InvokeAI/invokeai/backend/stable_diffusion/diffusers_pipeline.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

667 lines
29 KiB
Python
Raw Normal View History

2023-02-28 05:37:13 +00:00
from __future__ import annotations
2023-09-17 00:13:03 +00:00
import math
from contextlib import nullcontext
2023-09-08 22:05:31 +00:00
from dataclasses import dataclass
2023-08-17 22:45:25 +00:00
from typing import Any, Callable, List, Optional, Union
2023-02-28 05:37:13 +00:00
import einops
2023-09-05 00:04:46 +00:00
import PIL.Image
2023-02-28 05:37:13 +00:00
import psutil
import torch
import torchvision.transforms as T
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.controlnet import ControlNetModel
2023-02-28 05:37:13 +00:00
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
2023-08-18 15:13:28 +00:00
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
2023-02-28 05:37:13 +00:00
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.outputs import BaseOutput
from pydantic import Field
2023-02-28 05:37:13 +00:00
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from invokeai.app.services.config import InvokeAIAppConfig
2023-09-14 20:48:47 +00:00
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
2023-03-03 06:02:00 +00:00
2023-09-05 00:04:46 +00:00
from ..util import auto_detect_slice_size, normalize_device
from .diffusion import AttentionMapSaver, InvokeAIDiffuserComponent
2023-09-05 00:04:46 +00:00
2023-07-27 14:54:01 +00:00
2023-02-28 05:37:13 +00:00
@dataclass
class PipelineIntermediateState:
step: int
order: int
total_steps: int
2023-02-28 05:37:13 +00:00
timestep: int
latents: torch.Tensor
predicted_original: Optional[torch.Tensor] = None
attention_map_saver: Optional[AttentionMapSaver] = None
@dataclass
class AddsMaskLatents:
"""Add the channels required for inpainting model input.
The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask
and the latent encoding of the base image.
This class assumes the same mask and base image should apply to all items in the batch.
"""
2023-03-03 06:02:00 +00:00
2023-02-28 05:37:13 +00:00
forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
mask: torch.Tensor
initial_image_latents: torch.Tensor
2023-03-03 06:02:00 +00:00
def __call__(
self,
latents: torch.Tensor,
t: torch.Tensor,
text_embeddings: torch.Tensor,
**kwargs,
2023-03-03 06:02:00 +00:00
) -> torch.Tensor:
2023-02-28 05:37:13 +00:00
model_input = self.add_mask_channels(latents)
return self.forward(model_input, t, text_embeddings, **kwargs)
2023-02-28 05:37:13 +00:00
def add_mask_channels(self, latents):
batch_size = latents.size(0)
# duplicate mask and latents for each batch
2023-03-03 06:02:00 +00:00
mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
image_latents = einops.repeat(self.initial_image_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
2023-02-28 05:37:13 +00:00
# add mask and image as additional channels
2023-03-03 06:02:00 +00:00
model_input, _ = einops.pack([latents, mask, image_latents], "b * h w")
2023-02-28 05:37:13 +00:00
return model_input
def are_like_tensors(a: torch.Tensor, b: object) -> bool:
2023-03-03 06:02:00 +00:00
return isinstance(b, torch.Tensor) and (a.size() == b.size())
2023-02-28 05:37:13 +00:00
@dataclass
class AddsMaskGuidance:
mask: torch.FloatTensor
mask_latents: torch.FloatTensor
scheduler: SchedulerMixin
noise: torch.Tensor
2023-02-28 05:37:13 +00:00
def __call__(self, step_output: Union[BaseOutput, SchedulerOutput], t: torch.Tensor, conditioning) -> BaseOutput:
2023-02-28 05:37:13 +00:00
output_class = step_output.__class__ # We'll create a new one with masked data.
