Compare commits

..

532 Commits

Author SHA1 Message Date
cb99a5f0e4 Sort results of hashes in _hash_dir to always get the same result, remove dependency on os.walk 2024-03-07 15:54:54 -05:00
3bb50926af Testing different file chunk sizes 2024-03-07 15:25:20 -05:00
bb3f1b9ca6 Add threading to scan dir calls, cap thread pool in hash function to number of files 2024-03-07 15:21:45 -05:00
119d26e102 Remove manual memory management in hashlib_hasher in favor of using Python's built-in buffering 2024-03-07 14:08:15 -05:00
e1c16c33a4 Speed up hashing 2024-03-07 13:59:02 -05:00
ad70cdfe87 feat: undo/redo discard canvas staged image 2024-03-07 19:24:55 +11:00
549d461107 refactor: 🚨 satisfy the linter 2024-03-07 19:24:55 +11:00
cab3748010 feat: discard current inpaint item 2024-03-07 19:24:55 +11:00
779b3e0e8e tidy(ui): remove npm lockfile 2024-03-06 21:57:41 -05:00
9b48029bc9 tidy(mm): ModelImages service 2024-03-06 21:57:41 -05:00
347f1fd0b7 fix tests 2024-03-06 21:57:41 -05:00
4af5a09a68 cleanup 2024-03-06 21:57:41 -05:00
8df02623f2 cleanup 2024-03-06 21:57:41 -05:00
aa88fadc30 use webp images 2024-03-06 21:57:41 -05:00
8411029d93 get model image url from model config, added thumbnail formatting for images 2024-03-06 21:57:41 -05:00
239b1e8cc7 moved upload image field and added delete image functionality 2024-03-06 21:57:41 -05:00
8a68355926 got model images displaying, still need to clean up types and unused code 2024-03-06 21:57:41 -05:00
86aef9f31d removed modelimage for now 2024-03-06 21:57:41 -05:00
2f6964bfa5 fetching model image, still not working 2024-03-06 21:57:41 -05:00
c1cdfd132b moved model image to edit page, added model_images service 2024-03-06 21:57:41 -05:00
f6bfe5e6f2 created ugly model image upload component 2024-03-06 21:57:41 -05:00
b5a8455b5f translationBot(ui): update translation (Russian)
Currently translated at 94.6% (1431 of 1512 strings)

translationBot(ui): update translation (Russian)

Currently translated at 94.6% (1431 of 1512 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-03-07 11:47:01 +11:00
645ef081ea translationBot(ui): update translation (Italian)
Currently translated at 98.0% (1487 of 1516 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.0% (1482 of 1512 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.0% (1475 of 1505 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-03-07 11:47:01 +11:00
e68d7fa6d7 fix(ui): update types 2024-03-07 10:56:59 +11:00
c5ab1c7ad6 chore(ui): typegen 2024-03-07 10:56:59 +11:00
5a561cab78 fix(ui): typo 2024-03-07 10:56:59 +11:00
132790eebe tidy(nodes): use canonical capitalizations 2024-03-07 10:56:59 +11:00
c57f6ee885 fix(ui): fix metadata for graphs to use new enriched format 2024-03-07 10:56:59 +11:00
d4a2ea68fc chore(ui): typegen 2024-03-07 10:56:59 +11:00
528ac5dd25 refactor(nodes): model identifiers
- All models are identified by a key and optionally a submodel type via new model `ModelField`. Previously, a few model types had their own class, but not all of them. This inconsistency just added complexity without any benefit.
- Update all invocation to use the new format.
- In the node API, models are loaded by key or an instance of `ModelField` as a convenience.
- Add an enriched model schema for metadata. It includes key, hash, name, base and type.
2024-03-07 10:56:59 +11:00
afd9ae7712 tidy(mm): remove convenience methods from high level model manager service
These were added as a hold-me-over for the nodes API changes, no longer needed. A followup commit will fix the nodes API to not rely on these.
2024-03-07 10:56:59 +11:00
4eefed12f0 refactor: 🚨 please the almighty linter 2024-03-07 10:44:40 +11:00
4301a3d6fd feat: invert scroll direction for brush size 2024-03-07 10:44:40 +11:00
99c0662e3f fix(nodes): load config before doing anything else
This was preventing custom nodes from loading if a custom nodes dir was specified

Closes #5862
2024-03-07 10:36:27 +11:00
cdc0d0c182 add config_path to ModelRecordChanges 2024-03-07 10:29:29 +11:00
a00369a67a add config path as field in model update form when model is a checkpoint 2024-03-07 10:29:29 +11:00
4f096ac3ba feat(scripts): add frontend-types to Makefile to generate types 2024-03-07 10:16:44 +11:00
f5e3341465 feat(scripts): add support for file path & stdin to frontend typegen script 2024-03-07 10:16:44 +11:00
474852ef7e feat(scripts): add script to generate openapi schema 2024-03-07 10:16:44 +11:00
b1d72d411e only show default settings on main models 2024-03-07 09:07:43 +11:00
46614ee28f lint fix 2024-03-06 15:06:27 -05:00
b019f9bb8b make sure all metadata in viewer is rendered at correct font size - specifically fixes control adapter metadata being too big 2024-03-06 15:06:27 -05:00
b857692073 update uploads from canvas to controlnet to be intermediates so they do not appear in gallery 2024-03-06 15:06:27 -05:00
90fb7a1a59 move linear tab to be first on workflow edit mode 2024-03-06 15:06:27 -05:00
56fcf6af78 empty state for workflow with no linear fields in view mode 2024-03-06 15:06:27 -05:00
c4fe7e697b add right-padding to prompt textareas so that text does not go behind icons 2024-03-06 15:06:27 -05:00
2fd483dfc8 use base.800 on invokeBlue.400 for all gallery selected states 2024-03-06 15:06:27 -05:00
b9a9507422 update padding in color picker 2024-03-06 15:06:27 -05:00
f2744fd7d1 fix URL for get image workflow (#5882)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2024-03-06 12:46:16 -05:00
fe6e879d38 fix(ui): invalidate InvocationCacheStatus query cache after clearing intermediates 2024-03-06 08:14:12 -05:00
d3ab08fe10 tests: add invocation cache tests 2024-03-06 08:14:12 -05:00
b0615bdfd4 fix(nodes): correctly serialize outputs
In order for delete by match to work, we need the whole invocation output to be stringified.

For some reason, the serialization of the output was set to only include the `type` field. It should instead include the whole output.

I don't understand how this ever worked unless pydantic had different serialization behaviour in v1 (though it appears to have been the same).

Closes #5805
2024-03-06 08:14:12 -05:00
bab20467fb fix(nodes): fix invocation cache clear method args 2024-03-06 08:14:12 -05:00
e24624109e fix(nodes): fix invocation cache ABC typing 2024-03-06 08:14:12 -05:00
458e7185b8 fix: 🐛 didn't include renamed file 2024-03-06 20:06:14 +11:00
a95128f5f2 refactor: ✏️ canvas mask compositor naming
changes `...MaskCompositer` spelling to `...MaskCompositor`
2024-03-06 20:06:14 +11:00
46f32c5e3c Remove references to the no longer existing invokeai.app.services.model_metadata package 2024-03-05 19:58:25 -05:00
e30cb4b52f updates for defaultModel (#5866)
* move defaultModel logic to modelsLoaded and update to work for key instead of name/base/type string

* lint fix

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2024-03-05 09:55:22 -05:00
ba1f6bf926 chore: lint 2024-03-05 23:50:19 +11:00
4a9cca6c2d fix(ui): format model API response data 2024-03-05 23:50:19 +11:00
b0275700b3 refactor(ui): compute prompt trigger options in the component
We can derive the valid trigger options in the component without needing to lift the options list into global state.
2024-03-05 23:50:19 +11:00
8319aca5f9 chore(ui): typegen 2024-03-05 23:50:19 +11:00
51a604f907 pkg(ui): do not fix knip in lint:fix script 2024-03-05 23:50:19 +11:00
7515d73628 make trigger phrases a list of options and add lora name as description to appear in dropdown 2024-03-05 23:50:19 +11:00
2c453aa531 fix type error 2024-03-05 23:50:19 +11:00
2cca6e4c76 check if lora is enabled before adding trigger phrases 2024-03-05 23:50:19 +11:00
ef171e890a use a listener to recalculate trigger phrases when model or lora list changes 2024-03-05 23:50:19 +11:00
caafbf2f0d only show trigger phrase settings on main and lora 2024-03-05 23:50:19 +11:00
2db5eaf907 lint fix 2024-03-05 23:50:19 +11:00
f234bf6256 cleanup 2024-03-05 23:50:19 +11:00
cfa78b4052 adapt embedding popover to work for trigger phrases also 2024-03-05 23:50:19 +11:00
ba1dd4b02b UI in MM to create trigger phrases 2024-03-05 23:50:19 +11:00
bcf58cac59 feat(mm): add config to skip model hash
This is useful for when you are using a memory DB and do not want to wait for all models to be hashed on startup.
2024-03-05 23:50:19 +11:00
e866d90ab2 tidy(mm): remove unused method on probe 2024-03-05 23:50:19 +11:00
e8797787cf fix(mm): fix incorrect calls to update_model 2024-03-05 23:50:19 +11:00
0082ecb22b feat(mm): add path to ModelRecordChanges 2024-03-05 23:50:19 +11:00
656839fcd1 fix(mm): fix typing on heuristic_import 2024-03-05 23:50:19 +11:00
99407c899f feat(ui): update UI to use new model config backend
- Update all queries
- Remove Advanced Add
- Removed un-editable, internal-only model attributes from model edit UI (e.g. format, repo variant, model type)
- Update model tags so the list refreshes when a model installs
- Rename some queries, components, variables, types to match backend
- Fix divide-by-zero in install queue
2024-03-05 23:50:19 +11:00
48119d9010 revert(mm): restore convert route 2024-03-05 23:50:19 +11:00
7c9128b253 tidy(mm): use canonical capitalization for all model-related enums, classes
For example, "Lora" -> "LoRA", "Vae" -> "VAE".
2024-03-05 23:50:19 +11:00
4f9bb00275 tidy(api): tidy mm routes
Rename MM routes to be consistent:
- "import" -> "install"
- "model_record" -> "model"

Comment several unused routes while I work (may end up removing them?):
- list model summary (we use the search route instead)
- add model record
- convert model
- merge models
2024-03-05 23:50:19 +11:00
78895b3e80 fix(mm): add missing inplace parameter to model install abc 2024-03-05 23:50:19 +11:00
3030a34b88 fix(mm): make type and format required in openapi schema for model config 2024-03-05 23:50:19 +11:00
58fa9c2fac fix(mm): do not allow extra fields on ModelRecordChanges 2024-03-05 23:50:19 +11:00
a8b6635050 fix(mm): make key required in openapi schema for model config 2024-03-05 23:50:19 +11:00
6829610a71 tests: rename "example_config" -> "example_it_config" 2024-03-05 23:50:19 +11:00
5551cf8ac4 feat(mm): revise update_model to use ModelRecordChanges 2024-03-05 23:50:19 +11:00
37b969d339 tidy(mm): add default_settings to model config 2024-03-05 23:50:19 +11:00
c953e61294 tidy(mm): "trigger_words" -> "trigger_phrases" 2024-03-05 23:50:19 +11:00
93dd3c848e tidy(mm): remove unused code in select_hf_files.py 2024-03-05 23:50:19 +11:00
02bde7bb75 tests: fix test_hf_model_select::test_select_multiple_weights on windows 2024-03-05 23:50:19 +11:00
3391c19926 chore: ruff 2024-03-05 23:50:19 +11:00
0f60b1ced4 fix(mm): use .value for model config discriminators
There is a breaking change in python 3.11 related to how enums with `str` as a mixin are formatted. This appears to have not caused any grief for us until now.

Re-jigger the discriminator setup to use `.value` so everything works on both python 3.10 and 3.11.
2024-03-05 23:50:19 +11:00
44c40d7d1a refactor(mm): remove unused metadata logic, fix tests
- Metadata is merged with the config. We can simplify the MM substantially and remove the handling for metadata.
- Per discussion, we don't have an ETA for frontend implementation of tags, and with the realization that the tags from CivitAI are largely useless, there's no reason to keep tags in the MM right now. When we are ready to implement tags on the frontend, we can refer back to the implementation here and use it if it supports the design.
- Fix all tests.
2024-03-05 23:50:19 +11:00
0b9a212363 tests: remove 60s timeout for tests
This makes it very difficult to troubleshoot tests. Our github actions now have timeouts, so there's no risk of a test stalling for ages.
2024-03-05 23:50:19 +11:00
c3aa985c93 refactor(mm): get metadata working 2024-03-05 23:50:19 +11:00
7cb0da1f66 refactor(mm): wip schema changes 2024-03-05 23:50:19 +11:00
3534366146 fix(mm): fix extraneous downloaded files in diffusers
Sometimes, diffusers model components (tokenizer, unet, etc.) have multiple weights files in the same directory.

In this situation, we assume the files are different versions of the same weights. For example, we may have multiple
formats (`.bin`, `.safetensors`) with different precisions. When downloading model files, we want to select only
the best of these files for the requested format and precision/variant.

The previous logic assumed that each model weights file would have the same base filename, but this assumption was
not always true. The logic is revised score each file and choose the best scoring file, resulting in only a single
file being downloaded for each submodel/subdirectory.
2024-03-05 23:50:19 +11:00
f2b5f8753f tidy(mm): remove json_schema_extra from config - not needed 2024-03-05 23:50:19 +11:00
f13f5984c0 fix(mm): update db schema & migration 2024-03-05 23:50:19 +11:00
94e1e64296 chore: ruff 2024-03-05 23:50:19 +11:00
2411bf53c0 tidy(mm): better descriptions for model configs 2024-03-05 23:50:19 +11:00
9378e47a06 feat(mm): add source_type to model configs 2024-03-05 23:50:19 +11:00
4471ea8ad1 refactor(mm): simplify model metadata schemas 2024-03-05 23:50:19 +11:00
2c835fd550 refactor(mm): WIP db schema 2024-03-05 23:50:19 +11:00
61b737bb9f tidy(mm): remove update method from ModelConfigBase
It's only used in the soon-to-be-removed model merge logic
2024-03-05 23:50:19 +11:00
a8cd3dfc99 refactor(mm): add models table (schema WIP), rename "original_hash" -> "hash" 2024-03-05 23:50:19 +11:00
0cce582f2f tidy(mm): remove current_hash 2024-03-05 23:50:19 +11:00
4347d1c7f7 tests(mm): fix some objects in tests 2024-03-05 23:50:19 +11:00
bd4fd9693d tidy(mm): rename ckpt "last_modified" -> "converted_at"
Clarify what this timestamp means
2024-03-05 23:50:19 +11:00
9b40c28144 tidy(mm): rename ckpy "config" -> "config_path" 2024-03-05 23:50:19 +11:00
16a5d718bf fix(mm): add config field to ckpt vaes 2024-03-05 23:50:19 +11:00
76cbc745e1 refactor(mm): add CheckpointConfigBase for all ckpt models 2024-03-05 23:50:19 +11:00
0a614943f6 fix(mm): fix broken get_model_discriminator_value 2024-03-05 23:50:19 +11:00
e426096d32 fix(mm): misc typing fixes for model loaders 2024-03-05 23:50:19 +11:00
c561cd751f fix(mm): use correct import path for ConfigMixin, ModelMixin 2024-03-05 23:50:19 +11:00
af9298f0ef tidy(mm): tidy class names in config.py 2024-03-05 23:50:19 +11:00
5b74117836 fix(mm): use generic for model loader registry
This preserves the typing for classes using the decorator
2024-03-05 23:50:19 +11:00
38474c9797 fix(mm): use correct import path for ModelMixin 2024-03-05 23:50:19 +11:00
b880a31039 refactor(mm): remove ztsnr_training field on _MainConfig
This is used to determine the CFG Rescale Multiplier setting. We'll handle this in the UI as a default setting.
2024-03-05 23:50:19 +11:00
dd31bc4586 refactor(mm): remove vae field on _MainConfig
We will handle default VAE selection in the UI.
2024-03-05 23:50:19 +11:00
316573df2d feat(mm): use callable discriminator for AnyModelConfig union 2024-03-05 23:50:19 +11:00
8b34f5298c Default model settings (#5850)
* UI in MM to create trigger phrases

* add scheduler and vaePrecision to config

* UI for configuring default settings for models'

* hook MM default model settings up to API

* add button to set default settings in parameters

* pull out trigger phrases

* back-end for default settings

* lint

* remove log;
gi

* ruff

* ruff format

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2024-03-04 09:39:03 -05:00
893bcd16fc Next: Allow in place local installs of models 2024-03-04 23:11:41 +11:00
f6028a4c61 Log a stack trace for invocation errors. 2024-03-04 23:01:56 +11:00
264aee3ffa translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-03-04 21:39:46 +11:00
4deb60f365 translationBot(ui): update translation (Italian)
Currently translated at 98.0% (1442 of 1470 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-03-04 21:39:46 +11:00
B N
f2d5fb176f translationBot(ui): update translation (German)
Currently translated at 80.4% (1183 of 1470 strings)

Co-authored-by: B N <berndnieschalk@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-03-04 21:39:46 +11:00
94005b5501 add button to navigate to model manager if tab is enabled 2024-03-03 19:50:50 -05:00
02dc1a8780 consolidate tabs for main model and concepts in generation panel 2024-03-03 19:50:50 -05:00
ef958568ac Update Transformers 4.37.2 -> 4.38.2 2024-03-03 19:41:33 -05:00
48e323d887 docs: added both create mask nodes to defaultNodes 2024-03-03 12:58:47 -05:00
735857479d fix(canvas): use corrected mask for pasteback 2024-03-03 12:58:47 -05:00
2f372d9b18 tests(mm): update tests to reflect using UUID for key 2024-03-03 14:32:14 +11:00
554d175792 feat(mm): improved model hash class
- Use memory view for hashlib algorithms (closer to python 3.11's filehash API in hashlib)
- Remove `sha1_fast` (realized it doesn't even hash the whole file, it just does the first block)
- Add support for custom file filters
- Update docstrings
- Update tests
2024-03-03 14:32:14 +11:00
ae99428883 fix(mm): use UUIDv4 for key
This changes the functionality of this PR to only use the updated hashing for model hashes with a UUID for the key.
2024-03-03 14:32:14 +11:00
863ce00712 tests(mm): add tests for ModelHash 2024-03-03 14:32:14 +11:00
86982f3059 feat(mm): make ModelHash instantiatable, taking an algorithm as arg 2024-03-03 14:32:14 +11:00
ec8ed530a7 feat(mm): modularize ModelHash to facilitate testing 2024-03-03 14:32:14 +11:00
982076d7d7 feat(mm): add hashing algos to ModelHash
- Some algos are slow, so it is now just called ModelHash
- Added all hashlib algos, plus BLAKE3 and the fast (but incorrect) SHA1 algo
2024-03-03 14:32:14 +11:00
2e4672f931 feat(mm): make hash.py a script for testing 2024-03-03 14:32:14 +11:00
908e915a71 feat(mm): use blake3 for hashing 2024-03-03 14:32:14 +11:00
a72056e0df make model key assignment deterministic
- When installing, model keys are now calculated from the model contents.
- .safetensors, .ckpt and other single file models are hashed with sha1
- The contents of diffusers directories are hashed using imohash (faster)

fixup yaml->sql db migration script to assign deterministic key

- this commit also detects and assigns the correct image encoder for
  ip adapter models.
2024-03-03 14:32:14 +11:00
d8d7ddf43a Remove attention map saving (#5845)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because

## Description

Attention map saving was a feature that existed a long time ago in
Invoke (>1 year ago). This PR strips out a bunch of dead code that still
remains from that feature and is polluting our diffusion implementation.

This change should not have any functional effect on the app.

## QA Instructions, Screenshots, Recordings

I did a quick smoke test of SD and SDXL image generation. All of the
deleted code was unused, so the risk should be relatively low.

## Merge Plan

- [x] Change target branch to `main` before merging.

## Added/updated tests?

- [ ] Yes
- [x] No: This PR just deletes a bunch of unused code.
2024-03-02 11:15:25 -05:00
cc45007dc4 Remove unused code for attention map saving. 2024-03-02 08:25:41 -05:00
73bec56c59 Delete unused functions from shared_invokeai_diffusion.py. 2024-03-02 08:25:41 -05:00
f8b54930f0 docs: update RELEASE.md 2024-03-02 08:23:49 -05:00
51cc9f9466 ci: add comments to workflows 2024-03-02 08:23:49 -05:00
d2ad465e96 ci: rename test matrix
Now python version: platform, e.g. `py3.10: linux-cpu`

This displays better in GH actions.
2024-03-02 08:23:49 -05:00
09037b7cd4 ci: add conditionals for jobs based on dispatch/call 2024-03-02 08:23:49 -05:00
b2a850b5ea ci: rename jobs, remove extraneous needs in release 2024-03-02 08:23:49 -05:00
3ba5c2b0b4 ci: split build job 2024-03-02 08:23:49 -05:00
06fc6ccfe5 ci: workflow & job names 2024-03-02 08:23:49 -05:00
0c6b0cfdab ci: tidy pr labeler labels 2024-03-02 08:23:49 -05:00
eef3373799 ci: fix workflows
Do not split up "on change" and "do the thing". Less convoluted, no catch-22 with required checks for PRs.
2024-03-02 08:23:49 -05:00
6935830f99 Remove unused constructor declared with typo in name: __int__. 2024-03-01 15:12:03 -05:00
7651eeea8d Merge sequential conditioning and cac conditioning logic to eliminate a bunch of duplication. 2024-03-01 15:12:03 -05:00
204e7d383b Remove outdated comments related to T2I-Adapters and ControlNets. 2024-03-01 15:12:03 -05:00
9bc4e7a593 Remove use of **kwargs in do_unet_step(...), where full parameter list is known and supported. 2024-03-01 15:12:03 -05:00
ad96857e0f Fix avoid storing extra conditioning info in two places. 2024-03-01 15:12:03 -05:00
8fb297e5f6 add regression tests for <NOKEY> issue 2024-02-29 22:31:05 -05:00
0832e1818e Fix problem of all installed models being assigned "<NOKEY>"
- Also fix redundant scanning of models directory at startup.
2024-02-29 22:31:05 -05:00
26d4d93e64 ci: update mkdocs workflow
Bit of a merge of the docs at https://github.com/squidfunk/mkdocs-material/blob/master/docs/publishing-your-site.md and the previous workflow.

Not sure how to test this without access to the main repo.
2024-02-29 21:57:20 -05:00
77f39aa935 ci: bump setup-python v4 -> v5 2024-02-29 21:57:20 -05:00
6aae940834 ci: clean up unused workflow 2024-02-29 21:57:20 -05:00
be8dcad1da feat(installer): do not delete dist/ 2024-02-29 21:57:20 -05:00
5f2e493244 feat(installer): print outputs 2024-02-29 21:57:20 -05:00
c60c9825cb feat(installer): add check for CI in create_installer.sh
If in CI, print a message saying so.

If not, prompt user to confirm that they are in the correct working directory.
2024-02-29 21:57:20 -05:00
6f368395df fix(installer): conditional syntax for old bash in create_installer.sh 2024-02-29 21:57:20 -05:00
ea4d071503 ci: add reasonable timeouts for jobs
The timeouts are at least 3x the expected time to complete the jobs.

This is particularly relevant for the `pytest` job. Occasionally, it hangs while running tests that do network things, and the job only times out after 6 hours.
2024-02-29 21:57:20 -05:00
b95e5d0730 ci: bump tj-actions/changed-files -> v41 2024-02-29 21:57:20 -05:00
99ee8f9099 feat(installer): remove vX-latest from tag_release
Also update RELEASE.md accordingly, and make the release.yml workflow match on `v*` tags.
2024-02-29 21:57:20 -05:00
50e58ff323 feat(installer): just use python3 in scripts 2024-02-29 21:57:20 -05:00
b5c12985e7 docs: update RELEASE.md 2024-02-29 21:57:20 -05:00
a865277667 ci: add comments to workflows 2024-02-29 21:57:20 -05:00
b2b65a9012 feat(installer): address feedback 2024-02-29 21:57:20 -05:00
9fe579dd99 docs: update docs/RELEASE.md 2024-02-29 21:57:20 -05:00
a0313ba634 feat: automated releases via github action
- Restructure & update code check workflows
- Add release workflow to handle checks/tests, build and publish to PyPI
- Add docs/RELEASE.md explaining the workflow & process
- `create_installer.sh`: Update to work with the release workflow
- `create_installer.sh` & `tag_release.sh`: Fix the ANSI escape codes for macOS
- `tag_release.sh`: Add check for python binary name
- `tag_release.sh`: Print `git remote -v` output
- `tag_release.sh`: Fix error when deleting nonexistant tags
2024-02-29 21:57:20 -05:00
3a2afe1d15 chore: ruff 2024-03-01 10:42:33 +11:00
813a086cfe fix race condition between downloading last file and starting install 2024-03-01 10:42:33 +11:00
e18533e3b5 add debugging statements and a timeout to download test 2024-03-01 10:42:33 +11:00
dd9daf8efb chore: ruff 2024-03-01 10:42:33 +11:00
ad86b29798 chore: remove pin on ruff
This ensures it matches the github workflow.

Also there's an update that stabilizes a number of formatting rules, so there will be a format commit after this.
2024-03-01 10:42:33 +11:00
8b03af391a fix(ui): fix metadata display issue 2024-03-01 10:42:33 +11:00
bbbd18f119 fix(ui): baseUrl hardcoded api path
We now hav multiple api versions for different routers, so we cannot hardcode the `/api/v1` portion of the baseUrl
2024-03-01 10:42:33 +11:00
c074beff7c fix(ui): typo in feature tooltips 2024-03-01 10:42:33 +11:00
0b07e2aad4 docs: add v3 -> v4 migration, invocation API docs 2024-03-01 10:42:33 +11:00
753919c6d7 docs(nodes): update all docstrings for public nodes API 2024-03-01 10:42:33 +11:00
2f26768d19 fix: make invocation_context.py accessible to mkdocs
Needs an `__init__.py`.
2024-03-01 10:42:33 +11:00
ae19971f65 docs: update mkdocs config 2024-03-01 10:42:33 +11:00
e364ce1d4e docs: bump mkdocs, add mkdocstrings
Also remove ancient requirements file - the docs dependencies are in the pyproject.toml file.
2024-03-01 10:42:33 +11:00
0b0128647b feat(nodes): revise model load API args 2024-03-01 10:42:33 +11:00
39725e9560 Next: Remove deprecated app.on_event usage in api runner 2024-03-01 10:42:33 +11:00
0305e90287 chore: ruff 2024-03-01 10:42:33 +11:00
ae34bcfbc0 fix: Assertion issue with SDXL Compel 2024-03-01 10:42:33 +11:00
01898d766f Fix merge with next 2024-03-01 10:42:33 +11:00
e7afae0159 Switch absolute path to as_posix in _walk_directory 2024-03-01 10:42:33 +11:00
f16e64084b Ruff checks 2024-03-01 10:42:33 +11:00
8992d89817 Fix directory called on _walk_directory 2024-03-01 10:42:33 +11:00
0fc2f90824 Switch ModelSearch from os.walk to os.scandir 2024-03-01 10:42:33 +11:00
c670dacc29 Ruff format 2024-03-01 10:42:33 +11:00
f475b78734 Ruff check 2024-03-01 10:42:33 +11:00
ca9b815c89 Extract TI loading logic into util, disallow it from ever failing a generation 2024-03-01 10:42:33 +11:00
8efd4284e9 Fix one last reference to the uncasted model 2024-03-01 10:42:33 +11:00
5922cee541 Allow TIs to be either a key or a name in the prompt during our transition to using keys 2024-03-01 10:42:33 +11:00
94e3857110 handle change to Civitai metadata schema for commercial usage 2024-03-01 10:42:33 +11:00
4b4b940461 updated to use new import model mutation 2024-03-01 10:42:33 +11:00
574d6538b9 fix(ui): merge conflict 2024-03-01 10:42:33 +11:00
3141c6efd5 chore(ui): bump deps
The only major version is `query-string`. The breaking change for it is dropping support for old versions of node. Not a problem for us.
2024-03-01 10:42:33 +11:00
9cf2897064 ci: change frontend check to dpdm 2024-03-01 10:42:33 +11:00
bcf742ef87 feat(ui): move from madge to dpdm for circular dependencies 2024-03-01 10:42:33 +11:00
f6c068afdd tidy(ui): fix circular dependencies in listeners 2024-03-01 10:42:33 +11:00
7d2e840590 tidy: remove some traces of ONNX 2024-03-01 10:42:33 +11:00
f0b3485ce9 chore(ui): typegen, update knip config
Knip should never touch the autogenerated types
2024-03-01 10:42:33 +11:00
37608cdea2 chore(ui): update pnpm-lock.yaml
Forgot to run `pnpm i` earlier after removing packages.
2024-03-01 10:42:33 +11:00
aafa464707 ci: add knip to ui check workflow 2024-03-01 10:42:33 +11:00
1176c549c0 feat(ui): configure knip 2024-03-01 10:42:33 +11:00
d90210fea6 tidy(ui): clean up unused code 6
unused files
2024-03-01 10:42:33 +11:00
d99bec8b1a tidy(ui): clean up unused code 5
variables, types and schemas
2024-03-01 10:42:33 +11:00
b661d93bd8 tidy(ui): clean up unused code 4
variables, types and schemas
2024-03-01 10:42:33 +11:00
dc64089c9d tidy(ui): clean up unused code 3
variables, types and schemas
2024-03-01 10:42:33 +11:00
a6f6fe581e tidy(ui): clean up unused code 2
types and schemas
2024-03-01 10:42:33 +11:00
12e859835b feat(mm): add log stmt for download complete event 2024-03-01 10:42:33 +11:00
b218282149 fix(ui): model install progress sets total bytes correctly 2024-03-01 10:42:33 +11:00
80065858ed chore(ui): lint 2024-03-01 10:42:33 +11:00
aaeef03593 fix(ui): fix remaining TS issues 2024-03-01 10:42:33 +11:00
97ecd99b9c fix(ui): fix up MM queries & types (wip) 2024-03-01 10:42:33 +11:00
202e739404 tidy(api): remove non-heuristic install route 2024-03-01 10:42:33 +11:00
10d36b4045 tidy(mm): remove ONNX from AnyModelConfig 2024-03-01 10:42:33 +11:00
8f93ae8d7c tidy(ui): clean up unused code 1
- Only export when necessary
- Remove totally usused functions, variables, state, etc
- Remove unused packages
2024-03-01 10:42:33 +11:00
506fa55f18 feat(ui): add knip + minimal config
https://knip.dev/

Replaces `unimported`
2024-03-01 10:42:33 +11:00
4c19d5cee4 fix(ui): fix missing component import 2024-03-01 10:42:33 +11:00
afa7043dcd ui: split the canvas mask blur and edge size setting 2024-03-01 10:42:33 +11:00
32b8478974 added add all button to scan models 2024-03-01 10:42:33 +11:00
d23f2de9d7 feat(ui): create metadata types for control adapters
These are the same as the existing control adapter types, but the model field is non-nullable, simplifying handling of these objects.
2024-03-01 10:42:33 +11:00
9abfb02bf0 fix(ui): model metadata handlers use model identifiers, not configs
Model metadata includes the main model, VAE and refiner model.

These used full model configs, as returned by the server, as their metadata type.

LoRA and control adapter metadata only use the metadata identifier.

This created a difference in handling. After parsing a model/vae/refiner, we have its name and can display it. But for LoRAs and control adapters, we only have the model key and must query for the full model config to get the name.

This change makes main model/vae/refiner metadata only have the model key, like LoRAs and control adapters.

The render function is now async so fetching can occur within it. All metadata fields with models now only contain the identifier, and fetch the model name to render their values.
2024-03-01 10:42:33 +11:00
7b4ef5926d fix(ui): CanvasPasteBack types 2024-03-01 10:42:33 +11:00
6c5be9e89c tidy(ui): remove unused metadata schemas 2024-03-01 10:42:33 +11:00
80697a71de feat(nodes): update LoRAMetadataItem model
LoRA model now at under `model` not `lora.
2024-03-01 10:42:33 +11:00
a253047d8e tidy(ui): tidy model identifier logic
- Move some files around
- Use util to extract key and base from model config
2024-03-01 10:42:33 +11:00
7176c5d9d6 feat(ui): optimize model query caching
When we retrieve a list of models, upsert that data into the `getModelConfig` and `getModelConfigByAttrs` query caches.

With this change, calls to those two queries are almost always going to be free, because their caches will already have all models in them. The exception is queries for models that no longer exist.
2024-03-01 10:42:33 +11:00
0b54bfb7c5 fix(ui): fix lora metadata item type 2024-03-01 10:42:33 +11:00
24daacecf2 fix(ui): fix node type 2024-03-01 10:42:33 +11:00
7326c78ab5 feat(ui): add transformation to width/height parameter schemas to round to multiple of 8
This allows image dimensions that are not multiples of 8 to still be recalled with best effort.
2024-03-01 10:42:33 +11:00
04545e792c fix(ui): fix lora metadata rendering 2024-03-01 10:42:33 +11:00
e6de915c34 fix(ui): fix type issues related to change in LoRA type 2024-03-01 10:42:33 +11:00
71ceab9094 feat(ui): migrate all metadata recall logic to new system 2024-03-01 10:42:33 +11:00
ff00ed8e80 fix(ui): use id for component key in control adapter components 2024-03-01 10:42:33 +11:00
ce3f9037cd feat(ui): no JSX in metadata handlers 2024-03-01 10:42:33 +11:00
d1f4cde8c7 feat(ui): refactor metadata handling (again)
Add concepts for metadata handlers. Handlers include parsers, recallers and validators for different metadata types:
- Parsers parse a raw metadata object of any shape to a structured object.
- Recallers load the parsed metadata into state. Recallers are optional, as some metadata types don't need to be loaded into state.
- Validators provide an additional layer of validation before recalling the metadata. This is needed because a metadata object may be valid, but not able to be recalled due to some other requirement, like base model compatibility. Validators are optional.

Sometimes metadata is not a single object but a list of items - like LoRAs. Metadata handlers may implement an optional set of "item" handlers which operate on individual items in the list.

Parsers and validators are async to allow fetching additional data, like a model config. Recallers are synchronous.

The these handlers are composed into a public API, exported as a `handlers` object. Besides the handlers functions, a metadata handler set includes:
- A function to get the label of the metadata type.
- An optional function to render the value of the metadata type.
- An optional function to render the _item_ value of the metadata type.
2024-03-01 10:42:33 +11:00
90327cb521 build(ui): do not fail build on eslint error in dev mode 2024-03-01 10:42:33 +11:00
4d5458648b chore(ui): typegen 2024-03-01 10:42:33 +11:00
8d8f1abd50 feat(api): add MM get_by_attrs route
Gets the first model that matches the given name, base and type. Raises 404 if there isn't one.

This will be used for backwards compatibility with old metadata.
2024-03-01 10:42:33 +11:00
e20a506e40 undo 2024-03-01 10:42:33 +11:00
77b8eed51b fix literal strings in MM UI 2024-03-01 10:42:33 +11:00
c954cd4c8d fix TI appearing as key in prompt 2024-03-01 10:42:33 +11:00
630d3615ca fix base model grouping in combobox 2024-03-01 10:42:33 +11:00
c80c0f0fb9 fix(mm): fix ModelCacheBase method name 2024-03-01 10:42:33 +11:00
37d66488c5 chore: ruff 2024-03-01 10:42:33 +11:00
371e3cc260 recover gracefuly from GPU out of memory errors (next version) 2024-03-01 10:42:33 +11:00
d22738723d clear out VRAM when an OOM occurs 2024-03-01 10:42:33 +11:00
fbd9ffdc5a feat(ui): bulk download click to download 2024-03-01 10:42:33 +11:00
04c060a89d fix(ui): fix node types for canvas graphs 2024-03-01 10:42:33 +11:00
6f591b324b chore(ui): typegen 2024-03-01 10:42:33 +11:00
82249cc634 tidy(nodes): rename canvas paste back 2024-03-01 10:42:33 +11:00
cc82ce820a fix: outpaint result not getting pasted back correctly 2024-03-01 10:42:33 +11:00
8e1fbd6ed1 fix: lint errors 2024-03-01 10:42:33 +11:00
68d79c002d canvas: improve paste back (or try to) 2024-03-01 10:42:33 +11:00
8f6c2a8b92 wip(ui): Replace 2 Layer Coherence pass with Gradient Mask 2024-03-01 10:42:33 +11:00
ea7b7bcf40 chore: ruff 2024-03-01 10:42:33 +11:00
1456c997fb fix(ui): fix merge issue 2024-03-01 10:42:33 +11:00
7fce234646 fix(ui): use new scan_folder response instead of hook to determine if models are installed already 2024-03-01 10:42:33 +11:00
9e02384674 chore(ui): typegen 2024-03-01 10:42:33 +11:00
531d6f40f4 feat(mm): add logic to scan_folder route to check if a model is already installed
This was done in the frontend before but it's something the backend should handle.

The logic compares the found model paths to the path and source of all installed models. It excludes core models.
2024-03-01 10:42:33 +11:00
98d60e7db5 chore(ui): lint 2024-03-01 10:42:33 +11:00
1436a5f295 build(ui): restore i18n eslint rule 2024-03-01 10:42:33 +11:00
e22c4987bf chore: ruff 2024-03-01 10:42:33 +11:00
4420392241 fix(ui): fix metadata route 2024-03-01 10:42:33 +11:00
1d410e6346 chore(ui): typegen 2024-03-01 10:42:33 +11:00
c98668e7f5 feat(api): mm metadata route "meta" -> "metadata" 2024-03-01 10:42:33 +11:00
740dbc0c32 lint fix 2024-03-01 10:42:33 +11:00
97181d159f updated translations 2024-03-01 10:42:33 +11:00
65b0d3d436 fix convert endpoint logic 2024-03-01 10:42:33 +11:00
baf1194cae clean up old model manager components and endpoints 2024-03-01 10:42:33 +11:00
9b1f63379a add model convert to checkpoint main models 2024-03-01 10:42:33 +11:00
c3f4e87a6e fix logic to see if scanned models are already installed, style tweaks 2024-03-01 10:42:33 +11:00
26a209a00d add error_reason to ModelInstallJob 2024-03-01 10:42:33 +11:00
625c86ba9a add error_reason to UI if import fails 2024-03-01 10:42:33 +11:00
53f0090197 fix types for ImportQueue, add QuickAdd for scan models 2024-03-01 10:42:33 +11:00
5496699d6c refactored and fixed issues with advanced import form 2024-03-01 10:42:33 +11:00
b5ce28e60b fix(ui): misc MM cleanup 2024-03-01 10:42:33 +11:00
816fb53a14 chore(ui): temp disable eslint i18 rule 2024-03-01 10:42:33 +11:00
793c7ec832 fix(ui): fix ImportMainModelResponse type 2024-03-01 10:42:33 +11:00
62c67d7c4b fix(ui): simplify model install event listeners 2024-03-01 10:42:33 +11:00
7c41b3439a fix(ui): fix model install event types 2024-03-01 10:42:33 +11:00
cdd2f18bbd added advanced import forms, not fully working yet 2024-03-01 10:42:33 +11:00
e7d7b37896 get positioning/scrolling working for scan results list 2024-03-01 10:42:33 +11:00
57a402053e basic scan working and renders results 2024-03-01 10:42:33 +11:00
9ae09e9a7c add scan model endpoint, break add model into tabs 2024-03-01 10:42:33 +11:00
5a12886dbb update metadata endpoint 2024-03-01 10:42:33 +11:00
5b7633f3c6 allow metadata-less models to be used for GET metadata endpoint 2024-03-01 10:42:33 +11:00
68f24d9f0d added status to import queue model 2024-03-01 10:42:33 +11:00
ea364bdf82 delete model imports and prune all finished, update state with socket messages 2024-03-01 10:42:33 +11:00
18904f79ef fix sync model endpoint 2024-03-01 10:42:33 +11:00
782d15af13 form error handling 2024-03-01 10:42:33 +11:00
86e2b39f0d finish model update 2024-03-01 10:42:33 +11:00
20576deae8 added socket listeners, added more info to ui 2024-03-01 10:42:33 +11:00
0a69779df9 edit view for model, depending on type and valid values 2024-03-01 10:42:33 +11:00
6b68971f38 hook up Add Model button 2024-03-01 10:42:33 +11:00
c46eb72d45 single model view 2024-03-01 10:42:33 +11:00
87ce74e05d added import model form and importqueue 2024-03-01 10:42:33 +11:00
c7d462b222 model list, filtering, searching 2024-03-01 10:42:33 +11:00
9068400433 workspace for mary and jenn 2024-03-01 10:42:33 +11:00
55f3c6e721 get old UI working somewhat with new endpoints 2024-03-01 10:42:33 +11:00
c778ab8db4 Allow passing in key on register 2024-03-01 10:42:33 +11:00
65b91356d0 Remove passing keys in on register 2024-03-01 10:42:33 +11:00
de9287a3e4 Run ruff 2024-03-01 10:42:33 +11:00
008716040b Allow users to run model manager without cuda 2024-03-01 10:42:33 +11:00
abc569c2dd fix(ui): roll back utility-types
It's `Required` util does not distribute over unions as expected. Also we have `ts-toolbelt` already for some utils.
2024-03-01 10:42:33 +11:00
3ed2963f43 feat(ui): refactor metadata handling
Refactor of metadata recall handling. This is in preparation for a backwards compatibility layer for models.

