2023-06-26 11:27:26 +00:00
|
|
|
# Invocations for ControlNet image preprocessors
|
2023-05-05 21:12:19 +00:00
|
|
|
# initial implementation by Gregg Helt, 2023
|
|
|
|
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
|
2023-06-11 09:00:39 +00:00
|
|
|
from builtins import float, bool
|
2023-05-05 21:12:19 +00:00
|
|
|
|
2023-06-26 11:27:26 +00:00
|
|
|
import cv2
|
2023-04-30 02:40:22 +00:00
|
|
|
import numpy as np
|
2023-06-25 19:38:17 +00:00
|
|
|
from typing import Literal, Optional, Union, List, Dict
|
2023-07-03 16:17:45 +00:00
|
|
|
from PIL import Image
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
from pydantic import BaseModel, Field, validator
|
2023-04-30 02:40:22 +00:00
|
|
|
|
2023-07-05 17:00:43 +00:00
|
|
|
from ...backend.model_management import BaseModelType, ModelType
|
2023-05-27 11:55:29 +00:00
|
|
|
from ..models.image import ImageField, ImageCategory, ResourceOrigin
|
2023-04-30 02:40:22 +00:00
|
|
|
from .baseinvocation import (
|
|
|
|
BaseInvocation,
|
|
|
|
BaseInvocationOutput,
|
|
|
|
InvocationContext,
|
|
|
|
InvocationConfig,
|
|
|
|
)
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
|
2023-05-05 00:06:49 +00:00
|
|
|
from controlnet_aux import (
|
|
|
|
CannyDetector,
|
|
|
|
HEDdetector,
|
|
|
|
LineartDetector,
|
|
|
|
LineartAnimeDetector,
|
|
|
|
MidasDetector,
|
|
|
|
MLSDdetector,
|
|
|
|
NormalBaeDetector,
|
|
|
|
OpenposeDetector,
|
|
|
|
PidiNetDetector,
|
|
|
|
ContentShuffleDetector,
|
2023-05-26 23:47:27 +00:00
|
|
|
ZoeDetector,
|
|
|
|
MediapipeFaceDetector,
|
2023-06-25 18:16:39 +00:00
|
|
|
SamDetector,
|
2023-06-28 03:45:47 +00:00
|
|
|
LeresDetector,
|
2023-05-13 11:17:53 +00:00
|
|
|
)
|
2023-05-05 00:06:49 +00:00
|
|
|
|
2023-06-26 11:27:26 +00:00
|
|
|
from controlnet_aux.util import HWC3, ade_palette
|
2023-06-25 19:38:17 +00:00
|
|
|
|
|
|
|
|
2023-05-26 23:47:27 +00:00
|
|
|
from .image import ImageOutput, PILInvocationConfig
|
2023-04-30 02:40:22 +00:00
|
|
|
|
2023-05-14 08:40:55 +00:00
|
|
|
CONTROLNET_DEFAULT_MODELS = [
|
|
|
|
###########################################
|
|
|
|
# lllyasviel sd v1.5, ControlNet v1.0 models
|
|
|
|
##############################################
|
|
|
|
"lllyasviel/sd-controlnet-canny",
|
|
|
|
"lllyasviel/sd-controlnet-depth",
|
|
|
|
"lllyasviel/sd-controlnet-hed",
|
|
|
|
"lllyasviel/sd-controlnet-seg",
|
|
|
|
"lllyasviel/sd-controlnet-openpose",
|
|
|
|
"lllyasviel/sd-controlnet-scribble",
|
|
|
|
"lllyasviel/sd-controlnet-normal",
|
|
|
|
"lllyasviel/sd-controlnet-mlsd",
|
|
|
|
|
|
|
|
#############################################
|
|
|
|
# lllyasviel sd v1.5, ControlNet v1.1 models
|
|
|
|
#############################################
|
|
|
|
"lllyasviel/control_v11p_sd15_canny",
|
|
|
|
"lllyasviel/control_v11p_sd15_openpose",
|
|
|
|
"lllyasviel/control_v11p_sd15_seg",
|
|
|
|
# "lllyasviel/control_v11p_sd15_depth", # broken
|
|
|
|
"lllyasviel/control_v11f1p_sd15_depth",
|
|
|
|
"lllyasviel/control_v11p_sd15_normalbae",
|
|
|
|
"lllyasviel/control_v11p_sd15_scribble",
|
|
|
|
"lllyasviel/control_v11p_sd15_mlsd",
|
|
|
|
"lllyasviel/control_v11p_sd15_softedge",
|
|
|
|
"lllyasviel/control_v11p_sd15s2_lineart_anime",
|
|
|
|
"lllyasviel/control_v11p_sd15_lineart",
|
|
|
|
"lllyasviel/control_v11p_sd15_inpaint",
|
|
|
|
# "lllyasviel/control_v11u_sd15_tile",
|
|
|
|
# problem (temporary?) with huffingface "lllyasviel/control_v11u_sd15_tile",
|
|
|
|
# so for now replace "lllyasviel/control_v11f1e_sd15_tile",
|
|
|
|
"lllyasviel/control_v11e_sd15_shuffle",
|
|
|
|
"lllyasviel/control_v11e_sd15_ip2p",
|
|
|
|
"lllyasviel/control_v11f1e_sd15_tile",
|
|
|
|
|
|
|
|
#################################################
|
|
|
|
# thibaud sd v2.1 models (ControlNet v1.0? or v1.1?
|
|
|
|
##################################################
|
|
|
|
