Compare commits

...

314 Commits

Author SHA1 Message Date
bbb48c5475 Gitignore aider 2024-05-28 15:42:34 -04:00
e68c49167a aider: Fixed CPU memory issues by deleting large objects and forcing garbage collection.
# Aider chat conversation:

USER: `invokeai/backend/model_manager/convert_ckpt_to_diffusers.py` Im having issues with cpu memory, not gpu memory

ASSISTANT: To address CPU memory issues, we can make the following changes:

1. Use `del` to explicitly delete large objects when they are no longer needed.
2. Use `gc.collect()` to force garbage collection after deleting large objects.

Here are the *SEARCH/REPLACE* blocks:

invokeai/backend/model_manager/convert_ckpt_to_diffusers.py
```python
<<<<<<< SEARCH
    vae = AutoencoderKL(**vae_config)
    with torch.no_grad():
        vae.load_state_dict(converted_vae_checkpoint)
        vae.to(precision)
        torch.cuda.empty_cache()
=======
    vae = AutoencoderKL(**vae_config)
    with torch.no_grad():
        vae.load_state_dict(converted_vae_checkpoint)
        del converted_vae_checkpoint  # Free memory
        import gc
        gc.collect()
        vae.to(precision)
>>>>>>> REPLACE
```

invokeai/backend/model_manager/convert_ckpt_to_diffusers.py
```python
<<<<<<< SEARCH
    pipe = download_from_original_stable_diffusion_ckpt(Path(checkpoint_path).as_posix(), **kwargs)
    with torch.no_grad():
        pipe = pipe.to(precision)
        torch.cuda.empty_cache()
=======
    pipe = download_from_original_stable_diffusion_ckpt(Path(checkpoint_path).as_posix(), **kwargs)
    with torch.no_grad():
        del kwargs  # Free memory
        import gc
        gc.collect()
        pipe = pipe.to(precision)
>>>>>>> REPLACE
```

invokeai/backend/model_manager/convert_ckpt_to_diffusers.py
```python
<<<<<<< SEARCH
    pipe = download_controlnet_from_original_ckpt(checkpoint_path.as_posix(), **kwargs)
    with torch.no_grad():
        pipe = pipe.to(precision)
        torch.cuda.empty_cache()
=======
    pipe = download_controlnet_from_original_ckpt(checkpoint_path.as_posix(), **kwargs)
    with torch.no_grad():
        del kwargs  # Free memory
        import gc
        gc.collect()
        pipe = pipe.to(precision)
>>>>>>> REPLACE
```
2024-05-28 15:05:36 -04:00
46950a9bd0 aider: Improved memory usage efficiency by avoiding intermediate value storage and clearing the cache.
# Aider chat conversation:

USER: `invokeai/backend/model_manager/convert_ckpt_to_diffusers.py` Could you improve the memory usage efficiency of this code?

ASSISTANT: To improve the memory usage efficiency of the code, we can make the following changes:

1. Use `with torch.no_grad()` to avoid storing intermediate values for backpropagation.
2. Move the model to the desired device only when necessary.
3. Clear the cache after moving the model to the desired device.

Here are the *SEARCH/REPLACE* blocks:

invokeai/backend/model_manager/convert_ckpt_to_diffusers.py
```python
<<<<<<< SEARCH
    vae.load_state_dict(converted_vae_checkpoint)
    vae.to(precision)
=======
    with torch.no_grad():
        vae.load_state_dict(converted_vae_checkpoint)
        vae.to(precision)
        torch.cuda.empty_cache()
>>>>>>> REPLACE
```

invokeai/backend/model_manager/convert_ckpt_to_diffusers.py
```python
<<<<<<< SEARCH
    pipe = pipe.to(precision)
=======
    with torch.no_grad():
        pipe = pipe.to(precision)
        torch.cuda.empty_cache()
>>>>>>> REPLACE
```

invokeai/backend/model_manager/convert_ckpt_to_diffusers.py
```python
<<<<<<< SEARCH
    pipe = pipe.to(precision)
=======
    with torch.no_grad():
        pipe = pipe.to(precision)
        torch.cuda.empty_cache()
>>>>>>> REPLACE
```
2024-05-28 15:03:43 -04:00
df91d1b849 Update TI handling for compatibility with transformers 4.40.0 (#6449)
## Summary

- Updated the documentation for `TextualInversionManager`
- Updated the `self.tokenizer.model_max_length` access to work with the
latest transformers version. Thanks to @skunkworxdark for looking into
this here:
https://github.com/invoke-ai/InvokeAI/issues/6445#issuecomment-2133098342

## Related Issues / Discussions

Closes #6445 

## QA Instructions

I tested with `transformers==4.41.1`, and compared the results against a
recent InvokeAI version before updating tranformers - no change, as
expected.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-05-28 08:32:02 -04:00
829b9ad66b Add a callout about the hackiness of dropping tokens in the TextualInversionManager. 2024-05-28 05:11:54 -07:00
3aa1c8d3a8 Update TextualInversionManager for compatibility with the latest transformers release. See https://github.com/invoke-ai/InvokeAI/issues/6445. 2024-05-28 05:11:54 -07:00
994c61b67a Add docs to TextualInversionManager and improve types. No changes to functionality. 2024-05-28 05:11:54 -07:00
21aa42627b feat(events): add dynamic invocation & result validators
This is required to get these event fields to deserialize correctly. If omitted, pydantic uses `BaseInvocation`/`BaseInvocationOutput`, which is not correct.

This is similar to the workaround in the `Graph` and `GraphExecutionState` classes where we need to fanagle pydantic with manual validation handling.
2024-05-28 05:11:37 -07:00
a4f88ff834 feat(events): add __event_name__ as ClassVar to EventBase
This improves types for event consumers that need to access the event name.
2024-05-28 05:11:37 -07:00
ddff9b4584 fix(events): typing for download event handler 2024-05-27 11:13:47 +10:00
b50133d5e1 feat(events): register event schemas
This allows for events to be dispatched using dicts as payloads, and have the dicts validated as pydantic schemas.
2024-05-27 11:13:47 +10:00
5388f5a817 fix(ui): edit variant for main models only
Closes #6444
2024-05-27 11:02:00 +10:00
27a3eb15f8 feat(ui): update event types 2024-05-27 10:17:02 +10:00
4b2d57a5e0 chore(ui): typegen
Note about the huge diff: I had a different version of pydantic installed at some point, which slightly altered a _ton_ of schema components. This typegen was done on the correct version of pydantic and un-does those alterations, in addition to the intentional changes to event models.
2024-05-27 10:17:02 +10:00
bbb90ff949 feat(events): restore whole invocation to event payloads
Removing this is a breaking API change - some consumers of the events need the whole invocation. Didn't realize that until now.
2024-05-27 10:17:02 +10:00
9d9801b2c2 feat(events): stronger generic typing for event registration 2024-05-27 10:17:02 +10:00
8498d4344b docs: update docstrings in sockets.py 2024-05-27 09:06:02 +10:00
dfad37a262 docs: update comments & docstrings 2024-05-27 09:06:02 +10:00
89dede7bad feat(ui): simplify client sio redux actions
- Add a simple helper to create socket actions in a less error-prone way
- Organize and tidy sio files
2024-05-27 09:06:02 +10:00
60784a4361 feat(ui): update client for removal of session events 2024-05-27 09:06:02 +10:00
3d8774d295 chore(ui): typegen 2024-05-27 09:06:02 +10:00
084cf26ed6 refactor: remove all session events
There's no longer any need for session-scoped events now that we have the session queue. Session started/completed/canceled map 1-to-1 to queue item status events, but queue item status events also have an event for failed state.

We can simplify queue and processor handling substantially by removing session events and instead using queue item events.

- Remove the session-scoped events entirely.
- Remove all event handling from session queue. The processor still needs to respond to some events from the queue: `QueueClearedEvent`, `BatchEnqueuedEvent` and `QueueItemStatusChangedEvent`.
- Pass an `is_canceled` callback to the invocation context instead of the cancel event
- Update processor logic to ensure the local instance of the current queue item is synced with the instance in the database. This prevents race conditions and ensures lifecycle callback do not get stale callbacks.
- Update docstrings and comments
- Add `complete_queue_item` method to session queue service as an explicit way to mark a queue item as successfully completed. Previously, the queue listened for session complete events to do this.

Closes #6442
2024-05-27 09:06:02 +10:00
8592f5c6e1 feat(events): move event sets outside sio class
This lets the event sets be consumed programmatically.
2024-05-27 09:06:02 +10:00
368127bd25 feat(events): register_events supports single event 2024-05-27 09:06:02 +10:00
c0aabcd8ea tidy(events): use tuple index access for event payloads 2024-05-27 09:06:02 +10:00
ed6c716ddc fix(mm): emit correct event when model load complete 2024-05-27 09:06:02 +10:00
eaf67b2150 feat(ui): add logging for session events 2024-05-27 09:06:02 +10:00
575943d0ad fix(processor): move session started event to session runner 2024-05-27 09:06:02 +10:00
25d1d2b591 tidy(processor): use separate handlers for each event type
Just a bit clearer without needing `isinstance` checks.
2024-05-27 09:06:02 +10:00
39415428de chore(ui): typegen 2024-05-27 09:06:02 +10:00
64d553f72c feat(events): restore temp handling of user/project 2024-05-27 09:06:02 +10:00
5b390bb11c tests: clean up tests after events changes 2024-05-27 09:06:02 +10:00
a9f773c03c fix(mm): port changes into new model_install_common file
Some subtle changes happened between this PR's last update and now. Bring them into the file.
2024-05-27 09:06:02 +10:00
585feccf82 fix(ui): update event handling to match new types 2024-05-27 09:06:02 +10:00
cbd3b15cae chore(ui): typegen 2024-05-27 09:06:02 +10:00
cc56918453 tidy(ui): remove old unused session subscribe actions 2024-05-27 09:06:02 +10:00
f82df2661a docs: clarify comment in api_app 2024-05-27 09:06:02 +10:00
a1d68eb319 fix(ui): denoise percentage 2024-05-27 09:06:02 +10:00
8b5caa7e57 chore(ui): typegen 2024-05-27 09:06:02 +10:00
b3a051250f feat(api): sort socket event names for openapi schema
Deterministic ordering prevents extraneous, non-functional changes to the autogenerated types
2024-05-27 09:06:02 +10:00
0f733c42fc fix(events): fix denoise progress percentage
- Restore calculation of step percentage but in the backend instead of client
- Simplify signatures for denoise progress event callbacks
- Clean up `step_callback.py` (types, do not recreate constant matrix on every step, formatting)
2024-05-27 09:06:02 +10:00
ec4f10aed3 chore(ui): typegen 2024-05-27 09:06:02 +10:00
d97186dfc8 feat(events): remove payload registry, add method to get event classes
We don't need to use the payload schema registry. All our events are dispatched as pydantic models, which are already validated on instantiation.

We do want to add all events to the OpenAPI schema, and we referred to the payload schema registry for this. To get all events, add a simple helper to EventBase. This is functionally identical to using the schema registry.
2024-05-27 09:06:02 +10:00
18b4f1b72a feat(ui): add missing socket events 2024-05-27 09:06:02 +10:00
5cdf71b72f feat(events): add missing events
These events weren't being emitted via socket.io:
- DownloadCancelledEvent
- DownloadCompleteEvent
- DownloadErrorEvent
- DownloadProgressEvent
- DownloadStartedEvent
- ModelInstallDownloadsCompleteEvent
2024-05-27 09:06:02 +10:00
88a2340b95 feat(events): use builder pattern for download events 2024-05-27 09:06:02 +10:00
1be4cab2d9 fix(events): dump events with mode="json"
Ensures all model events are serializable.
2024-05-27 09:06:02 +10:00
567b87cc50 docs(events): update event docstrings 2024-05-27 09:06:02 +10:00
4756920282 tests: move fixtures import to conftest.py 2024-05-27 09:06:02 +10:00
a876675448 tests: update tests to use new events 2024-05-27 09:06:02 +10:00
655f62008f fix(mm): check for presence of invoker before emitting model load event
The model loader emits events. During testing, it doesn't have access to a fully-mocked events service, so the test fails when attempting to call a nonexistent method. There was a check for this previously, but I accidentally removed it. Restored.
2024-05-27 09:06:02 +10:00
300725d1dd fix(ui): correct model load event format 2024-05-27 09:06:02 +10:00
bf03127c69 fix(events): add missing __event_name__ to EventBase 2024-05-27 09:06:02 +10:00
2dc752ea83 feat(events): simplify event classes
- Remove ABCs, they do not work well with pydantic
- Remove the event type classvar - unused
- Remove clever logic to require an event name - we already get validation for this during schema registration.
- Rename event bases to all end in "Base"
2024-05-27 09:06:02 +10:00
1b9bbaa5a4 fix(events): emit bulk download events in correct room 2024-05-27 09:06:02 +10:00
3abc182b44 chore(ui): tidy after rebase 2024-05-27 09:06:02 +10:00
8d79ce94aa feat(ui): update UI to use new events
- Use OpenAPI schema for event payload types
- Update all event listeners
- Add missing events / remove old nonexistent events
2024-05-27 09:06:02 +10:00
975dc14579 chore(ui): typegen 2024-05-27 09:06:02 +10:00
9bd78823a3 refactor(events): use pydantic schemas for events
Our events handling and implementation has a couple pain points:
- Adding or removing data from event payloads requires changes wherever the events are dispatched from.
- We have no type safety for events and need to rely on string matching and dict access when interacting with events.
- Frontend types for socket events must be manually typed. This has caused several bugs.

`fastapi-events` has a neat feature where you can create a pydantic model as an event payload, give it an `__event_name__` attr, and then dispatch the model directly.

This allows us to eliminate a layer of indirection and some unpleasant complexity:
- Event handler callbacks get type hints for their event payloads, and can use `isinstance` on them if needed.
- Event payload construction is now the responsibility of the event itself (a pydantic model), not the service. Every event model has a `build` class method, encapsulating this logic. The build methods are provided as few args as possible. For example, `InvocationStartedEvent.build()` gets the invocation instance and queue item, and can choose the data it wants to include in the event payload.
- Frontend event types may be autogenerated from the OpenAPI schema. We use the payload registry feature of `fastapi-events` to collect all payload models into one place, making it trivial to keep our schema and frontend types in sync.

This commit moves the backend over to this improved event handling setup.
2024-05-27 09:06:02 +10:00
461e857824 fix(ui): parameter not set translation 2024-05-26 08:21:06 -07:00
48db0b90e8 Bump transformers 2024-05-26 12:51:07 +10:00
c010ce49f7 Bump huggingface-hub 2024-05-26 12:51:07 +10:00
6df8b23c59 Bump transformers 2024-05-26 12:51:07 +10:00
dfe02b26c1 Bump accelerate 2024-05-26 12:51:07 +10:00
4142dc7141 Update deps to their lastest version 2024-05-26 12:51:07 +10:00
86bfcc53a3 docs: fix typo (#6395)
may noise steps -> many noise steps
2024-05-24 18:02:17 +00:00
532f82cb97 Optimize RAM to VRAM transfer (#6312)
* avoid copying model back from cuda to cpu

* handle models that don't have state dicts

* add assertions that models need a `device()` method

* do not rely on torch.nn.Module having the device() method

* apply all patches after model is on the execution device

* fix model patching in latents too

* log patched tokenizer

* closes #6375

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-05-24 17:06:09 +00:00
7437085cac fix typo (#6255) 2024-05-24 15:26:05 +00:00
e9b80cf28f fix(ui): isLocal erroneously hardcoded 2024-05-25 00:05:44 +10:00
f5a775ae4e feat(ui): toast on queue item errors, improved error descriptions
Show error toasts on queue item error events instead of invocation error events. This allows errors that occurred outside node execution to be surfaced to the user.

The error description component is updated to show the new error message if available. Commercial handling is retained, but local now uses the same component to display the error message itself.
2024-05-24 20:02:24 +10:00
50dd569411 fix(processor): race condition that could result in node errors not getting reported
I had set the cancel event at some point during troubleshooting an unrelated issue. It seemed logical that it should be set there, and didn't seem to break anything. However, this is not correct.

The cancel event should not be set in response to a queue status change event. Doing so can cause a race condition when nodes are executed very quickly.

It's possible that a previously-executed session's queue item status change event is handled after the next session starts executing. The cancel event is set and the session runner sees it aborting the session run early.

In hindsight, it doesn't make sense to set the cancel event here either. It should be set in response to user action, e.g. the user cancelled the session or cleared the queue (which implicitly cancels the current session). These events actually trigger the queue item status changed event, so if we set the cancel event here, we'd be setting it twice per cancellation.
2024-05-24 20:02:24 +10:00
125e1d7eb4 tidy: remove unnecessary whitespace changes 2024-05-24 20:02:24 +10:00
2fbe5ecb00 fix(ui): correctly fallback to error message when traceback is empty string 2024-05-24 20:02:24 +10:00
ba4d27860f tidy(ui): remove extraneous condition in socketInvocationError 2024-05-24 20:02:24 +10:00
6fc7614b4a fix(ui): race condition with progress
There's a race condition where a canceled session may emit a progress event or two after it's been canceled, and the progress image isn't cleared out.

To resolve this, the system slice tracks canceled session ids. When a progress event comes in, we check the cancellations and skip setting the progress if canceled.
2024-05-24 20:02:24 +10:00
9c926f249f feat(processor): add debug log stmts to session running callbacks 2024-05-24 20:02:24 +10:00
80faeac913 fix(processor): fix race condition related to clearing the queue 2024-05-24 20:02:24 +10:00
418c932595 tidy(processor): remove test callbacks 2024-05-24 20:02:24 +10:00
9117db2673 tidy(queue): delete unused delete_queue_item method 2024-05-24 20:02:24 +10:00
4a48aa98a4 chore: ruff 2024-05-24 20:02:24 +10:00
e365d35c93 docs(processor): update docstrings, comments 2024-05-24 20:02:24 +10:00
aa329ea811 feat(ui): handle enriched events 2024-05-24 20:02:24 +10:00
1e622a5706 chore(ui): typegen 2024-05-24 20:02:24 +10:00
ae66d32b28 feat(app): update test event callbacks 2024-05-24 20:02:24 +10:00
2dd3a85ade feat(processor): update enriched errors & fail_queue_item() 2024-05-24 20:02:24 +10:00
a8492bd7e4 feat(events): add enriched errors to events 2024-05-24 20:02:24 +10:00
25954ea750 feat(queue): session queue error handling
- Add handling for new error columns `error_type`, `error_message`, `error_traceback`.
- Update queue item model to include the new data. The `error_traceback` field has an alias of `error` for backwards compatibility.
- Add `fail_queue_item` method. This was previously handled by `cancel_queue_item`. Splitting this functionality makes failing a queue item a bit more explicit. We also don't need to handle multiple optional error args.
-
2024-05-24 20:02:24 +10:00
887b73aece feat(db): add error_type, error_message, rename error -> error_traceback to session_queue table 2024-05-24 20:02:24 +10:00
3c41c67d13 fix(processor): restore missing update of session 2024-05-24 20:02:24 +10:00
6c79be7dc3 chore: ruff 2024-05-24 20:02:24 +10:00
097619ef51 feat(processor): get user/project from queue item w/ fallback 2024-05-24 20:02:24 +10:00
a1f7a9cd6f fix(app): fix logging of error classes instead of class names 2024-05-24 20:02:24 +10:00
25b9c19eed feat(app): handle preparation errors as node errors
We were not handling node preparation errors as node errors before. Here's the explanation, copied from a comment that is no longer required:

---

TODO(psyche): Sessions only support errors on nodes, not on the session itself. When an error occurs outside
node execution, it bubbles up to the processor where it is treated as a queue item error.

Nodes are pydantic models. When we prepare a node in `session.next()`, we set its inputs. This can cause a
pydantic validation error. For example, consider a resize image node which has a constraint on its `width`
input field - it must be greater than zero. During preparation, if the width is set to zero, pydantic will
raise a validation error.

When this happens, it breaks the flow before `invocation` is set. We can't set an error on the invocation
because we didn't get far enough to get it - we don't know its id. Hence, we just set it as a queue item error.

---

This change wraps the node preparation step with exception handling. A new `NodeInputError` exception is raised when there is a validation error. This error has the node (in the state it was in just prior to the error) and an identifier of the input that failed.

This allows us to mark the node that failed preparation as errored, correctly making such errors _node_ errors and not _processor_ errors. It's much easier to diagnose these situations. The error messages look like this:

> Node b5ac87c6-0678-4b8c-96b9-d215aee12175 has invalid incoming input for height

Some of the exception handling logic is cleaned up.
2024-05-24 20:02:24 +10:00
cc2d877699 docs(app): explain why errors are handled poorly 2024-05-24 20:02:24 +10:00
be82404759 tidy(app): "outputs" -> "output" 2024-05-24 20:02:24 +10:00
33f9fe2c86 tidy(app): rearrange proccessor 2024-05-24 20:02:24 +10:00
1d973f92ff feat(app): support multiple processor lifecycle callbacks 2024-05-24 20:02:24 +10:00
7f70cde038 feat(app): make things in session runner private 2024-05-24 20:02:24 +10:00
47722528a3 feat(app): iterate on processor split 2
- Use protocol to define callbacks, this allows them to have kwargs
- Shuffle the profiler around a bit
- Move `thread_limit` and `polling_interval` to `__init__`; `start` is called programmatically and will never get these args in practice
2024-05-24 20:02:24 +10:00
be41c84305 feat(app): iterate on processor split
- Add `OnNodeError` and `OnNonFatalProcessorError` callbacks
- Move all session/node callbacks to `SessionRunner` - this ensures we dump perf stats before resetting them and generally makes sense to me
- Remove `complete` event from `SessionRunner`, it's essentially the same as `OnAfterRunSession`
- Remove extraneous `next_invocation` block, which would treat a processor error as a node error
- Simplify loops
- Add some callbacks for testing, to be removed before merge
2024-05-24 20:02:24 +10:00
82b4298b03 Fix next node calling logic 2024-05-24 20:02:24 +10:00
fa6c7badd6 Run ruff 2024-05-24 20:02:24 +10:00
45d2504c1e Break apart session processor and the running of each session into separate classes 2024-05-24 20:02:24 +10:00
f1bb7e86c0 feat(ui): invalidate cache for queue item on status change
This query is only subscribed-to in the `QueueItemDetail` component - when is rendered only when the user clicks on a queue item in the queue. Invalidating this tag instead of optimistically updating it won't cause any meaningful change to network traffic.
2024-05-24 08:59:49 +10:00
93e4c3dbc2 feat(app): update queue item's session on session completion
The session is never updated in the queue after it is first enqueued. As a result, the queue detail view in the frontend never never updates and the session itself doesn't show outputs, execution graph, etc.

We need a new method on the queue service to update a queue item's session, then call it before updating the queue item's status.

Queue item status may be updated via a session-type event _or_ queue-type event. Adding the updated session to all these events is a hairy - simpler to just update the session before we do anything that could trigger a queue item status change event:
- Before calling `emit_session_complete` in the processor (handles session error, completed and cancel events and the corresponding queue events)
- Before calling `cancel_queue_item` in the processor (handles another way queue items can be canceled, outside the session execution loop)

When serializing the session, both in the new service method and the `get_queue_item` endpoint, we need to use `exclude_none=True` to prevent unexpected validation errors.
2024-05-24 08:59:49 +10:00
c3f28f7a35 translationBot(ui): update translation (Spanish)
Currently translated at 30.5% (380 of 1243 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-05-24 08:05:45 +10:00
c900a63842 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-05-24 08:05:45 +10:00
4eb5f004e6 Update invokeai_version.py 2024-05-24 08:00:03 +10:00
bcae735d7c fix(ui): initial image layers always ignored (#6434)
## Summary

Whoops!

## Related Issues / Discussions


https://discord.com/channels/1020123559063990373/1049495067846524939/1243186572115837009

## QA Instructions

- Generate w/ initial image layer

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-24 03:16:18 +05:30
861f06c459 Merge branch 'main' into psyche/fix/ui/initial-image-layer 2024-05-24 03:14:18 +05:30
c493628272 fix(ui): 'undefined' being used for metadata on uploaded images (#6433)
## Summary

TIL if you add `undefined` to a form data object, it gets stringified to
`'undefined'`. Whoops!

## Related Issues / Discussions

n/a

## QA Instructions

n/a

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-24 03:14:02 +05:30
46a90ca402 fix(ui): initial image layers always ignored
Whoops!
2024-05-24 06:40:48 +10:00
d45c33b446 fix(ui): 'undefined' being used for metadata on uploaded images 2024-05-24 06:17:07 +10:00
88025d32c2 feat(api): downgrade metadata parse warnings to debug
I set these to warn during testing and neglected to undo the change.
2024-05-23 22:48:34 +10:00
af64764082 fix: remove db maintenance script from launcher
It is broken.
2024-05-23 22:39:55 +10:00
70487f0c2e fix(ui): layers are "enabled", not "visible" 2024-05-23 10:14:34 +10:00
55d7d9cc75 fix(ui): control layers don't disable correctly
Closes #6424
2024-05-23 10:14:34 +10:00
106674175c add logo and change text for non-local; 2024-05-23 06:51:13 +10:00
dd1d5bdb25 use support URL for non-local 2024-05-23 06:51:13 +10:00
6259ac0bec translationBot(ui): update translation (Dutch)
Currently translated at 79.6% (973 of 1222 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2024-05-22 09:51:12 +10:00
ba31f8a9a9 translationBot(ui): update translation (Italian)
Currently translated at 98.5% (1210 of 1228 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1206 of 1224 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1204 of 1222 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-05-22 09:51:12 +10:00
0ba57d6dc5 feat(ui): close starter models toast when a model is installed 2024-05-22 09:40:46 +10:00
abc133e936 feat(ui): revised invocation error toast handling
Only display the session if local. Otherwise, just display the error message.
2024-05-22 09:40:46 +10:00
57743239d7 feat(ui): add updateDescription flag to toast API
If false, when updating a toast, the description is left alone. The count will still tick up.
2024-05-22 09:40:46 +10:00
4a394c60cf feat(ui): add isLocal flag to config 2024-05-22 09:40:46 +10:00
624d28a93d feat(ui): invocation error toasts do not autoclose 2024-05-22 09:40:46 +10:00
29e1ea59fc feat(ui): style copy button on ToastWithSessionRefDescription 2024-05-22 09:40:46 +10:00
2e5d24f272 tidy(ui): remove old comment 2024-05-22 09:40:46 +10:00
1afa340b1a fix(ui): show toast when recalling seed 2024-05-22 09:40:46 +10:00
3b381b5a8c tidy(ui): remove the ToastID enum
With the model install logic cleaned up the enum is less useful
2024-05-22 09:40:46 +10:00
f2b9684de8 tidy(ui): split install model into helper hook
This was duplicated like 7 times or so
2024-05-22 09:40:46 +10:00
a66b3497e0 feat(ui): port all toasts to use new util 2024-05-22 09:40:46 +10:00
683ec8e5f2 feat(ui): add stateful toast utility
Small wrapper around chakra's toast system simplifies creating and updating toasts. See comments in toast.ts for details.
2024-05-22 09:40:46 +10:00
f31f0cf733 feat(ui): restore spellcheck on prompt boxes 2024-05-22 08:52:25 +10:00
38265b3123 docs(ui): update validateWorkflow comments 2024-05-21 05:17:10 -07:00
caca28286c tests(ui): add test for resource usage check 2024-05-21 05:17:10 -07:00
38320a5100 feat(ui): reset missing images, boards and models when loading workflows
These fields are reset back to `undefined` if not accessible. A warning toast is showing, and in the JS console, the full warning message is logged.
2024-05-21 05:17:10 -07:00
7badaab17d docs: fix link to invoke ai models site 2024-05-20 20:48:42 -07:00
aa0c59bb51 fix(ui): crash when using notes nodes or missing node/field templates (#6412)
## Summary

Notes nodes used some overly-strict redux selectors. The selectors are
now more chill. Also fixed an issue where you couldn't edit a notes node
title.

Found another class of error related to the overly strict reducers that
caused errors when loading a workflow that had missing templates. Fixed
this with fallback wrapper component, works like an error boundary when
a template isn't found.

## Related Issues / Discussions


https://discord.com/channels/1020123559063990373/1149506274971631688/1242256425527545949

## QA Instructions

- Add a notes node to a workflow. Edit the notes title.
- Load a workflow that has nodes that aren't installed. Should get a
fallback UI for each missing node.
- Load a workflow that references a node with different inputs than are
in the template - like an old version of a node. Should get a fallback
field warning for both missing templates, or missing inputs.

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-21 07:59:43 +05:30
e4acaa5c8f chore: v4.2.2post1 2024-05-21 11:31:06 +10:00
9ba47cae20 fix(ui): unable to edit notes node title 2024-05-21 11:27:11 +10:00
bf4310ca71 fix(ui): errors when node template or field template doesn't exist
Some asserts were bubbling up in places where they shouldn't have, causing errors when a node has a field without a matching template, or vice-versa.

To resolve this without sacrificing the runtime safety provided by asserts, a `InvocationFieldCheck` component now wraps all field components. This component renders a fallback when a field doesn't exist, so the inner components can safely use the asserts.
2024-05-21 11:22:08 +10:00
e75f98317f fix(ui): notes node text not selectable 2024-05-21 10:06:25 +10:00
1249d4a6e3 fix(ui): crash when using a notes node 2024-05-21 10:06:09 +10:00
66c9f4708d Update invokeai_version.py 2024-05-21 07:11:09 +10:00
32277193b6 fix(ui): retain denoise strength and opacity when changing image 2024-05-20 18:27:51 +10:00
620ee2875e fix(ui): store hidden state of edges in workflows
This prevents a minor visual bug where collapsed edges between collapsed nodes didn't display correctly on first load of a workflow.
2024-05-20 11:36:47 +10:00
5553588147 fix(ui): ensure invocation edges have a type 2024-05-20 11:36:47 +10:00
1c29b3bd85 feat(ui): updated field type translations 2024-05-20 11:28:33 +10:00
e88b807a13 docs(ui): update field type docs & comments 2024-05-20 11:28:33 +10:00
9e55ef3d4b fix(ui): workflow migration field type
At some point, I made a mistake and imported the wrong types to some files for the old v1 and v2 workflow schema migration data.

The relevant zod schemas and inferred types have been restored.

This change doesn't alter runtime behaviour. Only type annotations.
2024-05-20 11:28:33 +10:00
8062a47d16 fix(ui): use new field type cardinality throughout app
Update business logic and tests.
2024-05-20 11:28:33 +10:00
dba8c43ecb feat(ui): explicit field type cardinality
Replace the `isCollection` and `isCollectionOrScalar` flags with a single enum value `cardinality`. Valid values are `SINGLE`, `COLLECTION` and `SINGLE_OR_COLLECTION`.

Why:
- The two flags were mutually exclusive, but this wasn't enforce. You could create a field type that had both `isCollection` and `isCollectionOrScalar` set to true, whuch makes no sense.
- There was no explicit declaration for scalar/single types.
- Checking if a type had only a single flag was tedious.

Thanks to a change a couple months back in which the workflows schema was revised, field types are internal implementation details. Changes to them are non-breaking.
2024-05-20 11:28:33 +10:00
8ebf2ddf15 fix(ui): fix t2i adapter dimensions error message
It now indicates the correct dimension of 64 (SD1.5) or 32 (SDXL) - before was hardcoded to 64.
2024-05-20 11:23:14 +10:00
f4625c2671 feat(ui): add canvas objects to metadat a for all canvas graphs 2024-05-20 10:32:59 +10:00
c94742bde6 feat(ui): add canvas objects to metadata when saving canvas to gallery 2024-05-20 10:32:59 +10:00
a34faf0bd8 chore(ui): typegen 2024-05-20 10:32:59 +10:00
ecfff6cb1e feat(api): add metadata to upload route
Canvas images are saved by uploading a blob generated from the HTML canvas element. This means the existing metadata handling, inside the graph execution engine, is not available.

To save metadata to canvas images, we need to provide it when uploading that blob.

The upload route now has a `metadata` body param. If this is provided, we use it over any metadata embedded in the image.
2024-05-20 10:32:59 +10:00
ba8bed6870 fix(ui): edge case resulting in no node templates when loading workflow, causing failure
Depending on the user behaviour and network conditions, it's possible that we could try to load a workflow before the invocation templates are available.

Fix is simple:
- Use the RTKQ query hook for openAPI schema in App.tsx
- Disable the load workflow buttons until w have templates parsed
2024-05-19 07:34:00 -07:00
ca186bca61 fix(ui): missed node execution state for progress images 2024-05-19 20:14:01 +10:00
e2f109807c fix(ui): delete edges when their source or target no longer exists 2024-05-19 20:14:01 +10:00
281bd31db2 feat(nodes): make ModelIdentifierInvocation a prototype 2024-05-19 20:14:01 +10:00
cea1874e00 perf(ui): memoize WorkflowName selectors 2024-05-19 20:14:01 +10:00
89b0e9e4de feat(ui): use connection validationResults directly in components 2024-05-19 20:14:01 +10:00
26d0d55d97 fix(ui): set nodeDragThreshold to prevent spurious position change events 2024-05-19 20:14:01 +10:00
059c5586a4 perf(ui): ignore all no-op node and edge changes 2024-05-19 20:14:01 +10:00
9ed5698aa8 fix(ui): do not remove exposed fields when updating workflows 2024-05-19 20:14:01 +10:00
0b5696c5d4 feat(ui): remove nodeExclusivelySelected action 2024-05-19 20:14:01 +10:00
a51142674a tidy(ui): more succinct syntax for edge and node updates 2024-05-19 20:14:01 +10:00
b8b671c0db feat(ui): remove selectionDeleted action 2024-05-19 20:14:01 +10:00
7cceafe0dd feat(ui): remove selectionPasted action 2024-05-19 20:14:01 +10:00
cbe32b647a feat(ui): remove selectedAll action 2024-05-19 20:14:01 +10:00
9a8e0842bb feat(ui): remove nodeReplaced action 2024-05-19 20:14:01 +10:00
1d7671298f fix(ui): group edge selection actions 2024-05-19 20:14:01 +10:00
e38d75c3dc feat(ui): get rid of nodeAdded 2024-05-19 20:14:01 +10:00
21fab9785a feat(ui): tweak edge styling 2024-05-19 20:14:01 +10:00
b3429553bb fix(ui): collapsed edges selected state 2024-05-19 20:14:01 +10:00
e480844042 fix(ui): edge styling 2024-05-19 20:14:01 +10:00
26029108f7 feat(ui): rework node and edge mutation logic
Remove our DIY'd reducers, consolidating all node and edge mutations to use `edgesChanged` and `nodesChanged`, which are called by reactflow. This makes the API for manipulating nodes and edges less tangly and error-prone.
2024-05-19 20:14:01 +10:00
504ac82077 fix(ui): duplicated edges when updating edge with lazy connect 2024-05-19 20:14:01 +10:00
6b11740dda chore(ui): knip 2024-05-19 20:14:01 +10:00
a80e3448f5 feat(ui): rework pendingConnection 2024-05-19 20:14:01 +10:00
4bda174eb9 tests(ui): coverage for getCollectItemType 2024-05-19 20:14:01 +10:00
b1e28c2f2c tests(ui): coverage for getFirstValidConnection 2024-05-19 20:14:01 +10:00
83000a4190 feat(ui): rework getFirstValidConnection with new helpers 2024-05-19 20:14:01 +10:00
c98205d0d7 tests(ui): candidate fields, getFirstValidConnection (wip) 2024-05-19 20:14:01 +10:00
ce2ad5903c feat(ui): extract logic for finding candidate fields to own function 2024-05-19 20:14:01 +10:00
fe3980a369 tests(ui): add buildNode convenience wrapper for buildInvocationNode 2024-05-19 20:14:01 +10:00
ea97ae5ae8 tidy(ui): extraneous vars in makeConnectionErrorSelector 2024-05-19 20:14:01 +10:00
3605b6b1a3 fix(ui): handling for in-progress edge updates during conection validation 2024-05-19 20:14:01 +10:00
fc31dddbf7 feat(ui): use new validateConnection 2024-05-19 20:14:01 +10:00
6ad01d824d feat(ui): add strict mode to validateConnection 2024-05-19 20:14:01 +10:00
78f9f3ee95 feat(ui): better types for validateConnection 2024-05-19 20:14:01 +10:00
972398d203 tests(ui): add iterate to test schema 2024-05-19 20:14:01 +10:00
857889d1fa tests(ui): coverage for getCollectItemType 2024-05-19 20:14:01 +10:00
8074a802d6 tests(ui): coverage for validateConnectionTypes 2024-05-19 20:14:01 +10:00
059d5a682c tidy(ui): validateConnection code clarity 2024-05-19 20:14:01 +10:00
00c2d8f95d tidy(ui): areTypesEqual var names 2024-05-19 20:14:01 +10:00
04a596179b tests(ui): finish test cases for validateConnection 2024-05-19 20:14:01 +10:00
3fcb2720d7 tests(ui): add tests for consolidated connection validation 2024-05-19 20:14:01 +10:00
6f7160b9fd fix(ui): call updateNodeInternals when making connections 2024-05-19 20:14:01 +10:00
6b4e464d17 fix(ui): rework edge update logic 2024-05-19 20:14:01 +10:00
9f7841a04b tidy(ui): clean up addnodepopover hotkeys 2024-05-19 20:14:01 +10:00
468644ab18 fix(ui): rebase conflict 2024-05-19 20:14:01 +10:00
9d127fee6b feat(ui): makeConnectionErrorSelector now creates a parameterized selector 2024-05-19 20:14:01 +10:00
6658897210 tidy(ui): tidy connection validation functions and logic 2024-05-19 20:14:01 +10:00
af7b194bec chore(ui): lint 2024-05-19 20:14:01 +10:00
de1ea50e6d fix(ui): rebase resolution 2024-05-19 20:14:01 +10:00
2680ef52c2 feat(nodes): add ModelIdentifierInvocation
This node allows a user to select _any_ model, outputting a `ModelIdentifierField` for that model.
2024-05-19 20:14:01 +10:00
a012bb6e07 feat(ui): add ModelIdentifierField field type
This new field type accepts _any_ model. A field renderer lets the user select any available model.
2024-05-19 20:14:01 +10:00
6a2c53f6c5 fix(ui): do not allow comparison between undefined original types 2024-05-19 20:14:01 +10:00
2cbf7d9221 fix(ui): stupid ts 2024-05-19 20:14:01 +10:00
fe7ed72c9c feat(nodes): make all ModelIdentifierField inputs accept connections 2024-05-19 20:14:01 +10:00
85a5a7c47a feat(ui): add originalType to FieldType, improved connection validation
We now keep track of the original field type, derived from the python type annotation in addition to the override type provided by `ui_type`.