- Create helpers to fetch a model outside react (e.g. not in a hook)
- Created helpers to parse model metadata
- Renamed a lot of types that were confusing and/or had naming collisions
2024-03-01 10:42:33 +11:00
79b16596b5 chore(ui): typegen 2024-03-01 10:42:33 +11:00
239ecfaf79 fix(nodes): make fields on ModelConfigBase required
The setup of `ModelConfigBase` means autogenerated types have critical fields flagged as nullable (like `key` and `base`). Need to manually flag them as required.
2024-03-01 10:42:33 +11:00
0d9fbe5e04 feat(ui): replace type-fest with utility-types
- The new package has more useful types
- Only used `JsonObject` from `type-fest`; added an implementation of that type
2024-03-01 10:42:33 +11:00
cc41e8912c several small model install enhancements
- Support extended HF repoid syntax in TUI. This allows
  installation of subfolders and safetensors files, as in
  `XpucT/Deliberate::Deliberate_v5.safetensors`

- Add `error` and `error_traceback` properties to the install
  job objects.

- Rename the `heuristic_import` route to `heuristic_install`.

- Fix the example `config` input in the `heuristic_install` route.
2024-03-01 10:42:33 +11:00
1cec0bb179 use official Deliberate download repo 2024-03-01 10:42:33 +11:00
65dd4f4abc fix repo-id for the Deliberate v5 model
prevent lora and embedding file suffixes from being stripped during installation

apply psychedelicious patch to get compel to load proper TI embedding
2024-03-01 10:42:33 +11:00
5bb3aeaccd remove startup dependency on legacy models.yaml file 2024-03-01 10:42:33 +11:00
30a374a70f chore: typing 2024-03-01 10:42:33 +11:00
07dde92664 chore: typing fix 2024-03-01 10:42:33 +11:00
06cc57d82a feat(nodes): added gradient mask node 2024-03-01 10:42:33 +11:00
f7fc20459a Run ruff 2024-03-01 10:42:33 +11:00
9269bdd233 rename endpoint for scanning 2024-03-01 10:42:33 +11:00
97cfcd2eef Create /search endpoint, update model object structure in scan model page 2024-03-01 10:42:33 +11:00
571a86a965 chore(ui): bump deps
Notable updates:
- Minor version of RTK includes customizable selectors for RTK Query, so we can remove the patch that was added to ensure only the LRU memoize function was used for perf reasons. Updated to use the LRU memoize function.
- Major version of react-resizable-panels. No breaking changes, works great, and you can now resize all panels when dragging at the intersection point of panels. Cool!
- Minor (?) version of nanostores. `action` API is removed, we were using it in one spot. Fixed.
- @invoke-ai/eslint-config-react has all deps bumped and now has its dependent plugins/configs listed as normal dependencies (as opposed to peer deps). This means we can remove those packages from explicit dev deps.
2024-03-01 10:42:33 +11:00
dbd929df05 tidy(ui): remove debugging stmt 2024-03-01 10:42:33 +11:00
b59d23d608 fix(ui): handle new model format for metadata 2024-03-01 10:42:33 +11:00
9d9b417432 fix(ui): use model names in badges 2024-03-01 10:42:33 +11:00
34f3a39cc9 fix(nodes): fix TI loading 2024-03-01 10:42:33 +11:00
e3c23baae9 fix(ui): fix package build 2024-03-01 10:42:33 +11:00
6a923cce70 feat(ui): do not subscribe to bulk download sio room if baseUrl is set 2024-03-01 10:42:33 +11:00
c0f0f2f39e feat(ui): revise bulk download listeners
- Use a single listener for all of the to keep them in one spot
- Use the bulk download item name as a toast id so we can update the existing toasts
- Update handling to work with other environments
- Move all bulk download handling from components to listener
2024-03-01 10:42:33 +11:00
64908eda55 chore(ui): typegen 2024-03-01 10:42:33 +11:00
a37b60db13 feat(bulk_download): update response model, messages 2024-03-01 10:42:33 +11:00
9e296f6916 implementing download for bulk_download events 2024-03-01 10:42:33 +11:00
ab94484c6c setting up event listeners for bulk download socket 2024-03-01 10:42:33 +11:00
5cba55d670 test: clean up & fix tests
- Deduplicate the mock invocation services. This is possible now that the import order issue is resolved.
- Merge `DummyEventService` into `TestEventService` and update all tests to use `TestEventService`.
2024-03-01 10:42:33 +11:00
cbb997e7d0 tidy(bulk_download): don't store events service separately
Using the invoker object directly leaves no ambiguity as to what `_events_bus` actually is.
2024-03-01 10:42:33 +11:00
98441ad08d tidy(bulk_download): do not rely on pagination API to get all images for board
We can get all images for the board as a list of image names, then pass that to `_image_handler` to get the DTOs, decoupling from the pagination API.
2024-03-01 10:42:33 +11:00
80c67dd6e0 tidy(bulk_download): nit - use or as a coalescing operator
Just a bit cleaner.
2024-03-01 10:42:33 +11:00
38af234108 tidy(bulk_download): use single underscore for private attrs
Double underscores are used in the app but it doesn't actually do or convey anything that single underscores don't already do. Considered unpythonic except for actual dunder/magic methods.
2024-03-01 10:42:33 +11:00
2291122c2b tidy(bulk_download): remove class-level attr annotations
These can be misleading as they shadow actual assigned class attributes. This pattern is in the rest of the app but it shouldn't be.
2024-03-01 10:42:33 +11:00
bf3b10cb1c tidy(bulk_download): remove extraneous abstract methods
`start`, `stop` and `__init__` are not required in implementations of an ABC or service.
2024-03-01 10:42:33 +11:00
7f8f182a00 tidy(bulk_download): clean up comments 2024-03-01 10:42:33 +11:00
e51867756a adding bulk_download_item_name to socket events 2024-03-01 10:42:33 +11:00
a8d7cf4e97 refactoring handlers to do null check 2024-03-01 10:42:33 +11:00
037cac8154 removing dependency on an output folder, embrace python temp folder for bulk download 2024-03-01 10:42:33 +11:00
0ab9fe6987 relocating event_service fixture due to import ordering 2024-03-01 10:42:33 +11:00
b5a9ed351d moving the responsibility of cleaning up board names to the service not the route 2024-03-01 10:42:33 +11:00
5f4b406cfe updating imports to satisfy ruff 2024-03-01 10:42:33 +11:00
f15aa562c2 using temp directory for downloads 2024-03-01 10:42:33 +11:00
d0f3571e59 returning the bulk_download_item_name on response for possible polling 2024-03-01 10:42:33 +11:00
b5ca1643a6 narrowing bulk_download stop service scope 2024-03-01 10:42:33 +11:00
39c01a833d adding test coverage for new bulk download routes 2024-03-01 10:42:33 +11:00
79eb871683 cleaning up bulk download zip after the response is complete 2024-03-01 10:42:33 +11:00
7544b350f3 replacing import removed during rebase 2024-03-01 10:42:33 +11:00
284ba041bd 97% test coverage on bulk_download 2024-03-01 10:42:33 +11:00
7d91426d8f refactoring bulk_download to be better managed 2024-03-01 10:42:33 +11:00
db812133e7 refactoring dummy event service, DRY principal; adding bulk_download_event to existing invoker tests 2024-03-01 10:42:33 +11:00
795fbf0e81 refactoring bulkdownload to consider image category 2024-03-01 10:42:33 +11:00
7114d64b86 fixing issue where default board did not return images 2024-03-01 10:42:33 +11:00
c43ea9f25c using the board name to download boards 2024-03-01 10:42:33 +11:00
52b0deb179 reworking some of the logic to use a default room, adding endpoint to download file on complete 2024-03-01 10:42:33 +11:00
7ecc18938b linted and styling 2024-03-01 10:42:33 +11:00
56d2d220a8 implementation of bulkdownload background task 2024-03-01 10:42:33 +11:00
f1967c3393 adding socket events for bulk download 2024-03-01 10:42:33 +11:00
812e24cbd2 groundwork for the bulk_download_service 2024-03-01 10:42:33 +11:00
8afe328af0 fix(ui): get workflow editor model selects working 2024-03-01 10:42:33 +11:00
e771c5f467 fix(ui): get refiner model select working 2024-03-01 10:42:33 +11:00
e7e3045a8a fix(ui): get vae model select working 2024-03-01 10:42:33 +11:00
f870f810d5 fix(ui): get embedding select working 2024-03-01 10:42:33 +11:00
a793103d7a fix(ui): get lora select working 2024-03-01 10:42:33 +11:00
7e5a85496e chore(ui): bump @invoke-ai/ui-library 2024-03-01 10:42:33 +11:00
ca7e928710 fix(ui): fix low-hanging fruit types 2024-03-01 10:42:33 +11:00
5b133ad198 Add a few convenience targets to Makefile
- "test" to run pytests
- "frontend-install" to reinstall pnpm's node modeuls
2024-03-01 10:42:33 +11:00
89fa36a818 chore(nodes): update TODO comment 2024-03-01 10:42:33 +11:00
e3f9da29ba tidy(nodes): clean up profiler/stats in processor, better comments 2024-03-01 10:42:33 +11:00
763debdeeb fix(nodes): fix typing on stats service context manager 2024-03-01 10:42:33 +11:00
8bf9fd34ad fix(nodes): fix model load events
was accessing incorrect properties in event data
2024-03-01 10:42:33 +11:00
0b0cb0ccc6 feat(nodes): making invocation class var in processor 2024-03-01 10:42:33 +11:00
fa39523b11 feat(nodes): improved error messages in processor 2024-03-01 10:42:33 +11:00
16676feea8 feat(nodes): make processor thread limit and polling interval configurable 2024-03-01 10:42:33 +11:00
0788a27a80 tests(nodes): fix tests following removal of services 2024-03-01 10:42:33 +11:00
d53a2a2d4e chore(nodes): better comments for invocation context 2024-03-01 10:42:33 +11:00
ccfe6b6bef chore(nodes): "context_data" -> "data"
Changed within InvocationContext, for brevity.
2024-03-01 10:42:33 +11:00
fdac0c3c9b refactor(nodes): move is_canceled to context.util 2024-03-01 10:42:33 +11:00
18adcc1dd2 feat(nodes): add whole queue_item to InvocationContextData
No reason to not have the whole thing in there.
2024-03-01 10:42:33 +11:00
86c50f2d5b tidy(nodes): remove extraneous comments 2024-03-01 10:42:33 +11:00
3cfac8b843 feat(nodes): better invocation error messages 2024-03-01 10:42:33 +11:00
0788b6ecee chore(nodes): add comments for cancel state 2024-03-01 10:42:33 +11:00
317d076a1a feat(nodes): promote is_canceled to public node API 2024-03-01 10:42:33 +11:00
725c03cf87 refactor(nodes): merge processors
Consolidate graph processing logic into session processor.

With graphs as the unit of work, and the session queue distributing graphs, we no longer need the invocation queue or processor.

Instead, the session processor dequeues the next session and processes it in a simple loop, greatly simplifying the app.

- Remove `graph_execution_manager` service.
- Remove `queue` (invocation queue) service.
- Remove `processor` (invocation processor) service.
- Remove queue-related logic from `Invoker`. It now only starts and stops the services, providing them with access to other services.
- Remove unused `invocation_retrieval_error` and `session_retrieval_error` events, these are no longer needed.
- Clean up stats service now that it is less coupled to the rest of the app.
- Refactor cancellation logic - cancellations now originate from session queue (i.e. HTTP cancel endpoint) and are emitted as events. Processor gets the events and sets the canceled event. Access to this event is provided to the invocation context for e.g. the step callback.
- Remove `sessions` router; it provided access to `graph_executions` but that no longer exists.
2024-03-01 10:42:33 +11:00
da9991e361 tidy(nodes): remove commented tests 2024-03-01 10:42:33 +11:00
67daa127e3 chore(ui): typegen 2024-03-01 10:42:33 +11:00
7e71effa17 tidy(nodes): remove no-op model_config
Because we now customize the JSON Schema creation for GraphExecutionState, the model_config did nothing.
2024-03-01 10:42:33 +11:00
e93bd15392 tidy(nodes): remove LibraryGraphs
The workflow library supersedes this unused feature.
2024-03-01 10:42:33 +11:00
0b81703c9f tidy(nodes): move node tests to parent dir
Thanks to the resolution of the import vs union issue, we can put tests anywhere.
2024-03-01 10:42:33 +11:00
641d235102 tidy(nodes): remove GraphInvocation
`GraphInvocation` is a node that can contain a whole graph. It is removed for a number of reasons:

1. This feature was unused (the UI doesn't support it) and there is no plan for it to be used.

The use-case it served is known in other node execution engines as "node groups" or "blocks" - a self-contained group of nodes, which has group inputs and outputs. This is a planned feature that will be handled client-side.

2. It adds substantial complexity to the graph processing logic. It's probably not enough to have a measurable performance impact but it does make it harder to work in the graph logic.

3. It allows for graphs to be recursive, and the improved invocations union handling does not play well with it. Actually, it works fine within `graph.py` but not in the tests for some reason. I do not understand why. There's probably a workaround, but I took this as encouragement to remove `GraphInvocation` from the app since we don't use it.
2024-03-01 10:42:33 +11:00
b79ae3a101 fix(nodes): fix OpenAPI schema generation
The change to `Graph.nodes` and `GraphExecutionState.results` validation requires some fanagling to get the OpenAPI schema generation to work. See new comments for a details.
2024-03-01 10:42:33 +11:00
731860c332 feat(nodes): JIT graph nodes validation
We use pydantic to validate a union of valid invocations when instantiating a graph.

Previously, we constructed the union while creating the `Graph` class. This introduces a dependency on the order of imports.

For example, consider a setup where we have 3 invocations in the app:

- Python executes the module where `FirstInvocation` is defined, registering `FirstInvocation`.
- Python executes the module where `SecondInvocation` is defined, registering `SecondInvocation`.
- Python executes the module where `Graph` is defined. A union of invocations is created and used to define the `Graph.nodes` field. The union contains `FirstInvocation` and `SecondInvocation`.
- Python executes the module where `ThirdInvocation` is defined, registering `ThirdInvocation`.
- A graph is created that includes `ThirdInvocation`. Pydantic validates the graph using the union, which does not know about `ThirdInvocation`, raising a `ValidationError` about an unknown invocation type.

This scenario has been particularly problematic in tests, where we may create invocations dynamically. The test files have to be structured in such a way that the imports happen in the right order. It's a major pain.

This PR refactors the validation of graph nodes to resolve this issue:

- `BaseInvocation` gets a new method `get_typeadapter`. This builds a pydantic `TypeAdapter` for the union of all registered invocations, caching it after the first call.
- `Graph.nodes`'s type is widened to `dict[str, BaseInvocation]`. This actually is a nice bonus, because we get better type hints whenever we reference `some_graph.nodes`.
- A "plain" field validator takes over the validation logic for `Graph.nodes`. "Plain" validators totally override pydantic's own validation logic. The validator grabs the `TypeAdapter` from `BaseInvocation`, then validates each node with it. The validation is identical to the previous implementation - we get the same errors.

`BaseInvocationOutput` gets the same treatment.
2024-03-01 10:42:33 +11:00
af2117dc0c remove errant def that was crashing invokeai-configure 2024-03-01 10:42:33 +11:00
1242cb4f85 one more redundant RGB convert removed 2024-03-01 10:42:33 +11:00
cd070d8be9 chore: ruff formatting 2024-03-01 10:42:33 +11:00
56ac2104e3 chore(invocations): remove redundant RGB conversions 2024-03-01 10:42:33 +11:00
965867151b chore(invocations): use IMAGE_MODES constant literal 2024-03-01 10:42:33 +11:00
2d007ce532 fix: removed custom module 2024-03-01 10:42:33 +11:00
92394ab751 fix(nodes): canny preprocessor uses RGBA again 2024-03-01 10:42:33 +11:00
43d94c8108 feat(nodes): format option for get_image method
Also default CNet preprocessors to "RGB"
2024-03-01 10:42:33 +11:00
fc20822595 fix: Alpha channel causing issue with DW Processor 2024-03-01 10:42:33 +11:00
5a3195f757 final tidying before marking PR as ready for review
- Replace AnyModelLoader with ModelLoaderRegistry
- Fix type check errors in multiple files
- Remove apparently unneeded `get_model_config_enum()` method from model manager
- Remove last vestiges of old model manager
- Updated tests and documentation

resolve conflict with seamless.py
2024-03-01 10:42:33 +11:00
5d612ec095 Tidy names and locations of modules
- Rename old "model_management" directory to "model_management_OLD" in order to catch
  dangling references to original model manager.
- Caught and fixed most dangling references (still checking)
- Rename lora, textual_inversion and model_patcher modules
- Introduce a RawModel base class to simplfy the Union returned by the
  model loaders.
- Tidy up the model manager 2-related tests. Add useful fixtures, and
  a finalizer to the queue and installer fixtures that will stop the
  services and release threads.
2024-03-01 10:42:33 +11:00
996eb96b4e Fix issues identified during PR review by RyanjDick and brandonrising
- ModelMetadataStoreService is now injected into ModelRecordStoreService
  (these two services are really joined at the hip, and should someday be merged)
- ModelRecordStoreService is now injected into ModelManagerService
- Reduced timeout value for the various installer and download wait*() methods
- Introduced a Mock modelmanager for testing
- Removed bare print() statement with _logger in the install helper backend.
- Removed unused code from model loader init file
- Made `locker` a private variable in the `LoadedModel` object.
- Fixed up model merge frontend (will be deprecated anyway!)
2024-03-01 10:42:33 +11:00
f1597bd6da chore(ui): lint 2024-03-01 10:42:33 +11:00
e50b76571a feat(ui): fix main model & control adapter model selects 2024-03-01 10:42:33 +11:00
db363b5178 refactor(ui): url builders for each router
The MM2 router is at `api/v2/models`. URL builder utils make this a bit easier to manage.
2024-03-01 10:42:33 +11:00
dab939f7d1 feat(ui): update model identifier to be key (wip)
- Update most model identifiers to be `{key: string}` instead of name/base/type. Doesn't change the model select components yet.
- Update model _parameters_, stored in redux, to be `{key: string, base: BaseModel}` - we need to store the base model to be able to check model compatibility. May want to store the whole config? Not sure...
2024-03-01 10:42:33 +11:00
6df3c450e8 fix(nodes): fix t2i adapter model loading 2024-03-01 10:42:33 +11:00
b7ba65fef4 fix(ui): update model types 2024-03-01 10:42:33 +11:00
fc107ed711 tests(ui): add type tests 2024-03-01 10:42:33 +11:00
cb804e75ed tests(ui): enable vitest type testing
This is useful for the zod schemas and types we have created to match the backend.
2024-03-01 10:42:33 +11:00
7996d43af9 chore(ui): typegen 2024-03-01 10:42:33 +11:00
fab30b5a11 feat(ui): export components type 2024-03-01 10:42:33 +11:00
651ac56b2c fix(ui): fix type issues 2024-03-01 10:42:33 +11:00
68f53460f0 chore: lint 2024-03-01 10:42:33 +11:00
c80987eb8a chore: ruff 2024-03-01 10:42:33 +11:00
539570cc7a feat(nodes): update invocation context for mm2, update nodes model usage 2024-03-01 10:42:33 +11:00
88d6de4101 Raise InvalidModelConfigException when unable to detect load class in ModelLoader 2024-03-01 10:42:33 +11:00
4c6e34b216 Update _get_hf_load_class to support clipvision models 2024-03-01 10:42:33 +11:00
262cbaacdd References to context.services.model_manager.store.get_model can only accept keys, remove invalid assertion 2024-03-01 10:42:33 +11:00
35e8a33dfd Remove references to model_records service, change submodel property on ModelInfo to submodel_type to support new params in model manager 2024-03-01 10:42:33 +11:00
b0835db47d improve swagger documentation 2024-03-01 10:42:33 +11:00
3e330d7d9d fix a number of typechecking errors 2024-03-01 10:42:33 +11:00
ff6e94f828 add route for model conversion from safetensors to diffusers
- Begin to add SwaggerUI documentation for AnyModelConfig and other
  discriminated Unions.
2024-03-01 10:42:33 +11:00
a2cc4047f9 add a JIT download_and_cache() call to the model installer 2024-03-01 10:42:33 +11:00
4027e845d4 add back the heuristic_import() method and extend repo_ids to arbitrary file paths 2024-03-01 10:42:33 +11:00
a23dedd2ee make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-03-01 10:42:33 +11:00
7956602b19 consolidate model manager parts into a single class 2024-03-01 10:42:33 +11:00
8db01ab1b3 probe for required encoder for IPAdapters and add to config 2024-03-01 10:42:33 +11:00
db340bc253 fix invokeai_configure script to work with new mm; rename CLIs 2024-03-01 10:42:33 +11:00
78ef946e01 BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings

- Finish implementation loaders for all models currently supported by
  InvokeAI.

- Move lora, textual_inversion, and model patching support into
  backend/embeddings.

- Restore support for model cache statistics collection (a little ugly,
  needs work).

- Fixed up invocations that load and patch models.

- Move seamless and silencewarnings utils into better location
2024-03-01 10:42:33 +11:00
5745ce9c7d Multiple refinements on loaders:
- Cache stat collection enabled.
- Implemented ONNX loading.
- Add ability to specify the repo version variant in installer CLI.
- If caller asks for a repo version that doesn't exist, will fall back
  to empty version rather than raising an error.
2024-03-01 10:42:33 +11:00
0d3addc69b added textual inversion and lora loaders 2024-03-01 10:42:33 +11:00
67eb715093 loaders for main, controlnet, ip-adapter, clipvision and t2i 2024-03-01 10:42:33 +11:00
8ba5360269 model loading and conversion implemented for vaes 2024-03-01 10:42:33 +11:00
b8e875bb73 add ram cache module and support files 2024-03-01 10:42:33 +11:00
010c4eae65 add concept of repo variant 2024-03-01 10:42:33 +11:00
95453a22b1 tests(ui): add parseFieldType.test.ts 2024-03-01 10:42:33 +11:00
30db708c4f feat(ui): add more types of FieldParseError
Unfortunately you cannot test for both a specific type of error and match its message. Splitting the error classes makes it easier to test expected error conditions.
2024-03-01 10:42:33 +11:00
fe27af461a feat(ui): add vitest
- Add vitest.
- Consolidate vite configs into single file (easier to config everything based on env for testing)
2024-03-01 10:42:33 +11:00
f8525837b2 feat(ui): workflow schema v3 (WIP)
The changes aim to deduplicate data between workflows and node templates, decoupling workflows from internal implementation details. A good amount of data that was needlessly duplicated from the node template to the workflow is removed.

These changes substantially reduce the file size of workflows (and therefore the images with embedded workflows):

- Default T2I SD1.5 workflow JSON is reduced from 23.7kb (798 lines) to 10.9kb (407 lines).
- Default tiled upscale workflow JSON is reduced from 102.7kb (3341 lines) to 51.9kb (1774 lines).

The trade-off is that we need to reference node templates to get things like the field type and other things. In practice, this is a non-issue, because we need a node template to do anything with a node anyways.

- Field types are not included in the workflow. They are always pulled from the node templates.

The field type is now properly an internal implementation detail and we can change it as needed. Previously this would require a migration for the workflow itself. With the v3 schema, the structure of a field type is an internal implementation detail that we are free to change as we see fit.

- Workflow nodes no long have an `outputs` property and there is no longer such a thing as a `FieldOutputInstance`. These are only on the templates.

These were never referenced at a time when we didn't also have the templates available, and there'd be no reason to do so.

- Node width and height are no longer stored in the node.

These weren't used. Also, per https://reactflow.dev/api-reference/types/node, we shouldn't be programmatically changing these properties. A future enhancement can properly add node resizing.

- `nodeTemplates` slice is merged back into `nodesSlice` as `nodes.templates`. Turns out it's just a hassle having these separate in separate slices.

- Workflow migration logic updated to support the new schema. V1 workflows migrate all the way to v3 now.

- Changes throughout the nodes code to accommodate the above changes.
2024-03-01 10:42:33 +11:00
5fbfed30ac chore(ui): regen types 2024-03-01 10:42:33 +11:00
7a2159beeb feat(nodes): add more missing exports to invocation_api
Crawled through a few custom nodes to figure out what I had missed.
2024-03-01 10:42:33 +11:00
25f64d5b19 chore(nodes): "SAMPLER_NAME_VALUES" -> "SCHEDULER_NAME_VALUES"
This was named inaccurately.
2024-03-01 10:42:33 +11:00
b845e890d1 chore(nodes): remove deprecation logic for nodes API 2024-03-01 10:42:33 +11:00
6d31bc5326 chore(nodes): export model-related objects from invocation_api 2024-03-01 10:42:33 +11:00
0f8af643d1 chore(backend): rename ModelInfo -> LoadedModelInfo
We have two different classes named `ModelInfo` which might need to be used by API consumers. We need to export both but have to deal with this naming collision.

The `ModelInfo` I've renamed here is the one that is returned when a model is loaded. It's the object least likely to be used by API consumers.
2024-03-01 10:42:33 +11:00
e0694a2856 feat(nodes): use LATENT_SCALE_FACTOR in primitives.py, noise.py
- LatentsOutput.build
- NoiseOutput.build
- Noise.width, Noise.height multiple_of
2024-03-01 10:42:33 +11:00
e5d8921cf2 feat(nodes): extract LATENT_SCALE_FACTOR to constants.py 2024-03-01 10:42:33 +11:00
fece935438 feat(nodes): use TemporaryDirectory to handle ephemeral storage in ObjectSerializerDisk
Replace `delete_on_startup: bool` & associated logic with `ephemeral: bool` and `TemporaryDirectory`.

The temp dir is created inside of `output_dir`. For example, if `output_dir` is `invokeai/outputs/tensors/`, then the temp dir might be `invokeai/outputs/tensors/tmpvj35ht7b/`.

The temp dir is cleaned up when the service is stopped, or when it is GC'd if not properly stopped.

In the event of a catastrophic crash where the temp files are not cleaned up, the user can delete the tempdir themselves.

This situation may not occur in normal use, but if you kill the process, python cannot clean up the temp dir itself. This includes running the app in a debugger and killing the debugger process - something I do relatively often.

Tests updated.
2024-03-01 10:42:33 +11:00
11f64dab38 tests: test ObjectSerializerDisk class name extraction 2024-03-01 10:42:33 +11:00
670f2f75e9 chore(nodes): update ObjectSerializerForwardCache docstring 2024-03-01 10:42:33 +11:00
66d0ec3f6c chore(nodes): fix pyright ignore 2024-03-01 10:42:33 +11:00
6087ace4f1 tidy(nodes): "latents" -> "obj" 2024-03-01 10:42:33 +11:00
a9b1aad3d7 tidy(nodes): do not store unnecessarily store invoker 2024-03-01 10:42:33 +11:00
9edb995647 feat(nodes): make delete on startup configurable for obj serializer
- The default is to not delete on startup - feels safer.
- The two services using this class _do_ delete on startup.
- The class has "ephemeral" removed from its name.
- Tests & app updated for this change.
2024-03-01 10:42:33 +11:00
091f4cb583 fix(nodes): use metadata/board_id if provided by user, overriding WithMetadata/WithBoard-provided values 2024-03-01 10:42:33 +11:00
1655061c96 tidy(nodes): clarify comment 2024-03-01 10:42:33 +11:00
220baae793 Revert "feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders"
This reverts commit ef18fc546560277302f3886e456da9a47e8edce0.
2024-03-01 10:42:33 +11:00
e08f16763b feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders 2024-03-01 10:42:33 +11:00
6d25789705 tests: fix broken tests 2024-03-01 10:42:33 +11:00
aff44c0e58 tidy(nodes): minor spelling correction 2024-03-01 10:42:33 +11:00
34d23366f4 tests: add object serializer tests
These test both object serializer and its forward cache implementation.
2024-03-01 10:42:33 +11:00
23de78ec9f feat(nodes): allow _delete_all in obj serializer to be called at any time
`_delete_all` logged how many items it deleted, and had to be called _after_ service start bc it needed access to logger.

Move the logger call to the startup method and return the the deleted stats from `_delete_all`. This lets `_delete_all` be called at any time.
2024-03-01 10:42:33 +11:00
507aeac8a5 tidy(nodes): remove object serializer on_saved
It's unused.
2024-03-01 10:42:33 +11:00
9f382419dc revert(nodes): revert making tensors/conditioning use item storage
Turns out they are just different enough in purpose that the implementations would be rather unintuitive. I've made a separate ObjectSerializer service to handle tensors and conditioning.

Refined the class a bit too.
2024-03-01 10:42:33 +11:00
73d871116c feat(nodes): support custom exception in ephemeral disk storage 2024-03-01 10:42:33 +11:00
ab58d34f9b feat(nodes): support custom save and load functions in ItemStorageEphemeralDisk 2024-03-01 10:42:33 +11:00
9cda62c2a7 feat(nodes): create helper function to generate the item ID 2024-03-01 10:42:33 +11:00
a50c7c1cd7 feat(nodes): use ItemStorageABC for tensors and conditioning
Turns out `ItemStorageABC` was almost identical to `PickleStorageBase`. Instead of maintaining separate classes, we can use `ItemStorageABC` for both.

There's only one change needed - the `ItemStorageABC.set` method must return the newly stored item's ID. This allows us to let the service handle the responsibility of naming the item, but still create the requisite output objects during node execution.

The naming implementation is improved here. It extracts the name of the generic and appends a UUID to that string when saving items.
2024-03-01 10:42:33 +11:00
ca09bd63a3 tidy(nodes): do not refer to files as latents in PickleStorageTorch (again) 2024-03-01 10:42:33 +11:00
c96f50cc9a feat(nodes): ItemStorageABC typevar no longer bound to pydantic.BaseModel
This bound is totally unnecessary. There's no requirement for any implementation of `ItemStorageABC` to work only on pydantic models.
2024-03-01 10:42:33 +11:00
de63e888d6 fix(nodes): add super init to PickleStorageTorch 2024-03-01 10:42:33 +11:00
5dd158a2d4 tidy(nodes): do not refer to files as latents in PickleStorageTorch 2024-03-01 10:42:33 +11:00
0710fb3fb0 feat(nodes): replace latents service with tensors and conditioning services
- New generic class `PickleStorageBase`, implements the same API as `LatentsStorageBase`, use for storing non-serializable data via pickling
- Implementation `PickleStorageTorch` uses `torch.save` and `torch.load`, same as `LatentsStorageDisk`
- Add `tensors: PickleStorageBase[torch.Tensor]` to `InvocationServices`
- Add `conditioning: PickleStorageBase[ConditioningFieldData]` to `InvocationServices`
- Remove `latents` service and all `LatentsStorage` classes
- Update `InvocationContext` and all usage of old `latents` service to use the new services/context wrapper methods
2024-03-01 10:42:33 +11:00
31db62ba99 tidy(nodes): delete onnx.py
It doesn't work and keeping it updated to prevent the app from starting was getting tedious. Deleted.
2024-03-01 10:42:33 +11:00
322a60f48f fix(nodes): rearrange fields.py to avoid needing forward refs 2024-03-01 10:42:33 +11:00
b386b1b8af tidy(nodes): remove unnecessary, shadowing class attr declarations 2024-03-01 10:42:33 +11:00
70034d26e2 feat(ui): revise graphs to not use LinearUIOutputInvocation
See this comment for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629

- Remove this now-unnecessary node from all graphs
- Update graphs' terminal image-outputting nodes' `is_intermediate` and `board` fields appropriately
- Add util function to prepare the `board` field, tidy the utils
- Update `socketInvocationComplete` listener to work correctly with this change

I've manually tested all graph permutations that were changed (I think this is all...) to ensure images go to the gallery as expected:
- ad-hoc upscaling
- t2i w/ sd1.5
- t2i w/ sd1.5 & hrf
- t2i w/ sdxl
- t2i w/ sdxl + refiner
- i2i w/ sd1.5
- i2i w/ sdxl
- i2i w/ sdxl + refiner
- canvas t2i w/ sd1.5
- canvas t2i w/ sdxl
- canvas t2i w/ sdxl + refiner
- canvas i2i w/ sd1.5
- canvas i2i w/ sdxl
- canvas i2i w/ sdxl + refiner
- canvas inpaint w/ sd1.5
- canvas inpaint w/ sdxl
- canvas inpaint w/ sdxl + refiner
- canvas outpaint w/ sd1.5
- canvas outpaint w/ sdxl
- canvas outpaint w/ sdxl + refiner
2024-03-01 10:42:33 +11:00
d60f1965d1 chore(ui): regen types 2024-03-01 10:42:33 +11:00
7fbdfbf9e5 feat(nodes): add WithBoard field helper class
This class works the same way as `WithMetadata` - it simply adds a `board` field to the node. The context wrapper function is able to pull the board id from this. This allows image-outputting nodes to get a board field "for free", and have their outputs automatically saved to it.

This is a breaking change for node authors who may have a field called `board`, because it makes `board` a reserved field name. I'll look into how to avoid this - maybe by naming this invoke-managed field `_board` to avoid collisions?

Supporting changes:
- `WithBoard` is added to all image-outputting nodes, giving them the ability to save to board.
- Unused, duplicate `WithMetadata` and `WithWorkflow` classes are deleted from `baseinvocation.py`. The "real" versions are in `fields.py`.
- Remove `LinearUIOutputInvocation`. Now that all nodes that output images also have a `board` field by default, this node is no longer necessary. See comment here for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629
- Without `LinearUIOutputInvocation`, the `ImagesInferface.update` method is no longer needed, and removed.

Note: This commit does not bump all node versions. I will ensure that is done correctly before merging the PR of which this commit is a part.

Note: A followup commit will implement the frontend changes to support this change.
2024-03-01 10:42:33 +11:00
e137071543 remove unused configdict import 2024-03-01 10:42:33 +11:00
5d2f70b3ef fix(ui): remove original l2i node in HRF graph 2024-03-01 10:42:33 +11:00
47d05fdd81 fix(nodes): do not freeze or cache config in context wrapper
- The config is already cached by the config class's `get_config()` method.
- The config mutates itself in its `root_path` property getter. Freezing the class makes any attempt to grab a path from the config error. Unfortunately this means we cannot easily freeze the class without fiddling with the inner workings of `InvokeAIAppConfig`, which is outside the scope here.
2024-03-01 10:42:33 +11:00
958b80acdd feat(nodes): context.data -> context._data 2024-03-01 10:42:33 +11:00
5730ae9b96 feat(nodes): context.__services -> context._services 2024-03-01 10:42:33 +11:00
60e2eff94d feat(nodes): cache invocation interface config 2024-03-01 10:42:33 +11:00
dcafbb9988 feat(nodes): do not hide services in invocation context interfaces 2024-03-01 10:42:33 +11:00
cc8d713c57 fix(nodes): restore missing context type annotations 2024-03-01 10:42:33 +11:00
59c77832d8 tests(nodes): fix mock InvocationContext 2024-03-01 10:42:33 +11:00
cbf22d8a80 chore(nodes): add comments for ConfigInterface 2024-03-01 10:42:33 +11:00
e11af7de9b feat(nodes): export more things from `invocation_api" 2024-03-01 10:42:33 +11:00
95dd5aad16 feat(nodes): add boards interface to invocation context 2024-03-01 10:42:33 +11:00
4ce21087d3 fix(nodes): restore type annotations for InvocationContext 2024-03-01 10:42:33 +11:00
281c334531 feat(nodes): do not freeze InvocationContextData, prevents it from being subclassesd 2024-03-01 10:42:33 +11:00
282b483d14 feat: tweak pyright config 2024-03-01 10:42:33 +11:00
a466f7a94b feat(nodes): create invocation_api.py
This is the public API for invocations.

Everything a custom node might need should be re-exported from this file.
2024-03-01 10:42:33 +11:00
05fb485d33 feat(nodes): move ConditioningFieldData to conditioning_data.py 2024-03-01 10:42:33 +11:00
6452c706e1 tests: fix missing arg for InvocationContext 2024-03-01 10:42:33 +11:00
f612a96afd feat(nodes): restore previous invocation context methods with deprecation warnings 2024-03-01 10:42:33 +11:00
9af0553652 chore: ruff 2024-03-01 10:42:33 +11:00
1616974b48 feat(nodes): tidy invocation_context.py, improve comments 2024-03-01 10:42:33 +11:00
ef27283569 tests: fix tests for new invocation context 2024-03-01 10:42:33 +11:00
a79a450e9d docs: update INVOCATIONS.md 2024-03-01 10:42:33 +11:00
8637c40661 feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.

Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
2024-03-01 10:42:33 +11:00
9bc2d09889 feat: add pyright config
I was having issues with mypy bother over- and under-reporting certain problems. I've added a pyright config.
2024-03-01 10:42:33 +11:00
3d98446d5d feat(nodes): restricts invocation context power
Creates a low-power `InvocationContext` with simplified methods and data.