"thibaud/controlnet-sd21-openpose-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-canny-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-depth-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-scribble-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-hed-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-zoedepth-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-color-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-openposev2-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-lineart-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-normalbae-diffusers",
|
|
|
|
"thibaud/controlnet-sd21-ade20k-diffusers",
|
|
|
|
|
|
|
|
##############################################
|
|
|
|
# ControlNetMediaPipeface, ControlNet v1.1
|
|
|
|
##############################################
|
|
|
|
# ["CrucibleAI/ControlNetMediaPipeFace", "diffusion_sd15"], # SD 1.5
|
2023-05-23 23:21:13 +00:00
|
|
|
# diffusion_sd15 needs to be passed to from_pretrained() as subfolder arg
|
|
|
|
# hacked t2l to split to model & subfolder if format is "model,subfolder"
|
|
|
|
"CrucibleAI/ControlNetMediaPipeFace,diffusion_sd15", # SD 1.5
|
|
|
|
"CrucibleAI/ControlNetMediaPipeFace", # SD 2.1?
|
2023-05-14 08:40:55 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
|
2023-06-14 05:30:17 +00:00
|
|
|
CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])]
|
2023-06-26 19:03:05 +00:00
|
|
|
# crop and fill options not ready yet
|
|
|
|
# CONTROLNET_RESIZE_VALUES = Literal[tuple(["just_resize", "crop_resize", "fill_resize"])]
|
|
|
|
|
2023-04-30 02:40:22 +00:00
|
|
|
|
2023-07-05 17:00:43 +00:00
|
|
|
class ControlNetModelField(BaseModel):
|
|
|
|
"""ControlNet model field"""
|
|
|
|
|
|
|
|
model_name: str = Field(description="Name of the ControlNet model")
|
|
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
|
|
|
2023-05-04 21:21:11 +00:00
|
|
|
class ControlField(BaseModel):
|
2023-06-01 02:54:57 +00:00
|
|
|
image: ImageField = Field(default=None, description="The control image")
|
2023-07-05 17:00:43 +00:00
|
|
|
control_model: Optional[ControlNetModelField] = Field(default=None, description="The ControlNet model to use")
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
# control_weight: Optional[float] = Field(default=1, description="weight given to controlnet")
|
|
|
|
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
|
2023-05-12 11:01:35 +00:00
|
|
|
begin_step_percent: float = Field(default=0, ge=0, le=1,
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
description="When the ControlNet is first applied (% of total steps)")
|
2023-05-12 11:01:35 +00:00
|
|
|
end_step_percent: float = Field(default=1, ge=0, le=1,
|
2023-06-01 02:54:57 +00:00
|
|
|
description="When the ControlNet is last applied (% of total steps)")
|
2023-06-26 19:03:05 +00:00
|
|
|
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
|
|
|
|
# resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
|
2023-06-14 04:08:34 +00:00
|
|
|
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
@validator("control_weight")
|
|
|
|
def abs_le_one(cls, v):
|
|
|
|
"""validate that all abs(values) are <=1"""
|
|
|
|
if isinstance(v, list):
|
|
|
|
for i in v:
|
|
|
|
if abs(i) > 1:
|
|
|
|
raise ValueError('all abs(control_weight) must be <= 1')
|
|
|
|
else:
|
|
|
|
if abs(v) > 1:
|
|
|
|
raise ValueError('abs(control_weight) must be <= 1')
|
|
|
|
return v
|
2023-05-04 21:21:11 +00:00
|
|
|
class Config:
|
|
|
|
schema_extra = {
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
"required": ["image", "control_model", "control_weight", "begin_step_percent", "end_step_percent"],
|
|
|
|
"ui": {
|
|
|
|
"type_hints": {
|
|
|
|
"control_weight": "float",
|
|
|
|
# "control_weight": "number",
|
|
|
|
}
|
|
|
|
}
|
2023-05-04 21:21:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class ControlOutput(BaseInvocationOutput):
