veloren/voxygen/src/mesh/terrain.rs

486 lines
17 KiB
Rust
Raw Normal View History

2019-06-05 15:22:06 +00:00
use crate::{
mesh::{vol, Meshable},
render::{self, FluidPipeline, Mesh, TerrainPipeline},
2019-06-05 15:22:06 +00:00
};
2019-01-23 20:01:58 +00:00
use common::{
2019-09-26 12:34:15 +00:00
terrain::Block,
vol::{ReadVol, RectRasterableVol, Vox},
volumes::vol_grid_2d::{CachedVolGrid2d, VolGrid2d},
2019-01-23 20:01:58 +00:00
};
use std::{collections::VecDeque, fmt::Debug};
2019-06-05 15:22:06 +00:00
use vek::*;
2019-01-23 20:01:58 +00:00
type TerrainVertex = <TerrainPipeline as render::Pipeline>::Vertex;
type FluidVertex = <FluidPipeline as render::Pipeline>::Vertex;
const DIRS: [Vec2<i32>; 4] = [
Vec2 { x: 1, y: 0 },
Vec2 { x: 0, y: 1 },
Vec2 { x: -1, y: 0 },
Vec2 { x: 0, y: -1 },
];
const DIRS_3D: [Vec3<i32>; 6] = [
Vec3 { x: 1, y: 0, z: 0 },
Vec3 { x: 0, y: 1, z: 0 },
Vec3 { x: 0, y: 0, z: 1 },
Vec3 { x: -1, y: 0, z: 0 },
Vec3 { x: 0, y: -1, z: 0 },
Vec3 { x: 0, y: 0, z: -1 },
];
fn calc_light<V: RectRasterableVol<Vox = Block> + ReadVol + Debug>(
bounds: Aabb<i32>,
vol: &VolGrid2d<V>,
) -> impl Fn(Vec3<i32>) -> f32 {
const UNKOWN: u8 = 255;
const OPAQUE: u8 = 254;
const SUNLIGHT: u8 = 24;
let outer = Aabb {
// TODO: subtract 1 from sunlight here
min: bounds.min - Vec3::new(SUNLIGHT as i32, SUNLIGHT as i32, 1),
max: bounds.max + Vec3::new(SUNLIGHT as i32, SUNLIGHT as i32, 1),
};
2019-10-01 06:09:27 +00:00
let mut vol_cached = vol.cached();
// Voids are voxels that that contain air or liquid that are protected from direct rays by blocks
// above them
let mut light_map = vec![UNKOWN; outer.size().product() as usize];
// TODO: would a morton curve be more efficient?
let lm_idx = {
let (w, h, _) = outer.clone().size().into_tuple();
move |x, y, z| (z * h * w + x * h + y) as usize
};
// Light propagation queue
let mut prop_que = VecDeque::new();
// Start rays
// TODO: how much would it cost to clone the whole sample into a flat array?
for x in 0..outer.size().w {
for y in 0..outer.size().h {
let z = outer.size().d - 1;
let is_air = vol_cached
.get(outer.min + Vec3::new(x, y, z))
.ok()
.map_or(false, |b| b.is_air());
light_map[lm_idx(x, y, z)] = if is_air {
if vol_cached
.get(outer.min + Vec3::new(x, y, z - 1))
2019-09-25 10:25:32 +00:00
.ok()
.map_or(false, |b| b.is_air())
{
light_map[lm_idx(x, y, z - 1)] = SUNLIGHT;
// TODO: access efficiency of using less space to store pos
prop_que.push_back(Vec3::new(x, y, z - 1));
}
SUNLIGHT
} else {
OPAQUE
};
}
}
2019-09-25 10:25:32 +00:00
// Determines light propagation
let propagate = |src: u8,
dest: &mut u8,
pos: Vec3<i32>,
prop_que: &mut VecDeque<_>,
vol: &mut CachedVolGrid2d<V>| {
if *dest != OPAQUE {
if *dest == UNKOWN {
if vol
.get(outer.min + pos)
.ok()
.map_or(false, |b| b.is_air() || b.is_fluid())
{
*dest = src - 1;
// Can't propagate further
if *dest > 1 {
prop_que.push_back(pos);
2019-10-14 09:48:40 +00:00
}
} else {