See `invocation_context.py` for detailed comments.
2024-03-01 10:42:33 +11:00
992b02aa65 tidy(nodes): move all field things to fields.py
Unfortunately, this is necessary to prevent circular imports at runtime.
2024-03-01 10:42:33 +11:00
63ab5ff5a2 translationBot(ui): update translation (Russian)
Currently translated at 98.3% (1398 of 1422 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-02-29 23:27:36 +11:00
9a8a9c5848 translationBot(ui): update translation (Italian)
Currently translated at 98.0% (1441 of 1470 strings)

Co-authored-by: Samantha Morello <tildsart@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-02-29 23:27:36 +11:00
1a3ffb6e94 translationBot(ui): update translation (German)
Currently translated at 80.4% (1183 of 1470 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-02-29 23:27:36 +11:00
3a09bceea4 Update communityNodes.md
Updated description of metadata nodes
2024-02-26 14:20:09 -05:00
2ec6b51d8b translationBot(ui): update translation (Italian)
Currently translated at 97.2% (1430 of 1470 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-02-26 17:41:00 +11:00
B N
34b0ea20dc translationBot(ui): update translation (German)
Currently translated at 80.3% (1181 of 1470 strings)

translationBot(ui): update translation (German)

Currently translated at 80.1% (1178 of 1470 strings)

Co-authored-by: B N <berndnieschalk@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-02-26 17:41:00 +11:00
741 changed files with 26838 additions and 35041 deletions

View File

@ -0,0 +1,33 @@
name: install frontend dependencies
description: Installs frontend dependencies with pnpm, with caching
runs:
using: 'composite'
steps:
- name: setup node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: setup pnpm
uses: pnpm/action-setup@v2
with:
version: 8
run_install: false
- name: get pnpm store directory
shell: bash
run: |
echo "STORE_PATH=$(pnpm store path --silent)" >> $GITHUB_ENV
- name: setup cache
uses: actions/cache@v4
with:
path: ${{ env.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
shell: bash
working-directory: invokeai/frontend/web

28
.github/pr_labels.yml vendored
View File

@ -1,59 +1,59 @@
Root:
root:
- changed-files:
- any-glob-to-any-file: '*'
PythonDeps:
python-deps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
Python:
python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
PythonTests:
python-tests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
CICD:
ci-cd:
- changed-files:
- any-glob-to-any-file: .github/**
Docker:
docker:
- changed-files:
- any-glob-to-any-file: docker/**
Installer:
installer:
- changed-files:
- any-glob-to-any-file: installer/**
Documentation:
docs:
- changed-files:
- any-glob-to-any-file: docs/**
Invocations:
invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
Backend:
backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
Api:
api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
Services:
services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
FrontendDeps:
frontend-deps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
Frontend:
frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

View File

@ -11,7 +11,7 @@ on:
- 'docker/docker-entrypoint.sh'
- 'workflows/build-container.yml'
tags:
- 'v*'
- 'v*.*.*'
workflow_dispatch:
permissions:

45
.github/workflows/build-installer.yml vendored Normal file
View File

@ -0,0 +1,45 @@
# Builds and uploads the installer and python build artifacts.
name: build installer
on:
workflow_dispatch:
workflow_call:
jobs:
build-installer:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <2 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install pypa/build
run: pip install --upgrade build
- name: setup frontend
uses: ./.github/actions/install-frontend-deps
- name: create installer
id: create_installer
run: ./create_installer.sh
working-directory: installer
- name: upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.create_installer.outputs.DIST_PATH }}
- name: upload installer artifact
uses: actions/upload-artifact@v4
with:
name: ${{ steps.create_installer.outputs.INSTALLER_FILENAME }}
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}

68
.github/workflows/frontend-checks.yml vendored Normal file
View File

@ -0,0 +1,68 @@
# Runs frontend code quality checks.
#
# Checks for changes to frontend files before running the checks.
# When manually triggered or when called from another workflow, always runs the checks.
name: 'frontend checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-checks:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: ./.github/actions/install-frontend-deps
- name: tsc
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:tsc'
shell: bash
- name: dpdm
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:dpdm'
shell: bash
- name: eslint
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:eslint'
shell: bash
- name: prettier
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:prettier'
shell: bash
- name: knip
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm lint:knip'
shell: bash

48
.github/workflows/frontend-tests.yml vendored Normal file
View File

@ -0,0 +1,48 @@
# Runs frontend tests.
#
# Checks for changes to frontend files before running the tests.
# When manually triggered or called from another workflow, always runs the tests.
name: 'frontend tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-tests:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: ./.github/actions/install-frontend-deps
- name: vitest
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: 'pnpm test:no-watch'
shell: bash

View File

@ -1,6 +1,6 @@
name: "Pull Request Labeler"
name: 'label PRs'
on:
- pull_request_target
- pull_request_target
jobs:
labeler:
@ -9,8 +9,10 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: Checkout
- name: checkout
uses: actions/checkout@v4
- uses: actions/labeler@v5
- name: label PRs
uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml
configuration-path: .github/pr_labels.yml

View File

@ -1,43 +0,0 @@
name: Lint frontend
on:
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
push:
branches:
- 'main'
merge_group:
workflow_dispatch:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
lint-frontend:
if: github.event.pull_request.draft == false
runs-on: ubuntu-22.04
steps:
- name: Setup Node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: Checkout
uses: actions/checkout@v4
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install dependencies
run: 'pnpm install --prefer-frozen-lockfile'
- name: Typescript
run: 'pnpm run lint:tsc'
- name: Madge
run: 'pnpm run lint:madge'
- name: ESLint
run: 'pnpm run lint:eslint'
- name: Prettier
run: 'pnpm run lint:prettier'

View File

@ -1,51 +1,49 @@
name: mkdocs-material
# This is a mostly a copy-paste from https://github.com/squidfunk/mkdocs-material/blob/master/docs/publishing-your-site.md
name: mkdocs
on:
push:
branches:
- 'refs/heads/main'
- main
workflow_dispatch:
permissions:
contents: write
contents: write
jobs:
mkdocs-material:
deploy:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout sources
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: checkout
uses: actions/checkout@v4
- name: setup python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install ".[docs]"
- name: set cache id
run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV
- name: confirm buildability
run: |
python -m \
mkdocs build \
--clean \
--verbose
- name: use cache
uses: actions/cache@v4
with:
key: mkdocs-material-${{ env.cache_id }}
path: .cache
restore-keys: |
mkdocs-material-
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
run: |
python -m \
mkdocs gh-deploy \
--clean \
--force
- name: install dependencies
run: python -m pip install ".[docs]"
- name: build & deploy
run: mkdocs gh-deploy --force

View File

@ -1,67 +0,0 @@
name: PyPI Release
on:
workflow_dispatch:
inputs:
publish_package:
description: 'Publish build on PyPi? [true/false]'
required: true
default: 'false'
jobs:
build-and-release:
if: github.repository == 'invoke-ai/InvokeAI'
runs-on: ubuntu-22.04
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
TWINE_NON_INTERACTIVE: 1
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Setup Node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: '8.12.1'
- name: Install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
working-directory: invokeai/frontend/web
- name: Build frontend
run: pnpm run build
working-directory: invokeai/frontend/web
- name: Install python dependencies
run: pip install --upgrade build twine
- name: Build python package
run: python3 -m build
- name: Upload build as workflow artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: dist
- name: Check distribution
run: twine check dist/*
- name: Check PyPI versions
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
run: |
pip install --upgrade requests
python -c "\
import scripts.pypi_helper; \
EXISTS=scripts.pypi_helper.local_on_pypi(); \
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
- name: Publish build on PyPi
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != '' && github.event.inputs.publish_package == 'true'
run: twine upload dist/*

64
.github/workflows/python-checks.yml vendored Normal file
View File

@ -0,0 +1,64 @@
# Runs python code quality checks.
#
# Checks for changes to python files before running the checks.
# When manually triggered or called from another workflow, always runs the tests.
#
# TODO: Add mypy or pyright to the checks.
name: 'python checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
jobs:
python-checks:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: pip install ruff
shell: bash
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: ruff check --output-format=github .
shell: bash
- name: ruff format
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: ruff format --check .
shell: bash

94
.github/workflows/python-tests.yml vendored Normal file
View File

@ -0,0 +1,94 @@
# Runs python tests on a matrix of python versions and platforms.
#
# Checks for changes to python files before running the tests.
# When manually triggered or called from another workflow, always runs the tests.
name: 'python tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
workflow_call:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
strategy:
matrix:
python-version:
- '3.10'
- '3.11'
platform:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- platform: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- platform: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- platform: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: 'py${{ matrix.python-version }}: ${{ matrix.platform }}'
runs-on: ${{ matrix.os }}
timeout-minutes: 15 # expected run time: 2-6 min, depending on platform
env:
PIP_USE_PEP517: '1'
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ github.event_name != 'workflow_dispatch' && github.event_name != 'workflow_call' }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install dependencies
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install --editable=".[test]"
- name: run pytest
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || github.event_name == 'workflow_dispatch' || github.event_name == 'workflow_call' }}
run: pytest

96
.github/workflows/release.yml vendored Normal file
View File

@ -0,0 +1,96 @@
# Main release workflow. Triggered on tag push or manual trigger.
#
# - Runs all code checks and tests
# - Verifies the app version matches the tag version.
# - Builds the installer and build, uploading them as artifacts.
# - Publishes to TestPyPI and PyPI. Both are conditional on the previous steps passing and require a manual approval.
#
# See docs/RELEASE.md for more information on the release process.
name: release
on:
push:
tags:
- 'v*'
workflow_dispatch:
jobs:
check-version:
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- name: check python version
uses: samuelcolvin/check-python-version@v4
id: check-python-version
with:
version_file_path: invokeai/version/invokeai_version.py
frontend-checks:
uses: ./.github/workflows/frontend-checks.yml
frontend-tests:
uses: ./.github/workflows/frontend-tests.yml
python-checks:
uses: ./.github/workflows/python-checks.yml
python-tests:
uses: ./.github/workflows/python-tests.yml
build:
uses: ./.github/workflows/build-installer.yml
publish-testpypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: testpypi
url: https://test.pypi.org/p/invokeai
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
publish-pypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: pypi
url: https://pypi.org/p/invokeai
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1

View File

@ -1,24 +0,0 @@
name: style checks
on:
pull_request:
push:
branches: main
jobs:
ruff:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies with pip
run: |
pip install ruff
- run: ruff check --output-format=github .
- run: ruff format --check .

View File

@ -1,129 +0,0 @@
name: Test invoke.py pip
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
if: github.event.pull_request.draft == false
strategy:
matrix:
python-version:
# - '3.9'
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
env:
PIP_USE_PEP517: '1'
steps:
- name: Checkout sources
id: checkout-sources
uses: actions/checkout@v3
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v41
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: set test prompt to main branch validation
if: steps.changed-files.outputs.python_any_changed == 'true'
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
if: steps.changed-files.outputs.python_any_changed == 'true'
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install invokeai
if: steps.changed-files.outputs.python_any_changed == 'true'
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install
--editable=".[test]"
- name: run pytest
if: steps.changed-files.outputs.python_any_changed == 'true'
id: run-pytest
run: pytest
# - name: run invokeai-configure
# env:
# HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
# run: >
# invokeai-configure
# --yes
# --default_only
# --full-precision
# # can't use fp16 weights without a GPU
# - name: run invokeai
# id: run-invokeai
# env:
# # Set offline mode to make sure configure preloaded successfully.
# HF_HUB_OFFLINE: 1
# HF_DATASETS_OFFLINE: 1
# TRANSFORMERS_OFFLINE: 1
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# run: >
# invokeai
# --no-patchmatch
# --no-nsfw_checker
# --precision=float32
# --always_use_cpu
# --use_memory_db
# --outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
# --from_file ${{ env.TEST_PROMPTS }}
# - name: Archive results
# env:
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# uses: actions/upload-artifact@v3
# with:
# name: results
# path: ${{ env.INVOKEAI_OUTDIR }}

View File

@ -7,7 +7,7 @@ embeddedLanguageFormatting: auto
overrides:
- files: '*.md'
options:
proseWrap: always
proseWrap: preserve
printWidth: 80
parser: markdown
cursorOffset: -1

View File

@ -6,33 +6,45 @@ default: help
help:
@echo Developer commands:
@echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "test Run the unit tests."
@echo "frontend-install Install the pnpm modules needed for the front end"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
ruff check . --fix
ruff format .
ruff check . --fix
ruff format .
# Runs ruff, fixing all errors it can fix and formatting
ruff-unsafe:
ruff check . --fix --unsafe-fixes
ruff format .
ruff check . --fix --unsafe-fixes
ruff format .
# Runs mypy, using the config in pyproject.toml
mypy:
mypy scripts/invokeai-web.py
mypy scripts/invokeai-web.py
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
# (many files are ignored by the config, so this is useful for checking all files)
mypy-all:
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
# Run the unit tests
test:
pytest ./tests
# Install the pnpm modules needed for the front end
frontend-install:
rm -rf invokeai/frontend/web/node_modules
cd invokeai/frontend/web && pnpm install
# Build the frontend
frontend-build:
@ -42,6 +54,9 @@ frontend-build:
frontend-dev:
cd invokeai/frontend/web && pnpm dev
frontend-typegen:
cd invokeai/frontend/web && python ../../../scripts/generate_openapi_schema.py | pnpm typegen
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh

142
docs/RELEASE.md Normal file
View File

@ -0,0 +1,142 @@
# Release Process
The app is published in twice, in different build formats.
- A [PyPI] distribution. This includes both a source distribution and built distribution (a wheel). Users install with `pip install invokeai`. The updater uses this build.
- An installer on the [InvokeAI Releases Page]. This is a zip file with install scripts and a wheel. This is only used for new installs.
## General Prep
Make a developer call-out for PRs to merge. Merge and test things out.
While the release workflow does not include end-to-end tests, it does pause before publishing so you can download and test the final build.
## Release Workflow
The `release.yml` workflow runs a number of jobs to handle code checks, tests, build and publish on PyPI.
It is triggered on **tag push**, when the tag matches `v*`. It doesn't matter if you've prepped a release branch like `release/v3.5.0` or are releasing from `main` - it works the same.
> Because commits are reference-counted, it is safe to create a release branch, tag it, let the workflow run, then delete the branch. So long as the tag exists, that commit will exist.
### Triggering the Workflow
Run `make tag-release` to tag the current commit and kick off the workflow.
The release may also be dispatched [manually].
### Workflow Jobs and Process
The workflow consists of a number of concurrently-run jobs, and two final publish jobs.
The publish jobs require manual approval and are only run if the other jobs succeed.
#### `check-version` Job
This job checks that the git ref matches the app version. It matches the ref against the `__version__` variable in `invokeai/version/invokeai_version.py`.
When the workflow is triggered by tag push, the ref is the tag. If the workflow is run manually, the ref is the target selected from the **Use workflow from** dropdown.
This job uses [samuelcolvin/check-python-version].
> Any valid [version specifier] works, so long as the tag matches the version. The release workflow works exactly the same for `RC`, `post`, `dev`, etc.
#### Check and Test Jobs
- **`python-tests`**: runs `pytest` on matrix of platforms
- **`python-checks`**: runs `ruff` (format and lint)
- **`frontend-tests`**: runs `vitest`
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
> **TODO** We should add `mypy` or `pyright` to the **`check-python`** job.
> **TODO** We should add an end-to-end test job that generates an image.
#### `build-installer` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `installer/create_installer.sh` and uploads two artifacts:
- **`dist`**: the python distribution, to be published on PyPI
- **`InvokeAI-installer-${VERSION}.zip`**: the installer to be included in the GitHub release
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval.
A maintainer should go to the **Summary** tab of the workflow, download the installer and test it. Ensure the app loads and generates.
> The same wheel file is bundled in the installer and in the `dist` artifact, which is uploaded to PyPI. You should end up with the exactly the same installation of the `invokeai` package from any of these methods.
#### PyPI Publish Jobs
The publish jobs will run if any of the previous jobs fail.
They use [GitHub environments], which are configured as [trusted publishers] on PyPI.
Both jobs require a maintainer to approve them from the workflow's **Summary** tab.
- Click the **Review deployments** button
- Select the environment (either `testpypi` or `pypi`)
- Click **Approve and deploy**
> **If the version already exists on PyPI, the publish jobs will fail.** PyPI only allows a given version to be published once - you cannot change it. If version published on PyPI has a problem, you'll need to "fail forward" by bumping the app version and publishing a followup release.
#### `publish-testpypi` Job
Publishes the distribution on the [Test PyPI] index, using the `testpypi` GitHub environment.
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release.
If approved and successful, you could try out the test release like this:
```sh
# Create a new virtual environment
python -m venv ~/.test-invokeai-dist --prompt test-invokeai-dist
# Install the distribution from Test PyPI
pip install --index-url https://test.pypi.org/simple/ invokeai
# Run and test the app
invokeai-web
# Cleanup
deactivate
rm -rf ~/.test-invokeai-dist
```
#### `publish-pypi` Job
Publishes the distribution on the production PyPI index, using the `pypi` GitHub environment.
## Publish the GitHub Release with installer
Once the release is published to PyPI, it's time to publish the GitHub release.
1. [Draft a new release] on GitHub, choosing the tag that triggered the release.
2. Write the release notes, describing important changes. The **Generate release notes** button automatically inserts the changelog and new contributors, and you can copy/paste the intro from previous releases.
3. Upload the zip file created in **`build`** job into the Assets section of the release notes. You can also upload the zip into the body of the release notes, since it can be hard for users to find the Assets section.
4. Check the **Set as a pre-release** and **Create a discussion for this release** checkboxes at the bottom of the release page.
5. Publish the pre-release.
6. Announce the pre-release in Discord.
> **TODO** Workflows can create a GitHub release from a template and upload release assets. One popular action to handle this is [ncipollo/release-action]. A future enhancement to the release process could set this up.
## Manual Build
The `build installer` workflow can be dispatched manually. This is useful to test the installer for a given branch or tag.
No checks are run, it just builds.
## Manual Release
The `release` workflow can be dispatched manually. You must dispatch the workflow from the right tag, else it will fail the version check.
This functionality is available as a fallback in case something goes wonky. Typically, releases should be triggered via tag push as described above.
[InvokeAI Releases Page]: https://github.com/invoke-ai/InvokeAI/releases
[PyPI]: https://pypi.org/
[Draft a new release]: https://github.com/invoke-ai/InvokeAI/releases/new
[Test PyPI]: https://test.pypi.org/
[version specifier]: https://packaging.python.org/en/latest/specifications/version-specifiers/
[ncipollo/release-action]: https://github.com/ncipollo/release-action
[GitHub environments]: https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version
[manually]: #manual-release