|
2023-05-04 23:01:22 +00:00
|
|
|
"""node output for ControlNet info"""
|
2023-05-04 21:21:11 +00:00
|
|
|
# fmt: off
|
|
|
|
type: Literal["control_output"] = "control_output"
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
control: ControlField = Field(default=None, description="The control info")
|
2023-05-04 21:21:11 +00:00
|
|
|
# fmt: on
|
|
|
|
|
2023-05-05 00:06:49 +00:00
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class ControlNetInvocation(BaseInvocation):
|
|
|
|
"""Collects ControlNet info to pass to other nodes"""
|
2023-05-05 00:06:49 +00:00
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["controlnet"] = "controlnet"
|
2023-05-06 04:41:07 +00:00
|
|
|
# Inputs
|
2023-06-01 02:54:57 +00:00
|
|
|
image: ImageField = Field(default=None, description="The control image")
|
2023-07-05 17:00:43 +00:00
|
|
|
control_model: ControlNetModelField = Field(default="lllyasviel/sd-controlnet-canny",
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
description="control model used")
|
|
|
|
control_weight: Union[float, List[float]] = Field(default=1.0, description="The weight given to the ControlNet")
|
2023-05-12 11:01:35 +00:00
|
|
|
begin_step_percent: float = Field(default=0, ge=0, le=1,
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
description="When the ControlNet is first applied (% of total steps)")
|
2023-05-12 11:01:35 +00:00
|
|
|
end_step_percent: float = Field(default=1, ge=0, le=1,
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
description="When the ControlNet is last applied (% of total steps)")
|
2023-06-14 04:08:34 +00:00
|
|
|
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode used")
|
2023-05-06 04:41:07 +00:00
|
|
|
# fmt: on
|
|
|
|
|
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 06:27:44 +00:00
|
|
|
class Config(InvocationConfig):
|
|
|
|
schema_extra = {
|
|
|
|
"ui": {
|
|
|
|
"tags": ["latents"],
|
|
|
|
"type_hints": {
|
|
|
|
"model": "model",
|
|
|
|
"control": "control",
|
|
|
|
# "cfg_scale": "float",
|
|
|
|
"cfg_scale": "number",
|
|
|
|
"control_weight": "float",
|
|
|
|
}
|
|
|
|
},
|
|
|
|
}
|
2023-05-06 04:41:07 +00:00
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
def invoke(self, context: InvocationContext) -> ControlOutput:
|
|
|
|
return ControlOutput(
|
|
|
|
control=ControlField(
|
|
|
|
image=self.image,
|
2023-07-05 17:00:43 +00:00
|
|
|
#control_model=self.control_model,
|
|
|
|
control_model=ControlNetModelField(
|
|
|
|
model_name="canny",
|
|
|
|
base_model=BaseModelType.StableDiffusion1,
|
|
|
|
),
|
2023-05-12 11:01:35 +00:00
|
|
|
control_weight=self.control_weight,
|
|
|
|
begin_step_percent=self.begin_step_percent,
|
|
|
|
end_step_percent=self.end_step_percent,
|
2023-06-14 04:08:34 +00:00
|
|
|
control_mode=self.control_mode,
|
2023-05-06 04:41:07 +00:00
|
|
|
),
|
|
|
|
)
|
|
|
|
|
2023-06-26 19:03:05 +00:00
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
|
|
|
|
"""Base class for invocations that preprocess images for ControlNet"""
|
|
|
|
|
|
|
|
# fmt: off
|
|
|
|
type: Literal["image_processor"] = "image_processor"
|
|
|
|
# Inputs
|
2023-06-01 02:54:57 +00:00
|
|
|
image: ImageField = Field(default=None, description="The image to process")
|
2023-05-06 04:41:07 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
|
2023-05-05 00:06:49 +00:00
|
|
|
def run_processor(self, image):
|
|
|
|
# superclass just passes through image without processing
|
|
|
|
return image
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
2023-06-14 11:40:09 +00:00
|
|
|
raw_image = context.services.images.get_pil_image(self.image.image_name)
|
2023-05-05 00:06:49 +00:00
|
|
|
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
2023-05-06 00:11:31 +00:00
|
|
|
processed_image = self.run_processor(raw_image)
|
