2023-06-26 11:27:26 +00:00
|
|
|
# Invocations for ControlNet image preprocessors
|
2023-05-05 21:12:19 +00:00
|
|
|
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
|
2023-07-18 14:26:45 +00:00
|
|
|
from builtins import bool, float
|
2023-09-04 23:37:12 +00:00
|
|
|
from typing import Dict, List, Optional
|
2023-05-05 21:12:19 +00:00
|
|
|
|
2023-06-26 11:27:26 +00:00
|
|
|
import cv2
|
2023-04-30 02:40:22 +00:00
|
|
|
import numpy as np
|
2023-07-18 14:26:45 +00:00
|
|
|
from controlnet_aux import (
|
|
|
|
CannyDetector,
|
|
|
|
ContentShuffleDetector,
|
|
|
|
HEDdetector,
|
|
|
|
LeresDetector,
|
|
|
|
LineartAnimeDetector,
|
|
|
|
LineartDetector,
|
|
|
|
MediapipeFaceDetector,
|
|
|
|
MidasDetector,
|
|
|
|
MLSDdetector,
|
|
|
|
NormalBaeDetector,
|
|
|
|
OpenposeDetector,
|
|
|
|
PidiNetDetector,
|
|
|
|
SamDetector,
|
|
|
|
ZoeDetector,
|
|
|
|
)
|
|
|
|
from controlnet_aux.util import HWC3, ade_palette
|
2023-07-03 16:17:45 +00:00
|
|
|
from PIL import Image
|
2023-04-30 02:40:22 +00:00
|
|
|
|
2023-08-14 09:41:29 +00:00
|
|
|
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
|
|
|
|
|
|
|
from ..models.image import ImageCategory, ResourceOrigin
|
2023-09-04 23:37:12 +00:00
|
|
|
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
|
2023-08-14 03:23:09 +00:00
|
|
|
|
2023-05-14 08:40:55 +00:00
|
|
|
|
2023-09-04 08:11:56 +00:00
|
|
|
@invocation(
|
|
|
|
"image_processor", title="Base Image Processor", tags=["controlnet"], category="controlnet", version="1.0.0"
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class ImageProcessorInvocation(BaseInvocation):
|
2023-05-06 04:41:07 +00:00
|
|
|
"""Base class for invocations that preprocess images for ControlNet"""
|
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
image: ImageField = InputField(description="The image to process")
|
2023-05-06 04:41:07 +00:00
|
|
|
|
2023-05-05 00:06:49 +00:00
|
|
|
def run_processor(self, image):
|
|
|
|
# superclass just passes through image without processing
|
|
|
|
return image
|
|
|
|
|
2023-05-06 04:41:07 +00:00
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
2023-06-14 11:40:09 +00:00
|
|
|
raw_image = context.services.images.get_pil_image(self.image.image_name)
|
2023-05-05 00:06:49 +00:00
|
|
|
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
2023-05-06 00:11:31 +00:00
|
|
|
processed_image = self.run_processor(raw_image)
|
2023-05-26 23:47:27 +00:00
|
|
|
|
2023-05-05 21:12:19 +00:00
|
|
|
# currently can't see processed image in node UI without a showImage node,
|
|
|
|
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
|
2023-05-26 23:47:27 +00:00
|
|
|
image_dto = context.services.images.create(
|
|
|
|
image=processed_image,
|
2023-05-27 11:55:29 +00:00
|
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
|
|
image_category=ImageCategory.CONTROL,
|
2023-05-26 23:47:27 +00:00
|
|
|
session_id=context.graph_execution_state_id,
|
|
|
|
node_id=self.id,
|
|
|
|
is_intermediate=self.is_intermediate,
|
2023-08-24 11:42:32 +00:00
|
|
|
workflow=self.workflow,
|
2023-05-05 00:06:49 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
"""Builds an ImageOutput and its ImageField"""
|
2023-06-14 11:40:09 +00:00
|
|
|
processed_image_field = ImageField(image_name=image_dto.image_name)
|
2023-05-06 04:41:07 +00:00
|
|
|
return ImageOutput(
|
|
|
|
image=processed_image_field,
|
2023-05-26 23:47:27 +00:00
|
|
|
# width=processed_image.width,
|
2023-07-18 14:26:45 +00:00
|
|
|
width=image_dto.width,
|
2023-05-26 23:47:27 +00:00
|
|
|
# height=processed_image.height,
|
2023-07-18 14:26:45 +00:00
|
|
|
height=image_dto.height,
|
2023-05-26 23:47:27 +00:00
|
|
|
# mode=processed_image.mode,
|
2023-04-30 02:40:22 +00:00
|
|
|
)
|
2023-05-04 23:01:22 +00:00
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"canny_image_processor",
|
|
|
|
title="Canny Processor",
|
|
|
|
tags=["controlnet", "canny"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class CannyImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-04 21:21:11 +00:00
|
|
|
"""Canny edge detection for ControlNet"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
low_threshold: int = InputField(
|
|
|
|
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
|
|
|
|
)
|
|
|
|
high_threshold: int = InputField(
|
|
|
|
default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)"
|
|
|
|
)
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-04 23:01:22 +00:00
|
|
|
def run_processor(self, image):
|
2023-04-30 02:40:22 +00:00
|
|
|
canny_processor = CannyDetector()
|
2023-07-18 14:26:45 +00:00
|
|
|
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
|
2023-05-04 23:01:22 +00:00
|
|
|
return processed_image
|
|
|
|
|
2023-05-04 21:21:11 +00:00
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"hed_image_processor",
|
|
|
|
title="HED (softedge) Processor",
|
|
|
|
tags=["controlnet", "hed", "softedge"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class HedImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-05 05:40:50 +00:00
|
|
|
"""Applies HED edge detection to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
|
|
|
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
2023-05-17 02:44:45 +00:00
|
|
|
# safe not supported in controlnet_aux v0.0.3
|
2023-08-14 03:23:09 +00:00
|
|
|
# safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
|
|
|
|
