veloren/common/src/region.rs

439 lines
16 KiB
Rust
Raw Normal View History

use crate::comp::{Pos, Presence, Vel};
use common_base::span;
use hashbrown::{hash_map::DefaultHashBuilder, HashSet};
use indexmap::IndexMap;
2019-11-30 06:41:20 +00:00
use specs::{hibitset::BitSetLike, BitSet, Entities, Join, ReadStorage};
use vek::*;
pub enum Event {
// Contains the key of the region the entity moved to
// TODO: We only actually use the info from this when the entity moves to another region and
// isn't deleted, but we still generate and process these events in the case where the entity
// was deleted.
Left(u32, Option<Vec2<i32>>),
// Contains the key of the region the entity came from
Entered(u32, Option<Vec2<i32>>),
}
/// Region consisting of a bitset of entities within it
#[derive(Default)]
pub struct Region {
// Use specs bitset for simplicity (and joinability)
bitset: BitSet,
// Indices of neighboring regions
neighbors: [Option<usize>; 8],
// TODO consider SmallVec for these
2020-08-25 12:21:25 +00:00
// Entities that left or entered this region
events: Vec<Event>,
}
impl Region {
/// Checks if the region contains no entities and no events
fn removable(&self) -> bool { self.bitset.is_empty() && self.events.is_empty() }
fn add(&mut self, id: u32, from: Option<Vec2<i32>>) {
self.bitset.add(id);
self.events.push(Event::Entered(id, from));
}
fn remove(&mut self, id: u32, to: Option<Vec2<i32>>) {
self.bitset.remove(id);
self.events.push(Event::Left(id, to));
}
pub fn events(&self) -> &[Event] { &self.events }
pub fn entities(&self) -> &BitSet { &self.bitset }
}
/// How far can an entity roam outside its region before it is switched over to
/// the neighboring one In units of blocks (i.e. world pos)
/// Used to prevent rapid switching of entities between regions
pub const TETHER_LENGTH: u32 = 16;
/// Bitshift between region and world pos, i.e. log2(REGION_SIZE)
const REGION_LOG2: u8 = 9;
/// Region Size in blocks
pub const REGION_SIZE: u32 = 1 << REGION_LOG2;
/// Offsets to iterate though neighbors
/// Counter-clockwise order
const NEIGHBOR_OFFSETS: [Vec2<i32>; 8] = [
Vec2::new(0, 1),
Vec2::new(-1, 1),
Vec2::new(-1, 0),
Vec2::new(-1, -1),
Vec2::new(0, -1),
Vec2::new(1, -1),
Vec2::new(1, 0),
Vec2::new(1, 1),
];
#[derive(Default)]
// TODO generic region size (16x16 for now)
// TODO compare to sweep and prune approach
/// A region system that tracks where entities are.
///
/// Note, this structure is primarily intended for tracking which entities need
/// to be synchronized to which clients (and as part of that what entities are
/// already synchronized). If an entity is marked to not be synchronized to
/// other clients it may not appear here.
pub struct RegionMap {
// Tree?
// Sorted Vec? (binary search lookup)
// Sort into multiple vecs (say 32) using lower bits of morton code, then binary search via
// upper bits? <-- sounds very promising to me (might not be super good though?)
regions: IndexMap<Vec2<i32>, Region, DefaultHashBuilder>,
// If an entity isn't here it needs to be added to a region
tracked_entities: BitSet,
// Re-useable vecs
// (src, entity, pos)
entities_to_move: Vec<(usize, u32, Vec3<i32>)>,
// (region, entity)
entities_to_remove: Vec<(usize, u32)>,
// Track the current tick, used to enable not checking everything every tick
// rate is dependent on the rate the caller calls region_manager.tick()
tick: u64,
}
impl RegionMap {
pub fn new() -> Self { Self::default() }
// TODO maintain within a system?
// TODO special case large entities
pub fn tick(
&mut self,
pos: ReadStorage<Pos>,
vel: ReadStorage<Vel>,
presence: ReadStorage<Presence>,
entities: Entities,
) {
span!(_guard, "tick", "Region::tick");
self.tick += 1;
2019-11-29 06:04:37 +00:00
// Clear events within each region
self.regions.values_mut().for_each(|region| {
region.events.clear();
});
2019-11-29 06:04:37 +00:00
2020-08-25 12:21:25 +00:00
// Add any untracked entities
for (pos, id) in (&pos, &entities, presence.maybe(), !&self.tracked_entities)
.join()
.filter(|(_, _, presence, _)| presence.map_or(true, |p| p.sync_me))
.map(|(pos, e, _, _)| (pos, e.id()))
.collect::<Vec<_>>()
{
// Add entity
self.tracked_entities.add(id);
self.add_entity(id, pos.0.map(|e| e as i32), None);
}
let mut regions_to_remove = Vec::new();
let RegionMap {
entities_to_move,
entities_to_remove,
regions,
..
