veloren/common/src/sys/phys.rs

491 lines
21 KiB
Rust
Raw Normal View History

use crate::{
comp::{Collider, Gravity, Mass, Mounting, Ori, PhysicsState, Pos, Scale, Sticky, Vel},
event::{EventBus, ServerEvent},
state::DeltaTime,
sync::Uid,
terrain::{Block, BlockKind, TerrainGrid},
vol::ReadVol,
};
use specs::{Entities, Join, Read, ReadExpect, ReadStorage, System, WriteStorage};
use vek::*;
2020-03-10 18:12:16 +00:00
pub const GRAVITY: f32 = 9.81 * 5.0;
const BOUYANCY: f32 = 0.0;
// Friction values used for linear damping. They are unitless quantities. The
// value of these quantities must be between zero and one. They represent the
// amount an object will slow down within 1/60th of a second. Eg. if the frction
// is 0.01, and the speed is 1.0, then after 1/60th of a second the speed will
// be 0.99. after 1 second the speed will be 0.54, which is 0.99 ^ 60.
2020-01-17 20:08:27 +00:00
const FRIC_GROUND: f32 = 0.15;
const FRIC_AIR: f32 = 0.0125;
const FRIC_FLUID: f32 = 0.2;
2019-06-04 15:42:31 +00:00
// Integrates forces, calculates the new velocity based off of the old velocity
// dt = delta time
// lv = linear velocity
// damp = linear damping
// Friction is a type of damping.
2019-07-26 13:42:36 +00:00
fn integrate_forces(dt: f32, mut lv: Vec3<f32>, grav: f32, damp: f32) -> Vec3<f32> {
// this is not linear damping, because it is proportional to the original
// velocity this "linear" damping in in fact, quite exponential. and thus
// must be interpolated accordingly
let linear_damp = (1.0 - damp.min(1.0)).powf(dt * 60.0);
2019-06-04 15:42:31 +00:00
lv.z = (lv.z - grav * dt).max(-80.0);
lv * linear_damp
2019-06-04 15:42:31 +00:00
}
/// This system applies forces and calculates new positions and velocities.
2019-06-09 19:33:20 +00:00
pub struct Sys;
impl<'a> System<'a> for Sys {
#[allow(clippy::type_complexity)]
type SystemData = (
2019-06-09 19:33:20 +00:00
Entities<'a>,
2019-09-21 12:43:24 +00:00
ReadStorage<'a, Uid>,
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
ReadExpect<'a, TerrainGrid>,
Read<'a, DeltaTime>,
Read<'a, EventBus<ServerEvent>>,
2019-08-03 11:26:05 +00:00
ReadStorage<'a, Scale>,
ReadStorage<'a, Sticky>,
2019-09-25 20:22:39 +00:00
ReadStorage<'a, Mass>,
ReadStorage<'a, Collider>,
ReadStorage<'a, Gravity>,
WriteStorage<'a, PhysicsState>,
2019-06-13 18:09:50 +00:00
WriteStorage<'a, Pos>,
WriteStorage<'a, Vel>,
WriteStorage<'a, Ori>,
ReadStorage<'a, Mounting>,
);
#[allow(clippy::or_fun_call)] // TODO: Pending review in #587
#[allow(clippy::block_in_if_condition_stmt)] // TODO: Pending review in #587
2019-06-09 19:33:20 +00:00
fn run(
&mut self,
(
entities,
2019-09-21 12:43:24 +00:00
uids,
terrain,
dt,
2019-08-07 15:39:16 +00:00
event_bus,
2019-08-03 11:26:05 +00:00
scales,
stickies,
2019-09-25 20:22:39 +00:00
masses,
colliders,
gravities,
mut physics_states,
2019-06-13 18:09:50 +00:00
mut positions,
mut velocities,
mut orientations,
mountings,
): Self::SystemData,
2019-06-09 19:33:20 +00:00
) {
2019-08-07 15:39:16 +00:00
let mut event_emitter = event_bus.emitter();
// Apply movement inputs
for (entity, scale, sticky, collider, mut pos, mut vel, _ori, _) in (
