veloren/world/examples/chunk_compression_benchmarks.rs

1280 lines
48 KiB
Rust
Raw Normal View History

#![allow(clippy::type_complexity)]
use common::{
spiral::Spiral2d,
terrain::{chonk::Chonk, Block, BlockKind, SpriteKind},
vol::{IntoVolIterator, RectVolSize, SizedVol, WriteVol},
volumes::{
dyna::{Access, ColumnAccess, Dyna},
vol_grid_2d::VolGrid2d,
},
};
use common_net::msg::compression::{
image_from_bytes, image_terrain_chonk, image_terrain_volgrid, CompressedData, GridLtrPacking,
PackingFormula, QuadPngEncoding, TriPngEncoding, VoxelImageDecoding, VoxelImageEncoding,
WidePacking,
};
use core::marker::PhantomData;
use hashbrown::HashMap;
use image::ImageBuffer;
use num_traits::cast::FromPrimitive;
use rayon::ThreadPoolBuilder;
use serde::{Deserialize, Serialize};
use std::{
collections::BTreeMap,
io::{Read, Write},
sync::Arc,
time::Instant,
};
use tracing::{debug, trace};
use vek::*;
use veloren_world::{
civ::SiteKind,
sim::{FileOpts, WorldOpts, DEFAULT_WORLD_MAP},
World,
};
fn lz4_with_dictionary(data: &[u8], dictionary: &[u8]) -> Vec<u8> {
let mut compressed = Vec::new();
lz_fear::CompressionSettings::default()
2021-07-12 11:14:50 +00:00
.dictionary(0, dictionary)
.compress(data, &mut compressed)
.unwrap();
compressed
}
#[allow(dead_code)]
fn unlz4_with_dictionary(data: &[u8], dictionary: &[u8]) -> Option<Vec<u8>> {
lz_fear::LZ4FrameReader::new(data).ok().and_then(|r| {
let mut uncompressed = Vec::new();
r.into_read_with_dictionary(dictionary)
.read_to_end(&mut uncompressed)
.ok()?;
bincode::deserialize(&*uncompressed).ok()
})
}
#[allow(dead_code)]
fn do_deflate_rle(data: &[u8]) -> Vec<u8> {
use deflate::{write::DeflateEncoder, CompressionOptions};
let mut encoder = DeflateEncoder::new(Vec::new(), CompressionOptions::rle());
encoder.write_all(data).expect("Write error!");
encoder.finish().expect("Failed to finish compression!")
}
// Separate function so that it shows up differently on the flamegraph
fn do_deflate_flate2_zero(data: &[u8]) -> Vec<u8> {
use flate2::{write::DeflateEncoder, Compression};
let mut encoder = DeflateEncoder::new(Vec::new(), Compression::new(0));
encoder.write_all(data).expect("Write error!");
encoder.finish().expect("Failed to finish compression!")
}
fn do_deflate_flate2<const LEVEL: u32>(data: &[u8]) -> Vec<u8> {
use flate2::{write::DeflateEncoder, Compression};
let mut encoder = DeflateEncoder::new(Vec::new(), Compression::new(LEVEL));
encoder.write_all(data).expect("Write error!");
encoder.finish().expect("Failed to finish compression!")
}
2022-06-29 04:28:26 +00:00
fn chonk_to_dyna<V: Clone, Storage: core::ops::DerefMut<Target=Vec<V>>, S: RectVolSize, M: Clone, A: Access>(
2022-06-29 00:45:32 +00:00
chonk: &Chonk<V, Storage, S, M>,
block: V,
) -> Dyna<V, M, A> {
let mut dyna = Dyna::<V, M, A>::filled(
Vec3::new(
S::RECT_SIZE.x,
S::RECT_SIZE.y,
(chonk.get_max_z() - chonk.get_min_z()) as u32,
),
block,
chonk.meta().clone(),
);
for (pos, block) in chonk.vol_iter(
Vec3::new(0, 0, chonk.get_min_z()),
Vec3::new(S::RECT_SIZE.x as _, S::RECT_SIZE.y as _, chonk.get_max_z()),
) {
dyna.set(pos - chonk.get_min_z() * Vec3::unit_z(), block.clone())
.expect("a bug here represents the arithmetic being wrong");
}
dyna
}
fn channelize_dyna<M: Clone, A: Access>(
dyna: &Dyna<Block, M, A>,
) -> (
Dyna<BlockKind, M, A>,
Vec<u8>,
Vec<u8>,
Vec<u8>,
Vec<SpriteKind>,
) {
let mut blocks = Dyna::filled(dyna.sz, BlockKind::Air, dyna.metadata().clone());
let (mut r, mut g, mut b, mut sprites) = (Vec::new(), Vec::new(), Vec::new(), Vec::new());
for (pos, block) in dyna.vol_iter(dyna.lower_bound(), dyna.upper_bound()) {
blocks.set(pos, **block).unwrap();
match (block.get_color(), block.get_sprite()) {
(Some(rgb), None) => {
r.push(rgb.r);
g.push(rgb.g);
b.push(rgb.b);
},
(None, Some(spritekind)) => {
sprites.push(spritekind);
},
_ => panic!(
"attr being used for color vs sprite is mutually exclusive (and that's required \
for this translation to be lossless), but there's no way to guarantee that at \
the type level with Block's public API"
),
}
}
(blocks, r, g, b, sprites)
}
/// A tall, thin image, with no wasted space, but which most image viewers don't
/// handle well. Z levels increase from top to bottom, xy-slices are stacked
/// vertically.