*dest = OPAQUE;
}
} else if *dest < src - 1 {
*dest = src - 1;
// Can't propagate further
if *dest > 1 {
prop_que.push_back(pos);
2019-09-25 10:25:32 +00:00
}
}
}
};
// Propage light
while let Some(pos) = prop_que.pop_front() {
// TODO: access efficiency of storing current light level in queue
// TODO: access efficiency of storing originating direction index in queue so that dir
// doesn't need to be checked
let light = light_map[lm_idx(pos.x, pos.y, pos.z)];
// If ray propagate downwards at full strength
if light == SUNLIGHT {
// Down is special cased and we know up is a ray
// Special cased ray propagation
let pos = Vec3::new(pos.x, pos.y, pos.z - 1);
let (is_air, is_fluid) = vol_cached
.get(outer.min + pos)
.ok()
.map_or((false, false), |b| (b.is_air(), b.is_fluid()));
light_map[lm_idx(pos.x, pos.y, pos.z)] = if is_air {
prop_que.push_back(pos);
SUNLIGHT
} else if is_fluid {
prop_que.push_back(pos);
SUNLIGHT - 1
} else {
OPAQUE
}
} else {
// Up
// Bounds checking
// TODO: check if propagated light level can ever reach area of interest
if pos.z + 1 < outer.size().d {
propagate(
light,
light_map.get_mut(lm_idx(pos.x, pos.y, pos.z + 1)).unwrap(),
Vec3::new(pos.x, pos.y, pos.z + 1),
&mut prop_que,
&mut vol_cached,
)
}
// Down
if pos.z > 0 {
propagate(
light,
light_map.get_mut(lm_idx(pos.x, pos.y, pos.z - 1)).unwrap(),
Vec3::new(pos.x, pos.y, pos.z - 1),
&mut prop_que,
&mut vol_cached,
)
}
}
// The XY directions
if pos.y + 1 < outer.size().h {
propagate(
light,
light_map.get_mut(lm_idx(pos.x, pos.y + 1, pos.z)).unwrap(),
Vec3::new(pos.x, pos.y + 1, pos.z),
&mut prop_que,
&mut vol_cached,
)
2019-09-25 10:25:32 +00:00
}
if pos.y > 0 {
propagate(
light,
light_map.get_mut(lm_idx(pos.x, pos.y - 1, pos.z)).unwrap(),
Vec3::new(pos.x, pos.y - 1, pos.z),
&mut prop_que,
&mut vol_cached,
)
}
if pos.x + 1 < outer.size().w {
propagate(
light,
light_map.get_mut(lm_idx(pos.x + 1, pos.y, pos.z)).unwrap(),
Vec3::new(pos.x + 1, pos.y, pos.z),
&mut prop_que,
&mut vol_cached,
)
}
if pos.x > 0 {
propagate(
light,
light_map.get_mut(lm_idx(pos.x - 1, pos.y, pos.z)).unwrap(),
Vec3::new(pos.x - 1, pos.y, pos.z),
&mut prop_que,
&mut vol_cached,
)
}
}
move |wpos| {
let pos = wpos - outer.min;
light_map
.get(lm_idx(pos.x, pos.y, pos.z))
.filter(|l| **l != OPAQUE && **l != UNKOWN)
.map(|l| *l as f32 / SUNLIGHT as f32)
.unwrap_or(0.0)
}
}
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
impl<V: RectRasterableVol<Vox = Block> + ReadVol + Debug> Meshable<TerrainPipeline, FluidPipeline>
for VolGrid2d<V>
2019-08-19 20:09:35 +00:00
{
type Pipeline = TerrainPipeline;
type TranslucentPipeline = FluidPipeline;
type Supplement = Aabb<i32>;
fn generate_mesh(
&self,
range: Self::Supplement,
) -> (Mesh<Self::Pipeline>, Mesh<Self::TranslucentPipeline>) {
let mut opaque_mesh = Mesh::new();
let mut fluid_mesh = Mesh::new();
2019-09-24 06:42:09 +00:00
let light = calc_light(range, self);
//let mut vol_cached = self.cached();