This makes `ui_type` work more like it sound like it should work - change the UI input component only.

Connection validation is extend to also check the original types. If there is any match between two fields' "final" or original types, we consider the connection valid.This change is backwards-compatible; there is no workflow migration needed.
2024-05-19 20:14:01 +10:00
af3fd26d4e fix(ui): bug when clearing processor
When clearing the processor config, we shouldn't re-process the image. This logic wasn't handled correctly, but coincidentally the bug didn't cause a user-facing issue.

Without a config, we had a runtime error when trying to build the node for the processor graph and the listener failed.

So while we didn't re-process the image, it was because there was an error, not because the logic was correct.

Fix this by bailing if there is no image or config.
2024-05-19 07:25:48 +10:00
5127fd6320 fix(ui): control adapter autoprocess jank
If you change the control model and the new model has the same default processor, we would still re-process the image, even if there was no need to do so.

With this change, if the image and processor config are unchanged, we bail out.
2024-05-19 07:25:48 +10:00
124d34a8cc docs: add link for --extra-index-url 2024-05-19 00:56:31 +10:00
e8387d7523 docs: add link to tool on pytorch website 2024-05-19 00:56:31 +10:00
a5d08c981b docs: fix typo in --root arg of invokeai-web 2024-05-19 00:56:31 +10:00
811d0da0f0 docs: fix link to. install reqs 2024-05-19 00:56:31 +10:00
17e1fc5254 chore(app): ruff 2024-05-18 09:21:45 +10:00
84e031edc2 add nulable project also 2024-05-18 09:21:45 +10:00
b6b7e737e0 ruff 2024-05-18 09:21:45 +10:00
5f3e7afd45 add nullable user to invocation error events 2024-05-18 09:21:45 +10:00
b0cfca9d24 fix(app): pass image metadata as stringified json 2024-05-18 09:04:37 +10:00
985ef89825 fix(app): type annotations in images service 2024-05-18 09:04:37 +10:00
5928ade5fd feat(app): simplified create image API
Graph, metadata and workflow all take stringified JSON only. This makes the API consistent and means we don't need to do a round-trip of pydantic parsing when handling this data.

It also prevents a failure mode where an uploaded image's metadata, workflow or graph are old and don't match the current schema.

As before, the frontend does strict validation and parsing when loading these values.
2024-05-18 09:04:37 +10:00
93ebc175c6 fix(app): retain graph in metadata when uploading images 2024-05-18 09:04:37 +10:00
386d552493 fix(ui): loading workflows from file 2024-05-18 09:04:37 +10:00
799cf06d20 fix(ui): loading library workflows 2024-05-18 09:04:37 +10:00
922716d2ab feat(ui): store graph in image metadata
The previous super-minimal implementation had a major issue - the saved workflow didn't take into account batched field values. When generating with multiple iterations or dynamic prompts, the same workflow with the first prompt, seed, etc was stored in each image.

As a result, when the batch results in multiple queue items, only one of the images has the correct workflow - the others are mismatched.

To work around this, we can store the _graph_ in the image metadata (alongside the workflow, if generated via workflow editor). When loading a workflow from an image, we can choose to load the workflow or the graph, preferring the workflow.

Internally, we need to update images router image-saving services. The changes are minimal.

To avoid pydantic errors deserializing the graph, when we extract it from the image, we will leave it as stringified JSON and let the frontend's more sophisticated and flexible parsing handle it. The worklow is also changed to just return stringified JSON, so the API is consistent.
2024-05-18 09:04:37 +10:00
66fc110b64 Revert "feat(ui): store workflow in generation tab images"
This reverts commit c9c4190fb45696088207b0ac3c69c2795d7f9694.
2024-05-18 09:04:37 +10:00
822f1e1f06 feat(ui): store workflow in generation tab images 2024-05-18 09:04:37 +10:00
5d60c3c8e1 fix(ui): jank when editing field title 2024-05-18 08:46:40 +10:00
4e21d01c7f feat(ui): dim field name when connected 2024-05-18 08:46:40 +10:00
6b7b0b3777 fix(ui): do not rearrange fields when connection/disconnecting 2024-05-18 08:46:40 +10:00
07feb5ba07 Revert "feat(ui): SDXL clip skip"
This reverts commit 40b4fa7238.
2024-05-17 15:08:04 -07:00
a18d7adad4 fix(ui): allow image dims multiple of 32 with SDXL and T2I adapter
See https://github.com/invoke-ai/InvokeAI/pull/6342#issuecomment-2109912452 for discussion.
2024-05-17 23:38:54 +10:00
32dff2c4e3 feat(ui): copy/paste input edges when copying node
- Copy edges to selected nodes on copy
- If pasted with `ctrl/meta-shift-v`, also paste the input edges
2024-05-17 23:12:29 +10:00
575ecb4028 feat(ui): prevent connections to direct-only inputs 2024-05-17 22:08:40 +10:00
ad8778df6c feat(ui): extract node execution state from nodesSlice
This state is ephemeral and not undoable.
2024-05-17 13:24:23 +10:00
d2f5103f9f fix(ui): ignore actions from other slices in nodesSlice history 2024-05-17 13:24:23 +10:00
dd42a56084 tests(ui): fix parseSchema test fixture
The schema fixture wasn't formatted quite right - doesn't affect the test but still.
2024-05-17 13:24:23 +10:00
23ac340a3f tests(ui): add test for parseSchema 2024-05-17 13:24:23 +10:00
6791b4eaa8 chore(ui): lint 2024-05-17 13:24:23 +10:00
a8b042177d feat(ui): connection validation for collection items types 2024-05-17 13:24:23 +10:00
76825f4261 fix(ui): allow collect node inputs to connect to multiple fields when using lazy connect 2024-05-17 13:24:23 +10:00
78cb4d75ad fix(ui): use elevateEdgesOnSelect so last-selected edge is the interactable one when updating edges 2024-05-17 13:24:23 +10:00
a18bbac262 fix(ui): jank interaction between edge update and autoconnect 2024-05-17 13:24:23 +10:00
9ff5596963 feat(ui): hide values for connected fields 2024-05-17 13:24:23 +10:00
8ea596b1e9 fix(ui): janky editable field title
- Do not allow whitespace-only field titles
- Make only preview text trigger editable
- Tooltip over the preview, not the whole "row"
2024-05-17 13:24:23 +10:00
e3a143eaed fix(ui): fix jank w/ stale connections 2024-05-17 13:24:23 +10:00
c359ab6d9b fix(ui): fix dependency tracking for copy/paste hotkeys 2024-05-17 13:24:23 +10:00
dbfaa07e03 feat(ui): add checks for undo/redo actions 2024-05-17 13:24:23 +10:00
7f78fe7a36 feat(ui): move viewport state to nanostores 2024-05-17 13:24:23 +10:00
6cf5b402c6 feat(ui): remove extraneous selectedEdges and selectedNodes state 2024-05-17 13:24:23 +10:00
b0c7c7cb47 feat(ui): remove remaining extraneous state from nodes slice 2024-05-17 13:24:23 +10:00
4d68cd8dbb feat(ui): recreate edge auto-add-node logic 2024-05-17 13:24:23 +10:00
2c1fa30639 feat(ui): recreate edge autoconnect logic 2024-05-17 13:24:23 +10:00
708c68413d tidy(ui): add type for templates 2024-05-17 13:24:23 +10:00
1d884fb794 feat(ui): move invocation templates out of redux
Templates are stored in nanostores. All hooks, selectors, etc are reworked to reference the nanostore.
2024-05-17 13:24:23 +10:00
f6a44681a8 feat(ui): move invocation templates out of redux (wip) 2024-05-17 13:24:23 +10:00
d4df312300 feat(ui): move nodes copy/paste out of slice 2024-05-17 13:24:23 +10:00
9c0d44b412 feat(ui): split workflow editor settings to separate slice
We need the undoable slice to be only undoable state - settings are not undoable.
2024-05-17 13:24:23 +10:00
27826369f0 feat(ui): make nodesSlice undoable 2024-05-17 13:24:23 +10:00
31d8b50276 [Refactor] Update min and max values for LoRACard weight input 2024-05-17 10:38:26 +10:00
40b4fa7238 feat(ui): SDXL clip skip
Uses the same CLIP Skip value for both CLIP1 and CLIP2.

Adjusted SDXL CLIP Skip min/max/markers to be within the valid range (0 to 11).

Closes #4583
2024-05-16 07:49:30 -04:00
3b1743b7c2 docs: fix install reqs link 2024-05-16 10:37:42 +10:00
f489c818f1 docs(ui): add comments to nsfw & watermarker helpers 2024-05-15 14:09:44 +10:00
af477fa295 tidy(ui): remove unused modelLoader from refiner helper 2024-05-15 14:09:44 +10:00
0ff0290735 tidy(ui): use Invocation<> helper type in canvas graph builders, elsewhere 2024-05-15 14:09:44 +10:00
67dbe6d949 tidy(ui): use Invocation<> helper type in OG control adapters 2024-05-15 14:09:44 +10:00
4c3c2297b9 tidy(ui): organise graph builder files 2024-05-15 14:09:44 +10:00
cadea55521 tidy(ui): organise graph builder files 2024-05-15 14:09:44 +10:00
c8f30b1392 tidy(ui): move testing-only types to test file 2024-05-15 14:09:44 +10:00
3d14a98abf tidy(ui): use Invocation<> type in control layers types 2024-05-15 14:09:44 +10:00
77024bfca7 fix(ui): fix sdxl generation mode metadata 2024-05-15 14:09:44 +10:00
4a1c3786a1 tidy(ui): organise CL graph builder 2024-05-15 14:09:44 +10:00
b239891986 tidy(ui): clean up base model handling in graph builder 2024-05-15 14:09:44 +10:00
9fb03d43ff tests(ui): get coverage to 100% for graph builder 2024-05-15 14:09:44 +10:00
bdc59786bd tidy(ui): clean up graph builder helper functions 2024-05-15 14:09:44 +10:00
fb6e926500 tidy(ui): remove extraneous graph validate calls 2024-05-15 14:09:44 +10:00
48ccd63dba feat(ui): use integrated metadata helper 2024-05-15 14:09:44 +10:00
ee647a05dc feat(ui): move metadata util to graph class
No good reason to have it be separate. A bit cleaner this way.
2024-05-15 14:09:44 +10:00
154b52ca4d docs(ui): update docstrings for Graph builder 2024-05-15 14:09:44 +10:00
5dd460c3ce chore(ui): knip 2024-05-15 14:09:44 +10:00
4897ce2a13 tidy(ui): remove unused files 2024-05-15 14:09:44 +10:00
5425526d50 feat(ui): use graph builder for generation tab sdxl 2024-05-15 14:09:44 +10:00
5a4b050e66 feat(ui): use asserts in graph builder 2024-05-15 14:09:44 +10:00
8d39520232 feat(ui): port NSFW and watermark nodes to graph builder 2024-05-15 14:09:44 +10:00
04d12a1e98 feat(ui): add HRF graph builder helper 2024-05-15 14:09:44 +10:00
39aa70963b docs(ui): update docstrings for addGenerationTabSeamless 2024-05-15 14:09:44 +10:00
5743254a41 fix(ui): use arrays for edge methods 2024-05-15 14:09:44 +10:00
c538ffea26 tidy(ui): remove console.log 2024-05-15 14:09:44 +10:00
e8d3a7c870 feat(ui): support multiple fields for getEdgesTo, getEdgesFrom, deleteEdgesTo, deleteEdgesFrom 2024-05-15 14:09:44 +10:00
2be66b1546 feat(ui): add deleteNode and getEdges to graph util 2024-05-15 14:09:44 +10:00
76e181fd44 build(ui): add eslint no-console rule 2024-05-15 14:09:44 +10:00
b5d42fbc66 tidy(ui): remove unused graph helper 2024-05-15 14:09:44 +10:00
b463cd763e tidy(ui): remove extraneous is_intermediate node fields 2024-05-15 14:09:44 +10:00
eb320df41d feat(ui): use new lora loaders, simplify VAE loader, seamless 2024-05-15 14:09:44 +10:00
de1869773f chore(ui): typegen 2024-05-15 14:09:44 +10:00
ef89c7e537 feat(nodes): add LoRASelectorInvocation, LoRACollectionLoader, SDXLLoRACollectionLoader
These simplify loading multiple LoRAs. Instead of requiring chained lora loader nodes, configure each LoRA (model & weight) with a selector, collect them, then send the collection to the collection loader to apply all of the LoRAs to the UNet/CLIP models.

The collection loaders accept a single lora or collection of loras.
2024-05-15 14:09:44 +10:00
008645d386 fix(ui): work through merge conflicts (wip) 2024-05-15 14:09:44 +10:00
f8042ffb41 WIP, sd1.5 works 2024-05-15 14:09:44 +10:00
dbe22be598 feat(ui): use graph utils in builders (wip) 2024-05-15 14:09:44 +10:00
8f6078d007 feat(ui): refine graph building util
Simpler types and API surface.
2024-05-15 14:09:44 +10:00
4020bf47e2 feat(ui): add MetadataUtil class
Provides methods for manipulating a graph's metadata.
2024-05-15 14:09:44 +10:00
9d685da759 feat(ui): add stateful Graph class
This stateful class provides abstractions for building a graph. It exposes graph methods like adding and removing nodes and edges.

The methods are documented, tested, and strongly typed.
2024-05-15 14:09:44 +10:00
e3289856c0 feat(ui): add and use type helpers for invocations and invocation outputs 2024-05-15 14:09:44 +10:00
47b8153728 build(ui): enable TS strictPropertyInitialization
https://www.typescriptlang.org/tsconfig/#strictPropertyInitialization
2024-05-15 14:09:44 +10:00
7901e4c082 chore(ui): typegen 2024-05-15 14:09:44 +10:00
18b0977a31 feat(api): add InvocationOutputMap to OpenAPI schema
This dynamically generated schema object maps node types to their pydantic schemas. This makes it much simpler to infer node types in the UI.
2024-05-15 14:09:44 +10:00
fc6b214470 tests(ui): set up vitest coverage 2024-05-15 14:09:44 +10:00
e22211dac0 fix: Fix Outpaint not applying the expanded mask correctly
In unscaled situations
2024-05-15 13:59:01 +10:00
348 changed files with 13885 additions and 8059 deletions

1
.gitignore vendored
View File

@ -188,3 +188,4 @@ installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/
.aider*

View File

@ -64,7 +64,7 @@ GPU_DRIVER=nvidia
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
## Even Moar Customizing!
## Even More Customizing!
See the `docker-compose.yml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.

View File

@ -117,13 +117,13 @@ Stateless fields do not store their value in the node, so their field instances
"Custom" fields will always be treated as stateless fields.
##### Collection and Scalar Fields
##### Single and Collection Fields
Field types have a name and two flags which may identify it as a **collection** or **collection or scalar** field.
Field types have a name and cardinality property which may identify it as a **SINGLE**, **COLLECTION** or **SINGLE_OR_COLLECTION** field.
If a field is annotated in python as a list, its field type is parsed and flagged as a **collection** type (e.g. `list[int]`).
If it is annotated as a union of a type and list, the type will be flagged as a **collection or scalar** type (e.g. `Union[int, list[int]]`). Fields may not be unions of different types (e.g. `Union[int, list[str]]` and `Union[int, str]` are not allowed).
- If a field is annotated in python as a singular value or class, its field type is parsed as a **SINGLE** type (e.g. `int`, `ImageField`, `str`).
- If a field is annotated in python as a list, its field type is parsed as a **COLLECTION** type (e.g. `list[int]`).
- If it is annotated as a union of a type and list, the type will be parsed as a **SINGLE_OR_COLLECTION** type (e.g. `Union[int, list[int]]`). Fields may not be unions of different types (e.g. `Union[int, list[str]]` and `Union[int, str]` are not allowed).
## Implementation
@ -173,8 +173,7 @@ Field types are represented as structured objects:
```ts
type FieldType = {
name: string;
isCollection: boolean;
isCollectionOrScalar: boolean;
cardinality: 'SINGLE' | 'COLLECTION' | 'SINGLE_OR_COLLECTION';
};
```
@ -186,7 +185,7 @@ There are 4 general cases for field type parsing.
When a field is annotated as a primitive values (e.g. `int`, `str`, `float`), the field type parsing is fairly straightforward. The field is represented by a simple OpenAPI **schema object**, which has a `type` property.
We create a field type name from this `type` string (e.g. `string` -> `StringField`).
We create a field type name from this `type` string (e.g. `string` -> `StringField`). The cardinality is `"SINGLE"`.
##### Complex Types
@ -200,13 +199,13 @@ We need to **dereference** the schema to pull these out. Dereferencing may requi
When a field is annotated as a list of a single type, the schema object has an `items` property. They may be a schema object or reference object and must be parsed to determine the item type.
We use the item type for field type name, adding `isCollection: true` to the field type.
We use the item type for field type name. The cardinality is `"COLLECTION"`.
##### Collection or Scalar Types
##### Single or Collection Types
When a field is annotated as a union of a type and list of that type, the schema object has an `anyOf` property, which holds a list of valid types for the union.
After verifying that the union has two members (a type and list of the same type), we use the type for field type name, adding `isCollectionOrScalar: true` to the field type.
After verifying that the union has two members (a type and list of the same type), we use the type for field type name, with cardinality `"SINGLE_OR_COLLECTION"`.
##### Optional Fields

View File

@ -165,7 +165,7 @@ Additionally, each section can be expanded with the "Show Advanced" button in o
There are several ways to install IP-Adapter models with an existing InvokeAI installation:
1. Through the command line interface launched from the invoke.sh / invoke.bat scripts, option [4] to download models.
2. Through the Model Manager UI with models from the *Tools* section of [www.models.invoke.ai](https://www.models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
2. Through the Model Manager UI with models from the *Tools* section of [models.invoke.ai](https://models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
3. **Advanced -- Not recommended ** Manually downloading the IP-Adapter and Image Encoder files - Image Encoder folders shouid be placed in the `models\any\clip_vision` folders. IP Adapter Model folders should be placed in the relevant `ip-adapter` folder of relevant base model folder of Invoke root directory. For example, for the SDXL IP-Adapter, files should be added to the `model/sdxl/ip_adapter/` folder.
#### Using IP-Adapter

View File

@ -20,7 +20,7 @@ When you generate an image using text-to-image, multiple steps occur in latent s
4. The VAE decodes the final latent image from latent space into image space.
Image-to-image is a similar process, with only step 1 being different:
1. The input image is encoded from image space into latent space by the VAE. Noise is then added to the input latent image. Denoising Strength dictates how may noise steps are added, and the amount of noise added at each step. A Denoising Strength of 0 means there are 0 steps and no noise added, resulting in an unchanged image, while a Denoising Strength of 1 results in the image being completely replaced with noise and a full set of denoising steps are performance. The process is then the same as steps 2-4 in the text-to-image process.
1. The input image is encoded from image space into latent space by the VAE. Noise is then added to the input latent image. Denoising Strength dictates how many noise steps are added, and the amount of noise added at each step. A Denoising Strength of 0 means there are 0 steps and no noise added, resulting in an unchanged image, while a Denoising Strength of 1 results in the image being completely replaced with noise and a full set of denoising steps are performance. The process is then the same as steps 2-4 in the text-to-image process.
Furthermore, a model provides the CLIP prompt tokenizer, the VAE, and a U-Net (where noise prediction occurs given a prompt and initial noise tensor).

View File

@ -98,7 +98,7 @@ Updating is exactly the same as installing - download the latest installer, choo
If you have installation issues, please review the [FAQ]. You can also [create an issue] or ask for help on [discord].
[installation requirements]: INSTALLATION.md#installation-requirements
[installation requirements]: INSTALL_REQUIREMENTS.md
[FAQ]: ../help/FAQ.md
[install some models]: 050_INSTALLING_MODELS.md
[configuration docs]: ../features/CONFIGURATION.md

View File

@ -10,7 +10,7 @@ InvokeAI is distributed as a python package on PyPI, installable with `pip`. The
### Requirements
Before you start, go through the [installation requirements].
Before you start, go through the [installation requirements](./INSTALL_REQUIREMENTS.md).
### Installation Walkthrough
@ -79,7 +79,7 @@ Before you start, go through the [installation requirements].
1. Install the InvokeAI Package. The base command is `pip install InvokeAI --use-pep517`, but you may need to change this depending on your system and the desired features.
- You may need to provide an [extra index URL]. Select your platform configuration using [this tool on the PyTorch website]. Copy the `--extra-index-url` string from this and append it to your install command.
- You may need to provide an [extra index URL](https://pip.pypa.io/en/stable/cli/pip_install/#cmdoption-extra-index-url). Select your platform configuration using [this tool on the PyTorch website](https://pytorch.org/get-started/locally/). Copy the `--extra-index-url` string from this and append it to your install command.
!!! example "Install with an extra index URL"
@ -116,4 +116,4 @@ Before you start, go through the [installation requirements].
!!! warning
If the virtual environment is _not_ inside the root directory, then you _must_ specify the path to the root directory with `--root_dir \path\to\invokeai` or the `INVOKEAI_ROOT` environment variable.
If the virtual environment is _not_ inside the root directory, then you _must_ specify the path to the root directory with `--root \path\to\invokeai` or the `INVOKEAI_ROOT` environment variable.

View File

@ -10,8 +10,7 @@ set INVOKEAI_ROOT=.
echo Desired action:
echo 1. Generate images with the browser-based interface
echo 2. Open the developer console
echo 3. Run the InvokeAI image database maintenance script
echo 4. Command-line help
echo 3. Command-line help
echo Q - Quit
echo.
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.
@ -34,9 +33,6 @@ IF /I "%choice%" == "1" (
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) ELSE IF /I "%choice%" == "3" (
echo Running the db maintenance script...
python .venv\Scripts\invokeai-db-maintenance.exe
) ELSE IF /I "%choice%" == "4" (
echo Displaying command line help...
python .venv\Scripts\invokeai-web.exe --help %*
pause

View File

@ -47,11 +47,6 @@ do_choice() {
bash --init-file "$file_name"
;;
3)
clear
printf "Running the db maintenance script\n"
invokeai-db-maintenance --root ${INVOKEAI_ROOT}
;;
4)
clear
printf "Command-line help\n"
invokeai-web --help
@ -71,8 +66,7 @@ do_line_input() {
printf "What would you like to do?\n"
printf "1: Generate images using the browser-based interface\n"
printf "2: Open the developer console\n"
printf "3: Run the InvokeAI image database maintenance script\n"
printf "4: Command-line help\n"
printf "3: Command-line help\n"
printf "Q: Quit\n\n"
printf "To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.\n\n"
read -p "Please enter 1-4, Q: [1] " yn

View File

@ -18,6 +18,7 @@ from ..services.boards.boards_default import BoardService
from ..services.bulk_download.bulk_download_default import BulkDownloadService
from ..services.config import InvokeAIAppConfig
from ..services.download import DownloadQueueService
from ..services.events.events_fastapievents import FastAPIEventService
from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService
@ -29,11 +30,10 @@ from ..services.model_images.model_images_default import ModelImageFileStorageDi
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
from ..services.session_processor.session_processor_default import DefaultSessionProcessor, DefaultSessionRunner
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.urls.urls_default import LocalUrlService
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from .events import FastAPIEventService
# TODO: is there a better way to achieve this?
@ -103,7 +103,7 @@ class ApiDependencies:
)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
session_processor = DefaultSessionProcessor()
session_processor = DefaultSessionProcessor(session_runner=DefaultSessionRunner())
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService()
workflow_records = SqliteWorkflowRecordsStorage(db=db)

View File

@ -1,52 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
import threading
from queue import Empty, Queue
from typing import Any
from fastapi_events.dispatcher import dispatch
from ..services.events.events_base import EventServiceBase
class FastAPIEventService(EventServiceBase):
event_handler_id: int
__queue: Queue
__stop_event: threading.Event
def __init__(self, event_handler_id: int) -> None:
self.event_handler_id = event_handler_id
self.__queue = Queue()
self.__stop_event = threading.Event()
asyncio.create_task(self.__dispatch_from_queue(stop_event=self.__stop_event))
super().__init__()
def stop(self, *args, **kwargs):
self.__stop_event.set()
self.__queue.put(None)
def dispatch(self, event_name: str, payload: Any) -> None:
self.__queue.put({"event_name": event_name, "payload": payload})
async def __dispatch_from_queue(self, stop_event: threading.Event):
"""Get events on from the queue and dispatch them, from the correct thread"""
while not stop_event.is_set():
try:
event = self.__queue.get(block=False)
if not event: # Probably stopping
continue
dispatch(
event.get("event_name"),
payload=event.get("payload"),
middleware_id=self.event_handler_id,
)
except Empty:
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:
raise e # Raise a proper error

View File

@ -6,13 +6,12 @@ from fastapi import BackgroundTasks, Body, HTTPException, Path, Query, Request,
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field, ValidationError
from pydantic import BaseModel, Field, JsonValue
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID, WorkflowWithoutIDValidator
from ..dependencies import ApiDependencies
@ -42,13 +41,17 @@ async def upload_image(
board_id: Optional[str] = Query(default=None, description="The board to add this image to, if any"),
session_id: Optional[str] = Query(default=None, description="The session ID associated with this upload, if any"),
crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"),
metadata: Optional[JsonValue] = Body(
default=None, description="The metadata to associate with the image", embed=True
),
) -> ImageDTO:
"""Uploads an image"""
if not file.content_type or not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
metadata = None
workflow = None
_metadata = None
_workflow = None
_graph = None
contents = await file.read()
try:
@ -62,22 +65,28 @@ async def upload_image(
# TODO: retain non-invokeai metadata on upload?
# attempt to parse metadata from image
metadata_raw = pil_image.info.get("invokeai_metadata", None)
if metadata_raw:
try:
metadata = MetadataFieldValidator.validate_json(metadata_raw)
except ValidationError:
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
pass
metadata_raw = metadata if isinstance(metadata, str) else pil_image.info.get("invokeai_metadata", None)
if isinstance(metadata_raw, str):
_metadata = metadata_raw
else:
ApiDependencies.invoker.services.logger.debug("Failed to parse metadata for uploaded image")
pass
# attempt to parse workflow from image
workflow_raw = pil_image.info.get("invokeai_workflow", None)
if workflow_raw is not None:
try:
workflow = WorkflowWithoutIDValidator.validate_json(workflow_raw)
except ValidationError:
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
pass
if isinstance(workflow_raw, str):
_workflow = workflow_raw
else:
ApiDependencies.invoker.services.logger.debug("Failed to parse workflow for uploaded image")
pass
# attempt to extract graph from image
graph_raw = pil_image.info.get("invokeai_graph", None)
if isinstance(graph_raw, str):
_graph = graph_raw
else:
ApiDependencies.invoker.services.logger.debug("Failed to parse graph for uploaded image")
pass
try:
image_dto = ApiDependencies.invoker.services.images.create(
@ -86,8 +95,9 @@ async def upload_image(
image_category=image_category,
session_id=session_id,
board_id=board_id,
metadata=metadata,
workflow=workflow,
metadata=_metadata,
workflow=_workflow,
graph=_graph,
is_intermediate=is_intermediate,
)
@ -185,14 +195,21 @@ async def get_image_metadata(
raise HTTPException(status_code=404)
class WorkflowAndGraphResponse(BaseModel):
workflow: Optional[str] = Field(description="The workflow used to generate the image, as stringified JSON")
graph: Optional[str] = Field(description="The graph used to generate the image, as stringified JSON")
@images_router.get(
"/i/{image_name}/workflow", operation_id="get_image_workflow", response_model=Optional[WorkflowWithoutID]
"/i/{image_name}/workflow", operation_id="get_image_workflow", response_model=WorkflowAndGraphResponse
)
async def get_image_workflow(
image_name: str = Path(description="The name of image whose workflow to get"),
) -> Optional[WorkflowWithoutID]:
) -> WorkflowAndGraphResponse:
try:
return ApiDependencies.invoker.services.images.get_workflow(image_name)
workflow = ApiDependencies.invoker.services.images.get_workflow(image_name)
graph = ApiDependencies.invoker.services.images.get_graph(image_name)
return WorkflowAndGraphResponse(workflow=workflow, graph=graph)
except Exception:
raise HTTPException(status_code=404)

View File

@ -17,7 +17,7 @@ from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install import ModelInstallJob
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,

View File

@ -203,6 +203,7 @@ async def get_batch_status(
responses={
200: {"model": SessionQueueItem},
},
response_model_exclude_none=True,
)
async def get_queue_item(
queue_id: str = Path(description="The queue id to perform this operation on"),

View File

@ -1,66 +1,125 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any
from fastapi import FastAPI
from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event
from pydantic import BaseModel
from socketio import ASGIApp, AsyncServer
from ..services.events.events_base import EventServiceBase
from invokeai.app.services.events.events_common import (
BatchEnqueuedEvent,
BulkDownloadCompleteEvent,
BulkDownloadErrorEvent,
BulkDownloadEventBase,
BulkDownloadStartedEvent,
DownloadCancelledEvent,
DownloadCompleteEvent,
DownloadErrorEvent,
DownloadEventBase,
DownloadProgressEvent,
DownloadStartedEvent,
FastAPIEvent,
InvocationCompleteEvent,
InvocationDenoiseProgressEvent,
InvocationErrorEvent,
InvocationStartedEvent,
ModelEventBase,
ModelInstallCancelledEvent,
ModelInstallCompleteEvent,
ModelInstallDownloadProgressEvent,
ModelInstallDownloadsCompleteEvent,
ModelInstallErrorEvent,
ModelInstallStartedEvent,
ModelLoadCompleteEvent,
ModelLoadStartedEvent,
QueueClearedEvent,
QueueEventBase,
QueueItemStatusChangedEvent,
register_events,
)
class QueueSubscriptionEvent(BaseModel):
"""Event data for subscribing to the socket.io queue room.
This is a pydantic model to ensure the data is in the correct format."""
queue_id: str
class BulkDownloadSubscriptionEvent(BaseModel):
"""Event data for subscribing to the socket.io bulk downloads room.
This is a pydantic model to ensure the data is in the correct format."""
bulk_download_id: str
QUEUE_EVENTS = {
InvocationStartedEvent,
InvocationDenoiseProgressEvent,
InvocationCompleteEvent,
InvocationErrorEvent,
QueueItemStatusChangedEvent,
BatchEnqueuedEvent,
QueueClearedEvent,
}
MODEL_EVENTS = {
DownloadCancelledEvent,
DownloadCompleteEvent,
DownloadErrorEvent,
DownloadProgressEvent,
DownloadStartedEvent,
ModelLoadStartedEvent,
ModelLoadCompleteEvent,
ModelInstallDownloadProgressEvent,
ModelInstallDownloadsCompleteEvent,
ModelInstallStartedEvent,
ModelInstallCompleteEvent,
ModelInstallCancelledEvent,
ModelInstallErrorEvent,
}
BULK_DOWNLOAD_EVENTS = {BulkDownloadStartedEvent, BulkDownloadCompleteEvent, BulkDownloadErrorEvent}
class SocketIO:
__sio: AsyncServer
__app: ASGIApp
_sub_queue = "subscribe_queue"
_unsub_queue = "unsubscribe_queue"
__sub_queue: str = "subscribe_queue"
__unsub_queue: str = "unsubscribe_queue"
__sub_bulk_download: str = "subscribe_bulk_download"
__unsub_bulk_download: str = "unsubscribe_bulk_download"
_sub_bulk_download = "subscribe_bulk_download"
_unsub_bulk_download = "unsubscribe_bulk_download"
def __init__(self, app: FastAPI):
self.__sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*")
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="/ws/socket.io")
app.mount("/ws", self.__app)
self._sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*")
self._app = ASGIApp(socketio_server=self._sio, socketio_path="/ws/socket.io")
app.mount("/ws", self._app)
self.__sio.on(self.__sub_queue, handler=self._handle_sub_queue)
self.__sio.on(self.__unsub_queue, handler=self._handle_unsub_queue)
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event)
local_handler.register(event_name=EventServiceBase.model_event, _func=self._handle_model_event)
self._sio.on(self._sub_queue, handler=self._handle_sub_queue)
self._sio.on(self._unsub_queue, handler=self._handle_unsub_queue)
self._sio.on(self._sub_bulk_download, handler=self._handle_sub_bulk_download)
self._sio.on(self._unsub_bulk_download, handler=self._handle_unsub_bulk_download)
self.__sio.on(self.__sub_bulk_download, handler=self._handle_sub_bulk_download)
self.__sio.on(self.__unsub_bulk_download, handler=self._handle_unsub_bulk_download)
local_handler.register(event_name=EventServiceBase.bulk_download_event, _func=self._handle_bulk_download_event)
register_events(QUEUE_EVENTS, self._handle_queue_event)
register_events(MODEL_EVENTS, self._handle_model_event)
register_events(BULK_DOWNLOAD_EVENTS, self._handle_bulk_image_download_event)
async def _handle_queue_event(self, event: Event):
await self.__sio.emit(
event=event[1]["event"],
data=event[1]["data"],
room=event[1]["data"]["queue_id"],
)
async def _handle_sub_queue(self, sid: str, data: Any) -> None:
await self._sio.enter_room(sid, QueueSubscriptionEvent(**data).queue_id)
async def _handle_sub_queue(self, sid, data, *args, **kwargs) -> None:
if "queue_id" in data:
await self.__sio.enter_room(sid, data["queue_id"])
async def _handle_unsub_queue(self, sid: str, data: Any) -> None:
await self._sio.leave_room(sid, QueueSubscriptionEvent(**data).queue_id)
async def _handle_unsub_queue(self, sid, data, *args, **kwargs) -> None:
if "queue_id" in data:
await self.__sio.leave_room(sid, data["queue_id"])
async def _handle_sub_bulk_download(self, sid: str, data: Any) -> None:
await self._sio.enter_room(sid, BulkDownloadSubscriptionEvent(**data).bulk_download_id)
async def _handle_model_event(self, event: Event) -> None:
await self.__sio.emit(event=event[1]["event"], data=event[1]["data"])
async def _handle_unsub_bulk_download(self, sid: str, data: Any) -> None:
await self._sio.leave_room(sid, BulkDownloadSubscriptionEvent(**data).bulk_download_id)
async def _handle_bulk_download_event(self, event: Event):
await self.__sio.emit(
event=event[1]["event"],
data=event[1]["data"],
room=event[1]["data"]["bulk_download_id"],
)
async def _handle_queue_event(self, event: FastAPIEvent[QueueEventBase]):
await self._sio.emit(event=event[0], data=event[1].model_dump(mode="json"), room=event[1].queue_id)
async def _handle_sub_bulk_download(self, sid, data, *args, **kwargs):
if "bulk_download_id" in data:
await self.__sio.enter_room(sid, data["bulk_download_id"])
async def _handle_model_event(self, event: FastAPIEvent[ModelEventBase | DownloadEventBase]) -> None:
await self._sio.emit(event=event[0], data=event[1].model_dump(mode="json"))
async def _handle_unsub_bulk_download(self, sid, data, *args, **kwargs):
if "bulk_download_id" in data:
await self.__sio.leave_room(sid, data["bulk_download_id"])
async def _handle_bulk_image_download_event(self, event: FastAPIEvent[BulkDownloadEventBase]) -> None:
await self._sio.emit(event=event[0], data=event[1].model_dump(mode="json"), room=event[1].bulk_download_id)

View File

@ -27,6 +27,7 @@ import invokeai.frontend.web as web_dir
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.config.config_default import get_config
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.backend.util.devices import TorchDevice
@ -164,6 +165,12 @@ def custom_openapi() -> dict[str, Any]:
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = schema_json
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": {},
"required": [],
}
# Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations:
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
@ -172,25 +179,18 @@ def custom_openapi() -> dict[str, Any]:
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["properties"][invoker.get_type()] = outputs_ref
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["required"].append(invoker.get_type())
invoker_schema["class"] = "invocation"
# This code no longer seems to be necessary?
# Leave it here just in case
#
# from invokeai.backend.model_manager import get_model_config_formats
# formats = get_model_config_formats()
# for model_config_name, enum_set in formats.items():
# if model_config_name in openapi_schema["components"]["schemas"]:
# # print(f"Config with name {name} already defined")
# continue
# openapi_schema["components"]["schemas"][model_config_name] = {
# "title": model_config_name,
# "description": "An enumeration.",
# "type": "string",
# "enum": [v.value for v in enum_set],
# }
# Add all event schemas
for event in sorted(EventBase.get_events(), key=lambda e: e.__name__):
json_schema = event.model_json_schema(mode="serialization", ref_template="#/components/schemas/{model}")
if "$defs" in json_schema:
for schema_key, schema in json_schema["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = schema
del json_schema["$defs"]
openapi_schema["components"]["schemas"][event.__name__] = json_schema
app.openapi_schema = openapi_schema
return app.openapi_schema