2023-05-26 23:47:27 +00:00
|
|
|
|
|
|
|
# FIXME: what happened to image metadata?
|
|
|
|
# metadata = context.services.metadata.build_metadata(
|
|
|
|
# session_id=context.graph_execution_state_id, node=self
|
|
|
|
# )
|
|
|
|
|
2023-05-05 21:12:19 +00:00
|
|
|
# currently can't see processed image in node UI without a showImage node,
|
|
|
|
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
|
2023-05-26 23:47:27 +00:00
|
|
|
image_dto = context.services.images.create(
|
|
|
|
image=processed_image,
|
2023-05-27 11:55:29 +00:00
|
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
|
|
image_category=ImageCategory.CONTROL,
|
2023-05-26 23:47:27 +00:00
|
|
|
session_id=context.graph_execution_state_id,
|
|
|
|
node_id=self.id,
|
|
|
|
is_intermediate=self.is_intermediate
|
2023-05-05 00:06:49 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
"""Builds an ImageOutput and its ImageField"""
|
2023-06-14 11:40:09 +00:00
|
|
|
processed_image_field = ImageField(image_name=image_dto.image_name)
|
2023-05-06 04:41:07 +00:00
|
|
|
return ImageOutput(
|
|
|
|
image=processed_image_field,
|
2023-05-26 23:47:27 +00:00
|
|
|
# width=processed_image.width,
|
|
|
|
width = image_dto.width,
|
|
|
|
# height=processed_image.height,
|
|
|
|
height = image_dto.height,
|
|
|
|
# mode=processed_image.mode,
|
2023-04-30 02:40:22 +00:00
|
|
|
)
|
2023-05-04 23:01:22 +00:00
|
|
|
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class CannyImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-04 21:21:11 +00:00
|
|
|
"""Canny edge detection for ControlNet"""
|
2023-04-30 02:40:22 +00:00
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["canny_image_processor"] = "canny_image_processor"
|
2023-05-05 21:12:19 +00:00
|
|
|
# Input
|
2023-06-01 02:54:57 +00:00
|
|
|
low_threshold: int = Field(default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)")
|
|
|
|
high_threshold: int = Field(default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)")
|
2023-04-30 02:40:22 +00:00
|
|
|
# fmt: on
|
|
|
|
|
2023-05-04 23:01:22 +00:00
|
|
|
def run_processor(self, image):
|
2023-04-30 02:40:22 +00:00
|
|
|
canny_processor = CannyDetector()
|
|
|
|
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
|
2023-05-04 23:01:22 +00:00
|
|
|
return processed_image
|
|
|
|
|
2023-05-04 21:21:11 +00:00
|
|
|
|
2023-06-02 07:25:16 +00:00
|
|
|
class HedImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-05 05:40:50 +00:00
|
|
|
"""Applies HED edge detection to image"""
|
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["hed_image_processor"] = "hed_image_processor"
|
2023-05-05 05:40:50 +00:00
|
|
|
# Inputs
|
2023-06-02 07:25:16 +00:00
|
|
|
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
2023-06-01 02:54:57 +00:00
|
|
|
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
2023-05-17 02:44:45 +00:00
|
|
|
# safe not supported in controlnet_aux v0.0.3
|
|
|
|
# safe: bool = Field(default=False, description="whether to use safe mode")
|
2023-06-01 02:54:57 +00:00
|
|
|
scribble: bool = Field(default=False, description="Whether to use scribble mode")
|
2023-05-05 05:40:50 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = hed_processor(image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
2023-05-17 02:44:45 +00:00
|
|
|
# safe not supported in controlnet_aux v0.0.3
|
|
|
|
# safe=self.safe,
|
2023-05-05 05:40:50 +00:00
|
|
|
scribble=self.scribble,
|
|
|
|
)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class LineartImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-05 05:40:50 +00:00
|
|
|
"""Applies line art processing to image"""
|
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["lineart_image_processor"] = "lineart_image_processor"
|
2023-05-05 05:40:50 +00:00
|
|
|
# Inputs
|
2023-06-02 07:25:16 +00:00
|
|
|
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