let flat_get = {
let (w, h, d) = range.size().into_tuple();
// z can range from -1..range.size().d + 1
let d = d + 2;
let mut flat = vec![Block::empty(); (w * h * d) as usize];
let mut i = 0;
let mut volume = self.cached();
for x in 0..range.size().w {
for y in 0..range.size().h {
for z in -1..range.size().d + 1 {
flat[i] = *volume.get(range.min + Vec3::new(x, y, z)).unwrap();
i += 1;
}
}
}
// Cleanup
drop(i);
let flat = flat;
move |Vec3 { x, y, z }| {
// z can range from -1..range.size().d + 1
let z = z + 1;
match flat.get((x * h * d + y * d + z) as usize).copied() {
Some(b) => b,
None => panic!("x {} y {} z {} d {} h {}"),
}
}
};
2019-10-01 06:09:27 +00:00
for x in 1..range.size().w - 1 {
for y in 1..range.size().w - 1 {
let mut lights = [[[0.0; 3]; 3]; 3];
for i in 0..3 {
for j in 0..3 {
for k in 0..3 {
lights[k][j][i] = light(
Vec3::new(x + range.min.x, y + range.min.y, range.min.z)
+ Vec3::new(i as i32, j as i32, k as i32)
- 1,
);
}
}
}
2019-10-01 06:09:27 +00:00
let get_color = |maybe_block: Option<&Block>| {
maybe_block
.filter(|vox| vox.is_opaque())
.and_then(|vox| vox.get_color())
.map(|col| Rgba::from_opaque(col))
.unwrap_or(Rgba::zero())
};
let mut blocks = [[[None; 3]; 3]; 3];
2019-09-27 10:06:32 +00:00
let mut colors = [[[Rgba::zero(); 3]; 3]; 3];
for i in 0..3 {
for j in 0..3 {
for k in 0..3 {
let block = /*vol_cached
.get(
Vec3::new(x, y, range.min.z)
+ Vec3::new(i as i32, j as i32, k as i32)
- 1,
)
.ok()
.copied()*/ Some(flat_get(Vec3::new(x, y, 0) + Vec3::new(i as i32, j as i32, k as i32) - 1));
colors[k][j][i] = get_color(block.as_ref());
blocks[k][j][i] = block;
}
}
}
for z in 0..range.size().d {
let pos = Vec3::new(x, y, z);
let offs = (pos - Vec3::new(1, 1, 0)).map(|e| e as f32);
lights[0] = lights[1];
lights[1] = lights[2];
blocks[0] = blocks[1];
blocks[1] = blocks[2];
2019-09-24 10:28:40 +00:00
colors[0] = colors[1];
colors[1] = colors[2];
for i in 0..3 {
for j in 0..3 {
lights[2][j][i] = light(pos + Vec3::new(i as i32, j as i32, 2) - 1);
}
}
for i in 0..3 {
for j in 0..3 {
let block = /*vol_cached
.get(pos + Vec3::new(i as i32, j as i32, 2) - 1)
.ok()
.copied()*/ Some(flat_get(pos + Vec3::new(i as i32, j as i32, 2) - 1));
colors[2][j][i] = get_color(block.as_ref());
blocks[2][j][i] = block;
}
}
let block = blocks[1][1][1];
// Create mesh polygons
let pos = pos + range.min;
if block.map(|vox| vox.is_opaque()).unwrap_or(false) {
vol::push_vox_verts(
&mut opaque_mesh,
faces_to_make(&blocks, false, |vox| !vox.is_opaque()),
offs,
2019-10-09 19:28:05 +00:00
&colors, //&[[[colors[1][1][1]; 3]; 3]; 3],
2019-06-19 14:55:26 +00:00
|pos, norm, col, ao, light| {
2019-11-19 13:20:20 +00:00
let light = (light.min(ao) * 255.0) as u32;
let norm = if norm.x != 0.0 {
2020-01-08 17:09:54 +00:00
if norm.x < 0.0 {
0
} else {
1
}
2019-11-19 13:20:20 +00:00
} else if norm.y != 0.0 {
2020-01-08 17:09:54 +00:00
if norm.y < 0.0 {
2
} else {
3
}
2019-11-19 13:20:20 +00:00