View File

@ -9,11 +9,15 @@ complex functionality.
## Invocations Directory
InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These can be used as examples to create your own nodes.
InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These
can be used as examples to create your own nodes.
New nodes should be added to a subfolder in `nodes` direction found at the root level of the InvokeAI installation location. Nodes added to this folder will be able to be used upon application startup.
New nodes should be added to a subfolder in `nodes` direction found at the root
level of the InvokeAI installation location. Nodes added to this folder will be
able to be used upon application startup.
Example `nodes` subfolder structure:
Example `nodes` subfolder structure:
```py
├── __init__.py # Invoke-managed custom node loader
@ -30,14 +34,14 @@ Example `nodes` subfolder structure:
└── fancy_node.py
```
Each node folder must have an `__init__.py` file that imports its nodes. Only nodes imported in the `__init__.py` file are loaded.
See the README in the nodes folder for more examples:
Each node folder must have an `__init__.py` file that imports its nodes. Only
nodes imported in the `__init__.py` file are loaded. See the README in the nodes
folder for more examples:
```py
from .cool_node import CoolInvocation
```
## Creating A New Invocation
In order to understand the process of creating a new Invocation, let us actually
@ -131,7 +135,6 @@ from invokeai.app.invocations.primitives import ImageField
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -167,7 +170,6 @@ from invokeai.app.invocations.primitives import ImageField
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -197,7 +199,6 @@ from invokeai.app.invocations.image import ImageOutput
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -229,30 +230,17 @@ class ResizeInvocation(BaseInvocation):
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the image using InvokeAI's predefined Image Service. Returns the PIL image.
image = context.services.images.get_pil_image(self.image.image_name)
# Load the input image as a PIL image
image = context.images.get_pil(self.image.image_name)
# Resizing the image
# Resize the image
resized_image = image.resize((self.width, self.height))
# Save the image using InvokeAI's predefined Image Service. Returns the prepared PIL image.
output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
# Save the image
image_dto = context.images.save(image=resized_image)
# Returning the Image
return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
),
width=output_image.width,
height=output_image.height,
)
# Return an ImageOutput
return ImageOutput.build(image_dto)
```
**Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a
@ -343,27 +331,25 @@ class ImageColorStringOutput(BaseInvocationOutput):
That's all there is to it.
<!-- TODO: DANGER - we probably do not want people to create their own field types, because this requires a lot of work on the frontend to accomodate.
### Custom Input Fields
Now that you know how to create your own Invocations, let us dive into slightly
more advanced topics.
While creating your own Invocations, you might run into a scenario where the
existing input types in InvokeAI do not meet your requirements. In such cases,
you can create your own input types.
existing fields in InvokeAI do not meet your requirements. In such cases, you
can create your own fields.
Let us create one as an example. Let us say we want to create a color input
field that represents a color code. But before we start on that here are some
general good practices to keep in mind.
**Good Practices**
### Best Practices
- There is no naming convention for input fields but we highly recommend that
you name it something appropriate like `ColorField`.
- It is not mandatory but it is heavily recommended to add a relevant
`docstring` to describe your input field.
`docstring` to describe your field.
- Keep your field in the same file as the Invocation that it is made for or in
another file where it is relevant.
@ -378,10 +364,13 @@ class ColorField(BaseModel):
pass
```
Perfect. Now let us create our custom inputs for our field. This is exactly
similar how you created input fields for your Invocation. All the same rules
apply. Let us create four fields representing the _red(r)_, _blue(b)_,
_green(g)_ and _alpha(a)_ channel of the color.
Perfect. Now let us create the properties for our field. This is similar to how
you created input fields for your Invocation. All the same rules apply. Let us
create four fields representing the _red(r)_, _blue(b)_, _green(g)_ and
_alpha(a)_ channel of the color.
> Technically, the properties are _also_ called fields - but in this case, it
> refers to a `pydantic` field.
```python
class ColorField(BaseModel):
@ -396,25 +385,11 @@ That's it. We now have a new input field type that we can use in our Invocations
like this.
```python
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
```
### Custom Components For Frontend
### Using the custom field
Every backend input type should have a corresponding frontend component so the
UI knows what to render when you use a particular field type.
When you start the UI, your custom field will be automatically recognized.
If you are using existing field types, we already have components for those. So
you don't have to worry about creating anything new. But this might not always
be the case. Sometimes you might want to create new field types and have the
frontend UI deal with it in a different way.
This is where we venture into the world of React and Javascript and create our
own new components for our Invocations. Do not fear the world of JS. It's
actually pretty straightforward.
Let us create a new component for our custom color field we created above. When
we use a color field, let us say we want the UI to display a color picker for
the user to pick from rather than entering values. That is what we will build
now.
-->
Custom fields only support connection inputs in the Workflow Editor.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,45 @@
# Invocation API
Each invocation's `invoke` method is provided a single arg - the Invocation
Context.
This object provides access to various methods, used to interact with the
application. Loading and saving images, logging messages, etc.
!!! warning ""
This API may shift slightly until the release of v4.0.0 as we work through a few final updates to the Model Manager.
```py
class MyInvocation(BaseInvocation):
...
def invoke(self, context: InvocationContext) -> ImageOutput:
image_pil = context.images.get_pil(image_name)
# Do something to the image
image_dto = context.images.save(image_pil)
# Log a message
context.logger.info(f"Did something cool, image saved!")
...
```
<!-- prettier-ignore-start -->
::: invokeai.app.services.shared.invocation_context.InvocationContext
options:
members: false
::: invokeai.app.services.shared.invocation_context.ImagesInterface
::: invokeai.app.services.shared.invocation_context.TensorsInterface
::: invokeai.app.services.shared.invocation_context.ConditioningInterface
::: invokeai.app.services.shared.invocation_context.ModelsInterface
::: invokeai.app.services.shared.invocation_context.LoggerInterface
::: invokeai.app.services.shared.invocation_context.ConfigInterface
::: invokeai.app.services.shared.invocation_context.UtilInterface
::: invokeai.app.services.shared.invocation_context.BoardsInterface
<!-- prettier-ignore-end -->

View File

@ -0,0 +1,148 @@
# Invoke v4.0.0 Nodes API Migration guide
Invoke v4.0.0 is versioned as such due to breaking changes to the API utilized
by nodes, both core and custom.
## Motivation
Prior to v4.0.0, the `invokeai` python package has not be set up to be utilized
as a library. That is to say, it didn't have any explicitly public API, and node
authors had to work with the unstable internal application API.
v4.0.0 introduces a stable public API for nodes.
## Changes
There are two node-author-facing changes:
1. Import Paths
1. Invocation Context API
### Import Paths
All public objects are now exported from `invokeai.invocation_api`:
```py
# Old
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InputField,
InvocationContext,
invocation,
)
from invokeai.app.invocations.primitives import ImageField
# New
from invokeai.invocation_api import (
BaseInvocation,
ImageField,
InputField,
InvocationContext,
invocation,
)
```
It's possible that we've missed some classes you need in your node. Please let
us know if that's the case.
### Invocation Context API
Most nodes utilize the Invocation Context, an object that is passed to the
`invoke` that provides access to data and services a node may need.
Until now, that object and the services it exposed were internal. Exposing them
to nodes means that changes to our internal implementation could break nodes.
The methods on the services are also often fairly complicated and allowed nodes
to footgun.
In v4.0.0, this object has been refactored to be much simpler.
See [INVOCATION_API](./INVOCATION_API.md) for full details of the API.
!!! warning ""
This API may shift slightly until the release of v4.0.0 as we work through a few final updates to the Model Manager.
#### Improved Service Methods
The biggest offender was the image save method:
```py
# Old
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
# New
image_dto = context.images.save(image=image)
```
Other methods are simplified, or enhanced with additional functionality:
```py
# Old
image = context.services.images.get_pil_image(image_name)
# New
image = context.images.get_pil(image_name)
image_cmyk = context.images.get_pil(image_name, "CMYK")
```
We also had some typing issues around tensors:
```py
# Old
# `latents` typed as `torch.Tensor`, but could be `ConditioningFieldData`
latents = context.services.latents.get(self.latents.latents_name)
# `data` typed as `torch.Tenssor,` but could be `ConditioningFieldData`
context.services.latents.save(latents_name, data)
# New - separate methods for tensors and conditioning data w/ correct typing
# Also, the service generates the names
tensor_name = context.tensors.save(tensor)
tensor = context.tensors.load(tensor_name)
# For conditioning
cond_name = context.conditioning.save(cond_data)
cond_data = context.conditioning.load(cond_name)
```
#### Output Construction
Core Outputs have builder functions right on them - no need to manually
construct these objects, or use an extra utility:
```py
# Old
image_output = ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
latents_output = build_latents_output(latents_name=name, latents=latents, seed=None)
noise_output = NoiseOutput(
noise=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
cond_output = ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
# New
image_output = ImageOutput.build(image_dto)
latents_output = LatentsOutput.build(latents_name=name, latents=noise, seed=self.seed)
noise_output = NoiseOutput.build(latents_name=name, latents=noise, seed=self.seed)
cond_output = ConditioningOutput.build(conditioning_name)
```
You can still create the objects using constructors if you want, but we suggest
using the builder methods.

View File

@ -354,12 +354,21 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Description:** A set of nodes for Metadata. Collect Metadata from within an `iterate` node & extract metadata from an image.
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node.
- `Metadata From Image` - Provides Metadata from an image.
- `Metadata To String` - Extracts a String value of a label from metadata.
- `Metadata To Integer` - Extracts an Integer value of a label from metadata.
- `Metadata To Float` - Extracts a Float value of a label from metadata.
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata.
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node
- `Metadata From Image` - Provides Metadata from an image
- `Metadata To String` - Extracts a String value of a label from metadata
- `Metadata To Integer` - Extracts an Integer value of a label from metadata
- `Metadata To Float` - Extracts a Float value of a label from metadata
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata
- `Metadata To Bool` - Extracts Bool types from metadata
- `Metadata To Model` - Extracts model types from metadata
- `Metadata To SDXL Model` - Extracts SDXL model types from metadata
- `Metadata To LoRAs` - Extracts Loras from metadata.
- `Metadata To SDXL LoRAs` - Extracts SDXL Loras from metadata
- `Metadata To ControlNets` - Extracts ControNets from metadata
- `Metadata To IP-Adapters` - Extracts IP-Adapters from metadata
- `Metadata To T2I-Adapters` - Extracts T2I-Adapters from metadata
- `Denoise Latents + Metadata` - This is an inherited version of the existing `Denoise Latents` node but with a metadata input and output.
**Node Link:** https://github.com/skunkworxdark/metadata-linked-nodes

View File

@ -19,6 +19,8 @@ their descriptions.
| Conditioning Primitive | A conditioning tensor primitive value |
| Content Shuffle Processor | Applies content shuffle processing to image |
| ControlNet | Collects ControlNet info to pass to other nodes |
| Create Denoise Mask | Converts a greyscale or transparency image into a mask for denoising. |
| Create Gradient Mask | Creates a mask for Gradient ("soft", "differential") inpainting that gradually expands during denoising. Improves edge coherence. |
| Denoise Latents | Denoises noisy latents to decodable images |
| Divide Integers | Divides two numbers |
| Dynamic Prompt | Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator |

View File

@ -1,5 +0,0 @@
mkdocs
mkdocs-material>=8, <9
mkdocs-git-revision-date-localized-plugin
mkdocs-redirects==1.2.0

View File

@ -1,5 +0,0 @@
:root {
--md-primary-fg-color: #35A4DB;
--md-primary-fg-color--light: #35A4DB;
--md-primary-fg-color--dark: #35A4DB;
}

View File

@ -2,22 +2,18 @@
set -e
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function is_bin_in_path {
builtin type -P "$1" &>/dev/null
}
BCYAN="\033[1;36m"
BYELLOW="\033[1;33m"
BGREEN="\033[1;32m"
BRED="\033[1;31m"
RED="\033[31m"
RESET="\033[0m"
function git_show {
git show -s --format=oneline --abbrev-commit "$1" | cat
}
if [[ -v "VIRTUAL_ENV" ]]; then
if [[ ! -z "${VIRTUAL_ENV}" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
@ -26,31 +22,63 @@ fi
cd "$(dirname "$0")"
echo
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
echo
# Some machines only have `python3` in PATH, others have `python` - make an alias.
# We can use a function to approximate an alias within a non-interactive shell.
if ! is_bin_in_path python && is_bin_in_path python3; then
function python {
python3 "$@"
}
fi
VERSION=$(
cd ..
python -c "from invokeai.version import __version__ as version; print(version)"
python3 -c "from invokeai.version import __version__ as version; print(version)"
)
PATCH=""
VERSION="v${VERSION}${PATCH}"
VERSION="v${VERSION}"
if [[ ! -z ${CI} ]]; then
echo
echo -e "${BCYAN}CI environment detected${RESET}"
echo
else
echo
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
echo
fi
echo -e "${BGREEN}HEAD${RESET}:"
git_show HEAD
echo
# ---------------------- FRONTEND ----------------------
pushd ../invokeai/frontend/web >/dev/null
echo "Installing frontend dependencies..."
echo
pnpm i --frozen-lockfile
echo
if [[ ! -z ${CI} ]]; then
echo "Building frontend without checks..."
# In CI, we have already done the frontend checks and can just build
pnpm vite build
else
echo "Running checks and building frontend..."
# This runs all the frontend checks and builds
pnpm build
fi
echo
popd
# ---------------------- BACKEND ----------------------
echo
echo "Building wheel..."
echo
# install the 'build' package in the user site packages, if needed
# could be improved by using a temporary venv, but it's tiny and harmless
if [[ $(python3 -c 'from importlib.util import find_spec; print(find_spec("build") is None)') == "True" ]]; then
pip install --user build
fi
rm -rf ../build
python3 -m build --outdir dist/ ../.
# ----------------------
echo
@ -78,10 +106,28 @@ chmod a+x InvokeAI-Installer/install.sh
cp install.bat.in InvokeAI-Installer/install.bat
cp WinLongPathsEnabled.reg InvokeAI-Installer/
# Zip everything up
zip -r InvokeAI-installer-$VERSION.zip InvokeAI-Installer
FILENAME=InvokeAI-installer-$VERSION.zip
# clean up
rm -rf InvokeAI-Installer tmp dist ../invokeai/frontend/web/dist/
# Zip everything up
zip -r ${FILENAME} InvokeAI-Installer
echo
echo -e "${BGREEN}Built installer: ./${FILENAME}${RESET}"
echo -e "${BGREEN}Built PyPi distribution: ./dist${RESET}"
# clean up, but only if we are not in a github action
if [[ -z ${CI} ]]; then
echo
echo "Cleaning up intermediate build files..."
rm -rf InvokeAI-Installer tmp ../invokeai/frontend/web/dist/
fi
if [[ ! -z ${CI} ]]; then
echo
echo "Setting GitHub action outputs..."
echo "INSTALLER_FILENAME=${FILENAME}" >>$GITHUB_OUTPUT
echo "INSTALLER_PATH=installer/${FILENAME}" >>$GITHUB_OUTPUT
echo "DIST_PATH=installer/dist/" >>$GITHUB_OUTPUT
fi
exit 0

View File

@ -2,12 +2,12 @@
set -e
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
BCYAN="\033[1;36m"
BYELLOW="\033[1;33m"
BGREEN="\033[1;32m"
BRED="\033[1;31m"
RED="\033[31m"
RESET="\033[0m"
function does_tag_exist {
git rev-parse --quiet --verify "refs/tags/$1" >/dev/null
@ -23,49 +23,40 @@ function git_show {
VERSION=$(
cd ..
python -c "from invokeai.version import __version__ as version; print(version)"
python3 -c "from invokeai.version import __version__ as version; print(version)"
)
PATCH=""
MAJOR_VERSION=$(echo $VERSION | sed 's/\..*$//')
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v${MAJOR_VERSION}-latest"
if does_tag_exist $VERSION; then
echo -e "${BCYAN}${VERSION}${RESET} already exists:"
git_show_ref tags/$VERSION
echo
fi
if does_tag_exist $LATEST_TAG; then
echo -e "${BCYAN}${LATEST_TAG}${RESET} already exists:"
git_show_ref tags/$LATEST_TAG
echo
fi
echo -e "${BGREEN}HEAD${RESET}:"
git_show
echo
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} and ${BCYAN}${LATEST_TAG}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on remote${RESET}? "
echo -e "${BGREEN}git remote -v${RESET}:"
git remote -v
echo
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on origin remote${RESET}? "
read -e -p 'y/n [n]: ' input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
echo
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on remote..."
git push --delete origin $VERSION
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on origin remote..."
git push origin :refs/tags/$VERSION
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} locally..."
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} on locally..."
if ! git tag -fa $VERSION; then
echo "Existing/invalid tag"
exit -1
fi
echo -e "Deleting ${BCYAN}${LATEST_TAG}${RESET} tag on remote..."
git push --delete origin $LATEST_TAG
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${LATEST_TAG}${RESET} locally..."
git tag -fa $LATEST_TAG
echo -e "Pushing updated tags to remote..."
echo -e "Pushing updated tags to origin remote..."
git push origin --tags
fi
exit 0

View File

@ -2,9 +2,12 @@
from logging import Logger
from invokeai.app.services.item_storage.item_storage_memory import ItemStorageMemory
import torch
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.model_manager.metadata import ModelMetadataStore
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
@ -12,26 +15,22 @@ from ..services.board_image_records.board_image_records_sqlite import SqliteBoar
from ..services.board_images.board_images_default import BoardImagesService
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from ..services.boards.boards_default import BoardService
from ..services.bulk_download.bulk_download_default import BulkDownloadService
from ..services.config import InvokeAIAppConfig
from ..services.download import DownloadQueueService
from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from ..services.invocation_processor.invocation_processor_default import DefaultInvocationProcessor
from ..services.invocation_queue.invocation_queue_memory import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
from ..services.model_install import ModelInstallService
from ..services.model_images.model_images_default import ModelImageFileStorageDisk
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.shared.graph import GraphExecutionState
from ..services.urls.urls_default import LocalUrlService
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from .events import FastAPIEventService
@ -68,8 +67,13 @@ class ApiDependencies:
logger.debug(f"Internet connectivity is {config.internet_available}")
output_folder = config.output_path
if output_folder is None:
raise ValueError("Output folder is not set")
image_files = DiskImageFileStorage(f"{output_folder}/images")
model_images_folder = config.models_path
db = init_db(config=config, logger=logger, image_files=image_files)
configuration = config
@ -80,26 +84,26 @@ class ApiDependencies:
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id)
graph_execution_manager = ItemStorageMemory[GraphExecutionState]()
bulk_download = BulkDownloadService()
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
model_manager = ModelManagerService(config, logger)
model_record_service = ModelRecordServiceSQL(db=db)
tensors = ObjectSerializerForwardCache(
ObjectSerializerDisk[torch.Tensor](output_folder / "tensors", ephemeral=True)
)
conditioning = ObjectSerializerForwardCache(
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
)
download_queue_service = DownloadQueueService(event_bus=events)
metadata_store = ModelMetadataStore(db=db)
model_install_service = ModelInstallService(
app_config=config,
record_store=model_record_service,
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
model_manager = ModelManagerService.build_model_manager(
app_config=configuration,
model_record_service=ModelRecordServiceSQL(db=db),
download_queue=download_queue_service,
metadata_store=metadata_store,
event_bus=events,
events=events,
)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
processor = DefaultInvocationProcessor()
queue = MemoryInvocationQueue()
session_processor = DefaultSessionProcessor()
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService()
@ -110,27 +114,25 @@ class ApiDependencies:
board_images=board_images,
board_records=board_records,
boards=boards,
bulk_download=bulk_download,
configuration=configuration,
events=events,
graph_execution_manager=graph_execution_manager,
image_files=image_files,
image_records=image_records,
images=images,
invocation_cache=invocation_cache,
latents=latents,
logger=logger,
model_images=model_images_service,
model_manager=model_manager,
model_records=model_record_service,
download_queue=download_queue_service,
model_install=model_install_service,
names=names,
performance_statistics=performance_statistics,
processor=processor,
queue=queue,
session_processor=session_processor,
session_queue=session_queue,
urls=urls,
workflow_records=workflow_records,
tensors=tensors,
conditioning=conditioning,
)
ApiDependencies.invoker = Invoker(services)

View File

@ -36,7 +36,7 @@ async def list_downloads() -> List[DownloadJob]:
400: {"description": "Bad request"},
},
)
async def prune_downloads():
async def prune_downloads() -> Response:
"""Prune completed and errored jobs."""
queue = ApiDependencies.invoker.services.download_queue
queue.prune_jobs()
@ -55,7 +55,7 @@ async def download(
) -> DownloadJob:
"""Download the source URL to the file or directory indicted in dest."""
queue = ApiDependencies.invoker.services.download_queue
return queue.download(source, dest, priority, access_token)
return queue.download(source, Path(dest), priority, access_token)
@download_queue_router.get(
@ -87,7 +87,7 @@ async def get_download_job(
)
async def cancel_download_job(
id: int = Path(description="ID of the download job to cancel."),
):
) -> Response:
"""Cancel a download job using its ID."""
try:
queue = ApiDependencies.invoker.services.download_queue
@ -105,7 +105,7 @@ async def cancel_download_job(
204: {"description": "Download jobs have been cancelled"},
},
)
async def cancel_all_download_jobs():
async def cancel_all_download_jobs() -> Response:
"""Cancel all download jobs."""
ApiDependencies.invoker.services.download_queue.cancel_all_jobs()
return Response(status_code=204)

View File

@ -2,13 +2,13 @@ import io
import traceback
from typing import Optional
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi import BackgroundTasks, Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field, ValidationError
from invokeai.app.invocations.baseinvocation import MetadataField, MetadataFieldValidator
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
@ -375,16 +375,67 @@ async def unstar_images_in_list(
class ImagesDownloaded(BaseModel):
response: Optional[str] = Field(
description="If defined, the message to display to the user when images begin downloading"
default=None, description="The message to display to the user when images begin downloading"
)
bulk_download_item_name: Optional[str] = Field(
default=None, description="The name of the bulk download item for which events will be emitted"
)
@images_router.post("/download", operation_id="download_images_from_list", response_model=ImagesDownloaded)
@images_router.post(
"/download", operation_id="download_images_from_list", response_model=ImagesDownloaded, status_code=202
)
async def download_images_from_list(
image_names: list[str] = Body(description="The list of names of images to download", embed=True),
background_tasks: BackgroundTasks,
image_names: Optional[list[str]] = Body(
default=None, description="The list of names of images to download", embed=True
),
board_id: Optional[str] = Body(
default=None, description="The board from which image should be downloaded from", embed=True
default=None, description="The board from which image should be downloaded", embed=True
),
) -> ImagesDownloaded:
# return ImagesDownloaded(response="Your images are downloading")
raise HTTPException(status_code=501, detail="Endpoint is not yet implemented")
if (image_names is None or len(image_names) == 0) and board_id is None:
raise HTTPException(status_code=400, detail="No images or board id specified.")
bulk_download_item_id: str = ApiDependencies.invoker.services.bulk_download.generate_item_id(board_id)
background_tasks.add_task(
ApiDependencies.invoker.services.bulk_download.handler,
image_names,
board_id,
bulk_download_item_id,
)
return ImagesDownloaded(bulk_download_item_name=bulk_download_item_id + ".zip")
@images_router.api_route(
"/download/{bulk_download_item_name}",
methods=["GET"],
operation_id="get_bulk_download_item",
response_class=Response,
responses={
200: {
"description": "Return the complete bulk download item",
"content": {"application/zip": {}},
},
404: {"description": "Image not found"},
},
)
async def get_bulk_download_item(
background_tasks: BackgroundTasks,
bulk_download_item_name: str = Path(description="The bulk_download_item_name of the bulk download item to get"),
) -> FileResponse:
"""Gets a bulk download zip file"""
try:
path = ApiDependencies.invoker.services.bulk_download.get_path(bulk_download_item_name)
response = FileResponse(
path,
media_type="application/zip",
filename=bulk_download_item_name,
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
background_tasks.add_task(ApiDependencies.invoker.services.bulk_download.delete, bulk_download_item_name)
return response
except Exception:
raise HTTPException(status_code=404)

View File

@ -0,0 +1,746 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import io
import pathlib
import shutil
import traceback
from typing import Any, Dict, List, Optional
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, ConfigDict, Field
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob
from invokeai.app.services.model_records import (
InvalidModelException,
UnknownModelException,
)
from invokeai.app.services.model_records.model_records_base import DuplicateModelException, ModelRecordChanges
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
MainCheckpointConfig,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.search import ModelSearch
from ..dependencies import ApiDependencies
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
# images are immutable; set a high max-age
IMAGE_MAX_AGE = 31536000
class ModelsList(BaseModel):
"""Return list of configs."""
models: List[AnyModelConfig]
model_config = ConfigDict(use_enum_values=True)
##############################################################################
# These are example inputs and outputs that are used in places where Swagger
# is unable to generate a correct example.
##############################################################################
example_model_config = {
"path": "string",
"name": "string",
"base": "sd-1",
"type": "main",
"format": "checkpoint",
"config_path": "string",
"key": "string",
"hash": "string",
"description": "string",
"source": "string",
"converted_at": 0,
"variant": "normal",
"prediction_type": "epsilon",
"repo_variant": "fp16",
"upcast_attention": False,
}
example_model_input = {
"path": "/path/to/model",
"name": "model_name",
"base": "sd-1",
"type": "main",
"format": "checkpoint",
"config_path": "configs/stable-diffusion/v1-inference.yaml",
"description": "Model description",
"vae": None,
"variant": "normal",
}
##############################################################################
# ROUTES
##############################################################################
@model_manager_router.get(
"/",
operation_id="list_model_records",
)
async def list_model_records(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
model_name: Optional[str] = Query(default=None, description="Exact match on the name of the model"),
model_format: Optional[ModelFormat] = Query(
default=None, description="Exact match on the format of the model (e.g. 'diffusers')"
),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_manager.store
found_models: list[AnyModelConfig] = []
if base_models:
for base_model in base_models:
found_models.extend(
record_store.search_by_attr(
base_model=base_model, model_type=model_type, model_name=model_name, model_format=model_format
)
)
else:
found_models.extend(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
for model in found_models:
cover_image = ApiDependencies.invoker.services.model_images.get_url(model.key)
model.cover_image = cover_image
return ModelsList(models=found_models)
@model_manager_router.get(
"/get_by_attrs",
operation_id="get_model_records_by_attrs",
response_model=AnyModelConfig,
)
async def get_model_records_by_attrs(
name: str = Query(description="The name of the model"),
type: ModelType = Query(description="The type of the model"),
base: BaseModelType = Query(description="The base model of the model"),
) -> AnyModelConfig:
"""Gets a model by its attributes. The main use of this route is to provide backwards compatibility with the old
model manager, which identified models by a combination of name, base and type."""
configs = ApiDependencies.invoker.services.model_manager.store.search_by_attr(
base_model=base, model_type=type, model_name=name
)
if not configs:
raise HTTPException(status_code=404, detail="No model found with these attributes")
return configs[0]
@model_manager_router.get(
"/i/{key}",
operation_id="get_model_record",
responses={
200: {
"description": "The model configuration was retrieved successfully",
"content": {"application/json": {"example": example_model_config}},
},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
},
)
async def get_model_record(
key: str = Path(description="Key of the model record to fetch."),
) -> AnyModelConfig:
"""Get a model record"""
record_store = ApiDependencies.invoker.services.model_manager.store
try:
config: AnyModelConfig = record_store.get_model(key)
cover_image = ApiDependencies.invoker.services.model_images.get_url(key)
config.cover_image = cover_image
return config
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
# @model_manager_router.get("/summary", operation_id="list_model_summary")
# async def list_model_summary(
# page: int = Query(default=0, description="The page to get"),
# per_page: int = Query(default=10, description="The number of models per page"),
# order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
# ) -> PaginatedResults[ModelSummary]:
# """Gets a page of model summary data."""
# record_store = ApiDependencies.invoker.services.model_manager.store
# results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
# return results
class FoundModel(BaseModel):
path: str = Field(description="Path to the model")
is_installed: bool = Field(description="Whether or not the model is already installed")
@model_manager_router.get(
"/scan_folder",
operation_id="scan_for_models",
responses={
200: {"description": "Directory scanned successfully"},
400: {"description": "Invalid directory path"},
},
status_code=200,
response_model=List[FoundModel],
)
async def scan_for_models(
scan_path: str = Query(description="Directory path to search for models", default=None),
) -> List[FoundModel]:
path = pathlib.Path(scan_path)
if not scan_path or not path.is_dir():
raise HTTPException(
status_code=400,
detail=f"The search path '{scan_path}' does not exist or is not directory",
)
search = ModelSearch()
try:
found_model_paths = search.search(path)
models_path = ApiDependencies.invoker.services.configuration.models_path
# If the search path includes the main models directory, we need to exclude core models from the list.
# TODO(MM2): Core models should be handled by the model manager so we can determine if they are installed
# without needing to crawl the filesystem.
core_models_path = pathlib.Path(models_path, "core").resolve()
non_core_model_paths = [p for p in found_model_paths if not p.is_relative_to(core_models_path)]
installed_models = ApiDependencies.invoker.services.model_manager.store.search_by_attr()
resolved_installed_model_paths: list[str] = []
installed_model_sources: list[str] = []
# This call lists all installed models.
for model in installed_models:
path = pathlib.Path(model.path)
# If the model has a source, we need to add it to the list of installed sources.
if model.source:
installed_model_sources.append(model.source)
# If the path is not absolute, that means it is in the app models directory, and we need to join it with
# the models path before resolving.
if not path.is_absolute():
resolved_installed_model_paths.append(str(pathlib.Path(models_path, path).resolve()))
continue
resolved_installed_model_paths.append(str(path.resolve()))
scan_results: list[FoundModel] = []
# Check if the model is installed by comparing the resolved paths, appending to the scan result.
for p in non_core_model_paths:
path = str(p)
is_installed = path in resolved_installed_model_paths or path in installed_model_sources
found_model = FoundModel(path=path, is_installed=is_installed)
scan_results.append(found_model)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"An error occurred while searching the directory: {e}",
)
return scan_results
@model_manager_router.patch(
"/i/{key}",
operation_id="update_model_record",
responses={
200: {
"description": "The model was updated successfully",
"content": {"application/json": {"example": example_model_config}},
},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
409: {"description": "There is already a model corresponding to the new name"},
},
status_code=200,
)
async def update_model_record(
key: Annotated[str, Path(description="Unique key of model")],
changes: Annotated[ModelRecordChanges, Body(description="Model config", example=example_model_input)],
) -> AnyModelConfig:
"""Update a model's config."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_manager.store
try:
model_response: AnyModelConfig = record_store.update_model(key, changes=changes)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return model_response
@model_manager_router.get(
"/i/{key}/image",
operation_id="get_model_image",
responses={
200: {
"description": "The model image was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The model image could not be found"},
},
status_code=200,
)
async def get_model_image(
key: str = Path(description="The name of model image file to get"),
) -> FileResponse:
"""Gets an image file that previews the model"""
try:
path = ApiDependencies.invoker.services.model_images.get_path(key)
response = FileResponse(
path,
media_type="image/png",
filename=key + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@model_manager_router.patch(
"/i/{key}/image",
operation_id="update_model_image",
responses={
200: {
"description": "The model image was updated successfully",
},
400: {"description": "Bad request"},
},
status_code=200,
)
async def update_model_image(
key: Annotated[str, Path(description="Unique key of model")],
image: UploadFile,
) -> None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
logger = ApiDependencies.invoker.services.logger
model_images = ApiDependencies.invoker.services.model_images
try:
model_images.save(pil_image, key)
logger.info(f"Updated image for model: {key}")
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return
@model_manager_router.delete(
"/i/{key}",
operation_id="delete_model",
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
)
async def delete_model(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""
Delete model record from database.
The configuration record will be removed. The corresponding weights files will be
deleted as well if they reside within the InvokeAI "models" directory.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_manager.install
installer.delete(key)
logger.info(f"Deleted model: {key}")
return Response(status_code=204)
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@model_manager_router.delete(
"/i/{key}/image",
operation_id="delete_model_image",
responses={
204: {"description": "Model image deleted successfully"},
404: {"description": "Model image not found"},
},
status_code=204,
)
async def delete_model_image(
key: str = Path(description="Unique key of model image to remove from model_images directory."),
) -> None:
logger = ApiDependencies.invoker.services.logger
model_images = ApiDependencies.invoker.services.model_images
try:
model_images.delete(key)
logger.info(f"Deleted model image: {key}")
return
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
# @model_manager_router.post(
# "/i/",
# operation_id="add_model_record",
# responses={
# 201: {
# "description": "The model added successfully",
# "content": {"application/json": {"example": example_model_config}},
# },
# 409: {"description": "There is already a model corresponding to this path or repo_id"},
# 415: {"description": "Unrecognized file/folder format"},
# },
# status_code=201,
# )
# async def add_model_record(
# config: Annotated[
# AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
# ],
# ) -> AnyModelConfig:
# """Add a model using the configuration information appropriate for its type."""
# logger = ApiDependencies.invoker.services.logger
# record_store = ApiDependencies.invoker.services.model_manager.store
# try:
# record_store.add_model(config)
# except DuplicateModelException as e:
# logger.error(str(e))
# raise HTTPException(status_code=409, detail=str(e))
# except InvalidModelException as e:
# logger.error(str(e))
# raise HTTPException(status_code=415)
# # now fetch it out
# result: AnyModelConfig = record_store.get_model(config.key)
# return result
@model_manager_router.post(
"/install",
operation_id="install_model",
responses={
201: {"description": "The model imported successfully"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
)
async def install_model(
source: str = Query(description="Model source to install, can be a local path, repo_id, or remote URL"),
inplace: Optional[bool] = Query(description="Whether or not to install a local model in place", default=False),
# TODO(MM2): Can we type this?
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
example={"name": "string", "description": "string"},
),
access_token: Optional[str] = None,
) -> ModelInstallJob:
"""Install a model using a string identifier.
`source` can be any of the following.
1. A path on the local filesystem ('C:\\users\\fred\\model.safetensors')
2. A Url pointing to a single downloadable model file
3. A HuggingFace repo_id with any of the following formats:
- model/name
- model/name:fp16:vae
- model/name::vae -- use default precision
- model/name:fp16:path/to/model.safetensors
- model/name::path/to/model.safetensors
`config` is an optional dict containing model configuration values that will override
the ones that are probed automatically.
`access_token` is an optional access token for use with Urls that require
authentication.
Models will be downloaded, probed, configured and installed in a
series of background threads. The return object has `status` attribute
that can be used to monitor progress.
See the documentation for `import_model_record` for more information on
interpreting the job information returned by this route.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_manager.install
result: ModelInstallJob = installer.heuristic_import(
source=source,
config=config,
access_token=access_token,
inplace=bool(inplace),
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=424, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return result
@model_manager_router.get(
"/install",
operation_id="list_model_installs",
)
async def list_model_installs() -> List[ModelInstallJob]:
"""Return the list of model install jobs.
Install jobs have a numeric `id`, a `status`, and other fields that provide information on
the nature of the job and its progress. The `status` is one of:
* "waiting" -- Job is waiting in the queue to run
* "downloading" -- Model file(s) are downloading
* "running" -- Model has downloaded and the model probing and registration process is running
* "completed" -- Installation completed successfully
* "error" -- An error occurred. Details will be in the "error_type" and "error" fields.
* "cancelled" -- Job was cancelled before completion.
Once completed, information about the model such as its size, base
model and type can be retrieved from the `config_out` field. For multi-file models such as diffusers,
information on individual files can be retrieved from `download_parts`.
See the example and schema below for more information.
"""
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_manager.install.list_jobs()
return jobs
@model_manager_router.get(
"/install/{id}",
operation_id="get_model_install_job",
responses={
200: {"description": "Success"},
404: {"description": "No such job"},
},
)
async def get_model_install_job(id: int = Path(description="Model install id")) -> ModelInstallJob:
"""
Return model install job corresponding to the given source. See the documentation for 'List Model Install Jobs'
for information on the format of the return value.
"""
try:
result: ModelInstallJob = ApiDependencies.invoker.services.model_manager.install.get_job_by_id(id)
return result
except ValueError as e:
raise HTTPException(status_code=404, detail=str(e))
@model_manager_router.delete(
"/install/{id}",
operation_id="cancel_model_install_job",
responses={
201: {"description": "The job was cancelled successfully"},
415: {"description": "No such job"},
},
status_code=201,
)
async def cancel_model_install_job(id: int = Path(description="Model install job ID")) -> None:
"""Cancel the model install job(s) corresponding to the given job ID."""
installer = ApiDependencies.invoker.services.model_manager.install
try:
job = installer.get_job_by_id(id)
except ValueError as e:
raise HTTPException(status_code=415, detail=str(e))
installer.cancel_job(job)
@model_manager_router.delete(
"/install",
operation_id="prune_model_install_jobs",
responses={
204: {"description": "All completed and errored jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_model_install_jobs() -> Response:
"""Prune all completed and errored jobs from the install job list."""
ApiDependencies.invoker.services.model_manager.install.prune_jobs()
return Response(status_code=204)
@model_manager_router.patch(
"/sync",
operation_id="sync_models_to_config",
responses={
204: {"description": "Model config record database resynced with files on disk"},
400: {"description": "Bad request"},
},
)
async def sync_models_to_config() -> Response:
"""
Traverse the models and autoimport directories.
Model files without a corresponding
record in the database are added. Orphan records without a models file are deleted.
"""
ApiDependencies.invoker.services.model_manager.install.sync_to_config()
return Response(status_code=204)
@model_manager_router.put(
"/convert/{key}",
operation_id="convert_model",
responses={
200: {
"description": "Model converted successfully",
"content": {"application/json": {"example": example_model_config}},
},
400: {"description": "Bad request"},
404: {"description": "Model not found"},
409: {"description": "There is already a model registered at this location"},
},
)
async def convert_model(
key: str = Path(description="Unique key of the safetensors main model to convert to diffusers format."),
) -> AnyModelConfig:
"""
Permanently convert a model into diffusers format, replacing the safetensors version.
Note that during the conversion process the key and model hash will change.
The return value is the model configuration for the converted model.
"""
model_manager = ApiDependencies.invoker.services.model_manager
logger = ApiDependencies.invoker.services.logger
loader = ApiDependencies.invoker.services.model_manager.load
store = ApiDependencies.invoker.services.model_manager.store
installer = ApiDependencies.invoker.services.model_manager.install
try:
model_config = store.get_model(key)
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=424, detail=str(e))
if not isinstance(model_config, MainCheckpointConfig):
logger.error(f"The model with key {key} is not a main checkpoint model.")
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
# loading the model will convert it into a cached diffusers file
model_manager.load.load_model(model_config, submodel_type=SubModelType.Scheduler)
# Get the path of the converted model from the loader
cache_path = loader.convert_cache.cache_path(key)
assert cache_path.exists()
# temporarily rename the original safetensors file so that there is no naming conflict
original_name = model_config.name
model_config.name = f"{original_name}.DELETE"
changes = ModelRecordChanges(name=model_config.name)
store.update_model(key, changes=changes)
# install the diffusers
try:
new_key = installer.install_path(
cache_path,
config={
"name": original_name,
"description": model_config.description,
"hash": model_config.hash,
"source": model_config.source,
},
)
except DuplicateModelException as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
# delete the original safetensors file
installer.delete(key)
# delete the cached version
shutil.rmtree(cache_path)
# return the config record for the new diffusers directory
new_config: AnyModelConfig = store.get_model(new_key)
return new_config
# @model_manager_router.put(
# "/merge",
# operation_id="merge",
# responses={
# 200: {
# "description": "Model converted successfully",
# "content": {"application/json": {"example": example_model_config}},
# },
# 400: {"description": "Bad request"},
# 404: {"description": "Model not found"},
# 409: {"description": "There is already a model registered at this location"},
# },
# )
# async def merge(
# keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
# merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
# alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
# force: bool = Body(
# description="Force merging of models created with different versions of diffusers",
# default=False,
# ),
# interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
# merge_dest_directory: Optional[str] = Body(
# description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
# default=None,
# ),
# ) -> AnyModelConfig:
# """
# Merge diffusers models. The process is controlled by a set parameters provided in the body of the request.
# ```
# Argument Description [default]
# -------- ----------------------
# keys List of 2-3 model keys to merge together. All models must use the same base type.
# merged_model_name Name for the merged model [Concat model names]
# alpha Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
# force If true, force the merge even if the models were generated by different versions of the diffusers library [False]
# interp Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
# merge_dest_directory Specify a directory to store the merged model in [models directory]
# ```
# """
# logger = ApiDependencies.invoker.services.logger
# try:
# logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
# dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
# installer = ApiDependencies.invoker.services.model_manager.install
# merger = ModelMerger(installer)
# model_names = [installer.record_store.get_model(x).name for x in keys]
# response = merger.merge_diffusion_models_and_save(
# model_keys=keys,
# merged_model_name=merged_model_name or "+".join(model_names),
# alpha=alpha,
# interp=interp,
# force=force,
# merge_dest_directory=dest,
# )
# except UnknownModelException:
# raise HTTPException(
# status_code=404,
# detail=f"One or more of the models '{keys}' not found",
# )
# except ValueError as e:
# raise HTTPException(status_code=400, detail=str(e))
# return response

View File

@ -1,472 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import pathlib
from hashlib import sha1
from random import randbytes
from typing import Any, Dict, List, Optional, Set
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, ConfigDict
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
ModelRecordOrderBy,
ModelSummary,
UnknownModelException,
)
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.merge import MergeInterpolationMethod, ModelMerger
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from ..dependencies import ApiDependencies
model_records_router = APIRouter(prefix="/v1/model/record", tags=["model_manager_v2_unstable"])
class ModelsList(BaseModel):
"""Return list of configs."""
models: List[AnyModelConfig]
model_config = ConfigDict(use_enum_values=True)
class ModelTagSet(BaseModel):
"""Return tags for a set of models."""
key: str
name: str
author: str
tags: Set[str]
@model_records_router.get(
"/",
operation_id="list_model_records",
)
async def list_model_records(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
model_name: Optional[str] = Query(default=None, description="Exact match on the name of the model"),
model_format: Optional[ModelFormat] = Query(
default=None, description="Exact match on the format of the model (e.g. 'diffusers')"
),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_records
found_models: list[AnyModelConfig] = []
if base_models:
for base_model in base_models:
found_models.extend(
record_store.search_by_attr(
base_model=base_model, model_type=model_type, model_name=model_name, model_format=model_format
)
)
else:
found_models.extend(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
return ModelsList(models=found_models)
@model_records_router.get(
"/i/{key}",
operation_id="get_model_record",
responses={
200: {"description": "Success"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
},
)
async def get_model_record(
key: str = Path(description="Key of the model record to fetch."),
) -> AnyModelConfig:
"""Get a model record"""
record_store = ApiDependencies.invoker.services.model_records
try:
return record_store.get_model(key)
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@model_records_router.get("/meta", operation_id="list_model_summary")
async def list_model_summary(
page: int = Query(default=0, description="The page to get"),
per_page: int = Query(default=10, description="The number of models per page"),
order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
) -> PaginatedResults[ModelSummary]:
"""Gets a page of model summary data."""
return ApiDependencies.invoker.services.model_records.list_models(page=page, per_page=per_page, order_by=order_by)
@model_records_router.get(
"/meta/i/{key}",
operation_id="get_model_metadata",
responses={
200: {"description": "Success"},
400: {"description": "Bad request"},
404: {"description": "No metadata available"},
},
)
async def get_model_metadata(
key: str = Path(description="Key of the model repo metadata to fetch."),
) -> Optional[AnyModelRepoMetadata]:
"""Get a model metadata object."""
record_store = ApiDependencies.invoker.services.model_records
result = record_store.get_metadata(key)
if not result:
raise HTTPException(status_code=404, detail="No metadata for a model with this key")
return result
@model_records_router.get(
"/tags",
operation_id="list_tags",
)
async def list_tags() -> Set[str]:
"""Get a unique set of all the model tags."""
record_store = ApiDependencies.invoker.services.model_records
return record_store.list_tags()
@model_records_router.get(
"/tags/search",
operation_id="search_by_metadata_tags",
)
async def search_by_metadata_tags(
tags: Set[str] = Query(default=None, description="Tags to search for"),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_records
results = record_store.search_by_metadata_tag(tags)
return ModelsList(models=results)
@model_records_router.patch(
"/i/{key}",
operation_id="update_model_record",
responses={
200: {"description": "The model was updated successfully"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
409: {"description": "There is already a model corresponding to the new name"},
},
status_code=200,
response_model=AnyModelConfig,
)
async def update_model_record(
key: Annotated[str, Path(description="Unique key of model")],
info: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
) -> AnyModelConfig:
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_records
try:
model_response = record_store.update_model(key, config=info)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return model_response
@model_records_router.delete(
"/i/{key}",
operation_id="del_model_record",
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
)
async def del_model_record(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""
Delete model record from database.
The configuration record will be removed. The corresponding weights files will be
deleted as well if they reside within the InvokeAI "models" directory.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_install
installer.delete(key)
logger.info(f"Deleted model: {key}")
return Response(status_code=204)
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@model_records_router.post(
"/i/",
operation_id="add_model_record",
responses={
201: {"description": "The model added successfully"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
415: {"description": "Unrecognized file/folder format"},
},
status_code=201,
)
async def add_model_record(
config: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
) -> AnyModelConfig:
"""Add a model using the configuration information appropriate for its type."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_records
if config.key == "<NOKEY>":
config.key = sha1(randbytes(100)).hexdigest()
logger.info(f"Created model {config.key} for {config.name}")
try:
record_store.add_model(config.key, config)
except DuplicateModelException as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
# now fetch it out
return record_store.get_model(config.key)
@model_records_router.post(
"/import",
operation_id="import_model_record",
responses={
201: {"description": "The model imported successfully"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
)
async def import_model(
source: ModelSource,
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
),
) -> ModelInstallJob:
"""Add a model using its local path, repo_id, or remote URL.
Models will be downloaded, probed, configured and installed in a
series of background threads. The return object has `status` attribute
that can be used to monitor progress.
The source object is a discriminated Union of LocalModelSource,
HFModelSource and URLModelSource. Set the "type" field to the
appropriate value:
* To install a local path using LocalModelSource, pass a source of form:
`{
"type": "local",
"path": "/path/to/model",
"inplace": false
}`
The "inplace" flag, if true, will register the model in place in its
current filesystem location. Otherwise, the model will be copied
into the InvokeAI models directory.
* To install a HuggingFace repo_id using HFModelSource, pass a source of form:
`{
"type": "hf",
"repo_id": "stabilityai/stable-diffusion-2.0",
"variant": "fp16",
"subfolder": "vae",
"access_token": "f5820a918aaf01"
}`
The `variant`, `subfolder` and `access_token` fields are optional.
