veloren/voxygen/src/mesh/terrain.rs

383 lines
13 KiB
Rust
Raw Normal View History

2019-06-05 15:22:06 +00:00
use crate::{
mesh::{vol, Meshable},
render::{self, FluidPipeline, Mesh, TerrainPipeline},
2019-06-05 15:22:06 +00:00
};
2019-01-23 20:01:58 +00:00
use common::{
2019-09-26 12:34:15 +00:00
terrain::Block,
vol::{ReadVol, RectRasterableVol, Vox},
2019-09-24 06:42:09 +00:00
volumes::vol_grid_2d::VolGrid2d,
2019-01-23 20:01:58 +00:00
};
2019-06-05 15:22:06 +00:00
use std::fmt::Debug;
use vek::*;
2019-01-23 20:01:58 +00:00
type TerrainVertex = <TerrainPipeline as render::Pipeline>::Vertex;
type FluidVertex = <FluidPipeline as render::Pipeline>::Vertex;
const DIRS: [Vec2<i32>; 4] = [
Vec2 { x: 1, y: 0 },
Vec2 { x: 0, y: 1 },
Vec2 { x: -1, y: 0 },
Vec2 { x: 0, y: -1 },
];
const DIRS_3D: [Vec3<i32>; 6] = [
Vec3 { x: 1, y: 0, z: 0 },
Vec3 { x: 0, y: 1, z: 0 },
Vec3 { x: 0, y: 0, z: 1 },
Vec3 { x: -1, y: 0, z: 0 },
Vec3 { x: 0, y: -1, z: 0 },
Vec3 { x: 0, y: 0, z: -1 },
];
fn calc_light<V: RectRasterableVol<Vox = Block> + ReadVol + Debug>(
bounds: Aabb<i32>,
vol: &VolGrid2d<V>,
) -> impl Fn(Vec3<i32>) -> f32 {
const NOT_VOID: u8 = 255;
const SUNLIGHT: u8 = 24;
let outer = Aabb {
min: bounds.min - Vec3::new(SUNLIGHT as i32, SUNLIGHT as i32, 1),
max: bounds.max + Vec3::new(SUNLIGHT as i32, SUNLIGHT as i32, 1),
};
2019-10-01 06:09:27 +00:00
let mut vol_cached = vol.cached();
// Voids are voxels that that contain air or liquid that are protected from direct rays by blocks
// above them
//
let mut voids = vec![NOT_VOID; outer.size().product() as usize];
let void_idx = {
let (_, h, d) = outer.clone().size().into_tuple();
move |x, y, z| (x * h * d + y * d + z) as usize
};
// List of voids for efficient iteration
let mut voids_list = vec![];
// Rays are cast down
// Vec<(highest non air block, lowest non air block)>
let mut rays = vec![(outer.size().d, 0); (outer.size().w * outer.size().h) as usize];
for x in 0..outer.size().w {
for y in 0..outer.size().h {
let mut outside = true;
for z in (0..outer.size().d).rev() {
2019-10-01 06:09:27 +00:00
let block = vol_cached
.get(outer.min + Vec3::new(x, y, z))
2019-09-25 10:25:32 +00:00
.ok()
.copied()
.unwrap_or(Block::empty());
2019-10-14 09:48:40 +00:00
if !block.is_air() {
if outside {
rays[(outer.size().w * y + x) as usize].0 = z;
outside = false;
}
rays[(outer.size().w * y + x) as usize].1 = z;
}
2019-09-25 10:25:32 +00:00
if (block.is_air() || block.is_fluid()) && !outside {
voids_list.push(Vec3::new(x, y, z));
voids[void_idx(x, y, z)] = 0;
2019-09-25 10:25:32 +00:00
}
}
}
}
// Propagate light into voids adjacent to rays
let mut opens = Vec::new();
'voids: for pos in &mut voids_list {
let void_idx = void_idx(pos.x, pos.y, pos.z);
for dir in &DIRS {
let col = Vec2::<i32>::from(*pos) + dir;
// If above highest non air block (ray passes by)
if pos.z
> *rays
.get(((outer.size().w * col.y) + col.x) as usize)
2019-10-14 09:48:40 +00:00
.map(|(ray, _)| ray)
.unwrap_or(&0)
{
voids[void_idx] = SUNLIGHT - 1;
opens.push(*pos);
2019-09-25 10:25:32 +00:00
continue 'voids;
}
}
2019-09-25 10:25:32 +00:00
// Ray hits directly (occurs for liquids)