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct TallPacking {
/// Making the borders go back and forth based on z-parity preserves spatial
/// locality better, but is more confusing to look at
pub flip_y: bool,
}
impl PackingFormula for TallPacking {
#[inline(always)]
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32) { (dims.x, dims.y * dims.z) }
#[inline(always)]
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32) {
let i = x;
let j0 = if self.flip_y {
if z % 2 == 0 { y } else { dims.y - y - 1 }
} else {
y
};
let j = z * dims.y + j0;
(i, j)
}
}
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct PngEncoding;
impl VoxelImageEncoding for PngEncoding {
type Output = Vec<u8>;
type Workspace = ImageBuffer<image::Rgba<u8>, Vec<u8>>;
fn create(width: u32, height: u32) -> Self::Workspace {
use image::Rgba;
ImageBuffer::<Rgba<u8>, Vec<u8>>::new(width, height)
}
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.put_pixel(x, y, image::Rgba([rgb.r, rgb.g, rgb.b, 255 - kind as u8]));
}
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite: SpriteKind,
ori: Option<u8>,
) {
ws.put_pixel(
x,
y,
image::Rgba([kind as u8, sprite as u8, ori.unwrap_or(0), 255]),
);
}
fn finish(ws: &Self::Workspace) -> Option<Self::Output> {
use image::codecs::png::{CompressionType, FilterType};
let mut buf = Vec::new();
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Rle,
FilterType::Up,
);
png.encode(
&*ws.as_raw(),
ws.width(),
ws.height(),
image::ColorType::Rgba8,
)
.ok()?;
Some(buf)
}
}
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct JpegEncoding;
impl VoxelImageEncoding for JpegEncoding {
type Output = Vec<u8>;
type Workspace = ImageBuffer<image::Rgba<u8>, Vec<u8>>;
fn create(width: u32, height: u32) -> Self::Workspace {
use image::Rgba;
ImageBuffer::<Rgba<u8>, Vec<u8>>::new(width, height)
}
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.put_pixel(x, y, image::Rgba([rgb.r, rgb.g, rgb.b, 255 - kind as u8]));
}
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite: SpriteKind,
_: Option<u8>,
) {
ws.put_pixel(x, y, image::Rgba([kind as u8, sprite as u8, 255, 255]));
}
fn finish(ws: &Self::Workspace) -> Option<Self::Output> {
let mut buf = Vec::new();
let mut jpeg = image::codecs::jpeg::JpegEncoder::new_with_quality(&mut buf, 1);
jpeg.encode_image(ws).ok()?;
Some(buf)
}
}
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct MixedEncoding;
impl VoxelImageEncoding for MixedEncoding {
type Output = (Vec<u8>, [usize; 3]);
type Workspace = (
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Rgb<u8>, Vec<u8>>,
);
fn create(width: u32, height: u32) -> Self::Workspace {
(
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
)
}
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Luma([0]));
ws.2.put_pixel(x, y, image::Luma([0]));
ws.3.put_pixel(x, y, image::Rgb([rgb.r, rgb.g, rgb.b]));
}
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite: SpriteKind,
ori: Option<u8>,
) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Luma([sprite as u8]));
ws.2.put_pixel(x, y, image::Luma([ori.unwrap_or(0)]));
ws.3.put_pixel(x, y, image::Rgb([0; 3]));
}
fn finish(ws: &Self::Workspace) -> Option<Self::Output> {
let mut buf = Vec::new();
use image::codecs::png::{CompressionType, FilterType};
let mut indices = [0; 3];
let mut f = |x: &ImageBuffer<_, Vec<u8>>, i| {
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Rle,
FilterType::Up,
);
png.encode(&*x.as_raw(), x.width(), x.height(), image::ColorType::L8)
.ok()?;
indices[i] = buf.len();
Some(())
};
f(&ws.0, 0)?;
f(&ws.1, 1)?;
f(&ws.2, 2)?;
let mut jpeg = image::codecs::jpeg::JpegEncoder::new_with_quality(&mut buf, 10);
jpeg.encode_image(&ws.3).ok()?;
Some((buf, indices))
}
}
impl VoxelImageDecoding for MixedEncoding {
fn start((quad, indices): &Self::Output) -> Option<Self::Workspace> {
use image::codecs::{jpeg::JpegDecoder, png::PngDecoder};
let ranges: [_; 4] = [
0..indices[0],
indices[0]..indices[1],
indices[1]..indices[2],
indices[2]..quad.len(),
];
let a = image_from_bytes(PngDecoder::new(&quad[ranges[0].clone()]).ok()?)?;