2019-06-13 18:09:50 +00:00
&entities,
2019-08-03 11:26:05 +00:00
scales.maybe(),
stickies.maybe(),
&colliders,
2019-06-13 18:09:50 +00:00
&mut positions,
&mut velocities,
&mut orientations,
!&mountings,
2019-06-13 18:09:50 +00:00
)
.join()
2019-06-09 19:33:20 +00:00
{
let mut physics_state = physics_states.get(entity).cloned().unwrap_or_default();
2020-04-26 14:51:08 +00:00
if sticky.is_some()
&& (physics_state.on_ground
|| physics_state.on_ceiling
|| physics_state.on_wall.is_some())
{
vel.0 = Vec3::zero();
continue;
}
2019-08-03 11:26:05 +00:00
let scale = scale.map(|s| s.0).unwrap_or(1.0);
2019-09-06 06:22:58 +00:00
let old_vel = *vel;
// Integrate forces
// Friction is assumed to be a constant dependent on location
let friction = FRIC_AIR
.max(if physics_state.on_ground {
FRIC_GROUND
} else {
0.0
})
.max(if physics_state.in_fluid {
FRIC_FLUID
} else {
0.0
});
let downward_force = if physics_state.in_fluid {
(1.0 - BOUYANCY) * GRAVITY
} else {
GRAVITY
} * gravities.get(entity).map(|g| g.0).unwrap_or_default();
vel.0 = integrate_forces(dt.0, vel.0, downward_force, friction);
// Don't move if we're not in a loaded chunk
let mut pos_delta = if terrain
.get_key(terrain.pos_key(pos.0.map(|e| e.floor() as i32)))
.is_some()
{
2019-09-06 04:04:20 +00:00
// this is an approximation that allows most framerates to
// behave in a similar manner.
let dt_lerp = 0.2;
(vel.0 * dt_lerp + old_vel.0 * (1.0 - dt_lerp)) * dt.0
} else {
Vec3::zero()
};
match collider {
Collider::Box {
radius,
z_min,
z_max,
} => {
// Scale collider
let radius = *radius * scale;
let z_min = *z_min * scale;
let z_max = *z_max * scale;
// Probe distances
let hdist = radius.ceil() as i32;
// Neighbouring blocks iterator
let near_iter = (-hdist..hdist + 1)
.map(move |i| {
(-hdist..hdist + 1).map(move |j| {
(1 - BlockKind::MAX_HEIGHT.ceil() as i32 + z_min.floor() as i32
..z_max.ceil() as i32 + 1)
.map(move |k| (i, j, k))
})
})
.flatten()
.flatten();
// Function for determining whether the player at a specific position collides
// with the ground
let collision_with = |pos: Vec3<f32>,
hit: &dyn Fn(&Block) -> bool,
near_iter| {
for (i, j, k) in near_iter {
let block_pos = pos.map(|e| e.floor() as i32) + Vec3::new(i, j, k);
if let Some(block) = terrain.get(block_pos).ok().copied().filter(hit) {
let player_aabb = Aabb {
min: pos + Vec3::new(-radius, -radius, z_min),
max: pos + Vec3::new(radius, radius, z_max),
};
let block_aabb = Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32)
+ Vec3::new(1.0, 1.0, block.get_height()),
};
if player_aabb.collides_with_aabb(block_aabb) {
return true;
}
}
}
false
2019-06-26 21:43:47 +00:00
};
2019-06-25 16:13:30 +00:00
let was_on_ground = physics_state.on_ground;
physics_state.on_ground = false;
let mut on_ground = false;
let mut on_ceiling = false;
let mut attempts = 0; // Don't loop infinitely here
// Don't jump too far at once
let increments = (pos_delta.map(|e| e.abs()).reduce_partial_max() / 0.3)
.ceil()
.max(1.0);
let old_pos = pos.0;
for _ in 0..increments as usize {
pos.0 += pos_delta / increments;
const MAX_ATTEMPTS: usize = 16;
// While the player is colliding with the terrain...
