veloren/common/src/terrain/chonk.rs

275 lines
8.2 KiB
Rust
Raw Normal View History

use super::{block::Block, TerrainChunkMeta, TerrainChunkSize};
use crate::{
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
vol::{BaseVol, ReadVol, RectRasterableVol, RectVolSize, VolSize, WriteVol},
volumes::chunk::{Chunk, ChunkError},
};
2019-08-11 20:38:28 +00:00
use hashbrown::HashMap;
use serde_derive::{Deserialize, Serialize};
use std::ops::Add;
use vek::*;
#[derive(Debug)]
pub enum ChonkError {
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
ChunkError(ChunkError),
OutOfBounds,
}
const SUB_CHUNK_HEIGHT: u32 = 16;
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct SubChunkSize;
impl VolSize for SubChunkSize {
const SIZE: Vec3<u32> = Vec3 {
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
x: TerrainChunkSize::RECT_SIZE.x,
y: TerrainChunkSize::RECT_SIZE.y,
z: SUB_CHUNK_HEIGHT,
};
}
const SUB_CHUNK_HASH_LIMIT: usize =
(SubChunkSize::SIZE.x * SubChunkSize::SIZE.y * SubChunkSize::SIZE.z) as usize / 4;
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Chonk {
z_offset: i32,
sub_chunks: Vec<SubChunk>,
below: Block,
above: Block,
meta: TerrainChunkMeta,
}
impl Chonk {
pub fn new(z_offset: i32, below: Block, above: Block, meta: TerrainChunkMeta) -> Self {
Self {
z_offset,
sub_chunks: Vec::new(),
below,
above,
meta,
}
}
2019-06-11 18:39:25 +00:00
pub fn meta(&self) -> &TerrainChunkMeta {
&self.meta
}
2019-06-04 17:19:40 +00:00
pub fn get_min_z(&self) -> i32 {
self.z_offset
}
2019-06-04 17:19:40 +00:00
pub fn get_max_z(&self) -> i32 {
self.z_offset + (self.sub_chunks.len() as u32 * SUB_CHUNK_HEIGHT) as i32
}
pub fn get_metrics(&self) -> ChonkMetrics {
ChonkMetrics {
chonks: 1,
2019-06-04 12:49:57 +00:00
homogeneous: self
.sub_chunks
.iter()
2019-06-04 12:49:57 +00:00
.filter(|s| match s {
SubChunk::Homogeneous(_) => true,
_ => false,
})
.count(),
2019-06-04 12:49:57 +00:00
hash: self
.sub_chunks
.iter()
2019-06-04 12:49:57 +00:00
.filter(|s| match s {
SubChunk::Hash(_, _) => true,
_ => false,
})
.count(),
2019-06-04 12:49:57 +00:00
heterogeneous: self
.sub_chunks
.iter()
2019-06-04 12:49:57 +00:00
.filter(|s| match s {
SubChunk::Heterogeneous(_) => true,
_ => false,
})
.count(),
}
}
// Returns the index (in self.sub_chunks) of the SubChunk that contains
// layer z; note that this index changes when more SubChunks are prepended
fn sub_chunk_idx(&self, z: i32) -> usize {
((z - self.z_offset) / SUB_CHUNK_HEIGHT as i32) as usize
}
// Returns the z_offset of the sub_chunk that contains layer z
fn sub_chunk_z_offset(&self, z: i32) -> i32 {
let rem = (z - self.z_offset) % SUB_CHUNK_HEIGHT as i32;
if rem < 0 {
z - (rem + SUB_CHUNK_HEIGHT as i32)
} else {
z - rem
}
}
}
impl BaseVol for Chonk {
type Vox = Block;
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
type Error = ChonkError;
}
impl RectRasterableVol for Chonk {
const RECT_SIZE: Vec2<u32> = TerrainChunkSize::RECT_SIZE;
}
impl ReadVol for Chonk {
#[inline(always)]
fn get(&self, pos: Vec3<i32>) -> Result<&Block, ChonkError> {
if pos.z < self.get_min_z() {
// Below the terrain
Ok(&self.below)
} else if pos.z >= self.get_max_z() {
// Above the terrain
Ok(&self.above)
} else {
// Within the terrain
let sub_chunk_idx = self.sub_chunk_idx(pos.z);
match &self.sub_chunks[sub_chunk_idx] {
// Can't fail
SubChunk::Homogeneous(block) => Ok(block),
SubChunk::Hash(cblock, map) => {
let rpos = pos
- Vec3::unit_z()
* (self.z_offset + sub_chunk_idx as i32 * SUB_CHUNK_HEIGHT as i32);
