Compare commits

..

251 Commits

Author SHA1 Message Date
8c6a8d072d remove tab character 2023-12-15 09:35:06 -05:00
ec52f15f4b add frontend build steps to pypi workflow 2023-12-15 09:30:37 -05:00
454f01e0c1 [feature] add ability to filter model listings by format (#5286)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

This minor change adds the ability to filter the model lists returned by
V2 of the model manager using the model file format (e.g. "checkpoint").
Just thought this would be a useful feature.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Merge Plan

This can be merged when approved without any adverse effects.

<!--
A merge plan describes how this PR should be handled after it is
approved.

Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is
merged"

A merge plan is particularly important for large PRs or PRs that touch
the
database in any way.
-->

## Added/updated tests?

- [ ] Yes
- [X] No : minor feature - tested informally using the router API

## [optional] Are there any post deployment tasks we need to perform?
2023-12-15 00:03:01 -05:00
72dca55e44 Merge branch 'feat/model_manager/search-by-format' of github.com:invoke-ai/InvokeAI into feat/model_manager/search-by-format 2023-12-14 23:55:08 -05:00
264ea6d94d fix ruff errors 2023-12-14 23:54:59 -05:00
60e3e653fa Merge branch 'main' into feat/model_manager/search-by-format 2023-12-14 23:53:54 -05:00
082894c377 Adding Kapa Assistant to Docs (#5290)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ x ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ x ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ x ] Yes
- [ ] No


## Description
This adds the Kapa assistant to our docs.
2023-12-15 09:47:40 +11:00
4b00f8fc82 Merge branch 'main' into Adding-Kapa-assistant-to-docs 2023-12-15 09:46:25 +11:00
6ea09ba0b6 feat(ui): workflow menu tweaks
- "Reset Workflow Editor" -> "New Workflow"
- "New Workflow" gets nodes icon & is no longer danger coloured
- When creating a new workflow, if the current workflow has unsaved changes, you get a dialog asking for confirmation. If the current workflow is saved, it immediately creates a new workflow.
- "Download Workflow" -> "Save to File"
- "Upload Workflow" -> "Load from File"
- Moved "Load from File" up 1 in the menu
2023-12-14 08:30:59 -05:00
42c04db167 adding kapa widget to docs 2023-12-13 22:33:50 -05:00
b935768eeb Update mkdocs.yml 2023-12-13 22:28:47 -05:00
ea4ef042f3 Ruff fixes 2023-12-14 12:47:10 +11:00
18b2bcbbee Added Classification from baseinvocation 2023-12-14 12:47:10 +11:00
5ad88c7f86 Fixed classification 2023-12-14 12:47:10 +11:00
3b04fef31d Added classification 2023-12-14 12:47:10 +11:00
bec888923a Fix for ruff 2023-12-14 12:47:10 +11:00
c6235049c7 Add an unsharp mask node to core nodes
Unsharp mask is an image operation that, despite its name, sharpens an image. Like a Gaussian blur, it takes a radius and strength.
2023-12-14 12:47:10 +11:00
e10f6e8962 fix(nodes): mark CalculateImageTilesInvocation as beta
missed this when I added classification
2023-12-13 20:33:25 -05:00
77f04ff8d6 docs: add warning to developer install about database & main 2023-12-14 11:47:33 +11:00
461e474394 fix(nodes): fix embedded workflows with IDs
This model was a bit too strict, and raised validation errors when workflows we expect to *not* have an ID (eg, an embedded workflow) have one.

Now it strips unknown attributes, allowing those workflows to load.
2023-12-14 11:38:04 +11:00
f0c70fe3f1 fix(db): add error handling for workflow migration
- Handle an image file not existing despite being in the database.
- Add a simple pydantic model that tests only for the existence of a workflow's version.
- Check against this new model when migrating workflows, skipping if the workflow fails validation. If it succeeds, the frontend should be able to handle the workflow.
2023-12-14 10:16:56 +11:00
442ac2b828 fix(ui): fix frontend workflow migration when node is missing version
This should default to "1.0.0" to match the behaviour of the backend.
2023-12-14 09:59:11 +11:00
bb986b97f3 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 99.8% (1363 of 1365 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-12-13 17:11:45 -05:00
98655db57b translationBot(ui): update translation (Russian)
Currently translated at 98.1% (1340 of 1365 strings)

translationBot(ui): update translation (Russian)