* To install a remote model using an arbitrary URL, pass:
`{
"type": "url",
"url": "http://www.civitai.com/models/123456",
"access_token": "f5820a918aaf01"
}`
The `access_token` field is optonal
The model's configuration record will be probed and filled in
automatically. To override the default guesses, pass "metadata"
with a Dict containing the attributes you wish to override.
Installation occurs in the background. Either use list_model_install_jobs()
to poll for completion, or listen on the event bus for the following events:
"model_install_running"
"model_install_completed"
"model_install_error"
On successful completion, the event's payload will contain the field "key"
containing the installed ID of the model. On an error, the event's payload
will contain the fields "error_type" and "error" describing the nature of the
error and its traceback, respectively.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_install
result: ModelInstallJob = installer.import_model(
source=source,
config=config,
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=424, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return result
@model_records_router.get(
"/import",
operation_id="list_model_install_jobs",
)
async def list_model_install_jobs() -> List[ModelInstallJob]:
"""Return list of model install jobs."""
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_install.list_jobs()
return jobs
@model_records_router.get(
"/import/{id}",
operation_id="get_model_install_job",
responses={
200: {"description": "Success"},
404: {"description": "No such job"},
},
)
async def get_model_install_job(id: int = Path(description="Model install id")) -> ModelInstallJob:
"""Return model install job corresponding to the given source."""
try:
return ApiDependencies.invoker.services.model_install.get_job_by_id(id)
except ValueError as e:
raise HTTPException(status_code=404, detail=str(e))
@model_records_router.delete(
"/import/{id}",
operation_id="cancel_model_install_job",
responses={
201: {"description": "The job was cancelled successfully"},
415: {"description": "No such job"},
},
status_code=201,
)
async def cancel_model_install_job(id: int = Path(description="Model install job ID")) -> None:
"""Cancel the model install job(s) corresponding to the given job ID."""
installer = ApiDependencies.invoker.services.model_install
try:
job = installer.get_job_by_id(id)
except ValueError as e:
raise HTTPException(status_code=415, detail=str(e))
installer.cancel_job(job)
@model_records_router.patch(
"/import",
operation_id="prune_model_install_jobs",
responses={
204: {"description": "All completed and errored jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_model_install_jobs() -> Response:
"""Prune all completed and errored jobs from the install job list."""
ApiDependencies.invoker.services.model_install.prune_jobs()
return Response(status_code=204)
@model_records_router.patch(
"/sync",
operation_id="sync_models_to_config",
responses={
204: {"description": "Model config record database resynced with files on disk"},
400: {"description": "Bad request"},
},
)
async def sync_models_to_config() -> Response:
"""
Traverse the models and autoimport directories.
Model files without a corresponding
record in the database are added. Orphan records without a models file are deleted.
"""
ApiDependencies.invoker.services.model_install.sync_to_config()
return Response(status_code=204)
@model_records_router.put(
"/merge",
operation_id="merge",
)
async def merge(
keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
force: bool = Body(
description="Force merging of models created with different versions of diffusers",
default=False,
),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> AnyModelConfig:
"""
Merge diffusers models.
keys: List of 2-3 model keys to merge together. All models must use the same base type.
merged_model_name: Name for the merged model [Concat model names]
alpha: Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
force: If true, force the merge even if the models were generated by different versions of the diffusers library [False]
interp: Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
merge_dest_directory: Specify a directory to store the merged model in [models directory]
"""
print(f"here i am, keys={keys}")
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
installer = ApiDependencies.invoker.services.model_install
merger = ModelMerger(installer)
model_names = [installer.record_store.get_model(x).name for x in keys]
response = merger.merge_diffusion_models_and_save(
model_keys=keys,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory=dest,
)
except UnknownModelException:
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{keys}' not found",
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@ -1,427 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein
import pathlib
from typing import Annotated, List, Literal, Optional, Union
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
from starlette.exceptions import HTTPException
from invokeai.backend import BaseModelType, ModelType
from invokeai.backend.model_management import MergeInterpolationMethod
from invokeai.backend.model_management.models import (
OPENAPI_MODEL_CONFIGS,
InvalidModelException,
ModelNotFoundException,
SchedulerPredictionType,
)
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
UpdateModelResponseValidator = TypeAdapter(UpdateModelResponse)
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelResponseValidator = TypeAdapter(ImportModelResponse)
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ConvertModelResponseValidator = TypeAdapter(ConvertModelResponse)
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel):
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
model_config = ConfigDict(use_enum_values=True)
ModelsListValidator = TypeAdapter(ModelsList)
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList}},
)
async def list_models(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList:
"""Gets a list of models"""
if base_models and len(base_models) > 0:
models_raw = []
for base_model in base_models:
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
else:
models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type)
models = ModelsListValidator.validate_python({"models": models_raw})
return models
@models_router.patch(
"/{base_model}/{model_type}/{model_name}",
operation_id="update_model",
responses={
200: {"description": "The model was updated successfully"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
409: {"description": "There is already a model corresponding to the new name"},
},
status_code=200,
response_model=UpdateModelResponse,
)
async def update_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse:
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
try:
previous_info = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
# rename operation requested
if info.model_name != model_name or info.base_model != base_model:
ApiDependencies.invoker.services.model_manager.rename_model(
base_model=base_model,
model_type=model_type,
model_name=model_name,
new_name=info.model_name,
new_base=info.base_model,
)
logger.info(f"Successfully renamed {base_model.value}/{model_name}=>{info.base_model}/{info.model_name}")
# update information to support an update of attributes
model_name = info.model_name
base_model = info.base_model
new_info = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
if new_info.get("path") != previous_info.get(
"path"
): # model manager moved model path during rename - don't overwrite it
info.path = new_info.get("path")
# replace empty string values with None/null to avoid phenomenon of vae: ''
info_dict = info.model_dump()
info_dict = {x: info_dict[x] if info_dict[x] else None for x in info_dict.keys()}
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info_dict,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
model_response = UpdateModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
except Exception as e:
logger.error(str(e))
raise HTTPException(status_code=400, detail=str(e))
return model_response
@models_router.post(
"/import",
operation_id="import_model",
responses={
201: {"description": "The model imported successfully"},
404: {"description": "The model could not be found"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse,
)
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body(
description="Prediction type for SDv2 checkpoints and rare SDv1 checkpoints",
default=None,
),
) -> ImportModelResponse:
"""Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically"""
location = location.strip("\"' ")
items_to_import = {location}
prediction_types = {x.value: x for x in SchedulerPredictionType}
logger = ApiDependencies.invoker.services.logger
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import=items_to_import,
prediction_type_helper=lambda x: prediction_types.get(prediction_type),
)
info = installed_models.get(location)
if not info:
logger.error("Import failed")
raise HTTPException(status_code=415)
logger.info(f"Successfully imported {location}, got {info}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name, base_model=info.base_model, model_type=info.model_type
)
return ImportModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.post(
"/add",
operation_id="add_model",
responses={
201: {"description": "The model added successfully"},
404: {"description": "The model could not be found"},
424: {"description": "The model appeared to add successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse,
)
async def add_model(
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> ImportModelResponse:
"""Add a model using the configuration information appropriate for its type. Only local models can be added by path"""
logger = ApiDependencies.invoker.services.logger
try:
ApiDependencies.invoker.services.model_manager.add_model(
info.model_name,
info.base_model,
info.model_type,
model_attributes=info.model_dump(),
)
logger.info(f"Successfully added {info.model_name}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.model_name,
base_model=info.base_model,
model_type=info.model_type,
)
return ImportModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.delete(
"/{base_model}/{model_type}/{model_name}",
operation_id="del_model",
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
response_model=None,
)
async def delete_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> Response:
"""Delete Model"""
logger = ApiDependencies.invoker.services.logger
try:
ApiDependencies.invoker.services.model_manager.del_model(
model_name, base_model=base_model, model_type=model_type
)
logger.info(f"Deleted model: {model_name}")
return Response(status_code=204)
except ModelNotFoundException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@models_router.put(
"/convert/{base_model}/{model_type}/{model_name}",
operation_id="convert_model",
responses={
200: {"description": "Model converted successfully"},
400: {"description": "Bad request"},
404: {"description": "Model not found"},
},
status_code=200,
response_model=ConvertModelResponse,
)
async def convert_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
convert_dest_directory: Optional[str] = Query(
default=None, description="Save the converted model to the designated directory"
),
) -> ConvertModelResponse:
"""Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none."""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Converting model: {model_name}")
dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None
ApiDependencies.invoker.services.model_manager.convert_model(
model_name,
base_model=base_model,
model_type=model_type,
convert_dest_directory=dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name, base_model=base_model, model_type=model_type
)
response = ConvertModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}")
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response
@models_router.get(
"/search",
operation_id="search_for_models",
responses={
200: {"description": "Directory searched successfully"},
404: {"description": "Invalid directory path"},
},
status_code=200,
response_model=List[pathlib.Path],
)
async def search_for_models(
search_path: pathlib.Path = Query(description="Directory path to search for models"),
) -> List[pathlib.Path]:
if not search_path.is_dir():
raise HTTPException(
status_code=404,
detail=f"The search path '{search_path}' does not exist or is not directory",
)
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path)
@models_router.get(
"/ckpt_confs",
operation_id="list_ckpt_configs",
responses={
200: {"description": "paths retrieved successfully"},
},
status_code=200,
response_model=List[pathlib.Path],
)
async def list_ckpt_configs() -> List[pathlib.Path]:
"""Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT."""
return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs()
@models_router.post(
"/sync",
operation_id="sync_to_config",
responses={
201: {"description": "synchronization successful"},
},
status_code=201,
response_model=bool,
)
async def sync_to_config() -> bool:
"""Call after making changes to models.yaml, autoimport directories or models directory to synchronize
in-memory data structures with disk data structures."""
ApiDependencies.invoker.services.model_manager.sync_to_config()
return True
# There's some weird pydantic-fastapi behaviour that requires this to be a separate class
# TODO: After a few updates, see if it works inside the route operation handler?
class MergeModelsBody(BaseModel):
model_names: List[str] = Field(description="model name", min_length=2, max_length=3)
merged_model_name: Optional[str] = Field(description="Name of destination model")
alpha: Optional[float] = Field(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5)
interp: Optional[MergeInterpolationMethod] = Field(description="Interpolation method")
force: Optional[bool] = Field(
description="Force merging of models created with different versions of diffusers",
default=False,
)
merge_dest_directory: Optional[str] = Field(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
)
model_config = ConfigDict(protected_namespaces=())
@models_router.put(
"/merge/{base_model}",
operation_id="merge_models",
responses={
200: {"description": "Model converted successfully"},
400: {"description": "Incompatible models"},
404: {"description": "One or more models not found"},
},
status_code=200,
response_model=MergeModelResponse,
)
async def merge_models(
body: Annotated[MergeModelsBody, Body(description="Model configuration", embed=True)],
base_model: BaseModelType = Path(description="Base model"),
) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(
f"Merging models: {body.model_names} into {body.merge_dest_directory or '<MODELS>'}/{body.merged_model_name}"
)
dest = pathlib.Path(body.merge_dest_directory) if body.merge_dest_directory else None
result = ApiDependencies.invoker.services.model_manager.merge_models(
model_names=body.model_names,
base_model=base_model,
merged_model_name=body.merged_model_name or "+".join(body.model_names),
alpha=body.alpha,
interp=body.interp,
force=body.force,
merge_dest_directory=dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
result.name,
base_model=base_model,
model_type=ModelType.Main,
)
response = ConvertModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException:
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{body.model_names}' not found",
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@ -1,276 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from fastapi import HTTPException, Path
from fastapi.routing import APIRouter
from ...services.shared.graph import GraphExecutionState
from ..dependencies import ApiDependencies
session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])
# @session_router.post(
# "/",
# operation_id="create_session",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid json"},
# },
# deprecated=True,
# )
# async def create_session(
# queue_id: str = Query(default="", description="The id of the queue to associate the session with"),
# graph: Optional[Graph] = Body(default=None, description="The graph to initialize the session with"),
# ) -> GraphExecutionState:
# """Creates a new session, optionally initializing it with an invocation graph"""
# session = ApiDependencies.invoker.create_execution_state(queue_id=queue_id, graph=graph)
# return session
# @session_router.get(
# "/",
# operation_id="list_sessions",
# responses={200: {"model": PaginatedResults[GraphExecutionState]}},
# deprecated=True,
# )
# async def list_sessions(
# page: int = Query(default=0, description="The page of results to get"),
# per_page: int = Query(default=10, description="The number of results per page"),
# query: str = Query(default="", description="The query string to search for"),
# ) -> PaginatedResults[GraphExecutionState]:
# """Gets a list of sessions, optionally searching"""
# if query == "":
# result = ApiDependencies.invoker.services.graph_execution_manager.list(page, per_page)
# else:
# result = ApiDependencies.invoker.services.graph_execution_manager.search(query, page, per_page)
# return result
@session_router.get(
"/{session_id}",
operation_id="get_session",
responses={
200: {"model": GraphExecutionState},
404: {"description": "Session not found"},
},
)
async def get_session(
session_id: str = Path(description="The id of the session to get"),
) -> GraphExecutionState:
"""Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
raise HTTPException(status_code=404)
else:
return session
# @session_router.post(
# "/{session_id}/nodes",
# operation_id="add_node",
# responses={
# 200: {"model": str},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def add_node(
# session_id: str = Path(description="The id of the session"),
# node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
# description="The node to add"
# ),
# ) -> str:
# """Adds a node to the graph"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# session.add_node(node)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session.id
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# @session_router.put(
# "/{session_id}/nodes/{node_path}",
# operation_id="update_node",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def update_node(
# session_id: str = Path(description="The id of the session"),
# node_path: str = Path(description="The path to the node in the graph"),
# node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
# description="The new node"
# ),
# ) -> GraphExecutionState:
# """Updates a node in the graph and removes all linked edges"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# session.update_node(node_path, node)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# @session_router.delete(
# "/{session_id}/nodes/{node_path}",
# operation_id="delete_node",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def delete_node(
# session_id: str = Path(description="The id of the session"),
# node_path: str = Path(description="The path to the node to delete"),
# ) -> GraphExecutionState:
# """Deletes a node in the graph and removes all linked edges"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# session.delete_node(node_path)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# @session_router.post(
# "/{session_id}/edges",
# operation_id="add_edge",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def add_edge(
# session_id: str = Path(description="The id of the session"),
# edge: Edge = Body(description="The edge to add"),
# ) -> GraphExecutionState:
# """Adds an edge to the graph"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# session.add_edge(edge)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# # TODO: the edge being in the path here is really ugly, find a better solution
# @session_router.delete(
# "/{session_id}/edges/{from_node_id}/{from_field}/{to_node_id}/{to_field}",
# operation_id="delete_edge",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def delete_edge(
# session_id: str = Path(description="The id of the session"),
# from_node_id: str = Path(description="The id of the node the edge is coming from"),
# from_field: str = Path(description="The field of the node the edge is coming from"),
# to_node_id: str = Path(description="The id of the node the edge is going to"),
# to_field: str = Path(description="The field of the node the edge is going to"),
# ) -> GraphExecutionState:
# """Deletes an edge from the graph"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# edge = Edge(
# source=EdgeConnection(node_id=from_node_id, field=from_field),
# destination=EdgeConnection(node_id=to_node_id, field=to_field),
# )
# session.delete_edge(edge)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# @session_router.put(
# "/{session_id}/invoke",
# operation_id="invoke_session",
# responses={
# 200: {"model": None},
# 202: {"description": "The invocation is queued"},
# 400: {"description": "The session has no invocations ready to invoke"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def invoke_session(
# queue_id: str = Query(description="The id of the queue to associate the session with"),
# session_id: str = Path(description="The id of the session to invoke"),
# all: bool = Query(default=False, description="Whether or not to invoke all remaining invocations"),
# ) -> Response:
# """Invokes a session"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# if session.is_complete():
# raise HTTPException(status_code=400)
# ApiDependencies.invoker.invoke(queue_id, session, invoke_all=all)
# return Response(status_code=202)
# @session_router.delete(
# "/{session_id}/invoke",
# operation_id="cancel_session_invoke",
# responses={202: {"description": "The invocation is canceled"}},
# deprecated=True,
# )
# async def cancel_session_invoke(
# session_id: str = Path(description="The id of the session to cancel"),
# ) -> Response:
# """Invokes a session"""
# ApiDependencies.invoker.cancel(session_id)
# return Response(status_code=202)

View File

@ -12,16 +12,26 @@ class SocketIO:
__sio: AsyncServer
__app: ASGIApp
__sub_queue: str = "subscribe_queue"
__unsub_queue: str = "unsubscribe_queue"
__sub_bulk_download: str = "subscribe_bulk_download"
__unsub_bulk_download: str = "unsubscribe_bulk_download"
def __init__(self, app: FastAPI):
self.__sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*")
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="/ws/socket.io")
app.mount("/ws", self.__app)
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)
self.__sio.on("unsubscribe_queue", handler=self._handle_unsub_queue)
self.__sio.on(self.__sub_queue, handler=self._handle_sub_queue)
self.__sio.on(self.__unsub_queue, handler=self._handle_unsub_queue)
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event)
local_handler.register(event_name=EventServiceBase.model_event, _func=self._handle_model_event)
self.__sio.on(self.__sub_bulk_download, handler=self._handle_sub_bulk_download)
self.__sio.on(self.__unsub_bulk_download, handler=self._handle_unsub_bulk_download)
local_handler.register(event_name=EventServiceBase.bulk_download_event, _func=self._handle_bulk_download_event)
async def _handle_queue_event(self, event: Event):
await self.__sio.emit(
event=event[1]["event"],
@ -39,3 +49,18 @@ class SocketIO:
async def _handle_model_event(self, event: Event) -> None:
await self.__sio.emit(event=event[1]["event"], data=event[1]["data"])
async def _handle_bulk_download_event(self, event: Event):
await self.__sio.emit(
event=event[1]["event"],
data=event[1]["data"],
room=event[1]["data"]["bulk_download_id"],
)
async def _handle_sub_bulk_download(self, sid, data, *args, **kwargs):
if "bulk_download_id" in data:
await self.__sio.enter_room(sid, data["bulk_download_id"])
async def _handle_unsub_bulk_download(self, sid, data, *args, **kwargs):
if "bulk_download_id" in data:
await self.__sio.leave_room(sid, data["bulk_download_id"])

View File

@ -3,7 +3,6 @@
# values from the command line or config file.
import sys
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.version.invokeai_version import __version__
from .services.config import InvokeAIAppConfig
@ -18,6 +17,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
import asyncio
import mimetypes
import socket
from contextlib import asynccontextmanager
from inspect import signature
from pathlib import Path
from typing import Any
@ -38,6 +38,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
import invokeai.frontend.web as web_dir
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies
@ -47,20 +48,17 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
boards,
download_queue,
images,
model_records,
models,
model_manager,
session_queue,
sessions,
utilities,
workflows,
)
from .api.sockets import SocketIO
from .invocations.baseinvocation import (
BaseInvocation,
InputFieldJSONSchemaExtra,
OutputFieldJSONSchemaExtra,
UIConfigBase,
)
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
if is_mps_available():
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
@ -74,9 +72,25 @@ logger = InvokeAILogger.get_logger(config=app_config)
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
@asynccontextmanager
async def lifespan(app: FastAPI):
# Add startup event to load dependencies
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
yield
# Shut down threads
ApiDependencies.shutdown()
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
app = FastAPI(title="Invoke - Community Edition", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
app = FastAPI(
title="Invoke - Community Edition",
docs_url=None,
redoc_url=None,
separate_input_output_schemas=False,
lifespan=lifespan,
)
# Add event handler
event_handler_id: int = id(app)
@ -99,24 +113,9 @@ app.add_middleware(
app.add_middleware(GZipMiddleware, minimum_size=1000)
# Add startup event to load dependencies
@app.on_event("startup")
async def startup_event() -> None:
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
# Shut down threads
@app.on_event("shutdown")
async def shutdown_event() -> None:
ApiDependencies.shutdown()
# Include all routers
app.include_router(sessions.session_router, prefix="/api")
app.include_router(utilities.utilities_router, prefix="/api")
app.include_router(models.models_router, prefix="/api")
app.include_router(model_records.model_records_router, prefix="/api")
app.include_router(model_manager.model_manager_router, prefix="/api")
app.include_router(download_queue.download_queue_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
@ -154,6 +153,8 @@ def custom_openapi() -> dict[str, Any]:
# TODO: note that we assume the schema_key here is the TYPE.__name__
# This could break in some cases, figure out a better way to do it
output_type_titles[schema_key] = output_schema["title"]
openapi_schema["components"]["schemas"][schema_key] = output_schema
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
# Add Node Editor UI helper schemas
ui_config_schemas = models_json_schema(
@ -176,23 +177,24 @@ def custom_openapi() -> dict[str, Any]:
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref
invoker_schema["class"] = "invocation"
openapi_schema["components"]["schemas"][f"{output_type_title}"]["class"] = "output"
from invokeai.backend.model_management.models import get_model_config_enums
# This code no longer seems to be necessary?
# Leave it here just in case
#
# from invokeai.backend.model_manager import get_model_config_formats
# formats = get_model_config_formats()
# for model_config_name, enum_set in formats.items():
for model_config_format_enum in set(get_model_config_enums()):
name = model_config_format_enum.__qualname__
# if model_config_name in openapi_schema["components"]["schemas"]:
# # print(f"Config with name {name} already defined")
# continue
if name in openapi_schema["components"]["schemas"]:
# print(f"Config with name {name} already defined")
continue
openapi_schema["components"]["schemas"][name] = {
"title": name,
"description": "An enumeration.",
"type": "string",
"enum": [v.value for v in model_config_format_enum],
}
# openapi_schema["components"]["schemas"][model_config_name] = {
# "title": model_config_name,
# "description": "An enumeration.",
# "type": "string",
# "enum": [v.value for v in enum_set],
# }
app.openapi_schema = openapi_schema
return app.openapi_schema

View File

@ -8,17 +8,33 @@ import warnings
from abc import ABC, abstractmethod
from enum import Enum
from inspect import signature
from types import UnionType
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Iterable, Literal, Optional, Type, TypeVar, Union, cast
from typing import (
TYPE_CHECKING,
Annotated,
Any,
Callable,
ClassVar,
Iterable,
Literal,
Optional,
Type,
TypeVar,
Union,
cast,
)
import semver
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, create_model
from pydantic.fields import FieldInfo, _Unset
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter, create_model
from pydantic.fields import FieldInfo
from pydantic_core import PydanticUndefined
from typing_extensions import TypeAliasType
from invokeai.app.invocations.fields import (
FieldKind,
Input,
)
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.metaenum import MetaEnum
from invokeai.app.util.misc import uuid_string
from invokeai.backend.util.logging import InvokeAILogger
@ -52,393 +68,6 @@ class Classification(str, Enum, metaclass=MetaEnum):
Prototype = "prototype"
class Input(str, Enum, metaclass=MetaEnum):
"""
The type of input a field accepts.
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
are instantiated.
- `Input.Connection`: The field must have its value provided by a connection.
- `Input.Any`: The field may have its value provided either directly or by a connection.
"""
Connection = "connection"
Direct = "direct"
Any = "any"
class FieldKind(str, Enum, metaclass=MetaEnum):
"""
The kind of field.
- `Input`: An input field on a node.
- `Output`: An output field on a node.
- `Internal`: A field which is treated as an input, but cannot be used in node definitions. Metadata is
one example. It is provided to nodes via the WithMetadata class, and we want to reserve the field name
"metadata" for this on all nodes. `FieldKind` is used to short-circuit the field name validation logic,
allowing "metadata" for that field.
- `NodeAttribute`: The field is a node attribute. These are fields which are not inputs or outputs,
but which are used to store information about the node. For example, the `id` and `type` fields are node
attributes.
The presence of this in `json_schema_extra["field_kind"]` is used when initializing node schemas on app
startup, and when generating the OpenAPI schema for the workflow editor.
"""
Input = "input"
Output = "output"
Internal = "internal"
NodeAttribute = "node_attribute"
class UIType(str, Enum, metaclass=MetaEnum):
"""
Type hints for the UI for situations in which the field type is not enough to infer the correct UI type.
- Model Fields
The most common node-author-facing use will be for model fields. Internally, there is no difference
between SD-1, SD-2 and SDXL model fields - they all use the class `MainModelField`. To ensure the
base-model-specific UI is rendered, use e.g. `ui_type=UIType.SDXLMainModelField` to indicate that
the field is an SDXL main model field.
- Any Field
We cannot infer the usage of `typing.Any` via schema parsing, so you *must* use `ui_type=UIType.Any` to
indicate that the field accepts any type. Use with caution. This cannot be used on outputs.
- Scheduler Field
Special handling in the UI is needed for this field, which otherwise would be parsed as a plain enum field.
- Internal Fields
Similar to the Any Field, the `collect` and `iterate` nodes make use of `typing.Any`. To facilitate
handling these types in the client, we use `UIType._Collection` and `UIType._CollectionItem`. These
should not be used by node authors.
- DEPRECATED Fields
These types are deprecated and should not be used by node authors. A warning will be logged if one is
used, and the type will be ignored. They are included here for backwards compatibility.
"""
# region Model Field Types
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VaeModel = "VAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
# endregion
# region Misc Field Types
Scheduler = "SchedulerField"
Any = "AnyField"
# endregion
# region Internal Field Types
_Collection = "CollectionField"
_CollectionItem = "CollectionItemField"
# endregion
# region DEPRECATED
Boolean = "DEPRECATED_Boolean"
Color = "DEPRECATED_Color"
Conditioning = "DEPRECATED_Conditioning"
Control = "DEPRECATED_Control"
Float = "DEPRECATED_Float"
Image = "DEPRECATED_Image"
Integer = "DEPRECATED_Integer"
Latents = "DEPRECATED_Latents"
String = "DEPRECATED_String"
BooleanCollection = "DEPRECATED_BooleanCollection"
ColorCollection = "DEPRECATED_ColorCollection"
ConditioningCollection = "DEPRECATED_ConditioningCollection"
ControlCollection = "DEPRECATED_ControlCollection"
FloatCollection = "DEPRECATED_FloatCollection"
ImageCollection = "DEPRECATED_ImageCollection"
IntegerCollection = "DEPRECATED_IntegerCollection"
LatentsCollection = "DEPRECATED_LatentsCollection"
StringCollection = "DEPRECATED_StringCollection"
BooleanPolymorphic = "DEPRECATED_BooleanPolymorphic"
ColorPolymorphic = "DEPRECATED_ColorPolymorphic"
ConditioningPolymorphic = "DEPRECATED_ConditioningPolymorphic"
ControlPolymorphic = "DEPRECATED_ControlPolymorphic"
FloatPolymorphic = "DEPRECATED_FloatPolymorphic"
ImagePolymorphic = "DEPRECATED_ImagePolymorphic"
IntegerPolymorphic = "DEPRECATED_IntegerPolymorphic"
LatentsPolymorphic = "DEPRECATED_LatentsPolymorphic"
StringPolymorphic = "DEPRECATED_StringPolymorphic"
MainModel = "DEPRECATED_MainModel"
UNet = "DEPRECATED_UNet"
Vae = "DEPRECATED_Vae"
CLIP = "DEPRECATED_CLIP"
Collection = "DEPRECATED_Collection"
CollectionItem = "DEPRECATED_CollectionItem"
Enum = "DEPRECATED_Enum"
WorkflowField = "DEPRECATED_WorkflowField"
IsIntermediate = "DEPRECATED_IsIntermediate"
BoardField = "DEPRECATED_BoardField"
MetadataItem = "DEPRECATED_MetadataItem"
MetadataItemCollection = "DEPRECATED_MetadataItemCollection"
MetadataItemPolymorphic = "DEPRECATED_MetadataItemPolymorphic"
MetadataDict = "DEPRECATED_MetadataDict"
# endregion
class UIComponent(str, Enum, metaclass=MetaEnum):
"""
The type of UI component to use for a field, used to override the default components, which are
inferred from the field type.
"""
None_ = "none"
Textarea = "textarea"
Slider = "slider"
class InputFieldJSONSchemaExtra(BaseModel):
"""
Extra attributes to be added to input fields and their OpenAPI schema. Used during graph execution,
and by the workflow editor during schema parsing and UI rendering.
"""
input: Input
orig_required: bool
field_kind: FieldKind
default: Optional[Any] = None
orig_default: Optional[Any] = None
ui_hidden: bool = False
ui_type: Optional[UIType] = None
ui_component: Optional[UIComponent] = None
ui_order: Optional[int] = None
ui_choice_labels: Optional[dict[str, str]] = None
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
class OutputFieldJSONSchemaExtra(BaseModel):
"""
Extra attributes to be added to input fields and their OpenAPI schema. Used by the workflow editor
during schema parsing and UI rendering.
"""
field_kind: FieldKind
ui_hidden: bool
ui_type: Optional[UIType]
ui_order: Optional[int]
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
def InputField(
# copied from pydantic's Field
# TODO: Can we support default_factory?
default: Any = _Unset,
default_factory: Callable[[], Any] | None = _Unset,
title: str | None = _Unset,
description: str | None = _Unset,
pattern: str | None = _Unset,
strict: bool | None = _Unset,
gt: float | None = _Unset,
ge: float | None = _Unset,
lt: float | None = _Unset,
le: float | None = _Unset,
multiple_of: float | None = _Unset,
allow_inf_nan: bool | None = _Unset,
max_digits: int | None = _Unset,
decimal_places: int | None = _Unset,
min_length: int | None = _Unset,
max_length: int | None = _Unset,
# custom
input: Input = Input.Any,
ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None,
) -> Any:
"""
Creates an input field for an invocation.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param Input input: [Input.Any] The kind of input this field requires. \
`Input.Direct` means a value must be provided on instantiation. \
`Input.Connection` means the value must be provided by a connection. \
`Input.Any` means either will do.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
The UI will always render a suitable component, but sometimes you want something different than the default. \
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
For this case, you could provide `UIComponent.Textarea`.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI.
:param dict[str, str] ui_choice_labels: [None] Specifies the labels to use for the choices in an enum field.
"""
json_schema_extra_ = InputFieldJSONSchemaExtra(
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
ui_choice_labels=ui_choice_labels,
field_kind=FieldKind.Input,
orig_required=True,
)
"""
There is a conflict between the typing of invocation definitions and the typing of an invocation's
`invoke()` function.
On instantiation of a node, the invocation definition is used to create the python class. At this time,
any number of fields may be optional, because they may be provided by connections.
On calling of `invoke()`, however, those fields may be required.
For example, consider an ResizeImageInvocation with an `image: ImageField` field.
`image` is required during the call to `invoke()`, but when the python class is instantiated,
the field may not be present. This is fine, because that image field will be provided by a
connection from an ancestor node, which outputs an image.
This means we want to type the `image` field as optional for the node class definition, but required
for the `invoke()` function.
If we use `typing.Optional` in the node class definition, the field will be typed as optional in the
`invoke()` method, and we'll have to do a lot of runtime checks to ensure the field is present - or
any static type analysis tools will complain.
To get around this, in node class definitions, we type all fields correctly for the `invoke()` function,
but secretly make them optional in `InputField()`. We also store the original required bool and/or default
value. When we call `invoke()`, we use this stored information to do an additional check on the class.
"""
if default_factory is not _Unset and default_factory is not None:
default = default_factory()
logger.warn('"default_factory" is not supported, calling it now to set "default"')
# These are the args we may wish pass to the pydantic `Field()` function
field_args = {
"default": default,
"title": title,
"description": description,
"pattern": pattern,
"strict": strict,
"gt": gt,
"ge": ge,
"lt": lt,
"le": le,
"multiple_of": multiple_of,
"allow_inf_nan": allow_inf_nan,
"max_digits": max_digits,
"decimal_places": decimal_places,
"min_length": min_length,
"max_length": max_length,
}
# We only want to pass the args that were provided, otherwise the `Field()`` function won't work as expected
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
# Because we are manually making fields optional, we need to store the original required bool for reference later
json_schema_extra_.orig_required = default is PydanticUndefined
# Make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
if input is Input.Any or input is Input.Connection:
default_ = None if default is PydanticUndefined else default
provided_args.update({"default": default_})
if default is not PydanticUndefined:
# Before invoking, we'll check for the original default value and set it on the field if the field has no value
json_schema_extra_.default = default
json_schema_extra_.orig_default = default
elif default is not PydanticUndefined:
default_ = default
provided_args.update({"default": default_})
json_schema_extra_.orig_default = default_
return Field(
**provided_args,
json_schema_extra=json_schema_extra_.model_dump(exclude_none=True),
)
def OutputField(
# copied from pydantic's Field
default: Any = _Unset,
title: str | None = _Unset,
description: str | None = _Unset,
pattern: str | None = _Unset,
strict: bool | None = _Unset,
gt: float | None = _Unset,
ge: float | None = _Unset,
lt: float | None = _Unset,
le: float | None = _Unset,
multiple_of: float | None = _Unset,
allow_inf_nan: bool | None = _Unset,
max_digits: int | None = _Unset,
decimal_places: int | None = _Unset,
min_length: int | None = _Unset,
max_length: int | None = _Unset,
# custom
ui_type: Optional[UIType] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
) -> Any:
"""
Creates an output field for an invocation output.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
"""
return Field(
default=default,
title=title,
description=description,
pattern=pattern,
strict=strict,
gt=gt,
ge=ge,
lt=lt,
le=le,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
min_length=min_length,
max_length=max_length,
json_schema_extra=OutputFieldJSONSchemaExtra(
ui_type=ui_type,
ui_hidden=ui_hidden,
ui_order=ui_order,
field_kind=FieldKind.Output,
).model_dump(exclude_none=True),
)
class UIConfigBase(BaseModel):
"""
Provides additional node configuration to the UI.
@ -460,33 +89,6 @@ class UIConfigBase(BaseModel):
)
class InvocationContext:
"""Initialized and provided to on execution of invocations."""
services: InvocationServices
graph_execution_state_id: str
queue_id: str
queue_item_id: int
queue_batch_id: str
workflow: Optional[WorkflowWithoutID]
def __init__(
self,
services: InvocationServices,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
workflow: Optional[WorkflowWithoutID],
):
self.services = services
self.graph_execution_state_id = graph_execution_state_id
self.queue_id = queue_id
self.queue_item_id = queue_item_id
self.queue_batch_id = queue_batch_id
self.workflow = workflow
class BaseInvocationOutput(BaseModel):
"""
Base class for all invocation outputs.
@ -495,6 +97,7 @@ class BaseInvocationOutput(BaseModel):
"""
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
@classmethod
def register_output(cls, output: BaseInvocationOutput) -> None:
@ -507,10 +110,14 @@ class BaseInvocationOutput(BaseModel):
return cls._output_classes
@classmethod
def get_outputs_union(cls) -> UnionType:
"""Gets a union of all invocation outputs."""
outputs_union = Union[tuple(cls._output_classes)] # type: ignore [valid-type]
return outputs_union # type: ignore [return-value]
def get_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantc TypeAdapter for the union of all invocation output types."""
if not cls._typeadapter:
InvocationOutputsUnion = TypeAliasType(
"InvocationOutputsUnion", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(InvocationOutputsUnion)
return cls._typeadapter
@classmethod
def get_output_types(cls) -> Iterable[str]:
@ -559,6 +166,7 @@ class BaseInvocation(ABC, BaseModel):
"""
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
@classmethod
def get_type(cls) -> str:
@ -571,10 +179,14 @@ class BaseInvocation(ABC, BaseModel):
cls._invocation_classes.add(invocation)
@classmethod
def get_invocations_union(cls) -> UnionType:
"""Gets a union of all invocation types."""
invocations_union = Union[tuple(cls._invocation_classes)] # type: ignore [valid-type]
return invocations_union # type: ignore [return-value]
def get_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
if not cls._typeadapter:
InvocationsUnion = TypeAliasType(
"InvocationsUnion", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(InvocationsUnion)
return cls._typeadapter
@classmethod
def get_invocations(cls) -> Iterable[BaseInvocation]:
@ -632,7 +244,7 @@ class BaseInvocation(ABC, BaseModel):
"""Invoke with provided context and return outputs."""
pass
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
def invoke_internal(self, context: InvocationContext, services: "InvocationServices") -> BaseInvocationOutput:
"""
Internal invoke method, calls `invoke()` after some prep.
Handles optional fields that are required to call `invoke()` and invocation cache.
@ -657,23 +269,23 @@ class BaseInvocation(ABC, BaseModel):
raise MissingInputException(self.model_fields["type"].default, field_name)
# skip node cache codepath if it's disabled
if context.services.configuration.node_cache_size == 0:
if services.configuration.node_cache_size == 0:
return self.invoke(context)
output: BaseInvocationOutput
if self.use_cache:
key = context.services.invocation_cache.create_key(self)
cached_value = context.services.invocation_cache.get(key)
key = services.invocation_cache.create_key(self)
cached_value = services.invocation_cache.get(key)
if cached_value is None:
context.services.logger.debug(f'Invocation cache miss for type "{self.get_type()}": {self.id}')
services.logger.debug(f'Invocation cache miss for type "{self.get_type()}": {self.id}')
output = self.invoke(context)
context.services.invocation_cache.save(key, output)
services.invocation_cache.save(key, output)
return output
else:
context.services.logger.debug(f'Invocation cache hit for type "{self.get_type()}": {self.id}')
services.logger.debug(f'Invocation cache hit for type "{self.get_type()}": {self.id}')
return cached_value
else:
context.services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}')
services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}')
return self.invoke(context)
id: str = Field(
@ -714,9 +326,7 @@ RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
"workflow",
}
RESERVED_INPUT_FIELD_NAMES = {
"metadata",
}
RESERVED_INPUT_FIELD_NAMES = {"metadata", "board"}
RESERVED_OUTPUT_FIELD_NAMES = {"type"}
@ -926,37 +536,3 @@ def invocation_output(
return cls
return wrapper
class MetadataField(RootModel):
"""
Pydantic model for metadata with custom root of type dict[str, Any].
Metadata is stored without a strict schema.
"""
root: dict[str, Any] = Field(description="The metadata")
MetadataFieldValidator = TypeAdapter(MetadataField)
class WithMetadata(BaseModel):
metadata: Optional[MetadataField] = Field(
default=None,
description=FieldDescriptions.metadata,
json_schema_extra=InputFieldJSONSchemaExtra(
field_kind=FieldKind.Internal,
input=Input.Connection,
orig_required=False,
).model_dump(exclude_none=True),
)
class WithWorkflow:
workflow = None
def __init_subclass__(cls) -> None:
logger.warn(
f"{cls.__module__.split('.')[0]}.{cls.__name__}: WithWorkflow is deprecated. Use `context.workflow` to access the workflow."
)
super().__init_subclass__()

View File

@ -5,9 +5,11 @@ import numpy as np
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.primitives import IntegerCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField
@invocation(

View File

@ -1,40 +1,28 @@
from dataclasses import dataclass
from typing import List, Optional, Union
from typing import Iterator, List, Optional, Tuple, Union, cast
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIComponent
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ConditioningFieldData,
ExtraConditioningInfo,
SDXLConditioningInfo,
)
from invokeai.backend.util.devices import torch_dtype
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.models import ModelNotFoundException, ModelType
from ...backend.util.devices import torch_dtype
from ..util.ti_utils import extract_ti_triggers_from_prompt
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
invocation,
invocation_output,
)
from .model import ClipField
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .model import CLIPField
@dataclass
class ConditioningFieldData:
conditionings: List[BasicConditioningInfo]
# unconditioned: Optional[torch.Tensor]
# unconditioned: Optional[torch.Tensor]
# class ConditioningAlgo(str, Enum):
@ -48,7 +36,7 @@ class ConditioningFieldData:
title="Prompt",
tags=["prompt", "compel"],
category="conditioning",
version="1.0.0",
version="1.0.1",
)
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
@ -58,7 +46,7 @@ class CompelInvocation(BaseInvocation):
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
clip: ClipField = InputField(
clip: CLIPField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
@ -66,49 +54,27 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.model_dump(),
context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.model_dump(),
context=context,
)
tokenizer_info = context.models.load(self.clip.tokenizer)
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(self.clip.text_encoder)
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, CLIPTextModel)
def _lora_loader():
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(
**lora.model_dump(exclude={"weight"}), context=context
)
yield (lora_info.context.model, lora.weight)
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
with (
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
tokenizer,
ti_manager,
),
@ -116,8 +82,9 @@ class CompelInvocation(BaseInvocation):
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
):
assert isinstance(text_encoder, CLIPTextModel)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
@ -128,7 +95,7 @@ class CompelInvocation(BaseInvocation):
conjunction = Compel.parse_prompt_string(self.prompt)
if context.services.configuration.log_tokenization:
if context.config.get().log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
@ -149,45 +116,41 @@ class CompelInvocation(BaseInvocation):
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
return ConditioningOutput.build(conditioning_name)
class SDXLPromptInvocationBase:
"""Prompt processor for SDXL models."""
def run_clip_compel(
self,
context: InvocationContext,
clip_field: ClipField,
clip_field: CLIPField,
prompt: str,
get_pooled: bool,
lora_prefix: str,
zero_on_empty: bool,
):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.model_dump(),
context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.model_dump(),
context=context,
)
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
tokenizer_info = context.models.load(clip_field.tokenizer)
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(clip_field.text_encoder)
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, (CLIPTextModel, CLIPTextModelWithProjection))
# return zero on empty
if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.context.model
cpu_text_encoder = text_encoder_info.model
assert isinstance(cpu_text_encoder, torch.nn.Module)
c = torch.zeros(
(
1,
cpu_text_encoder.config.max_position_embeddings,
cpu_text_encoder.config.hidden_size,
),
dtype=text_encoder_info.context.cache.precision,
dtype=cpu_text_encoder.dtype,
)
if get_pooled:
c_pooled = torch.zeros(
@ -198,40 +161,21 @@ class SDXLPromptInvocationBase:
c_pooled = None
return c, c_pooled, None
def _lora_loader():
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(
**lora.model_dump(exclude={"weight"}), context=context
)
yield (lora_info.context.model, lora.weight)
lora_info = context.models.load(lora.lora)
lora_model = lora_info.model
assert isinstance(lora_model, LoRAModelRaw)
yield (lora_model, lora.weight)
del lora_info
return
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
with (
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
tokenizer,
ti_manager,
),
@ -239,8 +183,10 @@ class SDXLPromptInvocationBase:
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
):
assert isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection))
text_encoder = cast(CLIPTextModel, text_encoder)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
@ -253,7 +199,7 @@ class SDXLPromptInvocationBase:
conjunction = Compel.parse_prompt_string(prompt)
if context.services.configuration.log_tokenization:
if context.config.get().log_tokenization:
# TODO: better logging for and syntax
log_tokenization_for_conjunction(conjunction, tokenizer)
@ -286,7 +232,7 @@ class SDXLPromptInvocationBase:
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.0.0",
version="1.0.1",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@ -307,8 +253,8 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
crop_left: int = InputField(default=0, description="")
target_width: int = InputField(default=1024, description="")
target_height: int = InputField(default=1024, description="")
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1")
clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
@ -357,6 +303,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
dim=1,
)
assert c2_pooled is not None
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
@ -368,14 +315,9 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
return ConditioningOutput.build(conditioning_name)
@invocation(
@ -383,7 +325,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
title="SDXL Refiner Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
version="1.0.0",
version="1.0.1",
)
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
@ -398,7 +340,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
crop_top: int = InputField(default=0, description="")
crop_left: int = InputField(default=0, description="")
aesthetic_score: float = InputField(default=6.0, description=FieldDescriptions.sdxl_aesthetic)
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
clip2: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
@ -410,6 +352,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
assert c2_pooled is not None
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
@ -421,21 +364,16 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
return ConditioningOutput.build(conditioning_name)
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output"""
class CLIPSkipInvocationOutput(BaseInvocationOutput):
"""CLIP skip node output"""
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation(
@ -445,23 +383,23 @@ class ClipSkipInvocationOutput(BaseInvocationOutput):
category="conditioning",
version="1.0.0",
)
class ClipSkipInvocation(BaseInvocation):
class CLIPSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
skipped_layers: int = InputField(default=0, description=FieldDescriptions.skipped_layers)
clip: CLIPField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
skipped_layers: int = InputField(default=0, ge=0, description=FieldDescriptions.skipped_layers)
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
def invoke(self, context: InvocationContext) -> CLIPSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers
return ClipSkipInvocationOutput(
return CLIPSkipInvocationOutput(
clip=self.clip,
)
def get_max_token_count(
tokenizer,
tokenizer: CLIPTokenizer,
prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False,
truncate_if_too_long: bool = False,
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
@ -473,7 +411,9 @@ def get_max_token_count(
return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> List[str]:
def get_tokens_for_prompt_object(
tokenizer: CLIPTokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long: bool = True
) -> List[str]:
if type(parsed_prompt) is Blend:
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
@ -486,24 +426,29 @@ def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, trun
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
tokens: List[str] = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_conjunction(c: Conjunction, tokenizer, display_label_prefix=None):
def log_tokenization_for_conjunction(
c: Conjunction, tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
) -> None:
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
assert display_label_prefix is not None
this_display_label_prefix = display_label_prefix
log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix)
def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None):
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
) -> None:
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
@ -543,7 +488,12 @@ def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokeniz
log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
def log_tokenization_for_text(
text: str,
tokenizer: CLIPTokenizer,
display_label: Optional[str] = None,
truncate_if_too_long: Optional[bool] = False,
) -> None:
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '

View File

@ -0,0 +1,17 @@
from typing import Literal
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
LATENT_SCALE_FACTOR = 8
"""
HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
be addressed if future models use a different latent scale factor. Also, note that there may be places where the scale
factor is hard-coded to a literal '8' rather than using this constant.
The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
"""
SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
"""A literal type representing the valid scheduler names."""
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
"""A literal type for PIL image modes supported by Invoke"""

View File

@ -23,27 +23,25 @@ from controlnet_aux import (
)
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
