InvokeAI/invokeai/app/invocations/latent.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

627 lines
27 KiB
Python
Raw Normal View History

# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
import einops
from typing import Literal, Optional, Union, List
from compel import Compel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from pydantic import BaseModel, Field, validator
import torch
Partial migration of UI to nodes API (#3195) * feat(ui): add axios client generator and simple example * fix(ui): update client & nodes test code w/ new Edge type * chore(ui): organize generated files * chore(ui): update .eslintignore, .prettierignore * chore(ui): update openapi.json * feat(backend): fixes for nodes/generator * feat(ui): generate object args for api client * feat(ui): more nodes api prototyping * feat(ui): nodes cancel * chore(ui): regenerate api client * fix(ui): disable OG web server socket connection * fix(ui): fix scrollbar styles typing and prop just noticed the typo, and made the types stronger. * feat(ui): add socketio types * feat(ui): wip nodes - extract api client method arg types instead of manually declaring them - update example to display images - general tidy up * start building out node translations from frontend state and add notes about missing features * use reference to sampler_name * use reference to sampler_name * add optional apiUrl prop * feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation * feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node * feat(ui): img2img implementation * feat(ui): get intermediate images working but types are stubbed out * chore(ui): add support for package mode * feat(ui): add nodes mode script * feat(ui): handle random seeds * fix(ui): fix middleware types * feat(ui): add rtk action type guard * feat(ui): disable NodeAPITest This was polluting the network/socket logs. * feat(ui): fix parameters panel border color This commit should be elsewhere but I don't want to break my flow * feat(ui): make thunk types more consistent * feat(ui): add type guards for outputs * feat(ui): load images on socket connect Rudimentary * chore(ui): bump redux-toolkit * docs(ui): update readme * chore(ui): regenerate api client * chore(ui): add typescript as dev dependency I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue. * feat(ui): begin migrating gallery to nodes Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way. * feat(ui): clean up & comment results slice * fix(ui): separate thunk for initial gallery load so it properly gets index 0 * feat(ui): POST upload working * fix(ui): restore removed type * feat(ui): patch api generation for headers access * chore(ui): regenerate api * feat(ui): wip gallery migration * feat(ui): wip gallery migration * chore(ui): regenerate api * feat(ui): wip refactor socket events * feat(ui): disable panels based on app props * feat(ui): invert logic to be disabled * disable panels when app mounts * feat(ui): add support to disableTabs * docs(ui): organise and update docs * lang(ui): add toast strings * feat(ui): wip events, comments, and general refactoring * feat(ui): add optional token for auth * feat(ui): export StatusIndicator and ModelSelect for header use * feat(ui) working on making socket URL dynamic * feat(ui): dynamic middleware loading * feat(ui): prep for socket jwt * feat(ui): migrate cancelation also updated action names to be event-like instead of declaration-like sorry, i was scattered and this commit has a lot of unrelated stuff in it. * fix(ui): fix img2img type * chore(ui): regenerate api client * feat(ui): improve InvocationCompleteEvent types * feat(ui): increase StatusIndicator font size * fix(ui): fix middleware order for multi-node graphs * feat(ui): add exampleGraphs object w/ iterations example * feat(ui): generate iterations graph * feat(ui): update ModelSelect for nodes API * feat(ui): add hi-res functionality for txt2img generations * feat(ui): "subscribe" to particular nodes feels like a dirty hack but oh well it works * feat(ui): first steps to node editor ui * fix(ui): disable event subscription it is not fully baked just yet * feat(ui): wip node editor * feat(ui): remove extraneous field types * feat(ui): nodes before deleting stuff * feat(ui): cleanup nodes ui stuff * feat(ui): hook up nodes to redux * fix(ui): fix handle * fix(ui): add basic node edges & connection validation * feat(ui): add connection validation styling * feat(ui): increase edge width * feat(ui): it blends * feat(ui): wip model handling and graph topology validation * feat(ui): validation connections w/ graphlib * docs(ui): update nodes doc * feat(ui): wip node editor * chore(ui): rebuild api, update types * add redux-dynamic-middlewares as a dependency * feat(ui): add url host transformation * feat(ui): handle already-connected fields * feat(ui): rewrite SqliteItemStore in sqlalchemy * fix(ui): fix sqlalchemy dynamic model instantiation * feat(ui, nodes): metadata wip * feat(ui, nodes): models * feat(ui, nodes): more metadata wip * feat(ui): wip range/iterate * fix(nodes): fix sqlite typing * feat(ui): export new type for invoke component * tests(nodes): fix test instantiation of ImageField * feat(nodes): fix LoadImageInvocation * feat(nodes): add `title` ui hint * feat(nodes): make ImageField attrs optional * feat(ui): wip nodes etc * feat(nodes): roll back sqlalchemy * fix(nodes): partially address feedback * fix(backend): roll back changes to pngwriter * feat(nodes): wip address metadata feedback * feat(nodes): add seeded rng to RandomRange * feat(nodes): address feedback * feat(nodes): move GET images error handling to DiskImageStorage * feat(nodes): move GET images error handling to DiskImageStorage * fix(nodes): fix image output schema customization * feat(ui): img2img/txt2img -> linear - remove txt2img and img2img tabs - add linear tab - add initial image selection to linear parameters accordion * feat(ui): tidy graph builders * feat(ui): tidy misc * feat(ui): improve invocation union types * feat(ui): wip metadata viewer recall * feat(ui): move fonts to normal deps * feat(nodes): fix broken upload * feat(nodes): add metadata module + tests, thumbnails - `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service` - Handles loading/parsing/building metadata, and creating png info objects - added tests for MetadataModule - Lifted thumbnail stuff to util * fix(nodes): revert change to RandomRangeInvocation * feat(nodes): address feedback - make metadata a service - rip out pydantic validation, implement metadata parsing as simple functions - update tests - address other minor feedback items * fix(nodes): fix other tests * fix(nodes): add metadata service to cli * fix(nodes): fix latents/image field parsing * feat(nodes): customise LatentsField schema * feat(nodes): move metadata parsing to frontend * fix(nodes): fix metadata test --------- Co-authored-by: maryhipp <maryhipp@gmail.com> Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 03:10:20 +00:00
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.models.image import ImageCategory
from invokeai.app.util.misc import SEED_MAX, get_random_seed
Partial migration of UI to nodes API (#3195) * feat(ui): add axios client generator and simple example * fix(ui): update client & nodes test code w/ new Edge type * chore(ui): organize generated files * chore(ui): update .eslintignore, .prettierignore * chore(ui): update openapi.json * feat(backend): fixes for nodes/generator * feat(ui): generate object args for api client * feat(ui): more nodes api prototyping * feat(ui): nodes cancel * chore(ui): regenerate api client * fix(ui): disable OG web server socket connection * fix(ui): fix scrollbar styles typing and prop just noticed the typo, and made the types stronger. * feat(ui): add socketio types * feat(ui): wip nodes - extract api client method arg types instead of manually declaring them - update example to display images - general tidy up * start building out node translations from frontend state and add notes about missing features * use reference to sampler_name * use reference to sampler_name * add optional apiUrl prop * feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation * feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node * feat(ui): img2img implementation * feat(ui): get intermediate images working but types are stubbed out * chore(ui): add support for package mode * feat(ui): add nodes mode script * feat(ui): handle random seeds * fix(ui): fix middleware types * feat(ui): add rtk action type guard * feat(ui): disable NodeAPITest This was polluting the network/socket logs. * feat(ui): fix parameters panel border color This commit should be elsewhere but I don't want to break my flow * feat(ui): make thunk types more consistent * feat(ui): add type guards for outputs * feat(ui): load images on socket connect Rudimentary * chore(ui): bump redux-toolkit * docs(ui): update readme * chore(ui): regenerate api client * chore(ui): add typescript as dev dependency I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue. * feat(ui): begin migrating gallery to nodes Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way. * feat(ui): clean up & comment results slice * fix(ui): separate thunk for initial gallery load so it properly gets index 0 * feat(ui): POST upload working * fix(ui): restore removed type * feat(ui): patch api generation for headers access * chore(ui): regenerate api * feat(ui): wip gallery migration * feat(ui): wip gallery migration * chore(ui): regenerate api * feat(ui): wip refactor socket events * feat(ui): disable panels based on app props * feat(ui): invert logic to be disabled * disable panels when app mounts * feat(ui): add support to disableTabs * docs(ui): organise and update docs * lang(ui): add toast strings * feat(ui): wip events, comments, and general refactoring * feat(ui): add optional token for auth * feat(ui): export StatusIndicator and ModelSelect for header use * feat(ui) working on making socket URL dynamic * feat(ui): dynamic middleware loading * feat(ui): prep for socket jwt * feat(ui): migrate cancelation also updated action names to be event-like instead of declaration-like sorry, i was scattered and this commit has a lot of unrelated stuff in it. * fix(ui): fix img2img type * chore(ui): regenerate api client * feat(ui): improve InvocationCompleteEvent types * feat(ui): increase StatusIndicator font size * fix(ui): fix middleware order for multi-node graphs * feat(ui): add exampleGraphs object w/ iterations example * feat(ui): generate iterations graph * feat(ui): update ModelSelect for nodes API * feat(ui): add hi-res functionality for txt2img generations * feat(ui): "subscribe" to particular nodes feels like a dirty hack but oh well it works * feat(ui): first steps to node editor ui * fix(ui): disable event subscription it is not fully baked just yet * feat(ui): wip node editor * feat(ui): remove extraneous field types * feat(ui): nodes before deleting stuff * feat(ui): cleanup nodes ui stuff * feat(ui): hook up nodes to redux * fix(ui): fix handle * fix(ui): add basic node edges & connection validation * feat(ui): add connection validation styling * feat(ui): increase edge width * feat(ui): it blends * feat(ui): wip model handling and graph topology validation * feat(ui): validation connections w/ graphlib * docs(ui): update nodes doc * feat(ui): wip node editor * chore(ui): rebuild api, update types * add redux-dynamic-middlewares as a dependency * feat(ui): add url host transformation * feat(ui): handle already-connected fields * feat(ui): rewrite SqliteItemStore in sqlalchemy * fix(ui): fix sqlalchemy dynamic model instantiation * feat(ui, nodes): metadata wip * feat(ui, nodes): models * feat(ui, nodes): more metadata wip * feat(ui): wip range/iterate * fix(nodes): fix sqlite typing * feat(ui): export new type for invoke component * tests(nodes): fix test instantiation of ImageField * feat(nodes): fix LoadImageInvocation * feat(nodes): add `title` ui hint * feat(nodes): make ImageField attrs optional * feat(ui): wip nodes etc * feat(nodes): roll back sqlalchemy * fix(nodes): partially address feedback * fix(backend): roll back changes to pngwriter * feat(nodes): wip address metadata feedback * feat(nodes): add seeded rng to RandomRange * feat(nodes): address feedback * feat(nodes): move GET images error handling to DiskImageStorage * feat(nodes): move GET images error handling to DiskImageStorage * fix(nodes): fix image output schema customization * feat(ui): img2img/txt2img -> linear - remove txt2img and img2img tabs - add linear tab - add initial image selection to linear parameters accordion * feat(ui): tidy graph builders * feat(ui): tidy misc * feat(ui): improve invocation union types * feat(ui): wip metadata viewer recall * feat(ui): move fonts to normal deps * feat(nodes): fix broken upload * feat(nodes): add metadata module + tests, thumbnails - `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service` - Handles loading/parsing/building metadata, and creating png info objects - added tests for MetadataModule - Lifted thumbnail stuff to util * fix(nodes): revert change to RandomRangeInvocation * feat(nodes): address feedback - make metadata a service - rip out pydantic validation, implement metadata parsing as simple functions - update tests - address other minor feedback items * fix(nodes): fix other tests * fix(nodes): add metadata service to cli * fix(nodes): fix latents/image field parsing * feat(nodes): customise LatentsField schema * feat(nodes): move metadata parsing to frontend * fix(nodes): fix metadata test --------- Co-authored-by: maryhipp <maryhipp@gmail.com> Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 03:10:20 +00:00
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from .controlnet_image_processors import ControlField
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
2023-05-11 12:40:03 +00:00
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.stable_diffusion.diffusers_pipeline import ControlNetData
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from ..services.image_file_storage import ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from .compel import ConditioningField
from ...backend.stable_diffusion import PipelineIntermediateState
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline, ControlNetModel
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
Partial migration of UI to nodes API (#3195) * feat(ui): add axios client generator and simple example * fix(ui): update client & nodes test code w/ new Edge type * chore(ui): organize generated files * chore(ui): update .eslintignore, .prettierignore * chore(ui): update openapi.json * feat(backend): fixes for nodes/generator * feat(ui): generate object args for api client * feat(ui): more nodes api prototyping * feat(ui): nodes cancel * chore(ui): regenerate api client * fix(ui): disable OG web server socket connection * fix(ui): fix scrollbar styles typing and prop just noticed the typo, and made the types stronger. * feat(ui): add socketio types * feat(ui): wip nodes - extract api client method arg types instead of manually declaring them - update example to display images - general tidy up * start building out node translations from frontend state and add notes about missing features * use reference to sampler_name * use reference to sampler_name * add optional apiUrl prop * feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation * feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node * feat(ui): img2img implementation * feat(ui): get intermediate images working but types are stubbed out * chore(ui): add support for package mode * feat(ui): add nodes mode script * feat(ui): handle random seeds * fix(ui): fix middleware types * feat(ui): add rtk action type guard * feat(ui): disable NodeAPITest This was polluting the network/socket logs. * feat(ui): fix parameters panel border color This commit should be elsewhere but I don't want to break my flow * feat(ui): make thunk types more consistent * feat(ui): add type guards for outputs * feat(ui): load images on socket connect Rudimentary * chore(ui): bump redux-toolkit * docs(ui): update readme * chore(ui): regenerate api client * chore(ui): add typescript as dev dependency I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue. * feat(ui): begin migrating gallery to nodes Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way. * feat(ui): clean up & comment results slice * fix(ui): separate thunk for initial gallery load so it properly gets index 0 * feat(ui): POST upload working * fix(ui): restore removed type * feat(ui): patch api generation for headers access * chore(ui): regenerate api * feat(ui): wip gallery migration * feat(ui): wip gallery migration * chore(ui): regenerate api * feat(ui): wip refactor socket events * feat(ui): disable panels based on app props * feat(ui): invert logic to be disabled * disable panels when app mounts * feat(ui): add support to disableTabs * docs(ui): organise and update docs * lang(ui): add toast strings * feat(ui): wip events, comments, and general refactoring * feat(ui): add optional token for auth * feat(ui): export StatusIndicator and ModelSelect for header use * feat(ui) working on making socket URL dynamic * feat(ui): dynamic middleware loading * feat(ui): prep for socket jwt * feat(ui): migrate cancelation also updated action names to be event-like instead of declaration-like sorry, i was scattered and this commit has a lot of unrelated stuff in it. * fix(ui): fix img2img type * chore(ui): regenerate api client * feat(ui): improve InvocationCompleteEvent types * feat(ui): increase StatusIndicator font size * fix(ui): fix middleware order for multi-node graphs * feat(ui): add exampleGraphs object w/ iterations example * feat(ui): generate iterations graph * feat(ui): update ModelSelect for nodes API * feat(ui): add hi-res functionality for txt2img generations * feat(ui): "subscribe" to particular nodes feels like a dirty hack but oh well it works * feat(ui): first steps to node editor ui * fix(ui): disable event subscription it is not fully baked just yet * feat(ui): wip node editor * feat(ui): remove extraneous field types * feat(ui): nodes before deleting stuff * feat(ui): cleanup nodes ui stuff * feat(ui): hook up nodes to redux * fix(ui): fix handle * fix(ui): add basic node edges & connection validation * feat(ui): add connection validation styling * feat(ui): increase edge width * feat(ui): it blends * feat(ui): wip model handling and graph topology validation * feat(ui): validation connections w/ graphlib * docs(ui): update nodes doc * feat(ui): wip node editor * chore(ui): rebuild api, update types * add redux-dynamic-middlewares as a dependency * feat(ui): add url host transformation * feat(ui): handle already-connected fields * feat(ui): rewrite SqliteItemStore in sqlalchemy * fix(ui): fix sqlalchemy dynamic model instantiation * feat(ui, nodes): metadata wip * feat(ui, nodes): models * feat(ui, nodes): more metadata wip * feat(ui): wip range/iterate * fix(nodes): fix sqlite typing * feat(ui): export new type for invoke component * tests(nodes): fix test instantiation of ImageField * feat(nodes): fix LoadImageInvocation * feat(nodes): add `title` ui hint * feat(nodes): make ImageField attrs optional * feat(ui): wip nodes etc * feat(nodes): roll back sqlalchemy * fix(nodes): partially address feedback * fix(backend): roll back changes to pngwriter * feat(nodes): wip address metadata feedback * feat(nodes): add seeded rng to RandomRange * feat(nodes): address feedback * feat(nodes): move GET images error handling to DiskImageStorage * feat(nodes): move GET images error handling to DiskImageStorage * fix(nodes): fix image output schema customization * feat(ui): img2img/txt2img -> linear - remove txt2img and img2img tabs - add linear tab - add initial image selection to linear parameters accordion * feat(ui): tidy graph builders * feat(ui): tidy misc * feat(ui): improve invocation union types * feat(ui): wip metadata viewer recall * feat(ui): move fonts to normal deps * feat(nodes): fix broken upload * feat(nodes): add metadata module + tests, thumbnails - `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service` - Handles loading/parsing/building metadata, and creating png info objects - added tests for MetadataModule - Lifted thumbnail stuff to util * fix(nodes): revert change to RandomRangeInvocation * feat(nodes): address feedback - make metadata a service - rip out pydantic validation, implement metadata parsing as simple functions - update tests - address other minor feedback items * fix(nodes): fix other tests * fix(nodes): add metadata service to cli * fix(nodes): fix latents/image field parsing * feat(nodes): customise LatentsField schema * feat(nodes): move metadata parsing to frontend * fix(nodes): fix metadata test --------- Co-authored-by: maryhipp <maryhipp@gmail.com> Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 03:10:20 +00:00
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
type: Literal["latents_output"] = "latents_output"
# Inputs
latents: LatentsField = Field(default=None, description="The output latents")
width: int = Field(description="The width of the latents in pixels")
height: int = Field(description="The height of the latents in pixels")
#fmt: on
def build_latents_output(latents_name: str, latents: torch.Tensor):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
#fmt: off
type: Literal["noise_output"] = "noise_output"
# Inputs
noise: LatentsField = Field(default=None, description="The output noise")
width: int = Field(description="The width of the noise in pixels")
height: int = Field(description="The height of the noise in pixels")
#fmt: on
def build_noise_output(latents_name: str, latents: torch.Tensor):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
SAMPLER_NAME_VALUES = Literal[
2023-05-11 12:40:03 +00:00
tuple(list(SCHEDULER_MAP.keys()))
]
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
2023-05-11 12:40:03 +00:00
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
scheduler_config = model.scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
2023-05-11 08:52:37 +00:00
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
generator = torch.Generator(device=use_device).manual_seed(seed)
x = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=use_device,
generator=generator,
).to(device)
# if self.perlin > 0.0:
# perlin_noise = self.get_perlin_noise(
# width // self.downsampling_factor, height // self.downsampling_factor
# )
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
2023-05-11 00:57:08 +00:00
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed)
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
return v % SEED_MAX
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(choose_torch_device())
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise)
# Text to image
class TextToLatentsInvocation(BaseInvocation):
2023-05-05 18:09:29 +00:00
"""Generates latents from conditionings."""
type: Literal["t2l"] = "t2l"
# Inputs
# fmt: off
2023-05-05 18:09:29 +00:00
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
Feat/easy param (#3504) * Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step. * Adding first attempt at float param easing node, using Penner easing functions. * Core implementation of ControlNet and MultiControlNet. * Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. * Added example of using ControlNet with legacy Txt2Img generator * Resolving rebase conflict * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * More rebase repair. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Fixed lint-ish formatting error * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Added dependency on controlnet-aux v0.0.3 * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): add value to conditioning field * fix(ui): add control field type * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Added Mediapipe image processor for use as ControlNet preprocessor. Also hacked in ability to specify HF subfolder when loading ControlNet models from string. * Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. * Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. * Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. * Added float to FIELD_TYPE_MAP ins constants.ts * Progress toward improvement in fieldTemplateBuilder.ts getFieldType() * Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. * Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP * Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale * Fixed math for per-step param easing. * Added option to show plot of param value at each step * Just cleaning up after adding param easing plot option, removing vestigial code. * Modified control_weight ControlNet param to be polistmorphic -- can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step. * Added more informative error message when _validat_edge() throws an error. * Just improving parm easing bar chart title to include easing type. * Added requirement for easing-functions package * Taking out some diagnostic prints. * Added option to use both easing function and mirror of easing function together. * Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default. --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
model: str = Field(default="", description="The model to use (currently ignored)")
Feat/easy param (#3504) * Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step. * Adding first attempt at float param easing node, using Penner easing functions. * Core implementation of ControlNet and MultiControlNet. * Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. * Added example of using ControlNet with legacy Txt2Img generator * Resolving rebase conflict * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * More rebase repair. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Fixed lint-ish formatting error * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Added dependency on controlnet-aux v0.0.3 * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): add value to conditioning field * fix(ui): add control field type * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Added Mediapipe image processor for use as ControlNet preprocessor. Also hacked in ability to specify HF subfolder when loading ControlNet models from string. * Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. * Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. * Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. * Added float to FIELD_TYPE_MAP ins constants.ts * Progress toward improvement in fieldTemplateBuilder.ts getFieldType() * Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. * Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP * Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale * Fixed math for per-step param easing. * Added option to show plot of param value at each step * Just cleaning up after adding param easing plot option, removing vestigial code. * Modified control_weight ControlNet param to be polistmorphic -- can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step. * Added more informative error message when _validat_edge() throws an error. * Just improving parm easing bar chart title to include easing type. * Added requirement for easing-functions package * Taking out some diagnostic prints. * Added option to use both easing function and mirror of easing function together. * Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default. --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
control: Union[ControlField, List[ControlField]] = Field(default=None, description="The control to use")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
Feat/easy param (#3504) * Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step. * Adding first attempt at float param easing node, using Penner easing functions. * Core implementation of ControlNet and MultiControlNet. * Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. * Added example of using ControlNet with legacy Txt2Img generator * Resolving rebase conflict * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * More rebase repair. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Fixed lint-ish formatting error * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Added dependency on controlnet-aux v0.0.3 * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): add value to conditioning field * fix(ui): add control field type * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Added Mediapipe image processor for use as ControlNet preprocessor. Also hacked in ability to specify HF subfolder when loading ControlNet models from string. * Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. * Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. * Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. * Added float to FIELD_TYPE_MAP ins constants.ts * Progress toward improvement in fieldTemplateBuilder.ts getFieldType() * Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. * Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP * Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale * Fixed math for per-step param easing. * Added option to show plot of param value at each step * Just cleaning up after adding param easing plot option, removing vestigial code. * Modified control_weight ControlNet param to be polistmorphic -- can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step. * Added more informative error message when _validat_edge() throws an error. * Just improving parm easing bar chart title to include easing type. * Added requirement for easing-functions package * Taking out some diagnostic prints. * Added option to use both easing function and mirror of easing function together. * Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default. --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
@validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError('cfg_scale must be greater than 1')
else:
if v < 1:
raise ValueError('cfg_scale must be greater than 1')
return v
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
Feat/easy param (#3504) * Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step. * Adding first attempt at float param easing node, using Penner easing functions. * Core implementation of ControlNet and MultiControlNet. * Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. * Added example of using ControlNet with legacy Txt2Img generator * Resolving rebase conflict * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * More rebase repair. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Fixed lint-ish formatting error * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Added dependency on controlnet-aux v0.0.3 * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): add value to conditioning field * fix(ui): add control field type * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Added Mediapipe image processor for use as ControlNet preprocessor. Also hacked in ability to specify HF subfolder when loading ControlNet models from string. * Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. * Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. * Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. * Added float to FIELD_TYPE_MAP ins constants.ts * Progress toward improvement in fieldTemplateBuilder.ts getFieldType() * Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. * Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP * Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale * Fixed math for per-step param easing. * Added option to show plot of param value at each step * Just cleaning up after adding param easing plot option, removing vestigial code. * Modified control_weight ControlNet param to be polistmorphic -- can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step. * Added more informative error message when _validat_edge() throws an error. * Just improving parm easing bar chart title to include easing type. * Added requirement for easing-functions package * Taking out some diagnostic prints. * Added option to use both easing function and mirror of easing function together. * Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default. --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
"tags": ["latents"],
"type_hints": {
2023-05-19 06:10:16 +00:00
"model": "model",
"control": "control",
Feat/easy param (#3504) * Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step. * Adding first attempt at float param easing node, using Penner easing functions. * Core implementation of ControlNet and MultiControlNet. * Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. * Added example of using ControlNet with legacy Txt2Img generator * Resolving rebase conflict * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * More rebase repair. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Fixed lint-ish formatting error * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Added dependency on controlnet-aux v0.0.3 * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): add value to conditioning field * fix(ui): add control field type * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Added Mediapipe image processor for use as ControlNet preprocessor. Also hacked in ability to specify HF subfolder when loading ControlNet models from string. * Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. * Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. * Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. * Added float to FIELD_TYPE_MAP ins constants.ts * Progress toward improvement in fieldTemplateBuilder.ts getFieldType() * Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. * Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP * Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale * Fixed math for per-step param easing. * Added option to show plot of param value at each step * Just cleaning up after adding param easing plot option, removing vestigial code. * Modified control_weight ControlNet param to be polistmorphic -- can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step. * Added more informative error message when _validat_edge() throws an error. * Just improving parm easing bar chart title to include easing type. * Added requirement for easing-functions package * Taking out some diagnostic prints. * Added option to use both easing function and mirror of easing function together. * Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default. --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
# "cfg_scale": "float",
"cfg_scale": "number"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
Partial migration of UI to nodes API (#3195) * feat(ui): add axios client generator and simple example * fix(ui): update client & nodes test code w/ new Edge type * chore(ui): organize generated files * chore(ui): update .eslintignore, .prettierignore * chore(ui): update openapi.json * feat(backend): fixes for nodes/generator * feat(ui): generate object args for api client * feat(ui): more nodes api prototyping * feat(ui): nodes cancel * chore(ui): regenerate api client * fix(ui): disable OG web server socket connection * fix(ui): fix scrollbar styles typing and prop just noticed the typo, and made the types stronger. * feat(ui): add socketio types * feat(ui): wip nodes - extract api client method arg types instead of manually declaring them - update example to display images - general tidy up * start building out node translations from frontend state and add notes about missing features * use reference to sampler_name * use reference to sampler_name * add optional apiUrl prop * feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation * feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node * feat(ui): img2img implementation * feat(ui): get intermediate images working but types are stubbed out * chore(ui): add support for package mode * feat(ui): add nodes mode script * feat(ui): handle random seeds * fix(ui): fix middleware types * feat(ui): add rtk action type guard * feat(ui): disable NodeAPITest This was polluting the network/socket logs. * feat(ui): fix parameters panel border color This commit should be elsewhere but I don't want to break my flow * feat(ui): make thunk types more consistent * feat(ui): add type guards for outputs * feat(ui): load images on socket connect Rudimentary * chore(ui): bump redux-toolkit * docs(ui): update readme * chore(ui): regenerate api client * chore(ui): add typescript as dev dependency I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue. * feat(ui): begin migrating gallery to nodes Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way. * feat(ui): clean up & comment results slice * fix(ui): separate thunk for initial gallery load so it properly gets index 0 * feat(ui): POST upload working * fix(ui): restore removed type * feat(ui): patch api generation for headers access * chore(ui): regenerate api * feat(ui): wip gallery migration * feat(ui): wip gallery migration * chore(ui): regenerate api * feat(ui): wip refactor socket events * feat(ui): disable panels based on app props * feat(ui): invert logic to be disabled * disable panels when app mounts * feat(ui): add support to disableTabs * docs(ui): organise and update docs * lang(ui): add toast strings * feat(ui): wip events, comments, and general refactoring * feat(ui): add optional token for auth * feat(ui): export StatusIndicator and ModelSelect for header use * feat(ui) working on making socket URL dynamic * feat(ui): dynamic middleware loading * feat(ui): prep for socket jwt * feat(ui): migrate cancelation also updated action names to be event-like instead of declaration-like sorry, i was scattered and this commit has a lot of unrelated stuff in it. * fix(ui): fix img2img type * chore(ui): regenerate api client * feat(ui): improve InvocationCompleteEvent types * feat(ui): increase StatusIndicator font size * fix(ui): fix middleware order for multi-node graphs * feat(ui): add exampleGraphs object w/ iterations example * feat(ui): generate iterations graph * feat(ui): update ModelSelect for nodes API * feat(ui): add hi-res functionality for txt2img generations * feat(ui): "subscribe" to particular nodes feels like a dirty hack but oh well it works * feat(ui): first steps to node editor ui * fix(ui): disable event subscription it is not fully baked just yet * feat(ui): wip node editor * feat(ui): remove extraneous field