Currently translated at 84.2% (1150 of 1365 strings)

translationBot(ui): update translation (Russian)

Currently translated at 83.1% (1135 of 1365 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-12-13 17:11:45 -05:00
8845894e83 translationBot(ui): update translation (Italian)
Currently translated at 97.0% (1325 of 1365 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-12-13 17:11:45 -05:00
937c7e957d add merge plan to PR template 2023-12-13 16:59:31 -05:00
569ae7c482 add ability to filter model listings by format 2023-12-13 15:59:21 -05:00
340957f920 Update torch to 2.1.1 and xformers to 0.0.23 2023-12-13 14:49:32 -05:00
076d9b05ea Update transformers to 4.36 and Accelerate to 0.25 2023-12-13 14:42:34 -05:00
2b54e240d4 Bump Diffusers Dependency (#5243)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ X ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ X ] No, because: dependency bump

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ x ] No


## Description
Updating diffusers to .24 - fixes a few issues. Needs to be tested to
ensure things like our IP Adapter implementation don't break
2023-12-13 20:31:00 +05:30
5127e9df2d Fix error caused by bump to diffusers 0.24. We pass kwargs now instead of positional args so that we are more robust to future changes. 2023-12-13 09:17:30 -05:00
42329a1849 Updating HF Hub dependency 2023-12-13 09:17:30 -05:00
42bc6ef154 Bump Diffusers Dependency 2023-12-13 09:17:30 -05:00
6c6c45c3da feat(db): add SQLiteMigrator to perform db migrations (#5227)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [x] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Have you discussed this change with the InvokeAI team?

- [x] Yes
- [ ] No, because:

## Description

This PR enhances our SQLite database with migration logic.

### `SQLiteMigrator` class

The new `SQLiteMigrator` class handles safely running database
migrations. It is initialized in the `SqliteDatabase` class's init, and
immediately runs all database migrations.

### `Migration` class

Migrations are reprsented by a `Migration` class, which has 3
attributes:

- `db_version: int`: The database version this migration results in.
- `app_version: str`: The semver app version this migration is run for.
- `migrate: Callable[[sqlite3.Cursor], None]`: A function that performs
the migration. It receives a cursor _only_, but can do anything it wants
to do. A convention is established for these functions.

All schema-creating SQL now lives in a `migrate` function. We haven't
needed to make any data migrations yet, but when we do, this will also
be handled within one of these callbacks.

### Migration Flow

First, migrations are registered with `SQLiteMigrator` with it's
`register_migration` method. This performs some basic checks of the
migration version.

After registering all migrations, they are run with the `run_migrations`
method. This does a few things:

- Creates a `version` table in the DB, if it doesn't already exist. This
table has `db_version INTEGER`, `app_version TEXT` and `migrated_at
DATETIME` columns.
- Sort the migrations by their `db_version`.
- Do some checks to see if we need a migration.
- Backs up the database (if it's a file database). The migration bails
out if this fails.
- Runs each migration. If there is a problem, restore from backup.

### Included Migrations

Migrations are in `invokeai/app/services/shared/sqlite/migrations`.

#### `migrate_1.py`

All\* schema SQL up to 3.4.0post2 is in `migration_1.py`. Running only
this migration should result in a database that is identical to the one
you get from starting up 3.4.0post2.

SQL in this migration is **idempotent** (same as it was when the SQL was
spread across the various services).

#### `migrate_2.py`

Schema changes through 3.5.0 (the upcoming release) are in
`migration_2.py`.

SQL in this migration is **not idempotent**. Future migrations need not
be idempotent, as the migration logic ensures each will only be run
once.

### \*Caveat - ItemStorage

This class provides a generic document-db-like interface for storing
objects. Our `graph_executions` and `graphs` tables are created and
managed by this service. This PR does not touch this class and therefore
does not touch either of those two tables.

We can decide how to handle those tables in the future as the need
arises.

### Change to Model Manager Metadata table

I noticed that there is a `model_manager_metadata` table which included
the app version, and whose `version` property wasn't accessed outside
the service.

I believe the new `version` table fulfills the purpose of this table,
and have removed it.

@lstein Please let me know if this is not right.

