veloren/common/src/sys/phys.rs

330 lines
13 KiB
Rust
Raw Normal View History

use crate::{
comp::{ActionState, Jumping, MoveDir, OnGround, Ori, Pos, Rolling, Stats, Vel, Wielding},
state::DeltaTime,
terrain::TerrainMap,
vol::{ReadVol, Vox},
};
2019-06-09 19:33:20 +00:00
use specs::{Entities, Join, Read, ReadExpect, ReadStorage, System, WriteStorage};
use vek::*;
const GRAVITY: f32 = 9.81 * 4.0;
const FRIC_GROUND: f32 = 0.15;
const FRIC_AIR: f32 = 0.015;
const HUMANOID_ACCEL: f32 = 70.0;
const HUMANOID_SPEED: f32 = 120.0;
const HUMANOID_AIR_ACCEL: f32 = 10.0;
const HUMANOID_AIR_SPEED: f32 = 100.0;
2019-06-30 22:46:46 +00:00
const HUMANOID_JUMP_ACCEL: f32 = 16.5;
const ROLL_ACCEL: f32 = 120.0;
const ROLL_SPEED: f32 = 550.0;
const GLIDE_ACCEL: f32 = 15.0;
const GLIDE_SPEED: f32 = 45.0;
// Gravity is 9.81 * 4, so this makes gravity equal to .15
const GLIDE_ANTIGRAV: f32 = 9.81 * 3.95;
pub const MOVEMENT_THRESHOLD_VEL: f32 = 3.0;
2019-06-04 15:42:31 +00:00
// Integrates forces, calculates the new velocity based off of the old velocity
// dt = delta time
// lv = linear velocity
// damp = linear damping
// Friction is a type of damping.
fn integrate_forces(dt: f32, mut lv: Vec3<f32>, damp: f32) -> Vec3<f32> {
lv.z = (lv.z - GRAVITY * dt).max(-50.0);
2019-06-04 15:42:31 +00:00
let linear_damp = (1.0 - dt * damp).max(0.0);
2019-06-04 15:42:31 +00:00
lv * linear_damp
2019-06-04 15:42:31 +00:00
}
/// This system applies forces and calculates new positions and velocities.
2019-06-09 19:33:20 +00:00
pub struct Sys;
impl<'a> System<'a> for Sys {
type SystemData = (
2019-06-09 19:33:20 +00:00
Entities<'a>,
ReadExpect<'a, TerrainMap>,
Read<'a, DeltaTime>,
ReadStorage<'a, MoveDir>,
2019-06-11 04:08:55 +00:00
ReadStorage<'a, Stats>,
ReadStorage<'a, ActionState>,
WriteStorage<'a, Jumping>,
WriteStorage<'a, Wielding>,
2019-06-16 12:56:07 +00:00
WriteStorage<'a, Rolling>,
2019-06-13 18:09:50 +00:00
WriteStorage<'a, OnGround>,
WriteStorage<'a, Pos>,
WriteStorage<'a, Vel>,
WriteStorage<'a, Ori>,
);
2019-06-09 19:33:20 +00:00
fn run(
&mut self,
(
entities,
terrain,
dt,
move_dirs,
stats,
action_states,
mut jumpings,
mut wieldings,
2019-06-16 12:56:07 +00:00
mut rollings,
2019-06-13 18:09:50 +00:00
mut on_grounds,
mut positions,
mut velocities,
mut orientations,
): Self::SystemData,
2019-06-09 19:33:20 +00:00
) {
// Apply movement inputs
for (entity, stats, a, move_dir, mut pos, mut vel, mut ori) in (
2019-06-13 18:09:50 +00:00
&entities,
&stats,
&action_states,
2019-06-13 18:09:50 +00:00
move_dirs.maybe(),
&mut positions,
&mut velocities,
&mut orientations,
)
.join()
2019-06-09 19:33:20 +00:00
{
// Disable while dead TODO: Replace with client states?