types * feat(ui): nodes before deleting stuff * feat(ui): cleanup nodes ui stuff * feat(ui): hook up nodes to redux * fix(ui): fix handle * fix(ui): add basic node edges & connection validation * feat(ui): add connection validation styling * feat(ui): increase edge width * feat(ui): it blends * feat(ui): wip model handling and graph topology validation * feat(ui): validation connections w/ graphlib * docs(ui): update nodes doc * feat(ui): wip node editor * chore(ui): rebuild api, update types * add redux-dynamic-middlewares as a dependency * feat(ui): add url host transformation * feat(ui): handle already-connected fields * feat(ui): rewrite SqliteItemStore in sqlalchemy * fix(ui): fix sqlalchemy dynamic model instantiation * feat(ui, nodes): metadata wip * feat(ui, nodes): models * feat(ui, nodes): more metadata wip * feat(ui): wip range/iterate * fix(nodes): fix sqlite typing * feat(ui): export new type for invoke component * tests(nodes): fix test instantiation of ImageField * feat(nodes): fix LoadImageInvocation * feat(nodes): add `title` ui hint * feat(nodes): make ImageField attrs optional * feat(ui): wip nodes etc * feat(nodes): roll back sqlalchemy * fix(nodes): partially address feedback * fix(backend): roll back changes to pngwriter * feat(nodes): wip address metadata feedback * feat(nodes): add seeded rng to RandomRange * feat(nodes): address feedback * feat(nodes): move GET images error handling to DiskImageStorage * feat(nodes): move GET images error handling to DiskImageStorage * fix(nodes): fix image output schema customization * feat(ui): img2img/txt2img -> linear - remove txt2img and img2img tabs - add linear tab - add initial image selection to linear parameters accordion * feat(ui): tidy graph builders * feat(ui): tidy misc * feat(ui): improve invocation union types * feat(ui): wip metadata viewer recall * feat(ui): move fonts to normal deps * feat(nodes): fix broken upload * feat(nodes): add metadata module + tests, thumbnails - `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service` - Handles loading/parsing/building metadata, and creating png info objects - added tests for MetadataModule - Lifted thumbnail stuff to util * fix(nodes): revert change to RandomRangeInvocation * feat(nodes): address feedback - make metadata a service - rip out pydantic validation, implement metadata parsing as simple functions - update tests - address other minor feedback items * fix(nodes): fix other tests * fix(nodes): add metadata service to cli * fix(nodes): fix latents/image field parsing * feat(nodes): customise LatentsField schema * feat(nodes): move metadata parsing to frontend * fix(nodes): fix metadata test --------- Co-authored-by: maryhipp <maryhipp@gmail.com> Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 03:10:20 +00:00
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
Partial migration of UI to nodes API (#3195) * feat(ui): add axios client generator and simple example * fix(ui): update client & nodes test code w/ new Edge type * chore(ui): organize generated files * chore(ui): update .eslintignore, .prettierignore * chore(ui): update openapi.json * feat(backend): fixes for nodes/generator * feat(ui): generate object args for api client * feat(ui): more nodes api prototyping * feat(ui): nodes cancel * chore(ui): regenerate api client * fix(ui): disable OG web server socket connection * fix(ui): fix scrollbar styles typing and prop just noticed the typo, and made the types stronger. * feat(ui): add socketio types * feat(ui): wip nodes - extract api client method arg types instead of manually declaring them - update example to display images - general tidy up * start building out node translations from frontend state and add notes about missing features * use reference to sampler_name * use reference to sampler_name * add optional apiUrl prop * feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation * feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node * feat(ui): img2img implementation * feat(ui): get intermediate images working but types are stubbed out * chore(ui): add support for package mode * feat(ui): add nodes mode script * feat(ui): handle random seeds * fix(ui): fix middleware types * feat(ui): add rtk action type guard * feat(ui): disable NodeAPITest This was polluting the network/socket logs. * feat(ui): fix parameters panel border color This commit should be elsewhere but I don't want to break my flow * feat(ui): make thunk types more consistent * feat(ui): add type guards for outputs * feat(ui): load images on socket connect Rudimentary * chore(ui): bump redux-toolkit * docs(ui): update readme * chore(ui): regenerate api client * chore(ui): add typescript as dev dependency I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue. * feat(ui): begin migrating gallery to nodes Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way. * feat(ui): clean up & comment results slice * fix(ui): separate thunk for initial gallery load so it properly gets index 0 * feat(ui): POST upload working * fix(ui): restore removed type * feat(ui): patch api generation for headers access * chore(ui): regenerate api * feat(ui): wip gallery migration * feat(ui): wip gallery migration * chore(ui): regenerate api * feat(ui): wip refactor socket events * feat(ui): disable panels based on app props * feat(ui): invert logic to be disabled * disable panels when app mounts * feat(ui): add support to disableTabs * docs(ui): organise and update docs * lang(ui): add toast strings * feat(ui): wip events, comments, and general refactoring * feat(ui): add optional token for auth * feat(ui): export StatusIndicator and ModelSelect for header use * feat(ui) working on making socket URL dynamic * feat(ui): dynamic middleware loading * feat(ui): prep for socket jwt * feat(ui): migrate cancelation also updated action names to be event-like instead of declaration-like sorry, i was scattered and this commit has a lot of unrelated stuff in it. * fix(ui): fix img2img type * chore(ui): regenerate api client * feat(ui): improve InvocationCompleteEvent types * feat(ui): increase StatusIndicator font size * fix(ui): fix middleware order for multi-node graphs * feat(ui): add exampleGraphs object w/ iterations example * feat(ui): generate iterations graph * feat(ui): update ModelSelect for nodes API * feat(ui): add hi-res functionality for txt2img generations * feat(ui): "subscribe" to particular nodes feels like a dirty hack but oh well it works * feat(ui): first steps to node editor ui * fix(ui): disable event subscription it is not fully baked just yet * feat(ui): wip node editor * feat(ui): remove extraneous field types * feat(ui): nodes before deleting stuff * feat(ui): cleanup nodes ui stuff * feat(ui): hook up nodes to redux * fix(ui): fix handle * fix(ui): add basic node edges & connection validation * feat(ui): add connection validation styling * feat(ui): increase edge width * feat(ui): it blends * feat(ui): wip model handling and graph topology validation * feat(ui): validation connections w/ graphlib * docs(ui): update nodes doc * feat(ui): wip node editor * chore(ui): rebuild api, update types * add redux-dynamic-middlewares as a dependency * feat(ui): add url host transformation * feat(ui): handle already-connected fields * feat(ui): rewrite SqliteItemStore in sqlalchemy * fix(ui): fix sqlalchemy dynamic model instantiation * feat(ui, nodes): metadata wip * feat(ui, nodes): models * feat(ui, nodes): more metadata wip * feat(ui): wip range/iterate * fix(nodes): fix sqlite typing * feat(ui): export new type for invoke component * tests(nodes): fix test instantiation of ImageField * feat(nodes): fix LoadImageInvocation * feat(nodes): add `title` ui hint * feat(nodes): make ImageField attrs optional * feat(ui): wip nodes etc * feat(nodes): roll back sqlalchemy * fix(nodes): partially address feedback * fix(backend): roll back changes to pngwriter * feat(nodes): wip address metadata feedback * feat(nodes): add seeded rng to RandomRange * feat(nodes): address feedback * feat(nodes): move GET images error handling to DiskImageStorage * feat(nodes): move GET images error handling to DiskImageStorage * fix(nodes): fix image output schema customization * feat(ui): img2img/txt2img -> linear - remove txt2img and img2img tabs - add linear tab - add initial image selection to linear parameters accordion * feat(ui): tidy graph builders * feat(ui): tidy misc * feat(ui): improve invocation union types * feat(ui): wip metadata viewer recall * feat(ui): move fonts to normal deps * feat(nodes): fix broken upload * feat(nodes): add metadata module + tests, thumbnails - `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service` - Handles loading/parsing/building metadata, and creating png info objects - added tests for MetadataModule - Lifted thumbnail stuff to util * fix(nodes): revert change to RandomRangeInvocation * feat(nodes): address feedback - make metadata a service - rip out pydantic validation, implement metadata parsing as simple functions - update tests - address other minor feedback items * fix(nodes): fix other tests * fix(nodes): add metadata service to cli * fix(nodes): fix latents/image field parsing * feat(nodes): customise LatentsField schema * feat(nodes): move metadata parsing to frontend * fix(nodes): fix metadata test --------- Co-authored-by: maryhipp <maryhipp@gmail.com> Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 03:10:20 +00:00
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = choose_model(model_manager, self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.scheduler
)