OutputField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import ModelField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from ...backend.model_management import BaseModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
WithMetadata,
invocation,
invocation_output,
)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
CONTROLNET_RESIZE_VALUES = Literal[
@ -54,18 +52,9 @@ CONTROLNET_RESIZE_VALUES = Literal[
]
class ControlNetModelField(BaseModel):
"""ControlNet model field"""
model_name: str = Field(description="Name of the ControlNet model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ControlNetModelField = Field(description="The ControlNet model to use")
control_model: ModelField = Field(description="The ControlNet model to use")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
@ -101,7 +90,7 @@ class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image")
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
control_model: ModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
)
@ -140,7 +129,7 @@ class ControlNetInvocation(BaseInvocation):
# This invocation exists for other invocations to subclass it - do not register with @invocation!
class ImageProcessorInvocation(BaseInvocation, WithMetadata):
class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Base class for invocations that preprocess images for ControlNet"""
image: ImageField = InputField(description="The image to process")
@ -149,23 +138,18 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata):
# superclass just passes through image without processing
return image
def load_image(self, context: InvocationContext) -> Image.Image:
# allows override for any special formatting specific to the preprocessor
return context.images.get_pil(self.image.image_name, "RGB")
def invoke(self, context: InvocationContext) -> ImageOutput:
raw_image = context.services.images.get_pil_image(self.image.image_name)
raw_image = self.load_image(context)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
# currently can't see processed image in node UI without a showImage node,
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
image_dto = context.services.images.create(
image=processed_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.CONTROL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
image_dto = context.images.save(image=processed_image)
"""Builds an ImageOutput and its ImageField"""
processed_image_field = ImageField(image_name=image_dto.image_name)
@ -184,7 +168,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata):
title="Canny Processor",
tags=["controlnet", "canny"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class CannyImageProcessorInvocation(ImageProcessorInvocation):
"""Canny edge detection for ControlNet"""
@ -196,6 +180,10 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)"
)
def load_image(self, context: InvocationContext) -> Image.Image:
# Keep alpha channel for Canny processing to detect edges of transparent areas
return context.images.get_pil(self.image.image_name, "RGBA")
def run_processor(self, image):
canny_processor = CannyDetector()
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
@ -207,7 +195,7 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
title="HED (softedge) Processor",
tags=["controlnet", "hed", "softedge"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class HedImageProcessorInvocation(ImageProcessorInvocation):
"""Applies HED edge detection to image"""
@ -236,7 +224,7 @@ class HedImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Processor",
tags=["controlnet", "lineart"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class LineartImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art processing to image"""
@ -258,7 +246,7 @@ class LineartImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Anime Processor",
tags=["controlnet", "lineart", "anime"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art anime processing to image"""
@ -281,7 +269,7 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
title="Midas Depth Processor",
tags=["controlnet", "midas"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Midas depth processing to image"""
@ -308,7 +296,7 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Normal BAE Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies NormalBae processing to image"""
@ -325,7 +313,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
@invocation(
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.2.0"
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.2.1"
)
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
"""Applies MLSD processing to image"""
@ -348,7 +336,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
@invocation(
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.2.0"
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.2.1"
)
class PidiImageProcessorInvocation(ImageProcessorInvocation):
"""Applies PIDI processing to image"""
@ -375,7 +363,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
title="Content Shuffle Processor",
tags=["controlnet", "contentshuffle"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
"""Applies content shuffle processing to image"""
@ -405,7 +393,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
title="Zoe (Depth) Processor",
tags=["controlnet", "zoe", "depth"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
@ -421,7 +409,7 @@ class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Mediapipe Face Processor",
tags=["controlnet", "mediapipe", "face"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
"""Applies mediapipe face processing to image"""
@ -430,10 +418,6 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
def run_processor(self, image):
# MediaPipeFaceDetector throws an error if image has alpha channel
# so convert to RGB if needed
if image.mode == "RGBA":
image = image.convert("RGB")
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
return processed_image
@ -444,7 +428,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
title="Leres (Depth) Processor",
tags=["controlnet", "leres", "depth"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class LeresImageProcessorInvocation(ImageProcessorInvocation):
"""Applies leres processing to image"""
@ -473,7 +457,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
title="Tile Resample Processor",
tags=["controlnet", "tile"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
"""Tile resampler processor"""
@ -513,7 +497,7 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
title="Segment Anything Processor",
tags=["controlnet", "segmentanything"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"""Applies segment anything processing to image"""
@ -555,7 +539,7 @@ class SamDetectorReproducibleColors(SamDetector):
title="Color Map Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.0",
version="1.2.1",
)
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a color map from the provided image"""
@ -563,7 +547,6 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
color_map_tile_size: int = InputField(default=64, ge=0, description=FieldDescriptions.tile_size)
def run_processor(self, image: Image.Image):
image = image.convert("RGB")
np_image = np.array(image, dtype=np.uint8)
height, width = np_image.shape[:2]
@ -603,9 +586,6 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
depth_anything_detector = DepthAnythingDetector()
depth_anything_detector.load_model(model_size=self.model_size)
if image.mode == "RGBA":
image = image.convert("RGB")
processed_image = depth_anything_detector(image=image, resolution=self.resolution, offload=self.offload)
return processed_image
@ -625,7 +605,7 @@ class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image):
dw_openpose = DWOpenposeDetector()
processed_image = dw_openpose(
image,

View File

@ -5,22 +5,24 @@ import cv2 as cv
import numpy
from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.invocations.fields import ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.2.0")
class CvInpaintInvocation(BaseInvocation, WithMetadata):
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.2.1")
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Simple inpaint using opencv."""
image: ImageField = InputField(description="The image to inpaint")
mask: ImageField = InputField(description="The mask to use when inpainting")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
mask = context.services.images.get_pil_image(self.mask.image_name)
image = context.images.get_pil(self.image.image_name)
mask = context.images.get_pil(self.mask.image_name)
# Convert to cv image/mask
# TODO: consider making these utility functions
@ -34,18 +36,6 @@ class CvInpaintInvocation(BaseInvocation, WithMetadata):
# TODO: consider making a utility function
image_inpainted = Image.fromarray(cv.cvtColor(cv_inpainted, cv.COLOR_BGR2RGB))
image_dto = context.services.images.create(
image=image_inpainted,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
image_dto = context.images.save(image=image_inpainted)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput.build(image_dto)

View File

@ -13,15 +13,13 @@ from pydantic import field_validator
import invokeai.assets.fonts as font_assets
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InputField,
InvocationContext,
OutputField,
WithMetadata,
invocation,
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.invocations.fields import ImageField, InputField, OutputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("face_mask_output")
@ -306,37 +304,37 @@ def extract_face(
# Adjust the crop boundaries to stay within the original image's dimensions
if x_min < 0:
context.services.logger.warning("FaceTools --> -X-axis padding reached image edge.")
context.logger.warning("FaceTools --> -X-axis padding reached image edge.")
x_max -= x_min
x_min = 0
elif x_max > mask.width:
context.services.logger.warning("FaceTools --> +X-axis padding reached image edge.")
context.logger.warning("FaceTools --> +X-axis padding reached image edge.")
x_min -= x_max - mask.width
x_max = mask.width
if y_min < 0:
context.services.logger.warning("FaceTools --> +Y-axis padding reached image edge.")
context.logger.warning("FaceTools --> +Y-axis padding reached image edge.")
y_max -= y_min
y_min = 0
elif y_max > mask.height:
context.services.logger.warning("FaceTools --> -Y-axis padding reached image edge.")
context.logger.warning("FaceTools --> -Y-axis padding reached image edge.")
y_min -= y_max - mask.height
y_max = mask.height
# Ensure the crop is square and adjust the boundaries if needed
if x_max - x_min != crop_size:
context.services.logger.warning("FaceTools --> Limiting x-axis padding to constrain bounding box to a square.")
context.logger.warning("FaceTools --> Limiting x-axis padding to constrain bounding box to a square.")
diff = crop_size - (x_max - x_min)
x_min -= diff // 2
x_max += diff - diff // 2
if y_max - y_min != crop_size:
context.services.logger.warning("FaceTools --> Limiting y-axis padding to constrain bounding box to a square.")
context.logger.warning("FaceTools --> Limiting y-axis padding to constrain bounding box to a square.")
diff = crop_size - (y_max - y_min)
y_min -= diff // 2
y_max += diff - diff // 2
context.services.logger.info(f"FaceTools --> Calculated bounding box (8 multiple): {crop_size}")
context.logger.info(f"FaceTools --> Calculated bounding box (8 multiple): {crop_size}")
# Crop the output image to the specified size with the center of the face mesh as the center.
mask = mask.crop((x_min, y_min, x_max, y_max))
@ -368,7 +366,7 @@ def get_faces_list(
# Generate the face box mask and get the center of the face.
if not should_chunk:
context.services.logger.info("FaceTools --> Attempting full image face detection.")
context.logger.info("FaceTools --> Attempting full image face detection.")
result = generate_face_box_mask(
context=context,
minimum_confidence=minimum_confidence,
@ -380,7 +378,7 @@ def get_faces_list(
draw_mesh=draw_mesh,
)
if should_chunk or len(result) == 0:
context.services.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).")
context.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).")
width, height = image.size
image_chunks = []
x_offsets = []
@ -399,7 +397,7 @@ def get_faces_list(
x_offsets.append(x)
y_offsets.append(0)
fx += increment
context.services.logger.info(f"FaceTools --> Chunk starting at x = {x}")
context.logger.info(f"FaceTools --> Chunk starting at x = {x}")
elif height > width:
# Portrait - slice the image vertically
fy = 0.0
@ -411,10 +409,10 @@ def get_faces_list(
x_offsets.append(0)
y_offsets.append(y)
fy += increment
context.services.logger.info(f"FaceTools --> Chunk starting at y = {y}")
context.logger.info(f"FaceTools --> Chunk starting at y = {y}")
for idx in range(len(image_chunks)):
context.services.logger.info(f"FaceTools --> Evaluating faces in chunk {idx}")
context.logger.info(f"FaceTools --> Evaluating faces in chunk {idx}")
result = result + generate_face_box_mask(
context=context,
minimum_confidence=minimum_confidence,
@ -428,7 +426,7 @@ def get_faces_list(
if len(result) == 0:
# Give up
context.services.logger.warning(
context.logger.warning(
"FaceTools --> No face detected in chunked input image. Passing through original image."
)
@ -437,7 +435,7 @@ def get_faces_list(
return all_faces
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.2.0")
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.2.1")
class FaceOffInvocation(BaseInvocation, WithMetadata):
"""Bound, extract, and mask a face from an image using MediaPipe detection"""
@ -470,11 +468,11 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
)
if len(all_faces) == 0:
context.services.logger.warning("FaceOff --> No faces detected. Passing through original image.")
context.logger.warning("FaceOff --> No faces detected. Passing through original image.")
return None
if self.face_id > len(all_faces) - 1:
context.services.logger.warning(
context.logger.warning(
f"FaceOff --> Face ID {self.face_id} is outside of the number of faces detected ({len(all_faces)}). Passing through original image."
)
return None
@ -486,7 +484,7 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
return face_data
def invoke(self, context: InvocationContext) -> FaceOffOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
result = self.faceoff(context=context, image=image)
if result is None:
@ -500,24 +498,9 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
x = result["x_min"]
y = result["y_min"]
image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
image_dto = context.images.save(image=result_image)
mask_dto = context.services.images.create(
image=result_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
mask_dto = context.images.save(image=result_mask, image_category=ImageCategory.MASK)
output = FaceOffOutput(
image=ImageField(image_name=image_dto.image_name),
@ -531,7 +514,7 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
return output
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.2.0")
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.2.1")
class FaceMaskInvocation(BaseInvocation, WithMetadata):
"""Face mask creation using mediapipe face detection"""
@ -580,7 +563,7 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
if len(intersected_face_ids) == 0:
id_range_str = ",".join([str(id) for id in id_range])
context.services.logger.warning(
context.logger.warning(
f"Face IDs must be in range of detected faces - requested {self.face_ids}, detected {id_range_str}. Passing through original image."
)
return FaceMaskResult(
@ -616,27 +599,12 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
)
def invoke(self, context: InvocationContext) -> FaceMaskOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
result = self.facemask(context=context, image=image)
image_dto = context.services.images.create(
image=result["image"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
image_dto = context.images.save(image=result["image"])
mask_dto = context.services.images.create(
image=result["mask"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
mask_dto = context.images.save(image=result["mask"], image_category=ImageCategory.MASK)
output = FaceMaskOutput(
image=ImageField(image_name=image_dto.image_name),
@ -649,9 +617,9 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
@invocation(
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.2.0"
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.2.1"
)
class FaceIdentifierInvocation(BaseInvocation, WithMetadata):
class FaceIdentifierInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""
image: ImageField = InputField(description="Image to face detect")
@ -705,21 +673,9 @@ class FaceIdentifierInvocation(BaseInvocation, WithMetadata):
return image
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
result_image = self.faceidentifier(context=context, image=image)
image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
image_dto = context.images.save(image=result_image)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput.build(image_dto)

View File

@ -0,0 +1,566 @@
from enum import Enum
from typing import Any, Callable, Optional, Tuple
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter
from pydantic.fields import _Unset
from pydantic_core import PydanticUndefined
from invokeai.app.util.metaenum import MetaEnum
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger()
class UIType(str, Enum, metaclass=MetaEnum):
"""
Type hints for the UI for situations in which the field type is not enough to infer the correct UI type.
- Model Fields
The most common node-author-facing use will be for model fields. Internally, there is no difference
between SD-1, SD-2 and SDXL model fields - they all use the class `MainModelField`. To ensure the
base-model-specific UI is rendered, use e.g. `ui_type=UIType.SDXLMainModelField` to indicate that
the field is an SDXL main model field.
- Any Field
We cannot infer the usage of `typing.Any` via schema parsing, so you *must* use `ui_type=UIType.Any` to
indicate that the field accepts any type. Use with caution. This cannot be used on outputs.
- Scheduler Field
Special handling in the UI is needed for this field, which otherwise would be parsed as a plain enum field.
- Internal Fields
Similar to the Any Field, the `collect` and `iterate` nodes make use of `typing.Any`. To facilitate
handling these types in the client, we use `UIType._Collection` and `UIType._CollectionItem`. These
should not be used by node authors.
- DEPRECATED Fields
These types are deprecated and should not be used by node authors. A warning will be logged if one is
used, and the type will be ignored. They are included here for backwards compatibility.
"""
# region Model Field Types
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VaeModel = "VAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
# endregion
# region Misc Field Types
Scheduler = "SchedulerField"
Any = "AnyField"
# endregion
# region Internal Field Types
_Collection = "CollectionField"
_CollectionItem = "CollectionItemField"
# endregion
# region DEPRECATED
Boolean = "DEPRECATED_Boolean"
Color = "DEPRECATED_Color"
Conditioning = "DEPRECATED_Conditioning"
Control = "DEPRECATED_Control"
Float = "DEPRECATED_Float"
Image = "DEPRECATED_Image"
Integer = "DEPRECATED_Integer"
Latents = "DEPRECATED_Latents"
String = "DEPRECATED_String"
BooleanCollection = "DEPRECATED_BooleanCollection"
ColorCollection = "DEPRECATED_ColorCollection"
ConditioningCollection = "DEPRECATED_ConditioningCollection"
ControlCollection = "DEPRECATED_ControlCollection"
FloatCollection = "DEPRECATED_FloatCollection"
ImageCollection = "DEPRECATED_ImageCollection"
IntegerCollection = "DEPRECATED_IntegerCollection"
LatentsCollection = "DEPRECATED_LatentsCollection"
StringCollection = "DEPRECATED_StringCollection"
BooleanPolymorphic = "DEPRECATED_BooleanPolymorphic"
ColorPolymorphic = "DEPRECATED_ColorPolymorphic"
ConditioningPolymorphic = "DEPRECATED_ConditioningPolymorphic"
ControlPolymorphic = "DEPRECATED_ControlPolymorphic"
FloatPolymorphic = "DEPRECATED_FloatPolymorphic"
ImagePolymorphic = "DEPRECATED_ImagePolymorphic"
IntegerPolymorphic = "DEPRECATED_IntegerPolymorphic"
LatentsPolymorphic = "DEPRECATED_LatentsPolymorphic"
StringPolymorphic = "DEPRECATED_StringPolymorphic"
MainModel = "DEPRECATED_MainModel"
UNet = "DEPRECATED_UNet"
Vae = "DEPRECATED_Vae"
CLIP = "DEPRECATED_CLIP"
Collection = "DEPRECATED_Collection"
CollectionItem = "DEPRECATED_CollectionItem"
Enum = "DEPRECATED_Enum"
WorkflowField = "DEPRECATED_WorkflowField"
IsIntermediate = "DEPRECATED_IsIntermediate"
BoardField = "DEPRECATED_BoardField"
MetadataItem = "DEPRECATED_MetadataItem"
MetadataItemCollection = "DEPRECATED_MetadataItemCollection"
MetadataItemPolymorphic = "DEPRECATED_MetadataItemPolymorphic"
MetadataDict = "DEPRECATED_MetadataDict"
class UIComponent(str, Enum, metaclass=MetaEnum):
"""
The type of UI component to use for a field, used to override the default components, which are
inferred from the field type.
"""
None_ = "none"
Textarea = "textarea"
Slider = "slider"
class FieldDescriptions:
denoising_start = "When to start denoising, expressed a percentage of total steps"
denoising_end = "When to stop denoising, expressed a percentage of total steps"
cfg_scale = "Classifier-Free Guidance scale"
cfg_rescale_multiplier = "Rescale multiplier for CFG guidance, used for models trained with zero-terminal SNR"
scheduler = "Scheduler to use during inference"
positive_cond = "Positive conditioning tensor"
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
unet = "UNet (scheduler, LoRAs)"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
skipped_layers = "Number of layers to skip in text encoder"
seed = "Seed for random number generation"
steps = "Number of steps to run"
width = "Width of output (px)"
height = "Height of output (px)"
control = "ControlNet(s) to apply"
ip_adapter = "IP-Adapter to apply"
t2i_adapter = "T2I-Adapter(s) to apply"
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
metadata = "Optional metadata to be saved with the image"
metadata_collection = "Collection of Metadata"
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
metadata_item_label = "Label for this metadata item"
metadata_item_value = "The value for this metadata item (may be any type)"
workflow = "Optional workflow to be saved with the image"
interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"
scribble_mode = "Whether or not to use scribble mode"
scale_factor = "The factor by which to scale"
blend_alpha = (
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"
inclusive_low = "The inclusive low value"
exclusive_high = "The exclusive high value"
decimal_places = "The number of decimal places to round to"
freeu_s1 = 'Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
freeu_s2 = 'Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
freeu_b1 = "Scaling factor for stage 1 to amplify the contributions of backbone features."
freeu_b2 = "Scaling factor for stage 2 to amplify the contributions of backbone features."
class ImageField(BaseModel):
"""An image primitive field"""
image_name: str = Field(description="The name of the image")
class BoardField(BaseModel):
"""A board primitive field"""
board_id: str = Field(description="The id of the board")
class DenoiseMaskField(BaseModel):
"""An inpaint mask field"""
mask_name: str = Field(description="The name of the mask image")
masked_latents_name: Optional[str] = Field(default=None, description="The name of the masked image latents")
gradient: bool = Field(default=False, description="Used for gradient inpainting")
class LatentsField(BaseModel):
"""A latents tensor primitive field"""
latents_name: str = Field(description="The name of the latents")
seed: Optional[int] = Field(default=None, description="Seed used to generate this latents")
class ColorField(BaseModel):
"""A color primitive field"""
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
# endregion
class MetadataField(RootModel[dict[str, Any]]):
"""
Pydantic model for metadata with custom root of type dict[str, Any].
Metadata is stored without a strict schema.
"""
root: dict[str, Any] = Field(description="The metadata")
MetadataFieldValidator = TypeAdapter(MetadataField)
class Input(str, Enum, metaclass=MetaEnum):
"""
The type of input a field accepts.
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
are instantiated.
- `Input.Connection`: The field must have its value provided by a connection.
- `Input.Any`: The field may have its value provided either directly or by a connection.
"""
Connection = "connection"
Direct = "direct"
Any = "any"
class FieldKind(str, Enum, metaclass=MetaEnum):
"""
The kind of field.
- `Input`: An input field on a node.
- `Output`: An output field on a node.
- `Internal`: A field which is treated as an input, but cannot be used in node definitions. Metadata is
one example. It is provided to nodes via the WithMetadata class, and we want to reserve the field name
"metadata" for this on all nodes. `FieldKind` is used to short-circuit the field name validation logic,
allowing "metadata" for that field.
- `NodeAttribute`: The field is a node attribute. These are fields which are not inputs or outputs,
but which are used to store information about the node. For example, the `id` and `type` fields are node
attributes.
The presence of this in `json_schema_extra["field_kind"]` is used when initializing node schemas on app
startup, and when generating the OpenAPI schema for the workflow editor.
"""
Input = "input"
Output = "output"
Internal = "internal"
NodeAttribute = "node_attribute"
class InputFieldJSONSchemaExtra(BaseModel):
"""
Extra attributes to be added to input fields and their OpenAPI schema. Used during graph execution,
and by the workflow editor during schema parsing and UI rendering.
"""
input: Input
orig_required: bool
field_kind: FieldKind
default: Optional[Any] = None
orig_default: Optional[Any] = None
ui_hidden: bool = False
ui_type: Optional[UIType] = None
ui_component: Optional[UIComponent] = None
ui_order: Optional[int] = None
ui_choice_labels: Optional[dict[str, str]] = None
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
class WithMetadata(BaseModel):
"""
Inherit from this class if your node needs a metadata input field.
"""
metadata: Optional[MetadataField] = Field(
default=None,
description=FieldDescriptions.metadata,
json_schema_extra=InputFieldJSONSchemaExtra(
field_kind=FieldKind.Internal,
input=Input.Connection,
orig_required=False,
).model_dump(exclude_none=True),
)
class WithWorkflow:
workflow = None
def __init_subclass__(cls) -> None:
logger.warn(
f"{cls.__module__.split('.')[0]}.{cls.__name__}: WithWorkflow is deprecated. Use `context.workflow` to access the workflow."
)
super().__init_subclass__()
class WithBoard(BaseModel):
"""
Inherit from this class if your node needs a board input field.
"""
board: Optional[BoardField] = Field(
default=None,
description=FieldDescriptions.board,
json_schema_extra=InputFieldJSONSchemaExtra(
field_kind=FieldKind.Internal,
input=Input.Direct,
orig_required=False,
).model_dump(exclude_none=True),
)
class OutputFieldJSONSchemaExtra(BaseModel):
"""
Extra attributes to be added to input fields and their OpenAPI schema. Used by the workflow editor
during schema parsing and UI rendering.
"""
field_kind: FieldKind
ui_hidden: bool
ui_type: Optional[UIType]
ui_order: Optional[int]
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
def InputField(
# copied from pydantic's Field
# TODO: Can we support default_factory?
default: Any = _Unset,
default_factory: Callable[[], Any] | None = _Unset,
title: str | None = _Unset,
description: str | None = _Unset,
pattern: str | None = _Unset,
strict: bool | None = _Unset,
gt: float | None = _Unset,
ge: float | None = _Unset,
lt: float | None = _Unset,
le: float | None = _Unset,
multiple_of: float | None = _Unset,
allow_inf_nan: bool | None = _Unset,
max_digits: int | None = _Unset,
decimal_places: int | None = _Unset,
min_length: int | None = _Unset,
max_length: int | None = _Unset,
# custom
input: Input = Input.Any,
ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None,
) -> Any:
"""
Creates an input field for an invocation.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param Input input: [Input.Any] The kind of input this field requires. \
`Input.Direct` means a value must be provided on instantiation. \
`Input.Connection` means the value must be provided by a connection. \
`Input.Any` means either will do.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
The UI will always render a suitable component, but sometimes you want something different than the default. \
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
For this case, you could provide `UIComponent.Textarea`.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI.
:param dict[str, str] ui_choice_labels: [None] Specifies the labels to use for the choices in an enum field.
"""
json_schema_extra_ = InputFieldJSONSchemaExtra(
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
ui_choice_labels=ui_choice_labels,
field_kind=FieldKind.Input,
orig_required=True,
)
"""
There is a conflict between the typing of invocation definitions and the typing of an invocation's
`invoke()` function.
On instantiation of a node, the invocation definition is used to create the python class. At this time,
any number of fields may be optional, because they may be provided by connections.
On calling of `invoke()`, however, those fields may be required.
For example, consider an ResizeImageInvocation with an `image: ImageField` field.
`image` is required during the call to `invoke()`, but when the python class is instantiated,
the field may not be present. This is fine, because that image field will be provided by a
connection from an ancestor node, which outputs an image.
This means we want to type the `image` field as optional for the node class definition, but required
for the `invoke()` function.
If we use `typing.Optional` in the node class definition, the field will be typed as optional in the
`invoke()` method, and we'll have to do a lot of runtime checks to ensure the field is present - or
any static type analysis tools will complain.
To get around this, in node class definitions, we type all fields correctly for the `invoke()` function,
but secretly make them optional in `InputField()`. We also store the original required bool and/or default
value. When we call `invoke()`, we use this stored information to do an additional check on the class.
"""
if default_factory is not _Unset and default_factory is not None:
default = default_factory()
logger.warn('"default_factory" is not supported, calling it now to set "default"')
# These are the args we may wish pass to the pydantic `Field()` function
field_args = {
"default": default,
"title": title,
"description": description,
"pattern": pattern,
"strict": strict,
"gt": gt,
"ge": ge,
"lt": lt,
"le": le,
"multiple_of": multiple_of,
"allow_inf_nan": allow_inf_nan,
"max_digits": max_digits,
"decimal_places": decimal_places,
"min_length": min_length,
"max_length": max_length,
}
# We only want to pass the args that were provided, otherwise the `Field()`` function won't work as expected
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
# Because we are manually making fields optional, we need to store the original required bool for reference later
json_schema_extra_.orig_required = default is PydanticUndefined
# Make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
if input is Input.Any or input is Input.Connection:
default_ = None if default is PydanticUndefined else default
provided_args.update({"default": default_})
if default is not PydanticUndefined:
# Before invoking, we'll check for the original default value and set it on the field if the field has no value
json_schema_extra_.default = default
json_schema_extra_.orig_default = default
elif default is not PydanticUndefined:
default_ = default
provided_args.update({"default": default_})
json_schema_extra_.orig_default = default_
return Field(
**provided_args,
json_schema_extra=json_schema_extra_.model_dump(exclude_none=True),
)
def OutputField(
# copied from pydantic's Field
default: Any = _Unset,
title: str | None = _Unset,
description: str | None = _Unset,
pattern: str | None = _Unset,
strict: bool | None = _Unset,
gt: float | None = _Unset,
ge: float | None = _Unset,
lt: float | None = _Unset,
le: float | None = _Unset,
multiple_of: float | None = _Unset,
allow_inf_nan: bool | None = _Unset,
max_digits: int | None = _Unset,
decimal_places: int | None = _Unset,
min_length: int | None = _Unset,
max_length: int | None = _Unset,
# custom
ui_type: Optional[UIType] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
) -> Any:
"""
Creates an output field for an invocation output.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
"""
return Field(
default=default,
title=title,
description=description,
pattern=pattern,
strict=strict,
gt=gt,
ge=ge,
lt=lt,
le=le,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
min_length=min_length,
max_length=max_length,
json_schema_extra=OutputFieldJSONSchemaExtra(
ui_type=ui_type,
ui_hidden=ui_hidden,
ui_order=ui_order,
field_kind=FieldKind.Output,
).model_dump(exclude_none=True),
)

File diff suppressed because it is too large Load Diff

View File

@ -6,14 +6,16 @@ from typing import Literal, Optional, get_args
import numpy as np
from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.invocations.fields import ColorField, ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
@ -118,8 +120,8 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
return si
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
class InfillColorInvocation(BaseInvocation, WithMetadata):
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1")
class InfillColorInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Infills transparent areas of an image with a solid color"""
image: ImageField = InputField(description="The image to infill")
@ -129,33 +131,20 @@ class InfillColorInvocation(BaseInvocation, WithMetadata):
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
image_dto = context.images.save(image=infilled)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput.build(image_dto)
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1")
class InfillTileInvocation(BaseInvocation, WithMetadata):
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
class InfillTileInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Infills transparent areas of an image with tiles of the image"""
image: ImageField = InputField(description="The image to infill")
@ -168,33 +157,20 @@ class InfillTileInvocation(BaseInvocation, WithMetadata):
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
infilled = tile_fill_missing(image.copy(), seed=self.seed, tile_size=self.tile_size)
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
image_dto = context.images.save(image=infilled)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput.build(image_dto)
@invocation(
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0"
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1"
)
class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
class InfillPatchMatchInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
image: ImageField = InputField(description="The image to infill")
@ -202,7 +178,7 @@ class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name).convert("RGBA")
image = context.images.get_pil(self.image.image_name).convert("RGBA")
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
@ -227,77 +203,38 @@ class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
infilled.paste(image, (0, 0), mask=image.split()[-1])
# image.paste(infilled, (0, 0), mask=image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
image_dto = context.images.save(image=infilled)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput.build(image_dto)
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
class LaMaInfillInvocation(BaseInvocation, WithMetadata):
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1")
class LaMaInfillInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Infills transparent areas of an image using the LaMa model"""
image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
infilled = infill_lama(image.copy())
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
image_dto = context.images.save(image=infilled)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput.build(image_dto)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
class CV2InfillInvocation(BaseInvocation, WithMetadata):
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1")
class CV2InfillInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Infills transparent areas of an image using OpenCV Inpainting"""
image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
infilled = infill_cv2(image.copy())
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
image_dto = context.images.save(image=infilled)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput.build(image_dto)

View File

@ -1,44 +1,27 @@
import os
from builtins import float
from typing import List, Union
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.model import ModelField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
class IPAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the IP-Adapter model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class CLIPVisionModelField(BaseModel):
model_name: str = Field(description="Name of the CLIP Vision image encoder model")
base_model: BaseModelType = Field(description="Base model (usually 'Any')")
model_config = ConfigDict(protected_namespaces=())
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType, IPAdapterConfig, ModelType
class IPAdapterField(BaseModel):
image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).")
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
ip_adapter_model: ModelField = Field(description="The IP-Adapter model to use.")
image_encoder_model: ModelField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
@ -49,12 +32,12 @@ class IPAdapterField(BaseModel):
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
def validate_ip_adapter_weight(cls, v: float) -> float:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
def validate_begin_end_step_percent(self) -> Self:
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@ -65,13 +48,13 @@ class IPAdapterOutput(BaseInvocationOutput):
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.1")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.2")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""
# Inputs
image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).")
ip_adapter_model: IPAdapterModelField = InputField(
ip_adapter_model: ModelField = InputField(
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
)
@ -87,38 +70,30 @@ class IPAdapterInvocation(BaseInvocation):
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
def validate_ip_adapter_weight(cls, v: float) -> float:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
def validate_begin_end_step_percent(self) -> Self:
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.services.model_manager.model_info(
self.ip_adapter_model.model_name, self.ip_adapter_model.base_model, ModelType.IPAdapter
)
# HACK(ryand): This is bad for a couple of reasons: 1) we are bypassing the model manager to read the model
# directly, and 2) we are reading from disk every time this invocation is called without caching the result.
# A better solution would be to store the image encoder model reference in the IP-Adapter model info, but this
# is currently messy due to differences between how the model info is generated when installing a model from
# disk vs. downloading the model.
image_encoder_model_id = get_ip_adapter_image_encoder_model_id(
os.path.join(context.services.configuration.get_config().models_path, ip_adapter_info["path"])
)
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key)
assert isinstance(ip_adapter_info, IPAdapterConfig)
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
image_encoder_model = CLIPVisionModelField(
model_name=image_encoder_model_name,
base_model=BaseModelType.Any,
image_encoder_models = context.models.search_by_attrs(
name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision
)
assert len(image_encoder_models) == 1
return IPAdapterOutput(
ip_adapter=IPAdapterField(
image=self.image,
ip_adapter_model=self.ip_adapter_model,
image_encoder_model=image_encoder_model,
image_encoder_model=ModelField(key=image_encoder_models[0].key),
weight=self.weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,

View File

@ -3,13 +3,15 @@
import math
from contextlib import ExitStack
from functools import singledispatchmethod
from typing import List, Literal, Optional, Union
from typing import Any, Iterator, List, Literal, Optional, Tuple, Union
import einops
import numpy as np
import numpy.typing as npt
import torch
import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.configuration_utils import ConfigMixin
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.adapter import T2IAdapter
from diffusers.models.attention_processor import (
@ -18,34 +20,45 @@ from diffusers.models.attention_processor import (
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler
from PIL import Image, ImageFilter
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
ImageField,
Input,
InputField,
LatentsField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.primitives import (
DenoiseMaskField,
DenoiseMaskOutput,
ImageField,
ImageOutput,
LatentsField,
LatentsOutput,
build_latents_output,
)
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
from invokeai.backend.util.silence_warnings import SilenceWarnings
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.models import BaseModelType
from ...backend.model_management.seamless import set_seamless
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
IPAdapterData,
@ -59,36 +72,21 @@ from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
WithMetadata,
invocation,
invocation_output,
)
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .model import ModelInfo, UNetField, VaeField
from .model import ModelField, UNetField, VAEField
if choose_torch_device() == torch.device("mps"):
from torch import mps
DEFAULT_PRECISION = choose_precision(choose_torch_device())
SAMPLER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
# HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
# be addressed if future models use a different latent scale factor. Also, note that there may be places where the scale
# factor is hard-coded to a literal '8' rather than using this constant.
# The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
LATENT_SCALE_FACTOR = 8
@invocation_output("scheduler_output")
class SchedulerOutput(BaseInvocationOutput):
scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
scheduler: SCHEDULER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
@invocation(
@ -101,7 +99,7 @@ class SchedulerOutput(BaseInvocationOutput):
class SchedulerInvocation(BaseInvocation):
"""Selects a scheduler."""
scheduler: SAMPLER_NAME_VALUES = InputField(
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
@ -116,12 +114,12 @@ class SchedulerInvocation(BaseInvocation):
title="Create Denoise Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.0",
version="1.0.1",
)
class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
vae: VaeField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
@ -131,10 +129,10 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
ui_order=4,
)
def prep_mask_tensor(self, mask_image):
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
# if shape is not None:
@ -144,55 +142,115 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
if self.image is not None:
image = context.services.images.get_pil_image(self.image.image_name)
image = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image.dim() == 3:
image = image.unsqueeze(0)
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
else:
image = None
image_tensor = None
mask = self.prep_mask_tensor(
context.services.images.get_pil_image(self.mask.image_name),
context.images.get_pil(self.mask.image_name),
)
if image is not None:
vae_info = context.services.model_manager.get_model(
**self.vae.vae.model_dump(),
context=context,
)
if image_tensor is not None:
vae_info = context.models.load(self.vae.vae)
img_mask = tv_resize(mask, image.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image * torch.where(img_mask < 0.5, 0.0, 1.0)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
# TODO:
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
masked_latents_name = f"{context.graph_execution_state_id}__{self.id}_masked_latents"
context.services.latents.save(masked_latents_name, masked_latents)
masked_latents_name = context.tensors.save(tensor=masked_latents)
else:
masked_latents_name = None
mask_name = f"{context.graph_execution_state_id}__{self.id}_mask"
context.services.latents.save(mask_name, mask)
mask_name = context.tensors.save(tensor=mask)
return DenoiseMaskOutput(
denoise_mask=DenoiseMaskField(
mask_name=mask_name,
masked_latents_name=masked_latents_name,
),
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=masked_latents_name,
gradient=False,
)
@invocation_output("gradient_mask_output")
class GradientMaskOutput(BaseInvocationOutput):
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
expanded_mask_area: ImageField = OutputField(
description="Image representing the total gradient area of the mask. For paste-back purposes."
)
@invocation(
"create_gradient_mask",
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
edge_radius: int = InputField(
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
)
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
minimum_denoise: float = InputField(
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
if self.edge_radius > 0:
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is less than fully masked, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
else:
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
# compute a [0, 1] mask from the blur_tensor
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
expanded_image_dto = context.images.save(expanded_mask_image)
return GradientMaskOutput(
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=None, gradient=True),
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
)
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelInfo,
scheduler_info: ModelField,
scheduler_name: str,
seed: int,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.model_dump(),
context=context,
)
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
@ -200,7 +258,7 @@ def get_scheduler(
scheduler_config = scheduler_config["_backup"]
scheduler_config = {
**scheduler_config,
**scheduler_extra_config,
**scheduler_extra_config, # FIXME
"_backup": scheduler_config,
}
@ -213,6 +271,7 @@ def get_scheduler(
# hack copied over from generate.py
if not hasattr(scheduler, "uses_inpainting_model"):
scheduler.uses_inpainting_model = lambda: False
assert isinstance(scheduler, Scheduler)
return scheduler
@ -221,7 +280,7 @@ def get_scheduler(
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.5.1",
version="1.5.2",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
@ -249,7 +308,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SAMPLER_NAME_VALUES = InputField(
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
@ -296,7 +355,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
@field_validator("cfg_scale")
def ge_one(cls, v):
def ge_one(cls, v: Union[List[float], float]) -> Union[List[float], float]:
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
@ -307,34 +366,17 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1")
return v
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
base_model: BaseModelType,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.model_dump(),
source_node_id=source_node_id,
base_model=base_model,
)
def get_conditioning_data(
self,
context: InvocationContext,
scheduler,
unet,
seed,
scheduler: Scheduler,
unet: UNet2DConditionModel,
seed: int,
) -> ConditioningData:
positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
positive_cond_data = context.conditioning.load(self.positive_conditioning.conditioning_name)
c = positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
extra_conditioning_info = c.extra_conditioning
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
negative_cond_data = context.conditioning.load(self.negative_conditioning.conditioning_name)
uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
conditioning_data = ConditioningData(
@ -342,7 +384,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
text_embeddings=c,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0, # threshold,
warmup=0.2, # warmup,
@ -351,7 +392,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
conditioning_data = conditioning_data.add_scheduler_args_if_applicable( # FIXME
scheduler,
# for ddim scheduler
eta=0.0, # ddim_eta
@ -363,8 +404,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
def create_pipeline(
self,
unet,
scheduler,
unet: UNet2DConditionModel,
scheduler: Scheduler,
) -> StableDiffusionGeneratorPipeline:
# TODO:
# configure_model_padding(
@ -375,10 +416,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
class FakeVae:
class FakeVaeConfig:
def __init__(self):
def __init__(self) -> None:
self.block_out_channels = [0]
def __init__(self):
def __init__(self) -> None:
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
@ -395,11 +436,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
def prep_control_data(
self,
context: InvocationContext,
control_input: Union[ControlField, List[ControlField]],
control_input: Optional[Union[ControlField, List[ControlField]]],
latents_shape: List[int],
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
) -> Optional[List[ControlNetData]]:
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR
control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR
@ -421,18 +462,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
# and if weight is None, populate with default 1.0?
controlnet_data = []
for control_info in control_list:
control_model = exit_stack.enter_context(
context.services.model_manager.get_model(
model_name=control_info.control_model.model_name,
model_type=ModelType.ControlNet,
base_model=control_info.control_model.base_model,
context=context,
)
)
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
# control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(control_image_field.image_name)
input_image = context.images.get_pil(control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
@ -490,31 +524,21 @@ class DenoiseLatentsInvocation(BaseInvocation):
conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.services.model_manager.get_model(
model_name=single_ip_adapter.ip_adapter_model.model_name,
model_type=ModelType.IPAdapter,
base_model=single_ip_adapter.ip_adapter_model.base_model,
context=context,
)
)
image_encoder_model_info = context.services.model_manager.get_model(
model_name=single_ip_adapter.image_encoder_model.model_name,
model_type=ModelType.CLIPVision,
base_model=single_ip_adapter.image_encoder_model.base_model,
context=context,
context.models.load(single_ip_adapter.ip_adapter_model)
)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_images = single_ip_adapter.image
if not isinstance(single_ipa_images, list):
single_ipa_images = [single_ipa_images]
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
single_ipa_image_fields = [single_ipa_image_fields]
single_ipa_images = [context.services.images.get_pil_image(image.image_name) for image in single_ipa_images]
single_ipa_images = [context.images.get_pil(image.image_name) for image in single_ipa_image_fields]
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model
@ -554,26 +578,20 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_info = context.services.model_manager.get_model(
model_name=t2i_adapter_field.t2i_adapter_model.model_name,
model_type=ModelType.T2IAdapter,
base_model=t2i_adapter_field.t2i_adapter_model.base_model,
context=context,
)
image = context.services.images.get_pil_image(t2i_adapter_field.image.image_name)
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_field.t2i_adapter_model.base_model == BaseModelType.StableDiffusion1:
if t2i_adapter_model_config.base == BaseModelType.StableDiffusion1:
max_unet_downscale = 8
elif t2i_adapter_field.t2i_adapter_model.base_model == BaseModelType.StableDiffusionXL:
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4
else:
raise ValueError(
f"Unexpected T2I-Adapter base model type: '{t2i_adapter_field.t2i_adapter_model.base_model}'."
)
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
t2i_adapter_model: T2IAdapter
with t2i_adapter_model_info as t2i_adapter_model:
with t2i_adapter_loaded_model as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Resize the T2I-Adapter input image.
@ -593,7 +611,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
do_classifier_free_guidance=False,
width=t2i_input_width,
height=t2i_input_height,
num_channels=t2i_adapter_model.config.in_channels,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
device=t2i_adapter_model.device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
@ -618,7 +636,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
# original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps
def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end):
def init_scheduler(
self,
scheduler: Union[Scheduler, ConfigMixin],
device: torch.device,
steps: int,
denoising_start: float,
denoising_end: float,
) -> Tuple[int, List[int], int]:
assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False):
scheduler.set_timesteps(steps, device="cpu")
timesteps = scheduler.timesteps.to(device=device)
@ -630,11 +656,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
_timesteps = timesteps[:: scheduler.order]
# get start timestep index
t_start_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_start)))
t_start_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_start)))
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps)))
# get end timestep index
t_end_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_end)))
t_end_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_end)))
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:])))
# apply order to indexes
@ -647,18 +673,20 @@ class DenoiseLatentsInvocation(BaseInvocation):
return num_inference_steps, timesteps, init_timestep
def prep_inpaint_mask(self, context, latents):
def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], bool]:
if self.denoise_mask is None:
return None, None
return None, None, False
mask = context.services.latents.get(self.denoise_mask.mask_name)
mask = context.tensors.load(self.denoise_mask.mask_name)
mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
if self.denoise_mask.masked_latents_name is not None:
masked_latents = context.services.latents.get(self.denoise_mask.masked_latents_name)
masked_latents = context.tensors.load(self.denoise_mask.masked_latents_name)
else:
masked_latents = None
return 1 - mask, masked_latents
return 1 - mask, masked_latents, self.denoise_mask.gradient
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
@ -666,11 +694,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed = None
noise = None
if self.noise is not None:
noise = context.services.latents.get(self.noise.latents_name)
noise = context.tensors.load(self.noise.latents_name)
seed = self.noise.seed
if self.latents is not None:
latents = context.services.latents.get(self.latents.latents_name)
latents = context.tensors.load(self.latents.latents_name)
if seed is None:
seed = self.latents.seed
@ -685,7 +713,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
if seed is None:
seed = 0
mask, masked_latents = self.prep_inpaint_mask(context, latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
@ -696,35 +724,31 @@ class DenoiseLatentsInvocation(BaseInvocation):
do_classifier_free_guidance=True,
)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
# get the unet's config so that we can pass the base to dispatch_progress()
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state, self.unet.unet.base_model)
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
def _lora_loader():
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.model_dump(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.model_dump(),
context=context,
)
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config),
set_seamless(unet_info.context.model, self.unet.seamless_axes),
ModelPatcher.apply_freeu(unet_info.model, self.unet.freeu_config),
set_seamless(unet_info.model, self.unet.seamless_axes), # FIXME
unet_info as unet,
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
@ -767,10 +791,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end,