let b = image_from_bytes(PngDecoder::new(&quad[ranges[1].clone()]).ok()?)?;
let c = image_from_bytes(PngDecoder::new(&quad[ranges[2].clone()]).ok()?)?;
let d = image_from_bytes(JpegDecoder::new(&quad[ranges[3].clone()]).ok()?)?;
Some((a, b, c, d))
}
fn get_block(ws: &Self::Workspace, x: u32, y: u32, _: bool) -> Block {
if let Some(kind) = BlockKind::from_u8(ws.0.get_pixel(x, y).0[0]) {
if kind.is_filled() {
let rgb = ws.3.get_pixel(x, y);
Block::new(kind, Rgb {
r: rgb[0],
g: rgb[1],
b: rgb[2],
})
} else {
let mut block = Block::new(kind, Rgb { r: 0, g: 0, b: 0 });
if let Some(spritekind) = SpriteKind::from_u8(ws.1.get_pixel(x, y).0[0]) {
block = block.with_sprite(spritekind);
}
if let Some(oriblock) = block.with_ori(ws.2.get_pixel(x, y).0[0]) {
block = oriblock;
}
block
}
} else {
Block::empty()
}
}
}
#[derive(Debug, Clone, Copy)]
pub struct MixedEncodingSparseSprites;
impl VoxelImageEncoding for MixedEncodingSparseSprites {
type Output = (
Vec<u8>,
usize,
CompressedData<'static, HashMap<Vec2<u32>, (SpriteKind, u8)>>,
);
type Workspace = (
image::ImageBuffer<image::Luma<u8>, Vec<u8>>,
image::ImageBuffer<image::Rgb<u8>, Vec<u8>>,
HashMap<Vec2<u32>, (SpriteKind, u8)>,
);
fn create(width: u32, height: u32) -> Self::Workspace {
(
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
HashMap::new(),
)
}
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Rgb([rgb.r, rgb.g, rgb.b]));
}
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite: SpriteKind,
ori: Option<u8>,
) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Rgb([0; 3]));
ws.2.insert(Vec2::new(x, y), (sprite, ori.unwrap_or(0)));
}
fn finish(ws: &Self::Workspace) -> Option<Self::Output> {
let mut buf = Vec::new();
use image::codecs::png::{CompressionType, FilterType};
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Fast,
FilterType::Up,
);
png.encode(
&*ws.0.as_raw(),
ws.0.width(),
ws.0.height(),
image::ColorType::L8,
)
.ok()?;
let index = buf.len();
let mut jpeg = image::codecs::jpeg::JpegEncoder::new_with_quality(&mut buf, 1);
jpeg.encode_image(&ws.1).ok()?;
Some((buf, index, CompressedData::compress(&ws.2, 4)))
}
}
#[derive(Debug, Clone, Copy)]
pub struct MixedEncodingDenseSprites;
impl VoxelImageEncoding for MixedEncodingDenseSprites {
type Output = (Vec<u8>, [usize; 3]);
type Workspace = (
ImageBuffer<image::Luma<u8>, Vec<u8>>,
Vec<u8>,
Vec<u8>,
ImageBuffer<image::Rgb<u8>, Vec<u8>>,
);
fn create(width: u32, height: u32) -> Self::Workspace {
(
ImageBuffer::new(width, height),
Vec::new(),
Vec::new(),
ImageBuffer::new(width, height),
)
}
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.3.put_pixel(x, y, image::Rgb([rgb.r, rgb.g, rgb.b]));
}
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite: SpriteKind,
ori: Option<u8>,
) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.push(sprite as u8);
ws.2.push(ori.unwrap_or(0));
ws.3.put_pixel(x, y, image::Rgb([0; 3]));
}
fn finish(ws: &Self::Workspace) -> Option<Self::Output> {
let mut buf = Vec::new();
use image::codecs::png::{CompressionType, FilterType};
let mut indices = [0; 3];
let mut f = |x: &ImageBuffer<_, Vec<u8>>, i| {
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Fast,
FilterType::Up,
);
png.encode(&*x.as_raw(), x.width(), x.height(), image::ColorType::L8)
.ok()?;
indices[i] = buf.len();
Some(())
};
f(&ws.0, 0)?;
let mut g = |x: &[u8], i| {
buf.extend_from_slice(&*CompressedData::compress(&x, 4).data);
indices[i] = buf.len();
};
g(&ws.1, 1);
g(&ws.2, 2);
let mut jpeg = image::codecs::jpeg::JpegEncoder::new_with_quality(&mut buf, 1);
jpeg.encode_image(&ws.3).ok()?;
Some((buf, indices))
}
}
use kiddo::KdTree;
use rstar::{PointDistance, RTree, RTreeObject, RTreeParams};
#[derive(Debug)]
struct ColorPoint {
rgb: Rgb<u8>,
index: u8,
}
impl RTreeObject for ColorPoint {
type Envelope = <[i32; 3] as RTreeObject>::Envelope;
fn envelope(&self) -> Self::Envelope {
[self.rgb.r as i32, self.rgb.g as i32, self.rgb.b as i32].envelope()
}
}
impl PointDistance for ColorPoint {
fn distance_2(&self, other: &[i32; 3]) -> i32 {