View File

@ -65,11 +65,7 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.models.load(self.clip.tokenizer)
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(self.clip.text_encoder)
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, CLIPTextModel)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
@ -84,19 +80,21 @@ class CompelInvocation(BaseInvocation):
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
with (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
tokenizer,
ti_manager,
),
# apply all patches while the model is on the target device
text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
tokenizer_info as tokenizer,
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (
patched_tokenizer,
ti_manager,
),
):
assert isinstance(text_encoder, CLIPTextModel)
assert isinstance(tokenizer, CLIPTokenizer)
compel = Compel(
tokenizer=tokenizer,
tokenizer=patched_tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
@ -106,7 +104,7 @@ class CompelInvocation(BaseInvocation):
conjunction = Compel.parse_prompt_string(self.prompt)
if context.config.get().log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
log_tokenization_for_conjunction(conjunction, patched_tokenizer)
c, _options = compel.build_conditioning_tensor_for_conjunction(conjunction)
@ -136,11 +134,7 @@ class SDXLPromptInvocationBase:
zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
tokenizer_info = context.models.load(clip_field.tokenizer)
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(clip_field.text_encoder)
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, (CLIPTextModel, CLIPTextModelWithProjection))
# return zero on empty
if prompt == "" and zero_on_empty:
@ -177,20 +171,23 @@ class SDXLPromptInvocationBase:
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
with (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
tokenizer,
ti_manager,
),
# apply all patches while the model is on the target device
text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
tokenizer_info as tokenizer,
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (
patched_tokenizer,
ti_manager,
),
):
assert isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
assert isinstance(tokenizer, CLIPTokenizer)
text_encoder = cast(CLIPTextModel, text_encoder)
compel = Compel(
tokenizer=tokenizer,
tokenizer=patched_tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
@ -203,7 +200,7 @@ class SDXLPromptInvocationBase:
if context.config.get().log_tokenization:
# TODO: better logging for and syntax
log_tokenization_for_conjunction(conjunction, tokenizer)
log_tokenization_for_conjunction(conjunction, patched_tokenizer)
# TODO: ask for optimizations? to not run text_encoder twice
c, _options = compel.build_conditioning_tensor_for_conjunction(conjunction)

View File

@ -24,7 +24,6 @@ from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
OutputField,
UIType,
@ -80,13 +79,13 @@ class ControlOutput(BaseInvocationOutput):
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.1")
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.2")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, input=Input.Direct, ui_type=UIType.ControlNetModel
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"

View File

@ -5,7 +5,7 @@ from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, TensorField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, TensorField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
@ -58,7 +58,7 @@ class IPAdapterOutput(BaseInvocationOutput):
CLIP_VISION_MODEL_MAP = {"ViT-H": "ip_adapter_sd_image_encoder", "ViT-G": "ip_adapter_sdxl_image_encoder"}
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.4.0")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.4.1")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""
@ -67,7 +67,6 @@ class IPAdapterInvocation(BaseInvocation):
ip_adapter_model: ModelIdentifierField = InputField(
description="The IP-Adapter model.",
title="IP-Adapter Model",
input=Input.Direct,
ui_order=-1,
ui_type=UIType.IPAdapterModel,
)

View File

@ -930,9 +930,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
ModelPatcher.apply_freeu(unet_info.model, self.unet.freeu_config),
set_seamless(unet_info.model, self.unet.seamless_axes), # FIXME
unet_info as unet,
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
set_seamless(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
):

View File

@ -11,6 +11,7 @@ from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType,
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
@ -93,19 +94,46 @@ class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
pass
@invocation_output("model_identifier_output")
class ModelIdentifierOutput(BaseInvocationOutput):
"""Model identifier output"""
model: ModelIdentifierField = OutputField(description="Model identifier", title="Model")
@invocation(
"model_identifier",
title="Model identifier",
tags=["model"],
category="model",
version="1.0.0",
classification=Classification.Prototype,
)
class ModelIdentifierInvocation(BaseInvocation):
"""Selects any model, outputting it its identifier. Be careful with this one! The identifier will be accepted as
input for any model, even if the model types don't match. If you connect this to a mismatched input, you'll get an
error."""
model: ModelIdentifierField = InputField(description="The model to select", title="Model")
def invoke(self, context: InvocationContext) -> ModelIdentifierOutput:
if not context.models.exists(self.model.key):
raise Exception(f"Unknown model {self.model.key}")
return ModelIdentifierOutput(model=self.model)
@invocation(
"main_model_loader",
title="Main Model",
tags=["model"],
category="model",
version="1.0.2",
version="1.0.3",
)
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.main_model, input=Input.Direct, ui_type=UIType.MainModel
)
model: ModelIdentifierField = InputField(description=FieldDescriptions.main_model, ui_type=UIType.MainModel)
# TODO: precision?
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
@ -134,12 +162,12 @@ class LoRALoaderOutput(BaseInvocationOutput):
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.2")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.3")
class LoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
@ -190,6 +218,75 @@ class LoRALoaderInvocation(BaseInvocation):
return output
@invocation_output("lora_selector_output")
class LoRASelectorOutput(BaseInvocationOutput):
"""Model loader output"""
lora: LoRAField = OutputField(description="LoRA model and weight", title="LoRA")
@invocation("lora_selector", title="LoRA Selector", tags=["model"], category="model", version="1.0.1")
class LoRASelectorInvocation(BaseInvocation):
"""Selects a LoRA model and weight."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
def invoke(self, context: InvocationContext) -> LoRASelectorOutput:
return LoRASelectorOutput(lora=LoRAField(lora=self.lora, weight=self.weight))
@invocation("lora_collection_loader", title="LoRA Collection Loader", tags=["model"], category="model", version="1.0.0")
class LoRACollectionLoader(BaseInvocation):
"""Applies a collection of LoRAs to the provided UNet and CLIP models."""
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
unet: Optional[UNetField] = InputField(
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
def invoke(self, context: InvocationContext) -> LoRALoaderOutput:
output = LoRALoaderOutput()
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
for lora in loras:
if lora.lora.key in added_loras:
continue
if not context.models.exists(lora.lora.key):
raise Exception(f"Unknown lora: {lora.lora.key}!")
assert lora.lora.base in (BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2)
added_loras.append(lora.lora.key)
if self.unet is not None:
if output.unet is None:
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(lora)
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(lora)
return output
@invocation_output("sdxl_lora_loader_output")
class SDXLLoRALoaderOutput(BaseInvocationOutput):
"""SDXL LoRA Loader Output"""
@ -204,13 +301,13 @@ class SDXLLoRALoaderOutput(BaseInvocationOutput):
title="SDXL LoRA",
tags=["lora", "model"],
category="model",
version="1.0.2",
version="1.0.3",
)
class SDXLLoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA", ui_type=UIType.LoRAModel
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
@ -279,12 +376,78 @@ class SDXLLoRALoaderInvocation(BaseInvocation):
return output
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.2")
@invocation(
"sdxl_lora_collection_loader",
title="SDXL LoRA Collection Loader",
tags=["model"],
category="model",
version="1.0.0",
)
class SDXLLoRACollectionLoader(BaseInvocation):
"""Applies a collection of SDXL LoRAs to the provided UNet and CLIP models."""
loras: LoRAField | list[LoRAField] = InputField(
description="LoRA models and weights. May be a single LoRA or collection.", title="LoRAs"
)
unet: Optional[UNetField] = InputField(
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
clip2: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
)
def invoke(self, context: InvocationContext) -> SDXLLoRALoaderOutput:
output = SDXLLoRALoaderOutput()
loras = self.loras if isinstance(self.loras, list) else [self.loras]
added_loras: list[str] = []
for lora in loras:
if lora.lora.key in added_loras:
continue
if not context.models.exists(lora.lora.key):
raise Exception(f"Unknown lora: {lora.lora.key}!")
assert lora.lora.base is BaseModelType.StableDiffusionXL
added_loras.append(lora.lora.key)
if self.unet is not None:
if output.unet is None:
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(lora)
if self.clip is not None:
if output.clip is None:
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(lora)
if self.clip2 is not None:
if output.clip2 is None:
output.clip2 = self.clip2.model_copy(deep=True)
output.clip2.loras.append(lora)
return output
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.3")
class VAELoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: ModelIdentifierField = InputField(
description=FieldDescriptions.vae_model, input=Input.Direct, title="VAE", ui_type=UIType.VAEModel
description=FieldDescriptions.vae_model, title="VAE", ui_type=UIType.VAEModel
)
def invoke(self, context: InvocationContext) -> VAEOutput:

View File

@ -1,4 +1,4 @@
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import SubModelType
@ -30,12 +30,12 @@ class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.2")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.3")
class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sdxl_main_model, input=Input.Direct, ui_type=UIType.SDXLMainModel
description=FieldDescriptions.sdxl_main_model, ui_type=UIType.SDXLMainModel
)
# TODO: precision?
@ -67,13 +67,13 @@ class SDXLModelLoaderInvocation(BaseInvocation):
title="SDXL Refiner Model",
tags=["model", "sdxl", "refiner"],
category="model",
version="1.0.2",
version="1.0.3",
)
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description=FieldDescriptions.sdxl_refiner_model, input=Input.Direct, ui_type=UIType.SDXLRefinerModel
description=FieldDescriptions.sdxl_refiner_model, ui_type=UIType.SDXLRefinerModel
)
# TODO: precision?

View File

@ -8,7 +8,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, InputField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
@ -45,7 +45,7 @@ class T2IAdapterOutput(BaseInvocationOutput):
@invocation(
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.2"
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.3"
)
class T2IAdapterInvocation(BaseInvocation):
"""Collects T2I-Adapter info to pass to other nodes."""
@ -55,7 +55,6 @@ class T2IAdapterInvocation(BaseInvocation):
t2i_adapter_model: ModelIdentifierField = InputField(
description="The T2I-Adapter model.",
title="T2I-Adapter Model",
input=Input.Direct,
ui_order=-1,
ui_type=UIType.T2IAdapterModel,
)

View File

@ -106,9 +106,7 @@ class BulkDownloadService(BulkDownloadBase):
if self._invoker:
assert bulk_download_id is not None
self._invoker.services.events.emit_bulk_download_started(
bulk_download_id=bulk_download_id,
bulk_download_item_id=bulk_download_item_id,
bulk_download_item_name=bulk_download_item_name,
bulk_download_id, bulk_download_item_id, bulk_download_item_name
)
def _signal_job_completed(
@ -118,10 +116,8 @@ class BulkDownloadService(BulkDownloadBase):
if self._invoker:
assert bulk_download_id is not None
assert bulk_download_item_name is not None
self._invoker.services.events.emit_bulk_download_completed(
bulk_download_id=bulk_download_id,
bulk_download_item_id=bulk_download_item_id,
bulk_download_item_name=bulk_download_item_name,
self._invoker.services.events.emit_bulk_download_complete(
bulk_download_id, bulk_download_item_id, bulk_download_item_name
)
def _signal_job_failed(
@ -131,11 +127,8 @@ class BulkDownloadService(BulkDownloadBase):
if self._invoker:
assert bulk_download_id is not None
assert exception is not None
self._invoker.services.events.emit_bulk_download_failed(
bulk_download_id=bulk_download_id,
bulk_download_item_id=bulk_download_item_id,
bulk_download_item_name=bulk_download_item_name,
error=str(exception),
self._invoker.services.events.emit_bulk_download_error(
bulk_download_id, bulk_download_item_id, bulk_download_item_name, str(exception)
)
def stop(self, *args, **kwargs):

View File

@ -8,14 +8,13 @@ import time
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import Any, Dict, List, Optional, Set
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set
import requests
from pydantic.networks import AnyHttpUrl
from requests import HTTPError
from tqdm import tqdm
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.util.logging import InvokeAILogger
@ -30,6 +29,9 @@ from .download_base import (
UnknownJobIDException,
)
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000
@ -40,7 +42,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
def __init__(
self,
max_parallel_dl: int = 5,
event_bus: Optional[EventServiceBase] = None,
event_bus: Optional["EventServiceBase"] = None,
requests_session: Optional[requests.sessions.Session] = None,
):
"""
@ -343,8 +345,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
f"An error occurred while processing the on_start callback: {traceback.format_exception(e)}"
)
if self._event_bus:
assert job.download_path
self._event_bus.emit_download_started(str(job.source), job.download_path.as_posix())
self._event_bus.emit_download_started(job)
def _signal_job_progress(self, job: DownloadJob) -> None:
if job.on_progress:
@ -355,13 +356,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
f"An error occurred while processing the on_progress callback: {traceback.format_exception(e)}"
)
if self._event_bus:
assert job.download_path
self._event_bus.emit_download_progress(
str(job.source),
download_path=job.download_path.as_posix(),
current_bytes=job.bytes,
total_bytes=job.total_bytes,
)
self._event_bus.emit_download_progress(job)
def _signal_job_complete(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.COMPLETED
@ -373,10 +368,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
f"An error occurred while processing the on_complete callback: {traceback.format_exception(e)}"
)
if self._event_bus:
assert job.download_path
self._event_bus.emit_download_complete(
str(job.source), download_path=job.download_path.as_posix(), total_bytes=job.total_bytes
)
self._event_bus.emit_download_complete(job)
def _signal_job_cancelled(self, job: DownloadJob) -> None:
if job.status not in [DownloadJobStatus.RUNNING, DownloadJobStatus.WAITING]:
@ -390,7 +382,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
f"An error occurred while processing the on_cancelled callback: {traceback.format_exception(e)}"
)
if self._event_bus:
self._event_bus.emit_download_cancelled(str(job.source))
self._event_bus.emit_download_cancelled(job)
def _signal_job_error(self, job: DownloadJob, excp: Optional[Exception] = None) -> None:
job.status = DownloadJobStatus.ERROR
@ -403,9 +395,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
f"An error occurred while processing the on_error callback: {traceback.format_exception(e)}"
)
if self._event_bus:
assert job.error_type
assert job.error
self._event_bus.emit_download_error(str(job.source), error_type=job.error_type, error=job.error)
self._event_bus.emit_download_error(job)
def _cleanup_cancelled_job(self, job: DownloadJob) -> None:
self._logger.debug(f"Cleaning up leftover files from cancelled download job {job.download_path}")

View File

@ -1,486 +1,195 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, List, Optional, Union
from typing import TYPE_CHECKING, Optional
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
BatchStatus,
EnqueueBatchResult,
SessionQueueItem,
SessionQueueStatus,
from invokeai.app.services.events.events_common import (
BatchEnqueuedEvent,
BulkDownloadCompleteEvent,
BulkDownloadErrorEvent,
BulkDownloadStartedEvent,
DownloadCancelledEvent,
DownloadCompleteEvent,
DownloadErrorEvent,
DownloadProgressEvent,
DownloadStartedEvent,
EventBase,
InvocationCompleteEvent,
InvocationDenoiseProgressEvent,
InvocationErrorEvent,
InvocationStartedEvent,
ModelInstallCancelledEvent,
ModelInstallCompleteEvent,
ModelInstallDownloadProgressEvent,
ModelInstallDownloadsCompleteEvent,
ModelInstallErrorEvent,
ModelInstallStartedEvent,
ModelLoadCompleteEvent,
ModelLoadStartedEvent,
QueueClearedEvent,
QueueItemStatusChangedEvent,
)
from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_manager import AnyModelConfig
from invokeai.backend.model_manager.config import SubModelType
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
from invokeai.app.services.download.download_base import DownloadJob
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
BatchStatus,
EnqueueBatchResult,
SessionQueueItem,
SessionQueueStatus,
)
from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
class EventServiceBase:
queue_event: str = "queue_event"
bulk_download_event: str = "bulk_download_event"
download_event: str = "download_event"
model_event: str = "model_event"
"""Basic event bus, to have an empty stand-in when not needed"""
def dispatch(self, event_name: str, payload: Any) -> None:
def dispatch(self, event: "EventBase") -> None:
pass
def _emit_bulk_download_event(self, event_name: str, payload: dict) -> None:
"""Bulk download events are emitted to a room with queue_id as the room name"""
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.bulk_download_event,
payload={"event": event_name, "data": payload},
)
# region: Invocation
def __emit_queue_event(self, event_name: str, payload: dict) -> None:
"""Queue events are emitted to a room with queue_id as the room name"""
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.queue_event,
payload={"event": event_name, "data": payload},
)
def emit_invocation_started(self, queue_item: "SessionQueueItem", invocation: "BaseInvocation") -> None:
"""Emitted when an invocation is started"""
self.dispatch(InvocationStartedEvent.build(queue_item, invocation))
def __emit_download_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.download_event,
payload={"event": event_name, "data": payload},
)
def __emit_model_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.model_event,
payload={"event": event_name, "data": payload},
)
# Define events here for every event in the system.
# This will make them easier to integrate until we find a schema generator.
def emit_generator_progress(
def emit_invocation_denoise_progress(
self,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
node_id: str,
source_node_id: str,
progress_image: Optional[ProgressImage],
step: int,
order: int,
total_steps: int,
queue_item: "SessionQueueItem",
invocation: "BaseInvocation",
intermediate_state: PipelineIntermediateState,
progress_image: "ProgressImage",
) -> None:
"""Emitted when there is generation progress"""
self.__emit_queue_event(
event_name="generator_progress",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node_id": node_id,
"source_node_id": source_node_id,
"progress_image": progress_image.model_dump(mode="json") if progress_image is not None else None,
"step": step,
"order": order,
"total_steps": total_steps,
},
)
"""Emitted at each step during denoising of an invocation."""
self.dispatch(InvocationDenoiseProgressEvent.build(queue_item, invocation, intermediate_state, progress_image))
def emit_invocation_complete(
self,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
result: dict,
node: dict,
source_node_id: str,
self, queue_item: "SessionQueueItem", invocation: "BaseInvocation", output: "BaseInvocationOutput"
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_queue_event(
event_name="invocation_complete",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node": node,
"source_node_id": source_node_id,
"result": result,
},
)
"""Emitted when an invocation is complete"""
self.dispatch(InvocationCompleteEvent.build(queue_item, invocation, output))
def emit_invocation_error(
self,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
queue_item: "SessionQueueItem",
invocation: "BaseInvocation",
error_type: str,
error: str,
error_message: str,
error_traceback: str,
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_queue_event(
event_name="invocation_error",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node": node,
"source_node_id": source_node_id,
"error_type": error_type,
"error": error,
},
)
"""Emitted when an invocation encounters an error"""
self.dispatch(InvocationErrorEvent.build(queue_item, invocation, error_type, error_message, error_traceback))
def emit_invocation_started(
self,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
) -> None:
"""Emitted when an invocation has started"""
self.__emit_queue_event(
event_name="invocation_started",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node": node,
"source_node_id": source_node_id,
},
)
# endregion
def emit_graph_execution_complete(
self, queue_id: str, queue_item_id: int, queue_batch_id: str, graph_execution_state_id: str
) -> None:
"""Emitted when a session has completed all invocations"""
self.__emit_queue_event(
event_name="graph_execution_state_complete",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
},
)
def emit_model_load_started(
self,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Emitted when a model is requested"""
self.__emit_queue_event(
event_name="model_load_started",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"model_config": model_config.model_dump(mode="json"),
"submodel_type": submodel_type,
},
)
def emit_model_load_completed(
self,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Emitted when a model is correctly loaded (returns model info)"""
self.__emit_queue_event(
event_name="model_load_completed",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"model_config": model_config.model_dump(mode="json"),
"submodel_type": submodel_type,
},
)
def emit_session_canceled(
self,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
) -> None:
"""Emitted when a session is canceled"""
self.__emit_queue_event(
event_name="session_canceled",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
},
)
# region Queue
def emit_queue_item_status_changed(
self,
session_queue_item: SessionQueueItem,
batch_status: BatchStatus,
queue_status: SessionQueueStatus,
self, queue_item: "SessionQueueItem", batch_status: "BatchStatus", queue_status: "SessionQueueStatus"
) -> None:
"""Emitted when a queue item's status changes"""
self.__emit_queue_event(
event_name="queue_item_status_changed",
payload={
"queue_id": queue_status.queue_id,
"queue_item": {
"queue_id": session_queue_item.queue_id,
"item_id": session_queue_item.item_id,
"status": session_queue_item.status,
"batch_id": session_queue_item.batch_id,
"session_id": session_queue_item.session_id,
"error": session_queue_item.error,
"created_at": str(session_queue_item.created_at) if session_queue_item.created_at else None,
"updated_at": str(session_queue_item.updated_at) if session_queue_item.updated_at else None,
"started_at": str(session_queue_item.started_at) if session_queue_item.started_at else None,
"completed_at": str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
},
"batch_status": batch_status.model_dump(mode="json"),
"queue_status": queue_status.model_dump(mode="json"),
},
)
self.dispatch(QueueItemStatusChangedEvent.build(queue_item, batch_status, queue_status))
def emit_batch_enqueued(self, enqueue_result: EnqueueBatchResult) -> None:
def emit_batch_enqueued(self, enqueue_result: "EnqueueBatchResult") -> None:
"""Emitted when a batch is enqueued"""
self.__emit_queue_event(
event_name="batch_enqueued",
payload={
"queue_id": enqueue_result.queue_id,
"batch_id": enqueue_result.batch.batch_id,
"enqueued": enqueue_result.enqueued,
},
)
self.dispatch(BatchEnqueuedEvent.build(enqueue_result))
def emit_queue_cleared(self, queue_id: str) -> None:
"""Emitted when the queue is cleared"""
self.__emit_queue_event(
event_name="queue_cleared",
payload={"queue_id": queue_id},
)
"""Emitted when a queue is cleared"""
self.dispatch(QueueClearedEvent.build(queue_id))
def emit_download_started(self, source: str, download_path: str) -> None:
"""
Emit when a download job is started.
# endregion
:param url: The downloaded url
"""
self.__emit_download_event(
event_name="download_started",
payload={"source": source, "download_path": download_path},
)
# region Download
def emit_download_progress(self, source: str, download_path: str, current_bytes: int, total_bytes: int) -> None:
"""
Emit "download_progress" events at regular intervals during a download job.
def emit_download_started(self, job: "DownloadJob") -> None:
"""Emitted when a download is started"""
self.dispatch(DownloadStartedEvent.build(job))
:param source: The downloaded source
:param download_path: The local downloaded file
:param current_bytes: Number of bytes downloaded so far
:param total_bytes: The size of the file being downloaded (if known)
"""
self.__emit_download_event(
event_name="download_progress",
payload={
"source": source,
"download_path": download_path,
"current_bytes": current_bytes,
"total_bytes": total_bytes,
},
)
def emit_download_progress(self, job: "DownloadJob") -> None:
"""Emitted at intervals during a download"""
self.dispatch(DownloadProgressEvent.build(job))
def emit_download_complete(self, source: str, download_path: str, total_bytes: int) -> None:
"""
Emit a "download_complete" event at the end of a successful download.
def emit_download_complete(self, job: "DownloadJob") -> None:
"""Emitted when a download is completed"""
self.dispatch(DownloadCompleteEvent.build(job))
:param source: Source URL
:param download_path: Path to the locally downloaded file
:param total_bytes: The size of the downloaded file
"""
self.__emit_download_event(
event_name="download_complete",
payload={
"source": source,
"download_path": download_path,
"total_bytes": total_bytes,
},
)
def emit_download_cancelled(self, job: "DownloadJob") -> None:
"""Emitted when a download is cancelled"""
self.dispatch(DownloadCancelledEvent.build(job))
def emit_download_cancelled(self, source: str) -> None:
"""Emit a "download_cancelled" event in the event that the download was cancelled by user."""
self.__emit_download_event(
event_name="download_cancelled",
payload={
"source": source,
},
)
def emit_download_error(self, job: "DownloadJob") -> None:
"""Emitted when a download encounters an error"""
self.dispatch(DownloadErrorEvent.build(job))
def emit_download_error(self, source: str, error_type: str, error: str) -> None:
"""
Emit a "download_error" event when an download job encounters an exception.
# endregion
:param source: Source URL
:param error_type: The name of the exception that raised the error
:param error: The traceback from this error
"""
self.__emit_download_event(
event_name="download_error",
payload={
"source": source,
"error_type": error_type,
"error": error,
},
)
# region Model loading
def emit_model_install_downloading(
self,
source: str,
local_path: str,
bytes: int,
total_bytes: int,
parts: List[Dict[str, Union[str, int]]],
id: int,
def emit_model_load_started(self, config: "AnyModelConfig", submodel_type: Optional["SubModelType"] = None) -> None:
"""Emitted when a model load is started."""
self.dispatch(ModelLoadStartedEvent.build(config, submodel_type))
def emit_model_load_complete(
self, config: "AnyModelConfig", submodel_type: Optional["SubModelType"] = None
) -> None:
"""
Emit at intervals while the install job is in progress (remote models only).
"""Emitted when a model load is complete."""
self.dispatch(ModelLoadCompleteEvent.build(config, submodel_type))
:param source: Source of the model
:param local_path: Where model is downloading to
:param parts: Progress of downloading URLs that comprise the model, if any.
:param bytes: Number of bytes downloaded so far.
:param total_bytes: Total size of download, including all files.
This emits a Dict with keys "source", "local_path", "bytes" and "total_bytes".
"""
self.__emit_model_event(
event_name="model_install_downloading",
payload={
"source": source,
"local_path": local_path,
"bytes": bytes,
"total_bytes": total_bytes,
"parts": parts,
"id": id,
},
)
# endregion
def emit_model_install_downloads_done(self, source: str) -> None:
"""
Emit once when all parts are downloaded, but before the probing and registration start.
# region Model install
:param source: Source of the model; local path, repo_id or url
"""
self.__emit_model_event(
event_name="model_install_downloads_done",
payload={"source": source},
)
def emit_model_install_download_progress(self, job: "ModelInstallJob") -> None:
"""Emitted at intervals while the install job is in progress (remote models only)."""
self.dispatch(ModelInstallDownloadProgressEvent.build(job))
def emit_model_install_running(self, source: str) -> None:
"""
Emit once when an install job becomes active.
def emit_model_install_downloads_complete(self, job: "ModelInstallJob") -> None:
self.dispatch(ModelInstallDownloadsCompleteEvent.build(job))
:param source: Source of the model; local path, repo_id or url
"""
self.__emit_model_event(
event_name="model_install_running",
payload={"source": source},
)
def emit_model_install_started(self, job: "ModelInstallJob") -> None:
"""Emitted once when an install job is started (after any download)."""
self.dispatch(ModelInstallStartedEvent.build(job))
def emit_model_install_completed(self, source: str, key: str, id: int, total_bytes: Optional[int] = None) -> None:
"""
Emit when an install job is completed successfully.
def emit_model_install_complete(self, job: "ModelInstallJob") -> None:
"""Emitted when an install job is completed successfully."""
self.dispatch(ModelInstallCompleteEvent.build(job))
:param source: Source of the model; local path, repo_id or url
:param key: Model config record key
:param total_bytes: Size of the model (may be None for installation of a local path)
"""
self.__emit_model_event(
event_name="model_install_completed",
payload={"source": source, "total_bytes": total_bytes, "key": key, "id": id},
)
def emit_model_install_cancelled(self, job: "ModelInstallJob") -> None:
"""Emitted when an install job is cancelled."""
self.dispatch(ModelInstallCancelledEvent.build(job))
def emit_model_install_cancelled(self, source: str, id: int) -> None:
"""
Emit when an install job is cancelled.
def emit_model_install_error(self, job: "ModelInstallJob") -> None:
"""Emitted when an install job encounters an exception."""
self.dispatch(ModelInstallErrorEvent.build(job))
:param source: Source of the model; local path, repo_id or url
"""
self.__emit_model_event(
event_name="model_install_cancelled",
payload={"source": source, "id": id},
)
# endregion
def emit_model_install_error(self, source: str, error_type: str, error: str, id: int) -> None:
"""
Emit when an install job encounters an exception.
:param source: Source of the model
:param error_type: The name of the exception
:param error: A text description of the exception
"""
self.__emit_model_event(
event_name="model_install_error",
payload={"source": source, "error_type": error_type, "error": error, "id": id},
)
# region Bulk image download
def emit_bulk_download_started(
self, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str
) -> None:
"""Emitted when a bulk download starts"""
self._emit_bulk_download_event(
event_name="bulk_download_started",
payload={
"bulk_download_id": bulk_download_id,
"bulk_download_item_id": bulk_download_item_id,
"bulk_download_item_name": bulk_download_item_name,
},
)
"""Emitted when a bulk image download is started"""
self.dispatch(BulkDownloadStartedEvent.build(bulk_download_id, bulk_download_item_id, bulk_download_item_name))
def emit_bulk_download_completed(
def emit_bulk_download_complete(
self, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str
) -> None:
"""Emitted when a bulk download completes"""
self._emit_bulk_download_event(
event_name="bulk_download_completed",
payload={
"bulk_download_id": bulk_download_id,
"bulk_download_item_id": bulk_download_item_id,
"bulk_download_item_name": bulk_download_item_name,
},
)
"""Emitted when a bulk image download is complete"""
self.dispatch(BulkDownloadCompleteEvent.build(bulk_download_id, bulk_download_item_id, bulk_download_item_name))
def emit_bulk_download_failed(
def emit_bulk_download_error(
self, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str, error: str
) -> None:
"""Emitted when a bulk download fails"""
self._emit_bulk_download_event(
event_name="bulk_download_failed",
payload={
"bulk_download_id": bulk_download_id,
"bulk_download_item_id": bulk_download_item_id,
"bulk_download_item_name": bulk_download_item_name,
"error": error,
},
"""Emitted when a bulk image download has an error"""
self.dispatch(
BulkDownloadErrorEvent.build(bulk_download_id, bulk_download_item_id, bulk_download_item_name, error)
)
# endregion

View File

@ -0,0 +1,608 @@
from math import floor
from typing import TYPE_CHECKING, Any, ClassVar, Coroutine, Generic, Optional, Protocol, TypeAlias, TypeVar
from fastapi_events.handlers.local import local_handler
from fastapi_events.registry.payload_schema import registry as payload_schema
from pydantic import BaseModel, ConfigDict, Field, SerializeAsAny, field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
BatchStatus,
EnqueueBatchResult,
SessionQueueItem,
SessionQueueStatus,
)
from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
if TYPE_CHECKING:
from invokeai.app.services.download.download_base import DownloadJob
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
class EventBase(BaseModel):
"""Base class for all events. All events must inherit from this class.
Events must define a class attribute `__event_name__` to identify the event.
All other attributes should be defined as normal for a pydantic model.
A timestamp is automatically added to the event when it is created.
"""
__event_name__: ClassVar[str]
timestamp: int = Field(description="The timestamp of the event", default_factory=get_timestamp)
model_config = ConfigDict(json_schema_serialization_defaults_required=True)
@classmethod
def get_events(cls) -> set[type["EventBase"]]:
"""Get a set of all event models."""
event_subclasses: set[type["EventBase"]] = set()
for subclass in cls.__subclasses__():
# We only want to include subclasses that are event models, not intermediary classes
if hasattr(subclass, "__event_name__"):
event_subclasses.add(subclass)
event_subclasses.update(subclass.get_events())
return event_subclasses
TEvent = TypeVar("TEvent", bound=EventBase, contravariant=True)
FastAPIEvent: TypeAlias = tuple[str, TEvent]
"""
A tuple representing a `fastapi-events` event, with the event name and payload.
Provide a generic type to `TEvent` to specify the payload type.
"""
class FastAPIEventFunc(Protocol, Generic[TEvent]):
def __call__(self, event: FastAPIEvent[TEvent]) -> Optional[Coroutine[Any, Any, None]]: ...
def register_events(events: set[type[TEvent]] | type[TEvent], func: FastAPIEventFunc[TEvent]) -> None:
"""Register a function to handle specific events.
:param events: An event or set of events to handle
:param func: The function to handle the events
"""
events = events if isinstance(events, set) else {events}
for event in events:
assert hasattr(event, "__event_name__")
local_handler.register(event_name=event.__event_name__, _func=func) # pyright: ignore [reportUnknownMemberType, reportUnknownArgumentType, reportAttributeAccessIssue]
class QueueEventBase(EventBase):
"""Base class for queue events"""
queue_id: str = Field(description="The ID of the queue")
class QueueItemEventBase(QueueEventBase):
"""Base class for queue item events"""
item_id: int = Field(description="The ID of the queue item")
batch_id: str = Field(description="The ID of the queue batch")
class InvocationEventBase(QueueItemEventBase):
"""Base class for invocation events"""
session_id: str = Field(description="The ID of the session (aka graph execution state)")
queue_id: str = Field(description="The ID of the queue")
item_id: int = Field(description="The ID of the queue item")
batch_id: str = Field(description="The ID of the queue batch")
session_id: str = Field(description="The ID of the session (aka graph execution state)")
invocation: SerializeAsAny[BaseInvocation] = Field(description="The ID of the invocation")
invocation_source_id: str = Field(description="The ID of the prepared invocation's source node")
@field_validator("invocation", mode="plain")
@classmethod
def validate_invocation(cls, v: Any):
"""Validates the invocation using the dynamic type adapter."""
invocation = BaseInvocation.get_typeadapter().validate_python(v)
return invocation
@payload_schema.register
class InvocationStartedEvent(InvocationEventBase):
"""Event model for invocation_started"""
__event_name__ = "invocation_started"
@classmethod
def build(cls, queue_item: SessionQueueItem, invocation: BaseInvocation) -> "InvocationStartedEvent":
return cls(
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
)
@payload_schema.register
class InvocationDenoiseProgressEvent(InvocationEventBase):
"""Event model for invocation_denoise_progress"""
__event_name__ = "invocation_denoise_progress"
progress_image: ProgressImage = Field(description="The progress image sent at each step during processing")
step: int = Field(description="The current step of the invocation")
total_steps: int = Field(description="The total number of steps in the invocation")
order: int = Field(description="The order of the invocation in the session")
percentage: float = Field(description="The percentage of completion of the invocation")
@classmethod
def build(
cls,
queue_item: SessionQueueItem,
invocation: BaseInvocation,
intermediate_state: PipelineIntermediateState,
progress_image: ProgressImage,
) -> "InvocationDenoiseProgressEvent":
step = intermediate_state.step
total_steps = intermediate_state.total_steps
order = intermediate_state.order
return cls(
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
progress_image=progress_image,
step=step,
total_steps=total_steps,
order=order,
percentage=cls.calc_percentage(step, total_steps, order),
)
@staticmethod
def calc_percentage(step: int, total_steps: int, scheduler_order: float) -> float:
"""Calculate the percentage of completion of denoising."""
if total_steps == 0:
return 0.0
if scheduler_order == 2:
return floor((step + 1 + 1) / 2) / floor((total_steps + 1) / 2)
# order == 1
return (step + 1 + 1) / (total_steps + 1)
@payload_schema.register
class InvocationCompleteEvent(InvocationEventBase):
"""Event model for invocation_complete"""
__event_name__ = "invocation_complete"
result: SerializeAsAny[BaseInvocationOutput] = Field(description="The result of the invocation")
@field_validator("result", mode="plain")
@classmethod
def validate_results(cls, v: Any):
"""Validates the invocation result using the dynamic type adapter."""
result = BaseInvocationOutput.get_typeadapter().validate_python(v)
return result
@classmethod
def build(
cls, queue_item: SessionQueueItem, invocation: BaseInvocation, result: BaseInvocationOutput
) -> "InvocationCompleteEvent":
return cls(
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
result=result,
)
@payload_schema.register
class InvocationErrorEvent(InvocationEventBase):
"""Event model for invocation_error"""
__event_name__ = "invocation_error"
error_type: str = Field(description="The error type")
error_message: str = Field(description="The error message")
error_traceback: str = Field(description="The error traceback")
user_id: Optional[str] = Field(default=None, description="The ID of the user who created the invocation")
project_id: Optional[str] = Field(default=None, description="The ID of the user who created the invocation")
@classmethod
def build(
cls,
queue_item: SessionQueueItem,
invocation: BaseInvocation,
error_type: str,
error_message: str,
error_traceback: str,
) -> "InvocationErrorEvent":
return cls(
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
session_id=queue_item.session_id,
invocation=invocation,
invocation_source_id=queue_item.session.prepared_source_mapping[invocation.id],
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
user_id=getattr(queue_item, "user_id", None),
project_id=getattr(queue_item, "project_id", None),
)
@payload_schema.register
class QueueItemStatusChangedEvent(QueueItemEventBase):
"""Event model for queue_item_status_changed"""
__event_name__ = "queue_item_status_changed"
status: QUEUE_ITEM_STATUS = Field(description="The new status of the queue item")
error_type: Optional[str] = Field(default=None, description="The error type, if any")
error_message: Optional[str] = Field(default=None, description="The error message, if any")
error_traceback: Optional[str] = Field(default=None, description="The error traceback, if any")
created_at: Optional[str] = Field(default=None, description="The timestamp when the queue item was created")
updated_at: Optional[str] = Field(default=None, description="The timestamp when the queue item was last updated")
started_at: Optional[str] = Field(default=None, description="The timestamp when the queue item was started")
completed_at: Optional[str] = Field(default=None, description="The timestamp when the queue item was completed")
batch_status: BatchStatus = Field(description="The status of the batch")
queue_status: SessionQueueStatus = Field(description="The status of the queue")
session_id: str = Field(description="The ID of the session (aka graph execution state)")
@classmethod
def build(
cls, queue_item: SessionQueueItem, batch_status: BatchStatus, queue_status: SessionQueueStatus
) -> "QueueItemStatusChangedEvent":
return cls(
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
batch_id=queue_item.batch_id,
session_id=queue_item.session_id,
status=queue_item.status,
error_type=queue_item.error_type,
error_message=queue_item.error_message,
error_traceback=queue_item.error_traceback,
created_at=str(queue_item.created_at) if queue_item.created_at else None,
updated_at=str(queue_item.updated_at) if queue_item.updated_at else None,
started_at=str(queue_item.started_at) if queue_item.started_at else None,
completed_at=str(queue_item.completed_at) if queue_item.completed_at else None,
batch_status=batch_status,
queue_status=queue_status,
)
@payload_schema.register
class BatchEnqueuedEvent(QueueEventBase):
"""Event model for batch_enqueued"""
__event_name__ = "batch_enqueued"
batch_id: str = Field(description="The ID of the batch")
enqueued: int = Field(description="The number of invocations enqueued")
requested: int = Field(
description="The number of invocations initially requested to be enqueued (may be less than enqueued if queue was full)"
)
priority: int = Field(description="The priority of the batch")
@classmethod
def build(cls, enqueue_result: EnqueueBatchResult) -> "BatchEnqueuedEvent":
return cls(
queue_id=enqueue_result.queue_id,
batch_id=enqueue_result.batch.batch_id,
enqueued=enqueue_result.enqueued,
requested=enqueue_result.requested,
priority=enqueue_result.priority,
)
@payload_schema.register
class QueueClearedEvent(QueueEventBase):
"""Event model for queue_cleared"""
__event_name__ = "queue_cleared"
@classmethod
def build(cls, queue_id: str) -> "QueueClearedEvent":
return cls(queue_id=queue_id)
class DownloadEventBase(EventBase):
"""Base class for events associated with a download"""
source: str = Field(description="The source of the download")
@payload_schema.register
class DownloadStartedEvent(DownloadEventBase):
"""Event model for download_started"""
__event_name__ = "download_started"
download_path: str = Field(description="The local path where the download is saved")
@classmethod
def build(cls, job: "DownloadJob") -> "DownloadStartedEvent":
assert job.download_path
return cls(source=str(job.source), download_path=job.download_path.as_posix())
@payload_schema.register
class DownloadProgressEvent(DownloadEventBase):
"""Event model for download_progress"""
__event_name__ = "download_progress"
download_path: str = Field(description="The local path where the download is saved")
current_bytes: int = Field(description="The number of bytes downloaded so far")
total_bytes: int = Field(description="The total number of bytes to be downloaded")
@classmethod
def build(cls, job: "DownloadJob") -> "DownloadProgressEvent":
assert job.download_path
return cls(
source=str(job.source),
download_path=job.download_path.as_posix(),
current_bytes=job.bytes,
total_bytes=job.total_bytes,
)
@payload_schema.register
class DownloadCompleteEvent(DownloadEventBase):
"""Event model for download_complete"""
__event_name__ = "download_complete"
download_path: str = Field(description="The local path where the download is saved")
total_bytes: int = Field(description="The total number of bytes downloaded")
@classmethod
def build(cls, job: "DownloadJob") -> "DownloadCompleteEvent":
assert job.download_path
return cls(source=str(job.source), download_path=job.download_path.as_posix(), total_bytes=job.total_bytes)
@payload_schema.register
class DownloadCancelledEvent(DownloadEventBase):
"""Event model for download_cancelled"""
__event_name__ = "download_cancelled"
@classmethod
def build(cls, job: "DownloadJob") -> "DownloadCancelledEvent":
return cls(source=str(job.source))
@payload_schema.register
class DownloadErrorEvent(DownloadEventBase):
"""Event model for download_error"""
__event_name__ = "download_error"
error_type: str = Field(description="The type of error")
error: str = Field(description="The error message")
@classmethod
def build(cls, job: "DownloadJob") -> "DownloadErrorEvent":
assert job.error_type
assert job.error
return cls(source=str(job.source), error_type=job.error_type, error=job.error)
class ModelEventBase(EventBase):
"""Base class for events associated with a model"""
@payload_schema.register
class ModelLoadStartedEvent(ModelEventBase):
"""Event model for model_load_started"""
__event_name__ = "model_load_started"
config: AnyModelConfig = Field(description="The model's config")
submodel_type: Optional[SubModelType] = Field(default=None, description="The submodel type, if any")
@classmethod
def build(cls, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> "ModelLoadStartedEvent":
return cls(config=config, submodel_type=submodel_type)
@payload_schema.register
class ModelLoadCompleteEvent(ModelEventBase):
"""Event model for model_load_complete"""
__event_name__ = "model_load_complete"
config: AnyModelConfig = Field(description="The model's config")
submodel_type: Optional[SubModelType] = Field(default=None, description="The submodel type, if any")
@classmethod
def build(cls, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> "ModelLoadCompleteEvent":
return cls(config=config, submodel_type=submodel_type)
@payload_schema.register
class ModelInstallDownloadProgressEvent(ModelEventBase):
"""Event model for model_install_download_progress"""
__event_name__ = "model_install_download_progress"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
parts: list[dict[str, int | str]] = Field(
description="Progress of downloading URLs that comprise the model, if any"
)
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadProgressEvent":
parts: list[dict[str, str | int]] = [
{
"url": str(x.source),
"local_path": str(x.download_path),
"bytes": x.bytes,
"total_bytes": x.total_bytes,
}
for x in job.download_parts
]
return cls(
id=job.id,
source=str(job.source),
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
total_bytes=job.total_bytes,
)
@payload_schema.register
class ModelInstallDownloadsCompleteEvent(ModelEventBase):
"""Emitted once when an install job becomes active."""
__event_name__ = "model_install_downloads_complete"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadsCompleteEvent":
return cls(id=job.id, source=str(job.source))
@payload_schema.register
class ModelInstallStartedEvent(ModelEventBase):
"""Event model for model_install_started"""
__event_name__ = "model_install_started"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallStartedEvent":
return cls(id=job.id, source=str(job.source))
@payload_schema.register
class ModelInstallCompleteEvent(ModelEventBase):
"""Event model for model_install_complete"""
__event_name__ = "model_install_complete"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
key: str = Field(description="Model config record key")
total_bytes: Optional[int] = Field(description="Size of the model (may be None for installation of a local path)")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallCompleteEvent":
assert job.config_out is not None
return cls(id=job.id, source=str(job.source), key=(job.config_out.key), total_bytes=job.total_bytes)
@payload_schema.register
class ModelInstallCancelledEvent(ModelEventBase):
"""Event model for model_install_cancelled"""
__event_name__ = "model_install_cancelled"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallCancelledEvent":
return cls(id=job.id, source=str(job.source))
@payload_schema.register
class ModelInstallErrorEvent(ModelEventBase):
"""Event model for model_install_error"""
__event_name__ = "model_install_error"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
error_type: str = Field(description="The name of the exception")
error: str = Field(description="A text description of the exception")
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallErrorEvent":
assert job.error_type is not None
assert job.error is not None
return cls(id=job.id, source=str(job.source), error_type=job.error_type, error=job.error)
class BulkDownloadEventBase(EventBase):
"""Base class for events associated with a bulk image download"""
bulk_download_id: str = Field(description="The ID of the bulk image download")
bulk_download_item_id: str = Field(description="The ID of the bulk image download item")
bulk_download_item_name: str = Field(description="The name of the bulk image download item")
@payload_schema.register
class BulkDownloadStartedEvent(BulkDownloadEventBase):
"""Event model for bulk_download_started"""
__event_name__ = "bulk_download_started"
@classmethod
def build(
cls, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str
) -> "BulkDownloadStartedEvent":
return cls(
bulk_download_id=bulk_download_id,
bulk_download_item_id=bulk_download_item_id,
bulk_download_item_name=bulk_download_item_name,
)
@payload_schema.register
class BulkDownloadCompleteEvent(BulkDownloadEventBase):
"""Event model for bulk_download_complete"""
__event_name__ = "bulk_download_complete"
@classmethod
def build(
cls, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str
) -> "BulkDownloadCompleteEvent":
return cls(
bulk_download_id=bulk_download_id,
bulk_download_item_id=bulk_download_item_id,
bulk_download_item_name=bulk_download_item_name,
)
@payload_schema.register
class BulkDownloadErrorEvent(BulkDownloadEventBase):
"""Event model for bulk_download_error"""
__event_name__ = "bulk_download_error"
error: str = Field(description="The error message")
@classmethod
def build(
cls, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str, error: str
) -> "BulkDownloadErrorEvent":
return cls(
bulk_download_id=bulk_download_id,
bulk_download_item_id=bulk_download_item_id,
bulk_download_item_name=bulk_download_item_name,
error=error,
)