# The problem with taking SchedulerOutput instead of the model output is that we're less certain what's in it.
# It's reasonable to assume the first thing is prev_sample, but then does it have other things
# like pred_original_sample? Should we apply the mask to them too?
# But what if there's just some other random field?
prev_sample = step_output[0]
# Mask anything that has the same shape as prev_sample, return others as-is.
return output_class(
2023-03-03 06:02:00 +00:00
{
2023-09-06 17:36:00 +00:00
k: self.apply_mask(v, self._t_for_field(k, t)) if are_like_tensors(prev_sample, v) else v
2023-03-03 06:02:00 +00:00
for k, v in step_output.items()
}
2023-02-28 05:37:13 +00:00
)
2023-03-03 06:02:00 +00:00
def _t_for_field(self, field_name: str, t):
2023-02-28 05:37:13 +00:00
if field_name == "pred_original_sample":
return self.scheduler.timesteps[-1]
2023-02-28 05:37:13 +00:00
return t
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
batch_size = latents.size(0)
2023-03-03 06:02:00 +00:00
mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
2023-02-28 05:37:13 +00:00
if t.dim() == 0:
# some schedulers expect t to be one-dimensional.
# TODO: file diffusers bug about inconsistency?
2023-03-03 06:02:00 +00:00
t = einops.repeat(t, "-> batch", batch=batch_size)
2023-08-13 16:50:48 +00:00
# Noise shouldn't be re-randomized between steps here. The multistep schedulers
# get very confused about what is happening from step to step when we do that.
mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t)
2023-08-13 16:50:48 +00:00
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
2023-03-03 06:02:00 +00:00
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype))
2023-02-28 05:37:13 +00:00
return masked_input
def trim_to_multiple_of(*args, multiple_of=8):
return tuple((x - x % multiple_of) for x in args)
2023-03-03 06:02:00 +00:00
def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool = True, multiple_of=8) -> torch.FloatTensor:
2023-02-28 05:37:13 +00:00
"""
:param image: input image
:param normalize: scale the range to [-1, 1] instead of [0, 1]
:param multiple_of: resize the input so both dimensions are a multiple of this
"""
w, h = trim_to_multiple_of(*image.size, multiple_of=multiple_of)
2023-03-03 06:02:00 +00:00
transformation = T.Compose(
[
T.Resize((h, w), T.InterpolationMode.LANCZOS, antialias=True),
2023-03-03 06:02:00 +00:00
T.ToTensor(),
]
)
2023-02-28 05:37:13 +00:00
tensor = transformation(image)
if normalize:
tensor = tensor * 2.0 - 1.0
return tensor
def is_inpainting_model(unet: UNet2DConditionModel):
return unet.conv_in.in_channels == 9
2023-03-03 06:02:00 +00:00
@dataclass
class ControlNetData:
model: ControlNetModel = Field(default=None)
image_tensor: torch.Tensor = Field(default=None)
weight: Union[float, List[float]] = Field(default=1.0)
begin_step_percent: float = Field(default=0.0)
end_step_percent: float = Field(default=1.0)
control_mode: str = Field(default="balanced")
resize_mode: str = Field(default="just_resize")
2023-02-28 05:37:13 +00:00
@dataclass
class IPAdapterData:
ip_adapter_model: IPAdapter = Field(default=None)
# TODO: change to polymorphic so can do different weights per step (once implemented...)
weight: Union[float, List[float]] = Field(default=1.0)
# weight: float = Field(default=1.0)
begin_step_percent: float = Field(default=0.0)
end_step_percent: float = Field(default=1.0)
2023-09-04 23:37:12 +00:00
@dataclass
class T2IAdapterData:
"""A structure containing the information required to apply conditioning from a single T2I-Adapter model."""
adapter_state: dict[torch.Tensor] = Field()
weight: Union[float, list[float]] = Field(default=1.0)
begin_step_percent: float = Field(default=0.0)
end_step_percent: float = Field(default=1.0)
2023-02-28 05:37:13 +00:00
@dataclass
class InvokeAIStableDiffusionPipelineOutput(StableDiffusionPipelineOutput):
r"""
Output class for InvokeAI's Stable Diffusion pipeline.
Args:
attention_map_saver (`AttentionMapSaver`): Object containing attention maps that can be displayed to the user
after generation completes. Optional.
"""
2023-11-10 23:55:06 +00:00
2023-02-28 05:37:13 +00:00
attention_map_saver: Optional[AttentionMapSaver]
class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline.