2023-06-01 02:54:57 +00:00
|
|
|
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
|
|
|
coarse: bool = Field(default=False, description="Whether to use coarse mode")
|
2023-05-05 05:40:50 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = lineart_processor(image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
coarse=self.coarse)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies line art anime processing to image"""
|
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor"
|
2023-05-05 21:12:19 +00:00
|
|
|
# Inputs
|
2023-06-02 07:25:16 +00:00
|
|
|
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
2023-06-01 02:54:57 +00:00
|
|
|
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
2023-05-05 21:12:19 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = processor(image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
)
|
|
|
|
return processed_image
|
|
|
|
|
2023-05-05 05:40:50 +00:00
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class OpenposeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies Openpose processing to image"""
|
2023-05-05 05:40:50 +00:00
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["openpose_image_processor"] = "openpose_image_processor"
|
2023-05-05 05:40:50 +00:00
|
|
|
# Inputs
|
2023-06-01 02:54:57 +00:00
|
|
|
hand_and_face: bool = Field(default=False, description="Whether to use hands and face mode")
|
2023-06-02 07:25:16 +00:00
|
|
|
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
2023-06-01 02:54:57 +00:00
|
|
|
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
2023-05-05 05:40:50 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = openpose_processor(image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
hand_and_face=self.hand_and_face,
|
2023-05-05 21:12:19 +00:00
|
|
|
)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies Midas depth processing to image"""
|
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor"
|
2023-05-05 21:12:19 +00:00
|
|
|
# Inputs
|
2023-06-01 02:54:57 +00:00
|
|
|
a_mult: float = Field(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
|
|
|
|
bg_th: float = Field(default=0.1, ge=0, description="Midas parameter `bg_th`")
|
2023-05-17 02:44:45 +00:00
|
|
|
# depth_and_normal not supported in controlnet_aux v0.0.3
|
|
|
|
# depth_and_normal: bool = Field(default=False, description="whether to use depth and normal mode")
|
2023-05-05 21:12:19 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = midas_processor(image,
|
|
|
|
a=np.pi * self.a_mult,
|
|
|
|
bg_th=self.bg_th,
|
2023-05-17 02:44:45 +00:00
|
|
|
# dept_and_normal not supported in controlnet_aux v0.0.3
|
|
|
|
# depth_and_normal=self.depth_and_normal,
|
|
|
|
)
|
2023-05-05 21:12:19 +00:00
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies NormalBae processing to image"""
|
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["normalbae_image_processor"] = "normalbae_image_processor"
|
2023-05-05 21:12:19 +00:00
|
|
|
# Inputs
|
2023-06-02 07:25:16 +00:00
|
|
|
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
2023-06-01 02:54:57 +00:00
|
|
|
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
2023-05-05 21:12:19 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = normalbae_processor(image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class MlsdImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies MLSD processing to image"""
|
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["mlsd_image_processor"] = "mlsd_image_processor"
|
2023-05-05 21:12:19 +00:00
|
|
|
# Inputs
|
2023-06-02 07:25:16 +00:00
|
|
|
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
2023-06-01 02:54:57 +00:00
|
|
|
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
|
|
|
thr_v: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_v`")
|
|
|
|