## QA Instructions, Screenshots, Recordings

1.  Case 1 - Upgrade

    - Back up your 3.4.0post2 database
    - Run this PR
- It should upgrade your database and everything should work exactly
like it did before

2.  Case 2 - New Install

- Move your database out of the invoke root so that when the app starts,
it creates a new one
    - Run this PR
    - It should work just like a new install

3.  Case 3 - With an In-Memory Database

- Enable the in-memory memory database (set `use_memory_db` under
`Paths` in `invokeai.yaml` to `true`)
    - Run this PR
    - It should work just like a new install


## Added/updated tests?

- [x] Yes: Fairly comprehensive tests are added for the
`SQLiteMigrator`.
- [ ] No : _please replace this line with details on why tests
      have not been included_
2023-12-13 09:04:51 -05:00
f76b04a3b8 fix(db): rename "SQLiteMigrator" -> "SqliteMigrator" 2023-12-13 11:31:15 +11:00
821e0326c9 fix(db): formatting 2023-12-13 11:25:57 +11:00
cc18d86f29 Merge branch 'main' into feat/db/migrations 2023-12-13 11:24:55 +11:00
ed1583383e fix(db): remove stale comment in tests 2023-12-13 11:24:27 +11:00
c50a49719b fix(db): raise a MigrationVersionError when invalid versions are used
This inherits from `ValueError`, so pydantic understands it when doing validation.
2023-12-13 11:21:16 +11:00
ebf5f5d418 feat(db): address feedback, cleanup
- use simpler pattern for migration dependencies
- move SqliteDatabase & migration to utility method `init_db`, use this in both the app and tests, ensuring the same db schema is used in both
2023-12-13 11:19:59 +11:00
386b656530 feat(db): remove unnecessary fixture declaration
Also revert the change to `conftest.py` in which the file was flagged for pytest to crawl for fixtures.
2023-12-13 10:13:03 +11:00
d7cede6c28 chore/fix: bump fastapi to 0.105.0
This fixes a problem with `Annotated` which prevented us from using pydantic's `Field` to specify a discriminator for a union. We had to use FastAPI's `Body` as a workaround.
2023-12-13 09:48:34 +11:00
15de7c21d9 updated tests with a test for tile > image for calc_tiles_min_overlap() 2023-12-12 10:24:00 -05:00
9620f9336c updated comment 2023-12-12 10:24:00 -05:00
a64ced7b29 remove unneeded if else 2023-12-12 10:24:00 -05:00
dd7deff1a3 fix for calc_tiles_min_overlap when tile size is bigger than image size 2023-12-12 10:24:00 -05:00
2cdda1fda2 Merge remote-tracking branch 'origin/main' into feat/db/migrations 2023-12-12 17:22:52 +11:00
6caa70123d translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 96.4% (1314 of 1363 strings)

Co-authored-by: junzi <nomal.si2621.vip@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-12-12 17:15:54 +11:00
7e831c8a96 Selected in View within Gallery (#5240)
* selector added

* ref and useeffect added

* scrolling done using useeffect

* fixed scroll and changed the ref name

* fixed scroll again

* created hook for scroll logic

* feat(ui): debounce metadata fetch by 300ms

This vastly reduces the network requests when using the arrow keys to quickly skim through images.

* feat(ui): extract logic to determine virtuoso scrollToIndex align

This needs to be used in `useNextPrevImage()` to ensure the scrolling puts the image at the top or bottom appropriately

* feat(ui): add debounce to image workflow hook

This was spamming network requests like the metadata query

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-12-12 17:14:28 +11:00
3d64bc886d feat(nodes): flag all tiled upscaling nodes as beta 2023-12-12 16:43:05 +11:00
1a136d6167 feat(nodes): fix classification docstrings 2023-12-12 16:43:05 +11:00
43f2837117 feat(nodes): add invocation classifications
Invocations now have a classification:
- Stable: LTS
- Beta: LTS planned, API may change
- Prototype: No LTS planned, API may change, may be removed entirely

The `@invocation` decorator has a new arg `classification`, and an enum `Classification` is added to `baseinvocation.py`.

The default is Stable; this is a non-breaking change.

The classification is presented in the node header as a hammer icon (Beta) or flask icon (prototype).