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-05 05:40:50 +00:00
|
|
|
def run_processor(self, image):
|
|
|
|
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = hed_processor(
|
|
|
|
image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
2023-05-17 02:44:45 +00:00
|
|
|
# safe not supported in controlnet_aux v0.0.3
|
|
|
|
# safe=self.safe,
|
2023-05-05 05:40:50 +00:00
|
|
|
scribble=self.scribble,
|
|
|
|
)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"lineart_image_processor",
|
|
|
|
title="Lineart Processor",
|
|
|
|
tags=["controlnet", "lineart"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class LineartImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-05 05:40:50 +00:00
|
|
|
"""Applies line art processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
|
|
|
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
|
|
|
coarse: bool = InputField(default=False, description="Whether to use coarse mode")
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-05 05:40:50 +00:00
|
|
|
def run_processor(self, image):
|
2023-07-18 14:26:45 +00:00
|
|
|
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = lineart_processor(
|
|
|
|
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution, coarse=self.coarse
|
|
|
|
)
|
2023-05-05 05:40:50 +00:00
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"lineart_anime_image_processor",
|
|
|
|
title="Lineart Anime Processor",
|
|
|
|
tags=["controlnet", "lineart", "anime"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies line art anime processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
|
|
|
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-05 21:12:19 +00:00
|
|
|
def run_processor(self, image):
|
2023-07-18 14:26:45 +00:00
|
|
|
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
|
2023-05-05 21:12:19 +00:00
|
|
|
processed_image = processor(
|
|
|
|
image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
)
|
|
|
|
return processed_image
|
|
|
|
|
2023-05-05 05:40:50 +00:00
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"openpose_image_processor",
|
|
|
|
title="Openpose Processor",
|
|
|
|
tags=["controlnet", "openpose", "pose"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies Openpose processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
hand_and_face: bool = InputField(default=False, description="Whether to use hands and face mode")
|
|
|
|
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
|
|
|
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-05 05:40:50 +00:00
|
|
|
def run_processor(self, image):
|
2023-07-18 14:26:45 +00:00
|
|
|
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = openpose_processor(
|
|
|
|
image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
hand_and_face=self.hand_and_face,
|
|
|
|
)
|
2023-05-05 21:12:19 +00:00
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"midas_depth_image_processor",
|
|
|
|
title="Midas Depth Processor",
|
|
|
|
tags=["controlnet", "midas"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies Midas depth processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
a_mult: float = InputField(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
|
|
|
|
bg_th: float = InputField(default=0.1, ge=0, description="Midas parameter `bg_th`")
|
2023-05-17 02:44:45 +00:00
|
|
|
# depth_and_normal not supported in controlnet_aux v0.0.3
|
2023-08-14 03:23:09 +00:00
|
|
|
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-05 21:12:19 +00:00
|
|
|
def run_processor(self, image):
|
|
|
|
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = midas_processor(
|
|
|
|
image,
|
|
|
|
a=np.pi * self.a_mult,
|
|
|
|
bg_th=self.bg_th,
|
2023-05-17 02:44:45 +00:00
|
|
|
# dept_and_normal not supported in controlnet_aux v0.0.3
|
|
|
|
# depth_and_normal=self.depth_and_normal,
|
|
|
|
)
|
2023-05-05 21:12:19 +00:00
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"normalbae_image_processor",
|
|
|
|
title="Normal BAE Processor",
|
|
|
|
tags=["controlnet"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies NormalBae processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
|
|
|
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-05 21:12:19 +00:00
|
|
|
def run_processor(self, image):
|
2023-07-18 14:26:45 +00:00
|
|
|
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = normalbae_processor(
|
|
|
|
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
|
|
|
|
)
|
2023-05-05 21:12:19 +00:00
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-09-04 08:11:56 +00:00
|
|
|
@invocation(
|
|
|
|
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.0.0"
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies MLSD processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
|
|
|
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
|
|
|
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
|
|
|
|
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-05 21:12:19 +00:00
|
|
|
def run_processor(self, image):
|
|
|
|
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
|
2023-07-18 14:26:45 +00:00
|
|
|
processed_image = mlsd_processor(
|
|
|
|
image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
thr_v=self.thr_v,
|
|
|
|
thr_d=self.thr_d,
|
|
|
|
)
|
2023-05-05 21:12:19 +00:00
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-09-04 08:11:56 +00:00
|
|
|
@invocation(
|
|
|
|
