ismail ihsan bülbül <e-ben@msn.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/tr/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
2b58ce4ae4 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 75.0% (380 of 506 strings)

Co-authored-by: Patrick Tien <ivetien@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
ef605cd76c translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

Co-authored-by: Fabian Bahl <fabian98@bahl-netz.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
a84b5b168f translationBot(ui): update translation (Swedish)
Currently translated at 34.7% (176 of 506 strings)

translationBot(ui): added translation (Swedish)

Co-authored-by: figgefigge <qvintuz@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/sv/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
16f6ee04d0 translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

translationBot(ui): update translation (German)

Currently translated at 80.8% (409 of 506 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
44be057aa3 translationBot(ui): update translation (Ukrainian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (English)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Ukrainian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/en/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
422f6967b2 translationBot(ui): update translation (Ukrainian)
Currently translated at 75.8% (384 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 85.5% (433 of 506 strings)

Co-authored-by: mitien <mitien@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
4528cc8ba6 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
87e91ebc1d translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
fd00d111ea translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (504 of 504 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
b8dc9000bd translationBot(ui): update translation (German)
Currently translated at 73.4% (370 of 504 strings)

Co-authored-by: Jaulustus <jaulustus@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
58c1066765 translationBot(ui): update translation (Finnish)
Currently translated at 18.2% (92 of 504 strings)

translationBot(ui): added translation (Finnish)

Co-authored-by: Juuso V <juuso.vantola@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fi/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
37096a697b translationBot(ui): added translation (Mongolian)
Co-authored-by: Bouncyknighter <gebifirm@gmail.com>
2023-04-24 16:05:16 +10:00
17d0920186 translationBot(ui): update translation (Japanese)
Currently translated at 73.0% (368 of 504 strings)

Co-authored-by: 唐澤 克幸 <4ranci0ne@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
1e05538364 translationBot(ui): added translation (Vietnamese)
Co-authored-by: techybrain-dev <techybrain.dev@gmail.com>
2023-04-24 16:05:16 +10:00
cf28617cd6 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly 2023-04-23 21:27:02 +01:00
d0d8640711 feat(ui): add reload schema button (#3252) 2023-04-23 19:51:37 +12:00
e6158d1874 feat(ui): add reload schema button 2023-04-23 17:49:02 +10:00
2e9d1ea8a3 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL (#3250)
* if `shouldFetchImages` is passed in, UI will make an additional
request to get valid image URL when an invocation is complete
* this is necessary in order to have optional authorization for images
2023-04-23 16:00:13 +10:00
59b0153236 add to types 2023-04-23 15:59:55 +10:00
9f8ff912c4 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL 2023-04-23 15:59:55 +10:00
f0e4a2124a [Nodes UI] More Work (#3248)
- Style the Minimap
- Made the Node UI Legend Responsive
- Set Min Width for nodes on Spawn so resize doesn't snap.
- Initial Implementation of Node Search
- Added FuseJS to handle the node filtering
2023-04-23 17:51:40 +12:00
11ab5c7d56 fix(ui): Fix up arrow not working on unfiltered list 2023-04-23 15:18:35 +12:00
3f334d9e5e feat(ui): Add fusejs to NodeSearch 2023-04-23 15:14:44 +12:00
ff891b1ff2 feat(ui): Basic Node Search Component
Very buggy
2023-04-23 13:35:02 +12:00
2914ee10b0 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-22 20:21:59 +01:00
e29c2fb782 Merge branch 'more-nodes-work' of https://github.com/blessedcoolant/InvokeAI into more-nodes-work 2023-04-23 02:53:25 +12:00
b763f1809e feat(ui): Stylize Node Minimap 2023-04-23 02:52:32 +12:00
d26b44104a fix(ui): minor tidy 2023-04-23 00:45:03 +10:00
b73fd2a6d2 fix(ui): Set Min Width for Nodes 2023-04-23 00:55:43 +12:00
f258aba6d1 chore(ui): Make the Node UI Legend Responsive 2023-04-23 00:55:22 +12:00
2e70848aa0 Responsive Mobile Layout (#3207)
The first draft for a Responsive Mobile Layout for InvokeAI. Some basic
documentation to help contributors. // Notes from: @blessedcoolant

---

The whole rework needs to be done using the `mobile first` concept where
the base design will be catered to mobile and we add responsive changes
as we grow to larger screens.

**Added**

- Basic breakpoints have been added to the `theme.ts` file that indicate
at which values Chakra makes the responsive changes.
- A basic `useResolution` hook has been added that either returns
`mobile`, `tablet` or `desktop` based on the breakpoint. We can
customize this hook further to do more complex checks for us if need be.

**Syntax**

- Any Chakra component is directly capable of taking different values
for the different breakpoints set in our `theme.ts` file. These can be
passed in a few ways with the most descriptive being an object. For
example:

`flexDir={{ base: 'column', xl: 'row' }}` - This would set the `0em and
above` to be column for the flex direction but change to row
automatically when we hit `xl` and above resolutions which in our case
is `80em or 1280px`. This same format is applicable for any element in
Chakra.

`flexDir={['column', null, null, 'row', null]}` - The above syntax can
also be passed as an array to the property with each value in the array
corresponding to each breakpoint we have. Setting `null` just bypasses
it. This is a good short hand but I think we stick to the above syntax
for readability.

**Note**: I've modified a few elements here and there to give an idea on
how the responsive syntax works for reference.

---

**Problems to be solved** @SammCheese 

- Some issues you might run into are with the Resizable components.
We've decided we will get not use resizable components for smaller
resolutions. Doesn't make sense. So you'll need to make conditional
renderings around these.
- Some components that need custom layouts for different screens might
be better if ported over to `Grid` and use `gridTemplateAreas` to swap
out the design layout. I've demonstrated an example of this in a commit
I've made. I'll let you be the judge of where we might need this.
- The header will probably need to be converted to a burger menu of some
sort with the model changing being handled correctly UX wise. We'll
discuss this on discord.

---

Anyone willing to contribute to this PR can feel free to join the
discussion on discord.

https://discord.com/channels/1020123559063990373/1020839344170348605/threads/1097323866780606615
2023-04-22 22:34:30 +10:00
e973aeef0d Merge branch 'main' into responsive-ui 2023-04-22 14:31:19 +02:00
50e1ac731d fix(ui): make input/outputs renderfn callback 2023-04-22 22:25:17 +10:00
43addc1548 fix(ui): memoize everything nodes 2023-04-22 22:25:17 +10:00
4901911c1a fix(ui): improve nodes performance 2023-04-22 22:25:17 +10:00
44a653925a feat(ui): node styling, controls
- custom node controls
- fix some types
- fix badge colors via colorScheme
- style nodes
2023-04-22 22:25:17 +10:00
94a07a8da7 feat(ui): Make Nodes always spawn in center of work area 2023-04-22 22:25:17 +10:00
ad41afe65e feat(ui): Make Nodes Resizable 2023-04-22 22:25:17 +10:00
77fa7519c4 chore(ui): Cleanup Invocation Component 2023-04-22 22:25:17 +10:00
6e29148d4d delete ImageToImageContent.tsx 2023-04-22 08:43:14 +02:00
3044f3bfe5 fix(ui): adapt NodeEditor for smaller screens 2023-04-22 08:33:05 +02:00
67a8627cf6 add dev:host script 2023-04-22 08:30:09 +02:00
3fb433cb91 Merge branch 'main' of https://github.com/invoke-ai/InvokeAI into responsive-ui 2023-04-22 08:27:00 +02:00
5f498e10bd Partial migration of UI to nodes API (#3195)
* feat(ui): add axios client generator and simple example

* fix(ui): update client & nodes test code w/ new Edge type

* chore(ui): organize generated files

* chore(ui): update .eslintignore, .prettierignore

* chore(ui): update openapi.json

* feat(backend): fixes for nodes/generator

* feat(ui): generate object args for api client

* feat(ui): more nodes api prototyping

* feat(ui): nodes cancel

* chore(ui): regenerate api client

* fix(ui): disable OG web server socket connection

* fix(ui): fix scrollbar styles typing and prop

just noticed the typo, and made the types stronger.

* feat(ui): add socketio types

* feat(ui): wip nodes

- extract api client method arg types instead of manually declaring them
- update example to display images
- general tidy up

* start building out node translations from frontend state and add notes about missing features

* use reference to sampler_name

* use reference to sampler_name

* add optional apiUrl prop

* feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation

* feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node

* feat(ui): img2img implementation

* feat(ui): get intermediate images working but types are stubbed out

* chore(ui): add support for package mode

* feat(ui): add nodes mode script

* feat(ui): handle random seeds

* fix(ui): fix middleware types

* feat(ui): add rtk action type guard

* feat(ui): disable NodeAPITest

This was polluting the network/socket logs.

* feat(ui): fix parameters panel border color

This commit should be elsewhere but I don't want to break my flow

* feat(ui): make thunk types more consistent

* feat(ui): add type guards for outputs

* feat(ui): load images on socket connect

Rudimentary

* chore(ui): bump redux-toolkit

* docs(ui): update readme

* chore(ui): regenerate api client

* chore(ui): add typescript as dev dependency

I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue.

* feat(ui): begin migrating gallery to nodes

Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way.

* feat(ui): clean up & comment results slice

* fix(ui): separate thunk for initial gallery load so it properly gets index 0

* feat(ui): POST upload working

* fix(ui): restore removed type

* feat(ui): patch api generation for headers access

* chore(ui): regenerate api

* feat(ui): wip gallery migration

* feat(ui): wip gallery migration

* chore(ui): regenerate api

* feat(ui): wip refactor socket events

* feat(ui): disable panels based on app props

* feat(ui): invert logic to be disabled

* disable panels when app mounts

* feat(ui): add support to disableTabs

* docs(ui): organise and update docs

* lang(ui): add toast strings

* feat(ui): wip events, comments, and general refactoring

* feat(ui): add optional token for auth

* feat(ui): export StatusIndicator and ModelSelect for header use

* feat(ui) working on making socket URL dynamic

* feat(ui): dynamic middleware loading

* feat(ui): prep for socket jwt

* feat(ui): migrate cancelation

also updated action names to be event-like instead of declaration-like

sorry, i was scattered and this commit has a lot of unrelated stuff in it.

* fix(ui): fix img2img type

* chore(ui): regenerate api client

* feat(ui): improve InvocationCompleteEvent types

* feat(ui): increase StatusIndicator font size

* fix(ui): fix middleware order for multi-node graphs

* feat(ui): add exampleGraphs object w/ iterations example

* feat(ui): generate iterations graph

* feat(ui): update ModelSelect for nodes API

* feat(ui): add hi-res functionality for txt2img generations

* feat(ui): "subscribe" to particular nodes

feels like a dirty hack but oh well it works

* feat(ui): first steps to node editor ui

* fix(ui): disable event subscription

it is not fully baked just yet

* feat(ui): wip node editor

* feat(ui): remove extraneous field types

* feat(ui): nodes before deleting stuff

* feat(ui): cleanup nodes ui stuff

* feat(ui): hook up nodes to redux

* fix(ui): fix handle

* fix(ui): add basic node edges & connection validation

* feat(ui): add connection validation styling

* feat(ui): increase edge width

* feat(ui): it blends

* feat(ui): wip model handling and graph topology validation

* feat(ui): validation connections w/ graphlib

* docs(ui): update nodes doc

* feat(ui): wip node editor

* chore(ui): rebuild api, update types

* add redux-dynamic-middlewares as a dependency

* feat(ui): add url host transformation

* feat(ui): handle already-connected fields

* feat(ui): rewrite SqliteItemStore in sqlalchemy

* fix(ui): fix sqlalchemy dynamic model instantiation

* feat(ui, nodes): metadata wip

* feat(ui, nodes): models

* feat(ui, nodes): more metadata wip

* feat(ui): wip range/iterate

* fix(nodes): fix sqlite typing

* feat(ui): export new type for invoke component

* tests(nodes): fix test instantiation of ImageField

* feat(nodes): fix LoadImageInvocation

* feat(nodes): add `title` ui hint

* feat(nodes): make ImageField attrs optional

* feat(ui): wip nodes etc

* feat(nodes): roll back sqlalchemy

* fix(nodes): partially address feedback

* fix(backend): roll back changes to pngwriter

* feat(nodes): wip address metadata feedback

* feat(nodes): add seeded rng to RandomRange

* feat(nodes): address feedback

* feat(nodes): move GET images error handling to DiskImageStorage

* feat(nodes): move GET images error handling to DiskImageStorage

* fix(nodes): fix image output schema customization

* feat(ui): img2img/txt2img -> linear

- remove txt2img and img2img tabs
- add linear tab
- add initial image selection to linear parameters accordion

* feat(ui): tidy graph builders

* feat(ui): tidy misc

* feat(ui): improve invocation union types

* feat(ui): wip metadata viewer recall

* feat(ui): move fonts to normal deps

* feat(nodes): fix broken upload

* feat(nodes): add metadata module + tests, thumbnails

- `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service`
- Handles loading/parsing/building metadata, and creating png info objects
- added tests for MetadataModule
- Lifted thumbnail stuff to util

* fix(nodes): revert change to RandomRangeInvocation

* feat(nodes): address feedback

- make metadata a service
- rip out pydantic validation, implement metadata parsing as simple functions
- update tests
- address other minor feedback items

* fix(nodes): fix other tests

* fix(nodes): add metadata service to cli

* fix(nodes): fix latents/image field parsing

* feat(nodes): customise LatentsField schema

* feat(nodes): move metadata parsing to frontend

* fix(nodes): fix metadata test

---------

Co-authored-by: maryhipp <maryhipp@gmail.com>
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 13:10:20 +10:00
b164330e3c replaced remaining print statements with log.*() 2023-04-18 20:49:00 -04:00
69433c9f68 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-18 19:21:53 -04:00
bd8ffd36bf bump to diffusers 0.15.1, remove dangling module 2023-04-18 19:20:38 -04:00
2feeb1f44c fix(ui): more responsive layout work 2023-04-18 04:29:31 +12:00
554f353773 fix(ui): Fix Width and Height showing 0 as input 2023-04-18 04:28:58 +12:00
aee27e94c9 fix(ui): Fix site header on really small screens 2023-04-18 01:25:53 +12:00
695893e1ac fix(ui): Improve parameters panel and preview display 2023-04-18 01:09:48 +12:00
b800a8eb2e feat(ui): responsive wip
- Fixed a bunch of padding and margin issues across the app
- Fixed the Invoke logo compressing
- Disabled the visibility of the options panel pin button in tablet and mobile views
- Refined the header menu options in mobile and tablet views
- Refined other site header elements in mobile and tablet views
- Aligned Tab Icons to center in mobile and tablet views
2023-04-18 00:50:09 +12:00
9749ef34b5 layout improvements 2023-04-17 13:30:33 +02:00
9a43362127 Revert "Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207"
This reverts commit 866024ea6c, reversing
changes made to 601cc1f92c.
2023-04-17 13:51:08 +12:00
866024ea6c Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207 2023-04-17 13:50:44 +12:00
601cc1f92c help(ui): Basic responsive updates to demonstrate
Made some basic responsive changes to demonstrate how to go about making changes.

There are a bunch of problems not addressed yet. Like dealing with the resizeable component and etc.
2023-04-17 13:50:13 +12:00
d6a9a4464d feat(ui): Add Basic useResolution Component
This component just classifies `base` and `sm` as mobile, `md` and `lg` as tablet and `xl` and `2xl` as desktop.

This is a basic hook for quicker work with resolutions. Can be modified and adjusted to our needs. All resolution related work can go into this hook.
2023-04-17 13:48:42 +12:00
dac271725a feat(ui): Add Basic Breakpoints 2023-04-17 13:26:10 +12:00
e1fbecfcf7 fix(ui): Syntax issue with the HidePreview icon 2023-04-17 12:42:06 +12:00
2ec4f5af10 remove unused import to pass lint & revert package.json 2023-04-15 21:53:33 +02:00
2edd032ec7 draft mobile layout 2023-04-15 21:34:03 +02:00
aab262d991 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-14 20:12:38 -04:00
47b9910b48 update to diffusers 0.15 and fix code for name changes
- This is a port of #3184 to the main branch
2023-04-14 15:35:03 -04:00
0b0e6fe448 convert remainder of print() to log.info() 2023-04-14 15:15:14 -04:00
c132dbdefa change "ialog" to "log" 2023-04-11 18:48:20 -04:00
f3081e7013 add module-level getLogger() method 2023-04-11 12:23:13 -04:00
f904f14f9e add missing module-level methods 2023-04-11 11:10:43 -04:00
8917a6d99b add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)

This style logs everything through a single logging object and is
identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus
to logging:

  import invokeai.backend.util.logging as ialog

  ialog.debug('this is a debugging message')
  ialog.info('this is a informational message')
  ialog.log(level=logging.CRITICAL, 'get out of dodge')
  ialog.disable(level=logging.INFO)
  ialog.basicConfig(filename='/var/log/invokeai.log')

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add the additional
message decorations.

For more control, the logging module's object-oriented logging style
is also supported. The API is identical to the vanilla logging
usage. In fact, the only thing that has changed is that the
getLogger() method adds a custom formatter to the log messages.

 import logging
 from invokeai.backend.util.logging import InvokeAILogger

 logger = InvokeAILogger.getLogger(__name__)
 fh = logging.FileHandler('/var/invokeai.log')
 logger.addHandler(fh)
 logger.critical('this will be logged to both the console and the log file')
2023-04-11 10:46:38 -04:00
5a4765046e add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)
2023-04-11 09:33:28 -04:00
cee159dfa3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-09 12:08:09 -04:00
cd1b350dae Merge branch 'main' into bugfix/release-updater 2023-04-07 18:56:21 -04:00
8334757af9 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-07 18:55:54 -04:00
bc2b9500e3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-06 15:38:46 -04:00
32857d81c5 prevent legacy CLI crash caused by removal of convert option
- Compensatory change to the CLI that prevents it from crashing
  when it tries to import a model.
- Bug introduced when the "convert" option removed from the model
  manager.
2023-04-06 15:36:05 -04:00
28f75d80d5 Merge branch 'main' into bugfix/release-updater 2023-04-05 18:25:33 -04:00
b917ffa4d7 Merge branch 'main' into bugfix/release-updater 2023-04-05 17:37:27 -04:00
f682fb8040 fix invokeai-update script
- This commit fixes the update script to work again, as well as fixing
  the ambiguity between updating to a tag and updating to a branch.
2023-04-02 11:08:12 -04:00
563 changed files with 23247 additions and 7042 deletions

View File

@ -2,8 +2,7 @@ name: mkdocs-material
on:
push:
branches:
- 'main'
- 'development'
- 'refs/heads/v2.3'
permissions:
contents: write
@ -12,6 +11,10 @@ jobs:
mkdocs-material:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout sources
uses: actions/checkout@v3
@ -22,11 +25,15 @@ jobs:
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install -r docs/requirements-mkdocs.txt
pip install ".[docs]"
- name: confirm buildability
run: |
@ -36,7 +43,7 @@ jobs:
--verbose
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
if: ${{ github.ref == 'refs/heads/v2.3' }}
run: |
python -m \
mkdocs gh-deploy \

View File

@ -33,6 +33,8 @@
</div>
_**Note: The UI is not fully functional on `main`. If you need a stable UI based on `main`, use the `pre-nodes` tag while we [migrate to a new backend](https://github.com/invoke-ai/InvokeAI/discussions/3246).**_
InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products.
**Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]