Ok(map.get(&rpos.map(|e| e as u8)).unwrap_or(cblock))
}
SubChunk::Heterogeneous(chunk) => {
let rpos = pos
- Vec3::unit_z()
* (self.z_offset + sub_chunk_idx as i32 * SUB_CHUNK_HEIGHT as i32);
chunk.get(rpos).map_err(ChonkError::ChunkError)
}
}
}
}
}
impl WriteVol for Chonk {
#[inline(always)]
fn set(&mut self, pos: Vec3<i32>, block: Block) -> Result<(), ChonkError> {
if pos.z < self.get_min_z() {
// Prepend exactly sufficiently many SubChunks via Vec::splice
let target_z_offset = self.sub_chunk_z_offset(pos.z);
let c = SubChunk::Homogeneous(self.below);
let n = (self.get_min_z() - target_z_offset) / SUB_CHUNK_HEIGHT as i32;
self.sub_chunks
.splice(0..0, std::iter::repeat(c).take(n as usize));
self.z_offset = target_z_offset;
} else if pos.z >= self.get_max_z() {
// Append exactly sufficiently many SubChunks via Vec::extend
let target_z_offset = self.sub_chunk_z_offset(pos.z);
let c = SubChunk::Homogeneous(self.above);
let n = (target_z_offset - self.get_max_z()) / SUB_CHUNK_HEIGHT as i32 + 1;
self.sub_chunks
.extend(std::iter::repeat(c).take(n as usize));
}
let sub_chunk_idx = self.sub_chunk_idx(pos.z);
2019-06-04 12:49:57 +00:00
let rpos =
pos - Vec3::unit_z() * (self.z_offset + sub_chunk_idx as i32 * SUB_CHUNK_HEIGHT as i32);
match &mut self.sub_chunks[sub_chunk_idx] {
// Can't fail
SubChunk::Homogeneous(cblock) if block == *cblock => Ok(()),
SubChunk::Homogeneous(cblock) => {
2019-08-11 20:38:28 +00:00
let mut map = HashMap::default();
map.insert(rpos.map(|e| e as u8), block);
self.sub_chunks[sub_chunk_idx] = SubChunk::Hash(*cblock, map);
Ok(())
2019-06-04 12:49:57 +00:00
}
SubChunk::Hash(cblock, map) if block == *cblock => {
map.remove(&rpos.map(|e| e as u8));
Ok(())
2019-07-01 13:38:45 +00:00
}
SubChunk::Hash(_cblock, map) if map.len() < SUB_CHUNK_HASH_LIMIT => {
map.insert(rpos.map(|e| e as u8), block);
Ok(())
2019-06-04 12:49:57 +00:00
}
SubChunk::Hash(cblock, map) => {
let mut new_chunk = Chunk::filled(*cblock, ());
for (map_pos, map_block) in map {
2019-06-04 12:49:57 +00:00
new_chunk
.set(map_pos.map(|e| i32::from(e)), *map_block)
2019-06-04 12:49:57 +00:00
.unwrap(); // Can't fail (I hope!)
}
new_chunk.set(rpos, block).unwrap(); // Can't fail (I hope)
self.sub_chunks[sub_chunk_idx] = SubChunk::Heterogeneous(new_chunk);
Ok(())
2019-06-04 12:49:57 +00:00
}
/*
SubChunk::Homogeneous(cblock) => {
let mut new_chunk = Chunk::filled(*cblock, ());
new_chunk.set(rpos, block).unwrap(); // Can't fail (I hope!)
self.sub_chunks[sub_chunk_idx] = SubChunk::Heterogeneous(new_chunk);
Ok(())
}
*/
SubChunk::Heterogeneous(chunk) => {
chunk.set(rpos, block).map_err(ChonkError::ChunkError)
2019-07-02 21:25:07 +00:00
} //_ => unimplemented!(),
}
}
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum SubChunk {
Homogeneous(Block),
2019-08-11 20:38:28 +00:00
Hash(Block, HashMap<Vec3<u8>, Block>),
Heterogeneous(Chunk<Block, SubChunkSize, ()>),
}
impl SubChunk {
pub fn filled(block: Block) -> Self {
SubChunk::Homogeneous(block)
}
}
#[derive(Debug)]
pub struct ChonkMetrics {
chonks: usize,
homogeneous: usize,
hash: usize,
heterogeneous: usize,
}
impl Default for ChonkMetrics {
fn default() -> Self {
ChonkMetrics {
chonks: 0,
homogeneous: 0,
hash: 0,
heterogeneous: 0,
}
}
}
impl Add for ChonkMetrics {
type Output = Self;
fn add(self, other: Self::Output) -> Self {
Self::Output {
chonks: self.chonks + other.chonks,
homogeneous: self.homogeneous + other.homogeneous,
hash: self.hash + other.hash,
heterogeneous: self.heterogeneous + other.heterogeneous,
}
}
}