View File

@ -0,0 +1,47 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
import threading
from queue import Empty, Queue
from fastapi_events.dispatcher import dispatch
from invokeai.app.services.events.events_common import (
EventBase,
)
from .events_base import EventServiceBase
class FastAPIEventService(EventServiceBase):
def __init__(self, event_handler_id: int) -> None:
self.event_handler_id = event_handler_id
self._queue = Queue[EventBase | None]()
self._stop_event = threading.Event()
asyncio.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
super().__init__()
def stop(self, *args, **kwargs):
self._stop_event.set()
self._queue.put(None)
def dispatch(self, event: EventBase) -> None:
self._queue.put(event)
async def _dispatch_from_queue(self, stop_event: threading.Event):
"""Get events on from the queue and dispatch them, from the correct thread"""
while not stop_event.is_set():
try:
event = self._queue.get(block=False)
if not event: # Probably stopping
continue
# Leave the payloads as live pydantic models
dispatch(event, middleware_id=self.event_handler_id, payload_schema_dump=False)
except Empty:
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:
raise e # Raise a proper error

View File

@ -4,9 +4,6 @@ from typing import Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
class ImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@ -33,8 +30,9 @@ class ImageFileStorageBase(ABC):
self,
image: PILImageType,
image_name: str,
metadata: Optional[MetadataField] = None,
workflow: Optional[WorkflowWithoutID] = None,
metadata: Optional[str] = None,
workflow: Optional[str] = None,
graph: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
@ -46,6 +44,11 @@ class ImageFileStorageBase(ABC):
pass
@abstractmethod
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
def get_workflow(self, image_name: str) -> Optional[str]:
"""Gets the workflow of an image."""
pass
@abstractmethod
def get_graph(self, image_name: str) -> Optional[str]:
"""Gets the graph of an image."""
pass

View File

@ -7,9 +7,7 @@ from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
from .image_files_base import ImageFileStorageBase
@ -56,8 +54,9 @@ class DiskImageFileStorage(ImageFileStorageBase):
self,
image: PILImageType,
image_name: str,
metadata: Optional[MetadataField] = None,
workflow: Optional[WorkflowWithoutID] = None,
metadata: Optional[str] = None,
workflow: Optional[str] = None,
graph: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
try:
@ -68,13 +67,14 @@ class DiskImageFileStorage(ImageFileStorageBase):
info_dict = {}
if metadata is not None:
metadata_json = metadata.model_dump_json()
info_dict["invokeai_metadata"] = metadata_json
pnginfo.add_text("invokeai_metadata", metadata_json)
info_dict["invokeai_metadata"] = metadata
pnginfo.add_text("invokeai_metadata", metadata)
if workflow is not None:
workflow_json = workflow.model_dump_json()
info_dict["invokeai_workflow"] = workflow_json
pnginfo.add_text("invokeai_workflow", workflow_json)
info_dict["invokeai_workflow"] = workflow
pnginfo.add_text("invokeai_workflow", workflow)
if graph is not None:
info_dict["invokeai_graph"] = graph
pnginfo.add_text("invokeai_graph", graph)
# When saving the image, the image object's info field is not populated. We need to set it
image.info = info_dict
@ -129,11 +129,18 @@ class DiskImageFileStorage(ImageFileStorageBase):
path = path if isinstance(path, Path) else Path(path)
return path.exists()
def get_workflow(self, image_name: str) -> WorkflowWithoutID | None:
def get_workflow(self, image_name: str) -> str | None:
image = self.get(image_name)
workflow = image.info.get("invokeai_workflow", None)
if workflow is not None:
return WorkflowWithoutID.model_validate_json(workflow)
if isinstance(workflow, str):
return workflow
return None
def get_graph(self, image_name: str) -> str | None:
image = self.get(image_name)
graph = image.info.get("invokeai_graph", None)
if isinstance(graph, str):
return graph
return None
def __validate_storage_folders(self) -> None:

View File

@ -80,7 +80,7 @@ class ImageRecordStorageBase(ABC):
starred: Optional[bool] = False,
session_id: Optional[str] = None,
node_id: Optional[str] = None,
metadata: Optional[MetadataField] = None,
metadata: Optional[str] = None,
) -> datetime:
"""Saves an image record."""
pass

View File

@ -328,10 +328,9 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
starred: Optional[bool] = False,
session_id: Optional[str] = None,
node_id: Optional[str] = None,
metadata: Optional[MetadataField] = None,
metadata: Optional[str] = None,
) -> datetime:
try:
metadata_json = metadata.model_dump_json() if metadata is not None else None
self._lock.acquire()
self._cursor.execute(
"""--sql
@ -358,7 +357,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
height,
node_id,
session_id,
metadata_json,
metadata,
is_intermediate,
starred,
has_workflow,

View File

@ -12,7 +12,6 @@ from invokeai.app.services.image_records.image_records_common import (
)
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
class ImageServiceABC(ABC):
@ -51,8 +50,9 @@ class ImageServiceABC(ABC):
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: Optional[bool] = False,
metadata: Optional[MetadataField] = None,
workflow: Optional[WorkflowWithoutID] = None,
metadata: Optional[str] = None,
workflow: Optional[str] = None,
graph: Optional[str] = None,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@ -87,7 +87,12 @@ class ImageServiceABC(ABC):
pass
@abstractmethod
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
def get_workflow(self, image_name: str) -> Optional[str]:
"""Gets an image's workflow."""
pass
@abstractmethod
def get_graph(self, image_name: str) -> Optional[str]:
"""Gets an image's workflow."""
pass

View File

@ -5,7 +5,6 @@ from PIL.Image import Image as PILImageType
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from ..image_files.image_files_common import (
ImageFileDeleteException,
@ -42,8 +41,9 @@ class ImageService(ImageServiceABC):
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: Optional[bool] = False,
metadata: Optional[MetadataField] = None,
workflow: Optional[WorkflowWithoutID] = None,
metadata: Optional[str] = None,
workflow: Optional[str] = None,
graph: Optional[str] = None,
) -> ImageDTO:
if image_origin not in ResourceOrigin:
raise InvalidOriginException
@ -64,7 +64,7 @@ class ImageService(ImageServiceABC):
image_category=image_category,
width=width,
height=height,
has_workflow=workflow is not None,
has_workflow=workflow is not None or graph is not None,
# Meta fields
is_intermediate=is_intermediate,
# Nullable fields
@ -75,7 +75,7 @@ class ImageService(ImageServiceABC):
if board_id is not None:
self.__invoker.services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
self.__invoker.services.image_files.save(
image_name=image_name, image=image, metadata=metadata, workflow=workflow
image_name=image_name, image=image, metadata=metadata, workflow=workflow, graph=graph
)
image_dto = self.get_dto(image_name)
@ -157,7 +157,7 @@ class ImageService(ImageServiceABC):
self.__invoker.services.logger.error("Problem getting image metadata")
raise e
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
def get_workflow(self, image_name: str) -> Optional[str]:
try:
return self.__invoker.services.image_files.get_workflow(image_name)
except ImageFileNotFoundException:
@ -167,6 +167,16 @@ class ImageService(ImageServiceABC):
self.__invoker.services.logger.error("Problem getting image workflow")
raise
def get_graph(self, image_name: str) -> Optional[str]:
try:
return self.__invoker.services.image_files.get_graph(image_name)
except ImageFileNotFoundException:
self.__invoker.services.logger.error("Image file not found")
raise
except Exception:
self.__invoker.services.logger.error("Problem getting image graph")
raise
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
try:
return str(self.__invoker.services.image_files.get_path(image_name, thumbnail))

View File

@ -1,11 +1,13 @@
"""Initialization file for model install service package."""
from .model_install_base import (
ModelInstallServiceBase,
)
from .model_install_common import (
HFModelSource,
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelInstallServiceBase,
ModelSource,
UnknownInstallJobException,
URLModelSource,

View File

@ -1,244 +1,19 @@
# Copyright 2023 Lincoln D. Stein and the InvokeAI development team
"""Baseclass definitions for the model installer."""
import re
import traceback
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Set, Union
from typing import Any, Dict, List, Optional, Union
from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic.networks import AnyHttpUrl
from typing_extensions import Annotated
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase
from invokeai.app.services.download import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
class InstallStatus(str, Enum):
"""State of an install job running in the background."""
WAITING = "waiting" # waiting to be dequeued
DOWNLOADING = "downloading" # downloading of model files in process
DOWNLOADS_DONE = "downloads_done" # downloading done, waiting to run
RUNNING = "running" # being processed
COMPLETED = "completed" # finished running
ERROR = "error" # terminated with an error message
CANCELLED = "cancelled" # terminated with an error message
class ModelInstallPart(BaseModel):
url: AnyHttpUrl
path: Path
bytes: int = 0
total_bytes: int = 0
class UnknownInstallJobException(Exception):
"""Raised when the status of an unknown job is requested."""
class StringLikeSource(BaseModel):
"""
Base class for model sources, implements functions that lets the source be sorted and indexed.
These shenanigans let this stuff work:
source1 = LocalModelSource(path='C:/users/mort/foo.safetensors')
mydict = {source1: 'model 1'}
assert mydict['C:/users/mort/foo.safetensors'] == 'model 1'
assert mydict[LocalModelSource(path='C:/users/mort/foo.safetensors')] == 'model 1'
source2 = LocalModelSource(path=Path('C:/users/mort/foo.safetensors'))
assert source1 == source2
assert source1 == 'C:/users/mort/foo.safetensors'
"""
def __hash__(self) -> int:
"""Return hash of the path field, for indexing."""
return hash(str(self))
def __lt__(self, other: object) -> int:
"""Return comparison of the stringified version, for sorting."""
return str(self) < str(other)
def __eq__(self, other: object) -> bool:
"""Return equality on the stringified version."""
if isinstance(other, Path):
return str(self) == other.as_posix()
else:
return str(self) == str(other)
class LocalModelSource(StringLikeSource):
"""A local file or directory path."""
path: str | Path
inplace: Optional[bool] = False
type: Literal["local"] = "local"
# these methods allow the source to be used in a string-like way,
# for example as an index into a dict
def __str__(self) -> str:
"""Return string version of path when string rep needed."""
return Path(self.path).as_posix()
class HFModelSource(StringLikeSource):
"""
A HuggingFace repo_id with optional variant, sub-folder and access token.
Note that the variant option, if not provided to the constructor, will default to fp16, which is
what people (almost) always want.
"""
repo_id: str
variant: Optional[ModelRepoVariant] = ModelRepoVariant.FP16
subfolder: Optional[Path] = None
access_token: Optional[str] = None
type: Literal["hf"] = "hf"
@field_validator("repo_id")
@classmethod
def proper_repo_id(cls, v: str) -> str: # noqa D102
if not re.match(r"^([.\w-]+/[.\w-]+)$", v):
raise ValueError(f"{v}: invalid repo_id format")
return v
def __str__(self) -> str:
"""Return string version of repoid when string rep needed."""
base: str = self.repo_id
if self.variant:
base += f":{self.variant or ''}"
if self.subfolder:
base += f":{self.subfolder}"
return base
class URLModelSource(StringLikeSource):
"""A generic URL point to a checkpoint file."""
url: AnyHttpUrl
access_token: Optional[str] = None
type: Literal["url"] = "url"
def __str__(self) -> str:
"""Return string version of the url when string rep needed."""
return str(self.url)
ModelSource = Annotated[Union[LocalModelSource, HFModelSource, URLModelSource], Field(discriminator="type")]
MODEL_SOURCE_TO_TYPE_MAP = {
URLModelSource: ModelSourceType.Url,
HFModelSource: ModelSourceType.HFRepoID,
LocalModelSource: ModelSourceType.Path,
}
class ModelInstallJob(BaseModel):
"""Object that tracks the current status of an install request."""
id: int = Field(description="Unique ID for this job")
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
error_reason: Optional[str] = Field(default=None, description="Information about why the job failed")
config_in: Dict[str, Any] = Field(
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
)
config_out: Optional[AnyModelConfig] = Field(
default=None, description="After successful installation, this will hold the configuration object."
)
inplace: bool = Field(
default=False, description="Leave model in its current location; otherwise install under models directory"
)
source: ModelSource = Field(description="Source (URL, repo_id, or local path) of model")
local_path: Path = Field(description="Path to locally-downloaded model; may be the same as the source")
bytes: int = Field(
default=0, description="For a remote model, the number of bytes downloaded so far (may not be available)"
)
total_bytes: int = Field(default=0, description="Total size of the model to be installed")
source_metadata: Optional[AnyModelRepoMetadata] = Field(
default=None, description="Metadata provided by the model source"
)
download_parts: Set[DownloadJob] = Field(
default_factory=set, description="Download jobs contributing to this install"
)
error: Optional[str] = Field(
default=None, description="On an error condition, this field will contain the text of the exception"
)
error_traceback: Optional[str] = Field(
default=None, description="On an error condition, this field will contain the exception traceback"
)
# internal flags and transitory settings
_install_tmpdir: Optional[Path] = PrivateAttr(default=None)
_exception: Optional[Exception] = PrivateAttr(default=None)
def set_error(self, e: Exception) -> None:
"""Record the error and traceback from an exception."""
self._exception = e
self.error = str(e)
self.error_traceback = self._format_error(e)
self.status = InstallStatus.ERROR
self.error_reason = self._exception.__class__.__name__ if self._exception else None
def cancel(self) -> None:
"""Call to cancel the job."""
self.status = InstallStatus.CANCELLED
@property
def error_type(self) -> Optional[str]:
"""Class name of the exception that led to status==ERROR."""
return self._exception.__class__.__name__ if self._exception else None
def _format_error(self, exception: Exception) -> str:
"""Error traceback."""
return "".join(traceback.format_exception(exception))
@property
def cancelled(self) -> bool:
"""Set status to CANCELLED."""
return self.status == InstallStatus.CANCELLED
@property
def errored(self) -> bool:
"""Return true if job has errored."""
return self.status == InstallStatus.ERROR
@property
def waiting(self) -> bool:
"""Return true if job is waiting to run."""
return self.status == InstallStatus.WAITING
@property
def downloading(self) -> bool:
"""Return true if job is downloading."""
return self.status == InstallStatus.DOWNLOADING
@property
def downloads_done(self) -> bool:
"""Return true if job's downloads ae done."""
return self.status == InstallStatus.DOWNLOADS_DONE
@property
def running(self) -> bool:
"""Return true if job is running."""
return self.status == InstallStatus.RUNNING
@property
def complete(self) -> bool:
"""Return true if job completed without errors."""
return self.status == InstallStatus.COMPLETED
@property
def in_terminal_state(self) -> bool:
"""Return true if job is in a terminal state."""
return self.status in [InstallStatus.COMPLETED, InstallStatus.ERROR, InstallStatus.CANCELLED]
from invokeai.backend.model_manager.config import AnyModelConfig
class ModelInstallServiceBase(ABC):
@ -282,7 +57,7 @@ class ModelInstallServiceBase(ABC):
@property
@abstractmethod
def event_bus(self) -> Optional[EventServiceBase]:
def event_bus(self) -> Optional["EventServiceBase"]:
"""Return the event service base object associated with the installer."""
@abstractmethod

View File

@ -0,0 +1,233 @@
import re
import traceback
from enum import Enum
from pathlib import Path
from typing import Any, Dict, Literal, Optional, Set, Union
from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic.networks import AnyHttpUrl
from typing_extensions import Annotated
from invokeai.app.services.download import DownloadJob
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
class InstallStatus(str, Enum):
"""State of an install job running in the background."""
WAITING = "waiting" # waiting to be dequeued
DOWNLOADING = "downloading" # downloading of model files in process
DOWNLOADS_DONE = "downloads_done" # downloading done, waiting to run
RUNNING = "running" # being processed
COMPLETED = "completed" # finished running
ERROR = "error" # terminated with an error message
CANCELLED = "cancelled" # terminated with an error message
class ModelInstallPart(BaseModel):
url: AnyHttpUrl
path: Path
bytes: int = 0
total_bytes: int = 0
class UnknownInstallJobException(Exception):
"""Raised when the status of an unknown job is requested."""
class StringLikeSource(BaseModel):
"""
Base class for model sources, implements functions that lets the source be sorted and indexed.
These shenanigans let this stuff work:
source1 = LocalModelSource(path='C:/users/mort/foo.safetensors')
mydict = {source1: 'model 1'}
assert mydict['C:/users/mort/foo.safetensors'] == 'model 1'
assert mydict[LocalModelSource(path='C:/users/mort/foo.safetensors')] == 'model 1'
source2 = LocalModelSource(path=Path('C:/users/mort/foo.safetensors'))
assert source1 == source2
assert source1 == 'C:/users/mort/foo.safetensors'
"""
def __hash__(self) -> int:
"""Return hash of the path field, for indexing."""
return hash(str(self))
def __lt__(self, other: object) -> int:
"""Return comparison of the stringified version, for sorting."""
return str(self) < str(other)
def __eq__(self, other: object) -> bool:
"""Return equality on the stringified version."""
if isinstance(other, Path):
return str(self) == other.as_posix()
else:
return str(self) == str(other)
class LocalModelSource(StringLikeSource):
"""A local file or directory path."""
path: str | Path
inplace: Optional[bool] = False
type: Literal["local"] = "local"
# these methods allow the source to be used in a string-like way,
# for example as an index into a dict
def __str__(self) -> str:
"""Return string version of path when string rep needed."""
return Path(self.path).as_posix()
class HFModelSource(StringLikeSource):
"""
A HuggingFace repo_id with optional variant, sub-folder and access token.
Note that the variant option, if not provided to the constructor, will default to fp16, which is
what people (almost) always want.
"""
repo_id: str
variant: Optional[ModelRepoVariant] = ModelRepoVariant.FP16
subfolder: Optional[Path] = None
access_token: Optional[str] = None
type: Literal["hf"] = "hf"
@field_validator("repo_id")
@classmethod
def proper_repo_id(cls, v: str) -> str: # noqa D102
if not re.match(r"^([.\w-]+/[.\w-]+)$", v):
raise ValueError(f"{v}: invalid repo_id format")
return v
def __str__(self) -> str:
"""Return string version of repoid when string rep needed."""
base: str = self.repo_id
if self.variant:
base += f":{self.variant or ''}"
if self.subfolder:
base += f":{self.subfolder}"
return base
class URLModelSource(StringLikeSource):
"""A generic URL point to a checkpoint file."""
url: AnyHttpUrl
access_token: Optional[str] = None
type: Literal["url"] = "url"
def __str__(self) -> str:
"""Return string version of the url when string rep needed."""
return str(self.url)
ModelSource = Annotated[Union[LocalModelSource, HFModelSource, URLModelSource], Field(discriminator="type")]
MODEL_SOURCE_TO_TYPE_MAP = {
URLModelSource: ModelSourceType.Url,
HFModelSource: ModelSourceType.HFRepoID,
LocalModelSource: ModelSourceType.Path,
}
class ModelInstallJob(BaseModel):
"""Object that tracks the current status of an install request."""
id: int = Field(description="Unique ID for this job")
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
error_reason: Optional[str] = Field(default=None, description="Information about why the job failed")
config_in: Dict[str, Any] = Field(
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
)
config_out: Optional[AnyModelConfig] = Field(
default=None, description="After successful installation, this will hold the configuration object."
)
inplace: bool = Field(
default=False, description="Leave model in its current location; otherwise install under models directory"
)
source: ModelSource = Field(description="Source (URL, repo_id, or local path) of model")
local_path: Path = Field(description="Path to locally-downloaded model; may be the same as the source")
bytes: int = Field(
default=0, description="For a remote model, the number of bytes downloaded so far (may not be available)"
)
total_bytes: int = Field(default=0, description="Total size of the model to be installed")
source_metadata: Optional[AnyModelRepoMetadata] = Field(
default=None, description="Metadata provided by the model source"
)
download_parts: Set[DownloadJob] = Field(
default_factory=set, description="Download jobs contributing to this install"
)
error: Optional[str] = Field(
default=None, description="On an error condition, this field will contain the text of the exception"
)
error_traceback: Optional[str] = Field(
default=None, description="On an error condition, this field will contain the exception traceback"
)
# internal flags and transitory settings
_install_tmpdir: Optional[Path] = PrivateAttr(default=None)
_exception: Optional[Exception] = PrivateAttr(default=None)
def set_error(self, e: Exception) -> None:
"""Record the error and traceback from an exception."""
self._exception = e
self.error = str(e)
self.error_traceback = self._format_error(e)
self.status = InstallStatus.ERROR
self.error_reason = self._exception.__class__.__name__ if self._exception else None
def cancel(self) -> None:
"""Call to cancel the job."""
self.status = InstallStatus.CANCELLED
@property
def error_type(self) -> Optional[str]:
"""Class name of the exception that led to status==ERROR."""
return self._exception.__class__.__name__ if self._exception else None
def _format_error(self, exception: Exception) -> str:
"""Error traceback."""
return "".join(traceback.format_exception(exception))
@property
def cancelled(self) -> bool:
"""Set status to CANCELLED."""
return self.status == InstallStatus.CANCELLED
@property
def errored(self) -> bool:
"""Return true if job has errored."""
return self.status == InstallStatus.ERROR
@property
def waiting(self) -> bool:
"""Return true if job is waiting to run."""
return self.status == InstallStatus.WAITING
@property
def downloading(self) -> bool:
"""Return true if job is downloading."""
return self.status == InstallStatus.DOWNLOADING
@property
def downloads_done(self) -> bool:
"""Return true if job's downloads ae done."""
return self.status == InstallStatus.DOWNLOADS_DONE
@property
def running(self) -> bool:
"""Return true if job is running."""
return self.status == InstallStatus.RUNNING
@property
def complete(self) -> bool:
"""Return true if job completed without errors."""
return self.status == InstallStatus.COMPLETED
@property
def in_terminal_state(self) -> bool:
"""Return true if job is in a terminal state."""
return self.status in [InstallStatus.COMPLETED, InstallStatus.ERROR, InstallStatus.CANCELLED]

View File

@ -10,7 +10,7 @@ from pathlib import Path
from queue import Empty, Queue
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import Any, Dict, List, Optional, Union
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
import torch
import yaml
@ -20,8 +20,8 @@ from requests import Session
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase, TqdmProgress
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.backend.model_manager.config import (
@ -45,13 +45,12 @@ from invokeai.backend.util import InvokeAILogger
from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
from .model_install_base import (
from .model_install_common import (
MODEL_SOURCE_TO_TYPE_MAP,
HFModelSource,
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelInstallServiceBase,
ModelSource,
StringLikeSource,
URLModelSource,
@ -59,6 +58,9 @@ from .model_install_base import (
TMPDIR_PREFIX = "tmpinstall_"
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
class ModelInstallService(ModelInstallServiceBase):
"""class for InvokeAI model installation."""
@ -68,7 +70,7 @@ class ModelInstallService(ModelInstallServiceBase):
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
download_queue: DownloadQueueServiceBase,
event_bus: Optional[EventServiceBase] = None,
event_bus: Optional["EventServiceBase"] = None,
session: Optional[Session] = None,
):
"""
@ -104,7 +106,7 @@ class ModelInstallService(ModelInstallServiceBase):
return self._record_store
@property
def event_bus(self) -> Optional[EventServiceBase]: # noqa D102
def event_bus(self) -> Optional["EventServiceBase"]: # noqa D102
return self._event_bus
# make the invoker optional here because we don't need it and it
@ -855,35 +857,17 @@ class ModelInstallService(ModelInstallServiceBase):
job.status = InstallStatus.RUNNING
self._logger.info(f"Model install started: {job.source}")
if self._event_bus:
self._event_bus.emit_model_install_running(str(job.source))
self._event_bus.emit_model_install_started(job)
def _signal_job_downloading(self, job: ModelInstallJob) -> None:
if self._event_bus:
parts: List[Dict[str, str | int]] = [
{
"url": str(x.source),
"local_path": str(x.download_path),
"bytes": x.bytes,
"total_bytes": x.total_bytes,
}
for x in job.download_parts
]
assert job.bytes is not None
assert job.total_bytes is not None
self._event_bus.emit_model_install_downloading(
str(job.source),
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
total_bytes=job.total_bytes,
id=job.id,
)
self._event_bus.emit_model_install_download_progress(job)
def _signal_job_downloads_done(self, job: ModelInstallJob) -> None:
job.status = InstallStatus.DOWNLOADS_DONE
self._logger.info(f"Model download complete: {job.source}")
if self._event_bus:
self._event_bus.emit_model_install_downloads_done(str(job.source))
self._event_bus.emit_model_install_downloads_complete(job)
def _signal_job_completed(self, job: ModelInstallJob) -> None:
job.status = InstallStatus.COMPLETED
@ -891,24 +875,19 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"Model install complete: {job.source}")
self._logger.debug(f"{job.local_path} registered key {job.config_out.key}")
if self._event_bus:
assert job.local_path is not None
assert job.config_out is not None
key = job.config_out.key
self._event_bus.emit_model_install_completed(str(job.source), key, id=job.id)
self._event_bus.emit_model_install_complete(job)
def _signal_job_errored(self, job: ModelInstallJob) -> None:
self._logger.error(f"Model install error: {job.source}\n{job.error_type}: {job.error}")
if self._event_bus:
error_type = job.error_type
error = job.error
assert error_type is not None
assert error is not None
self._event_bus.emit_model_install_error(str(job.source), error_type, error, id=job.id)
assert job.error_type is not None
assert job.error is not None
self._event_bus.emit_model_install_error(job)
def _signal_job_cancelled(self, job: ModelInstallJob) -> None:
self._logger.info(f"Model install canceled: {job.source}")
if self._event_bus:
self._event_bus.emit_model_install_cancelled(str(job.source), id=job.id)
self._event_bus.emit_model_install_cancelled(job)
@staticmethod
def get_fetcher_from_url(url: str) -> ModelMetadataFetchBase:

View File

@ -4,7 +4,6 @@
from abc import ABC, abstractmethod
from typing import Optional
from invokeai.app.services.shared.invocation_context import InvocationContextData
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
@ -15,18 +14,12 @@ class ModelLoadServiceBase(ABC):
"""Wrapper around AnyModelLoader."""
@abstractmethod
def load_model(
self,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
"""
Given a model's configuration, load it and return the LoadedModel object.
:param model_config: Model configuration record (as returned by ModelRecordBase.get_model())
:param submodel: For main (pipeline models), the submodel to fetch.
:param context_data: Invocation context data used for event reporting
"""
@property

View File

@ -5,7 +5,6 @@ from typing import Optional, Type
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.invocation_context import InvocationContextData
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import (
LoadedModel,
@ -51,25 +50,18 @@ class ModelLoadService(ModelLoadServiceBase):
"""Return the checkpoint convert cache used by this loader."""
return self._convert_cache
def load_model(
self,
model_config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
context_data: Optional[InvocationContextData] = None,
) -> LoadedModel:
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
"""
Given a model's configuration, load it and return the LoadedModel object.
:param model_config: Model configuration record (as returned by ModelRecordBase.get_model())
:param submodel: For main (pipeline models), the submodel to fetch.
:param context: Invocation context used for event reporting
"""
if context_data:
self._emit_load_event(
context_data=context_data,
model_config=model_config,
submodel_type=submodel_type,
)
# We don't have an invoker during testing
# TODO(psyche): Mock this method on the invoker in the tests
if hasattr(self, "_invoker"):
self._invoker.services.events.emit_model_load_started(model_config, submodel_type)
implementation, model_config, submodel_type = self._registry.get_implementation(model_config, submodel_type) # type: ignore
loaded_model: LoadedModel = implementation(
@ -79,40 +71,7 @@ class ModelLoadService(ModelLoadServiceBase):
convert_cache=self._convert_cache,
).load_model(model_config, submodel_type)
if context_data:
self._emit_load_event(
context_data=context_data,
model_config=model_config,
submodel_type=submodel_type,
loaded=True,
)
if hasattr(self, "_invoker"):
self._invoker.services.events.emit_model_load_complete(model_config, submodel_type)
return loaded_model
def _emit_load_event(
self,
context_data: InvocationContextData,
model_config: AnyModelConfig,
loaded: Optional[bool] = False,
submodel_type: Optional[SubModelType] = None,
) -> None:
if not self._invoker:
return
if not loaded:
self._invoker.services.events.emit_model_load_started(
queue_id=context_data.queue_item.queue_id,
queue_item_id=context_data.queue_item.item_id,
queue_batch_id=context_data.queue_item.batch_id,
graph_execution_state_id=context_data.queue_item.session_id,
model_config=model_config,
submodel_type=submodel_type,
)
else:
self._invoker.services.events.emit_model_load_completed(
queue_id=context_data.queue_item.queue_id,
queue_item_id=context_data.queue_item.item_id,
queue_batch_id=context_data.queue_item.batch_id,
graph_execution_state_id=context_data.queue_item.session_id,
model_config=model_config,
submodel_type=submodel_type,
)

View File

@ -1,6 +1,49 @@
from abc import ABC, abstractmethod
from threading import Event
from typing import Optional, Protocol
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
from invokeai.app.util.profiler import Profiler
class SessionRunnerBase(ABC):
"""
Base class for session runner.
"""
@abstractmethod
def start(self, services: InvocationServices, cancel_event: Event, profiler: Optional[Profiler] = None) -> None:
"""Starts the session runner.
Args:
services: The invocation services.
cancel_event: The cancel event.
profiler: The profiler to use for session profiling via cProfile. Omit to disable profiling. Basic session
stats will be still be recorded and logged when profiling is disabled.
"""
pass
@abstractmethod
def run(self, queue_item: SessionQueueItem) -> None:
"""Runs a session.
Args:
queue_item: The session to run.
"""
pass
@abstractmethod
def run_node(self, invocation: BaseInvocation, queue_item: SessionQueueItem) -> None:
"""Run a single node in the graph.
Args:
invocation: The invocation to run.
queue_item: The session queue item.
"""
pass
class SessionProcessorBase(ABC):
@ -26,3 +69,85 @@ class SessionProcessorBase(ABC):
def get_status(self) -> SessionProcessorStatus:
"""Gets the status of the session processor"""
pass
class OnBeforeRunNode(Protocol):
def __call__(self, invocation: BaseInvocation, queue_item: SessionQueueItem) -> None:
"""Callback to run before executing a node.
Args:
invocation: The invocation that will be executed.
queue_item: The session queue item.
"""
...
class OnAfterRunNode(Protocol):
def __call__(self, invocation: BaseInvocation, queue_item: SessionQueueItem, output: BaseInvocationOutput) -> None:
"""Callback to run before executing a node.
Args:
invocation: The invocation that was executed.
queue_item: The session queue item.
"""
...
class OnNodeError(Protocol):
def __call__(
self,
invocation: BaseInvocation,
queue_item: SessionQueueItem,
error_type: str,
error_message: str,
error_traceback: str,
) -> None:
"""Callback to run when a node has an error.
Args:
invocation: The invocation that errored.
queue_item: The session queue item.
error_type: The type of error, e.g. "ValueError".
error_message: The error message, e.g. "Invalid value".
error_traceback: The stringified error traceback.
"""
...
class OnBeforeRunSession(Protocol):
def __call__(self, queue_item: SessionQueueItem) -> None:
"""Callback to run before executing a session.
Args:
queue_item: The session queue item.
"""
...
class OnAfterRunSession(Protocol):
def __call__(self, queue_item: SessionQueueItem) -> None:
"""Callback to run after executing a session.
Args:
queue_item: The session queue item.
"""
...
class OnNonFatalProcessorError(Protocol):
def __call__(
self,
queue_item: Optional[SessionQueueItem],
error_type: str,
error_message: str,
error_traceback: str,
) -> None:
"""Callback to run when a non-fatal error occurs in the processor.
Args:
queue_item: The session queue item, if one was being executed when the error occurred.
error_type: The type of error, e.g. "ValueError".
error_message: The error message, e.g. "Invalid value".
error_traceback: The stringified error traceback.
"""
...