View File

@ -89,7 +89,7 @@ experimental versions later.
sudo apt update
sudo apt install -y software-properties-common
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt install python3.10 python3-pip python3.10-venv
sudo apt install -y python3.10 python3-pip python3.10-venv
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
```

View File

@ -1,12 +1,12 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os
from argparse import Namespace
import invokeai.backend.util.logging as logger
from typing import types
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
@ -17,6 +17,7 @@ from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from ..services.metadata import PngMetadataService
from .events import FastAPIEventService
@ -42,15 +43,16 @@ class ApiDependencies:
invoker: Invoker = None
@staticmethod
def initialize(config, event_handler_id: int):
def initialize(config, event_handler_id: int, logger: types.ModuleType=logger):
Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert
# TODO: Use a logger
print(f">> Internet connectivity is {Globals.internet_available}")
# TO DO: Use the config to select the logger rather than use the default
# invokeai logging module
logger.info(f"Internet connectivity is {Globals.internet_available}")
events = FastAPIEventService(event_handler_id)
@ -60,16 +62,20 @@ class ApiDependencies:
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
images = DiskImageStorage(f'{output_folder}/images')
metadata = PngMetadataService()
images = DiskImageStorage(f'{output_folder}/images', metadata_service=metadata)
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices(
model_manager=get_model_manager(config),
model_manager=get_model_manager(config,logger),
events=events,
logger=logger,
latents=latents,
images=images,
metadata=metadata,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
@ -78,7 +84,7 @@ class ApiDependencies:
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
restoration=RestorationServices(config,logger),
)
create_system_graphs(services.graph_library)

View File

@ -45,7 +45,7 @@ class FastAPIEventService(EventServiceBase):
)
except Empty:
await asyncio.sleep(0.001)
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:

View File

@ -1,7 +1,19 @@
from typing import Optional
from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageType
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.services.metadata import InvokeAIMetadata
class ImageResponseMetadata(BaseModel):
"""An image's metadata. Used only in HTTP responses."""
created: int = Field(description="The creation timestamp of the image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
invokeai: Optional[InvokeAIMetadata] = Field(
description="The image's InvokeAI-specific metadata"
)
class ImageResponse(BaseModel):
@ -11,4 +23,18 @@ class ImageResponse(BaseModel):
image_name: str = Field(description="The name of the image")
image_url: str = Field(description="The url of the image")
thumbnail_url: str = Field(description="The url of the image's thumbnail")
metadata: ImageMetadata = Field(description="The image's metadata")
metadata: ImageResponseMetadata = Field(description="The image's metadata")
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class SavedImage(BaseModel):
image_name: str = Field(description="The name of the saved image")
thumbnail_name: str = Field(description="The name of the saved thumbnail")
created: int = Field(description="The created timestamp of the saved image")

View File

@ -1,13 +1,19 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import io
from datetime import datetime, timezone
import json
import os
from typing import Any
import uuid
from fastapi import Path, Query, Request, UploadFile
from fastapi import Body, HTTPException, Path, Query, Request, UploadFile
from fastapi.responses import FileResponse, Response
from fastapi.routing import APIRouter
from PIL import Image
from invokeai.app.api.models.images import ImageResponse
from invokeai.app.api.models.images import (
ImageResponse,
ImageResponseMetadata,
)
from invokeai.app.services.item_storage import PaginatedResults
from ...services.image_storage import ImageType
@ -15,70 +21,128 @@ from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@images_router.get("/{image_type}/{image_name}", operation_id="get_image")
async def get_image(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
"""Gets a result"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, image_name)
return FileResponse(filename)
) -> FileResponse:
"""Gets an image"""
@images_router.get("/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail")
path = ApiDependencies.invoker.services.images.get_path(
image_type=image_type, image_name=image_name
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.delete("/{image_type}/{image_name}", operation_id="delete_image")
async def delete_image(
image_type: ImageType = Path(description="The type of image to delete"),
image_name: str = Path(description="The name of the image to delete"),
) -> None:
"""Deletes an image and its thumbnail"""
ApiDependencies.invoker.services.images.delete(
image_type=image_type, image_name=image_name
)
@images_router.get(
"/{thumbnail_type}/thumbnails/{thumbnail_name}", operation_id="get_thumbnail"
)
async def get_thumbnail(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
thumbnail_type: ImageType = Path(description="The type of thumbnail to get"),
thumbnail_name: str = Path(description="The name of the thumbnail to get"),
) -> FileResponse | Response:
"""Gets a thumbnail"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, 'thumbnails/' + image_name)
return FileResponse(filename)
path = ApiDependencies.invoker.services.images.get_path(
image_type=thumbnail_type, image_name=thumbnail_name, is_thumbnail=True
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.post(
"/uploads/",
operation_id="upload_image",
responses={
201: {"description": "The image was uploaded successfully"},
404: {"description": "Session not found"},
201: {
"description": "The image was uploaded successfully",
"model": ImageResponse,
},
415: {"description": "Image upload failed"},
},
status_code=201,
)
async def upload_image(file: UploadFile, request: Request):
async def upload_image(
file: UploadFile, request: Request, response: Response
) -> ImageResponse:
if not file.content_type.startswith("image"):
return Response(status_code=415)
raise HTTPException(status_code=415, detail="Not an image")
contents = await file.read()
try:
im = Image.open(contents)
img = Image.open(io.BytesIO(contents))
except:
# Error opening the image
return Response(status_code=415)
raise HTTPException(status_code=415, detail="Failed to read image")
filename = f"{uuid.uuid4()}_{str(int(datetime.now(timezone.utc).timestamp()))}.png"
ApiDependencies.invoker.services.images.save(ImageType.UPLOAD, filename, im)
return Response(
status_code=201,
headers={
"Location": request.url_for(
"get_image", image_type=ImageType.UPLOAD.value, image_name=filename
)
},
saved_image = ApiDependencies.invoker.services.images.save(
ImageType.UPLOAD, filename, img
)
invokeai_metadata = ApiDependencies.invoker.services.metadata.get_metadata(img)
image_url = ApiDependencies.invoker.services.images.get_uri(
ImageType.UPLOAD, saved_image.image_name
)
thumbnail_url = ApiDependencies.invoker.services.images.get_uri(
ImageType.UPLOAD, saved_image.image_name, True
)
res = ImageResponse(
image_type=ImageType.UPLOAD,
image_name=saved_image.image_name,
image_url=image_url,
thumbnail_url=thumbnail_url,
metadata=ImageResponseMetadata(
created=saved_image.created,
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
response.status_code = 201
response.headers["Location"] = image_url
return res
@images_router.get(
"/",
operation_id="list_images",
responses={200: {"model": PaginatedResults[ImageResponse]}},
)
async def list_images(
image_type: ImageType = Query(default=ImageType.RESULT, description="The type of images to get"),
image_type: ImageType = Query(
default=ImageType.RESULT, description="The type of images to get"
),
page: int = Query(default=0, description="The page of images to get"),
per_page: int = Query(default=10, description="The number of images per page"),
) -> PaginatedResults[ImageResponse]:
"""Gets a list of images"""
result = ApiDependencies.invoker.services.images.list(
image_type, page, per_page
)
result = ApiDependencies.invoker.services.images.list(image_type, page, per_page)
return result

View File

@ -8,10 +8,6 @@ from fastapi.routing import APIRouter, HTTPException
from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path
from ..dependencies import ApiDependencies
from invokeai.backend.globals import Globals, global_converted_ckpts_dir
from invokeai.backend.args import Args
models_router = APIRouter(prefix="/v1/models", tags=["models"])
@ -112,19 +108,20 @@ async def update_model(
async def delete_model(model_name: str) -> None:
"""Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names()
logger = ApiDependencies.invoker.services.logger
model_exists = model_name in model_names
# check if model exists
print(f">> Checking for model {model_name}...")
logger.info(f"Checking for model {model_name}...")
if model_exists:
print(f">> Deleting Model: {model_name}")
logger.info(f"Deleting Model: {model_name}")
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
print(f">> Model Deleted: {model_name}")
logger.info(f"Model Deleted: {model_name}")
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
else:
print(f">> Model not found")
logger.error(f"Model not found")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
@ -248,4 +245,4 @@ async def delete_model(model_name: str) -> None:
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:
# except Exception as e:

View File

@ -2,8 +2,7 @@
from typing import Annotated, List, Optional, Union
from fastapi import Body, Path, Query
from fastapi.responses import Response
from fastapi import Body, HTTPException, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic.fields import Field
@ -76,7 +75,7 @@ async def get_session(
"""Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
else:
return session
@ -99,7 +98,7 @@ async def add_node(
"""Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.add_node(node)
@ -108,9 +107,9 @@ async def add_node(
) # TODO: can this be done automatically, or add node through an API?
return session.id
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.put(
@ -132,7 +131,7 @@ async def update_node(
"""Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.update_node(node_path, node)
@ -141,9 +140,9 @@ async def update_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.delete(
@ -162,7 +161,7 @@ async def delete_node(
"""Deletes a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.delete_node(node_path)
@ -171,9 +170,9 @@ async def delete_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.post(
@ -192,7 +191,7 @@ async def add_edge(
"""Adds an edge to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.add_edge(edge)
@ -201,9 +200,9 @@ async def add_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
# TODO: the edge being in the path here is really ugly, find a better solution
@ -226,7 +225,7 @@ async def delete_edge(
"""Deletes an edge from the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
edge = Edge(
@ -239,9 +238,9 @@ async def delete_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.put(
@ -259,14 +258,14 @@ async def invoke_session(
all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations"
),
) -> None:
) -> Response:
"""Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
if session.is_complete():
return Response(status_code=400)
raise HTTPException(status_code=400)
ApiDependencies.invoker.invoke(session, invoke_all=all)
return Response(status_code=202)
@ -281,7 +280,7 @@ async def invoke_session(
)
async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"),
) -> None:
) -> Response:
"""Invokes a session"""
ApiDependencies.invoker.cancel(session_id)
return Response(status_code=202)

View File

@ -3,6 +3,7 @@ import asyncio
from inspect import signature
import uvicorn
import invokeai.backend.util.logging as logger
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
@ -16,7 +17,6 @@ from ..backend import Args
from .api.dependencies import ApiDependencies
from .api.routers import images, sessions, models
from .api.sockets import SocketIO
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
# Create the app
@ -56,7 +56,7 @@ async def startup_event():
config.parse_args()
ApiDependencies.initialize(
config=config, event_handler_id=event_handler_id
config=config, event_handler_id=event_handler_id, logger=logger
)

View File

@ -2,14 +2,15 @@
from abc import ABC, abstractmethod
import argparse
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
from typing import Any, Callable, Iterable, Literal, Union, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field
import networkx as nx
import matplotlib.pyplot as plt
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation
from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState, LibraryGraph, GraphInvocation, Edge
from ..services.graph import GraphExecutionState, LibraryGraph, Edge
from ..services.invoker import Invoker
@ -229,7 +230,7 @@ class HistoryCommand(BaseCommand):
for i in range(min(self.count, len(history))):
entry_id = history[-1 - i]
entry = context.get_session().graph.get_node(entry_id)
print(f"{entry_id}: {get_invocation_command(entry)}")
logger.info(f"{entry_id}: {get_invocation_command(entry)}")
class SetDefaultCommand(BaseCommand):

View File

@ -10,6 +10,7 @@ import shlex
from pathlib import Path
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
import invokeai.backend.util.logging as logger
from ...backend import ModelManager, Globals
from ..invocations.baseinvocation import BaseInvocation
from .commands import BaseCommand
@ -160,8 +161,8 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
pass
except OSError: # file likely corrupted
newname = f"{histfile}.old"
print(
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
logger.error(
f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
)
histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile)

View File

@ -13,19 +13,20 @@ from typing import (
from pydantic import BaseModel
from pydantic.fields import Field
from .services.default_graphs import create_system_graphs
import invokeai.backend.util.logging as logger
from invokeai.app.services.metadata import PngMetadataService
from .services.default_graphs import create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, get_graph_execution_history
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers
from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, ExposedNodeInput, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.graph import Edge, EdgeConnection, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue
@ -180,7 +181,7 @@ def invoke_all(context: CliContext):
# Print any errors
if context.session.has_error():
for n in context.session.errors:
print(
context.invoker.services.logger.error(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
)
@ -190,16 +191,18 @@ def invoke_all(context: CliContext):
def invoke_cli():
config = Args()
config.parse_args()
model_manager = get_model_manager(config)
model_manager = get_model_manager(config,logger=logger)
# This initializes the autocompleter and returns it.
# Currently nothing is done with the returned Completer
# object, but the object can be used to change autocompletion
# behavior on the fly, if desired.
completer = set_autocompleter(model_manager)
set_autocompleter(model_manager)
events = EventServiceBase()
metadata = PngMetadataService()
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs")
)
@ -211,7 +214,8 @@ def invoke_cli():
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images'),
images=DiskImageStorage(f'{output_folder}/images', metadata_service=metadata),
metadata=metadata,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
@ -220,7 +224,8 @@ def invoke_cli():
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
restoration=RestorationServices(config,logger=logger),
logger=logger,
)
system_graphs = create_system_graphs(services.graph_library)
@ -360,12 +365,12 @@ def invoke_cli():
invoke_all(context)
except InvalidArgs:
print('Invalid command, use "help" to list commands')
invoker.services.logger.warning('Invalid command, use "help" to list commands')
continue
except SessionError:
# Start a new session
print("Session error: creating a new session")
invoker.services.logger.warning("Session error: creating a new session")
context.reset()
except ExitCli:

View File

@ -95,7 +95,7 @@ class UIConfig(TypedDict, total=False):
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig

View File

@ -1,16 +1,17 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from typing import Literal, Optional
import cv2 as cv
import numpy as np
import numpy.random
from PIL import Image, ImageOps
from pydantic import Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext, BaseInvocationOutput
from .image import ImageField, ImageOutput
from .baseinvocation import (
BaseInvocation,
InvocationConfig,
InvocationContext,
BaseInvocationOutput,
)
class IntCollectionOutput(BaseInvocationOutput):
@ -33,7 +34,9 @@ class RangeInvocation(BaseInvocation):
step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
return IntCollectionOutput(
collection=list(range(self.start, self.stop, self.step))
)
class RandomRangeInvocation(BaseInvocation):
@ -43,8 +46,19 @@ class RandomRangeInvocation(BaseInvocation):
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
size: int = Field(default=1, description="The number of values to generate")
seed: Optional[int] = Field(
ge=0,
le=np.iinfo(np.int32).max,
description="The seed for the RNG",
default_factory=lambda: numpy.random.randint(0, np.iinfo(np.int32).max),
)
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(numpy.random.randint(self.low, self.high, size=self.size)))
rng = np.random.default_rng(self.seed)
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)

View File

@ -0,0 +1,245 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
from compel import Compel
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment,
)
from invokeai.backend.globals import Globals
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
class CompelOutput(BaseInvocationOutput):
"""Compel parser output"""
#fmt: off
type: Literal["compel_output"] = "compel_output"
conditioning: ConditioningField = Field(default=None, description="Conditioning")
#fmt: on
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
type: Literal["compel"] = "compel"
prompt: str = Field(default="", description="Prompt")
model: str = Field(default="", description="Model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
def invoke(self, context: InvocationContext) -> CompelOutput:
# TODO: load without model
model = choose_model(context.services.model_manager, self.model)
pipeline = model["model"]
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
# TODO: global? input?
#use_full_precision = precision == "float32" or precision == "autocast"
#use_full_precision = False
# TODO: redo TI when separate model loding implemented
#textual_inversion_manager = TextualInversionManager(
# tokenizer=tokenizer,
# text_encoder=text_encoder,
# full_precision=use_full_precision,
#)
def load_huggingface_concepts(concepts: list[str]):
pipeline.textual_inversion_manager.load_huggingface_concepts(concepts)
# apply the concepts library to the prompt
prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
self.prompt,
lambda concepts: load_huggingface_concepts(concepts),
pipeline.textual_inversion_manager.get_all_trigger_strings(),
)
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_str
)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=pipeline.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
)
# TODO: support legacy blend?
prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(prompt_str)
if getattr(Globals, "log_tokenization", False):
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
# TODO: long prompt support
#if not self.truncate_long_prompts:
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, prompt),
cross_attention_control_args=options.get("cross_attention_control", None),
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.set(conditioning_name, (c, ec))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
[
get_max_token_count(tokenizer, c, truncate_if_too_long)
for c in blend.prompts
]
)
else:
return len(
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> [str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
original_fragments = []
edited_fragments = []
for f in flattened_prompt.children:
if type(f) is CrossAttentionControlSubstitute:
original_fragments += f.original
edited_fragments += f.edited
else:
original_fragments.append(f)
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")

View File

@ -9,7 +9,7 @@ from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
from .image import ImageOutput, build_image_output
class CvInvocationConfig(BaseModel):
@ -56,7 +56,14 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_inpainted)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_inpainted, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_inpainted,
)

View File

@ -9,13 +9,12 @@ from torch import Tensor
from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageField, ImageType
from invokeai.app.invocations.util.get_model import choose_model
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
from .image import ImageOutput, build_image_output
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..models.exceptions import CanceledException
from ..util.step_callback import diffusers_step_callback_adapter
from ..util.step_callback import stable_diffusion_step_callback
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
@ -47,8 +46,8 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
@ -58,28 +57,31 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Txt2Img(model).generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context),
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually
@ -95,9 +97,18 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, generate_output.image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(
image_type, image_name, generate_output.image, metadata
)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=generate_output.image,
)
@ -117,20 +128,17 @@ class ImageToImageInvocation(TextToImageInvocation):
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
@ -142,18 +150,27 @@ class ImageToImageInvocation(TextToImageInvocation):
)
mask = None
if self.fit:
image = image.resize((self.width, self.height))
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
@ -168,11 +185,19 @@ class ImageToImageInvocation(TextToImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
@ -188,20 +213,17 @@ class InpaintInvocation(ImageToImageInvocation):
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
@ -218,17 +240,23 @@ class InpaintInvocation(ImageToImageInvocation):
)
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_image=image,
mask_image=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
@ -243,7 +271,14 @@ class InpaintInvocation(ImageToImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)

View File

@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional
import numpy
@ -8,8 +7,12 @@ from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..models.image import ImageField, ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class PILInvocationConfig(BaseModel):
@ -22,50 +25,73 @@ class PILInvocationConfig(BaseModel):
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
#fmt: off
# fmt: off
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
#fmt: on
width: Optional[int] = Field(default=None, description="The width of the image in pixels")
height: Optional[int] = Field(default=None, description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {
'required': [
'type',
'image',
]
"required": ["type", "image", "width", "height", "mode"]
}
def build_image_output(
image_type: ImageType, image_name: str, image: Image.Image
) -> ImageOutput:
"""Builds an ImageOutput and its ImageField"""
image_field = ImageField(
image_name=image_name,
image_type=image_type,
)
return ImageOutput(
image=image_field,
width=image.width,
height=image.height,
mode=image.mode,
)
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
#fmt: off
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
#fmt: on
# fmt: on
class Config:
schema_extra = {
'required': [
'type',
'mask',
"required": [
"type",
"mask",
]
}
# TODO: this isn't really necessary anymore
class LoadImageInvocation(BaseInvocation):
"""Load an image from a filename and provide it as output."""
#fmt: off
"""Load an image and provide it as output."""
# fmt: off
type: Literal["load_image"] = "load_image"
# Inputs
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
return ImageOutput(
image=ImageField(image_type=self.image_type, image_name=self.image_name)
image = context.services.images.get(self.image_type, self.image_name)
return build_image_output(
image_type=self.image_type,
image_name=self.image_name,
image=image,
)
@ -86,16 +112,17 @@ class ShowImageInvocation(BaseInvocation):
# TODO: how to handle failure?
return ImageOutput(
image=ImageField(
image_type=self.image.image_type, image_name=self.image.image_name
)
return build_image_output(
image_type=self.image.image_type,
image_name=self.image.image_name,
image=image,
)
class CropImageInvocation(BaseInvocation, PILInvocationConfig):
"""Crops an image to a specified box. The box can be outside of the image."""
#fmt: off
# fmt: off
type: Literal["crop"] = "crop"
# Inputs
@ -104,7 +131,7 @@ class CropImageInvocation(BaseInvocation, PILInvocationConfig):
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
@ -120,15 +147,23 @@ class CropImageInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_crop)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_crop, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_crop,
)
class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
"""Pastes an image into another image."""
#fmt: off
# fmt: off
type: Literal["paste"] = "paste"
# Inputs
@ -137,7 +172,7 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get(
@ -170,21 +205,29 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, new_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, new_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=new_image,
)
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
"""Extracts the alpha channel of an image as a mask."""
#fmt: off
# fmt: off
type: Literal["tomask"] = "tomask"
# Inputs
image: ImageField = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get(
@ -199,22 +242,27 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_mask)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_mask, metadata)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class BlurInvocation(BaseInvocation, PILInvocationConfig):
"""Blurs an image"""
#fmt: off
# fmt: off
type: Literal["blur"] = "blur"
# Inputs
image: ImageField = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -231,22 +279,28 @@ class BlurInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, blur_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, blur_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=blur_image
)
class LerpInvocation(BaseInvocation, PILInvocationConfig):
"""Linear interpolation of all pixels of an image"""
#fmt: off
# fmt: off
type: Literal["lerp"] = "lerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
@ -262,23 +316,29 @@ class LerpInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, lerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, lerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=lerp_image
)
class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Inverse linear interpolation of all pixels of an image"""
#fmt: off
# fmt: off
type: Literal["ilerp"] = "ilerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -298,7 +358,12 @@ class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, ilerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, ilerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=ilerp_image
)

View File

@ -5,21 +5,21 @@ from typing import Literal, Optional
from pydantic import BaseModel, Field
import torch
from invokeai.app.models.exceptions import CanceledException
from invokeai.app.invocations.util.get_model import choose_model
from invokeai.app.util.step_callback import diffusers_step_callback_adapter
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from .image import ImageField, ImageOutput, build_image_output
from .compel import ConditioningField
from ...backend.stable_diffusion import PipelineIntermediateState
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
@ -31,6 +31,8 @@ class LatentsField(BaseModel):
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
@ -111,8 +113,8 @@ class NoiseInvocation(BaseInvocation):
# Inputs
seed: int = Field(ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", default_factory=random_seed)
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
# Schema customisation
@ -136,19 +138,16 @@ class NoiseInvocation(BaseInvocation):
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from a prompt."""
"""Generates latents from conditionings."""
type: Literal["t2l"] = "t2l"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
@ -170,21 +169,14 @@ class TextToLatentsInvocation(BaseInvocation):
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = choose_model(model_manager, self.model)
@ -211,8 +203,10 @@ class TextToLatentsInvocation(BaseInvocation):
return model
def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model)
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
conditioning_data = ConditioningData(
uc,
c,
@ -231,11 +225,15 @@ class TextToLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state)
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
conditioning_data = self.get_conditioning_data(context, model)
# TODO: Verify the noise is the right size
@ -281,8 +279,12 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state)
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
@ -355,7 +357,79 @@ class LatentsToImageInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
torch.cuda.empty_cache()
context.services.images.save(image_type, image_name, image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=image
)
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return LatentsOutput(latents=LatentsField(latents_name=name))
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return LatentsOutput(latents=LatentsField(latents_name=name))

View File

@ -1,12 +1,11 @@
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
from .image import ImageOutput, build_image_output
class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image."""
@ -44,7 +43,14 @@ class RestoreFaceInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@ -1,14 +1,12 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
from .image import ImageOutput, build_image_output
class UpscaleInvocation(BaseInvocation):
@ -49,7 +47,14 @@ class UpscaleInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@ -1,11 +1,13 @@
from invokeai.app.invocations.baseinvocation import InvocationContext
from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
logger = model_manager.logger
if model_manager.valid_model(model_name):
return model_manager.get_model(model_name)
model = model_manager.get_model(model_name)
else:
print(f"* Warning: '{model_name}' is not a valid model name. Using default model instead.")
return model_manager.get_model()
model = model_manager.get_model()
logger.warning(f"{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead.")
return model

View File

@ -9,6 +9,14 @@ class ImageType(str, Enum):
UPLOAD = "uploads"
def is_image_type(obj):
try:
ImageType(obj)
except ValueError:
return False
return True
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
@ -18,9 +26,4 @@ class ImageField(BaseModel):
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {
"required": [
"image_type",
"image_name",
]
}
schema_extra = {"required": ["image_type", "image_name"]}

View File

@ -1,11 +0,0 @@
from typing import Optional
from pydantic import BaseModel, Field
class ImageMetadata(BaseModel):
"""An image's metadata"""
timestamp: float = Field(description="The creation timestamp of the image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# TODO: figure out metadata
sd_metadata: Optional[dict] = Field(default={}, description="The image's SD-specific metadata")

View File

@ -1,4 +1,5 @@
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
@ -16,26 +17,32 @@ def create_text_to_image() -> LibraryGraph:
nodes={
'width': ParamIntInvocation(id='width', a=512),
'height': ParamIntInvocation(id='height', a=512),
'seed': ParamIntInvocation(id='seed', a=-1),
'3': NoiseInvocation(id='3'),
'4': TextToLatentsInvocation(id='4'),
'5': LatentsToImageInvocation(id='5')
'4': CompelInvocation(id='4'),
'5': CompelInvocation(id='5'),
'6': TextToLatentsInvocation(id='6'),
'7': LatentsToImageInvocation(id='7'),
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='4', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='4', field='height')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='4', field='noise')),
Edge(source=EdgeConnection(node_id='4', field='latents'), destination=EdgeConnection(node_id='5', field='latents')),
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='6', field='noise')),
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')),
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')),
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')),