# if isinstance(model, DiffusionPipeline):
# for component in [model.unet, model.vae]:
# configure_model_padding(component,
# self.seamless,
# self.seamless_axes
# )
# else:
# configure_model_padding(model,
# self.seamless,
# self.seamless_axes
# )
return model
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
2023-05-05 18:09:29 +00:00
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
compel = Compel(
tokenizer=model.tokenizer,
text_encoder=model.text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False,
)
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
conditioning_data = ConditioningData(
Feat/easy param (#3504) * Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step. * Adding first attempt at float param easing node, using Penner easing functions. * Core implementation of ControlNet and MultiControlNet. * Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. * Added example of using ControlNet with legacy Txt2Img generator * Resolving rebase conflict * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * More rebase repair. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Fixed lint-ish formatting error * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Added dependency on controlnet-aux v0.0.3 * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): add value to conditioning field * fix(ui): add control field type * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Added Mediapipe image processor for use as ControlNet preprocessor. Also hacked in ability to specify HF subfolder when loading ControlNet models from string. * Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. * Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. * Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. * Added float to FIELD_TYPE_MAP ins constants.ts * Progress toward improvement in fieldTemplateBuilder.ts getFieldType() * Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. * Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP * Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale * Fixed math for per-step param easing. * Added option to show plot of param value at each step * Just cleaning up after adding param easing plot option, removing vestigial code. * Modified control_weight ControlNet param to be polistmorphic -- can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step. * Added more informative error message when _validat_edge() throws an error. * Just improving parm easing bar chart title to include easing type. * Added requirement for easing-functions package * Taking out some diagnostic prints. * Added option to use both easing function and mirror of easing function together. * Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default. --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
unconditioned_embeddings=uc,
text_embeddings=c,
guidance_scale=self.cfg_scale,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(model.scheduler, eta=0.0)#ddim_eta)
return conditioning_data
def prep_control_data(self,
context: InvocationContext,
model: StableDiffusionGeneratorPipeline, # really only need model for dtype and device
control_input: List[ControlField],
latents_shape: List[int],
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
# assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8
if control_input is None:
# print("control input is None")
control_list = None
elif isinstance(control_input, list) and len(control_input) == 0:
# print("control input is empty list")
control_list = None
elif isinstance(control_input, ControlField):
# print("control input is ControlField")
control_list = [control_input]
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
# print("control input is list[ControlField]")
control_list = control_input
else:
# print("input control is unrecognized:", type(self.control))
control_list = None
if (control_list is None):
control_data = None
# from above handling, any control that is not None should now be of type list[ControlField]
else:
# FIXME: add checks to skip entry if model or image is None
# and if weight is None, populate with default 1.0?
control_data = []
control_models = []
for control_info in control_list:
# handle control models
if ("," in control_info.control_model):
control_model_split = control_info.control_model.split(",")
control_name = control_model_split[0]
control_subfolder = control_model_split[1]
print("Using HF model subfolders")
print(" control_name: ", control_name)
print(" control_subfolder: ", control_subfolder)
control_model = ControlNetModel.from_pretrained(control_name,
subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(model.device)
else:
control_model = ControlNetModel.from_pretrained(control_info.control_model,
torch_dtype=model.unet.dtype).to(model.device)
control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(control_image_field.image_origin,
control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
# and do real check for classifier_free_guidance?
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
control_image = model.prepare_control_image(
image=input_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=control_width_resize,
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
)
control_item = ControlNetData(model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent)
control_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return control_data
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model)
control_data = self.prep_control_data(model=model, context=context, control_input=self.control,
latents_shape=noise.shape,
Feat/easy param (#3504) * Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step. * Adding first attempt at float param easing node, using Penner easing functions. * Core implementation of ControlNet and MultiControlNet. * Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. * Added example of using ControlNet with legacy Txt2Img generator * Resolving rebase conflict * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * More rebase repair. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Fixed lint-ish formatting error * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Added dependency on controlnet-aux v0.0.3 * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): add value to conditioning field * fix(ui): add control field type * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Added Mediapipe image processor for use as ControlNet preprocessor. Also hacked in ability to specify HF subfolder when loading ControlNet models from string. * Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. * Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. * Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. * Added float to FIELD_TYPE_MAP ins constants.ts * Progress toward improvement in fieldTemplateBuilder.ts getFieldType() * Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. * Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP * Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale * Fixed math for per-step param easing. * Added option to show plot of param value at each step * Just cleaning up after adding param easing plot option, removing vestigial code. * Modified control_weight ControlNet param to be polistmorphic -- can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step. * Added more informative error message when _validat_edge() throws an error. * Just improving parm easing bar chart title to include easing type. * Added requirement for easing-functions package * Taking out some diagnostic prints. * Added option to use both easing function and mirror of easing function together. * Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default. --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.7, ge=0, le=1, description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
Feat/easy param (#3504) * Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step. * Adding first attempt at float param easing node, using Penner easing functions. * Core implementation of ControlNet and MultiControlNet. * Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. * Added example of using ControlNet with legacy Txt2Img generator * Resolving rebase conflict * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * More rebase repair. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Fixed lint-ish formatting error * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Added dependency on controlnet-aux v0.0.3 * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): add value to conditioning field * fix(ui): add control field type * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Added Mediapipe image processor for use as ControlNet preprocessor. Also hacked in ability to specify HF subfolder when loading ControlNet models from string. * Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. * Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. * Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. * Added float to FIELD_TYPE_MAP ins constants.ts * Progress toward improvement in fieldTemplateBuilder.ts getFieldType() * Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. * Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP * Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale * Fixed math for per-step param easing. * Added option to show plot of param value at each step * Just cleaning up after adding param easing plot option, removing vestigial code. * Modified control_weight ControlNet param to be polistmorphic -- can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step. * Added more informative error message when _validat_edge() throws an error. * Just improving parm easing bar chart title to include easing type. * Added requirement for easing-functions package * Taking out some diagnostic prints. * Added option to use both easing function and mirror of easing function together. * Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default. --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