Hopefully future versions of diffusers provide access to more of these functions so that we don't
need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
2023-02-28 05:37:13 +00:00
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
2023-02-28 05:37:13 +00:00
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: Optional[StableDiffusionSafetyChecker],
feature_extractor: Optional[CLIPFeatureExtractor],
requires_safety_checker: bool = False,
control_model: ControlNetModel = None,
2023-02-28 05:37:13 +00:00
):
2023-03-03 06:02:00 +00:00
super().__init__(
2023-02-28 05:37:13 +00:00
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=requires_safety_checker,
2023-02-28 05:37:13 +00:00
)
2023-03-03 06:02:00 +00:00
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
self.control_model = control_model
self.use_ip_adapter = False
2023-02-28 05:37:13 +00:00
def _adjust_memory_efficient_attention(self, latents: torch.Tensor):
"""
if xformers is available, use it, otherwise use sliced attention.
"""
config = InvokeAIAppConfig.get_config()
if config.attention_type == "xformers":
self.enable_xformers_memory_efficient_attention()
return
elif config.attention_type == "sliced":
slice_size = config.attention_slice_size
if slice_size == "auto":
slice_size = auto_detect_slice_size(latents)
elif slice_size == "balanced":
slice_size = "auto"
self.enable_attention_slicing(slice_size=slice_size)
return
elif config.attention_type == "normal":
self.disable_attention_slicing()
return
elif config.attention_type == "torch-sdp":
raise Exception("torch-sdp attention slicing not yet implemented")
# the remainder if this code is called when attention_type=='auto'
if self.unet.device.type == "cuda":
if is_xformers_available() and not config.disable_xformers:
self.enable_xformers_memory_efficient_attention()
return
elif hasattr(torch.nn.functional, "scaled_dot_product_attention"):
# diffusers enable sdp automatically
return
if self.unet.device.type == "cpu" or self.unet.device.type == "mps":
mem_free = psutil.virtual_memory().free
elif self.unet.device.type == "cuda":
mem_free, _ = torch.cuda.mem_get_info(normalize_device(self.unet.device))
2023-02-28 05:37:13 +00:00
else:
raise ValueError(f"unrecognized device {self.unet.device}")
# input tensor of [1, 4, h/8, w/8]
# output tensor of [16, (h/8 * w/8), (h/8 * w/8)]
bytes_per_element_needed_for_baddbmm_duplication = latents.element_size() + 4
max_size_required_for_baddbmm = (
16
* latents.size(dim=2)
* latents.size(dim=3)
* latents.size(dim=2)
* latents.size(dim=3)
* bytes_per_element_needed_for_baddbmm_duplication
)
if max_size_required_for_baddbmm > (mem_free * 3.0 / 4.0): # 3.3 / 4.0 is from old Invoke code
self.enable_attention_slicing(slice_size="max")
elif torch.backends.mps.is_available():
# diffusers recommends always enabling for mps
self.enable_attention_slicing(slice_size="max")
else:
self.disable_attention_slicing()
2023-02-28 05:37:13 +00:00
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings=False):
2023-08-08 17:49:01 +00:00
raise Exception("Should not be called")
2023-02-28 05:37:13 +00:00
2023-03-03 06:02:00 +00:00
def latents_from_embeddings(
self,
latents: torch.Tensor,
num_inference_steps: int,
conditioning_data: ConditioningData,
*,
noise: Optional[torch.Tensor],
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
2023-03-03 06:02:00 +00:00
additional_guidance: List[Callable] = None,
callback: Callable[[PipelineIntermediateState], None] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
2023-08-08 15:50:36 +00:00
mask: Optional[torch.Tensor] = None,
2023-08-18 01:07:40 +00:00
masked_latents: Optional[torch.Tensor] = None,
2023-08-08 15:50:36 +00:00
seed: Optional[int] = None,
2023-03-03 06:02:00 +00:00
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
if init_timestep.shape[0] == 0:
return latents, None
2023-08-08 15:50:36 +00:00
if additional_guidance is None:
additional_guidance = []
orig_latents = latents.clone()
batch_size = latents.shape[0]
2023-08-13 21:20:01 +00:00
batched_t = init_timestep.expand(batch_size)
2023-08-08 15:50:36 +00:00
if noise is not None:
2023-08-13 09:28:39 +00:00
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
2023-08-08 15:50:36 +00:00
latents = self.scheduler.add_noise(latents, noise, batched_t)
if mask is not None:
# if no noise provided, noisify unmasked area based on seed(or 0 as fallback)
if noise is None:
noise = torch.randn(
orig_latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed or 0),
).to(device=orig_latents.device, dtype=orig_latents.dtype)
latents = self.scheduler.add_noise(latents, noise, batched_t)
latents = torch.lerp(
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
)
2023-08-08 15:50:36 +00:00
if is_inpainting_model(self.unet):
2023-08-18 01:07:40 +00:00
if masked_latents is None:
raise Exception("Source image required for inpaint mask when inpaint model used!")