The icon has a tooltip briefly describing the classification.
2023-12-12 16:43:05 +11:00
5f77ef7e99 feat(db): improve docstrings in migrator 2023-12-12 16:30:57 +11:00
22ccaa4e9a [Feature] Allow the model record migrate script to update existing model records (#5264)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No


## Description

1. The new model manager sqlite3-based configuration record storage
system is automatically populated with probed values from existing
models found in the models path when `invokeai-web` starts up for the
first time. However, the user's customization of these models in
`invokeai.yaml`, including such things as the prediction type and model
description, are not automatically copied over. This PR enhances the
`invokeai-migrate-models-to-db` script so that any customized
configuration data from `invokeai.yaml` replaces the original probed
values. This script only needs to be run once, but it does not hurt to
run it additional times. In the near future, I'm going to register this
module with psychedelicious's sqlite migration system so that the update
happens automatically during database migration.

2. The SQL-based model config record system stores a JSON version of the
config, as well as several fields that are broken out into individual
columns for search/indexing purposes. This PR keeps the JSON and the
broken-out fields in sync using the `json_extract()` sqlite3 function to
populate the broken out `base`, `type`, `name`, `path` and `format`
fields in the `model_config` table.

3. Finally, this PR fixes the annoying `invokeai-web` shutdown message:
`TypeError: ModelInstallService.stop() takes 1 positional argument but 2
were given`

## Related Tickets & Documents


- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

If you've run `invokeai-web` at any time since PR #5039, your
`invokeai.db` will have a `model_config` table containing probe
information from all models in the invokeai models directory as well as
those in `autoimport` (if applicable). However, any models present in
`models.yaml` whose paths are outside these directories will not be
present. To add them, and to update the description and other values
from `models.yaml`, run the command `invokeai-migrate-models-to-db`. You
should see the missing models added to the database table with the
correct information.

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [X] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-12-12 00:25:05 -05:00
d277bd3c38 Merge branch 'main' into feat/enhance-model-db-migrate-script 2023-12-12 00:24:43 -05:00
fd4e041e7c feat: serve HTTPS when configured with ssl_certfile 2023-12-12 16:01:43 +11:00
15a3e8076f Merge branch 'main' into feat/enhance-model-db-migrate-script 2023-12-11 23:10:04 -05:00
2fbe3a3104 fix ruff error 2023-12-11 23:04:18 -05:00
b0cfa58526 allow the model record migrate script to update existing model records 2023-12-11 22:47:19 -05:00
285ed26edd Add commands to Makefile for convenient release preparation (#5263)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

This PR does three things:

1) It separates out the script that creates the installer zipfile
(`create_installer.sh`) from the script that tags the repository with
the current release version (now called `tag_release.sh`)

2) It adds new targets to Makefile for running the installer script and
tagging.

3) It adds a `help` target that lists the Makefile targets:

```
$ make help
Developer commands:

ruff           Run ruff, fixing any safely-fixable errors and formatting
ruff-unsafe    Run ruff, fixing all fixable errors and formatting
mypy           Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors
mypy-all       Run mypy ignoring the config in pyproject.tom but still ignoring missing imports
frontend-build Build the frontend in order to run on localhost:9090
frontend-dev   Run the frontend in developer mode on localhost:5173
installer-zip  Build the installer .zip file for the current version
tag-release    Tag the GitHub repository with the current version (use at release time only!)
```
`help` is also the default target so that the help message will print
out when only `make` is issued.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [X] No: not needed

## [optional] Are there any post deployment tasks we need to perform?
2023-12-11 22:33:45 -05:00
02565b9a00 Merge branch 'main' into install/release-tools 2023-12-11 22:32:28 -05:00
78a6024d6c Tiled upscaling graph - new nodes (#5234)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description
Additional tile generation nodes of
CalculateImageTilesEvenSplitInvocation &
CalculateImageTilesMinimumOverlapInvocation
Additional blending method of merge_tiles_with_seam_blending
Updated Node MergeTilesToImageInvocation with seam blending