while collision_with(pos.0, &|block| block.is_solid(), near_iter.clone())
&& attempts < MAX_ATTEMPTS
{
// Calculate the player's AABB
let player_aabb = Aabb {
min: pos.0 + Vec3::new(-radius, -radius, z_min),
max: pos.0 + Vec3::new(radius, radius, z_max),
};
// Determine the block that we are colliding with most (based on minimum
// collision axis)
let (_block_pos, block_aabb, block_height) = near_iter
.clone()
// Calculate the block's position in world space
.map(|(i, j, k)| pos.0.map(|e| e.floor() as i32) + Vec3::new(i, j, k))
// Make sure the block is actually solid
.filter_map(|block_pos| {
if let Some(block) = terrain
.get(block_pos)
.ok()
.filter(|block| block.is_solid())
{
// Calculate block AABB
Some((
block_pos,
Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, block.get_height()),
},
block.get_height(),
))
} else {
None
}
})
// Determine whether the block's AABB collides with the player's AABB
.filter(|(_, block_aabb, _)| block_aabb.collides_with_aabb(player_aabb))
// Find the maximum of the minimum collision axes (this bit is weird, trust me that it works)
.min_by_key(|(_, block_aabb, _)| {
((block_aabb.center() - player_aabb.center() - Vec3::unit_z() * 0.5)
.map(|e| e.abs())
.sum()
* 1_000_000.0) as i32
})
.expect("Collision detected, but no colliding blocks found!");
// Find the intrusion vector of the collision
let dir = player_aabb.collision_vector_with_aabb(block_aabb);
// Determine an appropriate resolution vector (i.e: the minimum distance
// needed to push out of the block)
let max_axis = dir.map(|e| e.abs()).reduce_partial_min();
let resolve_dir = -dir.map(|e| {
if e.abs().to_bits() == max_axis.to_bits() {
e
} else {
0.0
}
});
// When the resolution direction is pointing upwards, we must be on the
// ground
if resolve_dir.z > 0.0 && vel.0.z <= 0.0 {
on_ground = true;
if !was_on_ground {
event_emitter
.emit(ServerEvent::LandOnGround { entity, vel: vel.0 });
}
} else if resolve_dir.z < 0.0 && vel.0.z >= 0.0 {
on_ceiling = true;
}
// When the resolution direction is non-vertical, we must be colliding
// with a wall If the space above is free...
if !collision_with(Vec3::new(pos.0.x, pos.0.y, (pos.0.z + 0.1).ceil()), &|block| block.is_solid(), near_iter.clone())
// ...and we're being pushed out horizontally...
&& resolve_dir.z == 0.0
// ...and the vertical resolution direction is sufficiently great...
&& -dir.z > 0.1
// ...and we're falling/standing OR there is a block *directly* beneath our current origin (note: not hitbox)...
&& (vel.0.z <= 0.0 || terrain
.get((pos.0 - Vec3::unit_z() * 0.1).map(|e| e.floor() as i32))
.map(|block| block.is_solid())
.unwrap_or(false))
// ...and there is a collision with a block beneath our current hitbox...
&& collision_with(
pos.0 + resolve_dir - Vec3::unit_z() * 1.05,
&|block| block.is_solid(),
near_iter.clone(),
)
{
// ...block-hop!
pos.0.z = (pos.0.z + 0.1).floor() + block_height;
vel.0.z = 0.0;
on_ground = true;
break;
} else {
// Correct the velocity
vel.0 = vel.0.map2(resolve_dir, |e, d| {
if d * e.signum() < 0.0 { 0.0 } else { e }
});
pos_delta *= resolve_dir.map(|e| if e != 0.0 { 0.0 } else { 1.0 });
}
2019-06-25 16:13:30 +00:00
// Resolve the collision normally
pos.0 += resolve_dir;
2019-06-25 16:13:30 +00:00
attempts += 1;
}
if attempts == MAX_ATTEMPTS {
pos.0 = old_pos;
break;
}
2019-06-26 21:43:47 +00:00
}
if on_ceiling {
physics_state.on_ceiling = true;
}
if on_ground {
physics_state.on_ground = true;
// If the space below us is free, then "snap" to the ground
} else if collision_with(
pos.0 - Vec3::unit_z() * 1.05,
&|block| block.is_solid(),
near_iter.clone(),
) && vel.0.z < 0.0
&& vel.0.z > -1.5
&& was_on_ground
&& !collision_with(
pos.0 - Vec3::unit_z() * 0.05,
&|block| {
block.is_solid()