)
(
result_latents,
result_attention_map_saver,
) = pipeline.latents_from_embeddings(
result_latents = pipeline.latents_from_embeddings(
latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
@ -778,6 +799,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed=seed,
mask=mask,
masked_latents=masked_latents,
gradient_mask=gradient_mask,
num_inference_steps=num_inference_steps,
conditioning_data=conditioning_data,
control_data=controlnet_data,
@ -792,9 +814,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents, seed=seed)
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=seed)
@invocation(
@ -802,16 +823,16 @@ class DenoiseLatentsInvocation(BaseInvocation):
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.2.0",
version="1.2.1",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata):
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VaeField = InputField(
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@ -820,14 +841,12 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.model_dump(),
context=context,
)
with set_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae:
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL))
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, torch.nn.Module)
latents = latents.to(vae.device)
if self.fp32:
vae.to(dtype=torch.float32)
@ -854,7 +873,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata):
vae.to(dtype=torch.float16)
latents = latents.half()
if self.tiled or context.services.configuration.tiled_decode:
if self.tiled or context.config.get().tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
@ -878,22 +897,9 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata):
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
image_dto = context.images.save(image=image)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput.build(image_dto)
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
@ -904,7 +910,7 @@ LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic",
title="Resize Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.0",
version="1.0.1",
)
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
@ -927,7 +933,7 @@ class ResizeLatentsInvocation(BaseInvocation):
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
latents = context.tensors.load(self.latents.latents_name)
# TODO:
device = choose_torch_device()
@ -945,10 +951,8 @@ class ResizeLatentsInvocation(BaseInvocation):
if device == torch.device("mps"):
mps.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation(
@ -956,7 +960,7 @@ class ResizeLatentsInvocation(BaseInvocation):
title="Scale Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.0",
version="1.0.1",
)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
@ -970,7 +974,7 @@ class ScaleLatentsInvocation(BaseInvocation):
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
latents = context.tensors.load(self.latents.latents_name)
# TODO:
device = choose_torch_device()
@ -989,10 +993,8 @@ class ScaleLatentsInvocation(BaseInvocation):
if device == torch.device("mps"):
mps.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation(
@ -1000,7 +1002,7 @@ class ScaleLatentsInvocation(BaseInvocation):
title="Image to Latents",
tags=["latents", "image", "vae", "i2l"],
category="latents",
version="1.0.0",
version="1.0.1",
)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
@ -1008,7 +1010,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image: ImageField = InputField(
description="The image to encode",
)
vae: VaeField = InputField(
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
@ -1016,8 +1018,9 @@ class ImageToLatentsInvocation(BaseInvocation):
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
@staticmethod
def vae_encode(vae_info, upcast, tiled, image_tensor):
def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae, torch.nn.Module)
orig_dtype = vae.dtype
if upcast:
vae.to(dtype=torch.float32)
@ -1061,12 +1064,9 @@ class ImageToLatentsInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.model_dump(),
context=context,
)
vae_info = context.models.load(self.vae.vae)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
@ -1074,22 +1074,26 @@ class ImageToLatentsInvocation(BaseInvocation):
latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor)
name = f"{context.graph_execution_state_id}__{self.id}"
latents = latents.to("cpu")
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents, seed=None)
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
@singledispatchmethod
@staticmethod
def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
assert isinstance(vae, torch.nn.Module)
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents = image_tensor_dist.sample().to(dtype=vae.dtype) # FIXME: uses torch.randn. make reproducible!
latents: torch.Tensor = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
return latents
@_encode_to_tensor.register
@staticmethod
def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
return vae.encode(image_tensor).latents
assert isinstance(vae, torch.nn.Module)
latents: torch.FloatTensor = vae.encode(image_tensor).latents
return latents
@invocation(
@ -1097,7 +1101,7 @@ class ImageToLatentsInvocation(BaseInvocation):
title="Blend Latents",
tags=["latents", "blend"],
category="latents",
version="1.0.0",
version="1.0.1",
)
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size."""
@ -1113,8 +1117,8 @@ class BlendLatentsInvocation(BaseInvocation):
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.services.latents.get(self.latents_a.latents_name)
latents_b = context.services.latents.get(self.latents_b.latents_name)
latents_a = context.tensors.load(self.latents_a.latents_name)
latents_b = context.tensors.load(self.latents_b.latents_name)
if latents_a.shape != latents_b.shape:
raise Exception("Latents to blend must be the same size.")
@ -1122,7 +1126,12 @@ class BlendLatentsInvocation(BaseInvocation):
# TODO:
device = choose_torch_device()
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
v0: Union[torch.Tensor, npt.NDArray[Any]],
v1: Union[torch.Tensor, npt.NDArray[Any]],
DOT_THRESHOLD: float = 0.9995,
) -> Union[torch.Tensor, npt.NDArray[Any]]:
"""
Spherical linear interpolation
Args:
@ -1155,12 +1164,16 @@ class BlendLatentsInvocation(BaseInvocation):
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(device)
return v2
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
return v2_torch
else:
assert isinstance(v2, np.ndarray)
return v2
# blend
blended_latents = slerp(self.alpha, latents_a, latents_b)
bl = slerp(self.alpha, latents_a, latents_b)
assert isinstance(bl, torch.Tensor)
blended_latents: torch.Tensor = bl # for type checking convenience
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
@ -1168,10 +1181,8 @@ class BlendLatentsInvocation(BaseInvocation):
if device == torch.device("mps"):
mps.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, blended_latents)
return build_latents_output(latents_name=name, latents=blended_latents)
name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents)
# The Crop Latents node was copied from @skunkworxdark's implementation here:
@ -1181,7 +1192,7 @@ class BlendLatentsInvocation(BaseInvocation):
title="Crop Latents",
tags=["latents", "crop"],
category="latents",
version="1.0.0",
version="1.0.1",
)
# TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`.
# Currently, if the class names conflict then 'GET /openapi.json' fails.
@ -1216,7 +1227,7 @@ class CropLatentsCoreInvocation(BaseInvocation):
)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
latents = context.tensors.load(self.latents.latents_name)
x1 = self.x // LATENT_SCALE_FACTOR
y1 = self.y // LATENT_SCALE_FACTOR
@ -1225,10 +1236,9 @@ class CropLatentsCoreInvocation(BaseInvocation):
cropped_latents = latents[..., y1:y2, x1:x2]
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, cropped_latents)
name = context.tensors.save(tensor=cropped_latents)
return build_latents_output(latents_name=name, latents=cropped_latents)
return LatentsOutput.build(latents_name=name, latents=cropped_latents)
@invocation_output("ideal_size_output")
@ -1256,15 +1266,16 @@ class IdealSizeInvocation(BaseInvocation):
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in initial generation artifacts if too large)",
)
def trim_to_multiple_of(self, *args, multiple_of=LATENT_SCALE_FACTOR):
def trim_to_multiple_of(self, *args: int, multiple_of: int = LATENT_SCALE_FACTOR) -> Tuple[int, ...]:
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
unet_config = context.models.get_config(**self.unet.unet.model_dump())
aspect = self.width / self.height
dimension = 512
if self.unet.unet.base_model == BaseModelType.StableDiffusion2:
dimension: float = 512
if unet_config.base == BaseModelType.StableDiffusion2:
dimension = 768
elif self.unet.unet.base_model == BaseModelType.StableDiffusionXL:
elif unet_config.base == BaseModelType.StableDiffusionXL:
dimension = 1024
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)

View File

@ -5,10 +5,11 @@ from typing import Literal
import numpy as np
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.fields import FieldDescriptions, InputField
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .baseinvocation import BaseInvocation, invocation
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.0")

View File

@ -5,20 +5,23 @@ from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InputField,
InvocationContext,
MetadataField,
OutputField,
UIType,
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.invocations.controlnet_image_processors import (
CONTROLNET_MODE_VALUES,
CONTROLNET_RESIZE_VALUES,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
MetadataField,
OutputField,
UIType,
)
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType, ModelType
from ...version import __version__
@ -28,10 +31,20 @@ class MetadataItemField(BaseModel):
value: Any = Field(description=FieldDescriptions.metadata_item_value)
class ModelMetadataField(BaseModel):
"""Model Metadata Field"""
key: str
hash: str
name: str
base: BaseModelType
type: ModelType
class LoRAMetadataField(BaseModel):
"""LoRA Metadata Field"""
lora: LoRAModelField = Field(description=FieldDescriptions.lora_model)
model: ModelMetadataField = Field(description=FieldDescriptions.lora_model)
weight: float = Field(description=FieldDescriptions.lora_weight)
@ -39,7 +52,7 @@ class IPAdapterMetadataField(BaseModel):
"""IP Adapter Field, minus the CLIP Vision Encoder model"""
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: IPAdapterModelField = Field(
ip_adapter_model: ModelMetadataField = Field(
description="The IP-Adapter model.",
)
weight: Union[float, list[float]] = Field(
@ -49,6 +62,33 @@ class IPAdapterMetadataField(BaseModel):
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")
class T2IAdapterMetadataField(BaseModel):
image: ImageField = Field(description="The T2I-Adapter image prompt.")
t2i_adapter_model: ModelMetadataField = Field(description="The T2I-Adapter model to use.")
weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
)
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
class ControlNetMetadataField(BaseModel):
image: ImageField = Field(description="The control image")
control_model: ModelMetadataField = Field(description="The ControlNet model to use")
control_weight: Union[float, list[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@invocation_output("metadata_item_output")
class MetadataItemOutput(BaseInvocationOutput):
"""Metadata Item Output"""
@ -112,7 +152,7 @@ GENERATION_MODES = Literal[
]
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.0.1")
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.1.1")
class CoreMetadataInvocation(BaseInvocation):
"""Collects core generation metadata into a MetadataField"""
@ -138,14 +178,14 @@ class CoreMetadataInvocation(BaseInvocation):
default=None,
description="The number of skipped CLIP layers",
)
model: Optional[MainModelField] = InputField(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlField]] = InputField(
model: Optional[ModelMetadataField] = InputField(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlNetMetadataField]] = InputField(
default=None, description="The ControlNets used for inference"
)
ipAdapters: Optional[list[IPAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
t2iAdapters: Optional[list[T2IAdapterField]] = InputField(
t2iAdapters: Optional[list[T2IAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
loras: Optional[list[LoRAMetadataField]] = InputField(default=None, description="The LoRAs used for inference")
@ -157,7 +197,7 @@ class CoreMetadataInvocation(BaseInvocation):
default=None,
description="The name of the initial image",
)
vae: Optional[VAEModelField] = InputField(
vae: Optional[ModelMetadataField] = InputField(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
@ -188,7 +228,7 @@ class CoreMetadataInvocation(BaseInvocation):
)
# SDXL Refiner
refiner_model: Optional[MainModelField] = InputField(
refiner_model: Optional[ModelMetadataField] = InputField(
default=None,
description="The SDXL Refiner model used",
)
@ -220,10 +260,9 @@ class CoreMetadataInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> MetadataOutput:
"""Collects and outputs a CoreMetadata object"""
return MetadataOutput(
metadata=MetadataField.model_validate(
self.model_dump(exclude_none=True, exclude={"id", "type", "is_intermediate", "use_cache"})
)
)
as_dict = self.model_dump(exclude_none=True, exclude={"id", "type", "is_intermediate", "use_cache"})
as_dict["app_version"] = __version__
return MetadataOutput(metadata=MetadataField.model_validate(as_dict))
model_config = ConfigDict(extra="allow")

View File

@ -1,61 +1,54 @@
import copy
from typing import List, Optional
from pydantic import BaseModel, ConfigDict, Field
from pydantic import BaseModel, Field
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import SubModelType
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load submodel")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
model_config = ConfigDict(protected_namespaces=())
class ModelField(BaseModel):
key: str = Field(description="Key of the model")
submodel_type: Optional[SubModelType] = Field(description="Submodel type", default=None)
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
class LoRAField(BaseModel):
lora: ModelField = Field(description="Info to load lora model")
weight: float = Field(description="Weight to apply to lora model")
class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
unet: ModelField = Field(description="Info to load unet submodel")
scheduler: ModelField = Field(description="Info to load scheduler submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
class ClipField(BaseModel):
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
class CLIPField(BaseModel):
tokenizer: ModelField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelField = Field(description="Info to load text_encoder submodel")
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
class VAEField(BaseModel):
vae: ModelField = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@invocation_output("unet_output")
class UNetOutput(BaseInvocationOutput):
"""Base class for invocations that output a UNet field"""
"""Base class for invocations that output a UNet field."""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
@ -64,14 +57,14 @@ class UNetOutput(BaseInvocationOutput):
class VAEOutput(BaseInvocationOutput):
"""Base class for invocations that output a VAE field"""
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("clip_output")
class CLIPOutput(BaseInvocationOutput):
"""Base class for invocations that output a CLIP field"""
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
@invocation_output("model_loader_output")
@ -81,136 +74,50 @@ class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
pass
class MainModelField(BaseModel):
"""Main model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
class LoRAModelField(BaseModel):
"""LoRA model field"""
model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation(
"main_model_loader",
title="Main Model",
tags=["model"],
category="model",
version="1.0.0",
version="1.0.1",
)
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
model: MainModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct)
model: ModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct)
# TODO: precision?
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
if not context.models.exists(self.model.key):
raise Exception(f"Unknown model {self.model.key}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return ModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae,
),
),
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
)
@invocation_output("lora_loader_output")
class LoraLoaderOutput(BaseInvocationOutput):
class LoRALoaderOutput(BaseInvocationOutput):
"""Model loader output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.0")
class LoraLoaderInvocation(BaseInvocation):
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.1")
class LoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
lora: ModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None,
@ -218,55 +125,41 @@ class LoraLoaderInvocation(BaseInvocation):
input=Input.Connection,
title="UNet",
)
clip: Optional[ClipField] = InputField(
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
def invoke(self, context: InvocationContext) -> LoRALoaderOutput:
lora_key = self.lora.key
base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.models.exists(lora_key):
raise Exception(f"Unkown lora: {lora_key}!")
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unkown lora name: {lora_name}!")
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip')
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip')
output = LoraLoaderOutput()
output = LoRALoaderOutput()
if self.unet is not None:
output.unet = copy.deepcopy(self.unet)
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = copy.deepcopy(self.clip)
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
@ -275,12 +168,12 @@ class LoraLoaderInvocation(BaseInvocation):
@invocation_output("sdxl_lora_loader_output")
class SDXLLoraLoaderOutput(BaseInvocationOutput):
class SDXLLoRALoaderOutput(BaseInvocationOutput):
"""SDXL LoRA Loader Output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
clip: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
clip2: Optional[CLIPField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
@invocation(
@ -288,12 +181,12 @@ class SDXLLoraLoaderOutput(BaseInvocationOutput):
title="SDXL LoRA",
tags=["lora", "model"],
category="model",
version="1.0.0",
version="1.0.1",
)
class SDXLLoraLoaderInvocation(BaseInvocation):
class SDXLLoRALoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
lora: ModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None,
@ -301,76 +194,59 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
input=Input.Connection,
title="UNet",
)
clip: Optional[ClipField] = InputField(
clip: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 1",
)
clip2: Optional[ClipField] = InputField(
clip2: Optional[CLIPField] = InputField(
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
)
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
def invoke(self, context: InvocationContext) -> SDXLLoRALoaderOutput:
lora_key = self.lora.key
base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.models.exists(lora_key):
raise Exception(f"Unknown lora: {lora_key}!")
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unknown lora name: {lora_name}!")
if self.unet is not None and any(lora.lora.key == lora_key for lora in self.unet.loras):
raise Exception(f'LoRA "{lora_key}" already applied to unet')
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(lora.lora.key == lora_key for lora in self.clip.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip')
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip')
if self.clip2 is not None and any(lora.lora.key == lora_key for lora in self.clip2.loras):
raise Exception(f'LoRA "{lora_key}" already applied to clip2')
if self.clip2 is not None and any(lora.model_name == lora_name for lora in self.clip2.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip2')
output = SDXLLoraLoaderOutput()
output = SDXLLoRALoaderOutput()
if self.unet is not None:
output.unet = copy.deepcopy(self.unet)
output.unet = self.unet.model_copy(deep=True)
output.unet.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = copy.deepcopy(self.clip)
output.clip = self.clip.model_copy(deep=True)
output.clip.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
if self.clip2 is not None:
output.clip2 = copy.deepcopy(self.clip2)
output.clip2 = self.clip2.model_copy(deep=True)
output.clip2.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
@ -378,45 +254,23 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
return output
class VAEModelField(BaseModel):
"""Vae model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0")
class VaeLoaderInvocation(BaseInvocation):
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.1")
class VAELoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: VAEModelField = InputField(
vae_model: ModelField = InputField(
description=FieldDescriptions.vae_model,
input=Input.Direct,
title="VAE",
)
def invoke(self, context: InvocationContext) -> VAEOutput:
base_model = self.vae_model.base_model
model_name = self.vae_model.model_name
model_type = ModelType.Vae
key = self.vae_model.key
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=model_name,
model_type=model_type,
):
raise Exception(f"Unkown vae name: {model_name}!")
return VAEOutput(
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
)
)
if not context.models.exists(key):
raise Exception(f"Unkown vae: {key}!")
return VAEOutput(vae=VAEField(vae=self.vae_model))
@invocation_output("seamless_output")
@ -424,7 +278,7 @@ class SeamlessModeOutput(BaseInvocationOutput):
"""Modified Seamless Model output"""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
vae: Optional[VAEField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
@invocation(
@ -443,7 +297,7 @@ class SeamlessModeInvocation(BaseInvocation):
input=Input.Connection,
title="UNet",
)
vae: Optional[VaeField] = InputField(
vae: Optional[VAEField] = InputField(
default=None,
description=FieldDescriptions.vae_model,
input=Input.Connection,

View File

@ -4,17 +4,15 @@
import torch
from pydantic import field_validator
from invokeai.app.invocations.latent import LatentsField
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import FieldDescriptions, InputField, LatentsField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
@ -69,13 +67,13 @@ class NoiseOutput(BaseInvocationOutput):
width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height)
def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
@classmethod
def build(cls, latents_name: str, latents: torch.Tensor, seed: int) -> "NoiseOutput":
return cls(
noise=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * LATENT_SCALE_FACTOR,
height=latents.size()[2] * LATENT_SCALE_FACTOR,
)
@invocation(
@ -96,13 +94,13 @@ class NoiseInvocation(BaseInvocation):
)
width: int = InputField(
default=512,
multiple_of=8,
multiple_of=LATENT_SCALE_FACTOR,
gt=0,
description=FieldDescriptions.width,
)
height: int = InputField(
default=512,
multiple_of=8,
multiple_of=LATENT_SCALE_FACTOR,
gt=0,
description=FieldDescriptions.height,
)
@ -124,6 +122,5 @@ class NoiseInvocation(BaseInvocation):
seed=self.seed,
use_cpu=self.use_cpu,
)
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise, seed=self.seed)
name = context.tensors.save(tensor=noise)
return NoiseOutput.build(latents_name=name, latents=noise, seed=self.seed)

View File

@ -1,508 +0,0 @@
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
import inspect
# from contextlib import ExitStack
from typing import List, Literal, Union
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from pydantic import BaseModel, ConfigDict, Field, field_validator
from tqdm import tqdm
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend import BaseModelType, ModelType, SubModelType
from ...backend.model_management import ONNXModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util import choose_torch_device
from ..util.ti_utils import extract_ti_triggers_from_prompt
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
UIType,
WithMetadata,
invocation,
invocation_output,
)
from .controlnet_image_processors import ControlField
from .latent import SAMPLER_NAME_VALUES, LatentsField, LatentsOutput, build_latents_output, get_scheduler
from .model import ClipField, ModelInfo, UNetField, VaeField
ORT_TO_NP_TYPE = {
"tensor(bool)": np.bool_,
"tensor(int8)": np.int8,
"tensor(uint8)": np.uint8,
"tensor(int16)": np.int16,
"tensor(uint16)": np.uint16,
"tensor(int32)": np.int32,
"tensor(uint32)": np.uint32,
"tensor(int64)": np.int64,
"tensor(uint64)": np.uint64,
"tensor(float16)": np.float16,
"tensor(float)": np.float32,
"tensor(double)": np.float64,
}
PRECISION_VALUES = Literal[tuple(ORT_TO_NP_TYPE.keys())]
@invocation("prompt_onnx", title="ONNX Prompt (Raw)", tags=["prompt", "onnx"], category="conditioning", version="1.0.0")
class ONNXPromptInvocation(BaseInvocation):
prompt: str = InputField(default="", description=FieldDescriptions.raw_prompt, ui_component=UIComponent.Textarea)
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.model_dump(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.model_dump(),
)
with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder: # , ExitStack() as stack:
loras = [
(
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.clip.loras
]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model,
)
)
except Exception:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
if loras or ti_list:
text_encoder.release_session()
with (
ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras),
ONNXModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager),
):
text_encoder.create_session()
# copy from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L153
text_inputs = tokenizer(
self.prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
"""
untruncated_ids = tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
"""
prompt_embeds = text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (prompt_embeds, None))
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
# Text to image
@invocation(
"t2l_onnx",
title="ONNX Text to Latents",
tags=["latents", "inference", "txt2img", "onnx"],
category="latents",
version="1.0.0",
)
class ONNXTextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond,
input=Input.Connection,
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond,
input=Input.Connection,
)
noise: LatentsField = InputField(
description=FieldDescriptions.noise,
input=Input.Connection,
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField(
default=7.5,
ge=1,
description=FieldDescriptions.cfg_scale,
)
scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, input=Input.Direct, ui_type=UIType.Scheduler
)
precision: PRECISION_VALUES = InputField(default="tensor(float16)", description=FieldDescriptions.precision)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
)
control: Union[ControlField, list[ControlField]] = InputField(
default=None,
description=FieldDescriptions.control,
)
# seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'")
@field_validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
def invoke(self, context: InvocationContext) -> LatentsOutput:
c, _ = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
if isinstance(c, torch.Tensor):
c = c.cpu().numpy()
if isinstance(uc, torch.Tensor):
uc = uc.cpu().numpy()
device = torch.device(choose_torch_device())
prompt_embeds = np.concatenate([uc, c])
latents = context.services.latents.get(self.noise.latents_name)
if isinstance(latents, torch.Tensor):
latents = latents.cpu().numpy()
# TODO: better execution device handling
latents = latents.astype(ORT_TO_NP_TYPE[self.precision])
# get the initial random noise unless the user supplied it
do_classifier_free_guidance = True
# latents_dtype = prompt_embeds.dtype
# latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
# if latents.shape != latents_shape:
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=0, # TODO: refactor this node
)
def torch2numpy(latent: torch.Tensor):
return latent.cpu().numpy()
def numpy2torch(latent, device):
return torch.from_numpy(latent).to(device)
def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.model_dump(),
source_node_id=source_node_id,
)
scheduler.set_timesteps(self.steps)
latents = latents * np.float64(scheduler.init_noise_sigma)
extra_step_kwargs = {}
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
extra_step_kwargs.update(
eta=0.0,
)
unet_info = context.services.model_manager.get_model(**self.unet.unet.model_dump())
with unet_info as unet: # , ExitStack() as stack:
# loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
loras = [
(
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.unet.loras
]
if loras:
unet.release_session()
with ONNXModelPatcher.apply_lora_unet(unet, loras):
# TODO:
_, _, h, w = latents.shape
unet.create_session(h, w)
timestep_dtype = next(
(input.type for input in unet.session.get_inputs() if input.name == "timestep"), "tensor(float16)"
)
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
for i in tqdm(range(len(scheduler.timesteps))):
t = scheduler.timesteps[i]
# expand the latents if we are doing classifier free guidance
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(numpy2torch(latent_model_input, device), t)
latent_model_input = latent_model_input.cpu().numpy()
# predict the noise residual
timestep = np.array([t], dtype=timestep_dtype)
noise_pred = unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)
noise_pred = noise_pred[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
scheduler_output = scheduler.step(
numpy2torch(noise_pred, device), t, numpy2torch(latents, device), **extra_step_kwargs
)
latents = torch2numpy(scheduler_output.prev_sample)
state = PipelineIntermediateState(
run_id="test", step=i, timestep=timestep, latents=scheduler_output.prev_sample
)
dispatch_progress(self, context=context, source_node_id=source_node_id, intermediate_state=state)
# call the callback, if provided
# if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=torch.from_numpy(latents))
# Latent to image
@invocation(
"l2i_onnx",
title="ONNX Latents to Image",
tags=["latents", "image", "vae", "onnx"],
category="image",
version="1.2.0",
)
class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.denoised_latents,
input=Input.Connection,
)
vae: VaeField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
# tiled: bool = InputField(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
if self.vae.vae.submodel != SubModelType.VaeDecoder:
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
vae_info = context.services.model_manager.get_model(
**self.vae.vae.model_dump(),
)
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
with vae_info as vae:
vae.create_session()
# copied from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L427
latents = 1 / 0.18215 * latents
# image = self.vae_decoder(latent_sample=latents)[0]
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
image = np.concatenate([vae(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])])
image = np.clip(image / 2 + 0.5, 0, 1)
image = image.transpose((0, 2, 3, 1))
image = VaeImageProcessor.numpy_to_pil(image)[0]
torch.cuda.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation_output("model_loader_output_onnx")
class ONNXModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
unet: UNetField = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
vae_decoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Decoder")
vae_encoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Encoder")
class OnnxModelField(BaseModel):
"""Onnx model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
@invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model", version="1.0.0")
class OnnxModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
model: OnnxModelField = InputField(
description=FieldDescriptions.onnx_main_model, input=Input.Direct, ui_type=UIType.ONNXModel
)
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.ONNX
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ONNXModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae_decoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeDecoder,
),
),
vae_encoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeEncoder,
),
),
)

View File

@ -40,8 +40,10 @@ from easing_functions import (
from matplotlib.ticker import MaxNLocator
from invokeai.app.invocations.primitives import FloatCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField
@invocation(
@ -109,7 +111,7 @@ EASING_FUNCTION_KEYS = Literal[tuple(EASING_FUNCTIONS_MAP.keys())]
title="Step Param Easing",
tags=["step", "easing"],
category="step",
version="1.0.0",
version="1.0.1",
)
class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps"""
@ -148,19 +150,19 @@ class StepParamEasingInvocation(BaseInvocation):
postlist = list(num_poststeps * [self.post_end_value])
if log_diagnostics:
context.services.logger.debug("start_step: " + str(start_step))
context.services.logger.debug("end_step: " + str(end_step))
context.services.logger.debug("num_easing_steps: " + str(num_easing_steps))
context.services.logger.debug("num_presteps: " + str(num_presteps))
context.services.logger.debug("num_poststeps: " + str(num_poststeps))
context.services.logger.debug("prelist size: " + str(len(prelist)))
context.services.logger.debug("postlist size: " + str(len(postlist)))
context.services.logger.debug("prelist: " + str(prelist))
context.services.logger.debug("postlist: " + str(postlist))
context.logger.debug("start_step: " + str(start_step))
context.logger.debug("end_step: " + str(end_step))
context.logger.debug("num_easing_steps: " + str(num_easing_steps))
context.logger.debug("num_presteps: " + str(num_presteps))
context.logger.debug("num_poststeps: " + str(num_poststeps))
context.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("postlist size: " + str(len(postlist)))
context.logger.debug("prelist: " + str(prelist))
context.logger.debug("postlist: " + str(postlist))
easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics:
context.services.logger.debug("easing class: " + str(easing_class))
context.logger.debug("easing class: " + str(easing_class))
easing_list = []
if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2
@ -171,7 +173,7 @@ class StepParamEasingInvocation(BaseInvocation):
base_easing_duration = int(np.ceil(num_easing_steps / 2.0))
if log_diagnostics:
context.services.logger.debug("base easing duration: " + str(base_easing_duration))
context.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = num_easing_steps % 2 == 0 # even number of steps
easing_function = easing_class(
start=self.start_value,
@ -183,14 +185,14 @@ class StepParamEasingInvocation(BaseInvocation):
easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val)
if log_diagnostics:
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
if even_num_steps:
mirror_easing_vals = list(reversed(base_easing_vals))
else:
mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
if log_diagnostics:
context.services.logger.debug("base easing vals: " + str(base_easing_vals))
context.services.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
context.logger.debug("base easing vals: " + str(base_easing_vals))
context.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
easing_list = base_easing_vals + mirror_easing_vals
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
@ -225,12 +227,12 @@ class StepParamEasingInvocation(BaseInvocation):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)
if log_diagnostics:
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
if log_diagnostics:
context.services.logger.debug("prelist size: " + str(len(prelist)))
context.services.logger.debug("easing_list size: " + str(len(easing_list)))
context.services.logger.debug("postlist size: " + str(len(postlist)))
context.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("easing_list size: " + str(len(easing_list)))
context.logger.debug("postlist size: " + str(len(postlist)))
param_list = prelist + easing_list + postlist

View File

@ -1,20 +1,28 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Optional, Tuple
from typing import Optional
import torch
from pydantic import BaseModel, Field
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
ColorField,
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
ImageField,
Input,
InputField,
LatentsField,
OutputField,
UIComponent,
)
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
invocation,
invocation_output,
)
@ -221,18 +229,6 @@ class StringCollectionInvocation(BaseInvocation):
# region Image
class ImageField(BaseModel):
"""An image primitive field"""
image_name: str = Field(description="The name of the image")
class BoardField(BaseModel):
"""A board primitive field"""
board_id: str = Field(description="The id of the board")
@invocation_output("image_output")
class ImageOutput(BaseInvocationOutput):
"""Base class for nodes that output a single image"""
@ -241,6 +237,14 @@ class ImageOutput(BaseInvocationOutput):
width: int = OutputField(description="The width of the image in pixels")
height: int = OutputField(description="The height of the image in pixels")
@classmethod
def build(cls, image_dto: ImageDTO) -> "ImageOutput":
return cls(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation_output("image_collection_output")
class ImageCollectionOutput(BaseInvocationOutput):
@ -251,16 +255,14 @@ class ImageCollectionOutput(BaseInvocationOutput):
)
@invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives", version="1.0.0")
class ImageInvocation(
BaseInvocation,
):
@invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives", version="1.0.1")
class ImageInvocation(BaseInvocation):
"""An image primitive value"""
image: ImageField = InputField(description="The image to load")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.images.get_pil(self.image.image_name)
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
@ -290,42 +292,44 @@ class ImageCollectionInvocation(BaseInvocation):
# region DenoiseMask
class DenoiseMaskField(BaseModel):
"""An inpaint mask field"""
mask_name: str = Field(description="The name of the mask image")
masked_latents_name: Optional[str] = Field(default=None, description="The name of the masked image latents")
@invocation_output("denoise_mask_output")
class DenoiseMaskOutput(BaseInvocationOutput):
"""Base class for nodes that output a single image"""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
@classmethod
def build(
cls, mask_name: str, masked_latents_name: Optional[str] = None, gradient: bool = False
) -> "DenoiseMaskOutput":
return cls(
denoise_mask=DenoiseMaskField(
mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=gradient
),
)
# endregion
# region Latents
class LatentsField(BaseModel):
"""A latents tensor primitive field"""
latents_name: str = Field(description="The name of the latents")
seed: Optional[int] = Field(default=None, description="Seed used to generate this latents")
@invocation_output("latents_output")
class LatentsOutput(BaseInvocationOutput):
"""Base class for nodes that output a single latents tensor"""
latents: LatentsField = OutputField(
description=FieldDescriptions.latents,
)
latents: LatentsField = OutputField(description=FieldDescriptions.latents)
width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height)
@classmethod
def build(cls, latents_name: str, latents: torch.Tensor, seed: Optional[int] = None) -> "LatentsOutput":
return cls(
latents=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * LATENT_SCALE_FACTOR,
height=latents.size()[2] * LATENT_SCALE_FACTOR,
)
@invocation_output("latents_collection_output")
class LatentsCollectionOutput(BaseInvocationOutput):
@ -337,7 +341,7 @@ class LatentsCollectionOutput(BaseInvocationOutput):
@invocation(
"latents", title="Latents Primitive", tags=["primitives", "latents"], category="primitives", version="1.0.0"
"latents", title="Latents Primitive", tags=["primitives", "latents"], category="primitives", version="1.0.1"
)
class LatentsInvocation(BaseInvocation):
"""A latents tensor primitive value"""
@ -345,9 +349,9 @@ class LatentsInvocation(BaseInvocation):
latents: LatentsField = InputField(description="The latents tensor", input=Input.Connection)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
latents = context.tensors.load(self.latents.latents_name)
return build_latents_output(self.latents.latents_name, latents)
return LatentsOutput.build(self.latents.latents_name, latents)
@invocation(
@ -368,31 +372,11 @@ class LatentsCollectionInvocation(BaseInvocation):
return LatentsCollectionOutput(collection=self.collection)
def build_latents_output(latents_name: str, latents: torch.Tensor, seed: Optional[int] = None):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
# endregion
# region Color
class ColorField(BaseModel):
"""A color primitive field"""
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
@invocation_output("color_output")
class ColorOutput(BaseInvocationOutput):
"""Base class for nodes that output a single color"""
@ -424,18 +408,16 @@ class ColorInvocation(BaseInvocation):
# region Conditioning
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
conditioning: ConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "ConditioningOutput":
return cls(conditioning=ConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_collection_output")
class ConditioningCollectionOutput(BaseInvocationOutput):

View File

@ -6,8 +6,10 @@ from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPrompt
from pydantic import field_validator
from invokeai.app.invocations.primitives import StringCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, InputField, InvocationContext, UIComponent, invocation
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, UIComponent
@invocation(

View File

@ -1,18 +1,14 @@
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import SubModelType
from ...backend.model_management import ModelType, SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
invocation,
invocation_output,
)
from .model import ClipField, MainModelField, ModelInfo, UNetField, VaeField
from .model import CLIPField, ModelField, UNetField, VAEField
@invocation_output("sdxl_model_loader_output")
@ -20,9 +16,9 @@ class SDXLModelLoaderOutput(BaseInvocationOutput):
"""SDXL base model loader output"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
clip2: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("sdxl_refiner_model_loader_output")
@ -30,88 +26,39 @@ class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
"""SDXL refiner model loader output"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
clip2: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.0")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.1")
class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
model: MainModelField = InputField(
model: ModelField = InputField(
description=FieldDescriptions.sdxl_main_model, input=Input.Direct, ui_type=UIType.SDXLMainModel
)
# TODO: precision?
def invoke(self, context: InvocationContext) -> SDXLModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
model_key = self.model.key
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
if not context.models.exists(model_key):
raise Exception(f"Unknown model: {model_key}")
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
text_encoder2 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return SDXLModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
clip2=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer2,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder2,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae,
),
),
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[], skipped_layers=0),
clip2=CLIPField(tokenizer=tokenizer2, text_encoder=text_encoder2, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
)
@ -120,69 +67,31 @@ class SDXLModelLoaderInvocation(BaseInvocation):
title="SDXL Refiner Model",
tags=["model", "sdxl", "refiner"],
category="model",
version="1.0.0",
version="1.0.1",
)
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""
model: MainModelField = InputField(
description=FieldDescriptions.sdxl_refiner_model,
input=Input.Direct,
ui_type=UIType.SDXLRefinerModel,
model: ModelField = InputField(
description=FieldDescriptions.sdxl_refiner_model, input=Input.Direct, ui_type=UIType.SDXLRefinerModel
)
# TODO: precision?
def invoke(self, context: InvocationContext) -> SDXLRefinerModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
model_key = self.model.key
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
if not context.models.exists(model_key):
raise Exception(f"Unknown model: {model_key}")
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer2 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
text_encoder2 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return SDXLRefinerModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip2=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer2,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder2,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae,
),
),
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip2=CLIPField(tokenizer=tokenizer2, text_encoder=text_encoder2, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
)

View File

@ -2,16 +2,15 @@
import re
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InputField,
InvocationContext,
OutputField,
UIComponent,
invocation,
invocation_output,
)
from .fields import InputField, OutputField, UIComponent
from .primitives import StringOutput

View File

@ -1,34 +1,23 @@
from typing import Union
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField
from invokeai.app.invocations.model import ModelField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType
class T2IAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the T2I-Adapter model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
from invokeai.app.services.shared.invocation_context import InvocationContext
class T2IAdapterField(BaseModel):
image: ImageField = Field(description="The T2I-Adapter image prompt.")
t2i_adapter_model: T2IAdapterModelField = Field(description="The T2I-Adapter model to use.")
t2i_adapter_model: ModelField = Field(description="The T2I-Adapter model to use.")
weight: Union[float, list[float]] = Field(default=1, description="The weight given to the T2I-Adapter")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
@ -63,7 +52,7 @@ class T2IAdapterInvocation(BaseInvocation):
# Inputs
image: ImageField = InputField(description="The IP-Adapter image prompt.")
t2i_adapter_model: T2IAdapterModelField = InputField(
t2i_adapter_model: ModelField = InputField(
description="The T2I-Adapter model.",
title="T2I-Adapter Model",
input=Input.Direct,

View File

@ -8,16 +8,12 @@ from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
Input,
InputField,
InvocationContext,
OutputField,
WithMetadata,
invocation,
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.invocations.fields import ImageField, Input, InputField, OutputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.tiles.tiles import (
calc_tiles_even_split,
calc_tiles_min_overlap,
@ -236,7 +232,7 @@ BLEND_MODES = Literal["Linear", "Seam"]
version="1.1.0",
classification=Classification.Beta,
)
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Merge multiple tile images into a single image."""
# Inputs
@ -268,7 +264,7 @@ class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
# existed in memory at an earlier point in the graph.
tile_np_images: list[np.ndarray] = []
for image in images:
pil_image = context.services.images.get_pil_image(image.image_name)
pil_image = context.images.get_pil(image.image_name)
pil_image = pil_image.convert("RGB")
tile_np_images.append(np.array(pil_image))
@ -291,18 +287,5 @@ class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
# Convert into a PIL image and save
pil_image = Image.fromarray(np_image)
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)

View File

@ -8,13 +8,15 @@ import torch
from PIL import Image
from pydantic import ConfigDict
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.invocations.fields import ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import choose_torch_device
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
# TODO: Populate this from disk?
# TODO: Use model manager to load?
@ -29,8 +31,8 @@ if choose_torch_device() == torch.device("mps"):
from torch import mps
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.0")
class ESRGANInvocation(BaseInvocation, WithMetadata):
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.1")
class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Upscales an image using RealESRGAN."""
image: ImageField = InputField(description="The input image")
@ -42,8 +44,8 @@ class ESRGANInvocation(BaseInvocation, WithMetadata):
model_config = ConfigDict(protected_namespaces=())
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
models_path = context.services.configuration.models_path
image = context.images.get_pil(self.image.image_name)
models_path = context.config.get().models_path
rrdbnet_model = None
netscale = None
@ -87,7 +89,7 @@ class ESRGANInvocation(BaseInvocation, WithMetadata):
netscale = 2
else:
msg = f"Invalid RealESRGAN model: {self.model_name}"
context.services.logger.error(msg)
context.logger.error(msg)
raise ValueError(msg)
esrgan_model_path = Path(f"core/upscaling/realesrgan/{self.model_name}")
@ -110,19 +112,6 @@ class ESRGANInvocation(BaseInvocation, WithMetadata):
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
image_dto = context.images.save(image=pil_image)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
return ImageOutput.build(image_dto)

View File

@ -0,0 +1,44 @@
from abc import ABC, abstractmethod
from typing import Optional
class BulkDownloadBase(ABC):
"""Responsible for creating a zip file containing the images specified by the given image names or board id."""
@abstractmethod
def handler(
self, image_names: Optional[list[str]], board_id: Optional[str], bulk_download_item_id: Optional[str]
) -> None:
"""
Create a zip file containing the images specified by the given image names or board id.
:param image_names: A list of image names to include in the zip file.
:param board_id: The ID of the board. If provided, all images associated with the board will be included in the zip file.
:param bulk_download_item_id: The bulk_download_item_id that will be used to retrieve the bulk download item when it is prepared, if none is provided a uuid will be generated.
"""
@abstractmethod
def get_path(self, bulk_download_item_name: str) -> str:
"""
Get the path to the bulk download file.
:param bulk_download_item_name: The name of the bulk download item.
:return: The path to the bulk download file.
"""
@abstractmethod
def generate_item_id(self, board_id: Optional[str]) -> str:
"""
Generate an item ID for a bulk download item.
:param board_id: The ID of the board whose name is to be included in the item id.
:return: The generated item ID.
"""
@abstractmethod
def delete(self, bulk_download_item_name: str) -> None:
"""
Delete the bulk download file.
:param bulk_download_item_name: The name of the bulk download item.
"""

View File

@ -0,0 +1,25 @@
DEFAULT_BULK_DOWNLOAD_ID = "default"
class BulkDownloadException(Exception):
"""Exception raised when a bulk download fails."""
def __init__(self, message="Bulk download failed"):
super().__init__(message)
self.message = message
class BulkDownloadTargetException(BulkDownloadException):
"""Exception raised when a bulk download target is not found."""
def __init__(self, message="The bulk download target was not found"):
super().__init__(message)
self.message = message
class BulkDownloadParametersException(BulkDownloadException):
"""Exception raised when a bulk download parameter is invalid."""
def __init__(self, message="No image names or board ID provided"):
super().__init__(message)
self.message = message

View File

@ -0,0 +1,157 @@
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Optional, Union
from zipfile import ZipFile
from invokeai.app.services.board_records.board_records_common import BoardRecordNotFoundException
from invokeai.app.services.bulk_download.bulk_download_common import (
DEFAULT_BULK_DOWNLOAD_ID,
BulkDownloadException,
BulkDownloadParametersException,
BulkDownloadTargetException,
)
from invokeai.app.services.image_records.image_records_common import ImageRecordNotFoundException
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.misc import uuid_string
from .bulk_download_base import BulkDownloadBase
class BulkDownloadService(BulkDownloadBase):
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def __init__(self):
self._temp_directory = TemporaryDirectory()
self._bulk_downloads_folder = Path(self._temp_directory.name) / "bulk_downloads"
self._bulk_downloads_folder.mkdir(parents=True, exist_ok=True)
def handler(
self, image_names: Optional[list[str]], board_id: Optional[str], bulk_download_item_id: Optional[str]
) -> None:
bulk_download_id: str = DEFAULT_BULK_DOWNLOAD_ID
bulk_download_item_id = bulk_download_item_id or uuid_string()
bulk_download_item_name = bulk_download_item_id + ".zip"
self._signal_job_started(bulk_download_id, bulk_download_item_id, bulk_download_item_name)
try:
image_dtos: list[ImageDTO] = []
if board_id:
image_dtos = self._board_handler(board_id)
elif image_names:
image_dtos = self._image_handler(image_names)
else:
raise BulkDownloadParametersException()
bulk_download_item_name: str = self._create_zip_file(image_dtos, bulk_download_item_id)
self._signal_job_completed(bulk_download_id, bulk_download_item_id, bulk_download_item_name)
except (
ImageRecordNotFoundException,
BoardRecordNotFoundException,
BulkDownloadException,
BulkDownloadParametersException,
) as e:
self._signal_job_failed(bulk_download_id, bulk_download_item_id, bulk_download_item_name, e)
except Exception as e:
self._signal_job_failed(bulk_download_id, bulk_download_item_id, bulk_download_item_name, e)
self._invoker.services.logger.error("Problem bulk downloading images.")
raise e
def _image_handler(self, image_names: list[str]) -> list[ImageDTO]:
return [self._invoker.services.images.get_dto(image_name) for image_name in image_names]
def _board_handler(self, board_id: str) -> list[ImageDTO]:
image_names = self._invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
return self._image_handler(image_names)
def generate_item_id(self, board_id: Optional[str]) -> str:
return uuid_string() if board_id is None else self._get_clean_board_name(board_id) + "_" + uuid_string()
def _get_clean_board_name(self, board_id: str) -> str:
if board_id == "none":
return "Uncategorized"
return self._clean_string_to_path_safe(self._invoker.services.board_records.get(board_id).board_name)
def _create_zip_file(self, image_dtos: list[ImageDTO], bulk_download_item_id: str) -> str:
"""
Create a zip file containing the images specified by the given image names or board id.
If download with the same bulk_download_id already exists, it will be overwritten.
:return: The name of the zip file.
"""
zip_file_name = bulk_download_item_id + ".zip"
zip_file_path = self._bulk_downloads_folder / (zip_file_name)
with ZipFile(zip_file_path, "w") as zip_file:
for image_dto in image_dtos:
image_zip_path = Path(image_dto.image_category.value) / image_dto.image_name
image_disk_path = self._invoker.services.images.get_path(image_dto.image_name)
zip_file.write(image_disk_path, arcname=image_zip_path)
return str(zip_file_name)
# from https://stackoverflow.com/questions/7406102/create-sane-safe-filename-from-any-unsafe-string
def _clean_string_to_path_safe(self, s: str) -> str:
"""Clean a string to be path safe."""
return "".join([c for c in s if c.isalpha() or c.isdigit() or c == " " or c == "_" or c == "-"]).rstrip()
def _signal_job_started(
self, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str
) -> None:
"""Signal that a bulk download job has started."""
if self._invoker:
assert bulk_download_id is not None
self._invoker.services.events.emit_bulk_download_started(
bulk_download_id=bulk_download_id,
bulk_download_item_id=bulk_download_item_id,
bulk_download_item_name=bulk_download_item_name,
)
def _signal_job_completed(
self, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str
) -> None:
"""Signal that a bulk download job has completed."""
if self._invoker:
assert bulk_download_id is not None
assert bulk_download_item_name is not None
self._invoker.services.events.emit_bulk_download_completed(
bulk_download_id=bulk_download_id,
bulk_download_item_id=bulk_download_item_id,