"cfg_scale": "number",
}
},
}
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
Partial migration of UI to nodes API (#3195) * feat(ui): add axios client generator and simple example * fix(ui): update client & nodes test code w/ new Edge type * chore(ui): organize generated files * chore(ui): update .eslintignore, .prettierignore * chore(ui): update openapi.json * feat(backend): fixes for nodes/generator * feat(ui): generate object args for api client * feat(ui): more nodes api prototyping * feat(ui): nodes cancel * chore(ui): regenerate api client * fix(ui): disable OG web server socket connection * fix(ui): fix scrollbar styles typing and prop just noticed the typo, and made the types stronger. * feat(ui): add socketio types * feat(ui): wip nodes - extract api client method arg types instead of manually declaring them - update example to display images - general tidy up * start building out node translations from frontend state and add notes about missing features * use reference to sampler_name * use reference to sampler_name * add optional apiUrl prop * feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation * feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node * feat(ui): img2img implementation * feat(ui): get intermediate images working but types are stubbed out * chore(ui): add support for package mode * feat(ui): add nodes mode script * feat(ui): handle random seeds * fix(ui): fix middleware types * feat(ui): add rtk action type guard * feat(ui): disable NodeAPITest This was polluting the network/socket logs. * feat(ui): fix parameters panel border color This commit should be elsewhere but I don't want to break my flow * feat(ui): make thunk types more consistent * feat(ui): add type guards for outputs * feat(ui): load images on socket connect Rudimentary * chore(ui): bump redux-toolkit * docs(ui): update readme * chore(ui): regenerate api client * chore(ui): add typescript as dev dependency I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue. * feat(ui): begin migrating gallery to nodes Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way. * feat(ui): clean up & comment results slice * fix(ui): separate thunk for initial gallery load so it properly gets index 0 * feat(ui): POST upload working * fix(ui): restore removed type * feat(ui): patch api generation for headers access * chore(ui): regenerate api * feat(ui): wip gallery migration * feat(ui): wip gallery migration * chore(ui): regenerate api * feat(ui): wip refactor socket events * feat(ui): disable panels based on app props * feat(ui): invert logic to be disabled * disable panels when app mounts * feat(ui): add support to disableTabs * docs(ui): organise and update docs * lang(ui): add toast strings * feat(ui): wip events, comments, and general refactoring * feat(ui): add optional token for auth * feat(ui): export StatusIndicator and ModelSelect for header use * feat(ui) working on making socket URL dynamic * feat(ui): dynamic middleware loading * feat(ui): prep for socket jwt * feat(ui): migrate cancelation also updated action names to be event-like instead of declaration-like sorry, i was scattered and this commit has a lot of unrelated stuff in it. * fix(ui): fix img2img type * chore(ui): regenerate api client * feat(ui): improve InvocationCompleteEvent types * feat(ui): increase StatusIndicator font size * fix(ui): fix middleware order for multi-node graphs * feat(ui): add exampleGraphs object w/ iterations example * feat(ui): generate iterations graph * feat(ui): update ModelSelect for nodes API * feat(ui): add hi-res functionality for txt2img generations * feat(ui): "subscribe" to particular nodes feels like a dirty hack but oh well it works * feat(ui): first steps to node editor ui * fix(ui): disable event subscription it is not fully baked just yet * feat(ui): wip node editor * feat(ui): remove extraneous field types * feat(ui): nodes before deleting stuff * feat(ui): cleanup nodes ui stuff * feat(ui): hook up nodes to redux * fix(ui): fix handle * fix(ui): add basic node edges & connection validation * feat(ui): add connection validation styling * feat(ui): increase edge width * feat(ui): it blends * feat(ui): wip model handling and graph topology validation * feat(ui): validation connections w/ graphlib * docs(ui): update nodes doc * feat(ui): wip node editor * chore(ui): rebuild api, update types * add redux-dynamic-middlewares as a dependency * feat(ui): add url host transformation * feat(ui): handle already-connected fields * feat(ui): rewrite SqliteItemStore in sqlalchemy * fix(ui): fix sqlalchemy dynamic model instantiation * feat(ui, nodes): metadata wip * feat(ui, nodes): models * feat(ui, nodes): more metadata wip * feat(ui): wip range/iterate * fix(nodes): fix sqlite typing * feat(ui): export new type for invoke component * tests(nodes): fix test instantiation of ImageField * feat(nodes): fix LoadImageInvocation * feat(nodes): add `title` ui hint * feat(nodes): make ImageField attrs optional * feat(ui): wip nodes etc * feat(nodes): roll back sqlalchemy * fix(nodes): partially address feedback * fix(backend): roll back changes to pngwriter * feat(nodes): wip address metadata feedback * feat(nodes): add seeded rng to RandomRange * feat(nodes): address feedback * feat(nodes): move GET images error handling to DiskImageStorage * feat(nodes): move GET images error handling to DiskImageStorage * fix(nodes): fix image output schema customization * feat(ui): img2img/txt2img -> linear - remove txt2img and img2img tabs - add linear tab - add initial image selection to linear parameters accordion * feat(ui): tidy graph builders * feat(ui): tidy misc * feat(ui): improve invocation union types * feat(ui): wip metadata viewer recall * feat(ui): move fonts to normal deps * feat(nodes): fix broken upload * feat(nodes): add metadata module + tests, thumbnails - `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service` - Handles loading/parsing/building metadata, and creating png info objects - added tests for MetadataModule - Lifted thumbnail stuff to util * fix(nodes): revert change to RandomRangeInvocation * feat(nodes): address feedback - make metadata a service - rip out pydantic validation, implement metadata parsing as simple functions - update tests - address other minor feedback items * fix(nodes): fix other tests * fix(nodes): add metadata service to cli * fix(nodes): fix latents/image field parsing * feat(nodes): customise LatentsField schema * feat(nodes): move metadata parsing to frontend * fix(nodes): fix metadata test --------- Co-authored-by: maryhipp <maryhipp@gmail.com> Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 03:10:20 +00:00
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
Partial migration of UI to nodes API (#3195) * feat(ui): add axios client generator and simple example * fix(ui): update client & nodes test code w/ new Edge type * chore(ui): organize generated files * chore(ui): update .eslintignore, .prettierignore * chore(ui): update openapi.json * feat(backend): fixes for nodes/generator * feat(ui): generate object args for api client * feat(ui): more nodes api prototyping * feat(ui): nodes cancel * chore(ui): regenerate api client * fix(ui): disable OG web server socket connection * fix(ui): fix scrollbar styles typing and prop just noticed the typo, and made the types stronger. * feat(ui): add socketio types * feat(ui): wip nodes - extract api client method arg types instead of manually declaring them - update example to display images - general tidy up * start building out node translations from frontend state and add notes about missing features * use reference to sampler_name * use reference to sampler_name * add optional apiUrl prop * feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation * feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node * feat(ui): img2img implementation * feat(ui): get intermediate images working but types are stubbed out * chore(ui): add support for package mode * feat(ui): add nodes mode script * feat(ui): handle random seeds * fix(ui): fix middleware types * feat(ui): add rtk action type guard * feat(ui): disable NodeAPITest This was polluting the network/socket logs. * feat(ui): fix parameters panel border color This commit should be elsewhere but I don't want to break my flow * feat(ui): make thunk types more consistent * feat(ui): add type guards for outputs * feat(ui): load images on socket connect Rudimentary * chore(ui): bump redux-toolkit * docs(ui): update readme * chore(ui): regenerate api client * chore(ui): add typescript as dev dependency I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue. * feat(ui): begin migrating gallery to nodes Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way. * feat(ui): clean up & comment results slice * fix(ui): separate thunk for initial gallery load so it properly gets index 0 * feat(ui): POST upload working * fix(ui): restore removed type * feat(ui): patch api generation for headers access * chore(ui): regenerate api * feat(ui): wip gallery migration * feat(ui): wip gallery migration * chore(ui): regenerate api * feat(ui): wip refactor socket events * feat(ui): disable panels based on app props * feat(ui): invert logic to be disabled * disable panels when app mounts * feat(ui): add support