]
),
exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='prompt'),
ExposedNodeInput(node_path='4', field='prompt', alias='positive_prompt'),
ExposedNodeInput(node_path='5', field='prompt', alias='negative_prompt'),
ExposedNodeInput(node_path='width', field='a', alias='width'),
ExposedNodeInput(node_path='height', field='a', alias='height')
ExposedNodeInput(node_path='height', field='a', alias='height'),
ExposedNodeInput(node_path='seed', field='a', alias='seed'),
],
exposed_outputs=[
ExposedNodeOutput(node_path='5', field='image', alias='image')
ExposedNodeOutput(node_path='7', field='image', alias='image')
])

View File

@ -1,10 +1,9 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, TypedDict
from typing import Any
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.util.misc import get_timestamp
ProgressImage = TypedDict(
"ProgressImage", {"dataURL": str, "width": int, "height": int}
)
class EventServiceBase:
session_event: str = "session_event"
@ -14,7 +13,8 @@ class EventServiceBase:
def dispatch(self, event_name: str, payload: Any) -> None:
pass
def __emit_session_event(self, event_name: str, payload: Dict) -> None:
def __emit_session_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.session_event,
payload=dict(event=event_name, data=payload),
@ -25,7 +25,8 @@ class EventServiceBase:
def emit_generator_progress(
self,
graph_execution_state_id: str,
invocation_id: str,
node: dict,
source_node_id: str,
progress_image: ProgressImage | None,
step: int,
total_steps: int,
@ -35,48 +36,60 @@ class EventServiceBase:
event_name="generator_progress",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
progress_image=progress_image,
node=node,
source_node_id=source_node_id,
progress_image=progress_image.dict() if progress_image is not None else None,
step=step,
total_steps=total_steps,
),
)
def emit_invocation_complete(
self, graph_execution_state_id: str, invocation_id: str, result: Dict
self,
graph_execution_state_id: str,
result: dict,
node: dict,
source_node_id: str,
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_complete",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
result=result,
),
)
def emit_invocation_error(
self, graph_execution_state_id: str, invocation_id: str, error: str
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
error: str,
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
error=error,
),
)
def emit_invocation_started(
self, graph_execution_state_id: str, invocation_id: str
self, graph_execution_state_id: str, node: dict, source_node_id: str
) -> None:
"""Emitted when an invocation has started"""
self.__emit_session_event(
event_name="invocation_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
),
)
@ -84,5 +97,7 @@ class EventServiceBase:
"""Emitted when a session has completed all invocations"""
self.__emit_session_event(
event_name="graph_execution_state_complete",
payload=dict(graph_execution_state_id=graph_execution_state_id),
payload=dict(
graph_execution_state_id=graph_execution_state_id,
),
)

View File

@ -1,24 +1,29 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import datetime
import os
from glob import glob
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from queue import Queue
from typing import Callable, Dict, List
from typing import Dict, List
from PIL.Image import Image
import PIL.Image as PILImage
from pydantic import BaseModel
from invokeai.app.api.models.images import ImageResponse
from invokeai.app.models.image import ImageField, ImageType
from invokeai.app.models.metadata import ImageMetadata
from send2trash import send2trash
from invokeai.app.api.models.images import (
ImageResponse,
ImageResponseMetadata,
SavedImage,
)
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import (
InvokeAIMetadata,
MetadataServiceBase,
build_invokeai_metadata_pnginfo,
)
from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.util.save_thumbnail import save_thumbnail
from invokeai.backend.image_util import PngWriter
from invokeai.app.util.misc import get_timestamp
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class ImageStorageBase(ABC):
@ -26,12 +31,14 @@ class ImageStorageBase(ABC):
@abstractmethod
def get(self, image_type: ImageType, image_name: str) -> Image:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
"""Gets a paginated list of images."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@ -39,35 +46,59 @@ class ImageStorageBase(ABC):
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the internal path to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_uri(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the external URI to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image path."""
pass
@abstractmethod
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass
@abstractmethod
def delete(self, image_type: ImageType, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
def create_name(self, context_id: str, node_id: str) -> str:
return f"{context_id}_{node_id}_{str(int(datetime.datetime.now(datetime.timezone.utc).timestamp()))}.png"
"""Creates a unique contextual image filename."""
return f"{context_id}_{node_id}_{str(get_timestamp())}.png"
class DiskImageStorage(ImageStorageBase):
"""Stores images on disk"""
__output_folder: str
__pngWriter: PngWriter
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, Image]
__max_cache_size: int
__metadata_service: MetadataServiceBase
def __init__(self, output_folder: str):
def __init__(self, output_folder: str, metadata_service: MetadataServiceBase):
self.__output_folder = output_folder
self.__pngWriter = PngWriter(output_folder)
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__metadata_service = metadata_service
Path(output_folder).mkdir(parents=True, exist_ok=True)
@ -100,18 +131,22 @@ class DiskImageStorage(ImageStorageBase):
for path in page_of_image_paths:
filename = os.path.basename(path)
img = PILImage.open(path)
invokeai_metadata = self.__metadata_service.get_metadata(img)
page_of_images.append(
ImageResponse(
image_type=image_type.value,
image_name=filename,
# TODO: DiskImageStorage should not be building URLs...?
image_url=f"api/v1/images/{image_type.value}/{filename}",
thumbnail_url=f"api/v1/images/{image_type.value}/thumbnails/{os.path.splitext(filename)[0]}.webp",
# TODO: Creation of this object should happen elsewhere, just making it fit here so it works
metadata=ImageMetadata(
timestamp=os.path.getctime(path),
image_url=self.get_uri(image_type, filename),
thumbnail_url=self.get_uri(image_type, filename, True),
# TODO: Creation of this object should happen elsewhere (?), just making it fit here so it works
metadata=ImageResponseMetadata(
created=int(os.path.getctime(path)),
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
)
@ -142,43 +177,89 @@ class DiskImageStorage(ImageStorageBase):
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
if is_thumbnail:
path = os.path.join(
self.__output_folder, image_type, "thumbnails", image_name
self.__output_folder, image_type, "thumbnails", basename
)
else:
path = os.path.join(self.__output_folder, image_type, image_name)
return path
path = os.path.join(self.__output_folder, image_type, basename)
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
image_subpath = os.path.join(image_type, image_name)
self.__pngWriter.save_image_and_prompt_to_png(
image, "", image_subpath, None
) # TODO: just pass full path to png writer
save_thumbnail(
image=image,
filename=image_name,
path=os.path.join(self.__output_folder, image_type, "thumbnails"),
)
abspath = os.path.abspath(path)
return abspath
def get_uri(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
if is_thumbnail:
thumbnail_basename = get_thumbnail_name(basename)
uri = f"api/v1/images/{image_type.value}/thumbnails/{thumbnail_basename}"
else:
uri = f"api/v1/images/{image_type.value}/{basename}"
return uri
def validate_path(self, path: str) -> bool:
try:
os.stat(path)
return True
except Exception:
return False
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
image_path = self.get_path(image_type, image_name)
# TODO: Reading the image and then saving it strips the metadata...
if metadata:
pnginfo = build_invokeai_metadata_pnginfo(metadata=metadata)
image.save(image_path, "PNG", pnginfo=pnginfo)
else:
image.save(image_path) # this saved image has an empty info
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, is_thumbnail=True)
thumbnail_image = make_thumbnail(image)
thumbnail_image.save(thumbnail_path)
self.__set_cache(image_path, image)
self.__set_cache(thumbnail_path, thumbnail_image)
return SavedImage(
image_name=image_name,
thumbnail_name=thumbnail_name,
created=int(os.path.getctime(image_path)),
)
def delete(self, image_type: ImageType, image_name: str) -> None:
image_path = self.get_path(image_type, image_name)
thumbnail_path = self.get_path(image_type, image_name, True)
if os.path.exists(image_path):
os.remove(image_path)
basename = os.path.basename(image_name)
image_path = self.get_path(image_type, basename)
if os.path.exists(image_path):
send2trash(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
if os.path.exists(thumbnail_path):
os.remove(thumbnail_path)
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, True)
if os.path.exists(thumbnail_path):
send2trash(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
def __get_cache(self, image_name: str) -> Image:
def __get_cache(self, image_name: str) -> Image | None:
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: str, image: Image):

View File

@ -1,4 +1,7 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import types
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.backend import ModelManager
from .events import EventServiceBase
@ -14,6 +17,7 @@ class InvocationServices:
events: EventServiceBase
latents: LatentsStorageBase
images: ImageStorageBase
metadata: MetadataServiceBase
queue: InvocationQueueABC
model_manager: ModelManager
restoration: RestorationServices
@ -27,8 +31,10 @@ class InvocationServices:
self,
model_manager: ModelManager,
events: EventServiceBase,
logger: types.ModuleType,
latents: LatentsStorageBase,
images: ImageStorageBase,
metadata: MetadataServiceBase,
queue: InvocationQueueABC,
graph_library: ItemStorageABC["LibraryGraph"],
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
@ -37,8 +43,10 @@ class InvocationServices:
):
self.model_manager = model_manager
self.events = events
self.logger = logger
self.latents = latents
self.images = images
self.metadata = metadata
self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager

View File

@ -49,7 +49,7 @@ class Invoker:
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state)
return new_state
def cancel(self, graph_execution_state_id: str) -> None:
"""Cancels the given execution state"""
self.services.queue.cancel(graph_execution_state_id)
@ -71,18 +71,12 @@ class Invoker:
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
def stop(self) -> None:
"""Stops the invoker. A new invoker will have to be created to execute further."""
# First stop all services
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
self.services.queue.put(None)

View File

@ -0,0 +1,96 @@
import json
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, TypedDict
from PIL import Image, PngImagePlugin
from pydantic import BaseModel
from invokeai.app.models.image import ImageType, is_image_type
class MetadataImageField(TypedDict):
"""Pydantic-less ImageField, used for metadata parsing."""
image_type: ImageType
image_name: str
class MetadataLatentsField(TypedDict):
"""Pydantic-less LatentsField, used for metadata parsing."""
latents_name: str
# TODO: This is a placeholder for `InvocationsUnion` pending resolution of circular imports
NodeMetadata = Dict[
str, str | int | float | bool | MetadataImageField | MetadataLatentsField
]
class InvokeAIMetadata(TypedDict, total=False):
"""InvokeAI-specific metadata format."""
session_id: Optional[str]
node: Optional[NodeMetadata]
def build_invokeai_metadata_pnginfo(
metadata: InvokeAIMetadata | None,
) -> PngImagePlugin.PngInfo:
"""Builds a PngInfo object with key `"invokeai"` and value `metadata`"""
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai", json.dumps(metadata))
return pnginfo
class MetadataServiceBase(ABC):
@abstractmethod
def get_metadata(self, image: Image.Image) -> InvokeAIMetadata | None:
"""Gets the InvokeAI metadata from a PIL Image, skipping invalid values"""
pass
@abstractmethod
def build_metadata(
self, session_id: str, node: BaseModel
) -> InvokeAIMetadata | None:
"""Builds an InvokeAIMetadata object"""
pass
class PngMetadataService(MetadataServiceBase):
"""Handles loading and building metadata for images."""
# TODO: Use `InvocationsUnion` to **validate** metadata as representing a fully-functioning node
def _load_metadata(self, image: Image.Image) -> dict | None:
"""Loads a specific info entry from a PIL Image."""
try:
info = image.info.get("invokeai")
if type(info) is not str:
return None
loaded_metadata = json.loads(info)
if type(loaded_metadata) is not dict:
return None
if len(loaded_metadata.items()) == 0:
return None
return loaded_metadata
except:
return None
def get_metadata(self, image: Image.Image) -> dict | None:
"""Retrieves an image's metadata as a dict"""
loaded_metadata = self._load_metadata(image)
return loaded_metadata
def build_metadata(self, session_id: str, node: BaseModel) -> InvokeAIMetadata:
metadata = InvokeAIMetadata(session_id=session_id, node=node.dict())
return metadata

View File

@ -5,6 +5,7 @@ from argparse import Namespace
from invokeai.backend import Args
from omegaconf import OmegaConf
from pathlib import Path
from typing import types
import invokeai.version
from ...backend import ModelManager
@ -12,16 +13,16 @@ from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals
# TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config: Args) -> ModelManager:
def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
if not config.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file):
report_model_error(
config, FileNotFoundError(f"The file {config_file} could not be found.")
config, FileNotFoundError(f"The file {config_file} could not be found."), logger
)
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}")
logger.info(f'InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
@ -62,11 +63,12 @@ def get_model_manager(config: Args) -> ModelManager:
device_type=device,
max_loaded_models=config.max_loaded_models,
embedding_path = Path(embedding_path),
logger = logger,
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e)
report_model_error(config, e, logger)
except (IOError, KeyError) as e:
print(f"{e}. Aborting.")
logger.error(f"{e}. Aborting.")
sys.exit(-1)
# try to autoconvert new models
@ -76,18 +78,18 @@ def get_model_manager(config: Args) -> ModelManager:
conf_path=config.conf,
weights_directory=path,
)
logger.info('Model manager initialized')
return model_manager
def report_model_error(opt: Namespace, e: Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
print(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"')
logger.error(
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
print(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
logger.warning(
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
response = input(
@ -96,13 +98,12 @@ def report_model_error(opt: Namespace, e: Exception):
if response.startswith(("n", "N")):
return
print("invokeai-configure is launching....\n")
logger.info("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
previous_config = sys.argv
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config.to_dict())

View File

@ -1,5 +1,5 @@
import traceback
from threading import Event, Thread
from threading import Event, Thread, BoundedSemaphore
from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem
@ -10,8 +10,11 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
__stop_event: Event
__invoker: Invoker
__threadLimit: BoundedSemaphore
def start(self, invoker) -> None:
# if we do want multithreading at some point, we could make this configurable
self.__threadLimit = BoundedSemaphore(1)
self.__invoker = invoker
self.__stop_event = Event()
self.__invoker_thread = Thread(
@ -20,7 +23,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
kwargs=dict(stop_event=self.__stop_event),
)
self.__invoker_thread.daemon = (
True # TODO: probably better to just not use threads?
True # TODO: make async and do not use threads
)
self.__invoker_thread.start()
@ -29,6 +32,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
def __process(self, stop_event: Event):
try:
self.__threadLimit.acquire()
while not stop_event.is_set():
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
if not queue_item: # Probably stopping
@ -43,10 +47,14 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item.invocation_id
)
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
# Send starting event
self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id
)
# Invoke
@ -75,7 +83,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(),
)
@ -99,12 +108,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send error event
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id,
error=error,
)
pass
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(
graph_execution_state.id
@ -121,4 +131,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
)
except KeyboardInterrupt:
... # Log something?
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
finally:
self.__threadLimit.release()

View File

@ -1,6 +1,7 @@
import sys
import traceback
import torch
from typing import types
from ...backend.restoration import Restoration
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
@ -10,7 +11,7 @@ from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
class RestorationServices:
'''Face restoration and upscaling'''
def __init__(self,args):
def __init__(self,args,logger:types.ModuleType):
try:
gfpgan, codeformer, esrgan = None, None, None
if args.restore or args.esrgan:
@ -20,20 +21,22 @@ class RestorationServices:
args.gfpgan_model_path
)
else:
print(">> Face restoration disabled")
logger.info("Face restoration disabled")
if args.esrgan:
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
else:
print(">> Upscaling disabled")
logger.info("Upscaling disabled")
else:
print(">> Face restoration and upscaling disabled")
logger.info("Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
self.device = torch.device(choose_torch_device())
self.gfpgan = gfpgan
self.codeformer = codeformer
self.esrgan = esrgan
self.logger = logger
self.logger.info('Face restoration initialized')
# note that this one method does gfpgan and codepath reconstruction, as well as
# esrgan upscaling
@ -58,15 +61,15 @@ class RestorationServices:
if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan":
if self.gfpgan is None:
print(
">> GFPGAN not found. Face restoration is disabled."
self.logger.info(
"GFPGAN not found. Face restoration is disabled."
)
else:
image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer":
if self.codeformer is None:
print(
">> CodeFormer not found. Face restoration is disabled."
self.logger.info(
"CodeFormer not found. Face restoration is disabled."
)
else:
cf_device = (
@ -80,7 +83,7 @@ class RestorationServices:
fidelity=codeformer_fidelity,
)
else:
print(">> Face Restoration is disabled.")
self.logger.info("Face Restoration is disabled.")
if upscale is not None:
if self.esrgan is not None:
if len(upscale) < 2:
@ -93,10 +96,10 @@ class RestorationServices:
denoise_str=upscale_denoise_str,
)
else:
print(">> ESRGAN is disabled. Image not upscaled.")
self.logger.info("ESRGAN is disabled. Image not upscaled.")
except Exception as e:
print(
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
self.logger.info(
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
)
if image_callback is not None:

View File

@ -35,7 +35,8 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._create_table()
def _create_table(self):
with self._lock:
try:
self._lock.acquire()
self._cursor.execute(
f"""CREATE TABLE IF NOT EXISTS {self._table_name} (
item TEXT,
@ -44,27 +45,34 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._cursor.execute(
f"""CREATE UNIQUE INDEX IF NOT EXISTS {self._table_name}_id ON {self._table_name}(id);"""
)
self._conn.commit()
finally:
self._lock.release()
def _parse_item(self, item: str) -> T:
item_type = get_args(self.__orig_class__)[0]
return parse_raw_as(item_type, item)
def set(self, item: T):
with self._lock:
try:
self._lock.acquire()
self._cursor.execute(
f"""INSERT OR REPLACE INTO {self._table_name} (item) VALUES (?);""",
(item.json(),),
)
self._conn.commit()
finally:
self._lock.release()
self._on_changed(item)
def get(self, id: str) -> Union[T, None]:
with self._lock:
try:
self._lock.acquire()
self._cursor.execute(
f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
result = self._cursor.fetchone()
finally:
self._lock.release()
if not result:
return None
@ -72,15 +80,19 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
return self._parse_item(result[0])
def delete(self, id: str):
with self._lock:
try:
self._lock.acquire()
self._cursor.execute(
f"""DELETE FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
self._conn.commit()
finally:
self._lock.release()
self._on_deleted(id)
def list(self, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
with self._lock:
try:
self._lock.acquire()
self._cursor.execute(
f"""SELECT item FROM {self._table_name} LIMIT ? OFFSET ?;""",
(per_page, page * per_page),
@ -91,6 +103,8 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._cursor.execute(f"""SELECT count(*) FROM {self._table_name};""")
count = self._cursor.fetchone()[0]
finally:
self._lock.release()
pageCount = int(count / per_page) + 1
@ -101,7 +115,8 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def search(
self, query: str, page: int = 0, per_page: int = 10
) -> PaginatedResults[T]:
with self._lock:
try:
self._lock.acquire()
self._cursor.execute(
f"""SELECT item FROM {self._table_name} WHERE item LIKE ? LIMIT ? OFFSET ?;""",
(f"%{query}%", per_page, page * per_page),
@ -115,6 +130,8 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
(f"%{query}%",),
)
count = self._cursor.fetchone()[0]
finally:
self._lock.release()
pageCount = int(count / per_page) + 1

View File

@ -0,0 +1,5 @@
import datetime
def get_timestamp():
return int(datetime.datetime.now(datetime.timezone.utc).timestamp())

View File

@ -1,25 +0,0 @@
import os
from PIL import Image
def save_thumbnail(
image: Image.Image,
filename: str,
path: str,
size: int = 256,
) -> str:
"""
Saves a thumbnail of an image, returning its path.
"""
base_filename = os.path.splitext(filename)[0]
thumbnail_path = os.path.join(path, base_filename + ".webp")
if os.path.exists(thumbnail_path):
return thumbnail_path
image_copy = image.copy()
image_copy.thumbnail(size=(size, size))
image_copy.save(thumbnail_path, "WEBP")
return thumbnail_path

View File

@ -1,16 +1,41 @@
import torch
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.models.exceptions import CanceledException
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
def fast_latents_step_callback(
sample: torch.Tensor,
step: int,
steps: int,
id: str,
def stable_diffusion_step_callback(
context: InvocationContext,
intermediate_state: PipelineIntermediateState,
node: dict,
source_node_id: str,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be. Use
# that estimate if it is available.
if intermediate_state.predicted_original is not None:
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
# TODO: This does not seem to be needed any more?
# # txt2img provides a Tensor in the step_callback
# # img2img provides a PipelineIntermediateState
# if isinstance(sample, PipelineIntermediateState):
# # this was an img2img
# print('img2img')
# latents = sample.latents
# step = sample.step
# else:
# print('txt2img')
# latents = sample
# step = intermediate_state.step
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
@ -21,23 +46,10 @@ def fast_latents_step_callback(
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
id,
{"width": width, "height": height, "dataURL": dataURL},
step,
steps,
graph_execution_state_id=context.graph_execution_state_id,
node=node,
source_node_id=source_node_id,
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=intermediate_state.step,
total_steps=node["steps"],
)
def diffusers_step_callback_adapter(*cb_args, **kwargs):
"""
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
This adapter grabs the needed data and passes it along to the callback function.
"""
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return fast_latents_step_callback(
progress_state.latents, progress_state.step, **kwargs
)
else:
return fast_latents_step_callback(*cb_args, **kwargs)

View File

@ -0,0 +1,15 @@
import os
from PIL import Image
def get_thumbnail_name(image_name: str) -> str:
"""Formats given an image name, returns the appropriate thumbnail image name"""
thumbnail_name = os.path.splitext(image_name)[0] + ".webp"
return thumbnail_name
def make_thumbnail(image: Image.Image, size: int = 256) -> Image.Image:
"""Makes a thumbnail from a PIL Image"""
thumbnail = image.copy()
thumbnail.thumbnail(size=(size, size))
return thumbnail

View File

@ -10,7 +10,7 @@ from .generator import (
Img2Img,
Inpaint
)
from .model_management import ModelManager
from .model_management import ModelManager, SDModelComponent
from .safety_checker import SafetyChecker
from .args import Args
from .globals import Globals

View File

@ -96,6 +96,7 @@ from pathlib import Path
from typing import List
import invokeai.version
import invokeai.backend.util.logging as logger
from invokeai.backend.image_util import retrieve_metadata
from .globals import Globals
@ -189,7 +190,7 @@ class Args(object):
print(f"{APP_NAME} {APP_VERSION}")
sys.exit(0)
print("* Initializing, be patient...")
logger.info("Initializing, be patient...")
Globals.root = Path(os.path.abspath(switches.root_dir or Globals.root))
Globals.try_patchmatch = switches.patchmatch
@ -197,14 +198,13 @@ class Args(object):
initfile = os.path.expanduser(os.path.join(Globals.root, Globals.initfile))
legacyinit = os.path.expanduser("~/.invokeai")
if os.path.exists(initfile):
print(
f">> Initialization file {initfile} found. Loading...",
file=sys.stderr,
logger.info(
f"Initialization file {initfile} found. Loading...",
)
sysargs.insert(0, f"@{initfile}")
elif os.path.exists(legacyinit):
print(
f">> WARNING: Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init."
logger.warning(
f"Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init."
)
sysargs.insert(0, f"@{legacyinit}")
Globals.log_tokenization = self._arg_parser.parse_args(
@ -214,7 +214,7 @@ class Args(object):
self._arg_switches = self._arg_parser.parse_args(sysargs)
return self._arg_switches
except Exception as e:
print(f"An exception has occurred: {e}")
logger.error(f"An exception has occurred: {e}")
return None
def parse_cmd(self, cmd_string):
@ -1154,7 +1154,7 @@ class Args(object):
def format_metadata(**kwargs):
print("format_metadata() is deprecated. Please use metadata_dumps()")
logger.warning("format_metadata() is deprecated. Please use metadata_dumps()")
return metadata_dumps(kwargs)
@ -1326,7 +1326,7 @@ def metadata_loads(metadata) -> list:
import sys
import traceback
print(">> could not read metadata", file=sys.stderr)
logger.error("Could not read metadata")
print(traceback.format_exc(), file=sys.stderr)
return results

View File

@ -27,6 +27,7 @@ from diffusers.utils.import_utils import is_xformers_available
from omegaconf import OmegaConf
from pathlib import Path
import invokeai.backend.util.logging as logger
from .args import metadata_from_png
from .generator import infill_methods
from .globals import Globals, global_cache_dir
@ -195,12 +196,12 @@ class Generate:
# device to Generate(). However the device was then ignored, so
# it wasn't actually doing anything. This logic could be reinstated.
self.device = torch.device(choose_torch_device())
print(f">> Using device_type {self.device.type}")
logger.info(f"Using device_type {self.device.type}")
if full_precision:
if self.precision != "auto":
raise ValueError("Remove --full_precision / -F if using --precision")
print("Please remove deprecated --full_precision / -F")
print("If auto config does not work you can use --precision=float32")
logger.warning("Please remove deprecated --full_precision / -F")
logger.warning("If auto config does not work you can use --precision=float32")
self.precision = "float32"
if self.precision == "auto":
self.precision = choose_precision(self.device)
@ -208,13 +209,13 @@ class Generate:
if is_xformers_available():
if torch.cuda.is_available() and not Globals.disable_xformers:
print(">> xformers memory-efficient attention is available and enabled")
logger.info("xformers memory-efficient attention is available and enabled")
else:
print(
">> xformers memory-efficient attention is available but disabled"
logger.info(
"xformers memory-efficient attention is available but disabled"
)
else:
print(">> xformers not installed")
logger.info("xformers not installed")
# model caching system for fast switching
self.model_manager = ModelManager(
@ -229,8 +230,8 @@ class Generate:
fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME
model = model or fallback
if not self.model_manager.valid_model(model):
print(
f'** "{model}" is not a known model name; falling back to {fallback}.'
logger.warning(
f'"{model}" is not a known model name; falling back to {fallback}.'
)
model = None
self.model_name = model or fallback
@ -246,10 +247,10 @@ class Generate:
# load safety checker if requested
if safety_checker:
print(">> Initializing NSFW checker")
logger.info("Initializing NSFW checker")
self.safety_checker = SafetyChecker(self.device)
else:
print(">> NSFW checker is disabled")
logger.info("NSFW checker is disabled")
def prompt2png(self, prompt, outdir, **kwargs):
"""
@ -567,7 +568,7 @@ class Generate:
self.clear_cuda_cache()
if catch_interrupts:
print("**Interrupted** Partial results will be returned.")
logger.warning("Interrupted** Partial results will be returned.")
else:
raise KeyboardInterrupt
except RuntimeError:
@ -575,11 +576,11 @@ class Generate:
self.clear_cuda_cache()
print(traceback.format_exc(), file=sys.stderr)
print(">> Could not generate image.")
logger.info("Could not generate image.")
toc = time.time()
print("\n>> Usage stats:")
print(f">> {len(results)} image(s) generated in", "%4.2fs" % (toc - tic))
logger.info("Usage stats:")
logger.info(f"{len(results)} image(s) generated in "+"%4.2fs" % (toc - tic))
self.print_cuda_stats()
return results
@ -609,16 +610,16 @@ class Generate:
def print_cuda_stats(self):
if self._has_cuda():
self.gather_cuda_stats()
print(
">> Max VRAM used for this generation:",
"%4.2fG." % (self.max_memory_allocated / 1e9),
"Current VRAM utilization:",
"%4.2fG" % (self.memory_allocated / 1e9),
logger.info(
"Max VRAM used for this generation: "+
"%4.2fG. " % (self.max_memory_allocated / 1e9)+
"Current VRAM utilization: "+
"%4.2fG" % (self.memory_allocated / 1e9)
)
print(
">> Max VRAM used since script start: ",
"%4.2fG" % (self.session_peakmem / 1e9),
logger.info(
"Max VRAM used since script start: " +
"%4.2fG" % (self.session_peakmem / 1e9)
)
# this needs to be generalized to all sorts of postprocessors, which should be wrapped
@ -647,7 +648,7 @@ class Generate:
seed = random.randrange(0, np.iinfo(np.uint32).max)
prompt = opt.prompt or args.prompt or ""
print(f'>> using seed {seed} and prompt "{prompt}" for {image_path}')
logger.info(f'using seed {seed} and prompt "{prompt}" for {image_path}')
# try to reuse the same filename prefix as the original file.
# we take everything up to the first period
@ -696,8 +697,8 @@ class Generate:
try:
extend_instructions[direction] = int(pixels)
except ValueError:
print(
'** invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"'
logger.warning(
'invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"'
)
opt.seed = seed
@ -720,8 +721,8 @@ class Generate:
# fetch the metadata from the image
generator = self.select_generator(embiggen=True)
opt.strength = opt.embiggen_strength or 0.40
print(
f">> Setting img2img strength to {opt.strength} for happy embiggening"
logger.info(
f"Setting img2img strength to {opt.strength} for happy embiggening"
)
generator.generate(
prompt,
@ -748,12 +749,12 @@ class Generate:
return restorer.process(opt, args, image_callback=callback, prefix=prefix)
elif tool is None:
print(
"* please provide at least one postprocessing option, such as -G or -U"
logger.warning(
"please provide at least one postprocessing option, such as -G or -U"
)
return None
else:
print(f"* postprocessing tool {tool} is not yet supported")
logger.warning(f"postprocessing tool {tool} is not yet supported")
return None
def select_generator(
@ -797,8 +798,8 @@ class Generate:
image = self._load_img(img)
if image.width < self.width and image.height < self.height:
print(
f">> WARNING: img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions"
logger.warning(
f"img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions"
)
# if image has a transparent area and no mask was provided, then try to generate mask
@ -809,8 +810,8 @@ class Generate:
if (image.width * image.height) > (
self.width * self.height
) and self.size_matters:
print(
">> This input is larger than your defaults. If you run out of memory, please use a smaller image."
logger.info(
"This input is larger than your defaults. If you run out of memory, please use a smaller image."
)
self.size_matters = False
@ -891,11 +892,11 @@ class Generate:
try:
model_data = cache.get_model(model_name)
except Exception as e:
print(f"** model {model_name} could not be loaded: {str(e)}")
logger.warning(f"model {model_name} could not be loaded: {str(e)}")
print(traceback.format_exc(), file=sys.stderr)