View File

@ -4,24 +4,325 @@ from threading import BoundedSemaphore, Thread
from threading import Event as ThreadEvent
from typing import Optional
from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event as FastAPIEvent
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
from invokeai.app.services.events.events_common import (
BatchEnqueuedEvent,
FastAPIEvent,
QueueClearedEvent,
QueueItemStatusChangedEvent,
register_events,
)
from invokeai.app.services.invocation_stats.invocation_stats_common import GESStatsNotFoundError
from invokeai.app.services.session_processor.session_processor_base import (
OnAfterRunNode,
OnAfterRunSession,
OnBeforeRunNode,
OnBeforeRunSession,
OnNodeError,
OnNonFatalProcessorError,
)
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem, SessionQueueItemNotFoundError
from invokeai.app.services.shared.graph import NodeInputError
from invokeai.app.services.shared.invocation_context import InvocationContextData, build_invocation_context
from invokeai.app.util.profiler import Profiler
from ..invoker import Invoker
from .session_processor_base import SessionProcessorBase
from .session_processor_base import InvocationServices, SessionProcessorBase, SessionRunnerBase
from .session_processor_common import SessionProcessorStatus
class DefaultSessionRunner(SessionRunnerBase):
"""Processes a single session's invocations."""
def __init__(
self,
on_before_run_session_callbacks: Optional[list[OnBeforeRunSession]] = None,
on_before_run_node_callbacks: Optional[list[OnBeforeRunNode]] = None,
on_after_run_node_callbacks: Optional[list[OnAfterRunNode]] = None,
on_node_error_callbacks: Optional[list[OnNodeError]] = None,
on_after_run_session_callbacks: Optional[list[OnAfterRunSession]] = None,
):
"""
Args:
on_before_run_session_callbacks: Callbacks to run before the session starts.
on_before_run_node_callbacks: Callbacks to run before each node starts.
on_after_run_node_callbacks: Callbacks to run after each node completes.
on_node_error_callbacks: Callbacks to run when a node errors.
on_after_run_session_callbacks: Callbacks to run after the session completes.
"""
self._on_before_run_session_callbacks = on_before_run_session_callbacks or []
self._on_before_run_node_callbacks = on_before_run_node_callbacks or []
self._on_after_run_node_callbacks = on_after_run_node_callbacks or []
self._on_node_error_callbacks = on_node_error_callbacks or []
self._on_after_run_session_callbacks = on_after_run_session_callbacks or []
def start(self, services: InvocationServices, cancel_event: ThreadEvent, profiler: Optional[Profiler] = None):
self._services = services
self._cancel_event = cancel_event
self._profiler = profiler
def _is_canceled(self) -> bool:
"""Check if the cancel event is set. This is also passed to the invocation context builder and called during
denoising to check if the session has been canceled."""
return self._cancel_event.is_set()
def run(self, queue_item: SessionQueueItem):
# Exceptions raised outside `run_node` are handled by the processor. There is no need to catch them here.
self._on_before_run_session(queue_item=queue_item)
# Loop over invocations until the session is complete or canceled
while True:
try:
invocation = queue_item.session.next()
# Anything other than a `NodeInputError` is handled as a processor error
except NodeInputError as e:
error_type = e.__class__.__name__
error_message = str(e)
error_traceback = traceback.format_exc()
self._on_node_error(
invocation=e.node,
queue_item=queue_item,
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
)
break
if invocation is None or self._is_canceled():
break
self.run_node(invocation, queue_item)
# The session is complete if all invocations have been run or there is an error on the session.
# At this time, the queue item may be canceled, but the object itself here won't be updated yet. We must
# use the cancel event to check if the session is canceled.
if (
queue_item.session.is_complete()
or self._is_canceled()
or queue_item.status in ["failed", "canceled", "completed"]
):
break
self._on_after_run_session(queue_item=queue_item)
def run_node(self, invocation: BaseInvocation, queue_item: SessionQueueItem):
try:
# Any unhandled exception in this scope is an invocation error & will fail the graph
with self._services.performance_statistics.collect_stats(invocation, queue_item.session_id):
self._on_before_run_node(invocation, queue_item)
data = InvocationContextData(
invocation=invocation,
source_invocation_id=queue_item.session.prepared_source_mapping[invocation.id],
queue_item=queue_item,
)
context = build_invocation_context(
data=data,
services=self._services,
is_canceled=self._is_canceled,
)
# Invoke the node
output = invocation.invoke_internal(context=context, services=self._services)
# Save output and history
queue_item.session.complete(invocation.id, output)
self._on_after_run_node(invocation, queue_item, output)
except KeyboardInterrupt:
# TODO(psyche): This is expected to be caught in the main thread. Do we need to catch this here?
pass
except CanceledException:
# A CanceledException is raised during the denoising step callback if the cancel event is set. We don't need
# to do any handling here, and no error should be set - just pass and the cancellation will be handled
# correctly in the next iteration of the session runner loop.
#
# See the comment in the processor's `_on_queue_item_status_changed()` method for more details on how we
# handle cancellation.
pass
except Exception as e:
error_type = e.__class__.__name__
error_message = str(e)
error_traceback = traceback.format_exc()
self._on_node_error(
invocation=invocation,
queue_item=queue_item,
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
)
def _on_before_run_session(self, queue_item: SessionQueueItem) -> None:
"""Called before a session is run.
- Start the profiler if profiling is enabled.
- Run any callbacks registered for this event.
"""
self._services.logger.debug(
f"On before run session: queue item {queue_item.item_id}, session {queue_item.session_id}"
)
# If profiling is enabled, start the profiler
if self._profiler is not None:
self._profiler.start(profile_id=queue_item.session_id)
for callback in self._on_before_run_session_callbacks:
callback(queue_item=queue_item)
def _on_after_run_session(self, queue_item: SessionQueueItem) -> None:
"""Called after a session is run.
- Stop the profiler if profiling is enabled.
- Update the queue item's session object in the database.
- If not already canceled or failed, complete the queue item.
- Log and reset performance statistics.
- Run any callbacks registered for this event.
"""
self._services.logger.debug(
f"On after run session: queue item {queue_item.item_id}, session {queue_item.session_id}"
)
# If we are profiling, stop the profiler and dump the profile & stats
if self._profiler is not None:
profile_path = self._profiler.stop()
stats_path = profile_path.with_suffix(".json")
self._services.performance_statistics.dump_stats(
graph_execution_state_id=queue_item.session.id, output_path=stats_path
)
try:
# Update the queue item with the completed session. If the queue item has been removed from the queue,
# we'll get a SessionQueueItemNotFoundError and we can ignore it. This can happen if the queue is cleared
# while the session is running.
queue_item = self._services.session_queue.set_queue_item_session(queue_item.item_id, queue_item.session)
# The queue item may have been canceled or failed while the session was running. We should only complete it
# if it is not already canceled or failed.
if queue_item.status not in ["canceled", "failed"]:
queue_item = self._services.session_queue.complete_queue_item(queue_item.item_id)
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._services.performance_statistics.log_stats(queue_item.session.id)
self._services.performance_statistics.reset_stats()
for callback in self._on_after_run_session_callbacks:
callback(queue_item=queue_item)
except SessionQueueItemNotFoundError:
pass
def _on_before_run_node(self, invocation: BaseInvocation, queue_item: SessionQueueItem):
"""Called before a node is run.
- Emits an invocation started event.
- Run any callbacks registered for this event.
"""
self._services.logger.debug(
f"On before run node: queue item {queue_item.item_id}, session {queue_item.session_id}, node {invocation.id} ({invocation.get_type()})"
)
# Send starting event
self._services.events.emit_invocation_started(queue_item=queue_item, invocation=invocation)
for callback in self._on_before_run_node_callbacks:
callback(invocation=invocation, queue_item=queue_item)
def _on_after_run_node(
self, invocation: BaseInvocation, queue_item: SessionQueueItem, output: BaseInvocationOutput
):
"""Called after a node is run.
- Emits an invocation complete event.
- Run any callbacks registered for this event.
"""
self._services.logger.debug(
f"On after run node: queue item {queue_item.item_id}, session {queue_item.session_id}, node {invocation.id} ({invocation.get_type()})"
)
# Send complete event on successful runs
self._services.events.emit_invocation_complete(invocation=invocation, queue_item=queue_item, output=output)
for callback in self._on_after_run_node_callbacks:
callback(invocation=invocation, queue_item=queue_item, output=output)
def _on_node_error(
self,
invocation: BaseInvocation,
queue_item: SessionQueueItem,
error_type: str,
error_message: str,
error_traceback: str,
):
"""Called when a node errors. Node errors may occur when running or preparing the node..
- Set the node error on the session object.
- Log the error.
- Fail the queue item.
- Emits an invocation error event.
- Run any callbacks registered for this event.
"""
self._services.logger.debug(
f"On node error: queue item {queue_item.item_id}, session {queue_item.session_id}, node {invocation.id} ({invocation.get_type()})"
)
# Node errors do not get the full traceback. Only the queue item gets the full traceback.
node_error = f"{error_type}: {error_message}"
queue_item.session.set_node_error(invocation.id, node_error)
self._services.logger.error(
f"Error while invoking session {queue_item.session_id}, invocation {invocation.id} ({invocation.get_type()}): {error_message}"
)
self._services.logger.error(error_traceback)
# Fail the queue item
queue_item = self._services.session_queue.set_queue_item_session(queue_item.item_id, queue_item.session)
queue_item = self._services.session_queue.fail_queue_item(
queue_item.item_id, error_type, error_message, error_traceback
)
# Send error event
self._services.events.emit_invocation_error(
queue_item=queue_item,
invocation=invocation,
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
)
for callback in self._on_node_error_callbacks:
callback(
invocation=invocation,
queue_item=queue_item,
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
)
class DefaultSessionProcessor(SessionProcessorBase):
def start(self, invoker: Invoker, thread_limit: int = 1, polling_interval: int = 1) -> None:
def __init__(
self,
session_runner: Optional[SessionRunnerBase] = None,
on_non_fatal_processor_error_callbacks: Optional[list[OnNonFatalProcessorError]] = None,
thread_limit: int = 1,
polling_interval: int = 1,
) -> None:
super().__init__()
self.session_runner = session_runner if session_runner else DefaultSessionRunner()
self._on_non_fatal_processor_error_callbacks = on_non_fatal_processor_error_callbacks or []
self._thread_limit = thread_limit
self._polling_interval = polling_interval
def start(self, invoker: Invoker) -> None:
self._invoker: Invoker = invoker
self._queue_item: Optional[SessionQueueItem] = None
self._invocation: Optional[BaseInvocation] = None
@ -31,11 +332,11 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._poll_now_event = ThreadEvent()
self._cancel_event = ThreadEvent()
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._on_queue_event)
register_events(QueueClearedEvent, self._on_queue_cleared)
register_events(BatchEnqueuedEvent, self._on_batch_enqueued)
register_events(QueueItemStatusChangedEvent, self._on_queue_item_status_changed)
self._thread_limit = thread_limit
self._thread_semaphore = BoundedSemaphore(thread_limit)
self._polling_interval = polling_interval
self._thread_semaphore = BoundedSemaphore(self._thread_limit)
# If profiling is enabled, create a profiler. The same profiler will be used for all sessions. Internally,
# the profiler will create a new profile for each session.
@ -49,6 +350,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
else None
)
self.session_runner.start(services=invoker.services, cancel_event=self._cancel_event, profiler=self._profiler)
self._thread = Thread(
name="session_processor",
target=self._process,
@ -67,30 +369,25 @@ class DefaultSessionProcessor(SessionProcessorBase):
def _poll_now(self) -> None:
self._poll_now_event.set()
async def _on_queue_event(self, event: FastAPIEvent) -> None:
event_name = event[1]["event"]
async def _on_queue_cleared(self, event: FastAPIEvent[QueueClearedEvent]) -> None:
if self._queue_item and self._queue_item.queue_id == event[1].queue_id:
self._cancel_event.set()
self._poll_now()
if (
event_name == "session_canceled"
and self._queue_item
and self._queue_item.item_id == event[1]["data"]["queue_item_id"]
):
self._cancel_event.set()
self._poll_now()
elif (
event_name == "queue_cleared"
and self._queue_item
and self._queue_item.queue_id == event[1]["data"]["queue_id"]
):
self._cancel_event.set()
self._poll_now()
elif event_name == "batch_enqueued":
self._poll_now()
elif event_name == "queue_item_status_changed" and event[1]["data"]["queue_item"]["status"] in [
"completed",
"failed",
"canceled",
]:
async def _on_batch_enqueued(self, event: FastAPIEvent[BatchEnqueuedEvent]) -> None:
self._poll_now()
async def _on_queue_item_status_changed(self, event: FastAPIEvent[QueueItemStatusChangedEvent]) -> None:
if self._queue_item and event[1].status in ["completed", "failed", "canceled"]:
# When the queue item is canceled via HTTP, the queue item status is set to `"canceled"` and this event is
# emitted. We need to respond to this event and stop graph execution. This is done by setting the cancel
# event, which the session runner checks between invocations. If set, the session runner loop is broken.
#
# Long-running nodes that cannot be interrupted easily present a challenge. `denoise_latents` is one such
# node, but it gets a step callback, called on each step of denoising. This callback checks if the queue item
# is canceled, and if it is, raises a `CanceledException` to stop execution immediately.
if event[1].status == "canceled":
self._cancel_event.set()
self._poll_now()
def resume(self) -> SessionProcessorStatus:
@ -116,8 +413,8 @@ class DefaultSessionProcessor(SessionProcessorBase):
resume_event: ThreadEvent,
cancel_event: ThreadEvent,
):
# Outermost processor try block; any unhandled exception is a fatal processor error
try:
# Any unhandled exception in this block is a fatal processor error and will stop the processor.
self._thread_semaphore.acquire()
stop_event.clear()
resume_event.set()
@ -125,8 +422,8 @@ class DefaultSessionProcessor(SessionProcessorBase):
while not stop_event.is_set():
poll_now_event.clear()
# Middle processor try block; any unhandled exception is a non-fatal processor error
try:
# Any unhandled exception in this block is a nonfatal processor error and will be handled.
# If we are paused, wait for resume event
resume_event.wait()
@ -142,157 +439,69 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
cancel_event.clear()
# If profiling is enabled, start the profiler
if self._profiler is not None:
self._profiler.start(profile_id=self._queue_item.session_id)
# Run the graph
self.session_runner.run(queue_item=self._queue_item)
# Prepare invocations and take the first
self._invocation = self._queue_item.session.next()
# Loop over invocations until the session is complete or canceled
while self._invocation is not None and not cancel_event.is_set():
# get the source node id to provide to clients (the prepared node id is not as useful)
source_invocation_id = self._queue_item.session.prepared_source_mapping[self._invocation.id]
# Send starting event
self._invoker.services.events.emit_invocation_started(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session_id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
)
# Innermost processor try block; any unhandled exception is an invocation error & will fail the graph
try:
with self._invoker.services.performance_statistics.collect_stats(
self._invocation, self._queue_item.session.id
):
# Build invocation context (the node-facing API)
data = InvocationContextData(
invocation=self._invocation,
source_invocation_id=source_invocation_id,
queue_item=self._queue_item,
)
context = build_invocation_context(
data=data,
services=self._invoker.services,
cancel_event=self._cancel_event,
)
# Invoke the node
outputs = self._invocation.invoke_internal(
context=context, services=self._invoker.services
)
# Save outputs and history
self._queue_item.session.complete(self._invocation.id, outputs)
# Send complete event
self._invoker.services.events.emit_invocation_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
result=outputs.model_dump(),
)
except KeyboardInterrupt:
# TODO(MM2): Create an event for this
pass
except CanceledException:
# When the user cancels the graph, we first set the cancel event. The event is checked
# between invocations, in this loop. Some invocations are long-running, and we need to
# be able to cancel them mid-execution.
#
# For example, denoising is a long-running invocation with many steps. A step callback
# is executed after each step. This step callback checks if the canceled event is set,
# then raises a CanceledException to stop execution immediately.
#
# When we get a CanceledException, we don't need to do anything - just pass and let the
# loop go to its next iteration, and the cancel event will be handled correctly.
pass
except Exception as e:
error = traceback.format_exc()
# Save error
self._queue_item.session.set_node_error(self._invocation.id, error)
self._invoker.services.logger.error(
f"Error while invoking session {self._queue_item.session_id}, invocation {self._invocation.id} ({self._invocation.get_type()}):\n{e}"
)
self._invoker.services.logger.error(error)
# Send error event
self._invoker.services.events.emit_invocation_error(
queue_batch_id=self._queue_item.session_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
error_type=e.__class__.__name__,
error=error,
)
pass
# The session is complete if the all invocations are complete or there was an error
if self._queue_item.session.is_complete() or cancel_event.is_set():
# Send complete event
self._invoker.services.events.emit_graph_execution_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
)
# If we are profiling, stop the profiler and dump the profile & stats
if self._profiler:
profile_path = self._profiler.stop()
stats_path = profile_path.with_suffix(".json")
self._invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=self._queue_item.session.id, output_path=stats_path
)
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._invoker.services.performance_statistics.log_stats(self._queue_item.session.id)
self._invoker.services.performance_statistics.reset_stats()
# Set the invocation to None to prepare for the next session
self._invocation = None
else:
# Prepare the next invocation
self._invocation = self._queue_item.session.next()
else:
# The queue was empty, wait for next polling interval or event to try again
self._invoker.services.logger.debug("Waiting for next polling interval or event")
poll_now_event.wait(self._polling_interval)
continue
except Exception:
# Non-fatal error in processor
self._invoker.services.logger.error(
f"Non-fatal error in session processor:\n{traceback.format_exc()}"
except Exception as e:
error_type = e.__class__.__name__
error_message = str(e)
error_traceback = traceback.format_exc()
self._on_non_fatal_processor_error(
queue_item=self._queue_item,
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
)
# Cancel the queue item
if self._queue_item is not None:
self._invoker.services.session_queue.cancel_queue_item(
self._queue_item.item_id, error=traceback.format_exc()
)
# Reset the invocation to None to prepare for the next session
self._invocation = None
# Immediately poll for next queue item
# Wait for next polling interval or event to try again
poll_now_event.wait(self._polling_interval)
continue
except Exception:
except Exception as e:
# Fatal error in processor, log and pass - we're done here
self._invoker.services.logger.error(f"Fatal Error in session processor:\n{traceback.format_exc()}")
error_type = e.__class__.__name__
error_message = str(e)
error_traceback = traceback.format_exc()
self._invoker.services.logger.error(f"Fatal Error in session processor {error_type}: {error_message}")
self._invoker.services.logger.error(error_traceback)
pass
finally:
stop_event.clear()
poll_now_event.clear()
self._queue_item = None
self._thread_semaphore.release()
def _on_non_fatal_processor_error(
self,
queue_item: Optional[SessionQueueItem],
error_type: str,
error_message: str,
error_traceback: str,
) -> None:
"""Called when a non-fatal error occurs in the processor.
- Log the error.
- If a queue item is provided, update the queue item with the completed session & fail it.
- Run any callbacks registered for this event.
"""
self._invoker.services.logger.error(f"Non-fatal error in session processor {error_type}: {error_message}")
self._invoker.services.logger.error(error_traceback)
if queue_item is not None:
# Update the queue item with the completed session & fail it
queue_item = self._invoker.services.session_queue.set_queue_item_session(
queue_item.item_id, queue_item.session
)
queue_item = self._invoker.services.session_queue.fail_queue_item(
item_id=queue_item.item_id,
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
)
for callback in self._on_non_fatal_processor_error_callbacks:
callback(
queue_item=queue_item,
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
)

View File

@ -16,6 +16,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueItemDTO,
SessionQueueStatus,
)
from invokeai.app.services.shared.graph import GraphExecutionState
from invokeai.app.services.shared.pagination import CursorPaginatedResults
@ -73,10 +74,22 @@ class SessionQueueBase(ABC):
pass
@abstractmethod
def cancel_queue_item(self, item_id: int, error: Optional[str] = None) -> SessionQueueItem:
def complete_queue_item(self, item_id: int) -> SessionQueueItem:
"""Completes a session queue item"""
pass
@abstractmethod
def cancel_queue_item(self, item_id: int) -> SessionQueueItem:
"""Cancels a session queue item"""
pass
@abstractmethod
def fail_queue_item(
self, item_id: int, error_type: str, error_message: str, error_traceback: str
) -> SessionQueueItem:
"""Fails a session queue item"""
pass
@abstractmethod
def cancel_by_batch_ids(self, queue_id: str, batch_ids: list[str]) -> CancelByBatchIDsResult:
"""Cancels all queue items with matching batch IDs"""
@ -103,3 +116,8 @@ class SessionQueueBase(ABC):
def get_queue_item(self, item_id: int) -> SessionQueueItem:
"""Gets a session queue item by ID"""
pass
@abstractmethod
def set_queue_item_session(self, item_id: int, session: GraphExecutionState) -> SessionQueueItem:
"""Sets the session for a session queue item. Use this to update the session state."""
pass

View File

@ -3,7 +3,16 @@ import json
from itertools import chain, product
from typing import Generator, Iterable, Literal, NamedTuple, Optional, TypeAlias, Union, cast
from pydantic import BaseModel, ConfigDict, Field, StrictStr, TypeAdapter, field_validator, model_validator
from pydantic import (
AliasChoices,
BaseModel,
ConfigDict,
Field,
StrictStr,
TypeAdapter,
field_validator,
model_validator,
)
from pydantic_core import to_jsonable_python
from invokeai.app.invocations.baseinvocation import BaseInvocation
@ -189,7 +198,13 @@ class SessionQueueItemWithoutGraph(BaseModel):
session_id: str = Field(
description="The ID of the session associated with this queue item. The session doesn't exist in graph_executions until the queue item is executed."
)
error: Optional[str] = Field(default=None, description="The error message if this queue item errored")
error_type: Optional[str] = Field(default=None, description="The error type if this queue item errored")
error_message: Optional[str] = Field(default=None, description="The error message if this queue item errored")
error_traceback: Optional[str] = Field(
default=None,
description="The error traceback if this queue item errored",
validation_alias=AliasChoices("error_traceback", "error"),
)
created_at: Union[datetime.datetime, str] = Field(description="When this queue item was created")
updated_at: Union[datetime.datetime, str] = Field(description="When this queue item was updated")
started_at: Optional[Union[datetime.datetime, str]] = Field(description="When this queue item was started")

View File

@ -2,10 +2,6 @@ import sqlite3
import threading
from typing import Optional, Union, cast
from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event as FastAPIEvent
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
from invokeai.app.services.session_queue.session_queue_common import (
@ -27,6 +23,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
calc_session_count,
prepare_values_to_insert,
)
from invokeai.app.services.shared.graph import GraphExecutionState
from invokeai.app.services.shared.pagination import CursorPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
@ -41,7 +38,7 @@ class SqliteSessionQueue(SessionQueueBase):
self.__invoker = invoker
self._set_in_progress_to_canceled()
prune_result = self.prune(DEFAULT_QUEUE_ID)
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._on_session_event)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
@ -51,52 +48,6 @@ class SqliteSessionQueue(SessionQueueBase):
self.__conn = db.conn
self.__cursor = self.__conn.cursor()
def _match_event_name(self, event: FastAPIEvent, match_in: list[str]) -> bool:
return event[1]["event"] in match_in
async def _on_session_event(self, event: FastAPIEvent) -> FastAPIEvent:
event_name = event[1]["event"]
# This was a match statement, but match is not supported on python 3.9
if event_name == "graph_execution_state_complete":
await self._handle_complete_event(event)
elif event_name == "invocation_error":
await self._handle_error_event(event)
elif event_name == "session_canceled":
await self._handle_cancel_event(event)
return event
async def _handle_complete_event(self, event: FastAPIEvent) -> None:
try:
item_id = event[1]["data"]["queue_item_id"]
# When a queue item has an error, we get an error event, then a completed event.
# Mark the queue item completed only if it isn't already marked completed, e.g.
# by a previously-handled error event.
queue_item = self.get_queue_item(item_id)
if queue_item.status not in ["completed", "failed", "canceled"]:
queue_item = self._set_queue_item_status(item_id=queue_item.item_id, status="completed")
except SessionQueueItemNotFoundError:
return
async def _handle_error_event(self, event: FastAPIEvent) -> None:
try:
item_id = event[1]["data"]["queue_item_id"]
error = event[1]["data"]["error"]
queue_item = self.get_queue_item(item_id)
# always set to failed if have an error, even if previously the item was marked completed or canceled
queue_item = self._set_queue_item_status(item_id=queue_item.item_id, status="failed", error=error)
except SessionQueueItemNotFoundError:
return
async def _handle_cancel_event(self, event: FastAPIEvent) -> None:
try:
item_id = event[1]["data"]["queue_item_id"]
queue_item = self.get_queue_item(item_id)
if queue_item.status not in ["completed", "failed", "canceled"]:
queue_item = self._set_queue_item_status(item_id=queue_item.item_id, status="canceled")
except SessionQueueItemNotFoundError:
return
def _set_in_progress_to_canceled(self) -> None:
"""
Sets all in_progress queue items to canceled. Run on app startup, not associated with any queue.
@ -271,17 +222,22 @@ class SqliteSessionQueue(SessionQueueBase):
return SessionQueueItem.queue_item_from_dict(dict(result))
def _set_queue_item_status(
self, item_id: int, status: QUEUE_ITEM_STATUS, error: Optional[str] = None
self,
item_id: int,
status: QUEUE_ITEM_STATUS,
error_type: Optional[str] = None,
error_message: Optional[str] = None,
error_traceback: Optional[str] = None,
) -> SessionQueueItem:
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
UPDATE session_queue
SET status = ?, error = ?
SET status = ?, error_type = ?, error_message = ?, error_traceback = ?
WHERE item_id = ?
""",
(status, error, item_id),
(status, error_type, error_message, error_traceback, item_id),
)
self.__conn.commit()
except Exception:
@ -292,11 +248,7 @@ class SqliteSessionQueue(SessionQueueBase):
queue_item = self.get_queue_item(item_id)
batch_status = self.get_batch_status(queue_id=queue_item.queue_id, batch_id=queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_item.queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
session_queue_item=queue_item,
batch_status=batch_status,
queue_status=queue_status,
)
self.__invoker.services.events.emit_queue_item_status_changed(queue_item, batch_status, queue_status)
return queue_item
def is_empty(self, queue_id: str) -> IsEmptyResult:
@ -338,26 +290,6 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release()
return IsFullResult(is_full=is_full)
def delete_queue_item(self, item_id: int) -> SessionQueueItem:
queue_item = self.get_queue_item(item_id=item_id)
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
DELETE FROM session_queue
WHERE
item_id = ?
""",
(item_id,),
)
self.__conn.commit()
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return queue_item
def clear(self, queue_id: str) -> ClearResult:
try:
self.__lock.acquire()
@ -424,17 +356,28 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock.release()
return PruneResult(deleted=count)
def cancel_queue_item(self, item_id: int, error: Optional[str] = None) -> SessionQueueItem:
queue_item = self.get_queue_item(item_id)
if queue_item.status not in ["canceled", "failed", "completed"]:
status = "failed" if error is not None else "canceled"
queue_item = self._set_queue_item_status(item_id=item_id, status=status, error=error) # type: ignore [arg-type] # mypy seems to not narrow the Literals here
self.__invoker.services.events.emit_session_canceled(
queue_item_id=queue_item.item_id,
queue_id=queue_item.queue_id,
queue_batch_id=queue_item.batch_id,
graph_execution_state_id=queue_item.session_id,
)
def cancel_queue_item(self, item_id: int) -> SessionQueueItem:
queue_item = self._set_queue_item_status(item_id=item_id, status="canceled")
return queue_item
def complete_queue_item(self, item_id: int) -> SessionQueueItem:
queue_item = self._set_queue_item_status(item_id=item_id, status="completed")
return queue_item
def fail_queue_item(
self,
item_id: int,
error_type: str,
error_message: str,
error_traceback: str,
) -> SessionQueueItem:
queue_item = self._set_queue_item_status(
item_id=item_id,
status="failed",
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
)
return queue_item
def cancel_by_batch_ids(self, queue_id: str, batch_ids: list[str]) -> CancelByBatchIDsResult:
@ -470,18 +413,10 @@ class SqliteSessionQueue(SessionQueueBase):
)
self.__conn.commit()
if current_queue_item is not None and current_queue_item.batch_id in batch_ids:
self.__invoker.services.events.emit_session_canceled(
queue_item_id=current_queue_item.item_id,
queue_id=current_queue_item.queue_id,
queue_batch_id=current_queue_item.batch_id,
graph_execution_state_id=current_queue_item.session_id,
)
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
session_queue_item=current_queue_item,
batch_status=batch_status,
queue_status=queue_status,
current_queue_item, batch_status, queue_status
)
except Exception:
self.__conn.rollback()
@ -521,18 +456,10 @@ class SqliteSessionQueue(SessionQueueBase):
)
self.__conn.commit()
if current_queue_item is not None and current_queue_item.queue_id == queue_id:
self.__invoker.services.events.emit_session_canceled(
queue_item_id=current_queue_item.item_id,
queue_id=current_queue_item.queue_id,
queue_batch_id=current_queue_item.batch_id,
graph_execution_state_id=current_queue_item.session_id,
)
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
session_queue_item=current_queue_item,
batch_status=batch_status,
queue_status=queue_status,
current_queue_item, batch_status, queue_status
)
except Exception:
self.__conn.rollback()
@ -562,6 +489,29 @@ class SqliteSessionQueue(SessionQueueBase):
raise SessionQueueItemNotFoundError(f"No queue item with id {item_id}")
return SessionQueueItem.queue_item_from_dict(dict(result))
def set_queue_item_session(self, item_id: int, session: GraphExecutionState) -> SessionQueueItem:
try:
# Use exclude_none so we don't end up with a bunch of nulls in the graph - this can cause validation errors
# when the graph is loaded. Graph execution occurs purely in memory - the session saved here is not referenced
# during execution.
session_json = session.model_dump_json(warnings=False, exclude_none=True)
self.__lock.acquire()
self.__cursor.execute(
"""--sql
UPDATE session_queue
SET session = ?
WHERE item_id = ?
""",
(session_json, item_id),
)
self.__conn.commit()
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
return self.get_queue_item(item_id)
def list_queue_items(
self,
queue_id: str,
@ -578,7 +528,9 @@ class SqliteSessionQueue(SessionQueueBase):
status,
priority,
field_values,
error,
error_type,
error_message,
error_traceback,
created_at,
updated_at,
completed_at,

View File

@ -8,6 +8,7 @@ import networkx as nx
from pydantic import (
BaseModel,
GetJsonSchemaHandler,
ValidationError,
field_validator,
)
from pydantic.fields import Field
@ -190,6 +191,39 @@ class UnknownGraphValidationError(ValueError):
pass
class NodeInputError(ValueError):
"""Raised when a node fails preparation. This occurs when a node's inputs are being set from its incomers, but an
input fails validation.
Attributes:
node: The node that failed preparation. Note: only successfully set fields will be accurate. Review the error to
determine which field caused the failure.
"""
def __init__(self, node: BaseInvocation, e: ValidationError):
self.original_error = e
self.node = node
# When preparing a node, we set each input one-at-a-time. We may thus safely assume that the first error
# represents the first input that failed.
self.failed_input = loc_to_dot_sep(e.errors()[0]["loc"])
super().__init__(f"Node {node.id} has invalid incoming input for {self.failed_input}")
def loc_to_dot_sep(loc: tuple[Union[str, int], ...]) -> str:
"""Helper to pretty-print pydantic error locations as dot-separated strings.
Taken from https://docs.pydantic.dev/latest/errors/errors/#customize-error-messages
"""
path = ""
for i, x in enumerate(loc):
if isinstance(x, str):
if i > 0:
path += "."
path += x
else:
path += f"[{x}]"
return path
@invocation_output("iterate_output")
class IterateInvocationOutput(BaseInvocationOutput):
"""Used to connect iteration outputs. Will be expanded to a specific output."""
@ -821,7 +855,10 @@ class GraphExecutionState(BaseModel):
# Get values from edges
if next_node is not None:
self._prepare_inputs(next_node)
try:
self._prepare_inputs(next_node)
except ValidationError as e:
raise NodeInputError(next_node, e)
# If next is still none, there's no next node, return None
return next_node

View File

@ -1,7 +1,6 @@
import threading
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Optional, Union
from typing import TYPE_CHECKING, Callable, Optional, Union
from PIL.Image import Image
from torch import Tensor
@ -180,9 +179,9 @@ class ImagesInterface(InvocationContextInterface):
# If `metadata` is provided directly, use that. Else, use the metadata provided by `WithMetadata`, falling back to None.
metadata_ = None
if metadata:
metadata_ = metadata
elif isinstance(self._data.invocation, WithMetadata):
metadata_ = self._data.invocation.metadata
metadata_ = metadata.model_dump_json()
elif isinstance(self._data.invocation, WithMetadata) and self._data.invocation.metadata:
metadata_ = self._data.invocation.metadata.model_dump_json()
# If `board_id` is provided directly, use that. Else, use the board provided by `WithBoard`, falling back to None.
board_id_ = None
@ -191,6 +190,14 @@ class ImagesInterface(InvocationContextInterface):
elif isinstance(self._data.invocation, WithBoard) and self._data.invocation.board:
board_id_ = self._data.invocation.board.board_id
workflow_ = None
if self._data.queue_item.workflow:
workflow_ = self._data.queue_item.workflow.model_dump_json()
graph_ = None
if self._data.queue_item.session.graph:
graph_ = self._data.queue_item.session.graph.model_dump_json()
return self._services.images.create(
image=image,
is_intermediate=self._data.invocation.is_intermediate,
@ -198,7 +205,8 @@ class ImagesInterface(InvocationContextInterface):
board_id=board_id_,
metadata=metadata_,
image_origin=ResourceOrigin.INTERNAL,
workflow=self._data.queue_item.workflow,
workflow=workflow_,
graph=graph_,
session_id=self._data.queue_item.session_id,
node_id=self._data.invocation.id,
)
@ -344,11 +352,11 @@ class ModelsInterface(InvocationContextInterface):
if isinstance(identifier, str):
model = self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.load.load_model(model, submodel_type, self._data)
return self._services.model_manager.load.load_model(model, submodel_type)
else:
_submodel_type = submodel_type or identifier.submodel_type
model = self._services.model_manager.store.get_model(identifier.key)
return self._services.model_manager.load.load_model(model, _submodel_type, self._data)
return self._services.model_manager.load.load_model(model, _submodel_type)
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
@ -373,7 +381,7 @@ class ModelsInterface(InvocationContextInterface):
if len(configs) > 1:
raise ValueError(f"More than one model found with name {name}, base {base}, and type {type}")
return self._services.model_manager.load.load_model(configs[0], submodel_type, self._data)
return self._services.model_manager.load.load_model(configs[0], submodel_type)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
"""Gets a model's config.
@ -440,10 +448,10 @@ class ConfigInterface(InvocationContextInterface):
class UtilInterface(InvocationContextInterface):
def __init__(
self, services: InvocationServices, data: InvocationContextData, cancel_event: threading.Event
self, services: InvocationServices, data: InvocationContextData, is_canceled: Callable[[], bool]
) -> None:
super().__init__(services, data)
self._cancel_event = cancel_event
self._is_canceled = is_canceled
def is_canceled(self) -> bool:
"""Checks if the current session has been canceled.
@ -451,7 +459,7 @@ class UtilInterface(InvocationContextInterface):
Returns:
True if the current session has been canceled, False if not.
"""
return self._cancel_event.is_set()
return self._is_canceled()
def sd_step_callback(self, intermediate_state: PipelineIntermediateState, base_model: BaseModelType) -> None:
"""
@ -526,7 +534,7 @@ class InvocationContext:
def build_invocation_context(
services: InvocationServices,
data: InvocationContextData,
cancel_event: threading.Event,
is_canceled: Callable[[], bool],
) -> InvocationContext:
"""Builds the invocation context for a specific invocation execution.
@ -543,7 +551,7 @@ def build_invocation_context(
tensors = TensorsInterface(services=services, data=data)
models = ModelsInterface(services=services, data=data)
config = ConfigInterface(services=services, data=data)
util = UtilInterface(services=services, data=data, cancel_event=cancel_event)
util = UtilInterface(services=services, data=data, is_canceled=is_canceled)
conditioning = ConditioningInterface(services=services, data=data)
boards = BoardsInterface(services=services, data=data)

View File

@ -12,6 +12,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_6 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import build_migration_7
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import build_migration_8
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_9 import build_migration_9
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import build_migration_10
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@ -41,6 +42,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_7())
migrator.register_migration(build_migration_8(app_config=config))
migrator.register_migration(build_migration_9())
migrator.register_migration(build_migration_10())
migrator.run_migrations()
return db

View File

@ -0,0 +1,35 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration10Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._update_error_cols(cursor)
def _update_error_cols(self, cursor: sqlite3.Cursor) -> None:
"""
- Adds `error_type` and `error_message` columns to the session queue table.
- Renames the `error` column to `error_traceback`.
"""
cursor.execute("ALTER TABLE session_queue ADD COLUMN error_type TEXT;")
cursor.execute("ALTER TABLE session_queue ADD COLUMN error_message TEXT;")
cursor.execute("ALTER TABLE session_queue RENAME COLUMN error TO error_traceback;")
def build_migration_10() -> Migration:
"""
Build the migration from database version 9 to 10.
This migration does the following:
- Adds `error_type` and `error_message` columns to the session queue table.
- Renames the `error` column to `error_traceback`.
"""
migration_10 = Migration(
from_version=9,
to_version=10,
callback=Migration10Callback(),
)
return migration_10

View File

@ -1,4 +1,4 @@
from typing import TYPE_CHECKING, Callable
from typing import TYPE_CHECKING, Callable, Optional
import torch
from PIL import Image
@ -13,8 +13,36 @@ if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.shared.invocation_context import InvocationContextData
# fast latents preview matrix for sdxl
# generated by @StAlKeR7779
SDXL_LATENT_RGB_FACTORS = [
# R G B
[0.3816, 0.4930, 0.5320],
[-0.3753, 0.1631, 0.1739],
[0.1770, 0.3588, -0.2048],
[-0.4350, -0.2644, -0.4289],
]
SDXL_SMOOTH_MATRIX = [
[0.0358, 0.0964, 0.0358],
[0.0964, 0.4711, 0.0964],
[0.0358, 0.0964, 0.0358],
]
def sample_to_lowres_estimated_image(samples, latent_rgb_factors, smooth_matrix=None):
# origingally adapted from code by @erucipe and @keturn here:
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
# these updated numbers for v1.5 are from @torridgristle
SD1_5_LATENT_RGB_FACTORS = [
# R G B
[0.3444, 0.1385, 0.0670], # L1
[0.1247, 0.4027, 0.1494], # L2
[-0.3192, 0.2513, 0.2103], # L3
[-0.1307, -0.1874, -0.7445], # L4
]
def sample_to_lowres_estimated_image(
samples: torch.Tensor, latent_rgb_factors: torch.Tensor, smooth_matrix: Optional[torch.Tensor] = None
):
latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors
if smooth_matrix is not None:
@ -47,64 +75,12 @@ def stable_diffusion_step_callback(
else:
sample = intermediate_state.latents
# TODO: This does not seem to be needed any more?
# # txt2img provides a Tensor in the step_callback
# # img2img provides a PipelineIntermediateState
# if isinstance(sample, PipelineIntermediateState):
# # this was an img2img
# print('img2img')
# latents = sample.latents
# step = sample.step
# else:
# print('txt2img')
# latents = sample
# step = intermediate_state.step
# TODO: only output a preview image when requested
if base_model in [BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner]:
# fast latents preview matrix for sdxl
# generated by @StAlKeR7779
sdxl_latent_rgb_factors = torch.tensor(
[
# R G B
[0.3816, 0.4930, 0.5320],
[-0.3753, 0.1631, 0.1739],
[0.1770, 0.3588, -0.2048],
[-0.4350, -0.2644, -0.4289],
],
dtype=sample.dtype,
device=sample.device,
)
sdxl_smooth_matrix = torch.tensor(
[
[0.0358, 0.0964, 0.0358],
[0.0964, 0.4711, 0.0964],
[0.0358, 0.0964, 0.0358],
],
dtype=sample.dtype,
device=sample.device,
)
sdxl_latent_rgb_factors = torch.tensor(SDXL_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
sdxl_smooth_matrix = torch.tensor(SDXL_SMOOTH_MATRIX, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix)
else:
# origingally adapted from code by @erucipe and @keturn here:
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
# these updated numbers for v1.5 are from @torridgristle
v1_5_latent_rgb_factors = torch.tensor(
[
# R G B
[0.3444, 0.1385, 0.0670], # L1
[0.1247, 0.4027, 0.1494], # L2
[-0.3192, 0.2513, 0.2103], # L3
[-0.1307, -0.1874, -0.7445], # L4
],
dtype=sample.dtype,
device=sample.device,
)
v1_5_latent_rgb_factors = torch.tensor(SD1_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors)
(width, height) = image.size
@ -113,15 +89,9 @@ def stable_diffusion_step_callback(
dataURL = image_to_dataURL(image, image_format="JPEG")
events.emit_generator_progress(
queue_id=context_data.queue_item.queue_id,
queue_item_id=context_data.queue_item.item_id,
queue_batch_id=context_data.queue_item.batch_id,
graph_execution_state_id=context_data.queue_item.session_id,
node_id=context_data.invocation.id,
source_node_id=context_data.source_invocation_id,
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=intermediate_state.step,
order=intermediate_state.order,
total_steps=intermediate_state.total_steps,
events.emit_invocation_denoise_progress(
context_data.queue_item,
context_data.invocation,
intermediate_state,
ProgressImage(dataURL=dataURL, width=width, height=height),
)

View File

@ -30,8 +30,12 @@ def convert_ldm_vae_to_diffusers(
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
vae.to(precision)
with torch.no_grad():
vae.load_state_dict(converted_vae_checkpoint)
del converted_vae_checkpoint # Free memory
import gc
gc.collect()
vae.to(precision)
if dump_path:
vae.save_pretrained(dump_path, safe_serialization=True)
@ -52,7 +56,11 @@ def convert_ckpt_to_diffusers(
model to be written.
"""
pipe = download_from_original_stable_diffusion_ckpt(Path(checkpoint_path).as_posix(), **kwargs)
pipe = pipe.to(precision)
with torch.no_grad():
del kwargs # Free memory
import gc
gc.collect()
pipe = pipe.to(precision)
# TO DO: save correct repo variant
if dump_path:
@ -75,7 +83,11 @@ def convert_controlnet_to_diffusers(
model to be written.
"""
pipe = download_controlnet_from_original_ckpt(checkpoint_path.as_posix(), **kwargs)
pipe = pipe.to(precision)
with torch.no_grad():
del kwargs # Free memory
import gc
gc.collect()
pipe = pipe.to(precision)
# TO DO: save correct repo variant
if dump_path:

View File

@ -42,10 +42,26 @@ T = TypeVar("T")
@dataclass
class CacheRecord(Generic[T]):
"""Elements of the cache."""
"""
Elements of the cache:
key: Unique key for each model, same as used in the models database.
model: Model in memory.
state_dict: A read-only copy of the model's state dict in RAM. It will be
used as a template for creating a copy in the VRAM.
size: Size of the model
loaded: True if the model's state dict is currently in VRAM
Before a model is executed, the state_dict template is copied into VRAM,
and then injected into the model. When the model is finished, the VRAM
copy of the state dict is deleted, and the RAM version is reinjected
into the model.
"""
key: str
model: T
device: torch.device
state_dict: Optional[Dict[str, torch.Tensor]]
size: int
loaded: bool = False
_locks: int = 0

View File

@ -20,7 +20,6 @@ context. Use like this:
import gc
import math
import sys
import time
from contextlib import suppress
from logging import Logger
@ -162,7 +161,9 @@ class ModelCache(ModelCacheBase[AnyModel]):
if key in self._cached_models:
return
self.make_room(size)
cache_record = CacheRecord(key, model, size)
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) else None
cache_record = CacheRecord(key=key, model=model, device=self.storage_device, state_dict=state_dict, size=size)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
@ -257,17 +258,37 @@ class ModelCache(ModelCacheBase[AnyModel]):
if not (hasattr(cache_entry.model, "device") and hasattr(cache_entry.model, "to")):
return
source_device = cache_entry.model.device
source_device = cache_entry.device
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
# This would need to be revised to support multi-GPU.
if torch.device(source_device).type == torch.device(target_device).type:
return
# This roundabout method for moving the model around is done to avoid
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# When moving to VRAM, we copy (not move) each element of the state dict from
# RAM to a new state dict in VRAM, and then inject it into the model.
# This operation is slightly faster than running `to()` on the whole model.
#
# When the model needs to be removed from VRAM we simply delete the copy
# of the state dict in VRAM, and reinject the state dict that is cached
# in RAM into the model. So this operation is very fast.
start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot()
try:
if cache_entry.state_dict is not None:
assert hasattr(cache_entry.model, "load_state_dict")
if target_device == self.storage_device:
cache_entry.model.load_state_dict(cache_entry.state_dict, assign=True)
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(torch.device(target_device), copy=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)
raise e
@ -347,43 +368,12 @@ class ModelCache(ModelCacheBase[AnyModel]):
while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
refs = sys.getrefcount(cache_entry.model)
# HACK: This is a workaround for a memory-management issue that we haven't tracked down yet. We are directly
# going against the advice in the Python docs by using `gc.get_referrers(...)` in this way:
# https://docs.python.org/3/library/gc.html#gc.get_referrers
# manualy clear local variable references of just finished function calls
# for some reason python don't want to collect it even by gc.collect() immidiately
if refs > 2:
while True:
cleared = False
for referrer in gc.get_referrers(cache_entry.model):
if type(referrer).__name__ == "frame":
# RuntimeError: cannot clear an executing frame
with suppress(RuntimeError):
referrer.clear()
cleared = True
# break
# repeat if referrers changes(due to frame clear), else exit loop
if cleared:
gc.collect()
else:
break
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded},"
f" refs: {refs}"
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}"
)
# Expected refs:
# 1 from cache_entry
# 1 from getrefcount function
# 1 from onnx runtime object
if not cache_entry.locked and refs <= (3 if "onnx" in model_key else 2):
if not cache_entry.locked:
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)

View File

@ -1,7 +1,7 @@
"""Textual Inversion wrapper class."""
from pathlib import Path
from typing import Dict, List, Optional, Union
from typing import Optional, Union
import torch
from compel.embeddings_provider import BaseTextualInversionManager
@ -66,35 +66,52 @@ class TextualInversionModelRaw(RawModel):
return result
# no type hints for BaseTextualInversionManager?
class TextualInversionManager(BaseTextualInversionManager): # type: ignore
pad_tokens: Dict[int, List[int]]
tokenizer: CLIPTokenizer
class TextualInversionManager(BaseTextualInversionManager):
"""TextualInversionManager implements the BaseTextualInversionManager ABC from the compel library."""
def __init__(self, tokenizer: CLIPTokenizer):
self.pad_tokens = {}
self.pad_tokens: dict[int, list[int]] = {}
self.tokenizer = tokenizer
def expand_textual_inversion_token_ids_if_necessary(self, token_ids: list[int]) -> list[int]:
"""Given a list of tokens ids, expand any TI tokens to their corresponding pad tokens.
For example, suppose we have a `<ti_dog>` TI with 4 vectors that was added to the tokenizer with the following
mapping of tokens to token_ids:
```
<ti_dog>: 49408
<ti_dog-!pad-1>: 49409
<ti_dog-!pad-2>: 49410
<ti_dog-!pad-3>: 49411
```
`self.pad_tokens` would be set to `{49408: [49408, 49409, 49410, 49411]}`.
This function is responsible for expanding `49408` in the token_ids list to `[49408, 49409, 49410, 49411]`.
"""
# Short circuit if there are no pad tokens to save a little time.
if len(self.pad_tokens) == 0:
return token_ids
# This function assumes that compel has not included the BOS and EOS tokens in the token_ids list. We verify
# this assumption here.
if token_ids[0] == self.tokenizer.bos_token_id:
raise ValueError("token_ids must not start with bos_token_id")
if token_ids[-1] == self.tokenizer.eos_token_id:
raise ValueError("token_ids must not end with eos_token_id")
new_token_ids = []
# Expand any TI tokens to their corresponding pad tokens.
new_token_ids: list[int] = []
for token_id in token_ids:
new_token_ids.append(token_id)
if token_id in self.pad_tokens:
new_token_ids.extend(self.pad_tokens[token_id])
# Do not exceed the max model input size
# The -2 here is compensating for compensate compel.embeddings_provider.get_token_ids(),
# which first removes and then adds back the start and end tokens.
max_length = list(self.tokenizer.max_model_input_sizes.values())[0] - 2
# Do not exceed the max model input size. The -2 here is compensating for
# compel.embeddings_provider.get_token_ids(), which first removes and then adds back the start and end tokens.
max_length = self.tokenizer.model_max_length - 2
if len(new_token_ids) > max_length:
# HACK: If TI token expansion causes us to exceed the max text encoder input length, we silently discard
# tokens. Token expansion should happen in a way that is compatible with compel's default handling of long
# prompts.
new_token_ids = new_token_ids[0:max_length]
return new_token_ids

View File

@ -10,6 +10,8 @@ module.exports = {
'path/no-relative-imports': ['error', { maxDepth: 0 }],
// https://github.com/edvardchen/eslint-plugin-i18next/blob/HEAD/docs/rules/no-literal-string.md
'i18next/no-literal-string': 'error',
// https://eslint.org/docs/latest/rules/no-console
'no-console': 'error',
},
overrides: [
/**

View File

@ -43,4 +43,5 @@ stats.html
yalc.lock
# vitest
tsconfig.vitest-temp.json
tsconfig.vitest-temp.json
coverage/

View File

@ -35,6 +35,7 @@
"storybook": "storybook dev -p 6006",
"build-storybook": "storybook build",
"test": "vitest",
"test:ui": "vitest --coverage --ui",
"test:no-watch": "vitest --no-watch"
},
"madge": {
@ -132,6 +133,8 @@
"@types/react-dom": "^18.3.0",
"@types/uuid": "^9.0.8",
"@vitejs/plugin-react-swc": "^3.6.0",
"@vitest/coverage-v8": "^1.5.0",
"@vitest/ui": "^1.5.0",
"concurrently": "^8.2.2",
"dpdm": "^3.14.0",
"eslint": "^8.57.0",

View File

@ -229,6 +229,12 @@ devDependencies:
'@vitejs/plugin-react-swc':
specifier: ^3.6.0
version: 3.6.0(vite@5.2.11)
'@vitest/coverage-v8':
specifier: ^1.5.0
version: 1.6.0(vitest@1.6.0)
'@vitest/ui':
specifier: ^1.5.0
version: 1.6.0(vitest@1.6.0)
concurrently:
specifier: ^8.2.2
version: 8.2.2
@ -288,7 +294,7 @@ devDependencies:
version: 4.3.2(typescript@5.4.5)(vite@5.2.11)
vitest:
specifier: ^1.6.0
version: 1.6.0(@types/node@20.12.10)
version: 1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0)
packages:
@ -1679,6 +1685,10 @@ packages:
resolution: {integrity: sha512-4iri8i1AqYHJE2DstZYkyEprg6Pq6sKx3xn5FpySk9sNhH7qN2LLlHJCfDTZRILNwQNPD7mATWM0TBui7uC1pA==}
dev: true
/@bcoe/v8-coverage@0.2.3:
resolution: {integrity: sha512-0hYQ8SB4Db5zvZB4axdMHGwEaQjkZzFjQiN9LVYvIFB2nSUHW9tYpxWriPrWDASIxiaXax83REcLxuSdnGPZtw==}
dev: true
/@chakra-ui/accordion@2.3.1(@chakra-ui/system@2.6.2)(framer-motion@10.18.0)(react@18.3.1):
resolution: {integrity: sha512-FSXRm8iClFyU+gVaXisOSEw0/4Q+qZbFRiuhIAkVU6Boj0FxAMrlo9a8AV5TuF77rgaHytCdHk0Ng+cyUijrag==}
peerDependencies:
@ -3635,6 +3645,11 @@ packages:
wrap-ansi-cjs: /wrap-ansi@7.0.0
dev: true
/@istanbuljs/schema@0.1.3:
resolution: {integrity: sha512-ZXRY4jNvVgSVQ8DL3LTcakaAtXwTVUxE81hslsyD2AtoXW/wVob10HkOJ1X/pAlcI7D+2YoZKg5do8G/w6RYgA==}
engines: {node: '>=8'}
dev: true
/@jest/schemas@29.6.3:
resolution: {integrity: sha512-mo5j5X+jIZmJQveBKeS/clAueipV7KgiX1vMgCxam1RNYiqE1w62n0/tJJnHtjW8ZHcQco5gY85jA3mi0L+nSA==}
engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0}
@ -3822,6 +3837,10 @@ packages:
dev: true
optional: true
/@polka/url@1.0.0-next.25:
resolution: {integrity: sha512-j7P6Rgr3mmtdkeDGTe0E/aYyWEWVtc5yFXtHCRHs28/jptDEWfaVOc5T7cblqy1XKPPfCxJc/8DwQ5YgLOZOVQ==}
dev: true
/@popperjs/core@2.11.8:
resolution: {integrity: sha512-P1st0aksCrn9sGZhp8GMYwBnQsbvAWsZAX44oXNNvLHGqAOcoVxmjZiohstwQ7SqKnbR47akdNi+uleWD8+g6A==}
dev: false
@ -5146,7 +5165,7 @@ packages:
dom-accessibility-api: 0.6.3
lodash: 4.17.21
redent: 3.0.0
vitest: 1.6.0(@types/node@20.12.10)
vitest: 1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0)
dev: true
/@testing-library/user-event@14.5.2(@testing-library/dom@9.3.4):
@ -5825,6 +5844,29 @@ packages:
- '@swc/helpers'
dev: true
/@vitest/coverage-v8@1.6.0(vitest@1.6.0):
resolution: {integrity: sha512-KvapcbMY/8GYIG0rlwwOKCVNRc0OL20rrhFkg/CHNzncV03TE2XWvO5w9uZYoxNiMEBacAJt3unSOiZ7svePew==}
peerDependencies:
vitest: 1.6.0
dependencies:
'@ampproject/remapping': 2.3.0
'@bcoe/v8-coverage': 0.2.3
debug: 4.3.4
istanbul-lib-coverage: 3.2.2
istanbul-lib-report: 3.0.1
istanbul-lib-source-maps: 5.0.4
istanbul-reports: 3.1.7
magic-string: 0.30.10
magicast: 0.3.4
picocolors: 1.0.0
std-env: 3.7.0
strip-literal: 2.1.0
test-exclude: 6.0.0
vitest: 1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0)
transitivePeerDependencies:
- supports-color
dev: true
/@vitest/expect@1.3.1:
resolution: {integrity: sha512-xofQFwIzfdmLLlHa6ag0dPV8YsnKOCP1KdAeVVh34vSjN2dcUiXYCD9htu/9eM7t8Xln4v03U9HLxLpPlsXdZw==}
dependencies:
@ -5869,6 +5911,21 @@ packages:
tinyspy: 2.2.1
dev: true
/@vitest/ui@1.6.0(vitest@1.6.0):
resolution: {integrity: sha512-k3Lyo+ONLOgylctiGovRKy7V4+dIN2yxstX3eY5cWFXH6WP+ooVX79YSyi0GagdTQzLmT43BF27T0s6dOIPBXA==}
peerDependencies:
vitest: 1.6.0
dependencies:
'@vitest/utils': 1.6.0
fast-glob: 3.3.2
fflate: 0.8.2
flatted: 3.3.1
pathe: 1.1.2
picocolors: 1.0.0
sirv: 2.0.4
vitest: 1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0)
dev: true
/@vitest/utils@1.3.1:
resolution: {integrity: sha512-d3Waie/299qqRyHTm2DjADeTaNdNSVsnwHPWrs20JMpjh6eiVq7ggggweO8rc4arhf6rRkWuHKwvxGvejUXZZQ==}
dependencies:
@ -8521,6 +8578,10 @@ packages:
resolution: {integrity: sha512-3yurQZ2hD9VISAhJJP9bpYFNQrHHBXE2JxxjY5aLEcDi46RmAzJE2OC9FAde0yis5ElW0jTTzs0zfg/Cca4XqQ==}
dev: true
/fflate@0.8.2:
resolution: {integrity: sha512-cPJU47OaAoCbg0pBvzsgpTPhmhqI5eJjh/JIu8tPj5q+T7iLvW/JAYUqmE7KOB4R1ZyEhzBaIQpQpardBF5z8A==}
dev: true
/file-entry-cache@6.0.1:
resolution: {integrity: sha512-7Gps/XWymbLk2QLYK4NzpMOrYjMhdIxXuIvy2QBsLE6ljuodKvdkWs/cpyJJ3CVIVpH0Oi1Hvg1ovbMzLdFBBg==}
engines: {node: ^10.12.0 || >=12.0.0}
@ -9084,6 +9145,10 @@ packages:
resolution: {integrity: sha512-mxIDAb9Lsm6DoOJ7xH+5+X4y1LU/4Hi50L9C5sIswK3JzULS4bwk1FvjdBgvYR4bzT4tuUQiC15FE2f5HbLvYw==}
dev: true
/html-escaper@2.0.2:
resolution: {integrity: sha512-H2iMtd0I4Mt5eYiapRdIDjp+XzelXQ0tFE4JS7YFwFevXXMmOp9myNrUvCg0D6ws8iqkRPBfKHgbwig1SmlLfg==}
dev: true
/html-parse-stringify@3.0.1:
resolution: {integrity: sha512-KknJ50kTInJ7qIScF3jeaFRpMpE8/lfiTdzf/twXyPBLAGrLRTmkz3AdTnKeh40X8k9L2fdYwEp/42WGXIRGcg==}
dependencies:
@ -9513,6 +9578,39 @@ packages:
engines: {node: '>=0.10.0'}
dev: true
/istanbul-lib-coverage@3.2.2:
resolution: {integrity: sha512-O8dpsF+r0WV/8MNRKfnmrtCWhuKjxrq2w+jpzBL5UZKTi2LeVWnWOmWRxFlesJONmc+wLAGvKQZEOanko0LFTg==}
engines: {node: '>=8'}
dev: true
/istanbul-lib-report@3.0.1:
resolution: {integrity: sha512-GCfE1mtsHGOELCU8e/Z7YWzpmybrx/+dSTfLrvY8qRmaY6zXTKWn6WQIjaAFw069icm6GVMNkgu0NzI4iPZUNw==}
engines: {node: '>=10'}
dependencies:
istanbul-lib-coverage: 3.2.2
make-dir: 4.0.0
supports-color: 7.2.0
dev: true
/istanbul-lib-source-maps@5.0.4:
resolution: {integrity: sha512-wHOoEsNJTVltaJp8eVkm8w+GVkVNHT2YDYo53YdzQEL2gWm1hBX5cGFR9hQJtuGLebidVX7et3+dmDZrmclduw==}
engines: {node: '>=10'}
dependencies:
'@jridgewell/trace-mapping': 0.3.25
debug: 4.3.4
istanbul-lib-coverage: 3.2.2
transitivePeerDependencies:
- supports-color
dev: true
/istanbul-reports@3.1.7:
resolution: {integrity: sha512-BewmUXImeuRk2YY0PVbxgKAysvhRPUQE0h5QRM++nVWyubKGV0l8qQ5op8+B2DOmwSe63Jivj0BjkPQVf8fP5g==}
engines: {node: '>=8'}
dependencies:
html-escaper: 2.0.2
istanbul-lib-report: 3.0.1
dev: true
/iterable-lookahead@1.0.0:
resolution: {integrity: sha512-hJnEP2Xk4+44DDwJqUQGdXal5VbyeWLaPyDl2AQc242Zr7iqz4DgpQOrEzglWVMGHMDCkguLHEKxd1+rOsmgSQ==}
engines: {node: '>=4'}
@ -9912,6 +10010,14 @@ packages:
'@jridgewell/sourcemap-codec': 1.4.15
dev: true
/magicast@0.3.4:
resolution: {integrity: sha512-TyDF/Pn36bBji9rWKHlZe+PZb6Mx5V8IHCSxk7X4aljM4e/vyDvZZYwHewdVaqiA0nb3ghfHU/6AUpDxWoER2Q==}
dependencies:
'@babel/parser': 7.24.5
'@babel/types': 7.24.5
source-map-js: 1.2.0
dev: true
/make-dir@2.1.0:
resolution: {integrity: sha512-LS9X+dc8KLxXCb8dni79fLIIUA5VyZoyjSMCwTluaXA0o27cCK0bhXkpgw+sTXVpPy/lSO57ilRixqk0vDmtRA==}
engines: {node: '>=6'}
@ -9927,6 +10033,13 @@ packages:
semver: 6.3.1
dev: true
/make-dir@4.0.0:
resolution: {integrity: sha512-hXdUTZYIVOt1Ex//jAQi+wTZZpUpwBj/0QsOzqegb3rGMMeJiSEu5xLHnYfBrRV4RH2+OCSOO95Is/7x1WJ4bw==}
engines: {node: '>=10'}
dependencies:
semver: 7.6.0
dev: true
/map-obj@2.0.0:
resolution: {integrity: sha512-TzQSV2DiMYgoF5RycneKVUzIa9bQsj/B3tTgsE3dOGqlzHnGIDaC7XBE7grnA+8kZPnfqSGFe95VHc2oc0VFUQ==}
engines: {node: '>=4'}
@ -10101,6 +10214,11 @@ packages:
resolution: {integrity: sha512-iSAJLHYKnX41mKcJKjqvnAN9sf0LMDTXDEvFv+ffuRR9a1MIuXLjMNL6EsnDHSkKLTWNqQQ5uo61P4EbU4NU+Q==}
dev: false
/mrmime@2.0.0:
resolution: {integrity: sha512-eu38+hdgojoyq63s+yTpN4XMBdt5l8HhMhc4VKLO9KM5caLIBvUm4thi7fFaxyTmCKeNnXZ5pAlBwCUnhA09uw==}
engines: {node: '>=10'}
dev: true
/ms@2.0.0:
resolution: {integrity: sha512-Tpp60P6IUJDTuOq/5Z8cdskzJujfwqfOTkrwIwj7IRISpnkJnT6SyJ4PCPnGMoFjC9ddhal5KVIYtAt97ix05A==}
dev: true
@ -11766,6 +11884,15 @@ packages:
engines: {node: '>=14'}
dev: true
/sirv@2.0.4:
resolution: {integrity: sha512-94Bdh3cC2PKrbgSOUqTiGPWVZeSiXfKOVZNJniWoqrWrRkB1CJzBU3NEbiTsPcYy1lDsANA/THzS+9WBiy5nfQ==}
engines: {node: '>= 10'}
dependencies:
'@polka/url': 1.0.0-next.25
mrmime: 2.0.0
totalist: 3.0.1
dev: true
/sisteransi@1.0.5:
resolution: {integrity: sha512-bLGGlR1QxBcynn2d5YmDX4MGjlZvy2MRBDRNHLJ8VI6l6+9FUiyTFNJ0IveOSP0bcXgVDPRcfGqA0pjaqUpfVg==}
dev: true
@ -12191,6 +12318,15 @@ packages:
unique-string: 2.0.0
dev: true
/test-exclude@6.0.0:
resolution: {integrity: sha512-cAGWPIyOHU6zlmg88jwm7VRyXnMN7iV68OGAbYDk/Mh/xC/pzVPlQtY6ngoIH/5/tciuhGfvESU8GrHrcxD56w==}
engines: {node: '>=8'}
dependencies:
'@istanbuljs/schema': 0.1.3
glob: 7.2.3
minimatch: 3.1.2
dev: true
/text-table@0.2.0:
resolution: {integrity: sha512-N+8UisAXDGk8PFXP4HAzVR9nbfmVJ3zYLAWiTIoqC5v5isinhr+r5uaO8+7r3BMfuNIufIsA7RdpVgacC2cSpw==}
dev: true
@ -12264,6 +12400,11 @@ packages:
engines: {node: '>=0.6'}
dev: true
/totalist@3.0.1:
resolution: {integrity: sha512-sf4i37nQ2LBx4m3wB74y+ubopq6W/dIzXg0FDGjsYnZHVa1Da8FH853wlL2gtUhg+xJXjfk3kUZS3BRoQeoQBQ==}
engines: {node: '>=6'}
dev: true
/tr46@0.0.3:
resolution: {integrity: sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==}
@ -12837,7 +12978,7 @@ packages:
fsevents: 2.3.3
dev: true
/vitest@1.6.0(@types/node@20.12.10):
/vitest@1.6.0(@types/node@20.12.10)(@vitest/ui@1.6.0):
resolution: {integrity: sha512-H5r/dN06swuFnzNFhq/dnz37bPXnq8xB2xB5JOVk8K09rUtoeNN+LHWkoQ0A/i3hvbUKKcCei9KpbxqHMLhLLA==}
engines: {node: ^18.0.0 || >=20.0.0}
hasBin: true
@ -12867,6 +13008,7 @@ packages:
'@vitest/runner': 1.6.0
'@vitest/snapshot': 1.6.0
'@vitest/spy': 1.6.0
'@vitest/ui': 1.6.0(vitest@1.6.0)
'@vitest/utils': 1.6.0
acorn-walk: 8.3.2
chai: 4.4.1

View File

@ -2,6 +2,7 @@
"accessibility": {
"about": "About",
"createIssue": "Create Issue",
"submitSupportTicket": "Submit Support Ticket",
"invokeProgressBar": "Invoke progress bar",
"menu": "Menu",
"mode": "Mode",
@ -146,7 +147,9 @@
"viewing": "Viewing",
"viewingDesc": "Review images in a large gallery view",
"editing": "Editing",
"editingDesc": "Edit on the Control Layers canvas"
"editingDesc": "Edit on the Control Layers canvas",
"enabled": "Enabled",
"disabled": "Disabled"
},
"controlnet": {
"controlAdapter_one": "Control Adapter",
@ -774,10 +777,15 @@
"cannotConnectOutputToOutput": "Cannot connect output to output",
"cannotConnectToSelf": "Cannot connect to self",
"cannotDuplicateConnection": "Cannot create duplicate connections",
"cannotMixAndMatchCollectionItemTypes": "Cannot mix and match collection item types",
"missingNode": "Missing invocation node",
"missingInvocationTemplate": "Missing invocation template",
"missingFieldTemplate": "Missing field template",
"nodePack": "Node pack",
"collection": "Collection",
"collectionFieldType": "{{name}} Collection",
"collectionOrScalarFieldType": "{{name}} Collection|Scalar",
"singleFieldType": "{{name}} (Single)",
"collectionFieldType": "{{name}} (Collection)",
"collectionOrScalarFieldType": "{{name}} (Single or Collection)",
"colorCodeEdges": "Color-Code Edges",
"colorCodeEdgesHelp": "Color-code edges according to their connected fields",
"connectionWouldCreateCycle": "Connection would create a cycle",
@ -879,6 +887,7 @@
"versionUnknown": " Version Unknown",
"workflow": "Workflow",
"graph": "Graph",
"noGraph": "No Graph",
"workflowAuthor": "Author",
"workflowContact": "Contact",
"workflowDescription": "Short Description",
@ -891,7 +900,10 @@
"zoomInNodes": "Zoom In",
"zoomOutNodes": "Zoom Out",
"betaDesc": "This invocation is in beta. Until it is stable, it may have breaking changes during app updates. We plan to support this invocation long-term.",
"prototypeDesc": "This invocation is a prototype. It may have breaking changes during app updates and may be removed at any time."
"prototypeDesc": "This invocation is a prototype. It may have breaking changes during app updates and may be removed at any time.",
"imageAccessError": "Unable to find image {{image_name}}, resetting to default",
"boardAccessError": "Unable to find board {{board_id}}, resetting to default",
"modelAccessError": "Unable to find model {{key}}, resetting to default"
},
"parameters": {
"aspect": "Aspect",
@ -946,7 +958,7 @@
"controlAdapterIncompatibleBaseModel": "incompatible Control Adapter base model",
"controlAdapterNoImageSelected": "no Control Adapter image selected",
"controlAdapterImageNotProcessed": "Control Adapter image not processed",
"t2iAdapterIncompatibleDimensions": "T2I Adapter requires image dimension to be multiples of 64",
"t2iAdapterIncompatibleDimensions": "T2I Adapter requires image dimension to be multiples of {{multiple}}",
"ipAdapterNoModelSelected": "no IP adapter selected",
"ipAdapterIncompatibleBaseModel": "incompatible IP Adapter base model",
"ipAdapterNoImageSelected": "no IP Adapter image selected",
@ -1064,8 +1076,9 @@
},
"toast": {
"addedToBoard": "Added to board",
"baseModelChangedCleared_one": "Base model changed, cleared or disabled {{count}} incompatible submodel",
"baseModelChangedCleared_other": "Base model changed, cleared or disabled {{count}} incompatible submodels",
"baseModelChanged": "Base Model Changed",
"baseModelChangedCleared_one": "Cleared or disabled {{count}} incompatible submodel",
"baseModelChangedCleared_other": "Cleared or disabled {{count}} incompatible submodels",
"canceled": "Processing Canceled",
"canvasCopiedClipboard": "Canvas Copied to Clipboard",
"canvasDownloaded": "Canvas Downloaded",
@ -1086,10 +1099,17 @@
"metadataLoadFailed": "Failed to load metadata",
"modelAddedSimple": "Model Added to Queue",
"modelImportCanceled": "Model Import Canceled",
"outOfMemoryError": "Out of Memory Error",
"outOfMemoryErrorDesc": "Your current generation settings exceed system capacity. Please adjust your settings and try again.",
"parameters": "Parameters",
"parameterNotSet": "{{parameter}} not set",
"parameterSet": "{{parameter}} set",
"parametersNotSet": "Parameters Not Set",
"parameterSet": "Parameter Recalled",
"parameterSetDesc": "Recalled {{parameter}}",
"parameterNotSet": "Parameter Not Recalled",
"parameterNotSetDesc": "Unable to recall {{parameter}}",
"parameterNotSetDescWithMessage": "Unable to recall {{parameter}}: {{message}}",
"parametersSet": "Parameters Recalled",
"parametersNotSet": "Parameters Not Recalled",
"errorCopied": "Error Copied",
"problemCopyingCanvas": "Problem Copying Canvas",
"problemCopyingCanvasDesc": "Unable to export base layer",
"problemCopyingImage": "Unable to Copy Image",
@ -1109,11 +1129,13 @@
"sentToImageToImage": "Sent To Image To Image",
"sentToUnifiedCanvas": "Sent to Unified Canvas",
"serverError": "Server Error",
"sessionRef": "Session: {{sessionId}}",
"setAsCanvasInitialImage": "Set as canvas initial image",
"setCanvasInitialImage": "Set canvas initial image",
"setControlImage": "Set as control image",
"setInitialImage": "Set as initial image",
"setNodeField": "Set as node field",
"somethingWentWrong": "Something Went Wrong",
"uploadFailed": "Upload failed",
"uploadFailedInvalidUploadDesc": "Must be single PNG or JPEG image",
"uploadInitialImage": "Upload Initial Image",
@ -1553,7 +1575,6 @@
"controlLayers": "Control Layers",
"globalMaskOpacity": "Global Mask Opacity",
"autoNegative": "Auto Negative",
"toggleVisibility": "Toggle Layer Visibility",
"deletePrompt": "Delete Prompt",
"resetRegion": "Reset Region",
"debugLayers": "Debug Layers",

View File

@ -382,7 +382,7 @@
"canvasMerged": "Lienzo consolidado",
"sentToImageToImage": "Enviar hacia Imagen a Imagen",
"sentToUnifiedCanvas": "Enviar hacia Lienzo Consolidado",
"parametersNotSet": "Parámetros no establecidos",
"parametersNotSet": "Parámetros no recuperados",
"metadataLoadFailed": "Error al cargar metadatos",
"serverError": "Error en el servidor",
"canceled": "Procesando la cancelación",
@ -390,7 +390,8 @@
"uploadFailedInvalidUploadDesc": "Debe ser una sola imagen PNG o JPEG",
"parameterSet": "Conjunto de parámetros",
"parameterNotSet": "Parámetro no configurado",
"problemCopyingImage": "No se puede copiar la imagen"
"problemCopyingImage": "No se puede copiar la imagen",
"errorCopied": "Error al copiar"
},
"tooltip": {
"feature": {