2019-09-25 10:25:32 +00:00
if pos.z
>= *rays
.get(((outer.size().w * pos.y) + pos.x) as usize)
2019-10-14 09:48:40 +00:00
.map(|(ray, _)| ray)
2019-09-25 10:25:32 +00:00
.unwrap_or(&0)
{
voids[void_idx] = SUNLIGHT - 1;
opens.push(*pos);
2019-09-25 10:25:32 +00:00
}
}
2019-09-24 00:29:24 +00:00
while opens.len() > 0 {
let mut new_opens = Vec::new();
for open in &opens {
let parent_l = voids[void_idx(open.x, open.y, open.z)];
for dir in &DIRS_3D {
let other = *open + *dir;
if let Some(l) = voids.get_mut(void_idx(other.x, other.y, other.z)) {
if *l < parent_l - 1 {
new_opens.push(other);
*l = parent_l - 1;
}
}
}
}
opens = new_opens;
}
move |wpos| {
let pos = wpos - outer.min;
rays.get(((outer.size().w * pos.y) + pos.x) as usize)
2019-10-14 09:48:40 +00:00
.and_then(|(ray, deep)| {
if pos.z > *ray {
Some(1.0)
} else if pos.z < *deep {
Some(0.0)
} else {
None
}
})
.or_else(|| {
voids
.get(void_idx(pos.x, pos.y, pos.z))
.filter(|l| **l != NOT_VOID)
.map(|l| *l as f32 / SUNLIGHT as f32)
})
.unwrap_or(0.0)
}
}
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
impl<V: RectRasterableVol<Vox = Block> + ReadVol + Debug> Meshable<TerrainPipeline, FluidPipeline>
for VolGrid2d<V>
2019-08-19 20:09:35 +00:00
{
type Pipeline = TerrainPipeline;
type TranslucentPipeline = FluidPipeline;
type Supplement = Aabb<i32>;
fn generate_mesh(
&self,
range: Self::Supplement,
) -> (Mesh<Self::Pipeline>, Mesh<Self::TranslucentPipeline>) {
let mut opaque_mesh = Mesh::new();
let mut fluid_mesh = Mesh::new();
2019-09-24 06:42:09 +00:00
let light = calc_light(range, self);
2019-10-01 06:09:27 +00:00
let mut vol_cached = self.cached();
for x in range.min.x + 1..range.max.x - 1 {
for y in range.min.y + 1..range.max.y - 1 {
let mut lights = [[[0.0; 3]; 3]; 3];
for i in 0..3 {
for j in 0..3 {
for k in 0..3 {
lights[k][j][i] = light(
Vec3::new(x, y, range.min.z)
+ Vec3::new(i as i32, j as i32, k as i32)
- 1,
);
}
}
}
2019-10-01 06:09:27 +00:00
let get_color = |maybe_block: Option<&Block>| {
maybe_block
.filter(|vox| vox.is_opaque())
.and_then(|vox| vox.get_color())
.map(|col| Rgba::from_opaque(col))
.unwrap_or(Rgba::zero())
};
let mut blocks = [[[None; 3]; 3]; 3];
2019-09-27 10:06:32 +00:00
let mut colors = [[[Rgba::zero(); 3]; 3]; 3];
for i in 0..3 {
for j in 0..3 {
for k in 0..3 {
let block = vol_cached
.get(
Vec3::new(x, y, range.min.z)
+ Vec3::new(i as i32, j as i32, k as i32)
- 1,
)
.ok()
.copied();
colors[k][j][i] = get_color(block.as_ref());
blocks[k][j][i] = block;
}
}
}
for z in range.min.z..range.max.z {
let pos = Vec3::new(x, y, z);
let offs = (pos - (range.min + 1) * Vec3::new(1, 1, 0)).map(|e| e as f32);
lights[0] = lights[1];
lights[1] = lights[2];
blocks[0] = blocks[1];
blocks[1] = blocks[2];
2019-09-24 10:28:40 +00:00
colors[0] = colors[1];
colors[1] = colors[2];
for i in 0..3 {
for j in 0..3 {
lights[2][j][i] = light(pos + Vec3::new(i as i32, j as i32, 2) - 1);
}
}
for i in 0..3 {
for j in 0..3 {
let block = vol_cached
.get(pos + Vec3::new(i as i32, j as i32, 2) - 1)
.ok()
.copied();
colors[2][j][i] = get_color(block.as_ref());
blocks[2][j][i] = block;
}
}
let block = blocks[1][1][1];