(self.rgb.r as i32 - other[0]).pow(2)
+ (self.rgb.g as i32 - other[1]).pow(2)
+ (self.rgb.b as i32 - other[2]).pow(2)
}
fn contains_point(&self, other: &[i32; 3]) -> bool {
&[self.rgb.r as i32, self.rgb.g as i32, self.rgb.b as i32] == other
}
}
struct TestParams;
impl RTreeParams for TestParams {
type DefaultInsertionStrategy = rstar::RStarInsertionStrategy;
const MAX_SIZE: usize = 4;
const MIN_SIZE: usize = 2;
const REINSERTION_COUNT: usize = 1;
}
lazy_static::lazy_static! {
static ref PALETTE_RTREE: HashMap<BlockKind, RTree<ColorPoint, TestParams>> = {
let ron_bytes = include_bytes!("palettes.ron");
let palettes: HashMap<BlockKind, Vec<Rgb<u8>>> =
ron::de::from_bytes(&*ron_bytes).expect("palette should parse");
palettes
.into_iter()
.map(|(k, v)| {
let tree = RTree::bulk_load_with_params(v.into_iter()
.enumerate()
.map(|(index, rgb)| ColorPoint { rgb, index: index as u8 })
.collect()
);
(k, tree)
})
.collect()
};
pub static ref PALETTE_KDTREE: HashMap<BlockKind, KdTree<f32, u8, 3>> = {
let ron_bytes = include_bytes!("palettes.ron");
let palettes: HashMap<BlockKind, Vec<Rgb<u8>>> =
ron::de::from_bytes(&*ron_bytes).expect("palette should parse");
palettes
.into_iter()
.map(|(k, v)| {
let mut tree = KdTree::new();
for (i, rgb) in v.into_iter().enumerate() {
tree.add(&[rgb.r as f32, rgb.g as f32, rgb.b as f32], i as u8)
.expect("kdtree insert should succeed");
}
(k, tree)
})
.collect()
};
}
pub trait NearestNeighbor {
fn nearest_neighbor(&self, x: &Rgb<u8>) -> Option<u8>;
}
impl NearestNeighbor for KdTree<f32, u8, 3> {
fn nearest_neighbor(&self, x: &Rgb<u8>) -> Option<u8> {
self.nearest_one(
&[x.r as f32, x.g as f32, x.b as f32],
&kiddo::distance::squared_euclidean,
)
.map(|(_, i)| *i)
.ok()
}
}
impl<P: RTreeParams> NearestNeighbor for RTree<ColorPoint, P> {
fn nearest_neighbor(&self, x: &Rgb<u8>) -> Option<u8> {
self.nearest_neighbor(&[x.r as i32, x.g as i32, x.b as i32])
.map(|p| p.index)
}
}
#[derive(Debug, Clone, Copy)]
pub struct PaletteEncoding<'a, NN: NearestNeighbor, const N: u32>(&'a HashMap<BlockKind, NN>);
impl<'a, NN: NearestNeighbor, const N: u32> VoxelImageEncoding for PaletteEncoding<'a, NN, N> {
type Output = CompressedData<'a, (Vec<u8>, [usize; 4])>;
type Workspace = (
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Luma<u8>, Vec<u8>>,
);
fn create(width: u32, height: u32) -> Self::Workspace {
(
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
ImageBuffer::new(width / N, height / N),
)
}
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
2022-06-29 04:28:26 +00:00
let i = self.0.get(&kind).and_then(|b| b.nearest_neighbor(&rgb)).unwrap_or(0);
ws.3.put_pixel(x / N, y / N, image::Luma([i]));
}
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite: SpriteKind,
ori: Option<u8>,
) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Luma([sprite as u8]));
ws.2.put_pixel(x, y, image::Luma([ori.unwrap_or(0)]));
}
fn finish(ws: &Self::Workspace) -> Option<Self::Output> {
let mut buf = Vec::new();
use image::codecs::png::{CompressionType, FilterType};
let mut indices = [0; 4];
let mut f = |x: &ImageBuffer<_, Vec<u8>>, i| {
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Rle,
FilterType::Up,
);
png.encode(&*x.as_raw(), x.width(), x.height(), image::ColorType::L8)
.ok()?;
indices[i] = buf.len();
Some(())
};
f(&ws.0, 0)?;
f(&ws.1, 1)?;
f(&ws.2, 2)?;
f(&ws.3, 3)?;
Some(CompressedData::compress(&(buf, indices), 1))
}
}
fn histogram_to_dictionary(histogram: &HashMap<Vec<u8>, usize>, dictionary: &mut Vec<u8>) {
let mut tmp: Vec<(Vec<u8>, usize)> = histogram.iter().map(|(k, v)| (k.clone(), *v)).collect();
tmp.sort_by_key(|(_, count)| *count);
debug!("{:?}", tmp.last());
let mut i = 0;
let mut j = tmp.len() - 1;
while i < dictionary.len() && j > 0 {
let (k, v) = &tmp[j];
let dlen = dictionary.len();
let n = (i + k.len()).min(dlen);
dictionary[i..n].copy_from_slice(&k[0..k.len().min(dlen - i)]);
debug!("{}: {}: {:?}", tmp.len() - j, v, k);
j -= 1;
i = n;
}
}
fn main() {
let pool = ThreadPoolBuilder::new().build().unwrap();