thr_d: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_d`")
|
2023-05-05 21:12:19 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = mlsd_processor(image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
thr_v=self.thr_v,
|
|
|
|
thr_d=self.thr_d)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class PidiImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies PIDI processing to image"""
|
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["pidi_image_processor"] = "pidi_image_processor"
|
2023-05-05 21:12:19 +00:00
|
|
|
# Inputs
|
2023-06-02 07:25:16 +00:00
|
|
|
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
2023-06-01 02:54:57 +00:00
|
|
|
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
|
|
|
safe: bool = Field(default=False, description="Whether to use safe mode")
|
|
|
|
scribble: bool = Field(default=False, description="Whether to use scribble mode")
|
2023-05-05 21:12:19 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = pidi_processor(image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
safe=self.safe,
|
|
|
|
scribble=self.scribble)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies content shuffle processing to image"""
|
|
|
|
# fmt: off
|
2023-05-06 04:41:07 +00:00
|
|
|
type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor"
|
2023-05-05 21:12:19 +00:00
|
|
|
# Inputs
|
2023-06-02 07:25:16 +00:00
|
|
|
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
2023-06-01 02:54:57 +00:00
|
|
|
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
2023-07-03 16:17:45 +00:00
|
|
|
h: Optional[int] = Field(default=512, ge=0, description="Content shuffle `h` parameter")
|
|
|
|
w: Optional[int] = Field(default=512, ge=0, description="Content shuffle `w` parameter")
|
|
|
|
f: Optional[int] = Field(default=256, ge=0, description="Content shuffle `f` parameter")
|
2023-05-05 21:12:19 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
content_shuffle_processor = ContentShuffleDetector()
|
|
|
|
processed_image = content_shuffle_processor(image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
h=self.h,
|
|
|
|
w=self.w,
|
|
|
|
f=self.f
|
|
|
|
)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-05-26 23:47:27 +00:00
|
|
|
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
|
|
|
|
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
|
|
|
"""Applies Zoe depth processing to image"""
|
|
|
|
# fmt: off
|
|
|
|
type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
|
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = zoe_depth_processor(image)
|
|
|
|
return processed_image
|
2023-04-30 02:40:22 +00:00
|
|
|
|
2023-05-23 23:21:13 +00:00
|
|
|
|
|
|
|
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
|
|
|
"""Applies mediapipe face processing to image"""
|
|
|
|
# fmt: off
|
|
|
|
type: Literal["mediapipe_face_processor"] = "mediapipe_face_processor"
|
|
|
|
# Inputs
|
2023-06-01 02:54:57 +00:00
|
|
|
max_faces: int = Field(default=1, ge=1, description="Maximum number of faces to detect")
|
|
|
|
min_confidence: float = Field(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
|
2023-05-23 23:21:13 +00:00
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
2023-06-26 11:29:43 +00:00
|
|
|
# MediaPipeFaceDetector throws an error if image has alpha channel
|
|
|
|
# so convert to RGB if needed
|
|
|
|
if image.mode == 'RGBA':
|
|
|
|
image = image.convert('RGB')
|
2023-05-23 23:21:13 +00:00
|
|
|
mediapipe_face_processor = MediapipeFaceDetector()
|
2023-05-24 04:52:27 +00:00
|
|
|
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
|
2023-05-23 23:21:13 +00:00
|
|
|
return processed_image
|
2023-06-25 18:16:39 +00:00
|
|
|
|
2023-06-28 03:45:47 +00:00
|
|
|
class LeresImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
|
|
|
"""Applies leres processing to image"""
|
|
|
|
# fmt: off
|
|
|
|