bulk_download_item_name=bulk_download_item_name,
)
def _signal_job_failed(
self, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str, exception: Exception
) -> None:
"""Signal that a bulk download job has failed."""
if self._invoker:
assert bulk_download_id is not None
assert exception is not None
self._invoker.services.events.emit_bulk_download_failed(
bulk_download_id=bulk_download_id,
bulk_download_item_id=bulk_download_item_id,
bulk_download_item_name=bulk_download_item_name,
error=str(exception),
)
def stop(self, *args, **kwargs):
self._temp_directory.cleanup()
def delete(self, bulk_download_item_name: str) -> None:
path = self.get_path(bulk_download_item_name)
Path(path).unlink()
def get_path(self, bulk_download_item_name: str) -> str:
path = str(self._bulk_downloads_folder / bulk_download_item_name)
if not self._is_valid_path(path):
raise BulkDownloadTargetException()
return path
def _is_valid_path(self, path: Union[str, Path]) -> bool:
"""Validates the path given for a bulk download."""
path = path if isinstance(path, Path) else Path(path)
return path.exists()

View File

@ -27,11 +27,11 @@ class InvokeAISettings(BaseSettings):
"""Runtime configuration settings in which default values are read from an omegaconf .yaml file."""
initconf: ClassVar[Optional[DictConfig]] = None
argparse_groups: ClassVar[Dict] = {}
argparse_groups: ClassVar[Dict[str, Any]] = {}
model_config = SettingsConfigDict(env_file_encoding="utf-8", arbitrary_types_allowed=True, case_sensitive=True)
def parse_args(self, argv: Optional[list] = sys.argv[1:]):
def parse_args(self, argv: Optional[List[str]] = sys.argv[1:]) -> None:
"""Call to parse command-line arguments."""
parser = self.get_parser()
opt, unknown_opts = parser.parse_known_args(argv)
@ -68,7 +68,7 @@ class InvokeAISettings(BaseSettings):
return OmegaConf.to_yaml(conf)
@classmethod
def add_parser_arguments(cls, parser):
def add_parser_arguments(cls, parser: ArgumentParser) -> None:
"""Dynamically create arguments for a settings parser."""
if "type" in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)["type"])[0]
@ -117,7 +117,8 @@ class InvokeAISettings(BaseSettings):
"""Return the category of a setting."""
hints = get_type_hints(cls)
if command_field in hints:
return get_args(hints[command_field])[0]
result: str = get_args(hints[command_field])[0]
return result
else:
return "Uncategorized"
@ -155,10 +156,11 @@ class InvokeAISettings(BaseSettings):
"lora_dir",
"embedding_dir",
"controlnet_dir",
"conf_path",
]
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override=None):
def add_field_argument(cls, command_parser, name: str, field, default_override=None) -> None:
"""Add the argparse arguments for a setting parser."""
field_type = get_type_hints(cls).get(name)
default = (

View File

@ -21,7 +21,7 @@ class PagingArgumentParser(argparse.ArgumentParser):
It also supports reading defaults from an init file.
"""
def print_help(self, file=None):
def print_help(self, file=None) -> None:
text = self.format_help()
pydoc.pager(text)

View File

@ -30,7 +30,6 @@ InvokeAI:
lora_dir: null
embedding_dir: null
controlnet_dir: null
conf_path: configs/models.yaml
models_dir: models
legacy_conf_dir: configs/stable-diffusion
db_dir: databases
@ -123,7 +122,6 @@ a Path object:
root_path - path to InvokeAI root
output_path - path to default outputs directory
model_conf_path - path to models.yaml
conf - alias for the above
embedding_path - path to the embeddings directory
lora_path - path to the LoRA directory
@ -163,17 +161,17 @@ two configs are kept in separate sections of the config file:
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
...
"""
from __future__ import annotations
import os
from pathlib import Path
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union
from typing import Any, ClassVar, Dict, List, Literal, Optional
from omegaconf import DictConfig, OmegaConf
from pydantic import Field
@ -185,7 +183,9 @@ from .config_base import InvokeAISettings
INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_MAX_VRAM = 0.5
DEFAULT_RAM_CACHE = 10.0
DEFAULT_VRAM_CACHE = 0.25
DEFAULT_CONVERT_CACHE = 20.0
class Categories(object):
@ -235,8 +235,8 @@ class InvokeAIAppConfig(InvokeAISettings):
# PATHS
root : Optional[Path] = Field(default=None, description='InvokeAI runtime root directory', json_schema_extra=Categories.Paths)
autoimport_dir : Path = Field(default=Path('autoimport'), description='Path to a directory of models files to be imported on startup.', json_schema_extra=Categories.Paths)
conf_path : Path = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Paths)
models_dir : Path = Field(default=Path('models'), description='Path to the models directory', json_schema_extra=Categories.Paths)
convert_cache_dir : Path = Field(default=Path('models/.cache'), description='Path to the converted models cache directory', json_schema_extra=Categories.Paths)
legacy_conf_dir : Path = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files', json_schema_extra=Categories.Paths)
db_dir : Path = Field(default=Path('databases'), description='Path to InvokeAI databases directory', json_schema_extra=Categories.Paths)
outdir : Path = Field(default=Path('outputs'), description='Default folder for output images', json_schema_extra=Categories.Paths)
@ -256,12 +256,15 @@ class InvokeAIAppConfig(InvokeAISettings):
profile_graphs : bool = Field(default=False, description="Enable graph profiling", json_schema_extra=Categories.Development)
profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development)
profiles_dir : Path = Field(default=Path('profiles'), description="Directory for graph profiles", json_schema_extra=Categories.Development)
skip_model_hash : bool = Field(default=False, description="Skip model hashing, instead assigning a UUID to models. Useful when using a memory db to reduce startup time.", json_schema_extra=Categories.Development)
version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other)
# CACHE
ram : float = Field(default=7.5, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
vram : float = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
ram : float = Field(default=DEFAULT_RAM_CACHE, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
vram : float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
convert_cache : float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB)", json_schema_extra=Categories.ModelCache)
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", json_schema_extra=Categories.ModelCache, )
log_memory_usage : bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.", json_schema_extra=Categories.ModelCache)
@ -296,6 +299,7 @@ class InvokeAIAppConfig(InvokeAISettings):
lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths)
embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
conf_path : Path = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Paths)
# this is not referred to in the source code and can be removed entirely
#free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance)
@ -404,6 +408,11 @@ class InvokeAIAppConfig(InvokeAISettings):
"""Path to the models directory."""
return self._resolve(self.models_dir)
@property
def models_convert_cache_path(self) -> Path:
"""Path to the converted cache models directory."""
return self._resolve(self.convert_cache_dir)
@property
def custom_nodes_path(self) -> Path:
"""Path to the custom nodes directory."""
@ -433,15 +442,20 @@ class InvokeAIAppConfig(InvokeAISettings):
return True
@property
def ram_cache_size(self) -> Union[Literal["auto"], float]:
"""Return the ram cache size using the legacy or modern setting."""
def ram_cache_size(self) -> float:
"""Return the ram cache size using the legacy or modern setting (GB)."""
return self.max_cache_size or self.ram
@property
def vram_cache_size(self) -> Union[Literal["auto"], float]:
"""Return the vram cache size using the legacy or modern setting."""
def vram_cache_size(self) -> float:
"""Return the vram cache size using the legacy or modern setting (GB)."""
return self.max_vram_cache_size or self.vram
@property
def convert_cache_size(self) -> float:
"""Return the convert cache size on disk (GB)."""
return self.convert_cache
@property
def use_cpu(self) -> bool:
"""Return true if the device is set to CPU or the always_use_cpu flag is set."""

View File

@ -1,4 +1,5 @@
"""Init file for download queue."""
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
from .download_default import DownloadQueueService, TqdmProgress

View File

@ -260,3 +260,16 @@ class DownloadQueueServiceBase(ABC):
def join(self) -> None:
"""Wait until all jobs are off the queue."""
pass
@abstractmethod
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
"""Wait until the indicated download job has reached a terminal state.
This will block until the indicated install job has completed,
been cancelled, or errored out.
:param job: The job to wait on.
:param timeout: Wait up to indicated number of seconds. Raise a TimeoutError if
the job hasn't completed within the indicated time.
"""
pass

View File

@ -4,10 +4,11 @@
import os
import re
import threading
import time
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Set
import requests
from pydantic.networks import AnyHttpUrl
@ -48,11 +49,12 @@ class DownloadQueueService(DownloadQueueServiceBase):
:param max_parallel_dl: Number of simultaneous downloads allowed [5].
:param requests_session: Optional requests.sessions.Session object, for unit tests.
"""
self._jobs = {}
self._jobs: Dict[int, DownloadJob] = {}
self._next_job_id = 0
self._queue = PriorityQueue()
self._queue: PriorityQueue[DownloadJob] = PriorityQueue()
self._stop_event = threading.Event()
self._worker_pool = set()
self._job_completed_event = threading.Event()
self._worker_pool: Set[threading.Thread] = set()
self._lock = threading.Lock()
self._logger = InvokeAILogger.get_logger("DownloadQueueService")
self._event_bus = event_bus
@ -188,6 +190,16 @@ class DownloadQueueService(DownloadQueueServiceBase):
if not job.in_terminal_state:
self.cancel_job(job)
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
"""Block until the indicated job has reached terminal state, or when timeout limit reached."""
start = time.time()
while not job.in_terminal_state:
if self._job_completed_event.wait(timeout=0.25): # in case we miss an event
self._job_completed_event.clear()
if timeout > 0 and time.time() - start > timeout:
raise TimeoutError("Timeout exceeded")
return job
def _start_workers(self, max_workers: int) -> None:
"""Start the requested number of worker threads."""
self._stop_event.clear()
@ -212,7 +224,6 @@ class DownloadQueueService(DownloadQueueServiceBase):
job.job_started = get_iso_timestamp()
self._do_download(job)
self._signal_job_complete(job)
except (OSError, HTTPError) as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()
@ -223,6 +234,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
finally:
job.job_ended = get_iso_timestamp()
self._job_completed_event.set() # signal a change to terminal state
self._queue.task_done()
self._logger.debug(f"Download queue worker thread {threading.current_thread().name} exiting.")
@ -407,11 +419,11 @@ class DownloadQueueService(DownloadQueueServiceBase):
# Example on_progress event handler to display a TQDM status bar
# Activate with:
# download_service.download('http://foo.bar/baz', '/tmp', on_progress=TqdmProgress().job_update
# download_service.download(DownloadJob('http://foo.bar/baz', '/tmp', on_progress=TqdmProgress().update))
class TqdmProgress(object):
"""TQDM-based progress bar object to use in on_progress handlers."""
_bars: Dict[int, tqdm] # the tqdm object
_bars: Dict[int, tqdm] # type: ignore
_last: Dict[int, int] # last bytes downloaded
def __init__(self) -> None: # noqa D107

View File

@ -3,7 +3,7 @@
from typing import Any, Dict, List, Optional, Union
from invokeai.app.services.invocation_processor.invocation_processor_common import ProgressImage
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
BatchStatus,
EnqueueBatchResult,
@ -11,12 +11,12 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueStatus,
)
from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_management.model_manager import ModelInfo
from invokeai.backend.model_management.models.base import BaseModelType, ModelType, SubModelType
from invokeai.backend.model_manager import AnyModelConfig
class EventServiceBase:
queue_event: str = "queue_event"
bulk_download_event: str = "bulk_download_event"
download_event: str = "download_event"
model_event: str = "model_event"
@ -25,6 +25,14 @@ class EventServiceBase:
def dispatch(self, event_name: str, payload: Any) -> None:
pass
def _emit_bulk_download_event(self, event_name: str, payload: dict) -> None:
"""Bulk download events are emitted to a room with queue_id as the room name"""
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.bulk_download_event,
payload={"event": event_name, "data": payload},
)
def __emit_queue_event(self, event_name: str, payload: dict) -> None:
"""Queue events are emitted to a room with queue_id as the room name"""
payload["timestamp"] = get_timestamp()
@ -55,7 +63,7 @@ class EventServiceBase:
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
node: dict,
node_id: str,
source_node_id: str,
progress_image: Optional[ProgressImage],
step: int,
@ -70,7 +78,7 @@ class EventServiceBase:
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node_id": node.get("id"),
"node_id": node_id,
"source_node_id": source_node_id,
"progress_image": progress_image.model_dump() if progress_image is not None else None,
"step": step,
@ -171,10 +179,7 @@ class EventServiceBase:
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_config: AnyModelConfig,
) -> None:
"""Emitted when a model is requested"""
self.__emit_queue_event(
@ -184,10 +189,7 @@ class EventServiceBase:
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"model_name": model_name,
"base_model": base_model,
"model_type": model_type,
"submodel": submodel,
"model_config": model_config.model_dump(),
},
)
@ -197,11 +199,7 @@ class EventServiceBase:
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: ModelInfo,
model_config: AnyModelConfig,
) -> None:
"""Emitted when a model is correctly loaded (returns model info)"""
self.__emit_queue_event(
@ -211,59 +209,7 @@ class EventServiceBase:
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"model_name": model_name,
"base_model": base_model,
"model_type": model_type,
"submodel": submodel,
"hash": model_info.hash,
"location": str(model_info.location),
"precision": str(model_info.precision),
},
)
def emit_session_retrieval_error(
self,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
error_type: str,
error: str,
) -> None:
"""Emitted when session retrieval fails"""
self.__emit_queue_event(
event_name="session_retrieval_error",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"error_type": error_type,
"error": error,
},
)
def emit_invocation_retrieval_error(
self,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
node_id: str,
error_type: str,
error: str,
) -> None:
"""Emitted when invocation retrieval fails"""
self.__emit_queue_event(
event_name="invocation_retrieval_error",
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node_id": node_id,
"error_type": error_type,
"error": error,
"model_config": model_config.model_dump(),
},
)
@ -411,6 +357,7 @@ class EventServiceBase:
bytes: int,
total_bytes: int,
parts: List[Dict[str, Union[str, int]]],
id: int,
) -> None:
"""
Emit at intervals while the install job is in progress (remote models only).
@ -430,6 +377,7 @@ class EventServiceBase:
"bytes": bytes,
"total_bytes": total_bytes,
"parts": parts,
"id": id,
},
)
@ -444,7 +392,7 @@ class EventServiceBase:
payload={"source": source},
)
def emit_model_install_completed(self, source: str, key: str, total_bytes: Optional[int] = None) -> None:
def emit_model_install_completed(self, source: str, key: str, id: int, total_bytes: Optional[int] = None) -> None:
"""
Emit when an install job is completed successfully.
@ -454,11 +402,7 @@ class EventServiceBase:
"""
self.__emit_model_event(
event_name="model_install_completed",
payload={
"source": source,
"total_bytes": total_bytes,
"key": key,
},
payload={"source": source, "total_bytes": total_bytes, "key": key, "id": id},
)
def emit_model_install_cancelled(self, source: str) -> None:
@ -472,12 +416,7 @@ class EventServiceBase:
payload={"source": source},
)
def emit_model_install_error(
self,
source: str,
error_type: str,
error: str,
) -> None:
def emit_model_install_error(self, source: str, error_type: str, error: str, id: int) -> None:
"""
Emit when an install job encounters an exception.
@ -487,9 +426,45 @@ class EventServiceBase:
"""
self.__emit_model_event(
event_name="model_install_error",
payload={"source": source, "error_type": error_type, "error": error, "id": id},
)
def emit_bulk_download_started(
self, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str
) -> None:
"""Emitted when a bulk download starts"""
self._emit_bulk_download_event(
event_name="bulk_download_started",
payload={
"source": source,
"error_type": error_type,
"bulk_download_id": bulk_download_id,
"bulk_download_item_id": bulk_download_item_id,
"bulk_download_item_name": bulk_download_item_name,
},
)
def emit_bulk_download_completed(
self, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str
) -> None:
"""Emitted when a bulk download completes"""
self._emit_bulk_download_event(
event_name="bulk_download_completed",
payload={
"bulk_download_id": bulk_download_id,
"bulk_download_item_id": bulk_download_item_id,
"bulk_download_item_name": bulk_download_item_name,
},
)
def emit_bulk_download_failed(
self, bulk_download_id: str, bulk_download_item_id: str, bulk_download_item_name: str, error: str
) -> None:
"""Emitted when a bulk download fails"""
self._emit_bulk_download_event(
event_name="bulk_download_failed",
payload={
"bulk_download_id": bulk_download_id,
"bulk_download_item_id": bulk_download_item_id,
"bulk_download_item_name": bulk_download_item_name,
"error": error,
},
)

View File

@ -4,7 +4,7 @@ from typing import Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.baseinvocation import MetadataField
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID

View File

@ -7,7 +7,7 @@ from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.invocations.baseinvocation import MetadataField
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail

View File

@ -2,7 +2,7 @@ from abc import ABC, abstractmethod
from datetime import datetime
from typing import Optional
from invokeai.app.invocations.metadata import MetadataField
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .image_records_common import ImageCategory, ImageRecord, ImageRecordChanges, ResourceOrigin

View File

@ -3,7 +3,7 @@ import threading
from datetime import datetime
from typing import Optional, Union, cast
from invokeai.app.invocations.baseinvocation import MetadataField, MetadataFieldValidator
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase

View File

@ -3,7 +3,7 @@ from typing import Callable, Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.baseinvocation import MetadataField
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,

View File

@ -2,7 +2,7 @@ from typing import Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.baseinvocation import MetadataField
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID

View File

@ -41,8 +41,9 @@ class InvocationCacheBase(ABC):
"""Clears the cache"""
pass
@staticmethod
@abstractmethod
def create_key(self, invocation: BaseInvocation) -> int:
def create_key(invocation: BaseInvocation) -> int:
"""Gets the key for the invocation's cache item"""
pass

View File

@ -37,7 +37,8 @@ class MemoryInvocationCache(InvocationCacheBase):
if self._max_cache_size == 0:
return
self._invoker.services.images.on_deleted(self._delete_by_match)
self._invoker.services.latents.on_deleted(self._delete_by_match)
self._invoker.services.tensors.on_deleted(self._delete_by_match)
self._invoker.services.conditioning.on_deleted(self._delete_by_match)
def get(self, key: Union[int, str]) -> Optional[BaseInvocationOutput]:
with self._lock:
@ -60,9 +61,7 @@ class MemoryInvocationCache(InvocationCacheBase):
self._delete_oldest_access(number_to_delete)
self._cache[key] = CachedItem(
invocation_output,
invocation_output.model_dump_json(
warnings=False, exclude_defaults=True, exclude_unset=True, include={"type"}
),
invocation_output.model_dump_json(warnings=False, exclude_defaults=True, exclude_unset=True),
)
def _delete_oldest_access(self, number_to_delete: int) -> None:
@ -80,7 +79,7 @@ class MemoryInvocationCache(InvocationCacheBase):
with self._lock:
return self._delete(key)
def clear(self, *args, **kwargs) -> None:
def clear(self) -> None:
with self._lock:
if self._max_cache_size == 0:
return

View File

@ -1,5 +0,0 @@
from abc import ABC
class InvocationProcessorABC(ABC): # noqa: B024
pass

View File

@ -1,15 +0,0 @@
from pydantic import BaseModel, Field
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@ -1,237 +0,0 @@
import time
import traceback
from contextlib import suppress
from threading import BoundedSemaphore, Event, Thread
from typing import Optional
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import InvocationContext
from invokeai.app.services.invocation_queue.invocation_queue_common import InvocationQueueItem
from invokeai.app.services.invocation_stats.invocation_stats_common import (
GESStatsNotFoundError,
)
from invokeai.app.util.profiler import Profiler
from ..invoker import Invoker
from .invocation_processor_base import InvocationProcessorABC
from .invocation_processor_common import CanceledException
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
__stop_event: Event
__invoker: Invoker
__threadLimit: BoundedSemaphore
def start(self, invoker: Invoker) -> None:
# if we do want multithreading at some point, we could make this configurable
self.__threadLimit = BoundedSemaphore(1)
self.__invoker = invoker
self.__stop_event = Event()
self.__invoker_thread = Thread(
name="invoker_processor",
target=self.__process,
kwargs={"stop_event": self.__stop_event},
)
self.__invoker_thread.daemon = True # TODO: make async and do not use threads
self.__invoker_thread.start()
def stop(self, *args, **kwargs) -> None:
self.__stop_event.set()
def __process(self, stop_event: Event):
try:
self.__threadLimit.acquire()
queue_item: Optional[InvocationQueueItem] = None
profiler = (
Profiler(
logger=self.__invoker.services.logger,
output_dir=self.__invoker.services.configuration.profiles_path,
prefix=self.__invoker.services.configuration.profile_prefix,
)
if self.__invoker.services.configuration.profile_graphs
else None
)
def stats_cleanup(graph_execution_state_id: str) -> None:
if profiler:
profile_path = profiler.stop()
stats_path = profile_path.with_suffix(".json")
self.__invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=graph_execution_state_id, output_path=stats_path
)
with suppress(GESStatsNotFoundError):
self.__invoker.services.performance_statistics.log_stats(graph_execution_state_id)
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state_id)
while not stop_event.is_set():
try:
queue_item = self.__invoker.services.queue.get()
except Exception as e:
self.__invoker.services.logger.error("Exception while getting from queue:\n%s" % e)
if not queue_item: # Probably stopping
# do not hammer the queue
time.sleep(0.5)
continue
if profiler and profiler.profile_id != queue_item.graph_execution_state_id:
profiler.start(profile_id=queue_item.graph_execution_state_id)
try:
graph_execution_state = self.__invoker.services.graph_execution_manager.get(
queue_item.graph_execution_state_id
)
except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving session:\n%s" % e)
self.__invoker.services.events.emit_session_retrieval_error(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=queue_item.graph_execution_state_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
continue
try:
invocation = graph_execution_state.execution_graph.get_node(queue_item.invocation_id)
except Exception as e:
self.__invoker.services.logger.error("Exception while retrieving invocation:\n%s" % e)
self.__invoker.services.events.emit_invocation_retrieval_error(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=queue_item.graph_execution_state_id,
node_id=queue_item.invocation_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
continue
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
# Send starting event
self.__invoker.services.events.emit_invocation_started(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.model_dump(),
source_node_id=source_node_id,
)
# Invoke
try:
graph_id = graph_execution_state.id
with self.__invoker.services.performance_statistics.collect_stats(invocation, graph_id):
# use the internal invoke_internal(), which wraps the node's invoke() method,
# which handles a few things:
# - nodes that require a value, but get it only from a connection
# - referencing the invocation cache instead of executing the node
outputs = invocation.invoke_internal(
InvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
queue_batch_id=queue_item.session_queue_batch_id,
workflow=queue_item.workflow,
)
)
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Save outputs and history
graph_execution_state.complete(invocation.id, outputs)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.model_dump(),
source_node_id=source_node_id,
result=outputs.model_dump(),
)
except KeyboardInterrupt:
pass
except CanceledException:
stats_cleanup(graph_execution_state.id)
pass
except Exception as e:
error = traceback.format_exc()
logger.error(error)
# Save error
graph_execution_state.set_node_error(invocation.id, error)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
# Send error event
self.__invoker.services.events.emit_invocation_error(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.model_dump(),
source_node_id=source_node_id,
error_type=e.__class__.__name__,
error=error,
)
pass
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Queue any further commands if invoking all
is_complete = graph_execution_state.is_complete()
if queue_item.invoke_all and not is_complete:
try:
self.__invoker.invoke(
session_queue_batch_id=queue_item.session_queue_batch_id,
session_queue_item_id=queue_item.session_queue_item_id,
session_queue_id=queue_item.session_queue_id,
graph_execution_state=graph_execution_state,
workflow=queue_item.workflow,
invoke_all=True,
)
except Exception as e:
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
self.__invoker.services.events.emit_invocation_error(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.model_dump(),
source_node_id=source_node_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),
)
elif is_complete:
self.__invoker.services.events.emit_graph_execution_complete(
queue_batch_id=queue_item.session_queue_batch_id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
)
stats_cleanup(graph_execution_state.id)
except KeyboardInterrupt:
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
finally:
self.__threadLimit.release()

View File

@ -1,26 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from typing import Optional
from .invocation_queue_common import InvocationQueueItem
class InvocationQueueABC(ABC):
"""Abstract base class for all invocation queues"""
@abstractmethod
def get(self) -> InvocationQueueItem:
pass
@abstractmethod
def put(self, item: Optional[InvocationQueueItem]) -> None:
pass
@abstractmethod
def cancel(self, graph_execution_state_id: str) -> None:
pass
@abstractmethod
def is_canceled(self, graph_execution_state_id: str) -> bool:
pass

View File

@ -1,23 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from typing import Optional
from pydantic import BaseModel, Field
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
session_queue_id: str = Field(description="The ID of the session queue from which this invocation queue item came")
session_queue_item_id: int = Field(
description="The ID of session queue item from which this invocation queue item came"
)
session_queue_batch_id: str = Field(
description="The ID of the session batch from which this invocation queue item came"
)
workflow: Optional[WorkflowWithoutID] = Field(description="The workflow associated with this queue item")
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)

View File

@ -1,44 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from queue import Queue
from typing import Optional
from .invocation_queue_base import InvocationQueueABC
from .invocation_queue_common import InvocationQueueItem
class MemoryInvocationQueue(InvocationQueueABC):
__queue: Queue
__cancellations: dict[str, float]
def __init__(self):
self.__queue = Queue()
self.__cancellations = {}
def get(self) -> InvocationQueueItem:
item = self.__queue.get()
while (
isinstance(item, InvocationQueueItem)
and item.graph_execution_state_id in self.__cancellations
and self.__cancellations[item.graph_execution_state_id] > item.timestamp
):
item = self.__queue.get()
# Clear old items
for graph_execution_state_id in list(self.__cancellations.keys()):
if self.__cancellations[graph_execution_state_id] < item.timestamp:
del self.__cancellations[graph_execution_state_id]
return item
def put(self, item: Optional[InvocationQueueItem]) -> None:
self.__queue.put(item)
def cancel(self, graph_execution_state_id: str) -> None:
if graph_execution_state_id not in self.__cancellations:
self.__cancellations[graph_execution_state_id] = time.time()
def is_canceled(self, graph_execution_state_id: str) -> bool:
return graph_execution_state_id in self.__cancellations

View File

@ -3,13 +3,20 @@ from __future__ import annotations
from typing import TYPE_CHECKING
from invokeai.app.services.object_serializer.object_serializer_base import ObjectSerializerBase
if TYPE_CHECKING:
from logging import Logger
import torch
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from .board_image_records.board_image_records_base import BoardImageRecordStorageBase
from .board_images.board_images_base import BoardImagesServiceABC
from .board_records.board_records_base import BoardRecordStorageBase
from .boards.boards_base import BoardServiceABC
from .bulk_download.bulk_download_base import BulkDownloadBase
from .config import InvokeAIAppConfig
from .download import DownloadQueueServiceBase
from .events.events_base import EventServiceBase
@ -17,18 +24,12 @@ if TYPE_CHECKING:
from .image_records.image_records_base import ImageRecordStorageBase
from .images.images_base import ImageServiceABC
from .invocation_cache.invocation_cache_base import InvocationCacheBase
from .invocation_processor.invocation_processor_base import InvocationProcessorABC
from .invocation_queue.invocation_queue_base import InvocationQueueABC
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from .item_storage.item_storage_base import ItemStorageABC
from .latents_storage.latents_storage_base import LatentsStorageBase
from .model_install import ModelInstallServiceBase
from .model_images.model_images_base import ModelImageFileStorageBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .model_records import ModelRecordServiceBase
from .names.names_base import NameServiceBase
from .session_processor.session_processor_base import SessionProcessorBase
from .session_queue.session_queue_base import SessionQueueBase
from .shared.graph import GraphExecutionState
from .urls.urls_base import UrlServiceBase
from .workflow_records.workflow_records_base import WorkflowRecordsStorageBase
@ -36,83 +37,52 @@ if TYPE_CHECKING:
class InvocationServices:
"""Services that can be used by invocations"""
# TODO: Just forward-declared everything due to circular dependencies. Fix structure.
board_images: "BoardImagesServiceABC"
board_image_record_storage: "BoardImageRecordStorageBase"
boards: "BoardServiceABC"
board_records: "BoardRecordStorageBase"
configuration: "InvokeAIAppConfig"
events: "EventServiceBase"
graph_execution_manager: "ItemStorageABC[GraphExecutionState]"
images: "ImageServiceABC"
image_records: "ImageRecordStorageBase"
image_files: "ImageFileStorageBase"
latents: "LatentsStorageBase"
logger: "Logger"
model_manager: "ModelManagerServiceBase"
model_records: "ModelRecordServiceBase"
download_queue: "DownloadQueueServiceBase"
model_install: "ModelInstallServiceBase"
processor: "InvocationProcessorABC"
performance_statistics: "InvocationStatsServiceBase"
queue: "InvocationQueueABC"
session_queue: "SessionQueueBase"
session_processor: "SessionProcessorBase"
invocation_cache: "InvocationCacheBase"
names: "NameServiceBase"
urls: "UrlServiceBase"
workflow_records: "WorkflowRecordsStorageBase"
def __init__(
self,
board_images: "BoardImagesServiceABC",
board_image_records: "BoardImageRecordStorageBase",
boards: "BoardServiceABC",
board_records: "BoardRecordStorageBase",
bulk_download: "BulkDownloadBase",
configuration: "InvokeAIAppConfig",
events: "EventServiceBase",
graph_execution_manager: "ItemStorageABC[GraphExecutionState]",
images: "ImageServiceABC",
image_files: "ImageFileStorageBase",
image_records: "ImageRecordStorageBase",
latents: "LatentsStorageBase",
logger: "Logger",
model_images: "ModelImageFileStorageBase",
model_manager: "ModelManagerServiceBase",
model_records: "ModelRecordServiceBase",
download_queue: "DownloadQueueServiceBase",
model_install: "ModelInstallServiceBase",
processor: "InvocationProcessorABC",
performance_statistics: "InvocationStatsServiceBase",
queue: "InvocationQueueABC",
session_queue: "SessionQueueBase",
session_processor: "SessionProcessorBase",
invocation_cache: "InvocationCacheBase",
names: "NameServiceBase",
urls: "UrlServiceBase",
workflow_records: "WorkflowRecordsStorageBase",
tensors: "ObjectSerializerBase[torch.Tensor]",
conditioning: "ObjectSerializerBase[ConditioningFieldData]",
):
self.board_images = board_images
self.board_image_records = board_image_records
self.boards = boards
self.board_records = board_records
self.bulk_download = bulk_download
self.configuration = configuration
self.events = events
self.graph_execution_manager = graph_execution_manager
self.images = images
self.image_files = image_files
self.image_records = image_records
self.latents = latents
self.logger = logger
self.model_images = model_images
self.model_manager = model_manager
self.model_records = model_records
self.download_queue = download_queue
self.model_install = model_install
self.processor = processor
self.performance_statistics = performance_statistics
self.queue = queue
self.session_queue = session_queue
self.session_processor = session_processor
self.invocation_cache = invocation_cache
self.names = names
self.urls = urls
self.workflow_records = workflow_records
self.tensors = tensors
self.conditioning = conditioning

View File

@ -3,7 +3,7 @@
Usage:
statistics = InvocationStatsService(graph_execution_manager)
statistics = InvocationStatsService()
with statistics.collect_stats(invocation, graph_execution_state.id):
... execute graphs...
statistics.log_stats()
@ -29,8 +29,8 @@ writes to the system log is stored in InvocationServices.performance_statistics.
"""
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
from pathlib import Path
from typing import ContextManager
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.invocation_stats.invocation_stats_common import InvocationStatsSummary
@ -40,18 +40,17 @@ class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics"
@abstractmethod
def __init__(self):
def __init__(self) -> None:
"""
Initialize the InvocationStatsService and reset counters to zero
"""
pass
@abstractmethod
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
) -> AbstractContextManager:
) -> ContextManager[None]:
"""
Return a context object that will capture the statistics on the execution
of invocaation. Use with: to place around the part of the code that executes the invocation.
@ -61,16 +60,12 @@ class InvocationStatsServiceBase(ABC):
pass
@abstractmethod
def reset_stats(self, graph_execution_state_id: str):
"""
Reset all statistics for the indicated graph.
:param graph_execution_state_id: The id of the session whose stats to reset.
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
"""
def reset_stats(self):
"""Reset all stored statistics."""
pass
@abstractmethod
def log_stats(self, graph_execution_state_id: str):
def log_stats(self, graph_execution_state_id: str) -> None:
"""
Write out the accumulated statistics to the log or somewhere else.
:param graph_execution_state_id: The id of the session whose stats to log.

View File

@ -2,6 +2,7 @@ import json
import time
from contextlib import contextmanager
from pathlib import Path
from typing import Generator
import psutil
import torch
@ -9,8 +10,7 @@ import torch
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.item_storage.item_storage_common import ItemNotFoundError
from invokeai.backend.model_management.model_cache import CacheStats
from invokeai.backend.model_manager.load.model_cache import CacheStats
from .invocation_stats_base import InvocationStatsServiceBase
from .invocation_stats_common import (
@ -41,22 +41,23 @@ class InvocationStatsService(InvocationStatsServiceBase):
self._invoker = invoker
@contextmanager
def collect_stats(self, invocation: BaseInvocation, graph_execution_state_id: str):
def collect_stats(self, invocation: BaseInvocation, graph_execution_state_id: str) -> Generator[None, None, None]:
# This is to handle case of the model manager not being initialized, which happens
# during some tests.
services = self._invoker.services
if not self._stats.get(graph_execution_state_id):
# First time we're seeing this graph_execution_state_id.
self._stats[graph_execution_state_id] = GraphExecutionStats()
self._cache_stats[graph_execution_state_id] = CacheStats()
# Prune stale stats. There should be none since we're starting a new graph, but just in case.
self._prune_stale_stats()
# Record state before the invocation.
start_time = time.time()
start_ram = psutil.Process().memory_info().rss
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
if self._invoker.services.model_manager:
self._invoker.services.model_manager.collect_cache_stats(self._cache_stats[graph_execution_state_id])
assert services.model_manager.load is not None
services.model_manager.load.ram_cache.stats = self._cache_stats[graph_execution_state_id]
try:
# Let the invocation run.
@ -73,42 +74,9 @@ class InvocationStatsService(InvocationStatsServiceBase):
)
self._stats[graph_execution_state_id].add_node_execution_stats(node_stats)
def _prune_stale_stats(self):
"""Check all graphs being tracked and prune any that have completed/errored.
This shouldn't be necessary, but we don't have totally robust upstream handling of graph completions/errors, so
for now we call this function periodically to prevent them from accumulating.
"""
to_prune: list[str] = []
for graph_execution_state_id in self._stats:
try:
graph_execution_state = self._invoker.services.graph_execution_manager.get(graph_execution_state_id)
except ItemNotFoundError:
# TODO(ryand): What would cause this? Should this exception just be allowed to propagate?
logger.warning(f"Failed to get graph state for {graph_execution_state_id}.")
continue
if not graph_execution_state.is_complete():
# The graph is still running, don't prune it.
continue
to_prune.append(graph_execution_state_id)
for graph_execution_state_id in to_prune:
del self._stats[graph_execution_state_id]
del self._cache_stats[graph_execution_state_id]
if len(to_prune) > 0:
logger.info(f"Pruned stale graph stats for {to_prune}.")
def reset_stats(self, graph_execution_state_id: str):
try:
del self._stats[graph_execution_state_id]
del self._cache_stats[graph_execution_state_id]
except KeyError as e:
raise GESStatsNotFoundError(
f"Attempted to clear statistics for unknown graph {graph_execution_state_id}: {e}."
) from e
def reset_stats(self):
self._stats = {}
self._cache_stats = {}
def get_stats(self, graph_execution_state_id: str) -> InvocationStatsSummary:
graph_stats_summary = self._get_graph_summary(graph_execution_state_id)

View File

@ -1,12 +1,7 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Optional
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from .invocation_queue.invocation_queue_common import InvocationQueueItem
from .invocation_services import InvocationServices
from .shared.graph import Graph, GraphExecutionState
class Invoker:
@ -18,51 +13,6 @@ class Invoker:
self.services = services
self._start()
def invoke(
self,
session_queue_id: str,
session_queue_item_id: int,
session_queue_batch_id: str,
graph_execution_state: GraphExecutionState,
workflow: Optional[WorkflowWithoutID] = None,
invoke_all: bool = False,
) -> Optional[str]:
"""Determines the next node to invoke and enqueues it, preparing if needed.
Returns the id of the queued node, or `None` if there are no nodes left to enqueue."""
# Get the next invocation
invocation = graph_execution_state.next()
if not invocation:
return None
# Save the execution state
self.services.graph_execution_manager.set(graph_execution_state)
# Queue the invocation
self.services.queue.put(
InvocationQueueItem(
session_queue_id=session_queue_id,
session_queue_item_id=session_queue_item_id,
session_queue_batch_id=session_queue_batch_id,
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
workflow=workflow,
invoke_all=invoke_all,
)
)
return invocation.id
def create_execution_state(self, graph: Optional[Graph] = None) -> GraphExecutionState:
"""Creates a new execution state for the given graph"""
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state)
return new_state
def cancel(self, graph_execution_state_id: str) -> None:
"""Cancels the given execution state"""
self.services.queue.cancel(graph_execution_state_id)
def __start_service(self, service) -> None:
# Call start() method on any services that have it
start_op = getattr(service, "start", None)
@ -85,5 +35,3 @@ class Invoker:
# First stop all services
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
self.services.queue.put(None)

View File

@ -30,7 +30,7 @@ class ItemStorageABC(ABC, Generic[T]):
@abstractmethod
def set(self, item: T) -> None:
"""
Sets the item. The id will be extracted based on id_field.
Sets the item.
:param item: the item to set
"""
pass

View File

@ -1,45 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from typing import Callable
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
_on_changed_callbacks: list[Callable[[torch.Tensor], None]]
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = []
self._on_deleted_callbacks = []
@abstractmethod
def get(self, name: str) -> torch.Tensor:
pass
@abstractmethod
def save(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
def delete(self, name: str) -> None:
pass
def on_changed(self, on_changed: Callable[[torch.Tensor], None]) -> None:
"""Register a callback for when an item is changed"""
self._on_changed_callbacks.append(on_changed)
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
"""Register a callback for when an item is deleted"""
self._on_deleted_callbacks.append(on_deleted)
def _on_changed(self, item: torch.Tensor) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)

View File

@ -1,58 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from pathlib import Path
from typing import Union
import torch
from invokeai.app.services.invoker import Invoker
from .latents_storage_base import LatentsStorageBase
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: Path
def __init__(self, output_folder: Union[str, Path]):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
self._delete_all_latents()
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def save(self, name: str, data: torch.Tensor) -> None:
self.__output_folder.mkdir(parents=True, exist_ok=True)
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
latent_path.unlink()
def get_path(self, name: str) -> Path:
return self.__output_folder / name
def _delete_all_latents(self) -> None:
"""
Deletes all latents from disk.
Must be called after we have access to `self._invoker` (e.g. in `start()`).
"""
deleted_latents_count = 0
freed_space = 0
for latents_file in Path(self.__output_folder).glob("*"):
if latents_file.is_file():
freed_space += latents_file.stat().st_size
deleted_latents_count += 1
latents_file.unlink()
if deleted_latents_count > 0:
freed_space_in_mb = round(freed_space / 1024 / 1024, 2)
self._invoker.services.logger.info(
f"Deleted {deleted_latents_count} latents files (freed {freed_space_in_mb}MB)"
)

View File

@ -1,68 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from queue import Queue
from typing import Dict, Optional
import torch
from invokeai.app.services.invoker import Invoker
from .latents_storage_base import LatentsStorageBase
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
__underlying_storage: LatentsStorageBase
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
super().__init__()
self.__underlying_storage = underlying_storage
self.__cache = {}
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
start_op = getattr(self.__underlying_storage, "start", None)
if callable(start_op):
start_op(invoker)
def stop(self, invoker: Invoker) -> None:
self._invoker = invoker
stop_op = getattr(self.__underlying_storage, "stop", None)
if callable(stop_op):
stop_op(invoker)
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:
return cache_item
latent = self.__underlying_storage.get(name)
self.__set_cache(name, latent)
return latent
def save(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.save(name, data)
self.__set_cache(name, data)
self._on_changed(data)
def delete(self, name: str) -> None:
self.__underlying_storage.delete(name)
if name in self.__cache:
del self.__cache[name]
self._on_deleted(name)
def __get_cache(self, name: str) -> Optional[torch.Tensor]:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if name not in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:
self.__cache.pop(self.__cache_ids.get())

View File

@ -0,0 +1,33 @@
from abc import ABC, abstractmethod
from pathlib import Path
from PIL.Image import Image as PILImageType
class ModelImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, model_key: str) -> PILImageType:
"""Retrieves a model image as PIL Image."""
pass
@abstractmethod
def get_path(self, model_key: str) -> Path:
"""Gets the internal path to a model image."""
pass
@abstractmethod
def get_url(self, model_key: str) -> str | None:
"""Gets the URL to fetch a model image."""
pass
@abstractmethod
def save(self, image: PILImageType, model_key: str) -> None:
"""Saves a model image."""
pass
@abstractmethod
def delete(self, model_key: str) -> None:
"""Deletes a model image."""
pass

View File

@ -0,0 +1,20 @@
# TODO: Should these excpetions subclass existing python exceptions?
class ModelImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message="Model image file not found"):
super().__init__(message)
class ModelImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message="Model image file not saved"):
super().__init__(message)
class ModelImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message="Model image file not deleted"):
super().__init__(message)

View File

@ -0,0 +1,79 @@
from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.thumbnails import make_thumbnail
from .model_images_base import ModelImageFileStorageBase
from .model_images_common import (
ModelImageFileDeleteException,
ModelImageFileNotFoundException,
ModelImageFileSaveException,
)
class ModelImageFileStorageDisk(ModelImageFileStorageBase):
"""Stores images on disk"""
def __init__(self, model_images_folder: Path):
self._model_images_folder = model_images_folder
self._validate_storage_folders()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def get(self, model_key: str) -> PILImageType:
try:
path = self.get_path(model_key)
if not self._validate_path(path):
raise ModelImageFileNotFoundException
return Image.open(path)
except FileNotFoundError as e:
raise ModelImageFileNotFoundException from e
def save(self, image: PILImageType, model_key: str) -> None:
try:
self._validate_storage_folders()
image_path = self._model_images_folder / (model_key + ".webp")
thumbnail = make_thumbnail(image, 256)
thumbnail.save(image_path, format="webp")
except Exception as e:
raise ModelImageFileSaveException from e
def get_path(self, model_key: str) -> Path:
path = self._model_images_folder / (model_key + ".webp")
return path
def get_url(self, model_key: str) -> str | None:
path = self.get_path(model_key)
if not self._validate_path(path):
return
return self._invoker.services.urls.get_model_image_url(model_key)
def delete(self, model_key: str) -> None:
try:
path = self.get_path(model_key)
if not self._validate_path(path):
raise ModelImageFileNotFoundException
send2trash(path)
except Exception as e:
raise ModelImageFileDeleteException from e
def _validate_path(self, path: Path) -> bool:
"""Validates the path given for an image."""
return path.exists()
def _validate_storage_folders(self) -> None:
"""Checks if the required folders exist and create them if they don't"""
self._model_images_folder.mkdir(parents=True, exist_ok=True)

View File

@ -14,11 +14,12 @@ from typing_extensions import Annotated
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata, ModelMetadataStore
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
class InstallStatus(str, Enum):
@ -26,6 +27,7 @@ class InstallStatus(str, Enum):
WAITING = "waiting" # waiting to be dequeued
DOWNLOADING = "downloading" # downloading of model files in process
DOWNLOADS_DONE = "downloads_done" # downloading done, waiting to run
RUNNING = "running" # being processed
COMPLETED = "completed" # finished running
ERROR = "error" # terminated with an error message
@ -127,8 +129,8 @@ class HFModelSource(StringLikeSource):
def __str__(self) -> str:
"""Return string version of repoid when string rep needed."""
base: str = self.repo_id
base += f":{self.variant or ''}"
base += f":{self.subfolder}" if self.subfolder else ""
base += f" ({self.variant})" if self.variant else ""
return base
@ -148,12 +150,20 @@ ModelSource = Annotated[
Union[LocalModelSource, HFModelSource, CivitaiModelSource, URLModelSource], Field(discriminator="type")
]
MODEL_SOURCE_TO_TYPE_MAP = {
URLModelSource: ModelSourceType.Url,
HFModelSource: ModelSourceType.HFRepoID,
CivitaiModelSource: ModelSourceType.CivitAI,
LocalModelSource: ModelSourceType.Path,
}
class ModelInstallJob(BaseModel):
"""Object that tracks the current status of an install request."""
id: int = Field(description="Unique ID for this job")
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
error_reason: Optional[str] = Field(default=None, description="Information about why the job failed")
config_in: Dict[str, Any] = Field(
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
)
@ -175,6 +185,12 @@ class ModelInstallJob(BaseModel):
download_parts: Set[DownloadJob] = Field(
default_factory=set, description="Download jobs contributing to this install"
)
error: Optional[str] = Field(
default=None, description="On an error condition, this field will contain the text of the exception"
)
error_traceback: Optional[str] = Field(
default=None, description="On an error condition, this field will contain the exception traceback"
)
# internal flags and transitory settings
_install_tmpdir: Optional[Path] = PrivateAttr(default=None)
_exception: Optional[Exception] = PrivateAttr(default=None)
@ -182,7 +198,10 @@ class ModelInstallJob(BaseModel):
def set_error(self, e: Exception) -> None:
"""Record the error and traceback from an exception."""
self._exception = e
self.error = str(e)
self.error_traceback = self._format_error(e)
self.status = InstallStatus.ERROR
self.error_reason = self._exception.__class__.__name__ if self._exception else None
def cancel(self) -> None:
"""Call to cancel the job."""
@ -193,10 +212,9 @@ class ModelInstallJob(BaseModel):
"""Class name of the exception that led to status==ERROR."""
return self._exception.__class__.__name__ if self._exception else None
@property
def error(self) -> Optional[str]:
def _format_error(self, exception: Exception) -> str:
"""Error traceback."""
return "".join(traceback.format_exception(self._exception)) if self._exception else None
return "".join(traceback.format_exception(exception))
@property
def cancelled(self) -> bool:
@ -218,6 +236,11 @@ class ModelInstallJob(BaseModel):
"""Return true if job is downloading."""
return self.status == InstallStatus.DOWNLOADING
@property
def downloads_done(self) -> bool:
"""Return true if job's downloads ae done."""
return self.status == InstallStatus.DOWNLOADS_DONE
@property
def running(self) -> bool:
"""Return true if job is running."""
@ -243,7 +266,6 @@ class ModelInstallServiceBase(ABC):
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
download_queue: DownloadQueueServiceBase,
metadata_store: ModelMetadataStore,
event_bus: Optional["EventServiceBase"] = None,
):
"""
@ -324,6 +346,44 @@ class ModelInstallServiceBase(ABC):
:returns id: The string ID of the registered model.
"""
@abstractmethod
def heuristic_import(
self,
source: str,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
r"""Install the indicated model using heuristics to interpret user intentions.
:param source: String source
:param config: Optional dict. Any fields in this dict
will override corresponding autoassigned probe fields in the
model's config record as described in `import_model()`.
:param access_token: Optional access token for remote sources.
The source can be:
1. A local file path in posix() format (`/foo/bar` or `C:\foo\bar`)
2. An http or https URL (`https://foo.bar/foo`)
3. A HuggingFace repo_id (`foo/bar`, `foo/bar:fp16`, `foo/bar:fp16:vae`)
We extend the HuggingFace repo_id syntax to include the variant and the
subfolder or path. The following are acceptable alternatives:
stabilityai/stable-diffusion-v4
stabilityai/stable-diffusion-v4:fp16
stabilityai/stable-diffusion-v4:fp16:vae
stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
stabilityai/stable-diffusion-v4:onnx:vae
Because a local file path can look like a huggingface repo_id, the logic
first checks whether the path exists on disk, and if not, it is treated as
a parseable huggingface repo.
The previous support for recursing into a local folder and loading all model-like files
has been removed.
"""
pass
@abstractmethod
def import_model(
self,
@ -338,7 +398,7 @@ class ModelInstallServiceBase(ABC):
will override corresponding autoassigned probe fields in the
model's config record. Use it to override
`name`, `description`, `base_type`, `model_type`, `format`,
`prediction_type`, `image_size`, and/or `ztsnr_training`.
`prediction_type`, and/or `image_size`.
This will download the model located at `source`,
probe it, and install it into the models directory.
@ -385,6 +445,18 @@ class ModelInstallServiceBase(ABC):
def cancel_job(self, job: ModelInstallJob) -> None:
"""Cancel the indicated job."""
@abstractmethod
def wait_for_job(self, job: ModelInstallJob, timeout: int = 0) -> ModelInstallJob:
"""Wait for the indicated job to reach a terminal state.
This will block until the indicated install job has completed,
been cancelled, or errored out.
:param job: The job to wait on.
:param timeout: Wait up to indicated number of seconds. Raise a TimeoutError if
the job hasn't completed within the indicated time.
"""
@abstractmethod
def wait_for_installs(self, timeout: int = 0) -> List[ModelInstallJob]:
"""
@ -394,7 +466,8 @@ class ModelInstallServiceBase(ABC):
completed, been cancelled, or errored out.
:param timeout: Wait up to indicated number of seconds. Raise an Exception('timeout') if
installs do not complete within the indicated time.
installs do not complete within the indicated time. A timeout of zero (the default)
will block indefinitely until the installs complete.
"""
@abstractmethod
@ -410,3 +483,22 @@ class ModelInstallServiceBase(ABC):
@abstractmethod
def sync_to_config(self) -> None:
"""Synchronize models on disk to those in the model record database."""
@abstractmethod
def download_and_cache(self, source: Union[str, AnyHttpUrl], access_token: Optional[str] = None) -> Path:
"""
Download the model file located at source to the models cache and return its Path.
:param source: A Url or a string that can be converted into one.
:param access_token: Optional access token to access restricted resources.
The model file will be downloaded into the system-wide model cache
(`models/.cache`) if it isn't already there. Note that the model cache
is periodically cleared of infrequently-used entries when the model
converter runs.
Note that this doesn't automaticallly install or register the model, but is
intended for use by nodes that need access to models that aren't directly
supported by InvokeAI. The downloading process takes advantage of the download queue
to avoid interrupting other operations.
"""

Some files were not shown because too many files have changed in this diff Show More