common_frontend::init_stdout(None);
println!("Loading world");
let (world, index) = World::generate(
59686,
WorldOpts {
seed_elements: true,
world_file: FileOpts::LoadAsset(DEFAULT_WORLD_MAP.into()),
calendar: None,
},
&pool,
);
println!("Loaded world");
const HISTOGRAMS: bool = false;
let mut histogram: HashMap<Vec<u8>, usize> = HashMap::new();
let mut histogram2: HashMap<Vec<u8>, usize> = HashMap::new();
let mut dictionary = vec![0xffu8; 1 << 16];
let mut dictionary2 = vec![0xffu8; 1 << 16];
let k = 32;
let sz = world.sim().get_size();
let sites = vec![
("center", sz / 2),
(
"dungeon",
world
.civs()
.sites()
.find(|s| s.is_dungeon())
.map(|s| s.center.as_())
.unwrap(),
),
(
"town",
world
.civs()
.sites()
.find(|s| s.is_settlement())
.map(|s| s.center.as_())
.unwrap(),
),
(
"castle",
world
.civs()
.sites()
.find(|s| s.is_castle())
.map(|s| s.center.as_())
.unwrap(),
),
(
"tree",
world
.civs()
.sites()
2022-06-29 04:28:26 +00:00
.find(|s| matches!(s.kind, SiteKind::GiantTree))
.map(|s| s.center.as_())
.unwrap(),
),
];
const SKIP_DEFLATE_2_5: bool = false;
const SKIP_DYNA: bool = true;
const SKIP_IMAGECHONK: bool = true;
const SKIP_MIXED: bool = true;
const SKIP_VOLGRID: bool = true;
const RADIUS: i32 = 7;
//const RADIUS: i32 = 12;
//const ITERS: usize = 50;
const ITERS: usize = 0;
let mut emit_graphs = std::fs::File::create("emit_compression_graphs.py").unwrap();
for (sitename, sitepos) in sites.iter() {
let mut z_buckets: BTreeMap<&str, BTreeMap<i32, (usize, f32)>> = BTreeMap::new();
let mut totals: BTreeMap<&str, f32> = BTreeMap::new();
let mut total_timings: BTreeMap<&str, f32> = BTreeMap::new();
let mut count = 0;
let mut volgrid = VolGrid2d::new().unwrap();
for (i, spiralpos) in Spiral2d::with_radius(RADIUS)
.map(|v| v + sitepos.as_())
.enumerate()
{
let chunk = world.generate_chunk(index.as_index_ref(), spiralpos, || false, None);
if let Ok((chunk, _)) = chunk {
let uncompressed = bincode::serialize(&chunk).unwrap();
let n = uncompressed.len();
if HISTOGRAMS {
for w in uncompressed.windows(k) {
*histogram.entry(w.to_vec()).or_default() += 1;
}
if i % 128 == 0 {
histogram_to_dictionary(&histogram, &mut dictionary);
}
}
let lz4chonk_pre = Instant::now();
let lz4_chonk = lz4_with_dictionary(&bincode::serialize(&chunk).unwrap(), &[]);
let lz4chonk_post = Instant::now();
#[allow(clippy::reversed_empty_ranges)]
for _ in 0..ITERS {
let _deflate0_chonk =
do_deflate_flate2_zero(&bincode::serialize(&chunk).unwrap());
let _deflate1_chonk =
do_deflate_flate2::<1>(&bincode::serialize(&chunk).unwrap());
}
let rlechonk_pre = Instant::now();
let rle_chonk = do_deflate_rle(&bincode::serialize(&chunk).unwrap());
let rlechonk_post = Instant::now();
let deflate0chonk_pre = Instant::now();
let deflate0_chonk = do_deflate_flate2_zero(&bincode::serialize(&chunk).unwrap());
let deflate0chonk_post = Instant::now();
let deflate1chonk_pre = Instant::now();
let deflate1_chonk = do_deflate_flate2::<1>(&bincode::serialize(&chunk).unwrap());
let deflate1chonk_post = Instant::now();
let mut sizes = vec![
("lz4_chonk", lz4_chonk.len() as f32 / n as f32),
("rle_chonk", rle_chonk.len() as f32 / n as f32),
("deflate0_chonk", deflate0_chonk.len() as f32 / n as f32),
("deflate1_chonk", deflate1_chonk.len() as f32 / n as f32),
];
#[rustfmt::skip]
let mut timings = vec![
("lz4chonk", (lz4chonk_post - lz4chonk_pre).subsec_nanos()),
("rlechonk", (rlechonk_post - rlechonk_pre).subsec_nanos()),
("deflate0chonk", (deflate0chonk_post - deflate0chonk_pre).subsec_nanos()),
("deflate1chonk", (deflate1chonk_post - deflate1chonk_pre).subsec_nanos()),
];
{
let bucket = z_buckets
.entry("lz4")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (lz4chonk_post - lz4chonk_pre).subsec_nanos() as f32;
}
if false {
let bucket = z_buckets
.entry("rle")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (rlechonk_post - rlechonk_pre).subsec_nanos() as f32;
}
if false {
let bucket = z_buckets
.entry("deflate0")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (deflate0chonk_post - deflate0chonk_pre).subsec_nanos() as f32;