} = self;
regions
.iter()
.enumerate()
.for_each(|(i, (&current_region, region_data))| {
for (maybe_pos, _maybe_vel, maybe_presence, id) in (
pos.maybe(),
vel.maybe(),
presence.maybe(),
&region_data.bitset,
)
.join()
{
let should_sync = maybe_presence.map_or(true, |p| p.sync_me);
match maybe_pos {
// Switch regions for entities which need switching
// TODO don't check every tick (use velocity) (and use id to stagger)
// Starting parameters at v = 0 check every 100 ticks
// tether_length^2 / vel^2 (with a max of every tick)
Some(pos) if should_sync => {
let pos = pos.0.map(|e| e as i32);
let key = Self::pos_key(pos);
// Consider switching
// Calculate distance outside border
if key != current_region
&& (Vec2::<i32>::from(pos) - Self::key_pos(current_region))
.map(|e| e.unsigned_abs())
.reduce_max()
> TETHER_LENGTH
{
// Switch
entities_to_move.push((i, id, pos));
}
},
// Remove any non-existant entities (or just ones that lost their position
// component) TODO: distribute this between ticks
None | Some(_) => {
// TODO: shouldn't there be a way to extract the bitset of entities with
// positions directly from specs? Yes, with `.mask()` on the component
// storage.
entities_to_remove.push((i, id));
},
}
}
// Remove region if it is empty
// TODO: distribute this between ticks
if region_data.removable() {
regions_to_remove.push(current_region);
}
});
// Mutate
// Note entity moving is outside the whole loop so that the same entity is not
// checked twice (this may be fine though...)
while let Some((i, id, pos)) = self.entities_to_move.pop() {
let (prev_key, region) = self.regions.get_index_mut(i).map(|(k, v)| (*k, v)).unwrap();
region.remove(id, Some(Self::pos_key(pos)));
self.add_entity(id, pos, Some(prev_key));
}
for (i, id) in self.entities_to_remove.drain(..) {
self.regions
.get_index_mut(i)
.map(|(_, v)| v)
.unwrap()
.remove(id, None);
self.tracked_entities.remove(id);
}
for key in regions_to_remove.into_iter() {
2019-10-06 19:38:54 +00:00
// Check that the region is still removable
if self.regions.get(&key).unwrap().removable() {
// Note we have to use key's here since the index can change when others are
// removed
self.remove(key);
2019-10-06 19:38:54 +00:00
}
}
}
fn add_entity(&mut self, id: u32, pos: Vec3<i32>, from: Option<Vec2<i32>>) {
let key = Self::pos_key(pos);
if let Some(region) = self.regions.get_mut(&key) {
region.add(id, from);
return;
}
let index = self.insert(key);
self.regions
.get_index_mut(index)
.map(|(_, v)| v)
.unwrap()
.add(id, None);
}
fn pos_key<P: Into<Vec2<i32>>>(pos: P) -> Vec2<i32> { pos.into().map(|e| e >> REGION_LOG2) }
pub fn key_pos(key: Vec2<i32>) -> Vec2<i32> { key.map(|e| e << REGION_LOG2) }
/// Finds the region where a given entity is located using a given position
/// to speed up the search
2019-11-29 06:04:37 +00:00
pub fn find_region(&self, entity: specs::Entity, pos: Vec3<f32>) -> Option<Vec2<i32>> {
let id = entity.id();
// Compute key for most likely region
let key = Self::pos_key(pos.map(|e| e as i32));
// Get region
if let Some(region) = self.regions.get(&key) {
if region.entities().contains(id) {
return Some(key);
} else {
// Check neighbors
for idx in region.neighbors.iter().flatten() {
let (key, region) = self.regions.get_index(*idx).unwrap();
if region.entities().contains(id) {
return Some(*key);
2019-11-29 06:04:37 +00:00
}
}
}
} else {
// Check neighbors
2020-06-30 14:56:49 +00:00
for o in &NEIGHBOR_OFFSETS {
let key = key + o;
2019-11-29 06:04:37 +00:00
if let Some(region) = self.regions.get(&key) {
if region.entities().contains(id) {
return Some(key);
}
}
}
}
// Scan though all regions
for (key, region) in self.iter() {
if region.entities().contains(id) {
return Some(key);
}
}
None
}
/// Checks if this entity is located in the `RegionMap` using the provided
/// position to limit which regions are checked.