if stats.is_dead {
continue;
}
// Move player according to move_dir
if let Some(move_dir) = move_dir {
vel.0 += Vec2::broadcast(dt.0)
* move_dir.0
* match (a.on_ground, a.gliding, a.rolling) {
(true, false, false)
if vel.0.magnitude_squared() < HUMANOID_SPEED.powf(2.0) =>
{
HUMANOID_ACCEL
}
(false, true, false)
if vel.0.magnitude_squared() < GLIDE_SPEED.powf(2.0) =>
{
GLIDE_ACCEL
}
(false, false, false)
if vel.0.magnitude_squared() < HUMANOID_AIR_SPEED.powf(2.0) =>
{
HUMANOID_AIR_ACCEL
}
(true, false, true) if vel.0.magnitude_squared() < ROLL_SPEED.powf(2.0) => {
ROLL_ACCEL
}
_ => 0.0,
};
}
// Jump
if jumpings.get(entity).is_some() {
vel.0.z = HUMANOID_JUMP_ACCEL;
jumpings.remove(entity);
}
// Glide
2019-06-29 20:40:40 +00:00
if a.gliding && vel.0.magnitude_squared() < GLIDE_SPEED.powf(2.0) && vel.0.z < 0.0 {
let _ = wieldings.remove(entity);
let lift = GLIDE_ANTIGRAV + vel.0.z.powf(2.0) * 0.2;
vel.0.z += dt.0 * lift * Vec2::<f32>::from(vel.0 * 0.15).magnitude().min(1.0);
}
// Roll
2019-06-16 12:56:07 +00:00
if let Some(time) = rollings.get_mut(entity).map(|r| &mut r.time) {
let _ = wieldings.remove(entity);
2019-06-16 12:56:07 +00:00
*time += dt.0;
if *time > 0.55 || !a.moving {
2019-06-16 12:56:07 +00:00
rollings.remove(entity);
}
}
2019-06-11 04:08:55 +00:00
// Set direction based on velocity
2019-06-30 22:46:46 +00:00
if Vec2::<f32>::from(vel.0).magnitude_squared() > 0.1 {
2019-06-30 22:46:55 +00:00
ori.0 = Lerp::lerp(
ori.0,
vel.0.normalized() * Vec3::new(1.0, 1.0, 0.0),
10.0 * dt.0,
);
}
2019-06-04 15:42:31 +00:00
// Integrate forces
// Friction is assumed to be a constant dependent on location
let friction = 50.0 * if a.on_ground { FRIC_GROUND } else { FRIC_AIR };
2019-06-04 15:42:31 +00:00
vel.0 = integrate_forces(dt.0, vel.0, friction);
// Basic collision with terrain
2019-06-27 14:37:33 +00:00
let player_rad = 0.3f32; // half-width of the player's AABB
let player_height = 1.5f32;
2019-06-27 14:37:33 +00:00
// Probe distances
let hdist = player_rad.ceil() as i32;
let vdist = player_height.ceil() as i32;
// Neighbouring blocks iterator
let near_iter = (-hdist..=hdist)
.map(move |i| (-hdist..=hdist).map(move |j| (0..=vdist).map(move |k| (i, j, k))))
2019-06-25 16:13:30 +00:00
.flatten()
.flatten();
2019-06-26 00:28:30 +00:00
// Function for determining whether the player at a specific position collides with the ground
let collision_with = |pos: Vec3<f32>, near_iter| {
for (i, j, k) in near_iter {
let block_pos = pos.map(|e| e.floor() as i32) + Vec3::new(i, j, k);
if terrain
.get(block_pos)
.map(|vox| !vox.is_empty())
.unwrap_or(false)
{
let player_aabb = Aabb {
2019-06-26 00:28:30 +00:00
min: pos + Vec3::new(-player_rad, -player_rad, 0.0),
max: pos + Vec3::new(player_rad, player_rad, player_height),
};
let block_aabb = Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32) + 1.0,
};
if player_aabb.collides_with_aabb(block_aabb) {
return true;
}
}
}
false
};
let was_on_ground = a.on_ground;
2019-06-26 10:50:55 +00:00
on_grounds.remove(entity); // Assume we're in the air - unless we can prove otherwise
let mut on_ground = false;
2019-06-26 10:50:55 +00:00
let mut attempts = 0; // Don't loop infinitely here
2019-06-30 17:58:40 +00:00
// Don't move if we're not in a loaded chunk
let pos_delta = if terrain
.get_key(terrain.pos_key(pos.0.map(|e| e.floor() as i32)))
.is_some()
{
vel.0 * dt.0
} else {
Vec3::zero()
};
2019-06-26 21:43:47 +00:00
// Don't jump too far at once
2019-06-30 17:58:40 +00:00
let increments = (pos_delta.map(|e| e.abs()).reduce_partial_max() / 0.3)
2019-06-26 21:43:47 +00:00
.ceil()
.max(1.0);
for _ in 0..increments as usize {
2019-06-30 17:58:40 +00:00
pos.0 += pos_delta / increments;
2019-06-25 16:13:30 +00:00
2019-06-26 21:43:47 +00:00
// While the player is colliding with the terrain...