View File

@ -524,7 +524,20 @@
"missingNodeTemplate": "Modello di nodo mancante",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} ingresso mancante",
"missingFieldTemplate": "Modello di campo mancante",
"imageNotProcessedForControlAdapter": "L'immagine dell'adattatore di controllo #{{number}} non è stata elaborata"
"imageNotProcessedForControlAdapter": "L'immagine dell'adattatore di controllo #{{number}} non è stata elaborata",
"layer": {
"initialImageNoImageSelected": "Nessuna immagine iniziale selezionata",
"t2iAdapterIncompatibleDimensions": "L'adattatore T2I richiede che la dimensione dell'immagine sia un multiplo di {{multiple}}",
"controlAdapterNoModelSelected": "Nessun modello di Adattatore di Controllo selezionato",
"controlAdapterIncompatibleBaseModel": "Il modello base dell'adattatore di controllo non è compatibile",
"controlAdapterNoImageSelected": "Nessuna immagine dell'adattatore di controllo selezionata",
"controlAdapterImageNotProcessed": "Immagine dell'adattatore di controllo non elaborata",
"ipAdapterNoModelSelected": "Nessun adattatore IP selezionato",
"ipAdapterIncompatibleBaseModel": "Il modello base dell'adattatore IP non è compatibile",
"ipAdapterNoImageSelected": "Nessuna immagine dell'adattatore IP selezionata",
"rgNoPromptsOrIPAdapters": "Nessun prompt o adattatore IP",
"rgNoRegion": "Nessuna regione selezionata"
}
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
@ -824,8 +837,8 @@
"unableToUpdateNodes_other": "Impossibile aggiornare {{count}} nodi",
"addLinearView": "Aggiungi alla vista Lineare",
"unknownErrorValidatingWorkflow": "Errore sconosciuto durante la convalida del flusso di lavoro",
"collectionFieldType": "{{name}} Raccolta",
"collectionOrScalarFieldType": "{{name}} Raccolta|Scalare",
"collectionFieldType": "{{name}} (Raccolta)",
"collectionOrScalarFieldType": "{{name}} (Singola o Raccolta)",
"nodeVersion": "Versione Nodo",
"inputFieldTypeParseError": "Impossibile analizzare il tipo di campo di input {{node}}.{{field}} ({{message}})",
"unsupportedArrayItemType": "Tipo di elemento dell'array non supportato \"{{type}}\"",
@ -863,7 +876,13 @@
"edit": "Modifica",
"graph": "Grafico",
"showEdgeLabelsHelp": "Mostra etichette sui collegamenti, che indicano i nodi collegati",
"showEdgeLabels": "Mostra le etichette del collegamento"
"showEdgeLabels": "Mostra le etichette del collegamento",
"cannotMixAndMatchCollectionItemTypes": "Impossibile combinare e abbinare i tipi di elementi della raccolta",
"noGraph": "Nessun grafico",
"missingNode": "Nodo di invocazione mancante",
"missingInvocationTemplate": "Modello di invocazione mancante",
"missingFieldTemplate": "Modello di campo mancante",
"singleFieldType": "{{name}} (Singola)"
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@ -1034,7 +1053,16 @@
"graphFailedToQueue": "Impossibile mettere in coda il grafico",
"batchFieldValues": "Valori Campi Lotto",
"time": "Tempo",
"openQueue": "Apri coda"
"openQueue": "Apri coda",
"iterations_one": "Iterazione",
"iterations_many": "Iterazioni",
"iterations_other": "Iterazioni",
"prompts_one": "Prompt",
"prompts_many": "Prompt",
"prompts_other": "Prompt",
"generations_one": "Generazione",
"generations_many": "Generazioni",
"generations_other": "Generazioni"
},
"models": {
"noMatchingModels": "Nessun modello corrispondente",
@ -1563,7 +1591,6 @@
"brushSize": "Dimensioni del pennello",
"globalMaskOpacity": "Opacità globale della maschera",
"autoNegative": "Auto Negativo",
"toggleVisibility": "Attiva/disattiva la visibilità dei livelli",
"deletePrompt": "Cancella il prompt",
"debugLayers": "Debug dei Livelli",
"rectangle": "Rettangolo",

View File

@ -6,7 +6,7 @@
"settingsLabel": "Instellingen",
"img2img": "Afbeelding naar afbeelding",
"unifiedCanvas": "Centraal canvas",
"nodes": "Werkstroom-editor",
"nodes": "Werkstromen",
"upload": "Upload",
"load": "Laad",
"statusDisconnected": "Niet verbonden",
@ -34,7 +34,60 @@
"controlNet": "ControlNet",
"imageFailedToLoad": "Kan afbeelding niet laden",
"learnMore": "Meer informatie",
"advanced": "Uitgebreid"
"advanced": "Uitgebreid",
"file": "Bestand",
"installed": "Geïnstalleerd",
"notInstalled": "Niet $t(common.installed)",
"simple": "Eenvoudig",
"somethingWentWrong": "Er ging iets mis",
"add": "Voeg toe",
"checkpoint": "Checkpoint",
"details": "Details",
"outputs": "Uitvoeren",
"save": "Bewaar",
"nextPage": "Volgende pagina",
"blue": "Blauw",
"alpha": "Alfa",
"red": "Rood",
"editor": "Editor",
"folder": "Map",
"format": "structuur",
"goTo": "Ga naar",
"template": "Sjabloon",
"input": "Invoer",
"loglevel": "Logboekniveau",
"safetensors": "Safetensors",
"saveAs": "Bewaar als",
"created": "Gemaakt",
"green": "Groen",
"tab": "Tab",
"positivePrompt": "Positieve prompt",
"negativePrompt": "Negatieve prompt",
"selected": "Geselecteerd",
"orderBy": "Sorteer op",
"prevPage": "Vorige pagina",
"beta": "Bèta",
"copyError": "$t(gallery.copy) Fout",
"toResolve": "Op te lossen",
"aboutDesc": "Gebruik je Invoke voor het werk? Kijk dan naar:",
"aboutHeading": "Creatieve macht voor jou",
"copy": "Kopieer",
"data": "Gegevens",
"or": "of",
"updated": "Bijgewerkt",
"outpaint": "outpainten",
"viewing": "Bekijken",
"viewingDesc": "Beoordeel afbeelding in een grote galerijweergave",
"editing": "Bewerken",
"editingDesc": "Bewerk op het canvas Stuurlagen",
"ai": "ai",
"inpaint": "inpainten",
"unknown": "Onbekend",
"delete": "Verwijder",
"direction": "Richting",
"error": "Fout",
"localSystem": "Lokaal systeem",
"unknownError": "Onbekende fout"
},
"gallery": {
"galleryImageSize": "Afbeeldingsgrootte",
@ -310,10 +363,41 @@
"modelSyncFailed": "Synchronisatie modellen mislukt",
"modelDeleteFailed": "Model kon niet verwijderd worden",
"convertingModelBegin": "Model aan het converteren. Even geduld.",
"predictionType": "Soort voorspelling (voor Stable Diffusion 2.x-modellen en incidentele Stable Diffusion 1.x-modellen)",
"predictionType": "Soort voorspelling",
"advanced": "Uitgebreid",
"modelType": "Soort model",
"vaePrecision": "Nauwkeurigheid VAE"
"vaePrecision": "Nauwkeurigheid VAE",
"loraTriggerPhrases": "LoRA-triggerzinnen",
"urlOrLocalPathHelper": "URL's zouden moeten wijzen naar een los bestand. Lokale paden kunnen wijzen naar een los bestand of map voor een individueel Diffusers-model.",
"modelName": "Modelnaam",
"path": "Pad",
"triggerPhrases": "Triggerzinnen",
"typePhraseHere": "Typ zin hier in",
"useDefaultSettings": "Gebruik standaardinstellingen",
"modelImageDeleteFailed": "Fout bij verwijderen modelafbeelding",
"modelImageUpdated": "Modelafbeelding bijgewerkt",
"modelImageUpdateFailed": "Fout bij bijwerken modelafbeelding",
"noMatchingModels": "Geen overeenkomende modellen",
"scanPlaceholder": "Pad naar een lokale map",
"noModelsInstalled": "Geen modellen geïnstalleerd",
"noModelsInstalledDesc1": "Installeer modellen met de",
"noModelSelected": "Geen model geselecteerd",
"starterModels": "Beginnermodellen",
"textualInversions": "Tekstuele omkeringen",
"upcastAttention": "Upcast-aandacht",
"uploadImage": "Upload afbeelding",
"mainModelTriggerPhrases": "Triggerzinnen hoofdmodel",
"urlOrLocalPath": "URL of lokaal pad",
"scanFolderHelper": "De map zal recursief worden ingelezen voor modellen. Dit kan enige tijd in beslag nemen voor erg grote mappen.",
"simpleModelPlaceholder": "URL of pad naar een lokaal pad of Diffusers-map",
"modelSettings": "Modelinstellingen",
"pathToConfig": "Pad naar configuratie",
"prune": "Snoei",
"pruneTooltip": "Snoei voltooide importeringen uit wachtrij",
"repoVariant": "Repovariant",
"scanFolder": "Lees map in",
"scanResults": "Resultaten inlezen",
"source": "Bron"
},
"parameters": {
"images": "Afbeeldingen",
@ -353,13 +437,13 @@
"copyImage": "Kopieer afbeelding",
"denoisingStrength": "Sterkte ontruisen",
"scheduler": "Planner",
"seamlessXAxis": "X-as",
"seamlessYAxis": "Y-as",
"seamlessXAxis": "Naadloze tegels in x-as",
"seamlessYAxis": "Naadloze tegels in y-as",
"clipSkip": "Overslaan CLIP",
"negativePromptPlaceholder": "Negatieve prompt",
"controlNetControlMode": "Aansturingsmodus",
"positivePromptPlaceholder": "Positieve prompt",
"maskBlur": "Vervaag",
"maskBlur": "Vervaging van masker",
"invoke": {
"noNodesInGraph": "Geen knooppunten in graaf",
"noModelSelected": "Geen model ingesteld",
@ -369,11 +453,25 @@
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} invoer ontbreekt",
"noControlImageForControlAdapter": "Controle-adapter #{{number}} heeft geen controle-afbeelding",
"noModelForControlAdapter": "Control-adapter #{{number}} heeft geen model ingesteld staan.",
"incompatibleBaseModelForControlAdapter": "Model van controle-adapter #{{number}} is ongeldig in combinatie met het hoofdmodel.",
"incompatibleBaseModelForControlAdapter": "Model van controle-adapter #{{number}} is niet compatibel met het hoofdmodel.",
"systemDisconnected": "Systeem is niet verbonden",
"missingNodeTemplate": "Knooppuntsjabloon ontbreekt",
"missingFieldTemplate": "Veldsjabloon ontbreekt",
"addingImagesTo": "Bezig met toevoegen van afbeeldingen aan"
"addingImagesTo": "Bezig met toevoegen van afbeeldingen aan",
"layer": {
"initialImageNoImageSelected": "geen initiële afbeelding geselecteerd",
"controlAdapterNoModelSelected": "geen controle-adaptermodel geselecteerd",
"controlAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor controle-adapter",
"controlAdapterNoImageSelected": "geen afbeelding voor controle-adapter geselecteerd",
"controlAdapterImageNotProcessed": "Afbeelding voor controle-adapter niet verwerkt",
"ipAdapterIncompatibleBaseModel": "niet-compatibele basismodel voor IP-adapter",
"ipAdapterNoImageSelected": "geen afbeelding voor IP-adapter geselecteerd",
"rgNoRegion": "geen gebied geselecteerd",
"rgNoPromptsOrIPAdapters": "geen tekstprompts of IP-adapters",
"t2iAdapterIncompatibleDimensions": "T2I-adapter vereist een afbeelding met afmetingen met een veelvoud van 64",
"ipAdapterNoModelSelected": "geen IP-adapter geselecteerd"
},
"imageNotProcessedForControlAdapter": "De afbeelding van controle-adapter #{{number}} is niet verwerkt"
},
"isAllowedToUpscale": {
"useX2Model": "Afbeelding is te groot om te vergroten met het x4-model. Gebruik hiervoor het x2-model",
@ -383,7 +481,26 @@
"useCpuNoise": "Gebruik CPU-ruis",
"imageActions": "Afbeeldingshandeling",
"iterations": "Iteraties",
"coherenceMode": "Modus"
"coherenceMode": "Modus",
"infillColorValue": "Vulkleur",
"remixImage": "Meng afbeelding opnieuw",
"setToOptimalSize": "Optimaliseer grootte voor het model",
"setToOptimalSizeTooSmall": "$t(parameters.setToOptimalSize) (is mogelijk te klein)",
"aspect": "Beeldverhouding",
"infillMosaicTileWidth": "Breedte tegel",
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (is mogelijk te groot)",
"lockAspectRatio": "Zet beeldverhouding vast",
"infillMosaicTileHeight": "Hoogte tegel",
"globalNegativePromptPlaceholder": "Globale negatieve prompt",
"globalPositivePromptPlaceholder": "Globale positieve prompt",
"useSize": "Gebruik grootte",
"swapDimensions": "Wissel afmetingen om",
"globalSettings": "Globale instellingen",
"coherenceEdgeSize": "Randgrootte",
"coherenceMinDenoise": "Min. ontruising",
"infillMosaicMinColor": "Min. kleur",
"infillMosaicMaxColor": "Max. kleur",
"cfgRescaleMultiplier": "Vermenigvuldiger voor CFG-herschaling"
},
"settings": {
"models": "Modellen",
@ -410,7 +527,12 @@
"intermediatesCleared_one": "{{count}} tussentijdse afbeelding gewist",
"intermediatesCleared_other": "{{count}} tussentijdse afbeeldingen gewist",
"clearIntermediatesDesc1": "Als je tussentijdse afbeeldingen wist, dan wordt de staat hersteld van je canvas en van ControlNet.",
"intermediatesClearedFailed": "Fout bij wissen van tussentijdse afbeeldingen"
"intermediatesClearedFailed": "Fout bij wissen van tussentijdse afbeeldingen",
"clearIntermediatesDisabled": "Wachtrij moet leeg zijn om tussentijdse afbeeldingen te kunnen leegmaken",
"enableInformationalPopovers": "Schakel informatieve hulpballonnen in",
"enableInvisibleWatermark": "Schakel onzichtbaar watermerk in",
"enableNSFWChecker": "Schakel NSFW-controle in",
"reloadingIn": "Opnieuw laden na"
},
"toast": {
"uploadFailed": "Upload mislukt",
@ -425,8 +547,8 @@
"connected": "Verbonden met server",
"canceled": "Verwerking geannuleerd",
"uploadFailedInvalidUploadDesc": "Moet een enkele PNG- of JPEG-afbeelding zijn",
"parameterNotSet": "Parameter niet ingesteld",
"parameterSet": "Instellen parameters",
"parameterNotSet": "{{parameter}} niet ingesteld",
"parameterSet": "{{parameter}} ingesteld",
"problemCopyingImage": "Kan Afbeelding Niet Kopiëren",
"baseModelChangedCleared_one": "Basismodel is gewijzigd: {{count}} niet-compatibel submodel weggehaald of uitgeschakeld",
"baseModelChangedCleared_other": "Basismodel is gewijzigd: {{count}} niet-compatibele submodellen weggehaald of uitgeschakeld",
@ -443,11 +565,11 @@
"maskSavedAssets": "Masker bewaard in Assets",
"problemDownloadingCanvas": "Fout bij downloaden van canvas",
"problemMergingCanvas": "Fout bij samenvoegen canvas",
"setCanvasInitialImage": "Ingesteld als initiële canvasafbeelding",
"setCanvasInitialImage": "Initiële canvasafbeelding ingesteld",
"imageUploaded": "Afbeelding geüpload",
"addedToBoard": "Toegevoegd aan bord",
"workflowLoaded": "Werkstroom geladen",
"modelAddedSimple": "Model toegevoegd",
"modelAddedSimple": "Model toegevoegd aan wachtrij",
"problemImportingMaskDesc": "Kan masker niet exporteren",
"problemCopyingCanvas": "Fout bij kopiëren canvas",
"problemSavingCanvas": "Fout bij bewaren canvas",
@ -459,7 +581,18 @@
"maskSentControlnetAssets": "Masker gestuurd naar ControlNet en Assets",
"canvasSavedGallery": "Canvas bewaard in galerij",
"imageUploadFailed": "Fout bij uploaden afbeelding",
"problemImportingMask": "Fout bij importeren masker"
"problemImportingMask": "Fout bij importeren masker",
"workflowDeleted": "Werkstroom verwijderd",
"invalidUpload": "Ongeldige upload",
"uploadInitialImage": "Initiële afbeelding uploaden",
"setAsCanvasInitialImage": "Ingesteld als initiële afbeelding voor canvas",
"problemRetrievingWorkflow": "Fout bij ophalen van werkstroom",
"parameters": "Parameters",
"modelImportCanceled": "Importeren model geannuleerd",
"problemDeletingWorkflow": "Fout bij verwijderen van werkstroom",
"prunedQueue": "Wachtrij gesnoeid",
"problemDownloadingImage": "Fout bij downloaden afbeelding",
"resetInitialImage": "Initiële afbeelding hersteld"
},
"tooltip": {
"feature": {
@ -533,7 +666,11 @@
"showOptionsPanel": "Toon zijscherm",
"menu": "Menu",
"showGalleryPanel": "Toon deelscherm Galerij",
"loadMore": "Laad meer"
"loadMore": "Laad meer",
"about": "Over",
"mode": "Modus",
"resetUI": "$t(accessibility.reset) UI",
"createIssue": "Maak probleem aan"
},
"nodes": {
"zoomOutNodes": "Uitzoomen",
@ -547,7 +684,7 @@
"loadWorkflow": "Laad werkstroom",
"downloadWorkflow": "Download JSON van werkstroom",
"scheduler": "Planner",
"missingTemplate": "Ontbrekende sjabloon",
"missingTemplate": "Ongeldig knooppunt: knooppunt {{node}} van het soort {{type}} heeft een ontbrekend sjabloon (niet geïnstalleerd?)",
"workflowDescription": "Korte beschrijving",
"versionUnknown": " Versie onbekend",
"noNodeSelected": "Geen knooppunt gekozen",
@ -563,7 +700,7 @@
"integer": "Geheel getal",
"nodeTemplate": "Sjabloon knooppunt",
"nodeOpacity": "Dekking knooppunt",
"unableToLoadWorkflow": "Kan werkstroom niet valideren",
"unableToLoadWorkflow": "Fout bij laden werkstroom",
"snapToGrid": "Lijn uit op raster",
"noFieldsLinearview": "Geen velden toegevoegd aan lineaire weergave",
"nodeSearch": "Zoek naar knooppunten",
@ -614,11 +751,56 @@
"unknownField": "Onbekend veld",
"colorCodeEdges": "Kleurgecodeerde randen",
"unknownNode": "Onbekend knooppunt",
"mismatchedVersion": "Heeft niet-overeenkomende versie",
"mismatchedVersion": "Ongeldig knooppunt: knooppunt {{node}} van het soort {{type}} heeft een niet-overeenkomende versie (probeer het bij te werken?)",
"addNodeToolTip": "Voeg knooppunt toe (Shift+A, spatie)",
"loadingNodes": "Bezig met laden van knooppunten...",
"snapToGridHelp": "Lijn knooppunten uit op raster bij verplaatsing",
"workflowSettings": "Instellingen werkstroomeditor"
"workflowSettings": "Instellingen werkstroomeditor",
"addLinearView": "Voeg toe aan lineaire weergave",
"nodePack": "Knooppuntpakket",
"unknownInput": "Onbekende invoer: {{name}}",
"sourceNodeFieldDoesNotExist": "Ongeldige rand: bron-/uitvoerveld {{node}}.{{field}} bestaat niet",
"collectionFieldType": "Verzameling {{name}}",
"deletedInvalidEdge": "Ongeldige hoek {{source}} -> {{target}} verwijderd",
"graph": "Grafiek",
"targetNodeDoesNotExist": "Ongeldige rand: doel-/invoerknooppunt {{node}} bestaat niet",
"resetToDefaultValue": "Herstel naar standaardwaarden",
"editMode": "Bewerk in Werkstroom-editor",
"showEdgeLabels": "Toon randlabels",
"showEdgeLabelsHelp": "Toon labels aan randen, waarmee de verbonden knooppunten mee worden aangegeven",
"clearWorkflowDesc2": "Je huidige werkstroom heeft niet-bewaarde wijzigingen.",
"unableToParseFieldType": "fout bij bepalen soort veld",
"sourceNodeDoesNotExist": "Ongeldige rand: bron-/uitvoerknooppunt {{node}} bestaat niet",
"unsupportedArrayItemType": "niet-ondersteunde soort van het array-onderdeel \"{{type}}\"",
"targetNodeFieldDoesNotExist": "Ongeldige rand: doel-/invoerveld {{node}}.{{field}} bestaat niet",
"reorderLinearView": "Herorden lineaire weergave",
"newWorkflowDesc": "Een nieuwe werkstroom aanmaken?",
"collectionOrScalarFieldType": "Verzameling|scalair {{name}}",
"newWorkflow": "Nieuwe werkstroom",
"unknownErrorValidatingWorkflow": "Onbekende fout bij valideren werkstroom",
"unsupportedAnyOfLength": "te veel union-leden ({{count}})",
"unknownOutput": "Onbekende uitvoer: {{name}}",
"viewMode": "Gebruik in lineaire weergave",
"unableToExtractSchemaNameFromRef": "fout bij het extraheren van de schemanaam via de ref",
"unsupportedMismatchedUnion": "niet-overeenkomende soort CollectionOrScalar met basissoorten {{firstType}} en {{secondType}}",
"unknownNodeType": "Onbekend soort knooppunt",
"edit": "Bewerk",
"updateAllNodes": "Werk knooppunten bij",
"allNodesUpdated": "Alle knooppunten bijgewerkt",
"nodeVersion": "Knooppuntversie",
"newWorkflowDesc2": "Je huidige werkstroom heeft niet-bewaarde wijzigingen.",
"clearWorkflow": "Maak werkstroom leeg",
"clearWorkflowDesc": "Deze werkstroom leegmaken en met een nieuwe beginnen?",
"inputFieldTypeParseError": "Fout bij bepalen van het soort invoerveld {{node}}.{{field}} ({{message}})",
"outputFieldTypeParseError": "Fout bij het bepalen van het soort uitvoerveld {{node}}.{{field}} ({{message}})",
"unableToExtractEnumOptions": "fout bij extraheren enumeratie-opties",
"unknownFieldType": "Soort $t(nodes.unknownField): {{type}}",
"unableToGetWorkflowVersion": "Fout bij ophalen schemaversie van werkstroom",
"betaDesc": "Deze uitvoering is in bèta. Totdat deze stabiel is kunnen er wijzigingen voorkomen gedurende app-updates die zaken kapotmaken. We zijn van plan om deze uitvoering op lange termijn te gaan ondersteunen.",
"prototypeDesc": "Deze uitvoering is een prototype. Er kunnen wijzigingen voorkomen gedurende app-updates die zaken kapotmaken. Deze kunnen op een willekeurig moment verwijderd worden.",
"noFieldsViewMode": "Deze werkstroom heeft geen geselecteerde velden om te tonen. Bekijk de volledige werkstroom om de waarden te configureren.",
"unableToUpdateNodes_one": "Fout bij bijwerken van {{count}} knooppunt",
"unableToUpdateNodes_other": "Fout bij bijwerken van {{count}} knooppunten"
},
"controlnet": {
"amult": "a_mult",
@ -691,9 +873,28 @@
"canny": "Canny",
"depthZoeDescription": "Genereer diepteblad via Zoe",
"hedDescription": "Herkenning van holistisch-geneste randen",
"setControlImageDimensions": "Stel afmetingen controle-afbeelding in op B/H",
"setControlImageDimensions": "Kopieer grootte naar B/H (optimaliseer voor model)",
"scribble": "Krabbel",
"maxFaces": "Max. gezichten"
"maxFaces": "Max. gezichten",
"dwOpenpose": "DW Openpose",
"depthAnything": "Depth Anything",
"base": "Basis",
"hands": "Handen",
"selectCLIPVisionModel": "Selecteer een CLIP Vision-model",
"modelSize": "Modelgrootte",
"small": "Klein",
"large": "Groot",
"resizeSimple": "Wijzig grootte (eenvoudig)",
"beginEndStepPercentShort": "Begin-/eind-%",
"depthAnythingDescription": "Genereren dieptekaart d.m.v. de techniek Depth Anything",
"face": "Gezicht",
"body": "Lichaam",
"dwOpenposeDescription": "Schatting menselijke pose d.m.v. DW Openpose",
"ipAdapterMethod": "Methode",
"full": "Volledig",
"style": "Alleen stijl",
"composition": "Alleen samenstelling",
"setControlImageDimensionsForce": "Kopieer grootte naar B/H (negeer model)"
},
"dynamicPrompts": {
"seedBehaviour": {
@ -706,7 +907,10 @@
"maxPrompts": "Max. prompts",
"promptsWithCount_one": "{{count}} prompt",
"promptsWithCount_other": "{{count}} prompts",
"dynamicPrompts": "Dynamische prompts"
"dynamicPrompts": "Dynamische prompts",
"showDynamicPrompts": "Toon dynamische prompts",
"loading": "Genereren van dynamische prompts...",
"promptsPreview": "Voorvertoning prompts"
},
"popovers": {
"noiseUseCPU": {
@ -719,7 +923,7 @@
},
"paramScheduler": {
"paragraphs": [
"De planner bepaalt hoe ruis per iteratie wordt toegevoegd aan een afbeelding of hoe een monster wordt bijgewerkt op basis van de uitvoer van een model."
"De planner gebruikt gedurende het genereringsproces."
],
"heading": "Planner"
},
@ -806,8 +1010,8 @@
},
"clipSkip": {
"paragraphs": [
"Kies hoeveel CLIP-modellagen je wilt overslaan.",
"Bepaalde modellen werken beter met bepaalde Overslaan CLIP-instellingen."
"Aantal over te slaan CLIP-modellagen.",
"Bepaalde modellen zijn beter geschikt met bepaalde Overslaan CLIP-instellingen."
],
"heading": "Overslaan CLIP"
},
@ -991,17 +1195,26 @@
"denoisingStrength": "Sterkte ontruising",
"refinermodel": "Verfijningsmodel",
"posAestheticScore": "Positieve esthetische score",
"concatPromptStyle": "Plak prompt- en stijltekst aan elkaar",
"concatPromptStyle": "Koppelen van prompt en stijl",
"loading": "Bezig met laden...",
"steps": "Stappen",
"posStylePrompt": "Positieve-stijlprompt"
"posStylePrompt": "Positieve-stijlprompt",
"freePromptStyle": "Handmatige stijlprompt",
"refinerSteps": "Aantal stappen verfijner"
},
"models": {
"noMatchingModels": "Geen overeenkomend modellen",
"loading": "bezig met laden",
"noMatchingLoRAs": "Geen overeenkomende LoRA's",
"noModelsAvailable": "Geen modellen beschikbaar",
"selectModel": "Kies een model"
"selectModel": "Kies een model",
"noLoRAsInstalled": "Geen LoRA's geïnstalleerd",
"noRefinerModelsInstalled": "Geen SDXL-verfijningsmodellen geïnstalleerd",
"defaultVAE": "Standaard-VAE",
"lora": "LoRA",
"esrganModel": "ESRGAN-model",
"addLora": "Voeg LoRA toe",
"concepts": "Concepten"
},
"boards": {
"autoAddBoard": "Voeg automatisch bord toe",
@ -1019,7 +1232,13 @@
"downloadBoard": "Download bord",
"changeBoard": "Wijzig bord",
"loading": "Bezig met laden...",
"clearSearch": "Maak zoekopdracht leeg"
"clearSearch": "Maak zoekopdracht leeg",
"deleteBoard": "Verwijder bord",
"deleteBoardAndImages": "Verwijder bord en afbeeldingen",
"deleteBoardOnly": "Verwijder alleen bord",
"deletedBoardsCannotbeRestored": "Verwijderde borden kunnen niet worden hersteld",
"movingImagesToBoard_one": "Verplaatsen van {{count}} afbeelding naar bord:",
"movingImagesToBoard_other": "Verplaatsen van {{count}} afbeeldingen naar bord:"
},
"invocationCache": {
"disable": "Schakel uit",
@ -1036,5 +1255,39 @@
"clear": "Wis",
"maxCacheSize": "Max. grootte cache",
"cacheSize": "Grootte cache"
},
"accordions": {
"generation": {
"title": "Genereren"
},
"image": {
"title": "Afbeelding"
},
"advanced": {
"title": "Geavanceerd",
"options": "$t(accordions.advanced.title) Opties"
},
"control": {
"title": "Besturing"
},
"compositing": {
"title": "Samenstellen",
"coherenceTab": "Coherentiefase",
"infillTab": "Invullen"
}
},
"hrf": {
"upscaleMethod": "Opschaalmethode",
"metadata": {
"strength": "Sterkte oplossing voor hoge resolutie",
"method": "Methode oplossing voor hoge resolutie",
"enabled": "Oplossing voor hoge resolutie ingeschakeld"
},
"hrf": "Oplossing voor hoge resolutie",
"enableHrf": "Schakel oplossing in voor hoge resolutie"
},
"prompt": {
"addPromptTrigger": "Voeg prompttrigger toe",
"compatibleEmbeddings": "Compatibele embeddings"
}
}

View File

@ -1594,7 +1594,6 @@
"deleteAll": "Удалить всё",
"addLayer": "Добавить слой",
"moveToFront": "На передний план",
"toggleVisibility": "Переключить видимость слоя",
"addPositivePrompt": "Добавить $t(common.positivePrompt)",
"addIPAdapter": "Добавить $t(common.ipAdapter)",
"regionalGuidanceLayer": "$t(controlLayers.regionalGuidance) $t(unifiedCanvas.layer)",

View File

@ -1,3 +1,4 @@
/* eslint-disable no-console */
import fs from 'node:fs';
import openapiTS from 'openapi-typescript';

View File

@ -21,10 +21,10 @@ import i18n from 'i18n';
import { size } from 'lodash-es';
import { memo, useCallback, useEffect } from 'react';
import { ErrorBoundary } from 'react-error-boundary';
import { useGetOpenAPISchemaQuery } from 'services/api/endpoints/appInfo';
import AppErrorBoundaryFallback from './AppErrorBoundaryFallback';
import PreselectedImage from './PreselectedImage';
import Toaster from './Toaster';
const DEFAULT_CONFIG = {};
@ -46,6 +46,7 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage }: Props) => {
useSocketIO();
useGlobalModifiersInit();
useGlobalHotkeys();
useGetOpenAPISchemaQuery();
const { dropzone, isHandlingUpload, setIsHandlingUpload } = useFullscreenDropzone();
@ -94,7 +95,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage }: Props) => {
<DeleteImageModal />
<ChangeBoardModal />
<DynamicPromptsModal />
<Toaster />
<PreselectedImage selectedImage={selectedImage} />
</ErrorBoundary>
);

View File

@ -1,5 +1,8 @@
import { Button, Flex, Heading, Link, Text, useToast } from '@invoke-ai/ui-library';
import { Button, Flex, Heading, Image, Link, Text } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { toast } from 'features/toast/toast';
import newGithubIssueUrl from 'new-github-issue-url';
import InvokeLogoYellow from 'public/assets/images/invoke-symbol-ylw-lrg.svg';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowCounterClockwiseBold, PiArrowSquareOutBold, PiCopyBold } from 'react-icons/pi';
@ -11,31 +14,39 @@ type Props = {
};
const AppErrorBoundaryFallback = ({ error, resetErrorBoundary }: Props) => {
const toast = useToast();
const { t } = useTranslation();
const isLocal = useAppSelector((s) => s.config.isLocal);
const handleCopy = useCallback(() => {
const text = JSON.stringify(serializeError(error), null, 2);
navigator.clipboard.writeText(`\`\`\`\n${text}\n\`\`\``);
toast({
title: 'Error Copied',
id: 'ERROR_COPIED',
title: t('toast.errorCopied'),
});
}, [error, toast]);
}, [error, t]);
const url = useMemo(
() =>
newGithubIssueUrl({
const url = useMemo(() => {
if (isLocal) {
return newGithubIssueUrl({
user: 'invoke-ai',
repo: 'InvokeAI',
template: 'BUG_REPORT.yml',
title: `[bug]: ${error.name}: ${error.message}`,
}),
[error.message, error.name]
);
});
} else {
return 'https://support.invoke.ai/support/tickets/new';
}
}, [error.message, error.name, isLocal]);
return (
<Flex layerStyle="body" w="100vw" h="100vh" alignItems="center" justifyContent="center" p={4}>
<Flex layerStyle="first" flexDir="column" borderRadius="base" justifyContent="center" gap={8} p={16}>
<Heading>{t('common.somethingWentWrong')}</Heading>
<Flex alignItems="center" gap="2">
<Image src={InvokeLogoYellow} alt="invoke-logo" w="24px" h="24px" minW="24px" minH="24px" userSelect="none" />
<Heading fontSize="2xl">{t('common.somethingWentWrong')}</Heading>
</Flex>
<Flex
layerStyle="second"
px={8}
@ -57,7 +68,9 @@ const AppErrorBoundaryFallback = ({ error, resetErrorBoundary }: Props) => {
{t('common.copyError')}
</Button>
<Link href={url} isExternal>
<Button leftIcon={<PiArrowSquareOutBold />}>{t('accessibility.createIssue')}</Button>
<Button leftIcon={<PiArrowSquareOutBold />}>
{isLocal ? t('accessibility.createIssue') : t('accessibility.submitSupportTicket')}
</Button>
</Link>
</Flex>
</Flex>

View File

@ -1,44 +0,0 @@
import { useToast } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { addToast, clearToastQueue } from 'features/system/store/systemSlice';
import type { MakeToastArg } from 'features/system/util/makeToast';
import { makeToast } from 'features/system/util/makeToast';
import { memo, useCallback, useEffect } from 'react';
/**
* Logical component. Watches the toast queue and makes toasts when the queue is not empty.
* @returns null
*/
const Toaster = () => {
const dispatch = useAppDispatch();
const toastQueue = useAppSelector((s) => s.system.toastQueue);
const toast = useToast();
useEffect(() => {
toastQueue.forEach((t) => {
toast(t);
});
toastQueue.length > 0 && dispatch(clearToastQueue());
}, [dispatch, toast, toastQueue]);
return null;
};
/**
* Returns a function that can be used to make a toast.
* @example
* const toaster = useAppToaster();
* toaster('Hello world!');
* toaster({ title: 'Hello world!', status: 'success' });
* @returns A function that can be used to make a toast.
* @see makeToast
* @see MakeToastArg
* @see UseToastOptions
*/
export const useAppToaster = () => {
const dispatch = useAppDispatch();
const toaster = useCallback((arg: MakeToastArg) => dispatch(addToast(makeToast(arg))), [dispatch]);
return toaster;
};
export default memo(Toaster);

View File

@ -6,8 +6,8 @@ import { useAppDispatch } from 'app/store/storeHooks';
import type { MapStore } from 'nanostores';
import { atom, map } from 'nanostores';
import { useEffect, useMemo } from 'react';
import { setEventListeners } from 'services/events/setEventListeners';
import type { ClientToServerEvents, ServerToClientEvents } from 'services/events/types';
import { setEventListeners } from 'services/events/util/setEventListeners';
import type { ManagerOptions, Socket, SocketOptions } from 'socket.io-client';
import { io } from 'socket.io-client';
@ -67,6 +67,8 @@ export const useSocketIO = () => {
if ($isDebugging.get() || import.meta.env.MODE === 'development') {
window.$socketOptions = $socketOptions;
// This is only enabled manually for debugging, console is allowed.
/* eslint-disable-next-line no-console */
console.log('Socket initialized', socket);
}
@ -75,6 +77,8 @@ export const useSocketIO = () => {
return () => {
if ($isDebugging.get() || import.meta.env.MODE === 'development') {
window.$socketOptions = undefined;
// This is only enabled manually for debugging, console is allowed.
/* eslint-disable-next-line no-console */
console.log('Socket teardown', socket);
}
socket.disconnect();

View File

@ -1,3 +1,6 @@
/* eslint-disable no-console */
// This is only enabled manually for debugging, console is allowed.
import type { Middleware, MiddlewareAPI } from '@reduxjs/toolkit';
import { diff } from 'jsondiffpatch';

View File

@ -1,7 +1,6 @@
import type { UnknownAction } from '@reduxjs/toolkit';
import { deepClone } from 'common/util/deepClone';
import { isAnyGraphBuilt } from 'features/nodes/store/actions';
import { nodeTemplatesBuilt } from 'features/nodes/store/nodesSlice';
import { appInfoApi } from 'services/api/endpoints/appInfo';
import type { Graph } from 'services/api/types';
import { socketGeneratorProgress } from 'services/events/actions';
@ -25,13 +24,6 @@ export const actionSanitizer = <A extends UnknownAction>(action: A): A => {
};
}
if (nodeTemplatesBuilt.match(action)) {
return {
...action,
payload: '<Node templates omitted>',
};
}
if (socketGeneratorProgress.match(action)) {
const sanitized = deepClone(action);
if (sanitized.payload.data.progress_image) {