2023-08-08 15:50:36 +00:00
self.invokeai_diffuser.model_forward_callback = AddsMaskLatents(
self._unet_forward, mask, masked_latents
)
2023-08-08 15:50:36 +00:00
else:
additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise))
try:
2023-08-14 00:35:15 +00:00
latents, attention_map_saver = self.generate_latents_from_embeddings(
2023-08-08 15:50:36 +00:00
latents,
timesteps,
conditioning_data,
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
2023-08-08 15:50:36 +00:00
callback=callback,
)
finally:
self.invokeai_diffuser.model_forward_callback = self._unet_forward
# restore unmasked part
if mask is not None:
latents = torch.lerp(orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype))
2023-08-14 00:35:15 +00:00
return latents, attention_map_saver
2023-02-28 05:37:13 +00:00
2023-03-03 06:02:00 +00:00
def generate_latents_from_embeddings(
self,
latents: torch.Tensor,
timesteps,
conditioning_data: ConditioningData,
*,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
2023-08-14 00:35:15 +00:00
callback: Callable[[PipelineIntermediateState], None] = None,
2023-03-03 06:02:00 +00:00
):
2023-02-28 05:37:13 +00:00
self._adjust_memory_efficient_attention(latents)
if additional_guidance is None:
additional_guidance = []
2023-08-13 21:20:01 +00:00
batch_size = latents.shape[0]
attention_map_saver: Optional[AttentionMapSaver] = None
if timesteps.shape[0] == 0:
return latents, attention_map_saver
ip_adapter_unet_patcher = None
if conditioning_data.extra is not None and conditioning_data.extra.wants_cross_attention_control:
attn_ctx = self.invokeai_diffuser.custom_attention_context(
self.invokeai_diffuser.model,
extra_conditioning_info=conditioning_data.extra,
step_count=len(self.scheduler.timesteps),
)
self.use_ip_adapter = False
elif ip_adapter_data is not None:
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
# As it is now, the IP-Adapter will silently be skipped.
ip_adapter_unet_patcher = UNetPatcher([ipa.ip_adapter_model for ipa in ip_adapter_data])
attn_ctx = ip_adapter_unet_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
self.use_ip_adapter = True
else:
attn_ctx = nullcontext()
with attn_ctx:
2023-08-14 00:35:15 +00:00
if callback is not None:
2023-08-14 03:02:33 +00:00
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
)
2023-08-06 02:05:25 +00:00
# print("timesteps:", timesteps)
2023-02-28 05:37:13 +00:00
for i, t in enumerate(self.progress_bar(timesteps)):
2023-08-13 21:20:01 +00:00
batched_t = t.expand(batch_size)
2023-03-03 06:02:00 +00:00
step_output = self.step(
batched_t,
latents,
conditioning_data,
step_index=i,
total_step_count=len(timesteps),
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
ip_adapter_unet_patcher=ip_adapter_unet_patcher,
2023-03-03 06:02:00 +00:00
)
2023-02-28 05:37:13 +00:00
latents = step_output.prev_sample
latents = self.invokeai_diffuser.do_latent_postprocessing(
postprocessing_settings=conditioning_data.postprocessing_settings,
latents=latents,
sigma=batched_t,
step_index=i,
2023-03-03 06:02:00 +00:00
total_step_count=len(timesteps),
2023-02-28 05:37:13 +00:00
)
2023-03-03 06:02:00 +00:00
predicted_original = getattr(step_output, "pred_original_sample", None)
2023-02-28 05:37:13 +00:00
# TODO resuscitate attention map saving
2023-03-03 06:02:00 +00:00
# if i == len(timesteps)-1 and extra_conditioning_info is not None:
2023-02-28 05:37:13 +00:00
# eos_token_index = extra_conditioning_info.tokens_count_including_eos_bos - 1
# attention_map_token_ids = range(1, eos_token_index)
# attention_map_saver = AttentionMapSaver(token_ids=attention_map_token_ids, latents_shape=latents.shape[-2:])
# self.invokeai_diffuser.setup_attention_map_saving(attention_map_saver)
2023-08-14 00:35:15 +00:00