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.0.0"
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class PidiImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies PIDI processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
|
|
|
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
|
|
|
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
|
|
|
|
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-05 21:12:19 +00:00
|
|
|
def run_processor(self, image):
|
2023-07-18 14:26:45 +00:00
|
|
|
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
processed_image = pidi_processor(
|
|
|
|
image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
safe=self.safe,
|
|
|
|
scribble=self.scribble,
|
|
|
|
)
|
2023-05-05 21:12:19 +00:00
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"content_shuffle_image_processor",
|
|
|
|
title="Content Shuffle Processor",
|
|
|
|
tags=["controlnet", "contentshuffle"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-05 21:12:19 +00:00
|
|
|
"""Applies content shuffle processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
|
|
|
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
|
|
|
h: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
|
|
|
|
w: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
|
|
|
|
f: Optional[int] = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-05 21:12:19 +00:00
|
|
|
def run_processor(self, image):
|
|
|
|
content_shuffle_processor = ContentShuffleDetector()
|
|
|
|
processed_image = content_shuffle_processor(
|
|
|
|
image,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
h=self.h,
|
|
|
|
w=self.w,
|
|
|
|
f=self.f,
|
|
|
|
)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
2023-05-26 23:47:27 +00:00
|
|
|
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"zoe_depth_image_processor",
|
|
|
|
title="Zoe (Depth) Processor",
|
|
|
|
tags=["controlnet", "zoe", "depth"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
|
2023-05-26 23:47:27 +00:00
|
|
|
"""Applies Zoe depth processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-05-26 23:47:27 +00:00
|
|
|
def run_processor(self, image):
|
2023-07-18 14:26:45 +00:00
|
|
|
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
2023-05-26 23:47:27 +00:00
|
|
|
processed_image = zoe_depth_processor(image)
|
|
|
|
return processed_image
|
2023-04-30 02:40:22 +00:00
|
|
|
|
2023-05-23 23:21:13 +00:00
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"mediapipe_face_processor",
|
|
|
|
title="Mediapipe Face Processor",
|
|
|
|
tags=["controlnet", "mediapipe", "face"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
|
2023-05-23 23:21:13 +00:00
|
|
|
"""Applies mediapipe face processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
max_faces: int = InputField(default=1, ge=1, description="Maximum number of faces to detect")
|
|
|
|
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-23 23:21:13 +00:00
|
|
|
def run_processor(self, image):
|
2023-06-26 11:29:43 +00:00
|
|
|
# MediaPipeFaceDetector throws an error if image has alpha channel
|
|
|
|
# so convert to RGB if needed
|
|
|
|
if image.mode == "RGBA":
|
|
|
|
image = image.convert("RGB")
|
2023-05-23 23:21:13 +00:00
|
|
|
mediapipe_face_processor = MediapipeFaceDetector()
|
2023-07-18 14:26:45 +00:00
|
|
|
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
|
2023-05-23 23:21:13 +00:00
|
|
|
return processed_image
|
2023-06-25 18:16:39 +00:00
|
|
|
|
2023-07-18 14:26:45 +00:00
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"leres_image_processor",
|
|
|
|
title="Leres (Depth) Processor",
|
|
|
|
tags=["controlnet", "leres", "depth"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class LeresImageProcessorInvocation(ImageProcessorInvocation):
|
2023-06-28 03:45:47 +00:00
|
|
|
"""Applies leres processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
thr_a: float = InputField(default=0, description="Leres parameter `thr_a`")
|
|
|
|
thr_b: float = InputField(default=0, description="Leres parameter `thr_b`")
|
|
|
|
boost: bool = InputField(default=False, description="Whether to use boost mode")
|
|
|
|
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
|
|
|
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-06-28 03:45:47 +00:00
|
|
|
def run_processor(self, image):
|
|
|
|
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
|
2023-07-18 14:26:45 +00:00
|
|
|
processed_image = leres_processor(
|
|
|
|
image,
|
|
|
|
thr_a=self.thr_a,
|
|
|
|
thr_b=self.thr_b,
|
|
|
|
boost=self.boost,
|
|
|
|
detect_resolution=self.detect_resolution,
|
|
|
|
image_resolution=self.image_resolution,
|
|
|
|
)
|
2023-06-28 03:45:47 +00:00
|
|
|
return processed_image
|
2023-06-25 18:16:39 +00:00
|
|
|
|
2023-06-26 11:27:26 +00:00
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"tile_image_processor",
|
|
|
|
title="Tile Resample Processor",
|
|
|
|
tags=["controlnet", "tile"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
|
|
|
|
"""Tile resampler processor"""
|
|
|
|
|
|
|
|
# res: int = InputField(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
|
|
|
|
down_sampling_rate: float = InputField(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-06-26 11:27:26 +00:00
|
|
|
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
|
|
|
|
def tile_resample(
|
|
|
|
self,
|
|
|
|
np_img: np.ndarray,
|
|
|
|
res=512, # never used?