} else {
2020-01-08 17:09:54 +00:00
if norm.z < 0.0 {
4
} else {
5
}
2019-11-19 13:20:20 +00:00
};
TerrainVertex::new(norm, light, pos, col)
2019-06-19 14:55:26 +00:00
},
&lights,
);
} else if block.map(|vox| vox.is_fluid()).unwrap_or(false) {
vol::push_vox_verts(
&mut fluid_mesh,
faces_to_make(&blocks, false, |vox| vox.is_air()),
offs,
&colors,
2019-10-09 22:42:39 +00:00
|pos, norm, col, _ao, light| {
2019-10-08 11:07:10 +00:00
FluidVertex::new(pos, norm, col, light, 0.3)
},
&lights,
);
}
}
}
}
(opaque_mesh, fluid_mesh)
}
}
/// Use the 6 voxels/blocks surrounding the center
/// to detemine which faces should be drawn
/// Unlike the one in segments.rs this uses a provided array of blocks instead
/// of retrieving from a volume
/// blocks[z][y][x]
fn faces_to_make(
blocks: &[[[Option<Block>; 3]; 3]; 3],
error_makes_face: bool,
should_add: impl Fn(Block) -> bool,
) -> [bool; 6] {
// Faces to draw
let make_face = |opt_v: Option<Block>| opt_v.map(|v| should_add(v)).unwrap_or(error_makes_face);
[
make_face(blocks[1][1][0]),
make_face(blocks[1][1][2]),
make_face(blocks[1][0][1]),
make_face(blocks[1][2][1]),
make_face(blocks[0][1][1]),
make_face(blocks[2][1][1]),
]
}
2019-05-31 20:37:11 +00:00
/*
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
impl<V: BaseVol<Vox = Block> + ReadVol + Debug> Meshable for VolGrid3d<V> {
type Pipeline = TerrainPipeline;
type Supplement = Aabb<i32>;
fn generate_mesh(&self, range: Self::Supplement) -> Mesh<Self::Pipeline> {
let mut mesh = Mesh::new();
let mut last_chunk_pos = self.pos_key(range.min);
let mut last_chunk = self.get_key(last_chunk_pos);
let size = range.max - range.min;
for x in 1..size.x - 1 {
for y in 1..size.y - 1 {
for z in 1..size.z - 1 {
let pos = Vec3::new(x, y, z);
let new_chunk_pos = self.pos_key(range.min + pos);
if last_chunk_pos != new_chunk_pos {
last_chunk = self.get_key(new_chunk_pos);
last_chunk_pos = new_chunk_pos;
}
let offs = pos.map(|e| e as f32 - 1.0);
if let Some(chunk) = last_chunk {
let chunk_pos = Self::chunk_offs(range.min + pos);
if let Some(col) = chunk.get(chunk_pos).ok().and_then(|vox| vox.get_color())
{
let col = col.map(|e| e as f32 / 255.0);
vol::push_vox_verts(
&mut mesh,
self,
range.min + pos,
offs,
col,
TerrainVertex::new,
false,
);
}
} else {
if let Some(col) = self
.get(range.min + pos)
.ok()
.and_then(|vox| vox.get_color())
{
let col = col.map(|e| e as f32 / 255.0);
vol::push_vox_verts(
&mut mesh,
self,
range.min + pos,
offs,
col,
TerrainVertex::new,
false,
);
}
}
}
}
}
mesh
}
}
2019-05-31 20:37:11 +00:00
*/
fn interleave_i32_with_zeros(mut x: i32) -> i64 {
x = (x ^ (x << 16)) & 0x0000ffff0000ffff;
x = (x ^ (x << 8)) & 0x00ff00ff00ff00ff;
x = (x ^ (x << 4)) & 0x0f0f0f0f0f0f0f0f;
x = (x ^ (x << 2)) & 0x3333333333333333;
x = (x ^ (x << 1)) & 0x5555555555555555;
x
}
fn morton_code(pos: Vec2<i32>) -> i64 {
interleave_i32_with_zeros(pos.x) | (interleave_i32_with_zeros(pos.y) << 1)
}