View File

@ -35,28 +35,22 @@ import { addImageUploadedFulfilledListener } from 'app/store/middleware/listener
import { addModelSelectedListener } from 'app/store/middleware/listenerMiddleware/listeners/modelSelected';
import { addModelsLoadedListener } from 'app/store/middleware/listenerMiddleware/listeners/modelsLoaded';
import { addDynamicPromptsListener } from 'app/store/middleware/listenerMiddleware/listeners/promptChanged';
import { addSetDefaultSettingsListener } from 'app/store/middleware/listenerMiddleware/listeners/setDefaultSettings';
import { addSocketConnectedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketConnected';
import { addSocketDisconnectedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketDisconnected';
import { addGeneratorProgressEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketGeneratorProgress';
import { addGraphExecutionStateCompleteEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketGraphExecutionStateComplete';
import { addInvocationCompleteEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationComplete';
import { addInvocationErrorEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationError';
import { addInvocationRetrievalErrorEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationRetrievalError';
import { addInvocationStartedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketInvocationStarted';
import { addModelInstallEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketModelInstall';
import { addModelLoadEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketModelLoad';
import { addSocketQueueItemStatusChangedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketQueueItemStatusChanged';
import { addSessionRetrievalErrorEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketSessionRetrievalError';
import { addSocketSubscribedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketSubscribed';
import { addSocketUnsubscribedEventListener } from 'app/store/middleware/listenerMiddleware/listeners/socketio/socketUnsubscribed';
import { addStagingAreaImageSavedListener } from 'app/store/middleware/listenerMiddleware/listeners/stagingAreaImageSaved';
import { addUpdateAllNodesRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/updateAllNodesRequested';
import { addUpscaleRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/upscaleRequested';
import { addWorkflowLoadRequestedListener } from 'app/store/middleware/listenerMiddleware/listeners/workflowLoadRequested';
import type { AppDispatch, RootState } from 'app/store/store';
import { addSetDefaultSettingsListener } from './listeners/setDefaultSettings';
export const listenerMiddleware = createListenerMiddleware();
export type AppStartListening = TypedStartListening<RootState, AppDispatch>;
@ -104,18 +98,13 @@ addCommitStagingAreaImageListener(startAppListening);
// Socket.IO
addGeneratorProgressEventListener(startAppListening);
addGraphExecutionStateCompleteEventListener(startAppListening);
addInvocationCompleteEventListener(startAppListening);
addInvocationErrorEventListener(startAppListening);
addInvocationStartedEventListener(startAppListening);
addSocketConnectedEventListener(startAppListening);
addSocketDisconnectedEventListener(startAppListening);
addSocketSubscribedEventListener(startAppListening);
addSocketUnsubscribedEventListener(startAppListening);
addModelLoadEventListener(startAppListening);
addModelInstallEventListener(startAppListening);
addSessionRetrievalErrorEventListener(startAppListening);
addInvocationRetrievalErrorEventListener(startAppListening);
addSocketQueueItemStatusChangedEventListener(startAppListening);
addBulkDownloadListeners(startAppListening);

View File

@ -8,7 +8,7 @@ import {
resetCanvas,
setInitialCanvasImage,
} from 'features/canvas/store/canvasSlice';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { queueApi } from 'services/api/endpoints/queue';
@ -30,22 +30,20 @@ export const addCommitStagingAreaImageListener = (startAppListening: AppStartLis
req.reset();
if (canceled > 0) {
log.debug(`Canceled ${canceled} canvas batches`);
dispatch(
addToast({
title: t('queue.cancelBatchSucceeded'),
status: 'success',
})
);
toast({
id: 'CANCEL_BATCH_SUCCEEDED',
title: t('queue.cancelBatchSucceeded'),
status: 'success',
});
}
dispatch(canvasBatchIdsReset());
} catch {
log.error('Failed to cancel canvas batches');
dispatch(
addToast({
title: t('queue.cancelBatchFailed'),
status: 'error',
})
);
toast({
id: 'CANCEL_BATCH_FAILED',
title: t('queue.cancelBatchFailed'),
status: 'error',
});
}
},
});

View File

@ -1,8 +1,8 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { parseify } from 'common/util/serialize';
import { toast } from 'common/util/toast';
import { zPydanticValidationError } from 'features/system/store/zodSchemas';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { truncate, upperFirst } from 'lodash-es';
import { queueApi } from 'services/api/endpoints/queue';
@ -16,18 +16,15 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
const arg = action.meta.arg.originalArgs;
logger('queue').debug({ enqueueResult: parseify(response) }, 'Batch enqueued');
if (!toast.isActive('batch-queued')) {
toast({
id: 'batch-queued',
title: t('queue.batchQueued'),
description: t('queue.batchQueuedDesc', {
count: response.enqueued,
direction: arg.prepend ? t('queue.front') : t('queue.back'),
}),
duration: 1000,
status: 'success',
});
}
toast({
id: 'QUEUE_BATCH_SUCCEEDED',
title: t('queue.batchQueued'),
status: 'success',
description: t('queue.batchQueuedDesc', {
count: response.enqueued,
direction: arg.prepend ? t('queue.front') : t('queue.back'),
}),
});
},
});
@ -40,9 +37,10 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
if (!response) {
toast({
id: 'QUEUE_BATCH_FAILED',
title: t('queue.batchFailedToQueue'),
status: 'error',
description: 'Unknown Error',
description: t('common.unknownError'),
});
logger('queue').error({ batchConfig: parseify(arg), error: parseify(response) }, t('queue.batchFailedToQueue'));
return;
@ -52,7 +50,7 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
if (result.success) {
result.data.data.detail.map((e) => {
toast({
id: 'batch-failed-to-queue',
id: 'QUEUE_BATCH_FAILED',
title: truncate(upperFirst(e.msg), { length: 128 }),
status: 'error',
description: truncate(
@ -64,9 +62,10 @@ export const addBatchEnqueuedListener = (startAppListening: AppStartListening) =
});
} else if (response.status !== 403) {
toast({
id: 'QUEUE_BATCH_FAILED',
title: t('queue.batchFailedToQueue'),
description: t('common.unknownError'),
status: 'error',
description: t('common.unknownError'),
});
}
logger('queue').error({ batchConfig: parseify(arg), error: parseify(response) }, t('queue.batchFailedToQueue'));

View File

@ -21,7 +21,7 @@ export const addDeleteBoardAndImagesFulfilledListener = (startAppListening: AppS
const { canvas, nodes, controlAdapters, controlLayers } = getState();
deleted_images.forEach((image_name) => {
const imageUsage = getImageUsage(canvas, nodes, controlAdapters, controlLayers.present, image_name);
const imageUsage = getImageUsage(canvas, nodes.present, controlAdapters, controlLayers.present, image_name);
if (imageUsage.isCanvasImage && !wasCanvasReset) {
dispatch(resetCanvas());

View File

@ -1,13 +1,12 @@
import type { UseToastOptions } from '@invoke-ai/ui-library';
import { ExternalLink } from '@invoke-ai/ui-library';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { toast } from 'common/util/toast';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
import {
socketBulkDownloadCompleted,
socketBulkDownloadFailed,
socketBulkDownloadComplete,
socketBulkDownloadError,
socketBulkDownloadStarted,
} from 'services/events/actions';
@ -28,7 +27,6 @@ export const addBulkDownloadListeners = (startAppListening: AppStartListening) =
// Show the response message if it exists, otherwise show the default message
description: action.payload.response || t('gallery.bulkDownloadRequestedDesc'),
duration: null,
isClosable: true,
});
},
});
@ -40,9 +38,9 @@ export const addBulkDownloadListeners = (startAppListening: AppStartListening) =
// There isn't any toast to update if we get this event.
toast({
id: 'BULK_DOWNLOAD_REQUEST_FAILED',
title: t('gallery.bulkDownloadRequestFailed'),
status: 'success',
isClosable: true,
status: 'error',
});
},
});
@ -56,7 +54,7 @@ export const addBulkDownloadListeners = (startAppListening: AppStartListening) =
});
startAppListening({
actionCreator: socketBulkDownloadCompleted,
actionCreator: socketBulkDownloadComplete,
effect: async (action) => {
log.debug(action.payload.data, 'Bulk download preparation completed');
@ -65,7 +63,7 @@ export const addBulkDownloadListeners = (startAppListening: AppStartListening) =
// TODO(psyche): This URL may break in in some environments (e.g. Nvidia workbench) but we need to test it first
const url = `/api/v1/images/download/${bulk_download_item_name}`;
const toastOptions: UseToastOptions = {
toast({
id: bulk_download_item_name,
title: t('gallery.bulkDownloadReady', 'Download ready'),
status: 'success',
@ -77,38 +75,24 @@ export const addBulkDownloadListeners = (startAppListening: AppStartListening) =
/>
),
duration: null,
isClosable: true,
};
if (toast.isActive(bulk_download_item_name)) {
toast.update(bulk_download_item_name, toastOptions);
} else {
toast(toastOptions);
}
});
},
});
startAppListening({
actionCreator: socketBulkDownloadFailed,
actionCreator: socketBulkDownloadError,
effect: async (action) => {
log.debug(action.payload.data, 'Bulk download preparation failed');
const { bulk_download_item_name } = action.payload.data;
const toastOptions: UseToastOptions = {
toast({
id: bulk_download_item_name,
title: t('gallery.bulkDownloadFailed'),
status: 'error',
description: action.payload.data.error,
duration: null,
isClosable: true,
};
if (toast.isActive(bulk_download_item_name)) {
toast.update(bulk_download_item_name, toastOptions);
} else {
toast(toastOptions);
}
});
},
});
};

View File

@ -2,14 +2,14 @@ import { $logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { canvasCopiedToClipboard } from 'features/canvas/store/actions';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { addToast } from 'features/system/store/systemSlice';
import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
export const addCanvasCopiedToClipboardListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: canvasCopiedToClipboard,
effect: async (action, { dispatch, getState }) => {
effect: async (action, { getState }) => {
const moduleLog = $logger.get().child({ namespace: 'canvasCopiedToClipboardListener' });
const state = getState();
@ -19,22 +19,20 @@ export const addCanvasCopiedToClipboardListener = (startAppListening: AppStartLi
copyBlobToClipboard(blob);
} catch (err) {
moduleLog.error(String(err));
dispatch(
addToast({
title: t('toast.problemCopyingCanvas'),
description: t('toast.problemCopyingCanvasDesc'),
status: 'error',
})
);
toast({
id: 'CANVAS_COPY_FAILED',
title: t('toast.problemCopyingCanvas'),
description: t('toast.problemCopyingCanvasDesc'),
status: 'error',
});
return;
}
dispatch(
addToast({
title: t('toast.canvasCopiedClipboard'),
status: 'success',
})
);
toast({
id: 'CANVAS_COPY_SUCCEEDED',
title: t('toast.canvasCopiedClipboard'),
status: 'success',
});
},
});
};

View File

@ -3,13 +3,13 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
import { canvasDownloadedAsImage } from 'features/canvas/store/actions';
import { downloadBlob } from 'features/canvas/util/downloadBlob';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
export const addCanvasDownloadedAsImageListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: canvasDownloadedAsImage,
effect: async (action, { dispatch, getState }) => {
effect: async (action, { getState }) => {
const moduleLog = $logger.get().child({ namespace: 'canvasSavedToGalleryListener' });
const state = getState();
@ -18,18 +18,17 @@ export const addCanvasDownloadedAsImageListener = (startAppListening: AppStartLi
blob = await getBaseLayerBlob(state);
} catch (err) {
moduleLog.error(String(err));
dispatch(
addToast({
title: t('toast.problemDownloadingCanvas'),
description: t('toast.problemDownloadingCanvasDesc'),
status: 'error',
})
);
toast({
id: 'CANVAS_DOWNLOAD_FAILED',
title: t('toast.problemDownloadingCanvas'),
description: t('toast.problemDownloadingCanvasDesc'),
status: 'error',
});
return;
}
downloadBlob(blob, 'canvas.png');
dispatch(addToast({ title: t('toast.canvasDownloaded'), status: 'success' }));
toast({ id: 'CANVAS_DOWNLOAD_SUCCEEDED', title: t('toast.canvasDownloaded'), status: 'success' });
},
});
};

View File

@ -3,7 +3,7 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
import { canvasImageToControlAdapter } from 'features/canvas/store/actions';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { controlAdapterImageChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
@ -20,13 +20,12 @@ export const addCanvasImageToControlNetListener = (startAppListening: AppStartLi
blob = await getBaseLayerBlob(state, true);
} catch (err) {
log.error(String(err));
dispatch(
addToast({
title: t('toast.problemSavingCanvas'),
description: t('toast.problemSavingCanvasDesc'),
status: 'error',
})
);
toast({
id: 'PROBLEM_SAVING_CANVAS',
title: t('toast.problemSavingCanvas'),
description: t('toast.problemSavingCanvasDesc'),
status: 'error',
});
return;
}
@ -43,7 +42,7 @@ export const addCanvasImageToControlNetListener = (startAppListening: AppStartLi
crop_visible: false,
postUploadAction: {
type: 'TOAST',
toastOptions: { title: t('toast.canvasSentControlnetAssets') },
title: t('toast.canvasSentControlnetAssets'),
},
})
).unwrap();

View File

@ -2,7 +2,7 @@ import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { canvasMaskSavedToGallery } from 'features/canvas/store/actions';
import { getCanvasData } from 'features/canvas/util/getCanvasData';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
@ -29,13 +29,12 @@ export const addCanvasMaskSavedToGalleryListener = (startAppListening: AppStartL
if (!maskBlob) {
log.error('Problem getting mask layer blob');
dispatch(
addToast({
title: t('toast.problemSavingMask'),
description: t('toast.problemSavingMaskDesc'),
status: 'error',
})
);
toast({
id: 'PROBLEM_SAVING_MASK',
title: t('toast.problemSavingMask'),
description: t('toast.problemSavingMaskDesc'),
status: 'error',
});
return;
}
@ -52,7 +51,7 @@ export const addCanvasMaskSavedToGalleryListener = (startAppListening: AppStartL
crop_visible: true,
postUploadAction: {
type: 'TOAST',
toastOptions: { title: t('toast.maskSavedAssets') },
title: t('toast.maskSavedAssets'),
},
})
);

View File

@ -3,7 +3,7 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
import { canvasMaskToControlAdapter } from 'features/canvas/store/actions';
import { getCanvasData } from 'features/canvas/util/getCanvasData';
import { controlAdapterImageChanged } from 'features/controlAdapters/store/controlAdaptersSlice';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
@ -30,13 +30,12 @@ export const addCanvasMaskToControlNetListener = (startAppListening: AppStartLis
if (!maskBlob) {
log.error('Problem getting mask layer blob');
dispatch(
addToast({
title: t('toast.problemImportingMask'),
description: t('toast.problemImportingMaskDesc'),
status: 'error',
})
);
toast({
id: 'PROBLEM_IMPORTING_MASK',
title: t('toast.problemImportingMask'),
description: t('toast.problemImportingMaskDesc'),
status: 'error',
});
return;
}
@ -53,7 +52,7 @@ export const addCanvasMaskToControlNetListener = (startAppListening: AppStartLis
crop_visible: false,
postUploadAction: {
type: 'TOAST',
toastOptions: { title: t('toast.maskSentControlnetAssets') },
title: t('toast.maskSentControlnetAssets'),
},
})
).unwrap();

View File

@ -4,7 +4,7 @@ import { canvasMerged } from 'features/canvas/store/actions';
import { $canvasBaseLayer } from 'features/canvas/store/canvasNanostore';
import { setMergedCanvas } from 'features/canvas/store/canvasSlice';
import { getFullBaseLayerBlob } from 'features/canvas/util/getFullBaseLayerBlob';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
@ -17,13 +17,12 @@ export const addCanvasMergedListener = (startAppListening: AppStartListening) =>
if (!blob) {
moduleLog.error('Problem getting base layer blob');
dispatch(
addToast({
title: t('toast.problemMergingCanvas'),
description: t('toast.problemMergingCanvasDesc'),
status: 'error',
})
);
toast({
id: 'PROBLEM_MERGING_CANVAS',
title: t('toast.problemMergingCanvas'),
description: t('toast.problemMergingCanvasDesc'),
status: 'error',
});
return;
}
@ -31,13 +30,12 @@ export const addCanvasMergedListener = (startAppListening: AppStartListening) =>
if (!canvasBaseLayer) {
moduleLog.error('Problem getting canvas base layer');
dispatch(
addToast({
title: t('toast.problemMergingCanvas'),
description: t('toast.problemMergingCanvasDesc'),
status: 'error',
})
);
toast({
id: 'PROBLEM_MERGING_CANVAS',
title: t('toast.problemMergingCanvas'),
description: t('toast.problemMergingCanvasDesc'),
status: 'error',
});
return;
}
@ -54,7 +52,7 @@ export const addCanvasMergedListener = (startAppListening: AppStartListening) =>
is_intermediate: true,
postUploadAction: {
type: 'TOAST',
toastOptions: { title: t('toast.canvasMerged') },
title: t('toast.canvasMerged'),
},
})
).unwrap();

View File

@ -1,8 +1,9 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { parseify } from 'common/util/serialize';
import { canvasSavedToGallery } from 'features/canvas/store/actions';
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
@ -18,13 +19,12 @@ export const addCanvasSavedToGalleryListener = (startAppListening: AppStartListe
blob = await getBaseLayerBlob(state);
} catch (err) {
log.error(String(err));
dispatch(
addToast({
title: t('toast.problemSavingCanvas'),
description: t('toast.problemSavingCanvasDesc'),
status: 'error',
})
);
toast({
id: 'CANVAS_SAVE_FAILED',
title: t('toast.problemSavingCanvas'),
description: t('toast.problemSavingCanvasDesc'),
status: 'error',
});
return;
}
@ -41,7 +41,10 @@ export const addCanvasSavedToGalleryListener = (startAppListening: AppStartListe
crop_visible: true,
postUploadAction: {
type: 'TOAST',
toastOptions: { title: t('toast.canvasSavedGallery') },
title: t('toast.canvasSavedGallery'),
},
metadata: {
_canvas_objects: parseify(state.canvas.layerState.objects),
},
})
);

View File

@ -14,8 +14,9 @@ import {
} from 'features/controlLayers/store/controlLayersSlice';
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
import { isImageOutput } from 'features/nodes/types/common';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { isEqual } from 'lodash-es';
import { getImageDTO } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig } from 'services/api/types';
@ -47,8 +48,10 @@ const cancelProcessorBatch = async (dispatch: AppDispatch, layerId: string, batc
export const addControlAdapterPreprocessor = (startAppListening: AppStartListening) => {
startAppListening({
matcher,
effect: async (action, { dispatch, getState, cancelActiveListeners, delay, take, signal }) => {
effect: async (action, { dispatch, getState, getOriginalState, cancelActiveListeners, delay, take, signal }) => {
const layerId = caLayerRecalled.match(action) ? action.payload.id : action.payload.layerId;
const state = getState();
const originalState = getOriginalState();
// Cancel any in-progress instances of this listener
cancelActiveListeners();
@ -57,21 +60,33 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
// Delay before starting actual work
await delay(DEBOUNCE_MS);
// Double-check that we are still eligible for processing
const state = getState();
const layer = state.controlLayers.present.layers.filter(isControlAdapterLayer).find((l) => l.id === layerId);
// If we have no image or there is no processor config, bail
if (!layer) {
return;
}
// We should only process if the processor settings or image have changed
const originalLayer = originalState.controlLayers.present.layers
.filter(isControlAdapterLayer)
.find((l) => l.id === layerId);
const originalImage = originalLayer?.controlAdapter.image;
const originalConfig = originalLayer?.controlAdapter.processorConfig;
const image = layer.controlAdapter.image;
const config = layer.controlAdapter.processorConfig;
if (isEqual(config, originalConfig) && isEqual(image, originalImage)) {
// Neither config nor image have changed, we can bail
return;
}
if (!image || !config) {
// The user has reset the image or config, so we should clear the processed image
// - If we have no image, we have nothing to process
// - If we have no processor config, we have nothing to process
// Clear the processed image and bail
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO: null }));
return;
}
// At this point, the user has stopped fiddling with the processor settings and there is a processor selected.
@ -81,8 +96,8 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
cancelProcessorBatch(dispatch, layerId, layer.controlAdapter.processorPendingBatchId);
}
// @ts-expect-error: TS isn't able to narrow the typing of buildNode and `config` will error...
const processorNode = CA_PROCESSOR_DATA[config.type].buildNode(image, config);
// TODO(psyche): I can't get TS to be happy, it thinkgs `config` is `never` but it should be inferred from the generic... I'll just cast it for now
const processorNode = CA_PROCESSOR_DATA[config.type].buildNode(image, config as never);
const enqueueBatchArg: BatchConfig = {
prepend: true,
batch: {
@ -118,8 +133,8 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
const [invocationCompleteAction] = await take(
(action): action is ReturnType<typeof socketInvocationComplete> =>
socketInvocationComplete.match(action) &&
action.payload.data.queue_batch_id === enqueueResult.batch.batch_id &&
action.payload.data.source_node_id === processorNode.id
action.payload.data.batch_id === enqueueResult.batch.batch_id &&
action.payload.data.invocation_source_id === processorNode.id
);
// We still have to check the output type
@ -148,7 +163,6 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
log.trace('Control Adapter preprocessor cancelled');
} else {
// Some other error condition...
console.log(error);
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
if (error instanceof Object) {
@ -160,12 +174,11 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
}
}
dispatch(
addToast({
title: t('queue.graphFailedToQueue'),
status: 'error',
})
);
toast({
id: 'GRAPH_QUEUE_FAILED',
title: t('queue.graphFailedToQueue'),
status: 'error',
});
}
} finally {
req.reset();

View File

@ -10,7 +10,7 @@ import {
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
import { isImageOutput } from 'features/nodes/types/common';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { imagesApi } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
@ -69,8 +69,8 @@ export const addControlNetImageProcessedListener = (startAppListening: AppStartL
const [invocationCompleteAction] = await take(
(action): action is ReturnType<typeof socketInvocationComplete> =>
socketInvocationComplete.match(action) &&
action.payload.data.queue_batch_id === enqueueResult.batch.batch_id &&
action.payload.data.source_node_id === nodeId
action.payload.data.batch_id === enqueueResult.batch.batch_id &&
action.payload.data.invocation_source_id === nodeId
);
// We still have to check the output type
@ -108,12 +108,11 @@ export const addControlNetImageProcessedListener = (startAppListening: AppStartL
}
}
dispatch(
addToast({
title: t('queue.graphFailedToQueue'),
status: 'error',
})
);
toast({
id: 'GRAPH_QUEUE_FAILED',
title: t('queue.graphFailedToQueue'),
status: 'error',
});
}
},
});

View File

@ -8,8 +8,8 @@ import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
import { getCanvasData } from 'features/canvas/util/getCanvasData';
import { getCanvasGenerationMode } from 'features/canvas/util/getCanvasGenerationMode';
import { canvasGraphBuilt } from 'features/nodes/store/actions';
import { buildCanvasGraph } from 'features/nodes/util/graph/buildCanvasGraph';
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
import { buildCanvasGraph } from 'features/nodes/util/graph/canvas/buildCanvasGraph';
import { imagesApi } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
import type { ImageDTO } from 'services/api/types';

View File

@ -1,9 +1,9 @@
import { enqueueRequested } from 'app/store/actions';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
import { buildGenerationTabGraph } from 'features/nodes/util/graph/buildGenerationTabGraph';
import { buildGenerationTabSDXLGraph } from 'features/nodes/util/graph/buildGenerationTabSDXLGraph';
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
import { buildGenerationTabGraph } from 'features/nodes/util/graph/generation/buildGenerationTabGraph';
import { buildGenerationTabSDXLGraph } from 'features/nodes/util/graph/generation/buildGenerationTabSDXLGraph';
import { queueApi } from 'services/api/endpoints/queue';
export const addEnqueueRequestedLinear = (startAppListening: AppStartListening) => {
@ -18,7 +18,7 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
let graph;
if (model && model.base === 'sdxl') {
if (model?.base === 'sdxl') {
graph = await buildGenerationTabSDXLGraph(state);
} else {
graph = await buildGenerationTabGraph(state);

View File

@ -11,9 +11,9 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
enqueueRequested.match(action) && action.payload.tabName === 'workflows',
effect: async (action, { getState, dispatch }) => {
const state = getState();
const { nodes, edges } = state.nodes;
const { nodes, edges } = state.nodes.present;
const workflow = state.workflow;
const graph = buildNodesGraph(state.nodes);
const graph = buildNodesGraph(state.nodes.present);
const builtWorkflow = buildWorkflowWithValidation({
nodes,
edges,

View File

@ -1,7 +1,7 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { parseify } from 'common/util/serialize';
import { nodeTemplatesBuilt } from 'features/nodes/store/nodesSlice';
import { $templates } from 'features/nodes/store/nodesSlice';
import { parseSchema } from 'features/nodes/util/schema/parseSchema';
import { size } from 'lodash-es';
import { appInfoApi } from 'services/api/endpoints/appInfo';
@ -9,7 +9,7 @@ import { appInfoApi } from 'services/api/endpoints/appInfo';
export const addGetOpenAPISchemaListener = (startAppListening: AppStartListening) => {
startAppListening({
matcher: appInfoApi.endpoints.getOpenAPISchema.matchFulfilled,
effect: (action, { dispatch, getState }) => {
effect: (action, { getState }) => {
const log = logger('system');
const schemaJSON = action.payload;
@ -20,7 +20,7 @@ export const addGetOpenAPISchemaListener = (startAppListening: AppStartListening
log.debug({ nodeTemplates: parseify(nodeTemplates) }, `Built ${size(nodeTemplates)} node templates`);
dispatch(nodeTemplatesBuilt(nodeTemplates));
$templates.set(nodeTemplates);
},
});

View File

@ -29,7 +29,7 @@ import type { ImageDTO } from 'services/api/types';
import { imagesSelectors } from 'services/api/util';
const deleteNodesImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
state.nodes.nodes.forEach((node) => {
state.nodes.present.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
return;
}

View File

@ -1,4 +1,3 @@
import type { UseToastOptions } from '@invoke-ai/ui-library';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { setInitialCanvasImage } from 'features/canvas/store/canvasSlice';
@ -14,7 +13,7 @@ import {
} from 'features/controlLayers/store/controlLayersSlice';
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
import { addToast } from 'features/system/store/systemSlice';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { omit } from 'lodash-es';
import { boardsApi } from 'services/api/endpoints/boards';
@ -42,16 +41,17 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
return;
}
const DEFAULT_UPLOADED_TOAST: UseToastOptions = {
const DEFAULT_UPLOADED_TOAST = {
id: 'IMAGE_UPLOADED',
title: t('toast.imageUploaded'),
status: 'success',
};
} as const;
// default action - just upload and alert user
if (postUploadAction?.type === 'TOAST') {
const { toastOptions } = postUploadAction;
if (!autoAddBoardId || autoAddBoardId === 'none') {
dispatch(addToast({ ...DEFAULT_UPLOADED_TOAST, ...toastOptions }));
const title = postUploadAction.title || DEFAULT_UPLOADED_TOAST.title;
toast({ ...DEFAULT_UPLOADED_TOAST, title });
} else {
// Add this image to the board
dispatch(
@ -70,24 +70,20 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
? `${t('toast.addedToBoard')} ${board.board_name}`
: `${t('toast.addedToBoard')} ${autoAddBoardId}`;
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description,
})
);
toast({
...DEFAULT_UPLOADED_TOAST,
description,
});
}
return;
}
if (postUploadAction?.type === 'SET_CANVAS_INITIAL_IMAGE') {
dispatch(setInitialCanvasImage(imageDTO, selectOptimalDimension(state)));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setAsCanvasInitialImage'),
})
);
toast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setAsCanvasInitialImage'),
});
return;
}
@ -105,68 +101,56 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
controlImage: imageDTO.image_name,
})
);
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
})
);
toast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
});
return;
}
if (postUploadAction?.type === 'SET_CA_LAYER_IMAGE') {
const { layerId } = postUploadAction;
dispatch(caLayerImageChanged({ layerId, imageDTO }));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
})
);
toast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
});
}
if (postUploadAction?.type === 'SET_IPA_LAYER_IMAGE') {
const { layerId } = postUploadAction;
dispatch(ipaLayerImageChanged({ layerId, imageDTO }));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
})
);
toast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
});
}
if (postUploadAction?.type === 'SET_RG_LAYER_IP_ADAPTER_IMAGE') {
const { layerId, ipAdapterId } = postUploadAction;
dispatch(rgLayerIPAdapterImageChanged({ layerId, ipAdapterId, imageDTO }));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
})
);
toast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
});
}
if (postUploadAction?.type === 'SET_II_LAYER_IMAGE') {
const { layerId } = postUploadAction;
dispatch(iiLayerImageChanged({ layerId, imageDTO }));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
})
);
toast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
});
}
if (postUploadAction?.type === 'SET_NODES_IMAGE') {
const { nodeId, fieldName } = postUploadAction;
dispatch(fieldImageValueChanged({ nodeId, fieldName, value: imageDTO }));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: `${t('toast.setNodeField')} ${fieldName}`,
})
);
toast({
...DEFAULT_UPLOADED_TOAST,
description: `${t('toast.setNodeField')} ${fieldName}`,
});
return;
}
},
@ -174,7 +158,7 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
startAppListening({
matcher: imagesApi.endpoints.uploadImage.matchRejected,
effect: (action, { dispatch }) => {
effect: (action) => {
const log = logger('images');
const sanitizedData = {
arg: {
@ -183,13 +167,11 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
},
};
log.error({ ...sanitizedData }, 'Image upload failed');
dispatch(
addToast({
title: t('toast.imageUploadFailed'),
description: action.error.message,
status: 'error',
})
);
toast({
title: t('toast.imageUploadFailed'),
description: action.error.message,
status: 'error',
});
},
});
};

View File

@ -8,8 +8,7 @@ import { loraRemoved } from 'features/lora/store/loraSlice';
import { modelSelected } from 'features/parameters/store/actions';
import { modelChanged, vaeSelected } from 'features/parameters/store/generationSlice';
import { zParameterModel } from 'features/parameters/types/parameterSchemas';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { forEach } from 'lodash-es';
@ -60,16 +59,14 @@ export const addModelSelectedListener = (startAppListening: AppStartListening) =
});
if (modelsCleared > 0) {
dispatch(
addToast(
makeToast({
title: t('toast.baseModelChangedCleared', {
count: modelsCleared,
}),
status: 'warning',
})
)
);
toast({
id: 'BASE_MODEL_CHANGED',
title: t('toast.baseModelChanged'),
description: t('toast.baseModelChangedCleared', {
count: modelsCleared,
}),
status: 'warning',
});
}
}

View File

@ -19,8 +19,7 @@ import {
isParameterWidth,
zParameterVAEModel,
} from 'features/parameters/types/parameterSchemas';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { toast } from 'features/toast/toast';
import { t } from 'i18next';
import { modelConfigsAdapterSelectors, modelsApi } from 'services/api/endpoints/models';
import { isNonRefinerMainModelConfig } from 'services/api/types';
@ -109,7 +108,7 @@ export const addSetDefaultSettingsListener = (startAppListening: AppStartListeni
}
}
dispatch(addToast(makeToast({ title: t('toast.parameterSet', { parameter: 'Default settings' }) })));
toast({ id: 'PARAMETER_SET', title: t('toast.parameterSet', { parameter: 'Default settings' }) });
}
},
});

View File

@ -1,5 +1,9 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { parseify } from 'common/util/serialize';
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { socketGeneratorProgress } from 'services/events/actions';
const log = logger('socketio');
@ -8,7 +12,15 @@ export const addGeneratorProgressEventListener = (startAppListening: AppStartLis
startAppListening({
actionCreator: socketGeneratorProgress,
effect: (action) => {
log.trace(action.payload, `Generator progress`);
log.trace(parseify(action.payload), `Generator progress`);
const { invocation_source_id, step, total_steps, progress_image } = action.payload.data;
const nes = deepClone($nodeExecutionStates.get()[invocation_source_id]);
if (nes) {
nes.status = zNodeStatus.enum.IN_PROGRESS;
nes.progress = (step + 1) / total_steps;
nes.progressImage = progress_image ?? null;
upsertExecutionState(nes.nodeId, nes);
}
},
});
};

View File

@ -1,14 +0,0 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { socketGraphExecutionStateComplete } from 'services/events/actions';
const log = logger('socketio');
export const addGraphExecutionStateCompleteEventListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: socketGraphExecutionStateComplete,
effect: (action) => {
log.debug(action.payload, 'Session complete');
},
});
};

View File

@ -1,5 +1,6 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { parseify } from 'common/util/serialize';
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
import {
@ -9,7 +10,9 @@ import {
isImageViewerOpenChanged,
} from 'features/gallery/store/gallerySlice';
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
import { isImageOutput } from 'features/nodes/types/common';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { CANVAS_OUTPUT } from 'features/nodes/util/graph/constants';
import { boardsApi } from 'services/api/endpoints/boards';
import { imagesApi } from 'services/api/endpoints/images';
@ -26,12 +29,12 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
actionCreator: socketInvocationComplete,
effect: async (action, { dispatch, getState }) => {
const { data } = action.payload;
log.debug({ data: parseify(data) }, `Invocation complete (${action.payload.data.node.type})`);
log.debug({ data: parseify(data) }, `Invocation complete (${data.invocation.type})`);
const { result, node, queue_batch_id } = data;
const { result, invocation_source_id } = data;
// This complete event has an associated image output
if (isImageOutput(result) && !nodeTypeDenylist.includes(node.type)) {
const { image_name } = result.image;
if (isImageOutput(data.result) && !nodeTypeDenylist.includes(data.invocation.type)) {
const { image_name } = data.result.image;
const { canvas, gallery } = getState();
// This populates the `getImageDTO` cache
@ -45,7 +48,7 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
imageDTORequest.unsubscribe();
// Add canvas images to the staging area
if (canvas.batchIds.includes(queue_batch_id) && data.source_node_id === CANVAS_OUTPUT) {
if (canvas.batchIds.includes(data.batch_id) && data.invocation_source_id === CANVAS_OUTPUT) {
dispatch(addImageToStagingArea(imageDTO));
}
@ -110,6 +113,16 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
}
}
}
const nes = deepClone($nodeExecutionStates.get()[invocation_source_id]);
if (nes) {
nes.status = zNodeStatus.enum.COMPLETED;
if (nes.progress !== null) {
nes.progress = 1;
}
nes.outputs.push(result);
upsertExecutionState(nes.nodeId, nes);
}
},
});
};

View File

@ -1,5 +1,9 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { parseify } from 'common/util/serialize';
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { socketInvocationError } from 'services/events/actions';
const log = logger('socketio');
@ -8,7 +12,20 @@ export const addInvocationErrorEventListener = (startAppListening: AppStartListe
startAppListening({
actionCreator: socketInvocationError,
effect: (action) => {
log.error(action.payload, `Invocation error (${action.payload.data.node.type})`);
const { invocation_source_id, invocation, error_type, error_message, error_traceback } = action.payload.data;
log.error(parseify(action.payload), `Invocation error (${invocation.type})`);
const nes = deepClone($nodeExecutionStates.get()[invocation_source_id]);
if (nes) {
nes.status = zNodeStatus.enum.FAILED;
nes.progress = null;
nes.progressImage = null;
nes.error = {
error_type,
error_message,
error_traceback,
};
upsertExecutionState(nes.nodeId, nes);
}
},
});
};

View File

@ -1,14 +0,0 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { socketInvocationRetrievalError } from 'services/events/actions';
const log = logger('socketio');
export const addInvocationRetrievalErrorEventListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: socketInvocationRetrievalError,
effect: (action) => {
log.error(action.payload, `Invocation retrieval error (${action.payload.data.graph_execution_state_id})`);
},
});
};

View File

@ -1,5 +1,9 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { deepClone } from 'common/util/deepClone';
import { parseify } from 'common/util/serialize';
import { $nodeExecutionStates, upsertExecutionState } from 'features/nodes/hooks/useExecutionState';
import { zNodeStatus } from 'features/nodes/types/invocation';
import { socketInvocationStarted } from 'services/events/actions';
const log = logger('socketio');
@ -8,7 +12,13 @@ export const addInvocationStartedEventListener = (startAppListening: AppStartLis
startAppListening({
actionCreator: socketInvocationStarted,
effect: (action) => {
log.debug(action.payload, `Invocation started (${action.payload.data.node.type})`);
log.debug(parseify(action.payload), `Invocation started (${action.payload.data.invocation.type})`);
const { invocation_source_id } = action.payload.data;
const nes = deepClone($nodeExecutionStates.get()[invocation_source_id]);
if (nes) {
nes.status = zNodeStatus.enum.IN_PROGRESS;
upsertExecutionState(nes.nodeId, nes);
}
},
});
};

View File

@ -3,14 +3,14 @@ import { api, LIST_TAG } from 'services/api';
import { modelsApi } from 'services/api/endpoints/models';
import {
socketModelInstallCancelled,
socketModelInstallCompleted,
socketModelInstallDownloading,
socketModelInstallComplete,
socketModelInstallDownloadProgress,
socketModelInstallError,
} from 'services/events/actions';
export const addModelInstallEventListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: socketModelInstallDownloading,
actionCreator: socketModelInstallDownloadProgress,
effect: async (action, { dispatch }) => {
const { bytes, total_bytes, id } = action.payload.data;
@ -29,7 +29,7 @@ export const addModelInstallEventListener = (startAppListening: AppStartListenin
});
startAppListening({
actionCreator: socketModelInstallCompleted,
actionCreator: socketModelInstallComplete,
effect: (action, { dispatch }) => {
const { id } = action.payload.data;

View File

@ -1,6 +1,6 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { socketModelLoadCompleted, socketModelLoadStarted } from 'services/events/actions';
import { socketModelLoadComplete, socketModelLoadStarted } from 'services/events/actions';
const log = logger('socketio');
@ -8,10 +8,11 @@ export const addModelLoadEventListener = (startAppListening: AppStartListening)
startAppListening({
actionCreator: socketModelLoadStarted,
effect: (action) => {
const { model_config, submodel_type } = action.payload.data;
const { name, base, type } = model_config;
const { config, submodel_type } = action.payload.data;
const { name, base, type } = config;
const extras: string[] = [base, type];
if (submodel_type) {
extras.push(submodel_type);
}
@ -23,10 +24,10 @@ export const addModelLoadEventListener = (startAppListening: AppStartListening)
});
startAppListening({
actionCreator: socketModelLoadCompleted,
actionCreator: socketModelLoadComplete,
effect: (action) => {
const { model_config, submodel_type } = action.payload.data;
const { name, base, type } = model_config;
const { config, submodel_type } = action.payload.data;
const { name, base, type } = config;
const extras: string[] = [base, type];
if (submodel_type) {

Some files were not shown because too many files have changed in this diff Show More