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-12-11 22:14:15 -05:00
95198da645 fix(db): fix sqlite migrator tests on windows 2023-12-12 13:54:47 +11:00
ee1f1f3363 Merge remote-tracking branch 'origin/main' into feat/db/migrations 2023-12-12 13:39:47 +11:00
18ba7feca1 feat(db): update docstrings 2023-12-12 13:35:46 +11:00
55b0c7cdc9 feat(db): tidy migration_2 2023-12-12 13:30:29 +11:00
713a83e7da Merge branch 'main' into install/release-tools 2023-12-11 21:20:51 -05:00
f3a97e06ec add the tag_release.sh script 2023-12-11 21:11:37 -05:00
50815d36c6 feat(db): add tests for migration dependencies 2023-12-12 13:09:24 +11:00
a69f518c76 feat(db): tidy dependencies for migrations 2023-12-12 13:09:09 +11:00
18093c4f1d split installer zipfile script from tagging script; add make commands 2023-12-11 21:08:03 -05:00
0cf7fe43af feat(db): refactor migrate callbacks to use dependencies, remote pre/post callbacks 2023-12-12 12:35:42 +11:00
6063760ce2 feat(db): tweak docstring 2023-12-12 11:13:40 +11:00
c5ba4f2ea5 feat(db): remove file backups
Instead of mucking about with the filesystem, we rely on SQLite transactions to handle failed migrations.
2023-12-12 11:12:46 +11:00
3414437eea feat(db): instantiate SqliteMigrator with a SqliteDatabase
Simplifies a couple things:
- Init is more straightforward
- It's clear in the migrator that the connection we are working with is related to the SqliteDatabase
2023-12-12 10:46:08 +11:00
417db71471 feat(db): decouple SqliteDatabase from config object
- Simplify init args to path (None means use memory), logger, and verbose
- Add docstrings to SqliteDatabase (it had almost none)
- Update all usages of the class
2023-12-12 10:30:37 +11:00
afe4e55bf9 feat(db): simplify migration registration validation
With the previous change to assert that the to_version == from_version + 1, this validation can be simpler.
2023-12-12 09:52:03 +11:00
55acc16b2d feat(db): require migration versions to be consecutive 2023-12-12 09:43:09 +11:00
535ce10e99 Merge branch 'main' into tiled-upscaling-graph 2023-12-11 14:40:55 -05:00
Sam
11f4a48144 Add container GID 2023-12-11 14:30:40 -05:00
Sam
67ed4a0245 Respect CONTAINER_UID in Dockerfile chown
CONTAINER_UID is used for the user ID within the container, however I noticed the UID was hard coded to 1000 in the Dockerfile chown -R command.

This leaves the default as 1000, but allows it to be overrriden by setting CONTAINER_UID.
2023-12-11 14:30:40 -05:00
fbbc1037cd missed a rename of overlap to overlap_fraction in test for even_spilt 2023-12-11 17:23:28 +00:00
0852fd4e88 Updated tests for even_split overlap renamed to overlap_fraction 2023-12-11 17:17:29 +00:00
c84526fae5 Fixed Tests that where using round_to_8 and removed redundant tests 2023-12-11 17:05:45 +00:00
f762940335 Merge branch 'main' into tiled-upscaling-graph 2023-12-11 16:57:36 +00:00
fefb78795f - Even_spilt overlap renamed to overlap_fraction
- min_overlap removed * restrictions and round_to_8
- min_overlap handles tile size > image size by clipping the num tiles to 1.
- Updated assert test on min_overlap.
2023-12-11 16:55:27 +00:00
ef8284f009 fix(db): fix tests 2023-12-11 16:41:47 +11:00
290851016e feat(db): move sqlite_migrator into its own module 2023-12-11 16:41:30 +11:00
fa7d002175 fix(tests): fix typing issues 2023-12-11 16:22:29 +11:00
f1b6f78319 fix(db): fix windows db migrator tests
- Ensure db files are closed before manipulating them
- Use contextlib.closing() so that sqlite connections are closed on existing the context
2023-12-11 16:14:25 +11:00
26ab917021 fix(tests): add sqlite migrator to test fixtures 2023-12-11 16:14:25 +11:00
4f3c32a2ee fix(db): remove errant print stmts 2023-12-11 16:14:25 +11:00
77065b1ce1 feat(db): update test for migration chain for missing from 0 2023-12-11 16:14:25 +11:00
41db92b9e8 feat(db): add check for missing migration from 0 2023-12-11 16:14:25 +11:00
c823f5667b feat(db): update sqlite migrator tests 2023-12-11 16:14:25 +11:00
3227b30430 feat(db): extract non-stateful logic to class methods 2023-12-11 16:14:25 +11:00
567f107a81 feat(db): return backup_db_path, move log stmt to run_migrations 2023-12-11 16:14:25 +11:00
b3d5955bc7 fix(db): rename Migrator._migrations -> _migration_set 2023-12-11 16:14:25 +11:00
8726b203d4 fix(db): fix migration chain validation 2023-12-11 16:14:25 +11:00
b3f92e0547 fix(db): fix docstring 2023-12-11 16:14:25 +11:00
72c9a7663f fix(db): add docstring 2023-12-11 16:14:25 +11:00
fcb9e89bd7 feat(db): tidy db naming utils 2023-12-11 16:14:25 +11:00
56966d6d05 feat(db): only reinit db if migrations occurred 2023-12-11 16:14:25 +11:00
e46dc9b34e fix(db): close db conn before reinitializing 2023-12-11 16:14:25 +11:00
e461f9925e feat(db): invert backup/restore logic
Do the migration on a temp copy of the db, then back up the original and move the temp into its file.
2023-12-11 16:14:25 +11:00
abeb1bd3b3 feat(db): reduce power MigrateCallback, only gets cursor
use partial to provide extra dependencies for the image workflow migration function
2023-12-11 16:14:25 +11:00
83e820d721 feat(db): decouple from SqliteDatabase 2023-12-11 16:14:25 +11:00
f8e4b93a74 feat(db): add migration lock file 2023-12-11 16:14:25 +11:00
0710ec30cf feat(db): incorporate feedback 2023-12-11 16:14:25 +11:00
c382329e8c feat(db): move migrator out of SqliteDatabase 2023-12-11 16:14:25 +11:00
a2dc780188 feat: add script to migrate image workflows 2023-12-11 16:14:25 +11:00
abc9dc4d17 fix(tests): fix sqlite migrator backup and restore test
On Windows, we must ensure the connection to the database is closed before exiting the tempfile context.