}
{
let bucket = z_buckets
.entry("deflate1")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (deflate1chonk_post - deflate1chonk_pre).subsec_nanos() as f32;
}
if !SKIP_DEFLATE_2_5 {
let deflate2chonk_pre = Instant::now();
let deflate2_chonk =
do_deflate_flate2::<2>(&bincode::serialize(&chunk).unwrap());
let deflate2chonk_post = Instant::now();
let deflate3chonk_pre = Instant::now();
let deflate3_chonk =
do_deflate_flate2::<3>(&bincode::serialize(&chunk).unwrap());
let deflate3chonk_post = Instant::now();
let deflate4chonk_pre = Instant::now();
let deflate4_chonk =
do_deflate_flate2::<4>(&bincode::serialize(&chunk).unwrap());
let deflate4chonk_post = Instant::now();
let deflate5chonk_pre = Instant::now();
let deflate5_chonk =
do_deflate_flate2::<5>(&bincode::serialize(&chunk).unwrap());
let deflate5chonk_post = Instant::now();
sizes.extend_from_slice(&[
("deflate2_chonk", deflate2_chonk.len() as f32 / n as f32),
("deflate3_chonk", deflate3_chonk.len() as f32 / n as f32),
("deflate4_chonk", deflate4_chonk.len() as f32 / n as f32),
("deflate5_chonk", deflate5_chonk.len() as f32 / n as f32),
]);
#[rustfmt::skip]
timings.extend_from_slice(&[
("deflate2chonk", (deflate2chonk_post - deflate2chonk_pre).subsec_nanos()),
("deflate3chonk", (deflate3chonk_post - deflate3chonk_pre).subsec_nanos()),
("deflate4chonk", (deflate4chonk_post - deflate4chonk_pre).subsec_nanos()),
("deflate5chonk", (deflate5chonk_post - deflate5chonk_pre).subsec_nanos()),
]);
{
let bucket = z_buckets
.entry("deflate2")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (deflate2chonk_post - deflate2chonk_pre).subsec_nanos() as f32;
}
{
let bucket = z_buckets
.entry("deflate3")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (deflate3chonk_post - deflate3chonk_pre).subsec_nanos() as f32;
}
{
let bucket = z_buckets
.entry("deflate4")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (deflate4chonk_post - deflate4chonk_pre).subsec_nanos() as f32;
}
{
let bucket = z_buckets
.entry("deflate5")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (deflate5chonk_post - deflate5chonk_pre).subsec_nanos() as f32;
}
}
if !SKIP_DYNA {
let dyna: Dyna<_, _, ColumnAccess> = chonk_to_dyna(&chunk, Block::empty());
let ser_dyna = bincode::serialize(&dyna).unwrap();
if HISTOGRAMS {
for w in ser_dyna.windows(k) {
*histogram2.entry(w.to_vec()).or_default() += 1;
}
if i % 128 == 0 {
histogram_to_dictionary(&histogram2, &mut dictionary2);
}
}
let lz4_dyna = lz4_with_dictionary(&*ser_dyna, &[]);
let deflate_dyna = do_deflate_flate2::<5>(&*ser_dyna);
let deflate_channeled_dyna = do_deflate_flate2::<5>(
&bincode::serialize(&channelize_dyna(&dyna)).unwrap(),
);
sizes.extend_from_slice(&[
("lz4_dyna", lz4_dyna.len() as f32 / n as f32),
("deflate_dyna", deflate_dyna.len() as f32 / n as f32),
(
"deflate_channeled_dyna",
deflate_channeled_dyna.len() as f32 / n as f32,
),
]);
if HISTOGRAMS {
let lz4_dict_dyna = lz4_with_dictionary(&*ser_dyna, &dictionary2);
sizes.push(("lz4_dict_dyna", lz4_dict_dyna.len() as f32 / n as f32));
}
}
if !SKIP_IMAGECHONK {
let jpegchonkgrid_pre = Instant::now();
let jpegchonkgrid =
image_terrain_chonk(&JpegEncoding, GridLtrPacking, &chunk).unwrap();
let jpegchonkgrid_post = Instant::now();
if false {
use std::fs::File;
let mut f = File::create(&format!(
"chonkjpegs/tmp_{}_{}.jpg",
spiralpos.x, spiralpos.y
))
.unwrap();
f.write_all(&*jpegchonkgrid).unwrap();
}
let jpegchonktall_pre = Instant::now();
let jpegchonktall =
image_terrain_chonk(&JpegEncoding, TallPacking { flip_y: false }, &chunk)
.unwrap();
let jpegchonktall_post = Instant::now();
let jpegchonkflip_pre = Instant::now();
let jpegchonkflip =
image_terrain_chonk(&JpegEncoding, TallPacking { flip_y: true }, &chunk)
.unwrap();
let jpegchonkflip_post = Instant::now();
let pngchonk_pre = Instant::now();
let pngchonk =
image_terrain_chonk(&PngEncoding, GridLtrPacking, &chunk).unwrap();
let pngchonk_post = Instant::now();
sizes.extend_from_slice(&[
("jpegchonkgrid", jpegchonkgrid.len() as f32 / n as f32),