// Create mesh polygons
if block.map(|vox| vox.is_opaque()).unwrap_or(false) {
vol::push_vox_verts(
&mut opaque_mesh,
faces_to_make(&blocks, false, |vox| !vox.is_opaque()),
offs,
2019-10-09 19:28:05 +00:00
&colors, //&[[[colors[1][1][1]; 3]; 3]; 3],
2019-06-19 14:55:26 +00:00
|pos, norm, col, ao, light| {
2019-11-19 13:20:20 +00:00
let light = (light.min(ao) * 255.0) as u32;
let norm = if norm.x != 0.0 {
2020-01-08 17:09:54 +00:00
if norm.x < 0.0 {
0
} else {
1
}
2019-11-19 13:20:20 +00:00
} else if norm.y != 0.0 {
2020-01-08 17:09:54 +00:00
if norm.y < 0.0 {
2
} else {
3
}
2019-11-19 13:20:20 +00:00
} else {
2020-01-08 17:09:54 +00:00
if norm.z < 0.0 {
4
} else {
5
}
2019-11-19 13:20:20 +00:00
};
TerrainVertex::new(norm, light, pos, col)
2019-06-19 14:55:26 +00:00
},
&lights,
);
} else if block.map(|vox| vox.is_fluid()).unwrap_or(false) {
vol::push_vox_verts(
&mut fluid_mesh,
faces_to_make(&blocks, false, |vox| vox.is_air()),
offs,
&colors,
2019-10-09 22:42:39 +00:00
|pos, norm, col, _ao, light| {
2019-10-08 11:07:10 +00:00
FluidVertex::new(pos, norm, col, light, 0.3)
},
&lights,
);
}
}
}
}
(opaque_mesh, fluid_mesh)
}
}
/// Use the 6 voxels/blocks surrounding the center
/// to detemine which faces should be drawn
/// Unlike the one in segments.rs this uses a provided array of blocks instead
/// of retrieving from a volume
/// blocks[z][y][x]
fn faces_to_make(
blocks: &[[[Option<Block>; 3]; 3]; 3],
error_makes_face: bool,
should_add: impl Fn(Block) -> bool,
) -> [bool; 6] {
// Faces to draw
let make_face = |opt_v: Option<Block>| opt_v.map(|v| should_add(v)).unwrap_or(error_makes_face);
[
make_face(blocks[1][1][0]),
make_face(blocks[1][1][2]),
make_face(blocks[1][0][1]),
make_face(blocks[1][2][1]),
make_face(blocks[0][1][1]),
make_face(blocks[2][1][1]),
]
}
2019-05-31 20:37:11 +00:00
/*
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
impl<V: BaseVol<Vox = Block> + ReadVol + Debug> Meshable for VolGrid3d<V> {
type Pipeline = TerrainPipeline;
type Supplement = Aabb<i32>;
fn generate_mesh(&self, range: Self::Supplement) -> Mesh<Self::Pipeline> {
let mut mesh = Mesh::new();
let mut last_chunk_pos = self.pos_key(range.min);
let mut last_chunk = self.get_key(last_chunk_pos);
let size = range.max - range.min;
for x in 1..size.x - 1 {
for y in 1..size.y - 1 {
for z in 1..size.z - 1 {
let pos = Vec3::new(x, y, z);
let new_chunk_pos = self.pos_key(range.min + pos);
if last_chunk_pos != new_chunk_pos {
last_chunk = self.get_key(new_chunk_pos);
last_chunk_pos = new_chunk_pos;
}
let offs = pos.map(|e| e as f32 - 1.0);
if let Some(chunk) = last_chunk {
let chunk_pos = Self::chunk_offs(range.min + pos);
if let Some(col) = chunk.get(chunk_pos).ok().and_then(|vox| vox.get_color())
{
let col = col.map(|e| e as f32 / 255.0);
vol::push_vox_verts(
&mut mesh,
self,
range.min + pos,
offs,
col,
TerrainVertex::new,
false,
);
}
} else {
if let Some(col) = self
.get(range.min + pos)
.ok()
.and_then(|vox| vox.get_color())
{
let col = col.map(|e| e as f32 / 255.0);
vol::push_vox_verts(
&mut mesh,
self,
range.min + pos,
offs,
col,
TerrainVertex::new,
false,
);
}
}
}
}
}
mesh
}
}
2019-05-31 20:37:11 +00:00
*/