veloren/common/src/figure/mod.rs

263 lines
8.6 KiB
Rust
Raw Normal View History

pub mod cell;
pub mod mat_cell;
pub use mat_cell::Material;
2020-04-25 20:28:41 +00:00
// Reexport
pub use self::{
cell::{Cell, CellData},
mat_cell::MatCell,
};
2020-04-25 20:28:41 +00:00
use crate::{
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
vol::{IntoFullPosIterator, IntoFullVolIterator, ReadVol, SizedVol, Vox, WriteVol},
volumes::dyna::Dyna,
};
use dot_vox::DotVoxData;
use vek::*;
/// A type representing a volume that may be part of an animated figure.
///
/// Figures are used to represent things like characters, NPCs, mobs, etc.
pub type Segment = Dyna<Cell, ()>;
impl From<&DotVoxData> for Segment {
fn from(dot_vox_data: &DotVoxData) -> Self { Segment::from_vox(dot_vox_data, false) }
}
impl Segment {
/// Take a list of voxel data, offsets, and x-mirror flags, and assembled
/// them into a combined segment
pub fn from_voxes(data: &[(&DotVoxData, Vec3<i32>, bool)]) -> (Self, Vec3<i32>) {
let mut union = DynaUnionizer::new();
for (datum, offset, xmirror) in data.iter() {
union = union.add(Segment::from_vox(datum, *xmirror), *offset);
}
union.unify()
}
pub fn from_vox(dot_vox_data: &DotVoxData, flipped: bool) -> Self {
if let Some(model) = dot_vox_data.models.get(0) {
let palette = dot_vox_data
.palette
.iter()
.map(|col| Rgba::from(col.to_ne_bytes()).into())
.collect::<Vec<_>>();
let mut segment = Segment::filled(
Vec3::new(model.size.x, model.size.y, model.size.z),
Cell::empty(),
(),
);
for voxel in &model.voxels {
if let Some(&color) = palette.get(voxel.i as usize) {
segment
.set(
Vec3::new(
if flipped {
model.size.x as u8 - 1 - voxel.x
} else {
voxel.x
},
voxel.y,
voxel.z,
)
.map(i32::from),
Cell::new(
color,
(13..16).contains(&voxel.i), // Glowy
(8..13).contains(&voxel.i), // Shiny
2021-10-26 03:29:16 +00:00
voxel.i == 16, //Hollow
),
)
.unwrap();
};
}
segment
} else {
Segment::filled(Vec3::zero(), Cell::empty(), ())
}
}
2019-08-19 02:57:41 +00:00
/// Transform cells
pub fn map(mut self, transform: impl Fn(Cell) -> Option<Cell>) -> Self {
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
for pos in self.full_pos_iter() {
if let Some(new) = transform(*self.get(pos).unwrap()) {
self.set(pos, new).unwrap();
2019-08-19 02:57:41 +00:00
}
}
self
}
/// Transform cell colors
pub fn map_rgb(self, transform: impl Fn(Rgb<u8>) -> Rgb<u8>) -> Self {
self.map(|cell| {
2021-09-24 04:28:17 +00:00
cell.get_color().map(|rgb| {
Cell::new(
transform(rgb),
cell.is_glowy(),
cell.is_shiny(),
2021-10-26 03:29:16 +00:00
cell.is_hollow(),
2021-09-24 04:28:17 +00:00
)
})
})
}
2019-08-19 02:57:41 +00:00
}
// TODO: move
/// A `Dyna` builder that combines Dynas
pub struct DynaUnionizer<V: Vox>(Vec<(Dyna<V, ()>, Vec3<i32>)>);
impl<V: Vox + Copy> DynaUnionizer<V> {
#[allow(clippy::new_without_default)] // TODO: Pending review in #587
pub fn new() -> Self { DynaUnionizer(Vec::new()) }
pub fn add(mut self, dyna: Dyna<V, ()>, offset: Vec3<i32>) -> Self {
self.0.push((dyna, offset));
self
}
pub fn maybe_add(self, maybe: Option<(Dyna<V, ()>, Vec3<i32>)>) -> Self {
match maybe {
Some((dyna, offset)) => self.add(dyna, offset),
None => self,
}
}
2021-09-24 04:28:17 +00:00
pub fn unify(self) -> (Dyna<V, ()>, Vec3<i32>) { self.unify_with(|v| v) }
pub fn unify_with(self, mut f: impl FnMut(V) -> V) -> (Dyna<V, ()>, Vec3<i32>) {
if self.0.is_empty() {