if previous_model_name is None:
raise e
print("** trying to reload previous model")
logger.warning("trying to reload previous model")
model_data = cache.get_model(previous_model_name) # load previous
if model_data is None:
raise e
@ -962,15 +963,15 @@ class Generate:
if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan":
if self.gfpgan is None:
print(
">> GFPGAN not found. Face restoration is disabled."
logger.info(
"GFPGAN not found. Face restoration is disabled."
)
else:
image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer":
if self.codeformer is None:
print(
">> CodeFormer not found. Face restoration is disabled."
logger.info(
"CodeFormer not found. Face restoration is disabled."
)
else:
cf_device = (
@ -984,7 +985,7 @@ class Generate:
fidelity=codeformer_fidelity,
)
else:
print(">> Face Restoration is disabled.")
logger.info("Face Restoration is disabled.")
if upscale is not None:
if self.esrgan is not None:
if len(upscale) < 2:
@ -997,10 +998,10 @@ class Generate:
denoise_str=upscale_denoise_str,
)
else:
print(">> ESRGAN is disabled. Image not upscaled.")
logger.info("ESRGAN is disabled. Image not upscaled.")
except Exception as e:
print(
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
logger.info(
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
)
if image_callback is not None:
@ -1066,17 +1067,17 @@ class Generate:
if self.sampler_name in scheduler_map:
sampler_class = scheduler_map[self.sampler_name]
msg = (
f">> Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
f"Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
)
self.sampler = sampler_class.from_config(self.model.scheduler.config)
else:
msg = (
f">> Unsupported Sampler: {self.sampler_name} "
f" Unsupported Sampler: {self.sampler_name} "+
f"Defaulting to {default}"
)
self.sampler = default
print(msg)
logger.info(msg)
if not hasattr(self.sampler, "uses_inpainting_model"):
# FIXME: terrible kludge!
@ -1085,17 +1086,17 @@ class Generate:
def _load_img(self, img) -> Image:
if isinstance(img, Image.Image):
image = img
print(f">> using provided input image of size {image.width}x{image.height}")
logger.info(f"using provided input image of size {image.width}x{image.height}")
elif isinstance(img, str):
assert os.path.exists(img), f">> {img}: File not found"
assert os.path.exists(img), f"{img}: File not found"
image = Image.open(img)
print(
f">> loaded input image of size {image.width}x{image.height} from {img}"
logger.info(
f"loaded input image of size {image.width}x{image.height} from {img}"
)
else:
image = Image.open(img)
print(f">> loaded input image of size {image.width}x{image.height}")
logger.info(f"loaded input image of size {image.width}x{image.height}")
image = ImageOps.exif_transpose(image)
return image
@ -1183,14 +1184,14 @@ class Generate:
def _transparency_check_and_warning(self, image, mask, force_outpaint=False):
if not mask:
print(
">> Initial image has transparent areas. Will inpaint in these regions."
logger.info(
"Initial image has transparent areas. Will inpaint in these regions."
)
if (not force_outpaint) and self._check_for_erasure(image):
print(
">> WARNING: Colors underneath the transparent region seem to have been erased.\n",
">> Inpainting will be suboptimal. Please preserve the colors when making\n",
">> a transparency mask, or provide mask explicitly using --init_mask (-M).",
if (not force_outpaint) and self._check_for_erasure(image):
logger.info(
"Colors underneath the transparent region seem to have been erased.\n" +
"Inpainting will be suboptimal. Please preserve the colors when making\n" +
"a transparency mask, or provide mask explicitly using --init_mask (-M)."
)
def _squeeze_image(self, image):
@ -1201,11 +1202,11 @@ class Generate:
def _fit_image(self, image, max_dimensions):
w, h = max_dimensions
print(f">> image will be resized to fit inside a box {w}x{h} in size.")
logger.info(f"image will be resized to fit inside a box {w}x{h} in size.")
# note that InitImageResizer does the multiple of 64 truncation internally
image = InitImageResizer(image).resize(width=w, height=h)
print(
f">> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}"
logger.info(
f"after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}"
)
return image
@ -1216,8 +1217,8 @@ class Generate:
) # resize to integer multiple of 64
if h != height or w != width:
if log:
print(
f">> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}"
logger.info(
f"Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}"
)
height = h
width = w

View File

@ -25,6 +25,7 @@ from typing import Callable, List, Iterator, Optional, Type
from dataclasses import dataclass, field
from diffusers.schedulers import SchedulerMixin as Scheduler
import invokeai.backend.util.logging as logger
from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker
@ -372,7 +373,7 @@ class Generator:
try:
x_T = self.get_noise(width, height)
except:
print("** An error occurred while getting initial noise **")
logger.error("An error occurred while getting initial noise")
print(traceback.format_exc())
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
@ -607,7 +608,7 @@ class Generator:
image = self.sample_to_image(sample)
dirname = os.path.dirname(filepath) or "."
if not os.path.exists(dirname):
print(f"** creating directory {dirname}")
logger.info(f"creating directory {dirname}")
os.makedirs(dirname, exist_ok=True)
image.save(filepath, "PNG")

View File

@ -8,10 +8,11 @@ import torch
from PIL import Image
from tqdm import trange
import invokeai.backend.util.logging as logger
from .base import Generator
from .img2img import Img2Img
class Embiggen(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
@ -72,22 +73,22 @@ class Embiggen(Generator):
embiggen = [1.0] # If not specified, assume no scaling
elif embiggen[0] < 0:
embiggen[0] = 1.0
print(
">> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
logger.warning(
"Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
)
if len(embiggen) < 2:
embiggen.append(0.75)
elif embiggen[1] > 1.0 or embiggen[1] < 0:
embiggen[1] = 0.75
print(
">> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
logger.warning(
"Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
)
if len(embiggen) < 3:
embiggen.append(0.25)
elif embiggen[2] < 0:
embiggen[2] = 0.25
print(
">> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
logger.warning(
"Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
)
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
@ -97,8 +98,8 @@ class Embiggen(Generator):
embiggen_tiles.sort()
if strength >= 0.5:
print(
f"* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
logger.warning(
f"Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
)
# Prep img2img generator, since we wrap over it
@ -121,8 +122,8 @@ class Embiggen(Generator):
from ..restoration.realesrgan import ESRGAN
esrgan = ESRGAN()
print(
f">> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
logger.info(
f"ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
)
if embiggen[0] > 2:
initsuperimage = esrgan.process(
@ -312,10 +313,10 @@ class Embiggen(Generator):
def make_image():
# Make main tiles -------------------------------------------------
if embiggen_tiles:
print(f">> Making {len(embiggen_tiles)} Embiggen tiles...")
logger.info(f"Making {len(embiggen_tiles)} Embiggen tiles...")
else:
print(
f">> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
logger.info(
f"Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
)
emb_tile_store = []
@ -361,11 +362,11 @@ class Embiggen(Generator):
# newinitimage.save(newinitimagepath)
if embiggen_tiles:
print(
logger.debug(
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
)
else:
print(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
logger.debug(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
# create a torch tensor from an Image
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
@ -547,8 +548,8 @@ class Embiggen(Generator):
# Layer tile onto final image
outputsuperimage.alpha_composite(intileimage, (left, top))
else:
print(
"Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
logger.error(
"Could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
)
# after internal loops and patching up return Embiggen image

View File

@ -14,6 +14,8 @@ from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeli
from ..stable_diffusion.diffusers_pipeline import ConditioningData
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
import invokeai.backend.util.logging as logger
class Txt2Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
@ -77,8 +79,8 @@ class Txt2Img2Img(Generator):
# the message below is accurate.
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
print(
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
logger.info(
f"Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
# resizing

View File

@ -5,10 +5,9 @@ wraps the actual patchmatch object. It respects the global
be suppressed or deferred
"""
import numpy as np
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals
class PatchMatch:
"""
Thin class wrapper around the patchmatch function.
@ -28,12 +27,12 @@ class PatchMatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
print(">> Patchmatch initialized")
logger.info("Patchmatch initialized")
else:
print(">> Patchmatch not loaded (nonfatal)")
logger.info("Patchmatch not loaded (nonfatal)")
self.patch_match = pm
else:
print(">> Patchmatch loading disabled")
logger.info("Patchmatch loading disabled")
self.tried_load = True
@classmethod

View File

@ -30,9 +30,9 @@ work fine.
import numpy as np
import torch
from PIL import Image, ImageOps
from torchvision import transforms
from transformers import AutoProcessor, CLIPSegForImageSegmentation
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import global_cache_dir
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
@ -83,7 +83,7 @@ class Txt2Mask(object):
"""
def __init__(self, device="cpu", refined=False):
print(">> Initializing clipseg model for text to mask inference")
logger.info("Initializing clipseg model for text to mask inference")
# BUG: we are not doing anything with the device option at this time
self.device = device
@ -101,18 +101,6 @@ class Txt2Mask(object):
provided image and returns a SegmentedGrayscale object in which the brighter
pixels indicate where the object is inferred to be.
"""
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
transforms.Resize(
(CLIPSEG_SIZE, CLIPSEG_SIZE)
), # must be multiple of 64...
]
)
if type(image) is str:
image = Image.open(image).convert("RGB")

View File

@ -5,6 +5,7 @@ from .convert_ckpt_to_diffusers import (
convert_ckpt_to_diffusers,
load_pipeline_from_original_stable_diffusion_ckpt,
)
from .model_manager import ModelManager
from .model_manager import ModelManager,SDModelComponent

View File

@ -25,6 +25,7 @@ from typing import Union
import torch
from safetensors.torch import load_file
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import global_cache_dir, global_config_dir
from .model_manager import ModelManager, SDLegacyType
@ -372,9 +373,9 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100:
print(f" | Checkpoint {path} has both EMA and non-EMA weights.")
logger.debug(f"Checkpoint {path} has both EMA and non-EMA weights.")
if extract_ema:
print(" | Extracting EMA weights (usually better for inference)")
logger.debug("Extracting EMA weights (usually better for inference)")
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
@ -392,8 +393,8 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
key
)
else:
print(
" | Extracting only the non-EMA weights (usually better for fine-tuning)"
logger.debug(
"Extracting only the non-EMA weights (usually better for fine-tuning)"
)
for key in keys:
@ -1115,7 +1116,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
if "global_step" in checkpoint:
global_step = checkpoint["global_step"]
else:
print(" | global_step key not found in model")
logger.debug("global_step key not found in model")
global_step = None
# sometimes there is a state_dict key and sometimes not
@ -1229,15 +1230,15 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
# If a replacement VAE path was specified, we'll incorporate that into
# the checkpoint model and then convert it
if vae_path:
print(f" | Converting VAE {vae_path}")
logger.debug(f"Converting VAE {vae_path}")
replace_checkpoint_vae(checkpoint,vae_path)
# otherwise we use the original VAE, provided that
# an externally loaded diffusers VAE was not passed
elif not vae:
print(" | Using checkpoint model's original VAE")
logger.debug("Using checkpoint model's original VAE")
if vae:
print(" | Using replacement diffusers VAE")
logger.debug("Using replacement diffusers VAE")
else: # convert the original or replacement VAE
vae_config = create_vae_diffusers_config(
original_config, image_size=image_size

View File

@ -18,12 +18,13 @@ import warnings
from enum import Enum, auto
from pathlib import Path
from shutil import move, rmtree
from typing import Any, Optional, Union, Callable
from typing import Any, Optional, Union, Callable, types
import safetensors
import safetensors.torch
import torch
import transformers
import invokeai.backend.util.logging as logger
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
@ -75,6 +76,8 @@ class ModelManager(object):
Model manager handles loading, caching, importing, deleting, converting, and editing models.
"""
logger: types.ModuleType = logger
def __init__(
self,
config: OmegaConf | Path,
@ -83,6 +86,7 @@ class ModelManager(object):
max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
embedding_path: Path = None,
logger: types.ModuleType = logger,
):
"""
Initialize with the path to the models.yaml config file or
@ -104,6 +108,7 @@ class ModelManager(object):
self.current_model = None
self.sequential_offload = sequential_offload
self.embedding_path = embedding_path
self.logger = logger
def valid_model(self, model_name: str) -> bool:
"""
@ -132,8 +137,8 @@ class ModelManager(object):
)
if not self.valid_model(model_name):
print(
f'** "{model_name}" is not a known model name. Please check your models.yaml file'
self.logger.error(
f'"{model_name}" is not a known model name. Please check your models.yaml file'
)
return self.current_model
@ -144,7 +149,7 @@ class ModelManager(object):
if model_name in self.models:
requested_model = self.models[model_name]["model"]
print(f">> Retrieving model {model_name} from system RAM cache")
self.logger.info(f"Retrieving model {model_name} from system RAM cache")
requested_model.ready()
width = self.models[model_name]["width"]
height = self.models[model_name]["height"]
@ -379,7 +384,7 @@ class ModelManager(object):
"""
omega = self.config
if model_name not in omega:
print(f"** Unknown model {model_name}")
self.logger.error(f"Unknown model {model_name}")
return
# save these for use in deletion later
conf = omega[model_name]
@ -392,13 +397,13 @@ class ModelManager(object):
self.stack.remove(model_name)
if delete_files:
if weights:
print(f"** Deleting file {weights}")
self.logger.info(f"Deleting file {weights}")
Path(weights).unlink(missing_ok=True)
elif path:
print(f"** Deleting directory {path}")
self.logger.info(f"Deleting directory {path}")
rmtree(path, ignore_errors=True)
elif repo_id:
print(f"** Deleting the cached model directory for {repo_id}")
self.logger.info(f"Deleting the cached model directory for {repo_id}")
self._delete_model_from_cache(repo_id)
def add_model(
@ -439,7 +444,7 @@ class ModelManager(object):
def _load_model(self, model_name: str):
"""Load and initialize the model from configuration variables passed at object creation time"""
if model_name not in self.config:
print(
self.logger.error(
f'"{model_name}" is not a known model name. Please check your models.yaml file'
)
return
@ -457,7 +462,7 @@ class ModelManager(object):
model_format = mconfig.get("format", "ckpt")
if model_format == "ckpt":
weights = mconfig.weights
print(f">> Loading {model_name} from {weights}")
self.logger.info(f"Loading {model_name} from {weights}")
model, width, height, model_hash = self._load_ckpt_model(
model_name, mconfig
)
@ -473,13 +478,15 @@ class ModelManager(object):
# usage statistics
toc = time.time()
print(">> Model loaded in", "%4.2fs" % (toc - tic))
self.logger.info("Model loaded in " + "%4.2fs" % (toc - tic))
if self._has_cuda():
print(
">> Max VRAM used to load the model:",
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9),
"\n>> Current VRAM usage:"
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
self.logger.info(
"Max VRAM used to load the model: "+
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9)
)
self.logger.info(
"Current VRAM usage: "+
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9)
)
return model, width, height, model_hash
@ -487,11 +494,11 @@ class ModelManager(object):
name_or_path = self.model_name_or_path(mconfig)
using_fp16 = self.precision == "float16"
print(f">> Loading diffusers model from {name_or_path}")
self.logger.info(f"Loading diffusers model from {name_or_path}")
if using_fp16:
print(" | Using faster float16 precision")
self.logger.debug("Using faster float16 precision")
else:
print(" | Using more accurate float32 precision")
self.logger.debug("Using more accurate float32 precision")
# TODO: scan weights maybe?
pipeline_args: dict[str, Any] = dict(
@ -523,8 +530,8 @@ class ModelManager(object):
if str(e).startswith("fp16 is not a valid"):
pass
else:
print(
f"** An unexpected error occurred while downloading the model: {e})"
self.logger.error(
f"An unexpected error occurred while downloading the model: {e})"
)
if pipeline:
break
@ -542,7 +549,7 @@ class ModelManager(object):
# square images???
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
height = width
print(f" | Default image dimensions = {width} x {height}")
self.logger.debug(f"Default image dimensions = {width} x {height}")
return pipeline, width, height, model_hash
@ -559,14 +566,14 @@ class ModelManager(object):
weights = os.path.normpath(os.path.join(Globals.root, weights))
# Convert to diffusers and return a diffusers pipeline
print(f">> Converting legacy checkpoint {model_name} into a diffusers model...")
self.logger.info(f"Converting legacy checkpoint {model_name} into a diffusers model...")
from . import load_pipeline_from_original_stable_diffusion_ckpt
try:
if self.list_models()[self.current_model]["status"] == "active":
self.offload_model(self.current_model)
except Exception as e:
except Exception:
pass
vae_path = None
@ -624,7 +631,7 @@ class ModelManager(object):
if model_name not in self.models:
return
print(f">> Offloading {model_name} to CPU")
self.logger.info(f"Offloading {model_name} to CPU")
model = self.models[model_name]["model"]
model.offload_all()
self.current_model = None
@ -640,30 +647,26 @@ class ModelManager(object):
and option to exit if an infected file is identified.
"""
# scan model
print(f" | Scanning Model: {model_name}")
self.logger.debug(f"Scanning Model: {model_name}")
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
if scan_result.infected_files == 1:
print(f"\n### Issues Found In Model: {scan_result.issues_count}")
print(
"### WARNING: The model you are trying to load seems to be infected."
)
print("### For your safety, InvokeAI will not load this model.")
print("### Please use checkpoints from trusted sources.")
print("### Exiting InvokeAI")
self.logger.critical(f"Issues Found In Model: {scan_result.issues_count}")
self.logger.critical("The model you are trying to load seems to be infected.")
self.logger.critical("For your safety, InvokeAI will not load this model.")
self.logger.critical("Please use checkpoints from trusted sources.")
self.logger.critical("Exiting InvokeAI")
sys.exit()
else:
print(
"\n### WARNING: InvokeAI was unable to scan the model you are using."
)
self.logger.warning("InvokeAI was unable to scan the model you are using.")
model_safe_check_fail = ask_user(
"Do you want to to continue loading the model?", ["y", "n"]
)
if model_safe_check_fail.lower() != "y":
print("### Exiting InvokeAI")
self.logger.critical("Exiting InvokeAI")
sys.exit()
else:
print(" | Model scanned ok")
self.logger.debug("Model scanned ok")
def import_diffuser_model(
self,
@ -780,26 +783,24 @@ class ModelManager(object):
model_path: Path = None
thing = path_url_or_repo # to save typing
print(f">> Probing {thing} for import")
self.logger.info(f"Probing {thing} for import")
if thing.startswith(("http:", "https:", "ftp:")):
print(f" | {thing} appears to be a URL")
self.logger.info(f"{thing} appears to be a URL")
model_path = self._resolve_path(
thing, "models/ldm/stable-diffusion-v1"
) # _resolve_path does a download if needed
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
print(
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
)
self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import")
return
else:
print(f" | {thing} appears to be a checkpoint file on disk")
self.logger.debug(f"{thing} appears to be a checkpoint file on disk")
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
print(f" | {thing} appears to be a diffusers file on disk")
self.logger.debug(f"{thing} appears to be a diffusers file on disk")
model_name = self.import_diffuser_model(
thing,
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
@ -810,34 +811,30 @@ class ModelManager(object):
elif Path(thing).is_dir():
if (Path(thing) / "model_index.json").exists():
print(f" | {thing} appears to be a diffusers model.")
self.logger.debug(f"{thing} appears to be a diffusers model.")
model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf
)
else:
print(
f" |{thing} appears to be a directory. Will scan for models to import"
)
self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import")
for m in list(Path(thing).rglob("*.ckpt")) + list(
Path(thing).rglob("*.safetensors")
):
if model_name := self.heuristic_import(
str(m), commit_to_conf=commit_to_conf
):
print(f" >> {model_name} successfully imported")
self.logger.info(f"{model_name} successfully imported")
return model_name
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
print(f" | {thing} appears to be a HuggingFace diffusers repo_id")
self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id")
model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf
)
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
return model_name
else:
print(
f"** {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id"
)
self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
# Model_path is set in the event of a legacy checkpoint file.
# If not set, we're all done
@ -845,7 +842,7 @@ class ModelManager(object):
return
if model_path.stem in self.config: # already imported
print(" | Already imported. Skipping")
self.logger.debug("Already imported. Skipping")
return model_path.stem
# another round of heuristics to guess the correct config file.
@ -861,39 +858,39 @@ class ModelManager(object):
# look for a like-named .yaml file in same directory
if model_path.with_suffix(".yaml").exists():
model_config_file = model_path.with_suffix(".yaml")
print(f" | Using config file {model_config_file.name}")
self.logger.debug(f"Using config file {model_config_file.name}")
else:
model_type = self.probe_model_type(checkpoint)
if model_type == SDLegacyType.V1:
print(" | SD-v1 model detected")
self.logger.debug("SD-v1 model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inference.yaml"
)
elif model_type == SDLegacyType.V1_INPAINT:
print(" | SD-v1 inpainting model detected")
self.logger.debug("SD-v1 inpainting model detected")
model_config_file = Path(
Globals.root,
"configs/stable-diffusion/v1-inpainting-inference.yaml",
)
elif model_type == SDLegacyType.V2_v:
print(" | SD-v2-v model detected")
self.logger.debug("SD-v2-v model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
)
elif model_type == SDLegacyType.V2_e:
print(" | SD-v2-e model detected")
self.logger.debug("SD-v2-e model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference.yaml"
)
elif model_type == SDLegacyType.V2:
print(
f"** {thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
self.logger.warning(
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
)
return
else:
print(
f"** {thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
self.logger.warning(
f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
)
return
@ -909,7 +906,7 @@ class ModelManager(object):
for suffix in ["pt", "ckpt", "safetensors"]:
if (model_path.with_suffix(f".vae.{suffix}")).exists():
vae_path = model_path.with_suffix(f".vae.{suffix}")
print(f" | Using VAE file {vae_path.name}")
self.logger.debug(f"Using VAE file {vae_path.name}")
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
diffuser_path = Path(
@ -955,14 +952,14 @@ class ModelManager(object):
from . import convert_ckpt_to_diffusers
if diffusers_path.exists():
print(
f"ERROR: The path {str(diffusers_path)} already exists. Please move or remove it and try again."
self.logger.error(
f"The path {str(diffusers_path)} already exists. Please move or remove it and try again."
)
return
model_name = model_name or diffusers_path.name
model_description = model_description or f"Converted version of {model_name}"
print(f" | Converting {model_name} to diffusers (30-60s)")
self.logger.debug(f"Converting {model_name} to diffusers (30-60s)")
try:
# By passing the specified VAE to the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file
@ -979,10 +976,10 @@ class ModelManager(object):
vae_path=vae_path,
scan_needed=scan_needed,
)
print(
f" | Success. Converted model is now located at {str(diffusers_path)}"
self.logger.debug(
f"Success. Converted model is now located at {str(diffusers_path)}"
)
print(f" | Writing new config file entry for {model_name}")
self.logger.debug(f"Writing new config file entry for {model_name}")
new_config = dict(
path=str(diffusers_path),
description=model_description,
@ -993,17 +990,17 @@ class ModelManager(object):
self.add_model(model_name, new_config, True)
if commit_to_conf:
self.commit(commit_to_conf)
print(" | Conversion succeeded")
self.logger.debug("Conversion succeeded")
except Exception as e:
print(f"** Conversion failed: {str(e)}")
print(
"** If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
self.logger.warning(f"Conversion failed: {str(e)}")
self.logger.warning(
"If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
)
return model_name
def search_models(self, search_folder):
print(f">> Finding Models In: {search_folder}")
self.logger.info(f"Finding Models In: {search_folder}")
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
@ -1027,8 +1024,8 @@ class ModelManager(object):
num_loaded_models = len(self.models)
if num_loaded_models >= self.max_loaded_models:
least_recent_model = self._pop_oldest_model()
print(
f">> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
self.logger.info(
f"Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
)
if least_recent_model is not None:
del self.models[least_recent_model]
@ -1036,8 +1033,8 @@ class ModelManager(object):
def print_vram_usage(self) -> None:
if self._has_cuda:
print(
">> Current VRAM usage: ",
self.logger.info(
"Current VRAM usage:"+
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
)
@ -1126,10 +1123,10 @@ class ModelManager(object):
dest = hub / model.stem
if dest.exists() and not source.exists():
continue
print(f"** {source} => {dest}")
cls.logger.info(f"{source} => {dest}")
if source.exists():
if dest.is_symlink():
print(f"** Found symlink at {dest.name}. Not migrating.")
logger.warning(f"Found symlink at {dest.name}. Not migrating.")
elif dest.exists():
if source.is_dir():
rmtree(source)
@ -1146,7 +1143,7 @@ class ModelManager(object):
]
for d in empty:
os.rmdir(d)
print("** Migration is done. Continuing...")
cls.logger.info("Migration is done. Continuing...")
def _resolve_path(
self, source: Union[str, Path], dest_directory: str
@ -1189,15 +1186,15 @@ class ModelManager(object):
def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline):
if self.embedding_path is not None:
print(f">> Loading embeddings from {self.embedding_path}")
self.logger.info(f"Loading embeddings from {self.embedding_path}")
for root, _, files in os.walk(self.embedding_path):
for name in files:
ti_path = os.path.join(root, name)
model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True
)
print(
f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
self.logger.info(
f'Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
)
def _has_cuda(self) -> bool:
@ -1219,7 +1216,7 @@ class ModelManager(object):
with open(hashpath) as f:
hash = f.read()
return hash
print(" | Calculating sha256 hash of model files")
self.logger.debug("Calculating sha256 hash of model files")
tic = time.time()
sha = hashlib.sha256()
count = 0
@ -1231,7 +1228,7 @@ class ModelManager(object):
sha.update(chunk)
hash = sha.hexdigest()
toc = time.time()
print(f" | sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
self.logger.debug(f"sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
with open(hashpath, "w") as f:
f.write(hash)
return hash
@ -1249,13 +1246,13 @@ class ModelManager(object):
hash = f.read()
return hash
print(" | Calculating sha256 hash of weights file")
self.logger.debug("Calculating sha256 hash of weights file")
tic = time.time()
sha = hashlib.sha256()
sha.update(data)
hash = sha.hexdigest()
toc = time.time()
print(f">> sha256 = {hash}", "(%4.2fs)" % (toc - tic))
self.logger.debug(f"sha256 = {hash} "+"(%4.2fs)" % (toc - tic))
with open(hashpath, "w") as f:
f.write(hash)
@ -1276,12 +1273,12 @@ class ModelManager(object):
local_files_only=not Globals.internet_available,
)
print(f" | Loading diffusers VAE from {name_or_path}")
self.logger.debug(f"Loading diffusers VAE from {name_or_path}")
if using_fp16:
vae_args.update(torch_dtype=torch.float16)
fp_args_list = [{"revision": "fp16"}, {}]
else:
print(" | Using more accurate float32 precision")
self.logger.debug("Using more accurate float32 precision")
fp_args_list = [{}]
vae = None
@ -1305,12 +1302,12 @@ class ModelManager(object):
break
if not vae and deferred_error:
print(f"** Could not load VAE {name_or_path}: {str(deferred_error)}")
self.logger.warning(f"Could not load VAE {name_or_path}: {str(deferred_error)}")
return vae
@staticmethod
def _delete_model_from_cache(repo_id):
@classmethod
def _delete_model_from_cache(cls,repo_id):
cache_info = scan_cache_dir(global_cache_dir("hub"))
# I'm sure there is a way to do this with comprehensions
@ -1321,8 +1318,8 @@ class ModelManager(object):
for revision in repo.revisions:
hashes_to_delete.add(revision.commit_hash)
strategy = cache_info.delete_revisions(*hashes_to_delete)
print(
f"** Deletion of this model is expected to free {strategy.expected_freed_size_str}"
cls.logger.warning(
f"Deletion of this model is expected to free {strategy.expected_freed_size_str}"
)
strategy.execute()

View File

@ -18,6 +18,7 @@ from compel.prompt_parser import (
PromptParser,
)
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals
from ..stable_diffusion import InvokeAIDiffuserComponent
@ -162,8 +163,8 @@ def log_tokenization(
negative_prompt: Union[Blend, FlattenedPrompt],
tokenizer,
):
print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}")
print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
logger.info(f"[TOKENLOG] Parsed Prompt: {positive_prompt}")
logger.info(f"[TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
log_tokenization_for_prompt_object(positive_prompt, tokenizer)
log_tokenization_for_prompt_object(
@ -237,12 +238,12 @@ def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_t
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
logger.info(f'[TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
logger.debug(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")
logger.info(f"[TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
logger.debug(f"{discarded}\x1b[0m")
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]:
@ -295,8 +296,8 @@ def split_weighted_subprompts(text, skip_normalize=False) -> list:
return parsed_prompts
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
if weight_sum == 0:
print(
"* Warning: Subprompt weights add up to zero. Discarding and using even weights instead."
logger.warning(
"Subprompt weights add up to zero. Discarding and using even weights instead."
)
equal_weight = 1 / max(len(parsed_prompts), 1)
return [(x[0], equal_weight) for x in parsed_prompts]

View File

@ -1,3 +1,5 @@
import invokeai.backend.util.logging as logger
class Restoration:
def __init__(self) -> None:
pass
@ -8,17 +10,17 @@ class Restoration:
# Load GFPGAN
gfpgan = self.load_gfpgan(gfpgan_model_path)
if gfpgan.gfpgan_model_exists:
print(">> GFPGAN Initialized")
logger.info("GFPGAN Initialized")
else:
print(">> GFPGAN Disabled")
logger.info("GFPGAN Disabled")
gfpgan = None
# Load CodeFormer
codeformer = self.load_codeformer()
if codeformer.codeformer_model_exists:
print(">> CodeFormer Initialized")
logger.info("CodeFormer Initialized")
else:
print(">> CodeFormer Disabled")
logger.info("CodeFormer Disabled")
codeformer = None
return gfpgan, codeformer
@ -39,5 +41,5 @@ class Restoration:
from .realesrgan import ESRGAN
esrgan = ESRGAN(esrgan_bg_tile)
print(">> ESRGAN Initialized")
logger.info("ESRGAN Initialized")
return esrgan

View File

@ -5,6 +5,7 @@ import warnings
import numpy as np
import torch
import invokeai.backend.util.logging as logger
from ..globals import Globals
pretrained_model_url = (
@ -23,12 +24,12 @@ class CodeFormerRestoration:
self.codeformer_model_exists = os.path.isfile(self.model_path)
if not self.codeformer_model_exists:
print("## NOT FOUND: CodeFormer model not found at " + self.model_path)
logger.error("NOT FOUND: CodeFormer model not found at " + self.model_path)
sys.path.append(os.path.abspath(codeformer_dir))
def process(self, image, strength, device, seed=None, fidelity=0.75):
if seed is not None:
print(f">> CodeFormer - Restoring Faces for image seed:{seed}")
logger.info(f"CodeFormer - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
@ -97,7 +98,7 @@ class CodeFormerRestoration:
del output
torch.cuda.empty_cache()
except RuntimeError as error:
print(f"\tFailed inference for CodeFormer: {error}.")
logger.error(f"Failed inference for CodeFormer: {error}.")
restored_face = cropped_face
restored_face = restored_face.astype("uint8")

View File

@ -6,9 +6,9 @@ import numpy as np
import torch
from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals
class GFPGAN:
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
if not os.path.isabs(gfpgan_model_path):
@ -19,7 +19,7 @@ class GFPGAN:
self.gfpgan_model_exists = os.path.isfile(self.model_path)
if not self.gfpgan_model_exists:
print("## NOT FOUND: GFPGAN model not found at " + self.model_path)
logger.error("NOT FOUND: GFPGAN model not found at " + self.model_path)
return None
def model_exists(self):
@ -27,7 +27,7 @@ class GFPGAN:
def process(self, image, strength: float, seed: str = None):
if seed is not None:
print(f">> GFPGAN - Restoring Faces for image seed:{seed}")
logger.info(f"GFPGAN - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
@ -47,14 +47,14 @@ class GFPGAN:
except Exception:
import traceback
print(">> Error loading GFPGAN:", file=sys.stderr)
logger.error("Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
os.chdir(cwd)
if self.gfpgan is None:
print(f">> WARNING: GFPGAN not initialized.")
print(
f">> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
logger.warning("WARNING: GFPGAN not initialized.")
logger.warning(
f"Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
)
image = image.convert("RGB")

View File

@ -1,7 +1,7 @@
import math
from PIL import Image
import invokeai.backend.util.logging as logger
class Outcrop(object):
def __init__(
@ -82,7 +82,7 @@ class Outcrop(object):
pixels = extents[direction]
# round pixels up to the nearest 64
pixels = math.ceil(pixels / 64) * 64
print(f">> extending image {direction}ward by {pixels} pixels")
logger.info(f"extending image {direction}ward by {pixels} pixels")
image = self._rotate(image, direction)
image = self._extend(image, pixels)
image = self._rotate(image, direction, reverse=True)

View File

@ -6,18 +6,13 @@ import torch
from PIL import Image
from PIL.Image import Image as ImageType
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals
class ESRGAN:
def __init__(self, bg_tile_size=400) -> None:
self.bg_tile_size = bg_tile_size
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
def load_esrgan_bg_upsampler(self, denoise_str):
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
@ -74,16 +69,16 @@ class ESRGAN:
import sys
import traceback
print(">> Error loading Real-ESRGAN:", file=sys.stderr)
logger.error("Error loading Real-ESRGAN:")
print(traceback.format_exc(), file=sys.stderr)
if upsampler_scale == 0:
print(">> Real-ESRGAN: Invalid scaling option. Image not upscaled.")
logger.warning("Real-ESRGAN: Invalid scaling option. Image not upscaled.")
return image
if seed is not None:
print(
f">> Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
logger.info(
f"Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
)
# ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB
image = image.convert("RGB")

View File

@ -14,6 +14,7 @@ from PIL import Image, ImageFilter
from transformers import AutoFeatureExtractor
import invokeai.assets.web as web_assets
import invokeai.backend.util.logging as logger
from .globals import global_cache_dir
from .util import CPU_DEVICE
@ -40,8 +41,8 @@ class SafetyChecker(object):
cache_dir=safety_model_path,
)
except Exception:
print(
"** An error was encountered while installing the safety checker:"
logger.error(
"An error was encountered while installing the safety checker:"
)
print(traceback.format_exc())
@ -65,8 +66,8 @@ class SafetyChecker(object):
)
self.safety_checker.to(CPU_DEVICE) # offload
if has_nsfw_concept[0]:
print(
"** An image with potential non-safe content has been detected. A blurred image will be returned. **"
logger.warning(
"An image with potential non-safe content has been detected. A blurred image will be returned."
)
return self.blur(image)
else:

View File

@ -17,6 +17,7 @@ from huggingface_hub import (
hf_hub_url,
)
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals
@ -66,11 +67,11 @@ class HuggingFaceConceptsLibrary(object):
# when init, add all in dir. when not init, add only concepts added between init and now
self.concept_list.extend(list(local_concepts_to_add))
except Exception as e:
print(
f" ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
logger.warning(
f"Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
)
print(
" ** You may load .bin and .pt file(s) manually using the --embedding_directory argument."
logger.warning(
"You may load .bin and .pt file(s) manually using the --embedding_directory argument."
)
return self.concept_list
else:
@ -83,7 +84,7 @@ class HuggingFaceConceptsLibrary(object):
be downloaded.
"""
if not concept_name in self.list_concepts():
print(
logger.warning(
f"{concept_name} is not a local embedding trigger, nor is it a HuggingFace concept. Generation will continue without the concept."
)
return None
@ -221,7 +222,7 @@ class HuggingFaceConceptsLibrary(object):
if chunk == 0:
bytes += total
print(f">> Downloading {repo_id}...", end="")
logger.info(f"Downloading {repo_id}...", end="")
try:
for file in (
"README.md",
@ -235,22 +236,22 @@ class HuggingFaceConceptsLibrary(object):
)
except ul_error.HTTPError as e:
if e.code == 404:
print(
logger.warning(
f"Concept {concept_name} is not known to the Hugging Face library. Generation will continue without the concept."
)
else:
print(
logger.warning(
f"Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)"
)
os.rmdir(dest)
return False
except ul_error.URLError as e:
print(
f"ERROR while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
logger.error(
f"an error occurred while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
)
os.rmdir(dest)
return False
print("...{:.2f}Kb".format(bytes / 1024))
logger.info("...{:.2f}Kb".format(bytes / 1024))
return succeeded
def _concept_id(self, concept_name: str) -> str:

View File

@ -445,8 +445,15 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property
def _submodels(self) -> Sequence[torch.nn.Module]:
module_names, _, _ = self.extract_init_dict(dict(self.config))
values = [getattr(self, name) for name in module_names.keys()]
return [m for m in values if isinstance(m, torch.nn.Module)]
submodels = []
for name in module_names.keys():
if hasattr(self, name):
value = getattr(self, name)
else:
value = getattr(self.config, name)
if isinstance(value, torch.nn.Module):
submodels.append(value)
return submodels
def image_from_embeddings(
self,
@ -544,7 +551,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
yield PipelineIntermediateState(
run_id=run_id,
step=-1,
timestep=self.scheduler.num_train_timesteps,
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
@ -915,7 +922,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property
def channels(self) -> int:
"""Compatible with DiffusionWrapper"""
return self.unet.in_channels
return self.unet.config.in_channels
def decode_latents(self, latents):
# Explicit call to get the vae loaded, since `decode` isn't the forward method.

View File

@ -10,13 +10,12 @@ import diffusers
import psutil
import torch
from compel.cross_attention_control import Arguments
from diffusers.models.cross_attention import AttnProcessor
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.models.attention_processor import AttentionProcessor
from torch import nn
import invokeai.backend.util.logging as logger
from ...util import torch_dtype
class CrossAttentionType(enum.Enum):
SELF = 1
TOKENS = 2
@ -188,7 +187,7 @@ class Context:
class InvokeAICrossAttentionMixin:
"""
Enable InvokeAI-flavoured CrossAttention calculation, which does aggressive low-memory slicing and calls
Enable InvokeAI-flavoured Attention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection.
"""
@ -209,7 +208,7 @@ class InvokeAICrossAttentionMixin:
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current CrossAttention module for which the callback is being invoked.
`module` is the current Attention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
@ -345,11 +344,11 @@ class InvokeAICrossAttentionMixin:
def restore_default_cross_attention(
model,
is_running_diffusers: bool,
restore_attention_processor: Optional[AttnProcessor] = None,
restore_attention_processor: Optional[AttentionProcessor] = None,
):
if is_running_diffusers:
unet = model
unet.set_attn_processor(restore_attention_processor or CrossAttnProcessor())
unet.set_attn_processor(restore_attention_processor or AttnProcessor())
else:
remove_attention_function(model)
@ -408,12 +407,9 @@ def override_cross_attention(model, context: Context, is_running_diffusers=False
def get_cross_attention_modules(
model, which: CrossAttentionType
) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
from ldm.modules.attention import CrossAttention # avoid circular import
cross_attention_class: type = (
InvokeAIDiffusersCrossAttention
if isinstance(model, UNet2DConditionModel)
else CrossAttention
)
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [
@ -425,13 +421,13 @@ def get_cross_attention_modules(
expected_count = 16
if cross_attention_modules_in_model_count != expected_count:
# non-fatal error but .swap() won't work.
print(
logger.error(
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
+ f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed "
+ f"or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
+ "or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
+ f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows "
+ f"what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not "
+ f"work properly until it is fixed."
+ "what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not "
+ "work properly until it is fixed."
)
return attention_module_tuples
@ -550,7 +546,7 @@ def get_mem_free_total(device):
class InvokeAIDiffusersCrossAttention(
diffusers.models.attention.CrossAttention, InvokeAICrossAttentionMixin
diffusers.models.attention.Attention, InvokeAICrossAttentionMixin
):
def __init__(self, **kwargs):
super().__init__(**kwargs)
@ -572,8 +568,8 @@ class InvokeAIDiffusersCrossAttention(
"""
# base implementation
class CrossAttnProcessor:
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
class AttnProcessor:
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
@ -601,9 +597,9 @@ class CrossAttnProcessor:
from dataclasses import dataclass, field
import torch
from diffusers.models.cross_attention import (
CrossAttention,
CrossAttnProcessor,
from diffusers.models.attention_processor import (
Attention,
AttnProcessor,
SlicedAttnProcessor,
)
@ -653,7 +649,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
def __call__(
self,
attn: CrossAttention,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,

View File

@ -5,9 +5,10 @@ from typing import Any, Callable, Dict, Optional, Union
import numpy as np
import torch
from diffusers.models.cross_attention import AttnProcessor
from diffusers.models.attention_processor import AttentionProcessor
from typing_extensions import TypeAlias
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals
from .cross_attention_control import (
@ -101,7 +102,7 @@ class InvokeAIDiffuserComponent:
def override_cross_attention(
self, conditioning: ExtraConditioningInfo, step_count: int
) -> Dict[str, AttnProcessor]:
) -> Dict[str, AttentionProcessor]:
"""
setup cross attention .swap control. for diffusers this replaces the attention processor, so
the previous attention processor is returned so that the caller can restore it later.
@ -118,7 +119,7 @@ class InvokeAIDiffuserComponent:
)
def restore_default_cross_attention(
self, restore_attention_processor: Optional["AttnProcessor"] = None
self, restore_attention_processor: Optional["AttentionProcessor"] = None
):
self.conditioning = None
self.cross_attention_control_context = None
@ -262,7 +263,7 @@ class InvokeAIDiffuserComponent:
# TODO remove when compvis codepath support is dropped
if step_index is None and sigma is None:
raise ValueError(
f"Either step_index or sigma is required when doing cross attention control, but both are None."
"Either step_index or sigma is required when doing cross attention control, but both are None."
)
percent_through = self.estimate_percent_through(step_index, sigma)
return percent_through
@ -466,10 +467,14 @@ class InvokeAIDiffuserComponent:
outside = torch.count_nonzero(
(latents < -current_threshold) | (latents > current_threshold)
)
print(
f"\nThreshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})\n"
f" | min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}\n"
f" | {outside / latents.numel() * 100:.2f}% values outside threshold"
logger.info(
f"Threshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})"
)
logger.debug(
f"min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}"
)
logger.debug(
f"{outside / latents.numel() * 100:.2f}% values outside threshold"
)
if maxval < current_threshold and minval > -current_threshold:
@ -496,9 +501,11 @@ class InvokeAIDiffuserComponent:
)
if self.debug_thresholding:
print(
f" | min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})\n"
f" | {num_altered / latents.numel() * 100:.2f}% values altered"
logger.debug(
f"min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})"
)
logger.debug(
f"{num_altered / latents.numel() * 100:.2f}% values altered"
)
return latents
@ -599,7 +606,6 @@ class InvokeAIDiffuserComponent:
)
# below is fugly omg
num_actual_conditionings = len(c_or_weighted_c_list)
conditionings = [uc] + [c for c, weight in weighted_cond_list]
weights = [1] + [weight for c, weight in weighted_cond_list]
chunk_count = ceil(len(conditionings) / 2)

View File

@ -10,7 +10,7 @@ from torchvision.utils import make_grid
# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
import invokeai.backend.util.logging as logger
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
@ -191,7 +191,7 @@ def mkdirs(paths):
def mkdir_and_rename(path):
if os.path.exists(path):
new_name = path + "_archived_" + get_timestamp()
print("Path already exists. Rename it to [{:s}]".format(new_name))
logger.error("Path already exists. Rename it to [{:s}]".format(new_name))
os.replace(path, new_name)
os.makedirs(path)

View File

@ -10,6 +10,7 @@ from compel.embeddings_provider import BaseTextualInversionManager
from picklescan.scanner import scan_file_path
from transformers import CLIPTextModel, CLIPTokenizer
import invokeai.backend.util.logging as logger
from .concepts_lib import HuggingFaceConceptsLibrary
@dataclass
@ -59,12 +60,12 @@ class TextualInversionManager(BaseTextualInversionManager):
or self.has_textual_inversion_for_trigger_string(concept_name)
or self.has_textual_inversion_for_trigger_string(f"<{concept_name}>")
): # in case a token with literal angle brackets encountered
print(f">> Loaded local embedding for trigger {concept_name}")
logger.info(f"Loaded local embedding for trigger {concept_name}")
continue
bin_file = self.hf_concepts_library.get_concept_model_path(concept_name)
if not bin_file:
continue
print(f">> Loaded remote embedding for trigger {concept_name}")
logger.info(f"Loaded remote embedding for trigger {concept_name}")
self.load_textual_inversion(bin_file)
self.hf_concepts_library.concepts_loaded[concept_name] = True
@ -85,8 +86,8 @@ class TextualInversionManager(BaseTextualInversionManager):
embedding_list = self._parse_embedding(str(ckpt_path))
for embedding_info in embedding_list:
if (self.text_encoder.get_input_embeddings().weight.data[0].shape[0] != embedding_info.token_dim):
print(
f" ** Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}."
logger.warning(
f"Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}."
)
continue
@ -105,8 +106,8 @@ class TextualInversionManager(BaseTextualInversionManager):
if ckpt_path.name == "learned_embeds.bin"
else f"<{ckpt_path.stem}>"
)
print(
f">> {sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
logger.info(
f"{sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
)
trigger_str = replacement_trigger_str
@ -120,8 +121,8 @@ class TextualInversionManager(BaseTextualInversionManager):
self.trigger_to_sourcefile[trigger_str] = sourcefile
except ValueError as e:
print(f' | Ignoring incompatible embedding {embedding_info["name"]}')
print(f" | The error was {str(e)}")
logger.debug(f'Ignoring incompatible embedding {embedding_info["name"]}')
logger.debug(f"The error was {str(e)}")
def _add_textual_inversion(
self, trigger_str, embedding, defer_injecting_tokens=False
@ -133,8 +134,8 @@ class TextualInversionManager(BaseTextualInversionManager):
:return: The token id for the added embedding, either existing or newly-added.
"""
if trigger_str in [ti.trigger_string for ti in self.textual_inversions]:
print(
f"** TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
logger.warning(
f"TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
)
return
if not self.full_precision:
@ -155,11 +156,11 @@ class TextualInversionManager(BaseTextualInversionManager):
except ValueError as e:
if str(e).startswith("Warning"):
print(f">> {str(e)}")
logger.warning(f"{str(e)}")
else:
traceback.print_exc()
print(
f"** TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
logger.error(
f"TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
)
raise
@ -219,16 +220,16 @@ class TextualInversionManager(BaseTextualInversionManager):
for ti in self.textual_inversions:
if ti.trigger_token_id is None and ti.trigger_string in prompt_string:
if ti.embedding_vector_length > 1:
print(
f">> Preparing tokens for textual inversion {ti.trigger_string}..."
logger.info(
f"Preparing tokens for textual inversion {ti.trigger_string}..."
)
try:
self._inject_tokens_and_assign_embeddings(ti)
except ValueError as e:
print(
f" | Ignoring incompatible embedding trigger {ti.trigger_string}"
logger.debug(
f"Ignoring incompatible embedding trigger {ti.trigger_string}"
)
print(f" | The error was {str(e)}")
logger.debug(f"The error was {str(e)}")
continue
injected_token_ids.append(ti.trigger_token_id)
injected_token_ids.extend(ti.pad_token_ids)
@ -306,16 +307,16 @@ class TextualInversionManager(BaseTextualInversionManager):
if suffix in [".pt",".ckpt",".bin"]:
scan_result = scan_file_path(embedding_file)
if scan_result.infected_files > 0:
print(
f" ** Security Issues Found in Model: {scan_result.issues_count}"
logger.critical(
f"Security Issues Found in Model: {scan_result.issues_count}"
)
print(" ** For your safety, InvokeAI will not load this embed.")
logger.critical("For your safety, InvokeAI will not load this embed.")
return list()
ckpt = torch.load(embedding_file,map_location="cpu")
else:
ckpt = safetensors.torch.load_file(embedding_file)
except Exception as e:
print(f" ** Notice: unrecognized embedding file format: {embedding_file}: {e}")
logger.warning(f"Notice: unrecognized embedding file format: {embedding_file}: {e}")
return list()
# try to figure out what kind of embedding file it is and parse accordingly
@ -334,7 +335,7 @@ class TextualInversionManager(BaseTextualInversionManager):
def _parse_embedding_v1(self, embedding_ckpt: dict, file_path: str)->List[EmbeddingInfo]:
basename = Path(file_path).stem
print(f' | Loading v1 embedding file: {basename}')
logger.debug(f'Loading v1 embedding file: {basename}')
embeddings = list()
token_counter = -1
@ -342,7 +343,7 @@ class TextualInversionManager(BaseTextualInversionManager):
if token_counter < 0:
trigger = embedding_ckpt["name"]
elif token_counter == 0:
trigger = f'<basename>'
trigger = '<basename>'
else:
trigger = f'<{basename}-{int(token_counter:=token_counter)}>'
token_counter += 1
@ -365,7 +366,7 @@ class TextualInversionManager(BaseTextualInversionManager):
This handles embedding .pt file variant #2.
"""
basename = Path(file_path).stem
print(f' | Loading v2 embedding file: {basename}')
logger.debug(f'Loading v2 embedding file: {basename}')
embeddings = list()
if isinstance(
@ -384,7 +385,7 @@ class TextualInversionManager(BaseTextualInversionManager):
)
embeddings.append(embedding_info)
else:
print(f" ** {basename}: Unrecognized embedding format")
logger.warning(f"{basename}: Unrecognized embedding format")
return embeddings
@ -393,7 +394,7 @@ class TextualInversionManager(BaseTextualInversionManager):
Parse 'version 3' of the .pt textual inversion embedding files.
"""
basename = Path(file_path).stem
print(f' | Loading v3 embedding file: {basename}')
logger.debug(f'Loading v3 embedding file: {basename}')
embedding = embedding_ckpt['emb_params']
embedding_info = EmbeddingInfo(
name = f'<{basename}>',
@ -411,11 +412,11 @@ class TextualInversionManager(BaseTextualInversionManager):
basename = Path(filepath).stem
short_path = Path(filepath).parents[0].name+'/'+Path(filepath).name
print(f' | Loading v4 embedding file: {short_path}')
logger.debug(f'Loading v4 embedding file: {short_path}')
embeddings = list()
if list(embedding_ckpt.keys()) == 0:
print(f" ** Invalid embeddings file: {short_path}")
logger.warning(f"Invalid embeddings file: {short_path}")
else:
for token,embedding in embedding_ckpt.items():
embedding_info = EmbeddingInfo(

View File

@ -0,0 +1,109 @@
# Copyright (c) 2023 Lincoln D. Stein and The InvokeAI Development Team
"""invokeai.util.logging
Logging class for InvokeAI that produces console messages that follow
the conventions established in InvokeAI 1.X through 2.X.
One way to use it:
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.getLogger(__name__)
logger.critical('this is critical')
logger.error('this is an error')
logger.warning('this is a warning')
logger.info('this is info')
logger.debug('this is debugging')
Console messages:
### this is critical
*** this is an error ***
** this is a warning
>> this is info
| this is debugging
Another way:
import invokeai.backend.util.logging as ialog
ialogger.debug('this is a debugging message')
"""
import logging
# module level functions
def debug(msg, *args, **kwargs):
InvokeAILogger.getLogger().debug(msg, *args, **kwargs)
def info(msg, *args, **kwargs):
InvokeAILogger.getLogger().info(msg, *args, **kwargs)
def warning(msg, *args, **kwargs):
InvokeAILogger.getLogger().warning(msg, *args, **kwargs)
def error(msg, *args, **kwargs):
InvokeAILogger.getLogger().error(msg, *args, **kwargs)
def critical(msg, *args, **kwargs):
InvokeAILogger.getLogger().critical(msg, *args, **kwargs)
def log(level, msg, *args, **kwargs):
InvokeAILogger.getLogger().log(level, msg, *args, **kwargs)
def disable(level=logging.CRITICAL):
InvokeAILogger.getLogger().disable(level)
def basicConfig(**kwargs):
InvokeAILogger.getLogger().basicConfig(**kwargs)
def getLogger(name: str=None)->logging.Logger:
return InvokeAILogger.getLogger(name)
class InvokeAILogFormatter(logging.Formatter):
'''
Repurposed from:
https://stackoverflow.com/questions/14844970/modifying-logging-message-format-based-on-message-logging-level-in-python3
'''
crit_fmt = "### %(msg)s"
err_fmt = "*** %(msg)s"
warn_fmt = "** %(msg)s"
info_fmt = ">> %(msg)s"
dbg_fmt = " | %(msg)s"
def __init__(self):
super().__init__(fmt="%(levelno)d: %(msg)s", datefmt=None, style='%')
def format(self, record):
# Remember the format used when the logging module
# was installed (in the event that this formatter is
# used with the vanilla logging module.
format_orig = self._style._fmt
if record.levelno == logging.DEBUG:
self._style._fmt = InvokeAILogFormatter.dbg_fmt
if record.levelno == logging.INFO:
self._style._fmt = InvokeAILogFormatter.info_fmt
if record.levelno == logging.WARNING:
self._style._fmt = InvokeAILogFormatter.warn_fmt
if record.levelno == logging.ERROR:
self._style._fmt = InvokeAILogFormatter.err_fmt
if record.levelno == logging.CRITICAL:
self._style._fmt = InvokeAILogFormatter.crit_fmt
# parent class does the work
result = super().format(record)
self._style._fmt = format_orig
return result
class InvokeAILogger(object):
loggers = dict()
@classmethod
def getLogger(self, name:str='invokeai')->logging.Logger:
if name not in self.loggers:
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
fmt = InvokeAILogFormatter()
ch.setFormatter(fmt)
logger.addHandler(ch)
self.loggers[name] = logger
return self.loggers[name]

View File

@ -18,6 +18,7 @@ import torch
from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm
import invokeai.backend.util.logging as logger
from .devices import torch_dtype
@ -38,7 +39,7 @@ def log_txt_as_img(wh, xc, size=10):
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
logger.warning("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
@ -80,8 +81,8 @@ def mean_flat(tensor):
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(
f" | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
logger.debug(
f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
)
return total_params
@ -132,8 +133,8 @@ def parallel_data_prefetch(
raise ValueError("list expected but function got ndarray.")
elif isinstance(data, abc.Iterable):
if isinstance(data, dict):
print(
'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
logger.warning(
'"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
)
data = list(data.values())
if target_data_type == "ndarray":
@ -175,7 +176,7 @@ def parallel_data_prefetch(
processes += [p]
# start processes
print("Start prefetching...")
logger.info("Start prefetching...")
import time
start = time.time()
@ -194,7 +195,7 @@ def parallel_data_prefetch(
gather_res[res[0]] = res[1]
except Exception as e:
print("Exception: ", e)
logger.error("Exception: ", e)
for p in processes:
p.terminate()
@ -202,7 +203,7 @@ def parallel_data_prefetch(
finally:
for p in processes:
p.join()
print(f"Prefetching complete. [{time.time() - start} sec.]")
logger.info(f"Prefetching complete. [{time.time() - start} sec.]")
if target_data_type == "ndarray":
if not isinstance(gather_res[0], np.ndarray):
@ -318,23 +319,23 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
resp = requests.get(url, headers=header, stream=True) # new request with range
if exist_size > content_length:
print("* corrupt existing file found. re-downloading")
logger.warning("corrupt existing file found. re-downloading")
os.remove(dest)
exist_size = 0
if resp.status_code == 416 or exist_size == content_length:
print(f"* {dest}: complete file found. Skipping.")
logger.warning(f"{dest}: complete file found. Skipping.")
return dest
elif resp.status_code == 206 or exist_size > 0:
print(f"* {dest}: partial file found. Resuming...")
logger.warning(f"{dest}: partial file found. Resuming...")
elif resp.status_code != 200:
print(f"** An error occurred during downloading {dest}: {resp.reason}")
logger.error(f"An error occurred during downloading {dest}: {resp.reason}")
else:
print(f"* {dest}: Downloading...")
logger.error(f"{dest}: Downloading...")
try:
if content_length < 2000:
print(f"*** ERROR DOWNLOADING {url}: {resp.text}")
logger.error(f"ERROR DOWNLOADING {url}: {resp.text}")
return None
with open(dest, open_mode) as file, tqdm(
@ -349,7 +350,7 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
size = file.write(data)
bar.update(size)
except Exception as e:
print(f"An error occurred while downloading {dest}: {str(e)}")
logger.error(f"An error occurred while downloading {dest}: {str(e)}")
return None
return dest

View File

@ -19,6 +19,7 @@ from PIL import Image
from PIL.Image import Image as ImageType
from werkzeug.utils import secure_filename
import invokeai.backend.util.logging as logger
import invokeai.frontend.web.dist as frontend
from .. import Generate
@ -77,7 +78,6 @@ class InvokeAIWebServer:
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
# Socket IO
logger = True if args.web_verbose else False
engineio_logger = True if args.web_verbose else False
max_http_buffer_size = 10000000
@ -213,7 +213,7 @@ class InvokeAIWebServer:
self.load_socketio_listeners(self.socketio)
if args.gui:
print(">> Launching Invoke AI GUI")
logger.info("Launching Invoke AI GUI")
try:
from flaskwebgui import FlaskUI
@ -231,17 +231,17 @@ class InvokeAIWebServer:
sys.exit(0)
else:
useSSL = args.certfile or args.keyfile
print(">> Started Invoke AI Web Server")
logger.info("Started Invoke AI Web Server")
if self.host == "0.0.0.0":
print(
logger.info(
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."
)
else:
print(
">> Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
logger.info(
"Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
)
print(
f">> Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
logger.info(
f"Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
)
if not useSSL:
self.socketio.run(app=self.app, host=self.host, port=self.port)
@ -273,7 +273,7 @@ class InvokeAIWebServer:
# path for thumbnail images
self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/")
# txt log
self.log_path = os.path.join(self.result_path, "invoke_log.txt")
self.log_path = os.path.join(self.result_path, "invoke_logger.txt")
# make all output paths
[
os.makedirs(path, exist_ok=True)
@ -290,7 +290,7 @@ class InvokeAIWebServer:
def load_socketio_listeners(self, socketio):
@socketio.on("requestSystemConfig")
def handle_request_capabilities():
print(">> System config requested")
logger.info("System config requested")
config = self.get_system_config()
config["model_list"] = self.generate.model_manager.list_models()
config["infill_methods"] = infill_methods()
@ -330,7 +330,7 @@ class InvokeAIWebServer:
if model_name in current_model_list:
update = True
print(f">> Adding New Model: {model_name}")
logger.info(f"Adding New Model: {model_name}")
self.generate.model_manager.add_model(
model_name=model_name,
@ -348,14 +348,14 @@ class InvokeAIWebServer:
"update": update,
},
)
print(f">> New Model Added: {model_name}")
logger.info(f"New Model Added: {model_name}")
except Exception as e:
self.handle_exceptions(e)
@socketio.on("deleteModel")
def handle_delete_model(model_name: str):
try:
print(f">> Deleting Model: {model_name}")
logger.info(f"Deleting Model: {model_name}")
self.generate.model_manager.del_model(model_name)
self.generate.model_manager.commit(opt.conf)
updated_model_list = self.generate.model_manager.list_models()
@ -366,14 +366,14 @@ class InvokeAIWebServer:
"model_list": updated_model_list,
},
)
print(f">> Model Deleted: {model_name}")
logger.info(f"Model Deleted: {model_name}")
except Exception as e:
self.handle_exceptions(e)
@socketio.on("requestModelChange")
def handle_set_model(model_name: str):
try:
print(f">> Model change requested: {model_name}")
logger.info(f"Model change requested: {model_name}")
model = self.generate.set_model(model_name)
model_list = self.generate.model_manager.list_models()
if model is None:
@ -454,7 +454,7 @@ class InvokeAIWebServer:
"update": True,
},
)
print(f">> Model Converted: {model_name}")
logger.info(f"Model Converted: {model_name}")
except Exception as e:
self.handle_exceptions(e)
@ -490,7 +490,7 @@ class InvokeAIWebServer:
if vae := self.generate.model_manager.config[models_to_merge[0]].get(
"vae", None
):
print(f">> Using configured VAE assigned to {models_to_merge[0]}")
logger.info(f"Using configured VAE assigned to {models_to_merge[0]}")
merged_model_config.update(vae=vae)
self.generate.model_manager.import_diffuser_model(
@ -507,8 +507,8 @@ class InvokeAIWebServer:
"update": True,
},
)
print(f">> Models Merged: {models_to_merge}")
print(f">> New Model Added: {model_merge_info['merged_model_name']}")
logger.info(f"Models Merged: {models_to_merge}")
logger.info(f"New Model Added: {model_merge_info['merged_model_name']}")
except Exception as e:
self.handle_exceptions(e)
@ -698,7 +698,7 @@ class InvokeAIWebServer:
}
)
except Exception as e:
print(f">> Unable to load {path}")
logger.info(f"Unable to load {path}")
socketio.emit(
"error", {"message": f"Unable to load {path}: {str(e)}"}
)
@ -735,9 +735,9 @@ class InvokeAIWebServer:
printable_parameters["init_mask"][:64] + "..."
)
print(f"\n>> Image Generation Parameters:\n\n{printable_parameters}\n")
print(f">> ESRGAN Parameters: {esrgan_parameters}")
print(f">> Facetool Parameters: {facetool_parameters}")
logger.info(f"Image Generation Parameters:\n\n{printable_parameters}\n")
logger.info(f"ESRGAN Parameters: {esrgan_parameters}")
logger.info(f"Facetool Parameters: {facetool_parameters}")
self.generate_images(
generation_parameters,
@ -750,8 +750,8 @@ class InvokeAIWebServer:
@socketio.on("runPostprocessing")
def handle_run_postprocessing(original_image, postprocessing_parameters):
try:
print(
f'>> Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
logger.info(
f'Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
)
progress = Progress()
@ -861,14 +861,14 @@ class InvokeAIWebServer:
@socketio.on("cancel")
def handle_cancel():
print(">> Cancel processing requested")
logger.info("Cancel processing requested")
self.canceled.set()
# TODO: I think this needs a safety mechanism.
@socketio.on("deleteImage")
def handle_delete_image(url, thumbnail, uuid, category):
try:
print(f'>> Delete requested "{url}"')
logger.info(f'Delete requested "{url}"')
from send2trash import send2trash
path = self.get_image_path_from_url(url)
@ -1263,7 +1263,7 @@ class InvokeAIWebServer:
image, os.path.basename(path), self.thumbnail_image_path
)
print(f'\n\n>> Image generated: "{path}"\n')
logger.info(f'Image generated: "{path}"\n')
self.write_log_message(f'[Generated] "{path}": {command}')
if progress.total_iterations > progress.current_iteration:
@ -1329,7 +1329,7 @@ class InvokeAIWebServer:
except Exception as e:
# Clear the CUDA cache on an exception
self.empty_cuda_cache()
print(e)
logger.error(e)
self.handle_exceptions(e)
def empty_cuda_cache(self):

View File

@ -16,6 +16,7 @@ if sys.platform == "darwin":
import pyparsing # type: ignore
import invokeai.version as invokeai
import invokeai.backend.util.logging as logger
from ...backend import Generate, ModelManager
from ...backend.args import Args, dream_cmd_from_png, metadata_dumps, metadata_from_png
@ -69,7 +70,7 @@ def main():
# run any post-install patches needed
run_patches()
print(f">> Internet connectivity is {Globals.internet_available}")
logger.info(f"Internet connectivity is {Globals.internet_available}")
if not args.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml")
@ -78,8 +79,8 @@ def main():
opt, FileNotFoundError(f"The file {config_file} could not be found.")
)
print(f">> {invokeai.__app_name__}, version {invokeai.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
logger.info(f"{invokeai.__app_name__}, version {invokeai.__version__}")
logger.info(f'InvokeAI runtime directory is "{Globals.root}"')
# loading here to avoid long delays on startup
# these two lines prevent a horrible warning message from appearing
@ -121,7 +122,7 @@ def main():
else:
raise FileNotFoundError(f"{opt.infile} not found.")
except (FileNotFoundError, IOError) as e:
print(f"{e}. Aborting.")
logger.critical('Aborted',exc_info=True)
sys.exit(-1)
# creating a Generate object:
@ -142,12 +143,12 @@ def main():
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(opt, e)
except (IOError, KeyError) as e:
print(f"{e}. Aborting.")
except (IOError, KeyError):
logger.critical("Aborted",exc_info=True)
sys.exit(-1)
if opt.seamless:
print(">> changed to seamless tiling mode")
logger.info("Changed to seamless tiling mode")
# preload the model
try:
@ -180,9 +181,7 @@ def main():
f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}'
)
except Exception:
print(">> An error occurred:")
traceback.print_exc()
logger.error("An error occurred",exc_info=True)
# TODO: main_loop() has gotten busy. Needs to be refactored.
def main_loop(gen, opt):
@ -248,7 +247,7 @@ def main_loop(gen, opt):
if not opt.prompt:
oldargs = metadata_from_png(opt.init_img)
opt.prompt = oldargs.prompt
print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
logger.info(f'Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
except (OSError, AttributeError, KeyError):
pass
@ -265,9 +264,9 @@ def main_loop(gen, opt):
if opt.init_img is not None and re.match("^-\\d+$", opt.init_img):
try:
opt.init_img = last_results[int(opt.init_img)][0]
print(f">> Reusing previous image {opt.init_img}")
logger.info(f"Reusing previous image {opt.init_img}")
except IndexError:
print(f">> No previous initial image at position {opt.init_img} found")
logger.info(f"No previous initial image at position {opt.init_img} found")
opt.init_img = None
continue
@ -288,9 +287,9 @@ def main_loop(gen, opt):
if opt.seed is not None and opt.seed < 0 and operation != "postprocess":
try:
opt.seed = last_results[opt.seed][1]
print(f">> Reusing previous seed {opt.seed}")
logger.info(f"Reusing previous seed {opt.seed}")
except IndexError:
print(f">> No previous seed at position {opt.seed} found")
logger.info(f"No previous seed at position {opt.seed} found")
opt.seed = None
continue
@ -309,7 +308,7 @@ def main_loop(gen, opt):
subdir = subdir[: (path_max - 39 - len(os.path.abspath(opt.outdir)))]
current_outdir = os.path.join(opt.outdir, subdir)
print('Writing files to directory: "' + current_outdir + '"')
logger.info('Writing files to directory: "' + current_outdir + '"')
# make sure the output directory exists
if not os.path.exists(current_outdir):
@ -438,15 +437,14 @@ def main_loop(gen, opt):
catch_interrupts=catch_ctrl_c,
**vars(opt),
)
except (PromptParser.ParsingException, pyparsing.ParseException) as e:
print("** An error occurred while processing your prompt **")
print(f"** {str(e)} **")
except (PromptParser.ParsingException, pyparsing.ParseException):
logger.error("An error occurred while processing your prompt",exc_info=True)
elif operation == "postprocess":
print(f">> fixing {opt.prompt}")
logger.info(f"fixing {opt.prompt}")
opt.last_operation = do_postprocess(gen, opt, image_writer)
elif operation == "mask":
print(f">> generating masks from {opt.prompt}")
logger.info(f"generating masks from {opt.prompt}")
do_textmask(gen, opt, image_writer)
if opt.grid and len(grid_images) > 0:
@ -469,12 +467,12 @@ def main_loop(gen, opt):
)
results = [[path, formatted_dream_prompt]]
except AssertionError as e:
print(e)
except AssertionError:
logger.error(e)
continue
except OSError as e:
print(e)
logger.error(e)
continue
print("Outputs:")
@ -513,7 +511,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
gen.set_model(model_name)
add_embedding_terms(gen, completer)
except KeyError as e:
print(str(e))
logger.error(e)
except Exception as e:
report_model_error(opt, e)
completer.add_history(command)
@ -527,8 +525,8 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!import"):
path = shlex.split(command)
if len(path) < 2:
print(
"** please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1"
logger.warning(
"please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1"
)
else:
try:
@ -541,7 +539,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith(("!convert", "!optimize")):
path = shlex.split(command)
if len(path) < 2:
print("** please provide the path to a .ckpt or .safetensors model")
logger.warning("please provide the path to a .ckpt or .safetensors model")
else:
try:
convert_model(path[1], gen, opt, completer)
@ -553,7 +551,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!edit"):
path = shlex.split(command)
if len(path) < 2:
print("** please provide the name of a model")
logger.warning("please provide the name of a model")
else:
edit_model(path[1], gen, opt, completer)
completer.add_history(command)
@ -562,7 +560,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!del"):
path = shlex.split(command)
if len(path) < 2:
print("** please provide the name of a model")
logger.warning("please provide the name of a model")
else:
del_config(path[1], gen, opt, completer)
completer.add_history(command)
@ -642,8 +640,8 @@ def import_model(model_path: str, gen, opt, completer):
try:
default_name = url_attachment_name(model_path)
default_name = Path(default_name).stem
except Exception as e:
print(f"** URL: {str(e)}")
except Exception:
logger.warning(f"A problem occurred while assigning the name of the downloaded model",exc_info=True)
model_name, model_desc = _get_model_name_and_desc(
gen.model_manager,
completer,
@ -664,11 +662,11 @@ def import_model(model_path: str, gen, opt, completer):
model_config_file=config_file,
)
if not imported_name:
print("** Aborting import.")
logger.error("Aborting import.")
return
if not _verify_load(imported_name, gen):
print("** model failed to load. Discarding configuration entry")
logger.error("model failed to load. Discarding configuration entry")
gen.model_manager.del_model(imported_name)
return
if click.confirm("Make this the default model?", default=False):
@ -676,7 +674,7 @@ def import_model(model_path: str, gen, opt, completer):
gen.model_manager.commit(opt.conf)
completer.update_models(gen.model_manager.list_models())
print(f">> {imported_name} successfully installed")
logger.info(f"{imported_name} successfully installed")
def _pick_configuration_file(completer)->Path:
print(
@ -720,21 +718,21 @@ Please select the type of this model:
return choice
def _verify_load(model_name: str, gen) -> bool:
print(">> Verifying that new model loads...")
logger.info("Verifying that new model loads...")
current_model = gen.model_name
try:
if not gen.set_model(model_name):
return
except Exception as e:
print(f"** model failed to load: {str(e)}")
print(
logger.warning(f"model failed to load: {str(e)}")
logger.warning(
"** note that importing 2.X checkpoints is not supported. Please use !convert_model instead."
)
return False
if click.confirm("Keep model loaded?", default=True):
gen.set_model(model_name)
else:
print(">> Restoring previous model")
logger.info("Restoring previous model")
gen.set_model(current_model)
return True
@ -757,7 +755,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
ckpt_path = None
original_config_file = None
if model_name_or_path == gen.model_name:
print("** Can't convert the active model. !switch to another model first. **")
logger.warning("Can't convert the active model. !switch to another model first. **")
return
elif model_info := manager.model_info(model_name_or_path):
if "weights" in model_info:
@ -767,7 +765,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
model_description = model_info["description"]
vae_path = model_info.get("vae")
else:
print(f"** {model_name_or_path} is not a legacy .ckpt weights file")
logger.warning(f"{model_name_or_path} is not a legacy .ckpt weights file")
return
model_name = manager.convert_and_import(
ckpt_path,
@ -788,16 +786,16 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
manager.commit(opt.conf)
if click.confirm(f"Delete the original .ckpt file at {ckpt_path}?", default=False):
ckpt_path.unlink(missing_ok=True)
print(f"{ckpt_path} deleted")
logger.warning(f"{ckpt_path} deleted")
def del_config(model_name: str, gen, opt, completer):
current_model = gen.model_name
if model_name == current_model:
print("** Can't delete active model. !switch to another model first. **")
logger.warning("Can't delete active model. !switch to another model first. **")
return
if model_name not in gen.model_manager.config:
print(f"** Unknown model {model_name}")
logger.warning(f"Unknown model {model_name}")
return
if not click.confirm(
@ -810,17 +808,17 @@ def del_config(model_name: str, gen, opt, completer):
)
gen.model_manager.del_model(model_name, delete_files=delete_completely)
gen.model_manager.commit(opt.conf)
print(f"** {model_name} deleted")
logger.warning(f"{model_name} deleted")
completer.update_models(gen.model_manager.list_models())
def edit_model(model_name: str, gen, opt, completer):
manager = gen.model_manager
if not (info := manager.model_info(model_name)):
print(f"** Unknown model {model_name}")
logger.warning(f"** Unknown model {model_name}")
return
print(f"\n>> Editing model {model_name} from configuration file {opt.conf}")
print()
logger.info(f"Editing model {model_name} from configuration file {opt.conf}")
new_name = _get_model_name(manager.list_models(), completer, model_name)
for attribute in info.keys():
@ -858,7 +856,7 @@ def edit_model(model_name: str, gen, opt, completer):
manager.set_default_model(new_name)
manager.commit(opt.conf)
completer.update_models(manager.list_models())
print(">> Model successfully updated")
logger.info("Model successfully updated")
def _get_model_name(existing_names, completer, default_name: str = "") -> str:
@ -869,11 +867,11 @@ def _get_model_name(existing_names, completer, default_name: str = "") -> str:
if len(model_name) == 0:
model_name = default_name
if not re.match("^[\w._+:/-]+$", model_name):
print(
'** model name must contain only words, digits and the characters "._+:/-" **'
logger.warning(
'model name must contain only words, digits and the characters "._+:/-" **'
)
elif model_name != default_name and model_name in existing_names:
print(f"** the name {model_name} is already in use. Pick another.")
logger.warning(f"the name {model_name} is already in use. Pick another.")
else:
done = True
return model_name
@ -940,11 +938,10 @@ def do_postprocess(gen, opt, callback):
opt=opt,
)
except OSError:
print(traceback.format_exc(), file=sys.stderr)
print(f"** {file_path}: file could not be read")
logger.error(f"{file_path}: file could not be read",exc_info=True)
return
except (KeyError, AttributeError):
print(traceback.format_exc(), file=sys.stderr)
logger.error(f"an error occurred while applying the {tool} postprocessor",exc_info=True)
return
return opt.last_operation
@ -999,13 +996,13 @@ def prepare_image_metadata(
try:
filename = opt.fnformat.format(**wildcards)
except KeyError as e:
print(
f"** The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead"
logger.error(
f"The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead"
)
filename = f"{prefix}.{seed}.png"
except IndexError:
print(
"** The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead"
logger.error(
"The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead"
)
filename = f"{prefix}.{seed}.png"
@ -1094,14 +1091,14 @@ def split_variations(variations_string) -> list:
for part in variations_string.split(","):
seed_and_weight = part.split(":")
if len(seed_and_weight) != 2:
print(f'** Could not parse with_variation part "{part}"')
logger.warning(f'Could not parse with_variation part "{part}"')
broken = True
break
try:
seed = int(seed_and_weight[0])
weight = float(seed_and_weight[1])
except ValueError:
print(f'** Could not parse with_variation part "{part}"')
logger.warning(f'Could not parse with_variation part "{part}"')
broken = True
break
parts.append([seed, weight])
@ -1125,23 +1122,23 @@ def load_face_restoration(opt):
opt.gfpgan_model_path
)
else:
print(">> Face restoration disabled")
logger.info("Face restoration disabled")
if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else:
print(">> Upscaling disabled")
logger.info("Upscaling disabled")
else:
print(">> Face restoration and upscaling disabled")
logger.info("Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
return gfpgan, codeformer, esrgan
def make_step_callback(gen, opt, prefix):
destination = os.path.join(opt.outdir, "intermediates", prefix)
os.makedirs(destination, exist_ok=True)
print(f">> Intermediate images will be written into {destination}")
logger.info(f"Intermediate images will be written into {destination}")
def callback(state: PipelineIntermediateState):
latents = state.latents
@ -1183,21 +1180,20 @@ def retrieve_dream_command(opt, command, completer):
try:
cmd = dream_cmd_from_png(path)
except OSError:
print(f"## {tokens[0]}: file could not be read")
logger.error(f"{tokens[0]}: file could not be read")
except (KeyError, AttributeError, IndexError):
print(f"## {tokens[0]}: file has no metadata")
logger.error(f"{tokens[0]}: file has no metadata")
except:
print(f"## {tokens[0]}: file could not be processed")
logger.error(f"{tokens[0]}: file could not be processed")
if len(cmd) > 0:
completer.set_line(cmd)
def write_commands(opt, file_path: str, outfilepath: str):
dir, basename = os.path.split(file_path)
try:
paths = sorted(list(Path(dir).glob(basename)))
except ValueError:
print(f'## "{basename}": unacceptable pattern')
logger.error(f'"{basename}": unacceptable pattern')
return
commands = []
@ -1206,9 +1202,9 @@ def write_commands(opt, file_path: str, outfilepath: str):
try:
cmd = dream_cmd_from_png(path)
except (KeyError, AttributeError, IndexError):
print(f"## {path}: file has no metadata")
logger.error(f"{path}: file has no metadata")
except:
print(f"## {path}: file could not be processed")
logger.error(f"{path}: file could not be processed")
if cmd:
commands.append(f"# {path}")
commands.append(cmd)
@ -1218,18 +1214,18 @@ def write_commands(opt, file_path: str, outfilepath: str):
outfilepath = os.path.join(opt.outdir, basename)
with open(outfilepath, "w", encoding="utf-8") as f:
f.write("\n".join(commands))
print(f">> File {outfilepath} with commands created")
logger.info(f"File {outfilepath} with commands created")
def report_model_error(opt: Namespace, e: Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
print(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
logger.warning(f'An error occurred while attempting to initialize the model: "{str(e)}"')
logger.warning(
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
print(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
logger.warning(
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
if not click.confirm(
@ -1238,7 +1234,7 @@ def report_model_error(opt: Namespace, e: Exception):
):
return
print("invokeai-configure is launching....\n")
logger.info("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
@ -1255,7 +1251,7 @@ def report_model_error(opt: Namespace, e: Exception):
from ..install import invokeai_configure
invokeai_configure()
print("** InvokeAI will now restart")
logger.warning("InvokeAI will now restart")
sys.argv = previous_args
main() # would rather do a os.exec(), but doesn't exist?
sys.exit(0)

View File

@ -1,10 +1,9 @@
"""
'''
Minimalist updater script. Prompts user for the tag or branch to update to and runs
pip install <path_to_git_source>.
"""
'''
import os
import platform
import requests
from rich import box, print
from rich.console import Console, Group, group
@ -16,8 +15,10 @@ from rich.text import Text
from invokeai.version import __version__
INVOKE_AI_SRC = "https://github.com/invoke-ai/InvokeAI/archive"
INVOKE_AI_REL = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive"
INVOKE_AI_TAG="https://github.com/invoke-ai/InvokeAI/archive/refs/tags"
INVOKE_AI_BRANCH="https://github.com/invoke-ai/InvokeAI/archive/refs/heads"
INVOKE_AI_REL="https://api.github.com/repos/invoke-ai/InvokeAI/releases"
OS = platform.uname().system
ARCH = platform.uname().machine
@ -28,22 +29,22 @@ if OS == "Windows":
else:
console = Console(style=Style(color="grey74", bgcolor="grey19"))
def get_versions() -> dict:
def get_versions()->dict:
return requests.get(url=INVOKE_AI_REL).json()
def welcome(versions: dict):
@group()
def text():
yield f"InvokeAI Version: [bold yellow]{__version__}"
yield ""
yield "This script will update InvokeAI to the latest release, or to a development version of your choice."
yield ""
yield "[bold yellow]Options:"
yield f"""[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic])
yield f'InvokeAI Version: [bold yellow]{__version__}'
yield ''
yield 'This script will update InvokeAI to the latest release, or to a development version of your choice.'
yield ''
yield '[bold yellow]Options:'
yield f'''[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic])
[2] Update to the bleeding-edge development version ([italic]main[/italic])
[3] Manually enter the tag or branch name you wish to update"""
[3] Manually enter the [bold]tag name[/bold] for the version you wish to update to
[4] Manually enter the [bold]branch name[/bold] for the version you wish to update to'''
console.rule()
print(
@ -59,33 +60,41 @@ def welcome(versions: dict):
)
console.line()
def main():
versions = get_versions()
welcome(versions)
tag = None
choice = Prompt.ask("Choice:", choices=["1", "2", "3"], default="1")
branch = None
release = None
choice = Prompt.ask('Choice:',choices=['1','2','3','4'],default='1')
if choice=='1':
release = versions[0]['tag_name']
elif choice=='2':
release = 'main'
elif choice=='3':
tag = Prompt.ask('Enter an InvokeAI tag name')
elif choice=='4':
branch = Prompt.ask('Enter an InvokeAI branch name')
if choice == "1":
tag = versions[0]["tag_name"]
elif choice == "2":
tag = "main"
elif choice == "3":
tag = Prompt.ask("Enter an InvokeAI tag or branch name")
print(f":crossed_fingers: Upgrading to [yellow]{tag}[/yellow]")
cmd = f"pip install {INVOKE_AI_SRC}/{tag}.zip --use-pep517"
print("")
print("")
if os.system(cmd) == 0:
print(f":heavy_check_mark: Upgrade successful")
print(f':crossed_fingers: Upgrading to [yellow]{tag if tag else release}[/yellow]')
if release:
cmd = f'pip install {INVOKE_AI_SRC}/{release}.zip --use-pep517 --upgrade'
elif tag:
cmd = f'pip install {INVOKE_AI_TAG}/{tag}.zip --use-pep517 --upgrade'
else:
print(f":exclamation: [bold red]Upgrade failed[/red bold]")
cmd = f'pip install {INVOKE_AI_BRANCH}/{branch}.zip --use-pep517 --upgrade'
print('')
print('')
if os.system(cmd)==0:
print(f':heavy_check_mark: Upgrade successful')
else:
print(f':exclamation: [bold red]Upgrade failed[/red bold]')
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass

View File

@ -22,6 +22,7 @@ import torch
from npyscreen import widget
from omegaconf import OmegaConf
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals, global_config_dir
from ...backend.config.model_install_backend import (
@ -455,8 +456,8 @@ def main():
Globals.root = os.path.expanduser(get_root(opt.root) or "")
if not global_config_dir().exists():
print(
">> Your InvokeAI root directory is not set up. Calling invokeai-configure."
logger.info(
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
)
from invokeai.frontend.install import invokeai_configure
@ -466,18 +467,18 @@ def main():
try:
select_and_download_models(opt)
except AssertionError as e:
print(str(e))
logger.error(e)
sys.exit(-1)
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")
logger.info("Goodbye! Come back soon.")
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
print(
"** Insufficient vertical space for the interface. Please make your window taller and try again"
logger.error(
"Insufficient vertical space for the interface. Please make your window taller and try again"
)
elif str(e).startswith("addwstr"):
print(
"** Insufficient horizontal space for the interface. Please make your window wider and try again."
logger.error(
"Insufficient horizontal space for the interface. Please make your window wider and try again."
)

View File

@ -27,6 +27,8 @@ from ...backend.globals import (
global_models_dir,
global_set_root,
)
import invokeai.backend.util.logging as logger
from ...backend.model_management import ModelManager
from ...frontend.install.widgets import FloatTitleSlider
@ -113,7 +115,7 @@ def merge_diffusion_models_and_commit(
model_name=merged_model_name, description=f'Merge of models {", ".join(models)}'
)
if vae := model_manager.config[models[0]].get("vae", None):
print(f">> Using configured VAE assigned to {models[0]}")
logger.info(f"Using configured VAE assigned to {models[0]}")
import_args.update(vae=vae)
model_manager.import_diffuser_model(dump_path, **import_args)
model_manager.commit(config_file)
@ -391,10 +393,8 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
for name in self.model_manager.model_names()
if self.model_manager.model_info(name).get("format") == "diffusers"
]
print(model_names)
return sorted(model_names)
class Mergeapp(npyscreen.NPSAppManaged):
def __init__(self):
super().__init__()
@ -414,7 +414,7 @@ def run_gui(args: Namespace):
args = mergeapp.merge_arguments
merge_diffusion_models_and_commit(**args)
print(f'>> Models merged into new model: "{args["merged_model_name"]}".')
logger.info(f'Models merged into new model: "{args["merged_model_name"]}".')
def run_cli(args: Namespace):
@ -425,8 +425,8 @@ def run_cli(args: Namespace):
if not args.merged_model_name:
args.merged_model_name = "+".join(args.models)
print(
f'>> No --merged_model_name provided. Defaulting to "{args.merged_model_name}"'
logger.info(
f'No --merged_model_name provided. Defaulting to "{args.merged_model_name}"'
)
model_manager = ModelManager(OmegaConf.load(global_config_file()))
@ -435,7 +435,7 @@ def run_cli(args: Namespace):
), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.'
merge_diffusion_models_and_commit(**vars(args))
print(f'>> Models merged into new model: "{args.merged_model_name}".')
logger.info(f'Models merged into new model: "{args.merged_model_name}".')
def main():
@ -455,17 +455,16 @@ def main():
run_cli(args)
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
print(
"** You need to have at least two diffusers models defined in models.yaml in order to merge"
logger.error(
"You need to have at least two diffusers models defined in models.yaml in order to merge"
)
else:
print(
"** Not enough room for the user interface. Try making this window larger."
logger.error(
"Not enough room for the user interface. Try making this window larger."
)
sys.exit(-1)
except Exception:
print(">> An error occurred:")
traceback.print_exc()
except Exception as e:
logger.error(e)
sys.exit(-1)
except KeyboardInterrupt:
sys.exit(-1)

View File

@ -20,6 +20,7 @@ import npyscreen
from npyscreen import widget
from omegaconf import OmegaConf
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals, global_set_root
from ...backend.training import do_textual_inversion_training, parse_args
@ -368,14 +369,14 @@ def copy_to_embeddings_folder(args: dict):
dest_dir_name = args["placeholder_token"].strip("<>")
destination = Path(Globals.root, "embeddings", dest_dir_name)
os.makedirs(destination, exist_ok=True)
print(f">> Training completed. Copying learned_embeds.bin into {str(destination)}")
logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}")
shutil.copy(source, destination)
if (
input("Delete training logs and intermediate checkpoints? [y] ") or "y"
).startswith(("y", "Y")):
shutil.rmtree(Path(args["output_dir"]))
else:
print(f'>> Keeping {args["output_dir"]}')
logger.info(f'Keeping {args["output_dir"]}')
def save_args(args: dict):
@ -422,10 +423,10 @@ def do_front_end(args: Namespace):
do_textual_inversion_training(**args)
copy_to_embeddings_folder(args)
except Exception as e:
print("** An exception occurred during training. The exception was:")
print(str(e))
print("** DETAILS:")
print(traceback.format_exc())
logger.error("An exception occurred during training. The exception was:")
logger.error(str(e))
logger.error("DETAILS:")
logger.error(traceback.format_exc())
def main():
@ -437,21 +438,21 @@ def main():
else:
do_textual_inversion_training(**vars(args))
except AssertionError as e:
print(str(e))
logger.error(e)
sys.exit(-1)
except KeyboardInterrupt:
pass
except (widget.NotEnoughSpaceForWidget, Exception) as e:
if str(e).startswith("Height of 1 allocated"):
print(
"** You need to have at least one diffusers models defined in models.yaml in order to train"
logger.error(
"You need to have at least one diffusers models defined in models.yaml in order to train"
)
elif str(e).startswith("addwstr"):
print(
"** Not enough window space for the interface. Please make your window larger and try again."
logger.error(
"Not enough window space for the interface. Please make your window larger and try again."
)
else:
print(f"** An error has occurred: {str(e)}")
logger.error(e)
sys.exit(-1)

View File

@ -6,3 +6,5 @@ stats.html
index.html
.yarn/
*.scss
src/services/api/
src/services/fixtures/*

View File

@ -3,4 +3,8 @@ dist/
node_modules/
patches/
stats.html
index.html
.yarn/
*.scss
src/services/api/
src/services/fixtures/*

View File

@ -0,0 +1,40 @@
import react from '@vitejs/plugin-react-swc';
import { visualizer } from 'rollup-plugin-visualizer';
import { PluginOption, UserConfig } from 'vite';
import eslint from 'vite-plugin-eslint';
import tsconfigPaths from 'vite-tsconfig-paths';
export const appConfig: UserConfig = {
base: './',
plugins: [
react(),
eslint(),
tsconfigPaths(),
visualizer() as unknown as PluginOption,
],
build: {
chunkSizeWarningLimit: 1500,
},
server: {
// Proxy HTTP requests to the flask server
proxy: {
// Proxy socket.io to the nodes socketio server
'/ws/socket.io': {
target: 'ws://127.0.0.1:9090',
ws: true,
},
// Proxy openapi schema definiton
'/openapi.json': {
target: 'http://127.0.0.1:9090/openapi.json',
rewrite: (path) => path.replace(/^\/openapi.json/, ''),
changeOrigin: true,
},
// proxy nodes api
'/api/v1': {
target: 'http://127.0.0.1:9090/api/v1',
rewrite: (path) => path.replace(/^\/api\/v1/, ''),
changeOrigin: true,
},
},
},
};

View File

@ -0,0 +1,47 @@
import react from '@vitejs/plugin-react-swc';
import path from 'path';
import { visualizer } from 'rollup-plugin-visualizer';
import { PluginOption, UserConfig } from 'vite';
import dts from 'vite-plugin-dts';
import eslint from 'vite-plugin-eslint';
import tsconfigPaths from 'vite-tsconfig-paths';
export const packageConfig: UserConfig = {
base: './',
plugins: [
react(),
eslint(),
tsconfigPaths(),
visualizer() as unknown as PluginOption,
dts({
insertTypesEntry: true,
}),
],
build: {
chunkSizeWarningLimit: 1500,
lib: {
entry: path.resolve(__dirname, '../src/index.ts'),
name: 'InvokeAIUI',
fileName: (format) => `invoke-ai-ui.${format}.js`,
},
rollupOptions: {
external: ['react', 'react-dom', '@emotion/react'],
output: {
globals: {
react: 'React',
'react-dom': 'ReactDOM',
},
},
},
},
resolve: {
alias: {
app: path.resolve(__dirname, '../src/app'),
assets: path.resolve(__dirname, '../src/assets'),
common: path.resolve(__dirname, '../src/common'),
features: path.resolve(__dirname, '../src/features'),
services: path.resolve(__dirname, '../src/services'),
theme: path.resolve(__dirname, '../src/theme'),
},
},
};

View File

@ -0,0 +1,87 @@
# Generated axios API client
- [Generated axios API client](#generated-axios-api-client)
- [Generation](#generation)
- [Generate the API client from the nodes web server](#generate-the-api-client-from-the-nodes-web-server)
- [Generate the API client from JSON](#generate-the-api-client-from-json)
- [Getting the JSON from the nodes web server](#getting-the-json-from-the-nodes-web-server)
- [Getting the JSON with a python script](#getting-the-json-with-a-python-script)
- [Generate the API client](#generate-the-api-client)
- [The generated client](#the-generated-client)
- [API client customisation](#api-client-customisation)
This API client is generated by an [openapi code generator](https://github.com/ferdikoomen/openapi-typescript-codegen).
All files in `invokeai/frontend/web/src/services/api/` are made by the generator.
## Generation
The axios client may be generated by from the OpenAPI schema from the nodes web server, or from JSON.
### Generate the API client from the nodes web server
We need to start the nodes web server, which serves the OpenAPI schema to the generator.
1. Start the nodes web server.
```bash
# from the repo root
python scripts/invoke-new.py --web
```
2. Generate the API client.
```bash
# from invokeai/frontend/web/
yarn api:web
```
### Generate the API client from JSON
The JSON can be acquired from the nodes web server, or with a python script.
#### Getting the JSON from the nodes web server
Start the nodes web server as described above, then download the file.
```bash
# from invokeai/frontend/web/
curl http://localhost:9090/openapi.json -o openapi.json
```
#### Getting the JSON with a python script
Run this python script from the repo root, so it can access the nodes server modules.
The script will output `openapi.json` in the repo root. Then we need to move it to `invokeai/frontend/web/`.
```bash
# from the repo root
python invokeai/app/util/generate_openapi_json.py
mv invokeai/app/util/openapi.json invokeai/frontend/web/services/fixtures/
```
#### Generate the API client
Now we can generate the API client from the JSON.
```bash
# from invokeai/frontend/web/
yarn api:file
```
## The generated client
The client will be written to `invokeai/frontend/web/services/api/`:
- `axios` client
- TS types
- An easily parseable schema, which we can use to generate UI
## API client customisation
The generator has a default `request.ts` file that implements a base `axios` client. The generated client uses this base client.
One shortcoming of this is base client is it does not provide response headers unless the response body is empty. To fix this, we provide our own lightly-patched `request.ts`.
To access the headers, call `getHeaders(response)` on any response from the generated api client. This function is exported from `invokeai/frontend/web/src/services/util/getHeaders.ts`.

View File

@ -0,0 +1,21 @@
# Events
Events via `socket.io`
## `actions.ts`
Redux actions for all socket events. Payloads all include a timestamp, and optionally some other data.
Any reducer (or middleware) can respond to the actions.
## `middleware.ts`
Redux middleware for events.
Handles dispatching the event actions. Only put logic here if it can't really go anywhere else.
For example, on connect we want to load images to the gallery if it's not populated. This requires dispatching a thunk, so we need to directly dispatch this in the middleware.
## `types.ts`
Hand-written types for the socket events. Cannot generate these from the server, but fortunately they are few and simple.

View File

@ -0,0 +1,17 @@
# Node Editor Design
WIP
nodes
everything in `src/features/nodes/`
have a look at `state.nodes.invocation`
- on socket connect, if no schema saved, fetch `localhost:9090/openapi.json`, save JSON to `state.nodes.schema`
- on fulfilled schema fetch, `parseSchema()` the schema. this outputs a `Record<string, Invocation>` which is saved to `state.nodes.invocations` - `Invocation` is like a template for the node
- when you add a node, the the `Invocation` template is passed to `InvocationComponent.tsx` to build the UI component for that node
- inputs/outputs have field types - and each field type gets an `FieldComponent` which includes a dispatcher to write state changes to redux `nodesSlice`
- `reactflow` sends changes to nodes/edges to redux
- to invoke, `buildNodesGraph()` state, then send this
- changed onClick Invoke button actions to build the schema, then when schema builds it dispatches the actual network request to create the session - see `session.ts`

View File

@ -0,0 +1,29 @@
# Package Scripts
WIP walkthrough of `package.json` scripts.
## `theme` & `theme:watch`
These run the Chakra CLI to generate types for the theme, or watch for code change and re-generate the types.
The CLI essentially monkeypatches Chakra's files in `node_modules`.
## `postinstall`
The `postinstall` script patches a few packages and runs the Chakra CLI to generate types for the theme.
### Patch `@chakra-ui/cli`
See: <https://github.com/chakra-ui/chakra-ui/issues/7394>
### Patch `redux-persist`
We want to persist the canvas state to `localStorage` but many canvas operations change data very quickly, so we need to debounce the writes to `localStorage`.
`redux-persist` is unfortunately unmaintained. The repo's current code is nonfunctional, but the last release's code depends on a package that was removed from `npm` for being malware, so we cannot just fork it.
So, we have to patch it directly. Perhaps a better way would be to write a debounced storage adapter, but I couldn't figure out how to do that.
### Patch `redux-deep-persist`
This package makes blacklisting and whitelisting persist configs very simple, but we have to patch it to match `redux-persist` for the types to work.

View File

@ -1,10 +1,16 @@
# InvokeAI Web UI
- [InvokeAI Web UI](#invokeai-web-ui)
- [Stack](#stack)
- [Contributing](#contributing)
- [Dev Environment](#dev-environment)
- [Production builds](#production-builds)
The UI is a fairly straightforward Typescript React app. The only really fancy stuff is the Unified Canvas.
Code in `invokeai/frontend/web/` if you want to have a look.
## Details
## Stack
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a custom redux middleware to help).
@ -32,7 +38,7 @@ Start everything in dev mode:
1. Start the dev server: `yarn dev`
2. Start the InvokeAI UI per usual: `invokeai --web`
3. Point your browser to the dev server address e.g. `http://localhost:5173/`
3. Point your browser to the dev server address e.g. <http://localhost:5173/>
### Production builds

View File

@ -1,78 +0,0 @@
import React, { PropsWithChildren } from 'react';
import { IAIPopoverProps } from '../web/src/common/components/IAIPopover';
import { IAIIconButtonProps } from '../web/src/common/components/IAIIconButton';
export {};
declare module 'redux-socket.io-middleware';
declare global {
/* eslint-disable @typescript-eslint/no-explicit-any */
interface Array<T> {
/**
* Returns the value of the last element in the array where predicate is true, and undefined
* otherwise.
* @param predicate findLast calls predicate once for each element of the array, in descending
* order, until it finds one where predicate returns true. If such an element is found, findLast
* immediately returns that element value. Otherwise, findLast returns undefined.
* @param thisArg If provided, it will be used as the this value for each invocation of
* predicate. If it is not provided, undefined is used instead.
*/
findLast<S extends T>(
predicate: (value: T, index: number, array: T[]) => value is S,
thisArg?: any
): S | undefined;
findLast(
predicate: (value: T, index: number, array: T[]) => unknown,
thisArg?: any
): T | undefined;
/**
* Returns the index of the last element in the array where predicate is true, and -1
* otherwise.
* @param predicate findLastIndex calls predicate once for each element of the array, in descending
* order, until it finds one where predicate returns true. If such an element is found,
* findLastIndex immediately returns that element index. Otherwise, findLastIndex returns -1.
* @param thisArg If provided, it will be used as the this value for each invocation of
* predicate. If it is not provided, undefined is used instead.
*/
findLastIndex(
predicate: (value: T, index: number, array: T[]) => unknown,
thisArg?: any
): number;
}
/* eslint-enable @typescript-eslint/no-explicit-any */
}
declare module '@invoke-ai/invoke-ai-ui' {
declare class ThemeChanger extends React.Component<ThemeChangerProps> {
public constructor(props: ThemeChangerProps);
}
declare class InvokeAiLogoComponent extends React.Component<InvokeAILogoComponentProps> {
public constructor(props: InvokeAILogoComponentProps);
}
declare class IAIPopover extends React.Component<IAIPopoverProps> {
public constructor(props: IAIPopoverProps);
}
declare class IAIIconButton extends React.Component<IAIIconButtonProps> {
public constructor(props: IAIIconButtonProps);
}
declare class SettingsModal extends React.Component<SettingsModalProps> {
public constructor(props: SettingsModalProps);
}
}
declare function Invoke(props: PropsWithChildren): JSX.Element;
export {
ThemeChanger,
InvokeAiLogoComponent,
IAIPopover,
IAIIconButton,
SettingsModal,
};
export = Invoke;

View File

@ -1,11 +1,31 @@
{
"name": "invoke-ai-ui",
"name": "@invoke-ai/invoke-ai-ui",
"private": true,
"version": "0.0.1",
"publishConfig": {
"access": "restricted",
"registry": "https://npm.pkg.github.com"
},
"main": "./dist/invoke-ai-ui.umd.js",
"module": "./dist/invoke-ai-ui.es.js",
"exports": {
".": {
"import": "./dist/invoke-ai-ui.es.js",
"require": "./dist/invoke-ai-ui.umd.js"
}
},
"types": "./dist/index.d.ts",
"files": [
"dist"
],
"scripts": {
"prepare": "cd ../../../ && husky install invokeai/frontend/web/.husky",
"dev": "concurrently \"vite dev\" \"yarn run theme:watch\"",
"dev:nodes": "concurrently \"vite dev --mode nodes\" \"yarn run theme:watch\"",
"dev:host": "concurrently \"vite dev --host\" \"yarn run theme:watch\"",
"build": "yarn run lint && vite build",
"api:web": "openapi -i http://localhost:9090/openapi.json -o src/services/api --client axios --useOptions --useUnionTypes --exportSchemas true --indent 2 --request src/services/fixtures/request.ts",
"api:file": "openapi -i src/services/fixtures/openapi.json -o src/services/api --client axios --useOptions --useUnionTypes --exportSchemas true --indent 2 --request src/services/fixtures/request.ts",
"preview": "vite preview",
"lint:madge": "madge --circular src/main.tsx",
"lint:eslint": "eslint --max-warnings=0 .",
@ -36,70 +56,96 @@
},
"dependencies": {
"@chakra-ui/anatomy": "^2.1.1",
"@chakra-ui/cli": "^2.3.0",
"@chakra-ui/icons": "^2.0.17",
"@chakra-ui/react": "^2.5.1",
"@chakra-ui/styled-system": "^2.6.1",
"@chakra-ui/icons": "^2.0.19",
"@chakra-ui/react": "^2.6.0",
"@chakra-ui/styled-system": "^2.9.0",
"@chakra-ui/theme-tools": "^2.0.16",
"@dagrejs/graphlib": "^2.1.12",
"@emotion/react": "^11.10.6",
"@emotion/styled": "^11.10.6",
"@reduxjs/toolkit": "^1.9.2",
"@fontsource/inter": "^4.5.15",
"@reduxjs/toolkit": "^1.9.5",
"@roarr/browser-log-writer": "^1.1.5",
"chakra-ui-contextmenu": "^1.0.5",
"dateformat": "^5.0.3",
"formik": "^2.2.9",
"framer-motion": "^9.0.4",
"i18next": "^22.4.10",
"framer-motion": "^10.12.4",
"fuse.js": "^6.6.2",
"i18next": "^22.4.15",
"i18next-browser-languagedetector": "^7.0.1",
"i18next-http-backend": "^2.1.1",
"konva": "^8.4.2",
"lodash": "^4.17.21",
"patch-package": "^6.5.1",
"i18next-http-backend": "^2.2.0",
"konva": "^9.0.1",
"lodash-es": "^4.17.21",
"overlayscrollbars": "^2.1.1",
"overlayscrollbars-react": "^0.5.0",
"patch-package": "^7.0.0",
"re-resizable": "^6.9.9",
"react": "^18.2.0",
"react-colorful": "^5.6.1",
"react-dom": "^18.2.0",
"react-dropzone": "^14.2.3",
"react-hotkeys-hook": "4.3.5",
"react-i18next": "^12.1.5",
"react-hotkeys-hook": "4.4.0",
"react-i18next": "^12.2.2",
"react-icons": "^4.7.1",
"react-konva": "^18.2.4",
"react-konva-utils": "^0.3.2",
"react-konva": "^18.2.7",
"react-konva-utils": "^1.0.4",
"react-redux": "^8.0.5",
"react-rnd": "^10.4.1",
"react-transition-group": "^4.4.5",
"react-zoom-pan-pinch": "^2.6.1",
"react-use": "^17.4.0",
"react-virtuoso": "^4.3.5",
"react-zoom-pan-pinch": "^3.0.7",
"reactflow": "^11.7.0",
"redux-deep-persist": "^1.0.7",
"redux-dynamic-middlewares": "^2.2.0",
"redux-persist": "^6.0.0",
"roarr": "^7.15.0",
"serialize-error": "^11.0.0",
"socket.io-client": "^4.6.0",
"use-image": "^1.1.0",
"uuid": "^9.0.0"
},
"peerDependencies": {
"@chakra-ui/cli": "^2.4.0",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"ts-toolbelt": "^9.6.0"
},
"devDependencies": {
"@fontsource/inter": "^4.5.15",
"@chakra-ui/cli": "^2.4.0",
"@types/dateformat": "^5.0.0",
"@types/react": "^18.0.28",
"@types/react-dom": "^18.0.11",
"@types/lodash-es": "^4.14.194",
"@types/node": "^18.16.2",
"@types/react": "^18.2.0",
"@types/react-dom": "^18.2.1",
"@types/react-transition-group": "^4.4.5",
"@types/uuid": "^9.0.0",
"@typescript-eslint/eslint-plugin": "^5.52.0",
"@typescript-eslint/parser": "^5.52.0",
"@vitejs/plugin-react-swc": "^3.2.0",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"@typescript-eslint/parser": "^5.59.1",
"@vitejs/plugin-react-swc": "^3.3.0",
"axios": "^1.4.0",
"babel-plugin-transform-imports": "^2.0.0",
"concurrently": "^7.6.0",
"eslint": "^8.34.0",
"eslint-config-prettier": "^8.6.0",
"concurrently": "^8.0.1",
"eslint": "^8.39.0",
"eslint-config-prettier": "^8.8.0",
"eslint-plugin-prettier": "^4.2.1",
"eslint-plugin-react": "^7.32.2",
"eslint-plugin-react-hooks": "^4.6.0",
"form-data": "^4.0.0",
"husky": "^8.0.3",
"lint-staged": "^13.1.2",
"lint-staged": "^13.2.2",
"madge": "^6.0.0",
"openapi-types": "^12.1.0",
"openapi-typescript-codegen": "^0.24.0",
"postinstall-postinstall": "^2.1.0",
"prettier": "^2.8.4",
"prettier": "^2.8.8",
"rollup-plugin-visualizer": "^5.9.0",
"terser": "^5.16.4",
"vite": "^4.1.2",
"terser": "^5.17.1",
"ts-toolbelt": "^9.6.0",
"vite": "^4.3.3",
"vite-plugin-dts": "^2.3.0",
"vite-plugin-eslint": "^1.8.1",
"vite-tsconfig-paths": "^4.0.5",
"vite-tsconfig-paths": "^4.2.0",
"yarn": "^1.22.19"
}
}

View File

@ -18,7 +18,7 @@
"training": "Training",
"trainingDesc1": "Ein spezieller Arbeitsablauf zum Trainieren Ihrer eigenen Embeddings und Checkpoints mit Textual Inversion und Dreambooth über die Weboberfläche.",
"trainingDesc2": "InvokeAI unterstützt bereits das Training von benutzerdefinierten Embeddings mit Textual Inversion unter Verwendung des Hauptskripts.",
"upload": "Upload",
"upload": "Hochladen",
"close": "Schließen",
"load": "Laden",
"statusConnected": "Verbunden",
@ -41,12 +41,34 @@
"statusUpscaling": "Hochskalierung",
"statusUpscalingESRGAN": "Hochskalierung (ESRGAN)",
"statusLoadingModel": "Laden des Modells",
"statusModelChanged": "Modell Geändert"
"statusModelChanged": "Modell Geändert",
"cancel": "Abbruch",
"accept": "Annehmen",
"back": "Zurück",
"langEnglish": "Englisch",
"langDutch": "Niederländisch",
"langFrench": "Französisch",
"oceanTheme": "Ozean",
"langItalian": "Italienisch",
"langPortuguese": "Portogisisch",
"langRussian": "Russisch",
"langUkranian": "Ukrainisch",
"hotkeysLabel": "Tastenkombinationen",
"githubLabel": "Github",
"discordLabel": "Discord",
"txt2img": "Text zu Bild",
"postprocessing": "Nachbearbeitung",
"langPolish": "Polnisch",
"langJapanese": "Japanisch",
"langArabic": "Arabisch",
"langKorean": "Koreanisch",
"langHebrew": "Hebräisch",
"langSpanish": "Spanisch"
},
"gallery": {
"generations": "Erzeugungen",
"showGenerations": "Zeige Erzeugnisse",
"uploads": "Uploads",
"uploads": "Hochgelades",
"showUploads": "Zeige Uploads",
"galleryImageSize": "Bildgröße",
"galleryImageResetSize": "Größe zurücksetzen",
@ -312,7 +334,11 @@
"deleteModel": "Model löschen",
"deleteConfig": "Konfiguration löschen",
"deleteMsg1": "Möchten Sie diesen Model-Eintrag wirklich aus InvokeAI löschen?",
"deleteMsg2": "Dadurch wird die Modellprüfpunktdatei nicht von Ihrer Festplatte gelöscht. Sie können sie bei Bedarf erneut hinzufügen."
"deleteMsg2": "Dadurch wird die Modellprüfpunktdatei nicht von Ihrer Festplatte gelöscht. Sie können sie bei Bedarf erneut hinzufügen.",
"customConfig": "Benutzerdefinierte Konfiguration",
"invokeRoot": "InvokeAI Ordner",
"formMessageDiffusersVAELocationDesc": "Falls nicht angegeben, sucht InvokeAI nach der VAE-Datei innerhalb des oben angegebenen Modell Speicherortes.",
"checkpointModels": "Kontrollpunkte"
},
"parameters": {
"images": "Bilder",
@ -370,7 +396,10 @@
"useInitImg": "Ausgangsbild verwenden",
"deleteImage": "Bild löschen",
"initialImage": "Ursprüngliches Bild",
"showOptionsPanel": "Optionsleiste zeigen"
"showOptionsPanel": "Optionsleiste zeigen",
"cancel": {
"setType": "Abbruchart festlegen"
}
},
"settings": {
"displayInProgress": "Bilder in Bearbeitung anzeigen",
@ -489,5 +518,25 @@
"betaDarkenOutside": "Außen abdunkeln",
"betaLimitToBox": "Begrenzung auf das Feld",
"betaPreserveMasked": "Maskiertes bewahren"
},
"accessibility": {
"modelSelect": "Model Auswahl",
"uploadImage": "Bild hochladen",
"previousImage": "Voriges Bild",
"useThisParameter": "Benutze diesen Parameter",
"copyMetadataJson": "Kopiere metadata JSON",
"zoomIn": "Vergrößern",
"rotateClockwise": "Im Uhrzeigersinn drehen",
"flipHorizontally": "Horizontal drehen",
"flipVertically": "Vertikal drehen",
"modifyConfig": "Optionen einstellen",
"toggleAutoscroll": "Auroscroll ein/ausschalten",
"toggleLogViewer": "Log Betrachter ein/ausschalten",
"showGallery": "Zeige Galerie",
"showOptionsPanel": "Zeige Optionen",
"reset": "Zurücksetzen",
"nextImage": "Nächstes Bild",
"zoomOut": "Verkleinern",
"rotateCounterClockwise": "Gegen den Uhrzeigersinn verdrehen"
}
}

View File

@ -8,7 +8,7 @@
"nextImage": "Next Image",
"useThisParameter": "Use this parameter",
"copyMetadataJson": "Copy metadata JSON",
"exitViewer": "ExitViewer",
"exitViewer": "Exit Viewer",
"zoomIn": "Zoom In",
"zoomOut": "Zoom Out",
"rotateCounterClockwise": "Rotate Counter-Clockwise",
@ -19,7 +19,8 @@
"toggleAutoscroll": "Toggle autoscroll",
"toggleLogViewer": "Toggle Log Viewer",
"showGallery": "Show Gallery",
"showOptionsPanel": "Show Options Panel"
"showOptionsPanel": "Show Options Panel",
"menu": "Menu"
},
"common": {
"hotkeysLabel": "Hotkeys",
@ -52,6 +53,7 @@
"txt2img": "Text To Image",
"img2img": "Image To Image",
"unifiedCanvas": "Unified Canvas",
"linear": "Linear",
"nodes": "Nodes",
"postprocessing": "Post Processing",
"nodesDesc": "A node based system for the generation of images is under development currently. Stay tuned for updates about this amazing feature.",
@ -61,7 +63,7 @@
"postProcessDesc3": "The Invoke AI Command Line Interface offers various other features including Embiggen.",
"training": "Training",
"trainingDesc1": "A dedicated workflow for training your own embeddings and checkpoints using Textual Inversion and Dreambooth from the web interface.",
"trainingDesc2": "InvokeAI already supports training custom embeddings using Textual Inversion using the main script.",
"trainingDesc2": "InvokeAI already supports training custom embeddourings using Textual Inversion using the main script.",
"upload": "Upload",
"close": "Close",
"cancel": "Cancel",
@ -95,7 +97,12 @@
"statusMergedModels": "Models Merged",
"pinOptionsPanel": "Pin Options Panel",
"loading": "Loading",
"loadingInvokeAI": "Loading Invoke AI"
"loadingInvokeAI": "Loading Invoke AI",
"random": "Random",
"generate": "Generate",
"openInNewTab": "Open in New Tab",
"dontAskMeAgain": "Don't ask me again",
"areYouSure": "Are you sure?"
},
"gallery": {
"generations": "Generations",
@ -111,7 +118,10 @@
"pinGallery": "Pin Gallery",
"allImagesLoaded": "All Images Loaded",
"loadMore": "Load More",
"noImagesInGallery": "No Images In Gallery"
"noImagesInGallery": "No Images In Gallery",
"deleteImage": "Delete Image",
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored."
},
"hotkeys": {
"keyboardShortcuts": "Keyboard Shortcuts",
@ -503,7 +513,6 @@
"useAll": "Use All",
"useInitImg": "Use Initial Image",
"info": "Info",
"deleteImage": "Delete Image",
"initialImage": "Initial Image",
"showOptionsPanel": "Show Options Panel",
"hidePreview": "Hide Preview",
@ -518,12 +527,21 @@
"useCanvasBeta": "Use Canvas Beta Layout",
"enableImageDebugging": "Enable Image Debugging",
"useSlidersForAll": "Use Sliders For All Options",
"autoShowProgress": "Auto Show Progress Images",
"resetWebUI": "Reset Web UI",
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
"resetWebUIDesc2": "If images aren't showing up in the gallery or something else isn't working, please try resetting before submitting an issue on GitHub.",
"resetComplete": "Web UI has been reset. Refresh the page to reload."
"resetComplete": "Web UI has been reset. Refresh the page to reload.",
"consoleLogLevel": "Log Level",
"shouldLogToConsole": "Console Logging",
"developer": "Developer",
"general": "General"
},
"toast": {
"serverError": "Server Error",
"disconnected": "Disconnected from Server",
"connected": "Connected to Server",
"canceled": "Processing Canceled",
"tempFoldersEmptied": "Temp Folder Emptied",
"uploadFailed": "Upload failed",
"uploadFailedMultipleImagesDesc": "Multiple images pasted, may only upload one image at a time",
@ -628,5 +646,9 @@
"betaDarkenOutside": "Darken Outside",
"betaLimitToBox": "Limit To Box",
"betaPreserveMasked": "Preserve Masked"
},
"ui": {
"showProgressImages": "Show Progress Images",
"hideProgressImages": "Hide Progress Images"
}
}

View File

@ -73,7 +73,8 @@
"postprocessing": "Tratamiento posterior",
"txt2img": "De texto a imagen",
"accept": "Aceptar",
"cancel": "Cancelar"
"cancel": "Cancelar",
"linear": "Lineal"
},
"gallery": {
"generations": "Generaciones",
@ -483,7 +484,9 @@
"negativePrompts": "Preguntas negativas",
"imageToImage": "Imagen a imagen",
"denoisingStrength": "Intensidad de la eliminación del ruido",
"hiresStrength": "Alta resistencia"
"hiresStrength": "Alta resistencia",
"showPreview": "Mostrar la vista previa",
"hidePreview": "Ocultar la vista previa"
},
"settings": {
"models": "Modelos",
@ -529,7 +532,11 @@
"metadataLoadFailed": "Error al cargar metadatos",
"initialImageSet": "Imágen inicial establecida",
"initialImageNotSet": "Imagen inicial no establecida",
"initialImageNotSetDesc": "Error al establecer la imágen inicial"
"initialImageNotSetDesc": "Error al establecer la imágen inicial",
"serverError": "Error en el servidor",
"disconnected": "Desconectado del servidor",
"canceled": "Procesando la cancelación",
"connected": "Conectado al servidor"
},
"tooltip": {
"feature": {
@ -625,6 +632,7 @@
"toggleAutoscroll": "Activar el autodesplazamiento",
"toggleLogViewer": "Alternar el visor de registros",
"showGallery": "Mostrar galería",
"showOptionsPanel": "Mostrar el panel de opciones"
"showOptionsPanel": "Mostrar el panel de opciones",
"menu": "Menú"
}
}

View File

@ -0,0 +1,122 @@
{
"accessibility": {
"reset": "Resetoi",
"useThisParameter": "Käytä tätä parametria",
"modelSelect": "Mallin Valinta",
"exitViewer": "Poistu katselimesta",
"uploadImage": "Lataa kuva",
"copyMetadataJson": "Kopioi metadata JSON:iin",
"invokeProgressBar": "Invoken edistymispalkki",
"nextImage": "Seuraava kuva",
"previousImage": "Edellinen kuva",
"zoomIn": "Lähennä",
"flipHorizontally": "Käännä vaakasuoraan",
"zoomOut": "Loitonna",
"rotateCounterClockwise": "Kierrä vastapäivään",
"rotateClockwise": "Kierrä myötäpäivään",
"flipVertically": "Käännä pystysuoraan",
"showGallery": "Näytä galleria",
"modifyConfig": "Muokkaa konfiguraatiota",
"toggleAutoscroll": "Kytke automaattinen vieritys",
"toggleLogViewer": "Kytke lokin katselutila",
"showOptionsPanel": "Näytä asetukset"
},
"common": {
"postProcessDesc2": "Erillinen käyttöliittymä tullaan julkaisemaan helpottaaksemme työnkulkua jälkikäsittelyssä.",
"training": "Kouluta",
"statusLoadingModel": "Ladataan mallia",
"statusModelChanged": "Malli vaihdettu",
"statusConvertingModel": "Muunnetaan mallia",
"statusModelConverted": "Malli muunnettu",
"langFrench": "Ranska",
"langItalian": "Italia",
"languagePickerLabel": "Kielen valinta",
"hotkeysLabel": "Pikanäppäimet",
"reportBugLabel": "Raportoi Bugista",
"langPolish": "Puola",
"themeLabel": "Teema",
"langDutch": "Hollanti",
"settingsLabel": "Asetukset",
"githubLabel": "Github",
"darkTheme": "Tumma",
"lightTheme": "Vaalea",
"greenTheme": "Vihreä",
"langGerman": "Saksa",
"langPortuguese": "Portugali",
"discordLabel": "Discord",
"langEnglish": "Englanti",
"oceanTheme": "Meren sininen",
"langRussian": "Venäjä",
"langUkranian": "Ukraina",
"langSpanish": "Espanja",
"upload": "Lataa",
"statusMergedModels": "Mallit yhdistelty",
"img2img": "Kuva kuvaksi",
"nodes": "Solmut",
"nodesDesc": "Solmupohjainen järjestelmä kuvien generoimiseen on parhaillaan kehitteillä. Pysy kuulolla päivityksistä tähän uskomattomaan ominaisuuteen liittyen.",
"postProcessDesc1": "Invoke AI tarjoaa monenlaisia jälkikäsittelyominaisuukisa. Kuvan laadun skaalaus sekä kasvojen korjaus ovat jo saatavilla WebUI:ssä. Voit ottaa ne käyttöön lisäasetusten valikosta teksti kuvaksi sekä kuva kuvaksi -välilehdiltä. Voit myös suoraan prosessoida kuvia käyttämällä kuvan toimintapainikkeita nykyisen kuvan yläpuolella tai tarkastelussa.",
"postprocessing": "Jälkikäsitellään",
"postProcessing": "Jälkikäsitellään",
"cancel": "Peruuta",
"close": "Sulje",
"accept": "Hyväksy",
"statusConnected": "Yhdistetty",
"statusError": "Virhe",
"statusProcessingComplete": "Prosessointi valmis",
"load": "Lataa",
"back": "Takaisin",
"statusGeneratingTextToImage": "Generoidaan tekstiä kuvaksi",
"trainingDesc2": "InvokeAI tukee jo mukautettujen upotusten kouluttamista tekstin inversiolla käyttäen pääskriptiä.",
"statusDisconnected": "Yhteys katkaistu",
"statusPreparing": "Valmistellaan",
"statusIterationComplete": "Iteraatio valmis",
"statusMergingModels": "Yhdistellään malleja",
"statusProcessingCanceled": "Valmistelu peruutettu",
"statusSavingImage": "Tallennetaan kuvaa",
"statusGeneratingImageToImage": "Generoidaan kuvaa kuvaksi",
"statusRestoringFacesGFPGAN": "Korjataan kasvoja (GFPGAN)",
"statusRestoringFacesCodeFormer": "Korjataan kasvoja (CodeFormer)",
"statusGeneratingInpainting": "Generoidaan sisällemaalausta",
"statusGeneratingOutpainting": "Generoidaan ulosmaalausta",
"statusRestoringFaces": "Korjataan kasvoja",
"pinOptionsPanel": "Kiinnitä asetukset -paneeli",
"loadingInvokeAI": "Ladataan Invoke AI:ta",
"loading": "Ladataan",
"statusGenerating": "Generoidaan",
"txt2img": "Teksti kuvaksi",
"trainingDesc1": "Erillinen työnkulku omien upotusten ja tarkastuspisteiden kouluttamiseksi käyttäen tekstin inversiota ja dreamboothia selaimen käyttöliittymässä.",
"postProcessDesc3": "Invoke AI:n komentorivi tarjoaa paljon muita ominaisuuksia, kuten esimerkiksi Embiggenin.",
"unifiedCanvas": "Yhdistetty kanvas",
"statusGenerationComplete": "Generointi valmis"
},
"gallery": {
"uploads": "Lataukset",
"showUploads": "Näytä lataukset",
"galleryImageResetSize": "Resetoi koko",
"maintainAspectRatio": "Säilytä kuvasuhde",
"galleryImageSize": "Kuvan koko",
"pinGallery": "Kiinnitä galleria",
"showGenerations": "Näytä generaatiot",
"singleColumnLayout": "Yhden sarakkeen asettelu",
"generations": "Generoinnit",
"gallerySettings": "Gallerian asetukset",
"autoSwitchNewImages": "Vaihda uusiin kuviin automaattisesti",
"allImagesLoaded": "Kaikki kuvat ladattu",
"noImagesInGallery": "Ei kuvia galleriassa",
"loadMore": "Lataa lisää"
},
"hotkeys": {
"keyboardShortcuts": "näppäimistön pikavalinnat",
"appHotkeys": "Sovelluksen pikanäppäimet",
"generalHotkeys": "Yleiset pikanäppäimet",
"galleryHotkeys": "Gallerian pikanäppäimet",
"unifiedCanvasHotkeys": "Yhdistetyn kanvaan pikanäppäimet",
"cancel": {
"desc": "Peruuta kuvan luominen",
"title": "Peruuta"
},
"invoke": {
"desc": "Luo kuva"
}
}
}

View File

@ -73,7 +73,8 @@
"postprocessing": "Post Elaborazione",
"txt2img": "Testo a Immagine",
"accept": "Accetta",
"cancel": "Annulla"
"cancel": "Annulla",
"linear": "Lineare"
},
"gallery": {
"generations": "Generazioni",
@ -483,7 +484,9 @@
},
"hSymmetryStep": "Passi Simmetria Orizzontale",
"vSymmetryStep": "Passi Simmetria Verticale",
"symmetry": "Simmetria"
"symmetry": "Simmetria",
"hidePreview": "Nascondi l'anteprima",
"showPreview": "Mostra l'anteprima"
},
"settings": {
"models": "Modelli",
@ -529,7 +532,11 @@
"metadataLoadFailed": "Impossibile caricare i metadati",
"initialImageSet": "Immagine iniziale impostata",
"initialImageNotSet": "Immagine iniziale non impostata",
"initialImageNotSetDesc": "Impossibile caricare l'immagine iniziale"
"initialImageNotSetDesc": "Impossibile caricare l'immagine iniziale",
"serverError": "Errore del Server",
"disconnected": "Disconnesso dal Server",
"connected": "Connesso al Server",
"canceled": "Elaborazione annullata"
},
"tooltip": {
"feature": {
@ -625,6 +632,7 @@
"showOptionsPanel": "Mostra il pannello opzioni",
"flipVertically": "Capovolgi verticalmente",
"toggleAutoscroll": "Attiva/disattiva lo scorrimento automatico",
"modifyConfig": "Modifica configurazione"
"modifyConfig": "Modifica configurazione",
"menu": "Menu"
}
}

View File

@ -37,7 +37,43 @@
"statusUpscaling": "アップスケーリング",
"statusUpscalingESRGAN": "アップスケーリング (ESRGAN)",
"statusLoadingModel": "モデルを読み込む",
"statusModelChanged": "モデルを変更"
"statusModelChanged": "モデルを変更",
"cancel": "キャンセル",
"accept": "同意",
"langBrPortuguese": "Português do Brasil",
"langRussian": "Русский",
"langSimplifiedChinese": "简体中文",
"langUkranian": "Украї́нська",
"langSpanish": "Español",
"img2img": "img2img",
"unifiedCanvas": "Unified Canvas",
"statusMergingModels": "モデルのマージ",
"statusModelConverted": "変換済モデル",
"statusGeneratingInpainting": "Inpaintingを生成",
"statusIterationComplete": "Iteration Complete",
"statusGeneratingOutpainting": "Outpaintingを生成",
"loading": "ロード中",
"loadingInvokeAI": "Invoke AIをロード中",
"statusConvertingModel": "モデルの変換",
"statusMergedModels": "マージ済モデル",
"pinOptionsPanel": "オプションパネルを固定",
"githubLabel": "Github",
"hotkeysLabel": "ホットキー",
"langHebrew": "עברית",
"discordLabel": "Discord",
"langItalian": "Italiano",
"langEnglish": "English",
"oceanTheme": "オーシャン",
"langArabic": "アラビア語",
"langDutch": "Nederlands",
"langFrench": "Français",
"langGerman": "Deutsch",
"langPortuguese": "Português",
"nodes": "ノード",
"langKorean": "한국어",
"langPolish": "Polski",
"txt2img": "txt2img",
"postprocessing": "Post Processing"
},
"gallery": {
"uploads": "アップロード",
@ -46,11 +82,14 @@
"galleryImageResetSize": "サイズをリセット",
"gallerySettings": "ギャラリーの設定",
"maintainAspectRatio": "アスペクト比を維持",
"singleColumnLayout": "シングルカラムレイアウト",
"singleColumnLayout": "1カラムレイアウト",
"pinGallery": "ギャラリーにピン留め",
"allImagesLoaded": "すべての画像を読み込む",
"loadMore": "さらに読み込む",
"noImagesInGallery": "ギャラリーに画像がありません"
"noImagesInGallery": "ギャラリーに画像がありません",
"generations": "生成",
"showGenerations": "生成過程を見る",
"autoSwitchNewImages": "新しい画像に自動切替"
},
"hotkeys": {
"keyboardShortcuts": "キーボードショートカット",
@ -59,14 +98,16 @@
"galleryHotkeys": "ギャラリーのホットキー",
"unifiedCanvasHotkeys": "Unified Canvasのホットキー",
"invoke": {
"desc": "画像を生成"
"desc": "画像を生成",
"title": "Invoke"
},
"cancel": {
"title": "キャンセル",
"desc": "画像の生成をキャンセル"
},
"focusPrompt": {
"desc": "プロンプトテキストボックスにフォーカス"
"desc": "プロンプトテキストボックスにフォーカス",
"title": "プロジェクトにフォーカス"
},
"toggleOptions": {
"title": "オプションパネルのトグル",
@ -410,5 +451,27 @@
"accept": "同意",
"showHide": "表示/非表示",
"discardAll": "すべて破棄"
},
"accessibility": {
"modelSelect": "モデルを選択",
"invokeProgressBar": "進捗バー",
"reset": "リセット",
"uploadImage": "画像をアップロード",
"previousImage": "前の画像",
"nextImage": "次の画像",
"useThisParameter": "このパラメータを使用する",
"copyMetadataJson": "メタデータをコピー(JSON)",
"zoomIn": "ズームイン",
"exitViewer": "ExitViewer",
"zoomOut": "ズームアウト",
"rotateCounterClockwise": "反時計回りに回転",
"rotateClockwise": "時計回りに回転",
"flipHorizontally": "水平方向に反転",
"flipVertically": "垂直方向に反転",
"toggleAutoscroll": "自動スクロールの切替",
"modifyConfig": "Modify Config",
"toggleLogViewer": "Log Viewerの切替",
"showGallery": "ギャラリーを表示",
"showOptionsPanel": "オプションパネルを表示"
}
}

View File

@ -0,0 +1 @@
{}

View File

@ -62,7 +62,18 @@
"statusConvertingModel": "Omzetten van model",
"statusModelConverted": "Model omgezet",
"statusMergingModels": "Samenvoegen van modellen",
"statusMergedModels": "Modellen samengevoegd"
"statusMergedModels": "Modellen samengevoegd",
"cancel": "Annuleer",
"accept": "Akkoord",
"langPortuguese": "Português",
"pinOptionsPanel": "Zet deelscherm Opties vast",
"loading": "Bezig met laden",
"loadingInvokeAI": "Bezig met laden van Invoke AI",
"oceanTheme": "Oceaan",
"langHebrew": "עברית",
"langKorean": "한국어",
"txt2img": "Tekst naar afbeelding",
"postprocessing": "Nabewerking"
},
"gallery": {
"generations": "Gegenereerde afbeeldingen",
@ -301,7 +312,7 @@
"name": "Naam",
"nameValidationMsg": "Geef een naam voor je model",
"description": "Beschrijving",
"descriptionValidationMsg": "Voeg een beschrijving toe voor je model.",
"descriptionValidationMsg": "Voeg een beschrijving toe voor je model",
"config": "Configuratie",
"configValidationMsg": "Pad naar het configuratiebestand van je model.",
"modelLocation": "Locatie model",
@ -391,7 +402,13 @@
"modelMergeInterpAddDifferenceHelp": "In deze stand wordt model 3 eerst van model 2 afgehaald. Wat daar uitkomt wordt gemengd met model 1, gebruikmakend van de hierboven ingestelde alfawaarde.",
"inverseSigmoid": "Keer Sigmoid om",
"sigmoid": "Sigmoid",
"weightedSum": "Gewogen som"
"weightedSum": "Gewogen som",
"v2_base": "v2 (512px)",
"v2_768": "v2 (768px)",
"none": "geen",
"addDifference": "Voeg verschil toe",
"scanForModels": "Scan naar modellen",
"pickModelType": "Kies modelsoort"
},
"parameters": {
"images": "Afbeeldingen",
@ -561,7 +578,7 @@
"autoSaveToGallery": "Bewaar automatisch naar galerij",
"saveBoxRegionOnly": "Bewaar alleen tekengebied",
"limitStrokesToBox": "Beperk streken tot tekenvak",
"showCanvasDebugInfo": "Toon foutopsporingsgegevens canvas",
"showCanvasDebugInfo": "Toon aanvullende canvasgegevens",
"clearCanvasHistory": "Wis canvasgeschiedenis",
"clearHistory": "Wis geschiedenis",
"clearCanvasHistoryMessage": "Het wissen van de canvasgeschiedenis laat het huidige canvas ongemoeid, maar wist onherstelbaar de geschiedenis voor het ongedaan maken en herhalen.",
@ -587,5 +604,27 @@
"betaDarkenOutside": "Verduister buiten tekenvak",
"betaLimitToBox": "Beperk tot tekenvak",
"betaPreserveMasked": "Behoud masker"
},
"accessibility": {
"exitViewer": "Stop viewer",
"zoomIn": "Zoom in",
"rotateCounterClockwise": "Draai tegen de klok in",
"modelSelect": "Modelkeuze",
"invokeProgressBar": "Voortgangsbalk Invoke",
"reset": "Herstel",
"uploadImage": "Upload afbeelding",
"previousImage": "Vorige afbeelding",
"nextImage": "Volgende afbeelding",
"useThisParameter": "Gebruik deze parameter",
"copyMetadataJson": "Kopieer metagegevens-JSON",
"zoomOut": "Zoom uit",
"rotateClockwise": "Draai met de klok mee",
"flipHorizontally": "Spiegel horizontaal",
"flipVertically": "Spiegel verticaal",
"modifyConfig": "Wijzig configuratie",
"toggleAutoscroll": "Autom. scrollen aan/uit",
"toggleLogViewer": "Logboekviewer aan/uit",
"showGallery": "Toon galerij",
"showOptionsPanel": "Toon deelscherm Opties"
}
}

View File

@ -9,7 +9,7 @@
"lightTheme": "Светлая",
"greenTheme": "Зеленая",
"img2img": "Изображение в изображение (img2img)",
"unifiedCanvas": "Универсальный холст",
"unifiedCanvas": "Единый холст",
"nodes": "Ноды",
"langRussian": "Русский",
"nodesDesc": "Cистема генерации изображений на основе нодов (узлов) уже разрабатывается. Следите за новостями об этой замечательной функции.",
@ -53,7 +53,28 @@
"loading": "Загрузка",
"loadingInvokeAI": "Загрузка Invoke AI",
"back": "Назад",
"statusConvertingModel": "Конвертация модели"
"statusConvertingModel": "Конвертация модели",
"cancel": "Отменить",
"accept": "Принять",
"oceanTheme": "Океан",
"langUkranian": "Украинский",
"langEnglish": "Английский",
"postprocessing": "Постобработка",
"langArabic": "Арабский",
"langSpanish": "Испанский",
"langSimplifiedChinese": "Китайский (упрощенный)",
"langDutch": "Нидерландский",
"langFrench": "Французский",
"langGerman": "Немецкий",
"langHebrew": "Иврит",
"langItalian": "Итальянский",
"langJapanese": "Японский",
"langKorean": "Корейский",
"langPolish": "Польский",
"langPortuguese": "Португальский",
"txt2img": "Текст в изображение (txt2img)",
"langBrPortuguese": "Португальский (Бразилия)",
"linear": "Линейная обработка"
},
"gallery": {
"generations": "Генерации",
@ -72,11 +93,11 @@
"noImagesInGallery": "Изображений нет"
},
"hotkeys": {
"keyboardShortcuts": "Клавиатурные сокращения",
"keyboardShortcuts": "Горячие клавиши",
"appHotkeys": "Горячие клавиши приложения",
"generalHotkeys": "Общие горячие клавиши",
"galleryHotkeys": "Горячие клавиши галереи",
"unifiedCanvasHotkeys": "Горячие клавиши универсального холста",
"unifiedCanvasHotkeys": "Горячие клавиши Единого холста",
"invoke": {
"title": "Invoke",
"desc": "Сгенерировать изображение"
@ -266,12 +287,12 @@
"desc": "Сбросить вид холста"
},
"previousStagingImage": {
"title": "Previous Staging Image",
"desc": "Предыдущее изображение"
"title": "Предыдущее изображение",
"desc": "Предыдущая область изображения"
},
"nextStagingImage": {
"title": "Next Staging Image",
"desc": "Следующее изображение"
"title": "Следующее изображение",
"desc": "Следующая область изображения"
},
"acceptStagingImage": {
"title": "Принять изображение",
@ -353,7 +374,42 @@
"modelConverted": "Модель преобразована",
"invokeRoot": "Каталог InvokeAI",
"modelsMerged": "Модели объединены",
"mergeModels": "Объединить модели"
"mergeModels": "Объединить модели",
"scanForModels": "Просканировать модели",
"sigmoid": "Сигмоид",
"formMessageDiffusersModelLocation": "Расположение Diffusers-модели",
"modelThree": "Модель 3",
"modelMergeHeaderHelp2": "Только Diffusers-модели доступны для объединения. Если вы хотите объединить checkpoint-модели, сначала преобразуйте их в Diffusers.",
"pickModelType": "Выбрать тип модели",
"formMessageDiffusersVAELocation": "Расположение VAE",
"v1": "v1",
"convertToDiffusersSaveLocation": "Путь сохранения",
"customSaveLocation": "Пользовательский путь сохранения",
"alpha": "Альфа",
"diffusersModels": "Diffusers",
"customConfig": "Пользовательский конфиг",
"pathToCustomConfig": "Путь к пользовательскому конфигу",
"inpainting": "v1 Inpainting",
"sameFolder": "В ту же папку",
"modelOne": "Модель 1",
"mergedModelCustomSaveLocation": "Пользовательский путь",
"none": "пусто",
"addDifference": "Добавить разницу",
"vaeRepoIDValidationMsg": "Онлайн репозиторий VAE",
"convertToDiffusersHelpText2": "Этот процесс заменит вашу запись в Model Manager на версию той же модели в Diffusers.",
"custom": "Пользовательский",
"modelTwo": "Модель 2",
"mergedModelSaveLocation": "Путь сохранения",
"merge": "Объединить",
"interpolationType": "Тип интерполяции",
"modelMergeInterpAddDifferenceHelp": "В этом режиме Модель 3 сначала вычитается из Модели 2. Результирующая версия смешивается с Моделью 1 с установленным выше коэффициентом Альфа.",
"modelMergeHeaderHelp1": "Вы можете объединить до трех разных моделей, чтобы создать смешанную, соответствующую вашим потребностям.",
"modelMergeAlphaHelp": "Альфа влияет на силу смешивания моделей. Более низкие значения альфа приводят к меньшему влиянию второй модели.",
"inverseSigmoid": "Обратный Сигмоид",
"weightedSum": "Взвешенная сумма",
"safetensorModels": "SafeTensors",
"v2_768": "v2 (768px)",
"v2_base": "v2 (512px)"
},
"parameters": {
"images": "Изображения",
@ -380,7 +436,7 @@
"scale": "Масштаб",
"otherOptions": "Другие параметры",
"seamlessTiling": "Бесшовный узор",
"hiresOptim": "Высокое разрешение",
"hiresOptim": "Оптимизация High Res",
"imageFit": "Уместить изображение",
"codeformerFidelity": "Точность",
"seamSize": "Размер шва",
@ -397,11 +453,11 @@
"infillScalingHeader": "Заполнение и масштабирование",
"img2imgStrength": "Сила обработки img2img",
"toggleLoopback": "Зациклить обработку",
"invoke": "Вызвать",
"invoke": "Invoke",
"promptPlaceholder": "Введите запрос здесь (на английском). [исключенные токены], (более значимые)++, (менее значимые)--, swap и blend тоже доступны (смотрите Github)",
"sendTo": "Отправить",
"sendToImg2Img": "Отправить в img2img",
"sendToUnifiedCanvas": "Отправить на холст",
"sendToUnifiedCanvas": "Отправить на Единый холст",
"copyImageToLink": "Скопировать ссылку",
"downloadImage": "Скачать",
"openInViewer": "Открыть в просмотрщике",
@ -413,7 +469,24 @@
"info": "Метаданные",
"deleteImage": "Удалить изображение",
"initialImage": "Исходное изображение",
"showOptionsPanel": "Показать панель настроек"
"showOptionsPanel": "Показать панель настроек",
"vSymmetryStep": "Шаг верт. симметрии",
"cancel": {
"immediate": "Отменить немедленно",
"schedule": "Отменить после текущей итерации",
"isScheduled": "Отмена",
"setType": "Установить тип отмены"
},
"general": "Основное",
"hiresStrength": "Сила High Res",
"symmetry": "Симметрия",
"hSymmetryStep": "Шаг гор. симметрии",
"hidePreview": "Скрыть предпросмотр",
"imageToImage": "Изображение в изображение",
"denoisingStrength": "Сила шумоподавления",
"copyImage": "Скопировать изображение",
"negativePrompts": "Исключающий запрос",
"showPreview": "Показать предпросмотр"
},
"settings": {
"models": "Модели",
@ -423,10 +496,11 @@
"displayHelpIcons": "Показывать значки подсказок",
"useCanvasBeta": "Показывать инструменты слева (Beta UI)",
"enableImageDebugging": "Включить отладку",
"resetWebUI": "Вернуть умолчания",
"resetWebUI": "Сброс настроек Web UI",
"resetWebUIDesc1": "Сброс настроек веб-интерфейса удаляет только локальный кэш браузера с вашими изображениями и настройками. Он не удаляет изображения с диска.",
"resetWebUIDesc2": "Если изображения не отображаются в галерее или не работает что-то еще, пожалуйста, попробуйте сбросить настройки, прежде чем сообщать о проблеме на GitHub.",
"resetComplete": "Интерфейс сброшен. Обновите эту страницу."
"resetComplete": "Интерфейс сброшен. Обновите эту страницу.",
"useSlidersForAll": "Использовать ползунки для всех параметров"
},
"toast": {
"tempFoldersEmptied": "Временная папка очищена",
@ -441,7 +515,7 @@
"imageSavedToGallery": "Изображение сохранено в галерею",
"canvasMerged": "Холст объединен",
"sentToImageToImage": "Отправить в img2img",
"sentToUnifiedCanvas": "Отправить на холст",
"sentToUnifiedCanvas": "Отправлено на Единый холст",
"parametersSet": "Параметры заданы",
"parametersNotSet": "Параметры не заданы",
"parametersNotSetDesc": "Не найдены метаданные изображения.",
@ -458,7 +532,11 @@
"metadataLoadFailed": "Не удалось загрузить метаданные",
"initialImageSet": "Исходное изображение задано",
"initialImageNotSet": "Исходное изображение не задано",
"initialImageNotSetDesc": "Не получилось загрузить исходное изображение"
"initialImageNotSetDesc": "Не получилось загрузить исходное изображение",
"serverError": "Ошибка сервера",
"disconnected": "Отключено от сервера",
"connected": "Подключено к серверу",
"canceled": "Обработка отменена"
},
"tooltip": {
"feature": {
@ -507,7 +585,7 @@
"autoSaveToGallery": "Автосохранение в галерее",
"saveBoxRegionOnly": "Сохранять только выделение",
"limitStrokesToBox": "Ограничить штрихи выделением",
"showCanvasDebugInfo": "Показать отладку холста",
"showCanvasDebugInfo": "Показать доп. информацию о холсте",
"clearCanvasHistory": "Очистить историю холста",
"clearHistory": "Очистить историю",
"clearCanvasHistoryMessage": "Очистка истории холста оставляет текущий холст нетронутым, но удаляет историю отмен и повторов.",
@ -535,6 +613,26 @@
"betaPreserveMasked": "Сохранять маскируемую область"
},
"accessibility": {
"modelSelect": "Выбор модели"
"modelSelect": "Выбор модели",
"uploadImage": "Загрузить изображение",
"nextImage": "Следующее изображение",
"previousImage": "Предыдущее изображение",
"zoomIn": "Приблизить",
"zoomOut": "Отдалить",
"rotateClockwise": "Повернуть по часовой стрелке",
"rotateCounterClockwise": "Повернуть против часовой стрелки",
"flipVertically": "Перевернуть вертикально",
"flipHorizontally": "Отразить горизонтально",
"toggleAutoscroll": "Включить автопрокрутку",
"toggleLogViewer": "Показать или скрыть просмотрщик логов",
"showOptionsPanel": "Показать опции",
"showGallery": "Показать галерею",
"invokeProgressBar": "Индикатор выполнения",
"reset": "Сброс",
"modifyConfig": "Изменить конфиг",
"useThisParameter": "Использовать этот параметр",
"copyMetadataJson": "Скопировать метаданные JSON",
"exitViewer": "Закрыть просмотрщик",
"menu": "Меню"
}
}

View File

@ -0,0 +1,254 @@
{
"accessibility": {
"copyMetadataJson": "Kopiera metadata JSON",
"zoomIn": "Zooma in",
"exitViewer": "Avslutningsvisare",
"modelSelect": "Välj modell",
"uploadImage": "Ladda upp bild",
"invokeProgressBar": "Invoke förloppsmätare",
"nextImage": "Nästa bild",
"toggleAutoscroll": "Växla automatisk rullning",
"flipHorizontally": "Vänd vågrätt",
"flipVertically": "Vänd lodrätt",
"zoomOut": "Zooma ut",
"toggleLogViewer": "Växla logvisare",
"reset": "Starta om",
"previousImage": "Föregående bild",
"useThisParameter": "Använd denna parametern",
"showGallery": "Visa galleri",
"rotateCounterClockwise": "Rotera moturs",
"rotateClockwise": "Rotera medurs",
"modifyConfig": "Ändra konfiguration",
"showOptionsPanel": "Visa inställningspanelen"
},
"common": {
"hotkeysLabel": "Snabbtangenter",
"reportBugLabel": "Rapportera bugg",
"githubLabel": "Github",
"discordLabel": "Discord",
"settingsLabel": "Inställningar",
"darkTheme": "Mörk",
"lightTheme": "Ljus",
"greenTheme": "Grön",
"oceanTheme": "Hav",
"langEnglish": "Engelska",
"langDutch": "Nederländska",
"langFrench": "Franska",
"langGerman": "Tyska",
"langItalian": "Italienska",
"langArabic": "العربية",
"langHebrew": "עברית",
"langPolish": "Polski",
"langPortuguese": "Português",
"langBrPortuguese": "Português do Brasil",
"langSimplifiedChinese": "简体中文",
"langJapanese": "日本語",
"langKorean": "한국어",
"langRussian": "Русский",
"unifiedCanvas": "Förenad kanvas",
"nodesDesc": "Ett nodbaserat system för bildgenerering är under utveckling. Håll utkik för uppdateringar om denna fantastiska funktion.",
"langUkranian": "Украї́нська",
"langSpanish": "Español",
"postProcessDesc2": "Ett dedikerat användargränssnitt kommer snart att släppas för att underlätta mer avancerade arbetsflöden av efterbehandling.",
"trainingDesc1": "Ett dedikerat arbetsflöde för träning av dina egna inbäddningar och kontrollpunkter genom Textual Inversion eller Dreambooth från webbgränssnittet.",
"trainingDesc2": "InvokeAI stöder redan träning av anpassade inbäddningar med hjälp av Textual Inversion genom huvudscriptet.",
"upload": "Ladda upp",
"close": "Stäng",
"cancel": "Avbryt",
"accept": "Acceptera",
"statusDisconnected": "Frånkopplad",
"statusGeneratingTextToImage": "Genererar text till bild",
"statusGeneratingImageToImage": "Genererar Bild till bild",
"statusGeneratingInpainting": "Genererar Måla i",
"statusGenerationComplete": "Generering klar",
"statusModelConverted": "Modell konverterad",
"statusMergingModels": "Sammanfogar modeller",
"pinOptionsPanel": "Nåla fast inställningspanelen",
"loading": "Laddar",
"loadingInvokeAI": "Laddar Invoke AI",
"statusRestoringFaces": "Återskapar ansikten",
"languagePickerLabel": "Språkväljare",
"themeLabel": "Tema",
"txt2img": "Text till bild",
"nodes": "Noder",
"img2img": "Bild till bild",
"postprocessing": "Efterbehandling",
"postProcessing": "Efterbehandling",
"load": "Ladda",
"training": "Träning",
"postProcessDesc1": "Invoke AI erbjuder ett brett utbud av efterbehandlingsfunktioner. Uppskalning och ansiktsåterställning finns redan tillgängligt i webbgränssnittet. Du kommer åt dem ifrån Avancerade inställningar-menyn under Bild till bild-fliken. Du kan också behandla bilder direkt genom att använda knappen bildåtgärder ovanför nuvarande bild eller i bildvisaren.",
"postProcessDesc3": "Invoke AI's kommandotolk erbjuder många olika funktioner, bland annat \"Förstora\".",
"statusGenerating": "Genererar",
"statusError": "Fel",
"back": "Bakåt",
"statusConnected": "Ansluten",
"statusPreparing": "Förbereder",
"statusProcessingCanceled": "Bearbetning avbruten",
"statusProcessingComplete": "Bearbetning färdig",
"statusGeneratingOutpainting": "Genererar Fyll ut",
"statusIterationComplete": "Itterering klar",
"statusSavingImage": "Sparar bild",
"statusRestoringFacesGFPGAN": "Återskapar ansikten (GFPGAN)",
"statusRestoringFacesCodeFormer": "Återskapar ansikten (CodeFormer)",
"statusUpscaling": "Skala upp",
"statusUpscalingESRGAN": "Uppskalning (ESRGAN)",
"statusModelChanged": "Modell ändrad",
"statusLoadingModel": "Laddar modell",
"statusConvertingModel": "Konverterar modell",
"statusMergedModels": "Modeller sammanfogade"
},
"gallery": {
"generations": "Generationer",
"showGenerations": "Visa generationer",
"uploads": "Uppladdningar",
"showUploads": "Visa uppladdningar",
"galleryImageSize": "Bildstorlek",
"allImagesLoaded": "Alla bilder laddade",
"loadMore": "Ladda mer",
"galleryImageResetSize": "Återställ storlek",
"gallerySettings": "Galleriinställningar",
"maintainAspectRatio": "Behåll bildförhållande",
"pinGallery": "Nåla fast galleri",
"noImagesInGallery": "Inga bilder i galleriet",
"autoSwitchNewImages": "Ändra automatiskt till nya bilder",
"singleColumnLayout": "Enkolumnslayout"
},
"hotkeys": {
"generalHotkeys": "Allmänna snabbtangenter",
"galleryHotkeys": "Gallerisnabbtangenter",
"unifiedCanvasHotkeys": "Snabbtangenter för sammanslagskanvas",
"invoke": {
"title": "Anropa",
"desc": "Genererar en bild"
},
"cancel": {
"title": "Avbryt",
"desc": "Avbryt bildgenerering"
},
"focusPrompt": {
"desc": "Fokusera området för promptinmatning",
"title": "Fokusprompt"
},
"pinOptions": {
"desc": "Nåla fast alternativpanelen",
"title": "Nåla fast alternativ"
},
"toggleOptions": {
"title": "Växla inställningar",
"desc": "Öppna och stäng alternativpanelen"
},
"toggleViewer": {
"title": "Växla visaren",
"desc": "Öppna och stäng bildvisaren"
},
"toggleGallery": {
"title": "Växla galleri",
"desc": "Öppna eller stäng galleribyrån"
},
"maximizeWorkSpace": {
"title": "Maximera arbetsyta",
"desc": "Stäng paneler och maximera arbetsyta"
},
"changeTabs": {
"title": "Växla flik",
"desc": "Byt till en annan arbetsyta"
},
"consoleToggle": {
"title": "Växla konsol",
"desc": "Öppna och stäng konsol"
},
"setSeed": {
"desc": "Använd seed för nuvarande bild",
"title": "välj seed"
},
"setParameters": {
"title": "Välj parametrar",
"desc": "Använd alla parametrar från nuvarande bild"
},
"setPrompt": {
"desc": "Använd prompt för nuvarande bild",
"title": "Välj prompt"
},
"restoreFaces": {
"title": "Återskapa ansikten",
"desc": "Återskapa nuvarande bild"
},
"upscale": {
"title": "Skala upp",
"desc": "Skala upp nuvarande bild"
},
"showInfo": {
"title": "Visa info",
"desc": "Visa metadata för nuvarande bild"
},
"sendToImageToImage": {
"title": "Skicka till Bild till bild",
"desc": "Skicka nuvarande bild till Bild till bild"
},
"deleteImage": {
"title": "Radera bild",
"desc": "Radera nuvarande bild"
},
"closePanels": {
"title": "Stäng paneler",
"desc": "Stäng öppna paneler"
},
"previousImage": {
"title": "Föregående bild",
"desc": "Visa föregående bild"
},
"nextImage": {
"title": "Nästa bild",
"desc": "Visa nästa bild"
},
"toggleGalleryPin": {
"title": "Växla gallerinål",
"desc": "Nålar fast eller nålar av galleriet i gränssnittet"
},
"increaseGalleryThumbSize": {
"title": "Förstora galleriets bildstorlek",
"desc": "Förstora miniatyrbildernas storlek"
},
"decreaseGalleryThumbSize": {
"title": "Minska gelleriets bildstorlek",
"desc": "Minska miniatyrbildernas storlek i galleriet"
},
"decreaseBrushSize": {
"desc": "Förminska storleken på kanvas- pensel eller suddgummi",
"title": "Minska penselstorlek"
},
"increaseBrushSize": {
"title": "Öka penselstorlek",
"desc": "Öka stoleken på kanvas- pensel eller suddgummi"
},
"increaseBrushOpacity": {
"title": "Öka penselns opacitet",
"desc": "Öka opaciteten för kanvaspensel"
},
"decreaseBrushOpacity": {
"desc": "Minska kanvaspenselns opacitet",
"title": "Minska penselns opacitet"
},
"moveTool": {
"title": "Flytta",
"desc": "Tillåt kanvasnavigation"
},
"fillBoundingBox": {
"title": "Fyll ram",
"desc": "Fyller ramen med pensels färg"
},
"keyboardShortcuts": "Snabbtangenter",
"appHotkeys": "Appsnabbtangenter",
"selectBrush": {
"desc": "Välj kanvaspensel",
"title": "Välj pensel"
},
"selectEraser": {
"desc": "Välj kanvassuddgummi",
"title": "Välj suddgummi"
},
"eraseBoundingBox": {
"title": "Ta bort ram"
}
}
}

View File

@ -0,0 +1,64 @@
{
"accessibility": {
"invokeProgressBar": "Invoke ilerleme durumu",
"nextImage": "Sonraki Resim",
"useThisParameter": "Kullanıcı parametreleri",
"copyMetadataJson": "Metadata verilerini kopyala (JSON)",
"exitViewer": "Görüntüleme Modundan Çık",
"zoomIn": "Yakınlaştır",
"zoomOut": "Uzaklaştır",
"rotateCounterClockwise": "Döndür (Saat yönünün tersine)",
"rotateClockwise": "Döndür (Saat yönünde)",
"flipHorizontally": "Yatay Çevir",
"flipVertically": "Dikey Çevir",
"modifyConfig": "Ayarları Değiştir",
"toggleAutoscroll": "Otomatik kaydırmayı aç/kapat",
"toggleLogViewer": "Günlük Görüntüleyici Aç/Kapa",
"showOptionsPanel": "Ayarlar Panelini Göster",
"modelSelect": "Model Seçin",
"reset": "Sıfırla",
"uploadImage": "Resim Yükle",
"previousImage": "Önceki Resim",
"menu": "Menü",
"showGallery": "Galeriyi Göster"
},
"common": {
"hotkeysLabel": "Kısayol Tuşları",
"themeLabel": "Tema",
"languagePickerLabel": "Dil Seçimi",
"reportBugLabel": "Hata Bildir",
"githubLabel": "Github",
"discordLabel": "Discord",
"settingsLabel": "Ayarlar",
"darkTheme": "Karanlık Tema",
"lightTheme": "Aydınlık Tema",
"greenTheme": "Yeşil Tema",
"oceanTheme": "Okyanus Tema",
"langArabic": "Arapça",
"langEnglish": "İngilizce",
"langDutch": "Hollandaca",
"langFrench": "Fransızca",
"langGerman": "Almanca",
"langItalian": "İtalyanca",
"langJapanese": "Japonca",
"langPolish": "Lehçe",
"langPortuguese": "Portekizce",
"langBrPortuguese": "Portekizcr (Brezilya)",
"langRussian": "Rusça",
"langSimplifiedChinese": "Çince (Basit)",
"langUkranian": "Ukraynaca",
"langSpanish": "İspanyolca",
"txt2img": "Metinden Resime",
"img2img": "Resimden Metine",
"linear": "Çizgisel",
"nodes": "Düğümler",
"postprocessing": "İşlem Sonrası",
"postProcessing": "İşlem Sonrası",
"postProcessDesc2": "Daha gelişmiş özellikler için ve iş akışını kolaylaştırmak için özel bir kullanıcı arayüzü çok yakında yayınlanacaktır.",
"postProcessDesc3": "Invoke AI komut satırı arayüzü, bir çok yeni özellik sunmaktadır.",
"langKorean": "Korece",
"unifiedCanvas": "Akıllı Tuval",
"nodesDesc": "Görüntülerin oluşturulmasında hazırladığımız yeni bir sistem geliştirme aşamasındadır. Bu harika özellikler ve çok daha fazlası için bizi takip etmeye devam edin.",
"postProcessDesc1": "Invoke AI son kullanıcıya yönelik bir çok özellik sunar. Görüntü kalitesi yükseltme, yüz restorasyonu WebUI üzerinden kullanılabilir. Metinden resime ve resimden metne araçlarına gelişmiş seçenekler menüsünden ulaşabilirsiniz. İsterseniz mevcut görüntü ekranının üzerindeki veya görüntüleyicideki görüntüyü doğrudan düzenleyebilirsiniz."
}
}

View File

@ -16,9 +16,9 @@
"postProcessing": "Постобробка",
"postProcessDesc1": "Invoke AI пропонує широкий спектр функцій постобробки. Збільшення зображення (upscale) та відновлення облич вже доступні в інтерфейсі. Отримайте доступ до них з меню 'Додаткові параметри' на вкладках 'Зображення із тексту' та 'Зображення із зображення'. Обробляйте зображення безпосередньо, використовуючи кнопки дій із зображеннями над поточним зображенням або в режимі перегляду.",
"postProcessDesc2": "Найближчим часом буде випущено спеціальний інтерфейс для більш сучасних процесів постобробки.",
"postProcessDesc3": "Інтерфейс командного рядка Invoke AI пропонує різні інші функції, включаючи збільшення Embiggen",
"postProcessDesc3": "Інтерфейс командного рядка Invoke AI пропонує різні інші функції, включаючи збільшення Embiggen.",
"training": "Навчання",
"trainingDesc1": "Спеціальний інтерфейс для навчання власних моделей з використанням Textual Inversion та Dreambooth",
"trainingDesc1": "Спеціальний інтерфейс для навчання власних моделей з використанням Textual Inversion та Dreambooth.",
"trainingDesc2": "InvokeAI вже підтримує навчання моделей за допомогою TI, через інтерфейс командного рядка.",
"upload": "Завантажити",
"close": "Закрити",
@ -43,7 +43,38 @@
"statusUpscaling": "Збільшення",
"statusUpscalingESRGAN": "Збільшення (ESRGAN)",
"statusLoadingModel": "Завантаження моделі",
"statusModelChanged": "Модель змінено"
"statusModelChanged": "Модель змінено",
"cancel": "Скасувати",
"accept": "Підтвердити",
"back": "Назад",
"postprocessing": "Постобробка",
"statusModelConverted": "Модель сконвертована",
"statusMergingModels": "Злиття моделей",
"loading": "Завантаження",
"loadingInvokeAI": "Завантаження Invoke AI",
"langHebrew": "Іврит",
"langKorean": "Корейська",
"langPortuguese": "Португальська",
"pinOptionsPanel": "Закріпити панель налаштувань",
"oceanTheme": "Океан",
"langArabic": "Арабська",
"langSimplifiedChinese": "Китайська (спрощена)",
"langSpanish": "Іспанська",
"langEnglish": "Англійська",
"langGerman": "Німецька",
"langItalian": "Італійська",
"langJapanese": "Японська",
"langPolish": "Польська",
"langBrPortuguese": "Португальська (Бразилія)",
"langRussian": "Російська",
"githubLabel": "Github",
"txt2img": "Текст в зображення (txt2img)",
"discordLabel": "Discord",
"langDutch": "Голландська",
"langFrench": "Французька",
"statusMergedModels": "Моделі об'єднані",
"statusConvertingModel": "Конвертація моделі",
"linear": "Лінійна обробка"
},
"gallery": {
"generations": "Генерації",
@ -284,15 +315,15 @@
"description": "Опис",
"descriptionValidationMsg": "Введіть опис моделі",
"config": "Файл конфігурації",
"configValidationMsg": "Шлях до файлу конфігурації",
"configValidationMsg": "Шлях до файлу конфігурації.",
"modelLocation": "Розташування моделі",
"modelLocationValidationMsg": "Шлях до файлу з моделлю",
"modelLocationValidationMsg": "Шлях до файлу з моделлю.",
"vaeLocation": "Розтышування VAE",
"vaeLocationValidationMsg": "Шлях до VAE",
"vaeLocationValidationMsg": "Шлях до VAE.",
"width": "Ширина",
"widthValidationMsg": "Початкова ширина зображень",
"widthValidationMsg": "Початкова ширина зображень.",
"height": "Висота",
"heightValidationMsg": "Початкова висота зображень",
"heightValidationMsg": "Початкова висота зображень.",
"addModel": "Додати модель",
"updateModel": "Оновити модель",
"availableModels": "Доступні моделі",
@ -319,7 +350,66 @@
"deleteModel": "Видалити модель",
"deleteConfig": "Видалити конфігурацію",
"deleteMsg1": "Ви точно хочете видалити модель із InvokeAI?",
"deleteMsg2": "Це не призведе до видалення файлу моделі з диску. Позніше ви можете додати його знову."
"deleteMsg2": "Це не призведе до видалення файлу моделі з диску. Позніше ви можете додати його знову.",
"allModels": "Усі моделі",
"diffusersModels": "Diffusers",
"scanForModels": "Сканувати моделі",
"convert": "Конвертувати",
"convertToDiffusers": "Конвертувати в Diffusers",
"formMessageDiffusersVAELocationDesc": "Якщо не надано, InvokeAI буде шукати файл VAE в розташуванні моделі, вказаній вище.",
"convertToDiffusersHelpText3": "Файл моделі на диску НЕ буде видалено або змінено. Ви можете знову додати його в Model Manager, якщо потрібно.",
"customConfig": "Користувальницький конфіг",
"invokeRoot": "Каталог InvokeAI",
"custom": "Користувальницький",
"modelTwo": "Модель 2",
"modelThree": "Модель 3",
"mergedModelName": "Назва об'єднаної моделі",
"alpha": "Альфа",
"interpolationType": "Тип інтерполяції",
"mergedModelSaveLocation": "Шлях збереження",
"mergedModelCustomSaveLocation": "Користувальницький шлях",
"invokeAIFolder": "Каталог InvokeAI",
"ignoreMismatch": "Ігнорувати невідповідності між вибраними моделями",
"modelMergeHeaderHelp2": "Тільки Diffusers-моделі доступні для об'єднання. Якщо ви хочете об'єднати checkpoint-моделі, спочатку перетворіть їх на Diffusers.",
"checkpointModels": "Checkpoints",
"repo_id": "ID репозиторію",
"v2_base": "v2 (512px)",
"repoIDValidationMsg": "Онлайн-репозиторій моделі",
"formMessageDiffusersModelLocationDesc": "Вкажіть хоча б одне.",
"formMessageDiffusersModelLocation": "Шлях до Diffusers-моделі",
"v2_768": "v2 (768px)",
"formMessageDiffusersVAELocation": "Шлях до VAE",
"convertToDiffusersHelpText5": "Переконайтеся, що у вас достатньо місця на диску. Моделі зазвичай займають від 4 до 7 Гб.",
"convertToDiffusersSaveLocation": "Шлях збереження",
"v1": "v1",
"convertToDiffusersHelpText6": "Ви хочете перетворити цю модель?",
"inpainting": "v1 Inpainting",
"modelConverted": "Модель перетворено",
"sameFolder": "У ту ж папку",
"statusConverting": "Перетворення",
"merge": "Об'єднати",
"mergeModels": "Об'єднати моделі",
"modelOne": "Модель 1",
"sigmoid": "Сігмоїд",
"weightedSum": "Зважена сума",
"none": "пусто",
"addDifference": "Додати різницю",
"pickModelType": "Вибрати тип моделі",
"convertToDiffusersHelpText4": "Це одноразова дія. Вона може зайняти від 30 до 60 секунд в залежності від характеристик вашого комп'ютера.",
"pathToCustomConfig": "Шлях до конфігу користувача",
"safetensorModels": "SafeTensors",
"addCheckpointModel": "Додати модель Checkpoint/Safetensor",
"addDiffuserModel": "Додати Diffusers",
"vaeRepoID": "ID репозиторію VAE",
"vaeRepoIDValidationMsg": "Онлайн-репозиторій VAE",
"modelMergeInterpAddDifferenceHelp": "У цьому режимі Модель 3 спочатку віднімається з Моделі 2. Результуюча версія змішується з Моделью 1 із встановленим вище коефіцієнтом Альфа.",
"customSaveLocation": "Користувальницький шлях збереження",
"modelMergeAlphaHelp": "Альфа впливає силу змішування моделей. Нижчі значення альфа призводять до меншого впливу другої моделі.",
"convertToDiffusersHelpText1": "Ця модель буде конвертована в формат 🧨 Diffusers.",
"convertToDiffusersHelpText2": "Цей процес замінить ваш запис в Model Manager на версію тієї ж моделі в Diffusers.",
"modelsMerged": "Моделі об'єднані",
"modelMergeHeaderHelp1": "Ви можете об'єднати до трьох різних моделей, щоб створити змішану, що відповідає вашим потребам.",
"inverseSigmoid": "Зворотній Сігмоїд"
},
"parameters": {
"images": "Зображення",
@ -346,7 +436,7 @@
"scale": "Масштаб",
"otherOptions": "інші параметри",
"seamlessTiling": "Безшовний узор",
"hiresOptim": "Висока роздільна здатність",
"hiresOptim": "Оптимізація High Res",
"imageFit": "Вмістити зображення",
"codeformerFidelity": "Точність",
"seamSize": "Размір шву",
@ -379,7 +469,24 @@
"info": "Метадані",
"deleteImage": "Видалити зображення",
"initialImage": "Початкове зображення",
"showOptionsPanel": "Показати панель налаштувань"
"showOptionsPanel": "Показати панель налаштувань",
"general": "Основне",
"cancel": {
"immediate": "Скасувати негайно",
"schedule": "Скасувати після поточної ітерації",
"isScheduled": "Відміна",
"setType": "Встановити тип скасування"
},
"vSymmetryStep": "Крок верт. симетрії",
"hiresStrength": "Сила High Res",
"hidePreview": "Сховати попередній перегляд",
"showPreview": "Показати попередній перегляд",
"imageToImage": "Зображення до зображення",
"denoisingStrength": "Сила шумоподавлення",
"copyImage": "Копіювати зображення",
"symmetry": "Симетрія",
"hSymmetryStep": "Крок гор. симетрії",
"negativePrompts": "Виключний запит"
},
"settings": {
"models": "Моделі",
@ -392,7 +499,8 @@
"resetWebUI": "Повернути початкові",
"resetWebUIDesc1": "Скидання настройок веб-інтерфейсу видаляє лише локальний кеш браузера з вашими зображеннями та налаштуваннями. Це не призводить до видалення зображень з диску.",
"resetWebUIDesc2": "Якщо зображення не відображаються в галереї або не працює ще щось, спробуйте скинути налаштування, перш ніж повідомляти про проблему на GitHub.",
"resetComplete": "Інтерфейс скинуто. Оновіть цю сторінку."
"resetComplete": "Інтерфейс скинуто. Оновіть цю сторінку.",
"useSlidersForAll": "Використовувати повзунки для всіх параметрів"
},
"toast": {
"tempFoldersEmptied": "Тимчасова папка очищена",
@ -410,21 +518,25 @@
"sentToUnifiedCanvas": "Надіслати на полотно",
"parametersSet": "Параметри задані",
"parametersNotSet": "Параметри не задані",
"parametersNotSetDesc": "Не знайдені метадані цього зображення",
"parametersNotSetDesc": "Не знайдені метадані цього зображення.",
"parametersFailed": "Проблема із завантаженням параметрів",
"parametersFailedDesc": "Неможливо завантажити початкове зображення",
"parametersFailedDesc": "Неможливо завантажити початкове зображення.",
"seedSet": "Сід заданий",
"seedNotSet": "Сід не заданий",
"seedNotSetDesc": "Не вдалося знайти сід для зображення",
"seedNotSetDesc": "Не вдалося знайти сід для зображення.",
"promptSet": "Запит заданий",
"promptNotSet": "Запит не заданий",
"promptNotSetDesc": "Не вдалося знайти запит для зображення",
"promptNotSetDesc": "Не вдалося знайти запит для зображення.",
"upscalingFailed": "Збільшення не вдалося",
"faceRestoreFailed": "Відновлення облич не вдалося",
"metadataLoadFailed": "Не вдалося завантажити метадані",
"initialImageSet": "Початкове зображення задане",
"initialImageNotSet": "Початкове зображення не задане",
"initialImageNotSetDesc": "Не вдалося завантажити початкове зображення"
"initialImageNotSetDesc": "Не вдалося завантажити початкове зображення",
"serverError": "Помилка сервера",
"disconnected": "Відключено від сервера",
"connected": "Підключено до сервера",
"canceled": "Обробку скасовано"
},
"tooltip": {
"feature": {
@ -473,10 +585,10 @@
"autoSaveToGallery": "Автозбереження до галереї",
"saveBoxRegionOnly": "Зберiгати тiльки видiлення",
"limitStrokesToBox": "Обмежити штрихи виділенням",
"showCanvasDebugInfo": "Показати налаштування полотна",
"showCanvasDebugInfo": "Показати дод. інформацію про полотно",
"clearCanvasHistory": "Очистити iсторiю полотна",
"clearHistory": "Очистити iсторiю",
"clearCanvasHistoryMessage": "Очищення історії полотна залишає поточне полотно незайманим, але видаляє історію скасування та повтору",
"clearCanvasHistoryMessage": "Очищення історії полотна залишає поточне полотно незайманим, але видаляє історію скасування та повтору.",
"clearCanvasHistoryConfirm": "Ви впевнені, що хочете очистити історію полотна?",
"emptyTempImageFolder": "Очистити тимчасову папку",
"emptyFolder": "Очистити папку",
@ -499,5 +611,28 @@
"betaDarkenOutside": "Затемнити зовні",
"betaLimitToBox": "Обмежити виділенням",
"betaPreserveMasked": "Зберiгати замасковану область"
},
"accessibility": {
"nextImage": "Наступне зображення",
"modelSelect": "Вибір моделі",
"invokeProgressBar": "Індикатор виконання",
"reset": "Скинути",
"uploadImage": "Завантажити зображення",
"useThisParameter": "Використовувати цей параметр",
"exitViewer": "Вийти з переглядача",
"zoomIn": "Збільшити",
"zoomOut": "Зменшити",
"rotateCounterClockwise": "Обертати проти годинникової стрілки",
"rotateClockwise": "Обертати за годинниковою стрілкою",
"toggleAutoscroll": "Увімкнути автопрокручування",
"toggleLogViewer": "Показати або приховати переглядач журналів",
"showGallery": "Показати галерею",
"previousImage": "Попереднє зображення",
"copyMetadataJson": "Скопіювати метадані JSON",
"flipVertically": "Перевернути по вертикалі",
"flipHorizontally": "Відобразити по горизонталі",
"showOptionsPanel": "Показати опції",
"modifyConfig": "Змінити конфігурацію",
"menu": "Меню"
}
}

View File

@ -0,0 +1 @@
{}

View File

@ -481,5 +481,22 @@
"betaDarkenOutside": "暗化外部区域",
"betaLimitToBox": "限制在框内",
"betaPreserveMasked": "保留遮罩层"
},
"accessibility": {
"modelSelect": "模型选择",
"invokeProgressBar": "Invoke 进度条",
"reset": "重置",
"nextImage": "下一张图片",
"useThisParameter": "使用此参数",
"uploadImage": "上传图片",
"previousImage": "上一张图片",
"copyMetadataJson": "复制JSON元数据",
"exitViewer": "退出视口ExitViewer",
"zoomIn": "放大",
"zoomOut": "缩小",
"rotateCounterClockwise": "逆时针旋转",
"rotateClockwise": "顺时针旋转",
"flipHorizontally": "水平翻转",
"flipVertically": "垂直翻转"
}
}

View File

@ -1,39 +0,0 @@
import { Flex, Spinner, Text } from '@chakra-ui/react';
import { useTranslation } from 'react-i18next';
interface LoaderProps {
showText?: boolean;
text?: string;
}
// This component loads before the theme so we cannot use theme tokens here
const Loading = (props: LoaderProps) => {
const { t } = useTranslation();
const { showText = false, text = t('common.loadingInvokeAI') } = props;
return (
<Flex
width="100vw"
height="100vh"
alignItems="center"
justifyContent="center"
bg="#121212"
flexDirection="column"
rowGap={4}
>
<Spinner color="grey" w="5rem" h="5rem" />
{showText && (
<Text
color="grey"
fontWeight="semibold"
fontFamily="'Inter', sans-serif"
>
{text}
</Text>
)}
</Flex>
);
};
export default Loading;

View File

@ -1,63 +0,0 @@
import ImageUploader from 'common/components/ImageUploader';
import Console from 'features/system/components/Console';
import ProgressBar from 'features/system/components/ProgressBar';
import SiteHeader from 'features/system/components/SiteHeader';
import InvokeTabs from 'features/ui/components/InvokeTabs';
import { keepGUIAlive } from './utils';
import useToastWatcher from 'features/system/hooks/useToastWatcher';
import FloatingGalleryButton from 'features/ui/components/FloatingGalleryButton';
import FloatingParametersPanelButtons from 'features/ui/components/FloatingParametersPanelButtons';
import { Box, Flex, Grid, Portal, useColorMode } from '@chakra-ui/react';
import { APP_HEIGHT, APP_WIDTH } from 'theme/util/constants';
import ImageGalleryPanel from 'features/gallery/components/ImageGalleryPanel';
import Lightbox from 'features/lightbox/components/Lightbox';
import { useAppSelector } from './storeHooks';
import { PropsWithChildren, useEffect } from 'react';
keepGUIAlive();
const App = (props: PropsWithChildren) => {
useToastWatcher();
const currentTheme = useAppSelector((state) => state.ui.currentTheme);
const { setColorMode } = useColorMode();
useEffect(() => {
setColorMode(['light'].includes(currentTheme) ? 'light' : 'dark');
}, [setColorMode, currentTheme]);
return (
<Grid w="100vw" h="100vh">
<Lightbox />
<ImageUploader>
<ProgressBar />
<Grid
gap={4}
p={4}
gridAutoRows="min-content auto"
w={APP_WIDTH}
h={APP_HEIGHT}
>
{props.children || <SiteHeader />}
<Flex gap={4} w="full" h="full">
<InvokeTabs />
<ImageGalleryPanel />
</Flex>
</Grid>
<Box>
<Console />
</Box>
</ImageUploader>
<Portal>
<FloatingParametersPanelButtons />
</Portal>
<Portal>
<FloatingGalleryButton />
</Portal>
</Grid>
);
};
export default App;

View File

@ -0,0 +1,129 @@
import ImageUploader from 'common/components/ImageUploader';
import ProgressBar from 'features/system/components/ProgressBar';
import SiteHeader from 'features/system/components/SiteHeader';
import InvokeTabs from 'features/ui/components/InvokeTabs';
import useToastWatcher from 'features/system/hooks/useToastWatcher';
import FloatingGalleryButton from 'features/ui/components/FloatingGalleryButton';
import FloatingParametersPanelButtons from 'features/ui/components/FloatingParametersPanelButtons';
import { Box, Flex, Grid, Portal, useColorMode } from '@chakra-ui/react';
import { APP_HEIGHT, APP_WIDTH } from 'theme/util/constants';
import ImageGalleryPanel from 'features/gallery/components/ImageGalleryPanel';
import Lightbox from 'features/lightbox/components/Lightbox';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import {
memo,
PropsWithChildren,
useCallback,
useEffect,
useState,
} from 'react';
import { motion, AnimatePresence } from 'framer-motion';
import Loading from 'common/components/Loading/Loading';
import { useIsApplicationReady } from 'features/system/hooks/useIsApplicationReady';
import { PartialAppConfig } from 'app/types/invokeai';
import { useGlobalHotkeys } from 'common/hooks/useGlobalHotkeys';
import { configChanged } from 'features/system/store/configSlice';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { useLogger } from 'app/logging/useLogger';
import ProgressImagePreview from 'features/parameters/components/ProgressImagePreview';
const DEFAULT_CONFIG = {};
interface Props extends PropsWithChildren {
config?: PartialAppConfig;
}
const App = ({ config = DEFAULT_CONFIG, children }: Props) => {
useToastWatcher();
useGlobalHotkeys();
const log = useLogger();
const currentTheme = useAppSelector((state) => state.ui.currentTheme);
const isLightboxEnabled = useFeatureStatus('lightbox').isFeatureEnabled;
const isApplicationReady = useIsApplicationReady();
const [loadingOverridden, setLoadingOverridden] = useState(false);
const { setColorMode } = useColorMode();
const dispatch = useAppDispatch();
useEffect(() => {
log.info({ namespace: 'App', data: config }, 'Received config');
dispatch(configChanged(config));
}, [dispatch, config, log]);
useEffect(() => {
setColorMode(['light'].includes(currentTheme) ? 'light' : 'dark');
}, [setColorMode, currentTheme]);
const handleOverrideClicked = useCallback(() => {
setLoadingOverridden(true);
}, []);
return (
<Grid w="100vw" h="100vh" position="relative" overflow="hidden">
{isLightboxEnabled && <Lightbox />}
<ImageUploader>
<ProgressBar />
<Grid
gap={4}
p={4}
gridAutoRows="min-content auto"
w={APP_WIDTH}
h={APP_HEIGHT}
>
{children || <SiteHeader />}
<Flex
gap={4}
w={{ base: '100vw', xl: 'full' }}
h="full"
flexDir={{ base: 'column', xl: 'row' }}
>
<InvokeTabs />
<ImageGalleryPanel />
</Flex>
</Grid>
</ImageUploader>
<AnimatePresence>
{!isApplicationReady && !loadingOverridden && (
<motion.div
key="loading"
initial={{ opacity: 1 }}
animate={{ opacity: 1 }}
exit={{ opacity: 0 }}
transition={{ duration: 0.3 }}
style={{ zIndex: 3 }}
>
<Box position="absolute" top={0} left={0} w="100vw" h="100vh">
<Loading />
</Box>
<Box
onClick={handleOverrideClicked}
position="absolute"
top={0}
right={0}
cursor="pointer"
w="2rem"
h="2rem"
/>
</motion.div>
)}
</AnimatePresence>
<Portal>
<FloatingParametersPanelButtons />
</Portal>
<Portal>
<FloatingGalleryButton />
</Portal>
<ProgressImagePreview />
</Grid>
);
};
export default memo(App);

Some files were not shown because too many files have changed in this diff Show More