InvokeAI/invokeai/backend/ip_adapter/ip_adapter.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

254 lines
9.9 KiB
Python
Raw Normal View History

# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
# and modified as needed
import pathlib
from typing import List, Optional, TypedDict, Union
import safetensors
import safetensors.torch
import torch
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
from ..raw_model import RawModel
from .resampler import Resampler
class IPAdapterStateDict(TypedDict):
ip_adapter: dict[str, torch.Tensor]
image_proj: dict[str, torch.Tensor]
class ImageProjModel(torch.nn.Module):
"""Image Projection Model"""
2023-09-04 23:37:12 +00:00
def __init__(
self, cross_attention_dim: int = 1024, clip_embeddings_dim: int = 1024, clip_extra_context_tokens: int = 4
):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
@classmethod
def from_state_dict(cls, state_dict: dict[str, torch.Tensor], clip_extra_context_tokens: int = 4):
"""Initialize an ImageProjModel from a state_dict.
The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict.
Args:
state_dict (dict[torch.Tensor]): The state_dict of model weights.
clip_extra_context_tokens (int, optional): Defaults to 4.
Returns:
ImageProjModel
"""
cross_attention_dim = state_dict["norm.weight"].shape[0]
clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
model = cls(cross_attention_dim, clip_embeddings_dim, clip_extra_context_tokens)
model.load_state_dict(state_dict)
return model
def forward(self, image_embeds: torch.Tensor):
embeds = image_embeds
2023-09-04 23:37:12 +00:00
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class MLPProjModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, cross_attention_dim: int = 1024, clip_embeddings_dim: int = 1024):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
torch.nn.GELU(),
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
torch.nn.LayerNorm(cross_attention_dim),
)
@classmethod
def from_state_dict(cls, state_dict: dict[str, torch.Tensor]):
"""Initialize an MLPProjModel from a state_dict.
The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict.
Args:
state_dict (dict[torch.Tensor]): The state_dict of model weights.
Returns:
MLPProjModel
"""
cross_attention_dim = state_dict["proj.3.weight"].shape[0]
clip_embeddings_dim = state_dict["proj.0.weight"].shape[0]
model = cls(cross_attention_dim, clip_embeddings_dim)
model.load_state_dict(state_dict)
return model
def forward(self, image_embeds: torch.Tensor):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class IPAdapter(RawModel):
2023-09-08 19:46:10 +00:00
"""IP-Adapter: https://arxiv.org/pdf/2308.06721.pdf"""
def __init__(
self,
state_dict: IPAdapterStateDict,
device: torch.device,
dtype: torch.dtype = torch.float16,
num_tokens: int = 4,
):
self.device = device
self.dtype = dtype
self._num_tokens = num_tokens
self._clip_image_processor = CLIPImageProcessor()
self._image_proj_model = self._init_image_proj_model(state_dict["image_proj"])
self.attn_weights = IPAttentionWeights.from_state_dict(state_dict["ip_adapter"]).to(
self.device, dtype=self.dtype
)
def to(self, device: torch.device, dtype: Optional[torch.dtype] = None):
self.device = device
if dtype is not None:
self.dtype = dtype
self._image_proj_model.to(device=self.device, dtype=self.dtype)
self.attn_weights.to(device=self.device, dtype=self.dtype)
def calc_size(self):
# workaround for circular import
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(self.attn_weights)
def _init_image_proj_model(
self, state_dict: dict[str, torch.Tensor]
) -> Union[ImageProjModel, Resampler, MLPProjModel]:
return ImageProjModel.from_state_dict(state_dict, self._num_tokens).to(self.device, dtype=self.dtype)
@torch.inference_mode()
def get_image_embeds(self, pil_image: List[Image.Image], image_encoder: CLIPVisionModelWithProjection):
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image_embeds = image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds
try:
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
except RuntimeError:
raise RuntimeError("Selected CLIP Vision Model is incompatible with the current IP Adapter")
class IPAdapterPlus(IPAdapter):
"""IP-Adapter with fine-grained features"""
def _init_image_proj_model(self, state_dict: dict[str, torch.Tensor]) -> Union[Resampler, MLPProjModel]:
return Resampler.from_state_dict(
state_dict=state_dict,
depth=4,
dim_head=64,
heads=12,
num_queries=self._num_tokens,
2023-09-04 23:37:12 +00:00
ff_mult=4,
).to(self.device, dtype=self.dtype)
@torch.inference_mode()
def get_image_embeds(self, pil_image: List[Image.Image], image_encoder: CLIPVisionModelWithProjection):
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=self.dtype)
clip_image_embeds = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
uncond_clip_image_embeds = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
-2
]
try:
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self._image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds
except RuntimeError:
raise RuntimeError("Selected CLIP Vision Model is incompatible with the current IP Adapter")
class IPAdapterFull(IPAdapterPlus):
"""IP-Adapter Plus with full features."""
def _init_image_proj_model(self, state_dict: dict[str, torch.Tensor]):
return MLPProjModel.from_state_dict(state_dict).to(self.device, dtype=self.dtype)
class IPAdapterPlusXL(IPAdapterPlus):
"""IP-Adapter Plus for SDXL."""
def _init_image_proj_model(self, state_dict: dict[str, torch.Tensor]):
return Resampler.from_state_dict(
state_dict=state_dict,
depth=4,
dim_head=64,
heads=20,
num_queries=self._num_tokens,
ff_mult=4,
).to(self.device, dtype=self.dtype)
def load_ip_adapter_tensors(ip_adapter_ckpt_path: pathlib.Path, device: str) -> IPAdapterStateDict:
state_dict: IPAdapterStateDict = {"ip_adapter": {}, "image_proj": {}}
if ip_adapter_ckpt_path.stem == "safetensors":
model = safetensors.torch.load_file(ip_adapter_ckpt_path, device=device)
for key in model.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
else:
raise RuntimeError(f"Encountered unexpected IP Adapter state dict key: '{key}'.")
else:
ip_adapter_diffusers_checkpoint_path = ip_adapter_ckpt_path / "ip_adapter.bin"
state_dict = torch.load(ip_adapter_diffusers_checkpoint_path, map_location="cpu")
return state_dict
def build_ip_adapter(
ip_adapter_ckpt_path: pathlib.Path, device: torch.device, dtype: torch.dtype = torch.float16
) -> Union[IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterPlus]:
state_dict = load_ip_adapter_tensors(ip_adapter_ckpt_path, device.type)
# IPAdapter (with ImageProjModel)
if "proj.weight" in state_dict["image_proj"]:
return IPAdapter(state_dict, device=device, dtype=dtype)
# IPAdaterPlus or IPAdapterPlusXL (with Resampler)
elif "proj_in.weight" in state_dict["image_proj"]:
cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1]
if cross_attention_dim == 768:
return IPAdapterPlus(state_dict, device=device, dtype=dtype) # SD1 IP-Adapter Plus
elif cross_attention_dim == 2048:
return IPAdapterPlusXL(state_dict, device=device, dtype=dtype) # SDXL IP-Adapter Plus
else:
raise Exception(f"Unsupported IP-Adapter Plus cross-attention dimension: {cross_attention_dim}.")
# IPAdapterFull (with MLPProjModel)
elif "proj.0.weight" in state_dict["image_proj"]:
return IPAdapterFull(state_dict, device=device, dtype=dtype)
# Unrecognized IP Adapter Architectures
else:
raise ValueError(f"'{ip_adapter_ckpt_path}' has an unrecognized IP-Adapter model architecture.")