if callback is not None:
2023-08-14 03:02:33 +00:00
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
attention_map_saver=attention_map_saver,
)
)
2023-02-28 05:37:13 +00:00
return latents, attention_map_saver
@torch.inference_mode()
2023-03-03 06:02:00 +00:00
def step(
self,
t: torch.Tensor,
latents: torch.Tensor,
conditioning_data: ConditioningData,
step_index: int,
total_step_count: int,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
ip_adapter_unet_patcher: Optional[UNetPatcher] = None,
2023-03-03 06:02:00 +00:00
):
2023-02-28 05:37:13 +00:00
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
if additional_guidance is None:
additional_guidance = []
# TODO: should this scaling happen here or inside self._unet_forward?
# i.e. before or after passing it to InvokeAIDiffuserComponent
2023-08-06 02:05:25 +00:00
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# handle IP-Adapter
2023-09-17 00:00:21 +00:00
if self.use_ip_adapter and ip_adapter_data is not None: # somewhat redundant but logic is clearer
for i, single_ip_adapter_data in enumerate(ip_adapter_data):
first_adapter_step = math.floor(single_ip_adapter_data.begin_step_percent * total_step_count)
last_adapter_step = math.ceil(single_ip_adapter_data.end_step_percent * total_step_count)
weight = (
single_ip_adapter_data.weight[step_index]
if isinstance(single_ip_adapter_data.weight, List)
else single_ip_adapter_data.weight
)
if step_index >= first_adapter_step and step_index <= last_adapter_step:
# Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range.
ip_adapter_unet_patcher.set_scale(i, weight)
else:
# Otherwise, set the IP-Adapter's scale to 0, so it has no effect.
ip_adapter_unet_patcher.set_scale(i, 0.0)
# Handle ControlNet(s) and T2I-Adapter(s)
down_block_additional_residuals = None
mid_block_additional_residual = None
down_intrablock_additional_residuals = None
# if control_data is not None and t2i_adapter_data is not None:
# TODO(ryand): This is a limitation of the UNet2DConditionModel API, not a fundamental incompatibility
# between ControlNets and T2I-Adapters. We will try to fix this upstream in diffusers.
# raise Exception("ControlNet(s) and T2I-Adapter(s) cannot be used simultaneously (yet).")
# elif control_data is not None:
if control_data is not None:
down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step(
2023-08-06 02:05:25 +00:00
control_data=control_data,
sample=latent_model_input,
timestep=timestep,
step_index=step_index,
total_step_count=total_step_count,
conditioning_data=conditioning_data,
)
# elif t2i_adapter_data is not None:
if t2i_adapter_data is not None:
accum_adapter_state = None
for single_t2i_adapter_data in t2i_adapter_data:
# Determine the T2I-Adapter weights for the current denoising step.
first_t2i_adapter_step = math.floor(single_t2i_adapter_data.begin_step_percent * total_step_count)
last_t2i_adapter_step = math.ceil(single_t2i_adapter_data.end_step_percent * total_step_count)
t2i_adapter_weight = (
single_t2i_adapter_data.weight[step_index]
if isinstance(single_t2i_adapter_data.weight, list)
else single_t2i_adapter_data.weight
)
if step_index < first_t2i_adapter_step or step_index > last_t2i_adapter_step:
# If the current step is outside of the T2I-Adapter's begin/end step range, then set its weight to 0
# so it has no effect.
t2i_adapter_weight = 0.0
# Apply the t2i_adapter_weight, and accumulate.
if accum_adapter_state is None:
# Handle the first T2I-Adapter.
accum_adapter_state = [val * t2i_adapter_weight for val in single_t2i_adapter_data.adapter_state]
else:
# Add to the previous adapter states.
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
accum_adapter_state[idx] += value * t2i_adapter_weight
# down_block_additional_residuals = accum_adapter_state
down_intrablock_additional_residuals = accum_adapter_state
2023-08-06 02:05:25 +00:00
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
sample=latent_model_input,
2023-08-13 09:28:39 +00:00
timestep=t, # TODO: debug how handled batched and non batched timesteps
2023-02-28 05:37:13 +00:00
step_index=step_index,
total_step_count=total_step_count,
2023-08-06 02:05:25 +00:00
conditioning_data=conditioning_data,
# extra:
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
2023-08-06 02:05:25 +00:00
)
guidance_scale = conditioning_data.guidance_scale
if isinstance(guidance_scale, list):
guidance_scale = guidance_scale[step_index]
noise_pred = self.invokeai_diffuser._combine(uc_noise_pred, c_noise_pred, guidance_scale)
guidance_rescale_multiplier = conditioning_data.guidance_rescale_multiplier
if guidance_rescale_multiplier > 0:
noise_pred = self._rescale_cfg(
noise_pred,
c_noise_pred,
guidance_rescale_multiplier,
)
2023-02-28 05:37:13 +00:00
# compute the previous noisy sample x_t -> x_t-1
2023-03-03 06:02:00 +00:00
step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args)
2023-02-28 05:37:13 +00:00
# TODO: issue to diffusers?
# undo internal counter increment done by scheduler.step, so timestep can be resolved as before call
# this needed to be able call scheduler.add_noise with current timestep
if self.scheduler.order == 2:
self.scheduler._index_counter[timestep.item()] -= 1
2023-02-28 05:37:13 +00:00
# TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent.
# But the way things are now, scheduler runs _after_ that, so there was
# no way to use it to apply an operation that happens after the last scheduler.step.
for guidance in additional_guidance:
step_output = guidance(step_output, timestep, conditioning_data)
# restore internal counter
if self.scheduler.order == 2:
self.scheduler._index_counter[timestep.item()] += 1
2023-02-28 05:37:13 +00:00
return step_output
@staticmethod
def _rescale_cfg(total_noise_pred, pos_noise_pred, multiplier=0.7):
"""Implementation of Algorithm 2 from https://arxiv.org/pdf/2305.08891.pdf."""
ro_pos = torch.std(pos_noise_pred, dim=(1, 2, 3), keepdim=True)
ro_cfg = torch.std(total_noise_pred, dim=(1, 2, 3), keepdim=True)
x_rescaled = total_noise_pred * (ro_pos / ro_cfg)
x_final = multiplier * x_rescaled + (1.0 - multiplier) * total_noise_pred
return x_final
2023-03-03 06:02:00 +00:00
def _unet_forward(
self,
latents,
t,
text_embeddings,
cross_attention_kwargs: Optional[dict[str, Any]] = None,
**kwargs,
2023-03-03 06:02:00 +00:00
):
2023-02-28 05:37:13 +00:00
"""predict the noise residual"""
if is_inpainting_model(self.unet) and latents.size(1) == 4:
# Pad out normal non-inpainting inputs for an inpainting model.
# FIXME: There are too many layers of functions and we have too many different ways of
# overriding things! This should get handled in a way more consistent with the other
# use of AddsMaskLatents.
latents = AddsMaskLatents(
self._unet_forward,
2023-03-03 06:02:00 +00:00
mask=torch.ones_like(latents[:1, :1], device=latents.device, dtype=latents.dtype),
initial_image_latents=torch.zeros_like(latents[:1], device=latents.device, dtype=latents.dtype),
2023-02-28 05:37:13 +00:00
).add_mask_channels(latents)
# First three args should be positional, not keywords, so torch hooks can see them.
2023-03-03 06:02:00 +00:00
return self.unet(
latents,
t,
text_embeddings,
cross_attention_kwargs=cross_attention_kwargs,
**kwargs,
2023-03-03 06:02:00 +00:00
).sample