to disableTabs * docs(ui): organise and update docs * lang(ui): add toast strings * feat(ui): wip events, comments, and general refactoring * feat(ui): add optional token for auth * feat(ui): export StatusIndicator and ModelSelect for header use * feat(ui) working on making socket URL dynamic * feat(ui): dynamic middleware loading * feat(ui): prep for socket jwt * feat(ui): migrate cancelation also updated action names to be event-like instead of declaration-like sorry, i was scattered and this commit has a lot of unrelated stuff in it. * fix(ui): fix img2img type * chore(ui): regenerate api client * feat(ui): improve InvocationCompleteEvent types * feat(ui): increase StatusIndicator font size * fix(ui): fix middleware order for multi-node graphs * feat(ui): add exampleGraphs object w/ iterations example * feat(ui): generate iterations graph * feat(ui): update ModelSelect for nodes API * feat(ui): add hi-res functionality for txt2img generations * feat(ui): "subscribe" to particular nodes feels like a dirty hack but oh well it works * feat(ui): first steps to node editor ui * fix(ui): disable event subscription it is not fully baked just yet * feat(ui): wip node editor * feat(ui): remove extraneous field types * feat(ui): nodes before deleting stuff * feat(ui): cleanup nodes ui stuff * feat(ui): hook up nodes to redux * fix(ui): fix handle * fix(ui): add basic node edges & connection validation * feat(ui): add connection validation styling * feat(ui): increase edge width * feat(ui): it blends * feat(ui): wip model handling and graph topology validation * feat(ui): validation connections w/ graphlib * docs(ui): update nodes doc * feat(ui): wip node editor * chore(ui): rebuild api, update types * add redux-dynamic-middlewares as a dependency * feat(ui): add url host transformation * feat(ui): handle already-connected fields * feat(ui): rewrite SqliteItemStore in sqlalchemy * fix(ui): fix sqlalchemy dynamic model instantiation * feat(ui, nodes): metadata wip * feat(ui, nodes): models * feat(ui, nodes): more metadata wip * feat(ui): wip range/iterate * fix(nodes): fix sqlite typing * feat(ui): export new type for invoke component * tests(nodes): fix test instantiation of ImageField * feat(nodes): fix LoadImageInvocation * feat(nodes): add `title` ui hint * feat(nodes): make ImageField attrs optional * feat(ui): wip nodes etc * feat(nodes): roll back sqlalchemy * fix(nodes): partially address feedback * fix(backend): roll back changes to pngwriter * feat(nodes): wip address metadata feedback * feat(nodes): add seeded rng to RandomRange * feat(nodes): address feedback * feat(nodes): move GET images error handling to DiskImageStorage * feat(nodes): move GET images error handling to DiskImageStorage * fix(nodes): fix image output schema customization * feat(ui): img2img/txt2img -> linear - remove txt2img and img2img tabs - add linear tab - add initial image selection to linear parameters accordion * feat(ui): tidy graph builders * feat(ui): tidy misc * feat(ui): improve invocation union types * feat(ui): wip metadata viewer recall * feat(ui): move fonts to normal deps * feat(nodes): fix broken upload * feat(nodes): add metadata module + tests, thumbnails - `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service` - Handles loading/parsing/building metadata, and creating png info objects - added tests for MetadataModule - Lifted thumbnail stuff to util * fix(nodes): revert change to RandomRangeInvocation * feat(nodes): address feedback - make metadata a service - rip out pydantic validation, implement metadata parsing as simple functions - update tests - address other minor feedback items * fix(nodes): fix other tests * fix(nodes): add metadata service to cli * fix(nodes): fix latents/image field parsing * feat(nodes): customise LatentsField schema * feat(nodes): move metadata parsing to frontend * fix(nodes): fix metadata test --------- Co-authored-by: maryhipp <maryhipp@gmail.com> Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 03:10:20 +00:00
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model)
control_data = self.prep_control_data(model=model, context=context, control_input=self.control,
latents_shape=noise.shape,
Feat/easy param (#3504) * Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step. * Adding first attempt at float param easing node, using Penner easing functions. * Core implementation of ControlNet and MultiControlNet. * Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. * Added example of using ControlNet with legacy Txt2Img generator * Resolving rebase conflict * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * More rebase repair. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Fixed lint-ish formatting error * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Added dependency on controlnet-aux v0.0.3 * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): add value to conditioning field * fix(ui): add control field type * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Switching to ControlField for output from controlnet nodes. * Resolving conflicts in rebase to origin/main * Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) * changes to base class for controlnet nodes * Added HED, LineArt, and OpenPose ControlNet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... * Fixed use of ControlNet control_weight parameter * Core implementation of ControlNet and MultiControlNet. * Added first controlnet preprocessor node for canny edge detection. * Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node * Switching to ControlField for output from controlnet nodes. * Refactored controlnet node to output ControlField that bundles control info. * changes to base class for controlnet nodes * Added more preprocessor nodes for: MidasDepth ZoeDepth MLSD NormalBae Pidi LineartAnime ContentShuffle Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup. * Prep for splitting pre-processor and controlnet nodes * Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. * Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. * Cleaning up TextToLatent arg testing * Cleaning up mistakes after rebase. * Removed last bits of dtype and and device hardwiring from controlnet section * Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. * Added support for specifying which step iteration to start using each ControlNet, and which step to end using each controlnet (specified as fraction of total steps) * Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. * Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. * Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. * Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. * Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. * Cleaning up after ControlNet refactor in TextToLatentsInvocation * Extended node-based ControlNet support to LatentsToLatentsInvocation. * chore(ui): regen api client * fix(ui): fix node ui type hints * fix(nodes): controlnet input accepts list or single controlnet * Added Mediapipe image processor for use as ControlNet preprocessor. Also hacked in ability to specify HF subfolder when loading ControlNet models from string. * Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. * Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. * Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. * Added float to FIELD_TYPE_MAP ins constants.ts * Progress toward improvement in fieldTemplateBuilder.ts getFieldType() * Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. * Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP * Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale * Fixed math for per-step param easing. * Added option to show plot of param value at each step * Just cleaning up after adding param easing plot option, removing vestigial code. * Modified control_weight ControlNet param to be polistmorphic -- can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step. * Added more informative error message when _validat_edge() throws an error. * Just improving parm easing bar chart title to include easing type. * Added requirement for easing-functions package * Taking out some diagnostic prints. * Added option to use both easing function and mirror of easing function together. * Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default. --------- Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
2023-05-11 08:52:37 +00:00
timesteps, _ = model.get_img2img_timesteps(self.steps, self.strength)
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
# Latent to image
class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
# what happened to metadata?
# metadata = context.services.metadata.build_metadata(
# session_id=context.graph_execution_state_id, node=self
torch.cuda.empty_cache()
# new (post Image service refactor) way of using services to save image
# and gnenerate unique image_name
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
type: Literal["i2l"] = "i2l"
# Inputs
image: Union[ImageField, None] = Field(description="The image to encode")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {"model": "model"},
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
# image = context.services.images.get(
# self.image.image_type, self.image.image_name
# )
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info["model"]
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = model.non_noised_latents_from_image(
image_tensor,
device=model._model_group.device_for(model.unet),
dtype=model.unet.dtype,
)
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, latents)
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents)