veloren/common/src/sys/phys.rs

371 lines
14 KiB
Rust
Raw Normal View History

use {
crate::{
2019-09-25 20:22:39 +00:00
comp::{Body, Mass, Mounting, Ori, PhysicsState, Pos, Scale, Vel},
event::{EventBus, LocalEvent},
state::DeltaTime,
terrain::{Block, TerrainGrid},
2019-09-04 23:03:49 +00:00
vol::ReadVol,
2019-08-03 11:26:05 +00:00
},
specs::{Entities, Join, Read, ReadExpect, ReadStorage, System, WriteStorage},
2019-09-21 12:43:24 +00:00
sphynx::Uid,
vek::*,
};
pub const GRAVITY: f32 = 9.81 * 4.0;
const BOUYANCY: f32 = 0.0;
// Friction values used for linear damping. They are unitless quantities. The
// value of these quantities must be between zero and one. They represent the
// amount an object will slow down within 1/60th of a second. Eg. if the frction
// is 0.01, and the speed is 1.0, then after 1/60th of a second the speed will
// be 0.99. after 1 second the speed will be 0.54, which is 0.99 ^ 60.
const FRIC_GROUND: f32 = 0.125;
const FRIC_AIR: f32 = 0.0125;
const FRIC_FLUID: f32 = 0.2;
2019-06-04 15:42:31 +00:00
// Integrates forces, calculates the new velocity based off of the old velocity
// dt = delta time
// lv = linear velocity
// damp = linear damping
// Friction is a type of damping.
2019-07-26 13:42:36 +00:00
fn integrate_forces(dt: f32, mut lv: Vec3<f32>, grav: f32, damp: f32) -> Vec3<f32> {
// this is not linear damping, because it is proportional to the original
// velocity this "linear" damping in in fact, quite exponential. and thus
// must be interpolated accordingly
let linear_damp = (1.0 - damp.min(1.0)).powf(dt * 60.0);
2019-06-04 15:42:31 +00:00
lv.z = (lv.z - grav * dt).max(-50.0);
lv * linear_damp
2019-06-04 15:42:31 +00:00
}
/// This system applies forces and calculates new positions and velocities.
2019-06-09 19:33:20 +00:00
pub struct Sys;
impl<'a> System<'a> for Sys {
type SystemData = (
2019-06-09 19:33:20 +00:00
Entities<'a>,
2019-09-21 12:43:24 +00:00
ReadStorage<'a, Uid>,
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
ReadExpect<'a, TerrainGrid>,
Read<'a, DeltaTime>,
Read<'a, EventBus<LocalEvent>>,
2019-08-03 11:26:05 +00:00
ReadStorage<'a, Scale>,
2019-09-25 20:22:39 +00:00
ReadStorage<'a, Mass>,
2019-08-03 11:26:05 +00:00
ReadStorage<'a, Body>,
WriteStorage<'a, PhysicsState>,
2019-06-13 18:09:50 +00:00
WriteStorage<'a, Pos>,
WriteStorage<'a, Vel>,
WriteStorage<'a, Ori>,
ReadStorage<'a, Mounting>,
);
2019-06-09 19:33:20 +00:00
fn run(
&mut self,
(
entities,
2019-09-21 12:43:24 +00:00
uids,
terrain,
dt,
2019-08-07 15:39:16 +00:00
event_bus,
2019-08-03 11:26:05 +00:00
scales,
2019-09-25 20:22:39 +00:00
masses,
2019-08-03 11:26:05 +00:00
bodies,
mut physics_states,
2019-06-13 18:09:50 +00:00
mut positions,
mut velocities,
mut orientations,
mountings,
): Self::SystemData,
2019-06-09 19:33:20 +00:00
) {
2019-08-07 15:39:16 +00:00
let mut event_emitter = event_bus.emitter();
// Apply movement inputs
for (entity, scale, _b, mut pos, mut vel, _ori, _) in (
2019-06-13 18:09:50 +00:00
&entities,
2019-08-03 11:26:05 +00:00
scales.maybe(),
&bodies,
2019-06-13 18:09:50 +00:00
&mut positions,
&mut velocities,
&mut orientations,
!&mountings,
2019-06-13 18:09:50 +00:00
)
.join()
2019-06-09 19:33:20 +00:00
{
let mut physics_state = physics_states.get(entity).cloned().unwrap_or_default();
2019-08-03 11:26:05 +00:00
let scale = scale.map(|s| s.0).unwrap_or(1.0);
// Basic collision with terrain
2019-08-03 11:26:05 +00:00
let player_rad = 0.3 * scale; // half-width of the player's AABB
let player_height = 1.5 * scale;
2019-06-27 14:37:33 +00:00
// Probe distances
let hdist = player_rad.ceil() as i32;
let vdist = player_height.ceil() as i32;
// Neighbouring blocks iterator
let near_iter = (-hdist..=hdist)
.map(move |i| (-hdist..=hdist).map(move |j| (0..=vdist).map(move |k| (i, j, k))))
2019-06-25 16:13:30 +00:00
.flatten()
.flatten();
2019-09-06 06:22:58 +00:00
let old_vel = *vel;
// Integrate forces
// Friction is assumed to be a constant dependent on location
let friction = FRIC_AIR
.max(if physics_state.on_ground {
FRIC_GROUND
} else {
0.0
})
.max(if physics_state.in_fluid {
FRIC_FLUID
} else {
0.0
});
let downward_force = if physics_state.in_fluid {
(1.0 - BOUYANCY) * GRAVITY
} else {
GRAVITY
};
vel.0 = integrate_forces(dt.0, vel.0, downward_force, friction);
// Don't move if we're not in a loaded chunk
let pos_delta = if terrain
.get_key(terrain.pos_key(pos.0.map(|e| e.floor() as i32)))
.is_some()
{
2019-09-06 04:04:20 +00:00
// this is an approximation that allows most framerates to
// behave in a similar manner.
(vel.0 + old_vel.0 * 4.0) * dt.0 * 0.2
} else {
Vec3::zero()
};
2019-06-26 00:28:30 +00:00
// Function for determining whether the player at a specific position collides with the ground
let collision_with = |pos: Vec3<f32>, hit: fn(&Block) -> bool, near_iter| {
for (i, j, k) in near_iter {
let block_pos = pos.map(|e| e.floor() as i32) + Vec3::new(i, j, k);
if terrain.get(block_pos).map(hit).unwrap_or(false) {
let player_aabb = Aabb {
2019-06-26 00:28:30 +00:00
min: pos + Vec3::new(-player_rad, -player_rad, 0.0),
max: pos + Vec3::new(player_rad, player_rad, player_height),
};
let block_aabb = Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32) + 1.0,
};
if player_aabb.collides_with_aabb(block_aabb) {
return true;
}
}
}
false
};
let was_on_ground = physics_state.on_ground;
physics_state.on_ground = false;
let mut on_ground = false;
2019-06-26 10:50:55 +00:00
let mut attempts = 0; // Don't loop infinitely here
2019-06-26 21:43:47 +00:00
// Don't jump too far at once
2019-06-30 17:58:40 +00:00
let increments = (pos_delta.map(|e| e.abs()).reduce_partial_max() / 0.3)
2019-06-26 21:43:47 +00:00
.ceil()
.max(1.0);
let old_pos = pos.0;
2019-06-26 21:43:47 +00:00
for _ in 0..increments as usize {
2019-06-30 17:58:40 +00:00
pos.0 += pos_delta / increments;
2019-06-25 16:13:30 +00:00
const MAX_ATTEMPTS: usize = 16;
2019-06-26 21:43:47 +00:00
// While the player is colliding with the terrain...
while collision_with(pos.0, |vox| vox.is_solid(), near_iter.clone())
&& attempts < MAX_ATTEMPTS
{
2019-06-26 21:43:47 +00:00
// Calculate the player's AABB
let player_aabb = Aabb {
min: pos.0 + Vec3::new(-player_rad, -player_rad, 0.0),
max: pos.0 + Vec3::new(player_rad, player_rad, player_height),
};
2019-06-25 16:13:30 +00:00
2019-06-26 21:43:47 +00:00
// Determine the block that we are colliding with most (based on minimum collision axis)
let (_block_pos, block_aabb) = near_iter
2019-06-26 21:43:47 +00:00
.clone()
// Calculate the block's position in world space
.map(|(i, j, k)| pos.0.map(|e| e.floor() as i32) + Vec3::new(i, j, k))
// Calculate the AABB of the block
.map(|block_pos| {
(
block_pos,
Aabb {
min: block_pos.map(|e| e as f32),
max: block_pos.map(|e| e as f32) + 1.0,
},
)
})
// Make sure the block is actually solid
.filter(|(block_pos, _)| {
terrain
.get(*block_pos)
2019-08-24 09:04:32 +00:00
.map(|vox| vox.is_solid())
2019-06-26 21:43:47 +00:00
.unwrap_or(false)
})
// Determine whether the block's AABB collides with the player's AABB
.filter(|(_, block_aabb)| block_aabb.collides_with_aabb(player_aabb))
2019-06-26 21:43:47 +00:00
// Find the maximum of the minimum collision axes (this bit is weird, trust me that it works)
.min_by_key(|(_, block_aabb)| {
((block_aabb.center() - player_aabb.center() - Vec3::unit_z() * 0.5)
2019-06-26 21:43:47 +00:00
.map(|e| e.abs())
.sum()
2019-06-30 22:46:46 +00:00
* 1_000_000.0) as i32
2019-06-26 21:43:47 +00:00
})
.expect("Collision detected, but no colliding blocks found!");
2019-06-25 16:13:30 +00:00
2019-06-26 21:43:47 +00:00
// Find the intrusion vector of the collision
let dir = player_aabb.collision_vector_with_aabb(block_aabb);
2019-06-25 16:13:30 +00:00
2019-06-26 21:43:47 +00:00
// Determine an appropriate resolution vector (i.e: the minimum distance needed to push out of the block)
let max_axis = dir.map(|e| e.abs()).reduce_partial_min();
let resolve_dir = -dir.map(|e| {
if e.abs().to_bits() == max_axis.to_bits() {
e
} else {
0.0
}
});
2019-06-26 21:43:47 +00:00
// When the resolution direction is pointing upwards, we must be on the ground
if resolve_dir.z > 0.0 && vel.0.z <= 0.0 {
2019-06-26 21:43:47 +00:00
on_ground = true;
2019-08-07 15:39:16 +00:00
if !was_on_ground {
event_emitter.emit(LocalEvent::LandOnGround { entity, vel: vel.0 });
}
2019-06-26 21:43:47 +00:00
}
2019-06-26 21:43:47 +00:00
// When the resolution direction is non-vertical, we must be colliding with a wall
// If the space above is free...
if !collision_with(Vec3::new(pos.0.x, pos.0.y, (pos.0.z + 0.1).ceil()), |vox| vox.is_solid(), near_iter.clone())
2019-06-30 22:46:46 +00:00
// ...and we're being pushed out horizontally...
&& resolve_dir.z == 0.0
2019-07-09 10:51:00 +00:00
// ...and the vertical resolution direction is sufficiently great...
2019-07-09 12:37:51 +00:00
&& -dir.z > 0.1
2019-06-30 22:46:46 +00:00
// ...and we're falling/standing OR there is a block *directly* beneath our current origin (note: not hitbox)...
2019-07-26 13:42:36 +00:00
&& (vel.0.z <= 0.0 || terrain
.get((pos.0 - Vec3::unit_z() * 0.1).map(|e| e.floor() as i32))
2019-08-24 09:04:32 +00:00
.map(|vox| vox.is_solid())
2019-06-30 22:46:46 +00:00
.unwrap_or(false))
// ...and there is a collision with a block beneath our current hitbox...
2019-06-29 21:42:20 +00:00
&& collision_with(
old_pos + resolve_dir - Vec3::unit_z() * 1.05,
|vox| vox.is_solid(),
2019-06-29 21:42:20 +00:00
near_iter.clone(),
)
2019-06-26 21:43:47 +00:00
{
// ...block-hop!
2019-07-09 10:51:00 +00:00
pos.0.z = (pos.0.z + 0.1).ceil();
2019-06-26 21:43:47 +00:00
on_ground = true;
break;
} else {
2019-07-09 14:07:53 +00:00
// Correct the velocity
2019-07-09 12:37:51 +00:00
vel.0 = vel.0.map2(
resolve_dir,
|e, d| if d * e.signum() < 0.0 { 0.0 } else { e },
);
2019-06-26 21:43:47 +00:00
}
2019-07-09 14:07:53 +00:00
// Resolve the collision normally
pos.0 += resolve_dir;
2019-06-26 21:43:47 +00:00
attempts += 1;
}
if attempts == MAX_ATTEMPTS {
pos.0 = old_pos;
break;
}
}
if on_ground {
physics_state.on_ground = true;
2019-07-09 10:51:00 +00:00
// If the space below us is free, then "snap" to the ground
} else if collision_with(
pos.0 - Vec3::unit_z() * 1.05,
|vox| vox.is_solid(),
near_iter.clone(),
) && vel.0.z < 0.0
2019-07-09 14:07:53 +00:00
&& vel.0.z > -1.5
&& was_on_ground
2019-06-26 00:28:30 +00:00
{
pos.0.z = (pos.0.z - 0.05).floor();
physics_state.on_ground = true;
}
let dirs = [
Vec3::unit_x(),
Vec3::unit_y(),
-Vec3::unit_x(),
-Vec3::unit_y(),
];
if let (wall_dir, true) = dirs.iter().fold((Vec3::zero(), false), |(a, hit), dir| {
if collision_with(pos.0 + *dir * 0.01, |vox| vox.is_solid(), near_iter.clone()) {
(a + dir, true)
} else {
(a, hit)
}
}) {
physics_state.on_wall = Some(wall_dir);
} else {
physics_state.on_wall = None;
}
// Figure out if we're in water
physics_state.in_fluid = collision_with(pos.0, |vox| vox.is_fluid(), near_iter.clone());
let _ = physics_states.insert(entity, physics_state);
}
2019-08-03 11:26:05 +00:00
// Apply pushback
2019-09-21 12:43:24 +00:00
for (pos, scale, mass, vel, _, _, physics) in (
&positions,
scales.maybe(),
2019-09-25 20:22:39 +00:00
masses.maybe(),
&mut velocities,
&bodies,
!&mountings,
2019-09-21 12:43:24 +00:00
&mut physics_states,
)
.join()
{
2019-08-03 11:26:05 +00:00
let scale = scale.map(|s| s.0).unwrap_or(1.0);
2019-09-25 20:22:39 +00:00
let mass = mass.map(|m| m.0).unwrap_or(scale);
2019-09-21 12:43:24 +00:00
for (other, pos_other, scale_other, mass_other, _, _) in (
&uids,
2019-09-25 20:22:39 +00:00
&positions,
scales.maybe(),
masses.maybe(),
&bodies,
!&mountings,
)
.join()
{
2019-08-03 11:26:05 +00:00
let scale_other = scale_other.map(|s| s.0).unwrap_or(1.0);
2019-09-25 20:22:39 +00:00
let mass_other = mass_other.map(|m| m.0).unwrap_or(scale_other);
2019-08-03 11:26:05 +00:00
let diff = Vec2::<f32>::from(pos.0 - pos_other.0);
2019-08-03 21:11:57 +00:00
let collision_dist = 0.95 * (scale + scale_other);
2019-08-03 11:26:05 +00:00
if diff.magnitude_squared() > 0.0
&& diff.magnitude_squared() < collision_dist.powf(2.0)
2019-08-03 18:09:01 +00:00
&& pos.0.z + 1.6 * scale > pos_other.0.z
&& pos.0.z < pos_other.0.z + 1.6 * scale_other
2019-08-03 11:26:05 +00:00
{
2019-09-25 20:22:39 +00:00
let force = (collision_dist - diff.magnitude()) * 2.0 * mass_other
/ (mass + mass_other);
vel.0 += Vec3::from(diff.normalized()) * force;
2019-09-21 12:43:24 +00:00
physics.touch_entity = Some(*other);
2019-08-03 11:26:05 +00:00
}
}
}
}
}