InvokeAI/invokeai/app/invocations/controlnet_image_processors.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

337 lines
15 KiB
Python
Raw Normal View History

# InvokeAI nodes for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
import numpy as np
from typing import Literal, Optional, Union, List
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..models.image import ImageField, ImageType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from controlnet_aux import (
CannyDetector,
HEDdetector,
LineartDetector,
LineartAnimeDetector,
MidasDetector,
MLSDdetector,
NormalBaeDetector,
OpenposeDetector,
PidiNetDetector,
ContentShuffleDetector,
ZoeDetector)
from .image import ImageOutput, build_image_output, PILInvocationConfig
class ControlField(BaseModel):
image: ImageField = Field(default=None, description="processed image")
# width: Optional[int] = Field(default=None, description="The width of the image in pixels")
# height: Optional[int] = Field(default=None, description="The height of the image in pixels")
# mode: Optional[str] = Field(default=None, description="The mode of the image")
control_model: Optional[str] = Field(default=None, description="control model used")
control_weight: Optional[float] = Field(default=None, description="weight given to controlnet")
class Config:
schema_extra = {
"required": ["image", "control_model", "control_weight"]
# "required": ["type", "image", "width", "height", "mode"]
}
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# fmt: off
type: Literal["control_output"] = "control_output"
control: Optional[ControlField] = Field(default=None, description="The control info dict")
# fmt: on
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
# fmt: off
type: Literal["controlnet"] = "controlnet"
# Inputs
image: ImageField = Field(default=None, description="image to process")
control_model: str = Field(default=None, description="control model to use")
control_weight: float = Field(default=0.5, ge=0, le=1, description="weight given to controlnet")
# TODO: support additional ControlNet parameters (mostly just passthroughs to other nodes with ControlField inputs)
# begin_step_percent: float = Field(default=0, ge=0, le=1,
# description="% of total steps at which controlnet is first applied")
# end_step_percent: float = Field(default=1, ge=0, le=1,
# description="% of total steps at which controlnet is last applied")
# guess_mode: bool = Field(default=False, description="use guess mode (controlnet ignores prompt)")
# fmt: on
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
image=self.image,
control_model=self.control_model,
control_weight=self.control_weight
),
)
# TODO: move image processors to separate file (image_analysis.py
class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
"""Base class for invocations that preprocess images for ControlNet"""
# fmt: off
type: Literal["image_processor"] = "image_processor"
# Inputs
image: ImageField = Field(default=None, description="image to process")
# fmt: on
def run_processor(self, image):
# superclass just passes through image without processing
return image
def invoke(self, context: InvocationContext) -> ImageOutput:
raw_image = context.services.images.get(
self.image.image_type, self.image.image_name
)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
# currently can't see processed image in node UI without a showImage node,
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
# image_type = ImageType.INTERMEDIATE
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, processed_image, metadata)
"""Builds an ImageOutput and its ImageField"""
processed_image_field = ImageField(
image_name=image_name,
image_type=image_type,
)
return ImageOutput(
image=processed_image_field,
width=processed_image.width,
height=processed_image.height,
mode=processed_image.mode,
)
class CannyImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Canny edge detection for ControlNet"""
# fmt: off
type: Literal["canny_image_processor"] = "canny_image_processor"
# Input
low_threshold: float = Field(default=100, ge=0, description="low threshold of Canny pixel gradient")
high_threshold: float = Field(default=200, ge=0, description="high threshold of Canny pixel gradient")
# fmt: on
def run_processor(self, image):
canny_processor = CannyDetector()
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
return processed_image
class HedImageprocessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies HED edge detection to image"""
# fmt: off
type: Literal["hed_image_processor"] = "hed_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
safe: bool = Field(default=False, description="whether to use safe mode")
scribble: bool = Field(default=False, description="whether to use scribble mode")
# fmt: on
def run_processor(self, image):
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = hed_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
scribble=self.scribble,
)
return processed_image
class LineartImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art processing to image"""
# fmt: off
type: Literal["lineart_image_processor"] = "lineart_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
coarse: bool = Field(default=False, description="whether to use coarse mode")
# fmt: on
def run_processor(self, image):
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
processed_image = lineart_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
coarse=self.coarse)
return processed_image
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art anime processing to image"""
# fmt: off
type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
# fmt: on
def run_processor(self, image):
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
class OpenposeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Openpose processing to image"""
# fmt: off
type: Literal["openpose_image_processor"] = "openpose_image_processor"
# Inputs
hand_and_face: bool = Field(default=False, description="whether to use hands and face mode")
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
# fmt: on
def run_processor(self, image):
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = openpose_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,
)
return processed_image
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Midas depth processing to image"""
# fmt: off
type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor"
# Inputs
a_mult: float = Field(default=2.0, ge=0, description="Midas parameter a = amult * PI")
bg_th: float = Field(default=0.1, ge=0, description="Midas parameter bg_th")
depth_and_normal: bool = Field(default=False, description="whether to use depth and normal mode")
# fmt: on
def run_processor(self, image):
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(image,
a=np.pi * self.a_mult,
bg_th=self.bg_th,
depth_and_normal=self.depth_and_normal)
return processed_image
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies NormalBae processing to image"""
# fmt: off
type: Literal["normalbae_image_processor"] = "normalbae_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
# fmt: on
def run_processor(self, image):
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution)
return processed_image
class MlsdImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies MLSD processing to image"""
# fmt: off
type: Literal["mlsd_image_processor"] = "mlsd_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
thr_v: float = Field(default=0.1, ge=0, description="MLSD parameter thr_v")
thr_d: float = Field(default=0.1, ge=0, description="MLSD parameter thr_d")
# fmt: on
def run_processor(self, image):
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
thr_v=self.thr_v,
thr_d=self.thr_d)
return processed_image
class PidiImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies PIDI processing to image"""
# fmt: off
type: Literal["pidi_image_processor"] = "pidi_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
safe: bool = Field(default=False, description="whether to use safe mode")
scribble: bool = Field(default=False, description="whether to use scribble mode")
# fmt: on
def run_processor(self, image):
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
scribble=self.scribble)
return processed_image
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies content shuffle processing to image"""
# fmt: off
type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
h: Union[int | None] = Field(default=None, ge=0, description="content shuffle h parameter")
w: Union[int | None] = Field(default=None, ge=0, description="content shuffle w parameter")
f: Union[int | None] = Field(default=None, ge=0, description="cont")
# fmt: on
def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
h=self.h,
w=self.w,
f=self.f
)
return processed_image
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Zoe depth processing to image"""
# fmt: off
type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
# fmt: on
def run_processor(self, image):
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image