///
/// May produce false negatives (e.g. if for some reason the entity is not
/// in a region near the provided position).
pub fn in_region_map_relaxed(&self, entity: specs::Entity, pos: Vec3<f32>) -> bool {
let id = entity.id();
let pos = pos.map(|e| e as i32);
// Compute key for most likely region
let key = Self::pos_key(pos);
if let Some(region) = self.regions.get(&key) && region.entities().contains(id) { return true }
// Get the base of the four nearest regions.
let quad_base = Self::pos_key(pos - (REGION_SIZE / 2) as i32);
[(0, 0), (0, 1), (1, 0), (1, 1)]
.iter()
.map(|&offset| Vec2::<i32>::from(offset) + quad_base)
// skip key we already checked
.any(|k| k != key && self.regions.get(&key).is_some_and(|r| r.entities().contains(id)))
}
2019-10-06 19:38:54 +00:00
fn key_index(&self, key: Vec2<i32>) -> Option<usize> {
self.regions.get_full(&key).map(|(i, _, _)| i)
}
/// Adds a new region
/// Returns the index of the region in the index map
fn insert(&mut self, key: Vec2<i32>) -> usize {
let (index, old_region) = self.regions.insert_full(key, Region::default());
if old_region.is_some() {
panic!("Inserted a region that already exists!!!(this should never need to occur");
}
// Add neighbors and add to neighbors
let mut neighbors = [None; 8];
for i in 0..8 {
if let Some((idx, _, region)) = self.regions.get_full_mut(&(key + NEIGHBOR_OFFSETS[i]))
{
// Add neighbor to the new region
neighbors[i] = Some(idx);
// Add new region to neighbor
region.neighbors[(i + 4) % 8] = Some(index);
}
}
self.regions
.get_index_mut(index)
.map(|(_, v)| v)
.unwrap()
.neighbors = neighbors;
index
}
/// Remove a region using its key
2019-10-06 19:38:54 +00:00
fn remove(&mut self, key: Vec2<i32>) {
if let Some(index) = self.key_index(key) {
self.remove_index(index);
}
}
/// Add a region using its key
fn remove_index(&mut self, index: usize) {
// Remap neighbor indices for neighbors of the region that will be moved from
// the end of the index map
if index != self.regions.len() - 1 {
let moved_neighbors = self
.regions
.get_index(self.regions.len() - 1)
.map(|(_, v)| v)
.unwrap()
.neighbors;
for (i, possible_idx) in moved_neighbors.iter().enumerate() {
if let Some(idx) = possible_idx {
self.regions
.get_index_mut(*idx)
.map(|(_, v)| v)
.unwrap()
.neighbors[(i + 4) % 8] = Some(index);
}
}
}
if let Some(region) = self
.regions
.swap_remove_index(index)
.map(|(_, region)| region)
{
if !region.bitset.is_empty() {
panic!("Removed region containing entities");
}
// Remove from neighbors
for i in 0..8 {
if let Some(idx) = region.neighbors[i] {
self.regions
.get_index_mut(idx)
.map(|(_, v)| v)
.unwrap()
.neighbors[(i + 4) % 8] = None;
}
}
}
}
/// Returns a region given a key
pub fn get(&self, key: Vec2<i32>) -> Option<&Region> { self.regions.get(&key) }
/// Returns an iterator of (Position, Region)
pub fn iter(&self) -> impl Iterator<Item = (Vec2<i32>, &Region)> {
self.regions.iter().map(|(key, r)| (*key, r))
}
}
/// Note vd is in blocks in this case
pub fn region_in_vd(key: Vec2<i32>, pos: Vec3<f32>, vd: f32) -> bool {
let vd_extended = vd + TETHER_LENGTH as f32 * 2.0f32.sqrt();
let min_region_pos = RegionMap::key_pos(key).map(|e| e as f32);
// Should be diff to closest point on the square (which can be in the middle of
// an edge)
let diff = (min_region_pos - Vec2::from(pos)).map(|e| {
if e < 0.0 {
(e + REGION_SIZE as f32).min(0.0)
} else {
e
}
});
diff.magnitude_squared() < vd_extended.powi(2)
}
// Note vd is in blocks in this case
pub fn regions_in_vd(pos: Vec3<f32>, vd: f32) -> HashSet<Vec2<i32>> {
let mut set = HashSet::new();
let pos_xy = Vec2::<f32>::from(pos);
let vd_extended = vd + TETHER_LENGTH as f32 * 2.0f32.sqrt();
let max = RegionMap::pos_key(pos_xy.map(|e| (e + vd_extended) as i32));
let min = RegionMap::pos_key(pos_xy.map(|e| (e - vd_extended) as i32));
for x in min.x..max.x + 1 {
for y in min.y..max.y + 1 {
let key = Vec2::new(x, y);
if region_in_vd(key, pos, vd) {
set.insert(key);
}
}
}
set
}
// Iterator designed for use in collision systems
// Iterates through all regions yielding them along with half of their neighbors
// ..................
/*fn interleave_i32_with_zeros(mut x: i32) -> i64 {
x = (x ^ (x << 16)) & 0x0000ffff0000ffff;
x = (x ^ (x << 8)) & 0x00ff00ff00ff00ff;
x = (x ^ (x << 4)) & 0x0f0f0f0f0f0f0f0f;
x = (x ^ (x << 2)) & 0x3333333333333333;
x = (x ^ (x << 1)) & 0x5555555555555555;
x
}
fn morton_code(pos: Vec2<i32>) -> i64 {
interleave_i32_with_zeros(pos.x) | (interleave_i32_with_zeros(pos.y) << 1)
}*/