("jpegchonktall", jpegchonktall.len() as f32 / n as f32),
("jpegchonkflip", jpegchonkflip.len() as f32 / n as f32),
("pngchonk", pngchonk.len() as f32 / n as f32),
]);
#[rustfmt::skip]
timings.extend_from_slice(&[
("jpegchonkgrid", (jpegchonkgrid_post - jpegchonkgrid_pre).subsec_nanos()),
("jpegchonktall", (jpegchonktall_post - jpegchonktall_pre).subsec_nanos()),
("jpegchonkflip", (jpegchonkflip_post - jpegchonkflip_pre).subsec_nanos()),
("pngchonk", (pngchonk_post - pngchonk_pre).subsec_nanos()),
]);
}
if !SKIP_MIXED {
let mixedchonk_pre = Instant::now();
let mixedchonk =
image_terrain_chonk(&MixedEncoding, TallPacking { flip_y: true }, &chunk)
.unwrap();
let mixedchonk_post = Instant::now();
let mixeddeflate = CompressedData::compress(&mixedchonk, 1);
let mixeddeflate_post = Instant::now();
let mixeddense_pre = Instant::now();
let mixeddense = image_terrain_chonk(
&MixedEncodingDenseSprites,
TallPacking { flip_y: true },
&chunk,
)
.unwrap();
let mixeddense_post = Instant::now();
sizes.extend_from_slice(&[
("mixedchonk", mixedchonk.0.len() as f32 / n as f32),
("mixeddeflate", mixeddeflate.data.len() as f32 / n as f32),
("mixeddenese", mixeddense.0.len() as f32 / n as f32),
]);
#[rustfmt::skip]
timings.extend_from_slice(&[
("mixedchonk", (mixedchonk_post - mixedchonk_pre).subsec_nanos()),
("mixeddeflate", (mixeddeflate_post - mixedchonk_pre).subsec_nanos()),
("mixeddense", (mixeddense_post - mixeddense_pre).subsec_nanos()),
]);
}
let quadpngfull_pre = Instant::now();
let quadpngfull = image_terrain_chonk(
&QuadPngEncoding::<1>(PhantomData),
TallPacking { flip_y: true },
&chunk,
)
.unwrap();
let quadpngfull_post = Instant::now();
let quadpnghalf_pre = Instant::now();
let quadpnghalf = image_terrain_chonk(
&QuadPngEncoding::<2>(PhantomData),
TallPacking { flip_y: true },
&chunk,
)
.unwrap();
let quadpnghalf_post = Instant::now();
let quadpngquarttall_pre = Instant::now();
let quadpngquarttall = image_terrain_chonk(
&QuadPngEncoding::<4>(PhantomData),
TallPacking { flip_y: true },
&chunk,
)
.unwrap();
let quadpngquarttall_post = Instant::now();
let quadpngquartwide_pre = Instant::now();
let quadpngquartwide =
image_terrain_chonk(&QuadPngEncoding::<4>(PhantomData), WidePacking::<true>(), &chunk)
.unwrap();
let quadpngquartwide_post = Instant::now();
let tripngaverage_pre = Instant::now();
let tripngaverage =
image_terrain_chonk(&TriPngEncoding::<true>(PhantomData), WidePacking::<true>(), &chunk)
.unwrap();
let tripngaverage_post = Instant::now();
let tripngconst_pre = Instant::now();
let tripngconst =
image_terrain_chonk(&TriPngEncoding::<false>(PhantomData), WidePacking::<true>(), &chunk)
.unwrap();
let tripngconst_post = Instant::now();
let palette_kdtree_pre = Instant::now();
let palette_kdtree = image_terrain_chonk(
&PaletteEncoding::<_, 4>(&PALETTE_KDTREE),
WidePacking::<true>(),
&chunk,
)
.unwrap();
let palette_kdtree_post = Instant::now();
let palette_rtree_pre = Instant::now();
let palette_rtree = image_terrain_chonk(
&PaletteEncoding::<_, 4>(&PALETTE_RTREE),
WidePacking::<true>(),
&chunk,
)
.unwrap();
let palette_rtree_post = Instant::now();
#[rustfmt::skip]
sizes.extend_from_slice(&[
("quadpngfull", quadpngfull.data.len() as f32 / n as f32),
("quadpnghalf", quadpnghalf.data.len() as f32 / n as f32),
("quadpngquarttall", quadpngquarttall.data.len() as f32 / n as f32),
("quadpngquartwide", quadpngquartwide.data.len() as f32 / n as f32),
("tripngaverage", tripngaverage.data.len() as f32 / n as f32),
("tripngconst", tripngconst.data.len() as f32 / n as f32),
("palette_kdtree", palette_kdtree.data.len() as f32 / n as f32),
("palette_rtree", palette_rtree.data.len() as f32 / n as f32),
]);
let best_idx = sizes
.iter()
.enumerate()
.fold((1.0, 0), |(best, i), (j, (_, ratio))| {
if ratio < &best {
(*ratio, j)
} else {
(best, i)
}
})
.1;
#[rustfmt::skip]
timings.extend_from_slice(&[
("quadpngfull", (quadpngfull_post - quadpngfull_pre).subsec_nanos()),
("quadpnghalf", (quadpnghalf_post - quadpnghalf_pre).subsec_nanos()),
("quadpngquarttall", (quadpngquarttall_post - quadpngquarttall_pre).subsec_nanos()),