while collision_with(pos.0, near_iter.clone()) && attempts < 32 {
// Calculate the player's AABB
let player_aabb = Aabb {
min: pos.0 + Vec3::new(-player_rad, -player_rad, 0.0),
max: pos.0 + Vec3::new(player_rad, player_rad, player_height),
};
2019-06-25 16:13:30 +00:00
2019-06-26 21:43:47 +00:00
// Determine the block that we are colliding with most (based on minimum collision axis)
let (_block_pos, block_aabb) = near_iter
2019-06-26 21:43:47 +00:00
.clone()
// Calculate the block's position in world space
.map(|(i, j, k)| pos.0.map(|e| e.floor() as i32) + Vec3::new(i, j, k))
// Calculate the AABB of the block
.map(|block_pos| {
(
block_pos,
Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32) + 1.0,
},
)
})
// Determine whether the block's AABB collides with the player's AABB
.filter(|(_, block_aabb)| block_aabb.collides_with_aabb(player_aabb))
// Make sure the block is actually solid
.filter(|(block_pos, _)| {
terrain
.get(*block_pos)
.map(|vox| !vox.is_empty())
.unwrap_or(false)
})
// Find the maximum of the minimum collision axes (this bit is weird, trust me that it works)
.max_by_key(|(_, block_aabb)| {
((player_aabb.collision_vector_with_aabb(*block_aabb) / vel.0)
.map(|e| e.abs())
.reduce_partial_min()
2019-06-30 22:46:46 +00:00
* 1_000_000.0) as i32
2019-06-26 21:43:47 +00:00
})
.expect("Collision detected, but no colliding blocks found!");
2019-06-25 16:13:30 +00:00
2019-06-26 21:43:47 +00:00
// Find the intrusion vector of the collision
let dir = player_aabb.collision_vector_with_aabb(block_aabb);
2019-06-25 16:13:30 +00:00
2019-06-26 21:43:47 +00:00
// Determine an appropriate resolution vector (i.e: the minimum distance needed to push out of the block)
let max_axis = dir.map(|e| e.abs()).reduce_partial_min();
let resolve_dir = -dir.map(|e| {
if e.abs().to_bits() == max_axis.to_bits() {
e
} else {
0.0
}
});
2019-06-26 21:43:47 +00:00
// When the resolution direction is pointing upwards, we must be on the ground
if resolve_dir.z > 0.0 && vel.0.z <= 0.0 {
2019-06-26 21:43:47 +00:00
on_ground = true;
}
2019-06-26 21:43:47 +00:00
// When the resolution direction is non-vertical, we must be colliding with a wall
// If the space above is free...
if !collision_with(pos.0 + Vec3::unit_z() * 1.1, near_iter.clone())
2019-06-30 22:46:46 +00:00
// ...and we're being pushed out horizontally...
&& resolve_dir.z == 0.0
2019-07-09 10:51:00 +00:00
// ...and the vertical resolution direction is sufficiently great...
&& -dir.z > 0.5
2019-06-30 22:46:46 +00:00
// ...and we're falling/standing OR there is a block *directly* beneath our current origin (note: not hitbox)...
&& (vel.0.z <= 0.0 || terrain
.get((pos.0 - Vec3::unit_z()).map(|e| e.floor() as i32))
.map(|vox| !vox.is_empty())
.unwrap_or(false))
// ...and there is a collision with a block beneath our current hitbox...
2019-06-29 21:42:20 +00:00
&& collision_with(
pos.0 + resolve_dir - Vec3::unit_z() * 1.05,
near_iter.clone(),
)
2019-06-26 21:43:47 +00:00
{
// ...block-hop!
2019-07-09 10:51:00 +00:00
pos.0.z = (pos.0.z + 0.1).ceil();
2019-06-26 21:43:47 +00:00
on_ground = true;
break;
} else {
// Resolve the collision normally
pos.0 += resolve_dir;
vel.0 = vel
.0
.map2(resolve_dir, |e, d| if d == 0.0 { e } else { 0.0 });
}
attempts += 1;
}
}
if on_ground {
let _ = on_grounds.insert(entity, OnGround);
2019-07-09 10:51:00 +00:00
}
// If the space below us is free, then "snap" to the ground
if collision_with(pos.0 - Vec3::unit_z() * 1.05, near_iter.clone())
2019-06-26 00:28:30 +00:00
&& vel.0.z < 0.0
&& vel.0.z > -1.0
&& was_on_ground
2019-06-26 00:28:30 +00:00
{
pos.0.z = (pos.0.z - 0.05).floor();
let _ = on_grounds.insert(entity, OnGround);
}
}
}
}