type: Literal["leres_image_processor"] = "leres_image_processor"
|
|
|
|
# Inputs
|
|
|
|
thr_a: float = Field(default=0, description="Leres parameter `thr_a`")
|
|
|
|
thr_b: float = Field(default=0, description="Leres parameter `thr_b`")
|
|
|
|
boost: bool = Field(default=False, description="Whether to use boost mode")
|
|
|
|
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
|
|
|
|
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
|
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
|
|
|
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = leres_processor(image,
|
|
|
|
thr_a=self.thr_a,
|
|
|
|
thr_b=self.thr_b,
|
|
|
|
boost=self.boost,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution)
|
|
|
|
return processed_image
|
2023-06-25 18:16:39 +00:00
|
|
|
|
2023-06-26 11:27:26 +00:00
|
|
|
|
|
|
|
class TileResamplerProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
|
|
|
|
|
|
|
# fmt: off
|
|
|
|
type: Literal["tile_image_processor"] = "tile_image_processor"
|
|
|
|
# Inputs
|
|
|
|
#res: int = Field(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
|
|
|
|
down_sampling_rate: float = Field(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
|
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
|
|
|
|
def tile_resample(self,
|
|
|
|
np_img: np.ndarray,
|
|
|
|
res=512, # never used?
|
|
|
|
down_sampling_rate=1.0,
|
|
|
|
):
|
|
|
|
np_img = HWC3(np_img)
|
|
|
|
if down_sampling_rate < 1.1:
|
|
|
|
return np_img
|
|
|
|
H, W, C = np_img.shape
|
|
|
|
H = int(float(H) / float(down_sampling_rate))
|
|
|
|
W = int(float(W) / float(down_sampling_rate))
|
|
|
|
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
|
|
|
|
return np_img
|
|
|
|
|
|
|
|
def run_processor(self, img):
|
|
|
|
np_img = np.array(img, dtype=np.uint8)
|
|
|
|
processed_np_image = self.tile_resample(np_img,
|
|
|
|
#res=self.tile_size,
|
|
|
|
down_sampling_rate=self.down_sampling_rate
|
|
|
|
)
|
|
|
|
processed_image = Image.fromarray(processed_np_image)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-06-25 18:16:39 +00:00
|
|
|
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
|
|
|
|
"""Applies segment anything processing to image"""
|
|
|
|
# fmt: off
|
|
|
|
type: Literal["segment_anything_processor"] = "segment_anything_processor"
|
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
def run_processor(self, image):
|
2023-06-25 19:38:17 +00:00
|
|
|
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
|
|
|
|
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
|
2023-06-26 11:27:26 +00:00
|
|
|
np_img = np.array(image, dtype=np.uint8)
|
|
|
|
processed_image = segment_anything_processor(np_img)
|
2023-06-25 18:16:39 +00:00
|
|
|
return processed_image
|
2023-06-25 19:38:17 +00:00
|
|
|
|
|
|
|
class SamDetectorReproducibleColors(SamDetector):
|
|
|
|
|
|
|
|
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
|
|
|
|
# base class show_anns() method randomizes colors,
|
|
|
|
# which seems to also lead to non-reproducible image generation
|
|
|
|
# so using ADE20k color palette instead
|
|
|
|
def show_anns(self, anns: List[Dict]):
|
|
|
|
if len(anns) == 0:
|
|
|
|
return
|
|
|
|
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
|
|
|
|
h, w = anns[0]['segmentation'].shape
|
|
|
|
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
|
|
|
|
palette = ade_palette()
|
|
|
|
for i, ann in enumerate(sorted_anns):
|
|
|
|
m = ann['segmentation']
|
|
|
|
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
|
|
|
|
# doing modulo just in case number of annotated regions exceeds number of colors in palette
|
|
|
|
ann_color = palette[i % len(palette)]
|
2023-06-25 19:54:48 +00:00
|
|
|
img[:, :] = ann_color
|
2023-06-25 19:38:17 +00:00
|
|
|
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
|
|
|
|
return np.array(final_img, dtype=np.uint8)
|