return (Dyna::filled(Vec3::zero(), V::empty(), ()), Vec3::zero());
}
// Determine size of the new Dyna
let mut min_point = self.0[0].1;
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
let mut max_point = self.0[0].1 + self.0[0].0.size().map(|e| e as i32);
for (dyna, offset) in self.0.iter().skip(1) {
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
let size = dyna.size().map(|e| e as i32);
min_point = min_point.map2(*offset, std::cmp::min);
max_point = max_point.map2(offset + size, std::cmp::max);
}
let new_size = (max_point - min_point).map(|e| e as u32);
// Allocate new segment
let mut combined = Dyna::filled(new_size, V::empty(), ());
// Copy segments into combined
let origin = min_point.map(|e| -e);
for (dyna, offset) in self.0 {
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
for (pos, vox) in dyna.full_vol_iter() {
if !vox.is_empty() {
2021-09-24 04:28:17 +00:00
combined.set(origin + offset + pos, f(*vox)).unwrap();
}
}
}
(combined, origin)
}
}
pub type MatSegment = Dyna<MatCell, ()>;
impl MatSegment {
pub fn to_segment(&self, map: impl Fn(Material) -> Rgb<u8>) -> Segment {
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
let mut vol = Dyna::filled(self.size(), Cell::empty(), ());
for (pos, vox) in self.full_vol_iter() {
let data = match vox {
MatCell::None => continue,
2021-10-26 03:29:16 +00:00
MatCell::Mat(mat) => CellData::new(map(*mat), false, false, false),
MatCell::Normal(data) => *data,
};
vol.set(pos, Cell::Filled(data)).unwrap();
}
vol
}
2019-09-18 16:46:12 +00:00
/// Transform cells
pub fn map(mut self, transform: impl Fn(MatCell) -> Option<MatCell>) -> Self {
for pos in self.full_pos_iter() {
if let Some(new) = transform(*self.get(pos).unwrap()) {
self.set(pos, new).unwrap();
}
}
self
}
2019-09-18 16:46:12 +00:00
/// Transform cell colors
pub fn map_rgb(self, transform: impl Fn(Rgb<u8>) -> Rgb<u8>) -> Self {
self.map(|cell| match cell {
MatCell::Normal(data) => Some(MatCell::Normal(CellData {
col: transform(data.col),
..data
})),
2019-09-18 16:46:12 +00:00
_ => None,
})
}
pub fn from_vox(dot_vox_data: &DotVoxData, flipped: bool) -> Self {
if let Some(model) = dot_vox_data.models.get(0) {
let palette = dot_vox_data
.palette
.iter()
.map(|col| Rgba::from(col.to_ne_bytes()).into())
.collect::<Vec<_>>();
let mut vol = Dyna::filled(
Vec3::new(model.size.x, model.size.y, model.size.z),
MatCell::empty(),
(),
);
for voxel in &model.voxels {
let block = match voxel.i {
0 => MatCell::Mat(Material::Skin),
1 => MatCell::Mat(Material::Hair),
2 => MatCell::Mat(Material::EyeDark),
3 => MatCell::Mat(Material::EyeLight),
2019-10-04 18:27:12 +00:00
4 => MatCell::Mat(Material::SkinDark),
5 => MatCell::Mat(Material::SkinLight),
7 => MatCell::Mat(Material::EyeWhite),
//6 => MatCell::Mat(Material::Clothing),
index => {
let color = palette
.get(index as usize)
.copied()
.unwrap_or_else(|| Rgb::broadcast(0));
2021-03-26 10:05:51 +00:00
MatCell::Normal(CellData::new(
color,
(13..16).contains(&index),
(8..13).contains(&index),
2021-10-26 03:29:16 +00:00
index == 16, // Hollow
2021-03-26 10:05:51 +00:00
))
},
};
vol.set(
Vec3::new(
if flipped {
model.size.x as u8 - 1 - voxel.x
} else {
voxel.x
},
voxel.y,
voxel.z,
)
.map(i32::from),
block,
)
.unwrap();
}
vol
} else {
Dyna::filled(Vec3::zero(), MatCell::empty(), ())
}
}
}
impl From<&DotVoxData> for MatSegment {
fn from(dot_vox_data: &DotVoxData) -> Self { Self::from_vox(dot_vox_data, false) }
}