("quadpngquartwide", (quadpngquartwide_post - quadpngquartwide_pre).subsec_nanos()),
("tripngaverage", (tripngaverage_post - tripngaverage_pre).subsec_nanos()),
("tripngconst", (tripngconst_post - tripngconst_pre).subsec_nanos()),
("palette_kdtree", (palette_kdtree_post - palette_kdtree_pre).subsec_nanos()),
("palette_rtree", (palette_rtree_post - palette_rtree_pre).subsec_nanos()),
]);
if false {
let bucket = z_buckets
.entry("quadpngquarttall")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 +=
(quadpngquarttall_post - quadpngquarttall_pre).subsec_nanos() as f32;
}
{
let bucket = z_buckets
.entry("quadpngquartwide")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 +=
(quadpngquartwide_post - quadpngquartwide_pre).subsec_nanos() as f32;
}
if false {
let bucket = z_buckets
.entry("tripngaverage")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (tripngaverage_post - tripngaverage_pre).subsec_nanos() as f32;
}
if true {
let bucket = z_buckets
.entry("tripngconst")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (tripngconst_post - tripngconst_pre).subsec_nanos() as f32;
}
if true {
let bucket = z_buckets
.entry("palette_kdtree")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (palette_kdtree_post - palette_kdtree_pre).subsec_nanos() as f32;
}
if true {
let bucket = z_buckets
.entry("palette_rtree")
.or_default()
.entry(chunk.get_max_z() - chunk.get_min_z())
.or_insert((0, 0.0));
bucket.0 += 1;
bucket.1 += (palette_rtree_post - palette_rtree_pre).subsec_nanos() as f32;
}
trace!(
"{} {}: uncompressed: {}, {:?} {} {:?}",
spiralpos.x,
spiralpos.y,
n,
sizes,
best_idx,
timings
);
for (name, size) in sizes.iter() {
*totals.entry(name).or_default() += size;
}
for (name, time) in timings.iter() {
*total_timings.entry(name).or_default() += *time as f32;
}
count += 1;
if !SKIP_VOLGRID {
let _ = volgrid.insert(spiralpos, Arc::new(chunk));
if (1usize..20)
.into_iter()
.any(|i| (2 * i + 1) * (2 * i + 1) == count)
{
use std::fs::File;
let mut f = File::create(&format!("chonkjpegs/{}_{}.jpg", sitename, count))
.unwrap();
let jpeg_volgrid =
image_terrain_volgrid(&JpegEncoding, GridLtrPacking, &volgrid).unwrap();
f.write_all(&*jpeg_volgrid).unwrap();
let mixedgrid_pre = Instant::now();
let (mixed_volgrid, indices) =
image_terrain_volgrid(&MixedEncoding, GridLtrPacking, &volgrid)
.unwrap();
let mixedgrid_post = Instant::now();
let seconds = (mixedgrid_post - mixedgrid_pre).as_secs_f64();
println!(
"Generated mixed_volgrid in {} seconds for {} chunks ({} avg)",
seconds,
count,
seconds / count as f64,
);
for i in 0..4 {
const FMT: [&str; 4] = ["png", "png", "png", "jpg"];
let ranges: [_; 4] = [
0..indices[0],
indices[0]..indices[1],
indices[1]..indices[2],
indices[2]..mixed_volgrid.len(),
];
let mut f = File::create(&format!(
"chonkmixed/{}_{}_{}.{}",
sitename, count, i, FMT[i]
))
.unwrap();
f.write_all(&mixed_volgrid[ranges[i].clone()]).unwrap();
}
}
}
}
if count % 64 == 0 {
println!("Chunks processed ({}): {}\n", sitename, count);
for (name, value) in totals.iter() {
println!("Average {}: {}", name, *value / count as f32);
}
println!();
for (name, time) in total_timings.iter() {
println!("Average {} nanos: {:02}", name, *time / count as f32);
}
(|| -> std::io::Result<()> {
writeln!(emit_graphs, "import matplotlib.pyplot as plt")?;
writeln!(emit_graphs, "plt.figure(clear=True)")?;
for (name, bucket) in z_buckets.iter() {
writeln!(emit_graphs, "{} = []", name)?;
for (k, (i, v)) in bucket.iter() {
writeln!(
emit_graphs,
"{}.append(({}, {:02}))",
name,
k,
v / *i as f32
)?;
}
writeln!(
emit_graphs,
"plt.plot([x for (x, _) in {}], [y for (_, y) in {}], label='{}')",
name, name, name
)?;
}
writeln!(emit_graphs, "plt.xlabel('Chunk depth (voxels)')")?;
writeln!(emit_graphs, "plt.ylabel('Time (nanoseconds)')")?;
writeln!(emit_graphs, "plt.legend()")?;
writeln!(
emit_graphs,
"plt.savefig('compression_speeds_{}_{}.png')",
sitename, count
)?;
Ok(())
})()
.unwrap();
println!("-----");
}
if i % 256 == 0 {
histogram.clear();
}
}
}
}