|
|
|
|
down_sampling_rate=1.0,
|
|
|
|
):
|
|
|
|
np_img = HWC3(np_img)
|
|
|
|
if down_sampling_rate < 1.1:
|
|
|
|
return np_img
|
|
|
|
H, W, C = np_img.shape
|
|
|
|
H = int(float(H) / float(down_sampling_rate))
|
|
|
|
W = int(float(W) / float(down_sampling_rate))
|
|
|
|
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
|
|
|
|
return np_img
|
|
|
|
|
|
|
|
def run_processor(self, img):
|
|
|
|
np_img = np.array(img, dtype=np.uint8)
|
|
|
|
processed_np_image = self.tile_resample(
|
|
|
|
np_img,
|
2023-07-18 14:26:45 +00:00
|
|
|
# res=self.tile_size,
|
2023-06-26 11:27:26 +00:00
|
|
|
down_sampling_rate=self.down_sampling_rate,
|
|
|
|
)
|
|
|
|
processed_image = Image.fromarray(processed_np_image)
|
|
|
|
return processed_image
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation(
|
|
|
|
"segment_anything_processor",
|
|
|
|
title="Segment Anything Processor",
|
|
|
|
tags=["controlnet", "segmentanything"],
|
|
|
|
category="controlnet",
|
2023-09-04 08:11:56 +00:00
|
|
|
version="1.0.0",
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
|
2023-06-25 18:16:39 +00:00
|
|
|
"""Applies segment anything processing to image"""
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-06-25 18:16:39 +00:00
|
|
|
def run_processor(self, image):
|
2023-06-25 19:38:17 +00:00
|
|
|
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
|
2023-07-18 14:26:45 +00:00
|
|
|
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
|
|
|
|
"ybelkada/segment-anything", subfolder="checkpoints"
|
|
|
|
)
|
2023-06-26 11:27:26 +00:00
|
|
|
np_img = np.array(image, dtype=np.uint8)
|
|
|
|
processed_image = segment_anything_processor(np_img)
|
2023-06-25 18:16:39 +00:00
|
|
|
return processed_image
|
2023-06-25 19:38:17 +00:00
|
|
|
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-06-25 19:38:17 +00:00
|
|
|
class SamDetectorReproducibleColors(SamDetector):
|
|
|
|
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
|
|
|
|
# base class show_anns() method randomizes colors,
|
|
|
|
# which seems to also lead to non-reproducible image generation
|
|
|
|
# so using ADE20k color palette instead
|
|
|
|
def show_anns(self, anns: List[Dict]):
|
|
|
|
if len(anns) == 0:
|
|
|
|
return
|
|
|
|
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
|
|
|
|
h, w = anns[0]["segmentation"].shape
|
2023-07-18 14:26:45 +00:00
|
|
|
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
|
2023-06-25 19:38:17 +00:00
|
|
|
palette = ade_palette()
|
|
|
|
for i, ann in enumerate(sorted_anns):
|
|
|
|
m = ann["segmentation"]
|
|
|
|
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
|
|
|
|
# doing modulo just in case number of annotated regions exceeds number of colors in palette
|
|
|
|
ann_color = palette[i % len(palette)]
|
2023-06-25 19:54:48 +00:00
|
|
|
img[:, :] = ann_color
|
2023-07-18 14:26:45 +00:00
|
|
|
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
|
2023-06-25 19:38:17 +00:00
|
|
|
return np.array(final_img, dtype=np.uint8)
|