&& block.get_height() >= (pos.0.z - 0.05).rem_euclid(1.0)
},
2019-06-29 21:42:20 +00:00
near_iter.clone(),
)
2019-06-26 21:43:47 +00:00
{
let snap_height = terrain
.get(
Vec3::new(pos.0.x, pos.0.y, pos.0.z - 0.05)
.map(|e| e.floor() as i32),
)
.ok()
.filter(|block| block.is_solid())
.map(|block| block.get_height())
.unwrap_or(0.0);
pos.0.z = (pos.0.z - 0.05).floor() + snap_height;
physics_state.on_ground = true;
2019-06-26 21:43:47 +00:00
}
let dirs = [
Vec3::unit_x(),
Vec3::unit_y(),
-Vec3::unit_x(),
-Vec3::unit_y(),
];
if let (wall_dir, true) =
dirs.iter().fold((Vec3::zero(), false), |(a, hit), dir| {
if collision_with(
pos.0 + *dir * 0.01,
&|block| block.is_solid(),
near_iter.clone(),
) {
(a + dir, true)
} else {
(a, hit)
}
})
{
physics_state.on_wall = Some(wall_dir);
} else {
physics_state.on_wall = None;
}
// Figure out if we're in water
physics_state.in_fluid =
collision_with(pos.0, &|block| block.is_fluid(), near_iter.clone());
},
Collider::Point => {
let (dist, block) = terrain.ray(pos.0, pos.0 + pos_delta).ignore_error().cast();
pos.0 += pos_delta.try_normalized().unwrap_or(Vec3::zero()) * dist;
2020-04-26 14:51:08 +00:00
// Can't fair since we do ignore_error above
if block.unwrap().is_some() {
2020-04-26 14:51:08 +00:00
let block_center = pos.0.map(|e| e.floor()) + 0.5;
let block_rpos = (pos.0 - block_center)
.try_normalized()
.unwrap_or(Vec3::zero());
// See whether we're on the top/bottom of a block, or the side
if block_rpos.z.abs()
> block_rpos.xy().map(|e| e.abs()).reduce_partial_max()
{
if block_rpos.z > 0.0 {
physics_state.on_ground = true;
} else {
2020-04-26 14:51:08 +00:00
physics_state.on_ceiling = true;
}
vel.0.z = 0.0;
2020-04-26 14:51:08 +00:00
} else {
physics_state.on_wall =
Some(if block_rpos.x.abs() > block_rpos.y.abs() {
vel.0.x = 0.0;
2020-04-26 14:51:08 +00:00
Vec3::unit_x() * -block_rpos.x.signum()
} else {
vel.0.y = 0.0;
2020-04-26 14:51:08 +00:00
Vec3::unit_y() * -block_rpos.y.signum()
});
}
}
},
}
let _ = physics_states.insert(entity, physics_state);
}
2019-08-03 11:26:05 +00:00
// Apply pushback
for (pos, scale, mass, vel, _, _, _, physics) in (
&positions,
scales.maybe(),
2019-09-25 20:22:39 +00:00
masses.maybe(),
&mut velocities,
&colliders,
!&mountings,
stickies.maybe(),
2019-09-21 12:43:24 +00:00
&mut physics_states,
)
.join()
.filter(|(_, _, _, _, _, _, sticky, physics)| {
sticky.is_none() || (physics.on_wall.is_none() && !physics.on_ground)
})
{
physics.touch_entity = None;
2019-08-03 11:26:05 +00:00
let scale = scale.map(|s| s.0).unwrap_or(1.0);
2019-09-25 20:22:39 +00:00
let mass = mass.map(|m| m.0).unwrap_or(scale);
2019-09-21 12:43:24 +00:00
for (other, pos_other, scale_other, mass_other, _, _) in (
&uids,
2019-09-25 20:22:39 +00:00
&positions,
scales.maybe(),
masses.maybe(),
&colliders,
2019-09-25 20:22:39 +00:00
!&mountings,
)
.join()
{
2019-08-03 11:26:05 +00:00
let scale_other = scale_other.map(|s| s.0).unwrap_or(1.0);
2019-09-25 20:22:39 +00:00
let mass_other = mass_other.map(|m| m.0).unwrap_or(scale_other);
if mass_other == 0.0 {
continue;
}
2019-08-03 11:26:05 +00:00
let diff = Vec2::<f32>::from(pos.0 - pos_other.0);
2019-08-03 21:11:57 +00:00
let collision_dist = 0.95 * (scale + scale_other);
2019-08-03 11:26:05 +00:00
if diff.magnitude_squared() > 0.0
&& diff.magnitude_squared() < collision_dist.powf(2.0)
2019-08-03 18:09:01 +00:00
&& pos.0.z + 1.6 * scale > pos_other.0.z
&& pos.0.z < pos_other.0.z + 1.6 * scale_other
2019-08-03 11:26:05 +00:00
{
2019-09-25 20:22:39 +00:00
let force = (collision_dist - diff.magnitude()) * 2.0 * mass_other
/ (mass + mass_other);
vel.0 += Vec3::from(diff.normalized()) * force;
2019-09-21 12:43:24 +00:00
physics.touch_entity = Some(*other);
2019-08-03 11:26:05 +00:00
}
}
}
}
}