Also, rejiggered the thing to use the file directly.
2023-12-11 16:14:25 +11:00
3c692018cd fix(db): make idempotency test actually test something 2023-12-11 16:14:25 +11:00
3ba3c1918c fix(db): remove duplicated test case 2023-12-11 16:14:25 +11:00
f2c6819d68 feat(db): add SQLiteMigrator to perform db migrations 2023-12-11 16:14:25 +11:00
ef807cf63a Refactor model manager: model installer component (#5171)
## What type of PR is this? (check all applicable)

- [X] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [X] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

This is the next phase of the model manager refactor, as discussed with
@psychedelicious and @RyanJDick. This implements the model installer,
which is responsible for managing model weights on disk and installing
new models.

Currently only installation of local files and directories is supported.
Remote installation will be implemented after the queued download
manager is reviewed and approved.

Please see the documentation located at
[docs/contributing/MODEL_MANAGER.md](8695ad6f59/docs/contributing/MODEL_MANAGER.md (model-installation))
for an explanation of how this module works.

Things that have changed relative to the current implementation.

1. Model importation runs in a background thread. Access to the
installation status is through a ModelInstallJob object returned by the
`import_model()` call. In addition, the installation process generates a
series of `model_install` events on the event bus.
2. `model_install_progress` events are documented, but not currently
issued. These will be issued when background downloading is implemented.
3. The model installer currently runs in parallel to the current model
manager. The frontend continues to use `configs/models.yaml` and ignores
what is in the `model_config` table of `invokeai.db`.
4. When the installer is initialized at app startup time, it
synchronizes its database to the contents of the InvokeAI `models`
directory. The current model manager does this as well, so you will see
two log messages indicating that this directory is being scanned.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

You can test using the FastAPI swagger pages at
http://localhost:9090/docs. Use the calls listed under
`model_manager_v2`. Be aware that only installation of local models
(indicated by their file or directory path) are currently supported.

## Added/updated tests?

- [X] Yes -- see
`tests/app/services/model_install/test_model_install.py`
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-12-10 23:16:39 -05:00
bbcd58e681 Merge branch 'refactor/model-manager-3' of github.com:invoke-ai/InvokeAI into refactor/model-manager-3 2023-12-10 21:34:14 -05:00
36043bf38b fixed docstring in probe module 2023-12-10 21:33:54 -05:00
fd68c47920 Merge branch 'main' into refactor/model-manager-3 2023-12-10 21:26:44 -05:00
c5c975c7a9 fix(installer): fix exit on new version 2023-12-11 12:30:13 +11:00
41ad13c282 feat(installer): do not print when aliasing python
Potentially confusing and not useful
2023-12-11 12:30:13 +11:00
e9d7e6bdd5 feat(installer): make active venv error red instead of yellow 2023-12-11 12:30:13 +11:00
49b74d189e feat(installer): improve messages, simplify script
- Color outputs
- Clarify messages
- Do not offer to use existing frontend build (insurance - prevents accidentally using old build)
2023-12-11 12:30:13 +11:00
179bc64490 feat(create_installer): remove extraneous conditional
Using `-f` is functionally equivalent to first checking if the dir exists before removing it. We just want to ensure the build dir doesn't exists.
2023-12-11 12:30:13 +11:00
1feab3da37 fix(installer): update msg in create_installer
More accurate/clearer messages
2023-12-11 12:30:13 +11:00
0a15f3fc35 fix(tests): remove test for frontend build 2023-12-11 12:30:13 +11:00
daf00efa4d fix(api): only attempt to serve UI build if it exists 2023-12-11 12:30:13 +11:00
55cfb879d0 feat: no frontend build in repo
In other words, build frontend when creating installer.

Changes to `create_installer.sh`

- If `python` is not in `PATH` but `python3` is, alias them (well, via function). This is needed on some machines to run the installer without symlinking to `python3`.
- Make the messages about pushing tags clearer. The script force-pushes, so it's possible to accidentally take destructive action. I'm not sure how to otherwise prevent damage, so I just added a warning.
- Print out `pwd` when prompting about being in the `installer` dir.
- Rebuild the frontend - if there is already a frontend build, first checks if the user wants to rebuild it.
- Checks for existence of `../build` dir before deleting - if the dir doesn't exist, the script errors and exits at this point.
- Format and spell check.

Other changes:

- Ignore `dist/` folder.
- Delete `dist/`.

**Note: you may need to use `git rm --cached invokeai/app/frontend/web/dist/` if git still wants to track `dist/`.**
2023-12-11 12:30:13 +11:00
de2879f602 port new code for detecting sdxl-based embeddings 2023-12-10 15:48:02 -05:00
3b1ff4a7f4 resolve test failure caused by renamed sqlite_database module 2023-12-10 12:59:00 -05:00
d7f7fbc8c2 Merge branch 'main' into refactor/model-manager-3 2023-12-10 12:55:28 -05:00
e2567a7e31 Merge branch 'refactor/model-manager-3' of github.com:invoke-ai/InvokeAI into refactor/model-manager-3 2023-12-10 12:55:24 -05:00
2f3457c02a rename installer __del__() to stop(). Improve probe error messages 2023-12-10 12:55:01 -05:00
aab6369ffe Update invokeai/backend/model_manager/search.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-12-10 12:24:50 -05:00
4c97b619fb Update tiles.py
merge with main
2023-12-09 22:05:23 +00:00
abdd840fb9 Merge branch 'main' into tiled-upscaling-graph 2023-12-09 22:03:18 +00:00
e656768eb2 more fixes from code review 2023-12-09 21:56:31 +00:00
494c2a9b05 Updates based on code review by @RyanJDick 2023-12-09 18:38:07 +00:00
40d4c7c8e1 fix(ui): add validation to field value reducers (#5256)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

Insurance against invalid inputs. Closes #5250
2023-12-09 11:42:32 +05:30
076284c26f fix(ui): add validation to field value reducers
Insurance against invalid inputs. Closes #5250
2023-12-09 17:09:02 +11:00
1af4260ab6 fix(ui): fix workflow saving
'id' should not be omitted when building a workflow, it makes workflows always save as a copy
2023-12-09 16:35:44 +11:00
08ef71a74e fix(tests): mark non-test-case classes as such
Because their names start with "test", we need to use `__test__ = False` to tell pytest to not treat them as test cases.
2023-12-09 16:31:41 +11:00
8f6e2c0c85 fix(tests): add versions to test nodes
Fixes a warning about missing version.
2023-12-09 16:31:41 +11:00
0ac33f36ef fix(tests): fix pydantic warning about deprecated fields
Calling `inspect.getmembers()` on a pydantic field results in `getattr` being called on all members of the field. Pydantic has some attrs that are marked deprecated.

In our test suite, we do not filter deprecation warnings, so this is surfaced.

Use a context manager to ignore deprecation warnings when calling the function.
2023-12-09 16:31:41 +11:00
9661fa5f76 feat(ui): add eslint unused-imports plugin
Provides autofix for unused imports
2023-12-09 16:12:00 +11:00
ca07449fb4 fix(ui): add typeguard for action.payload
In the latest redux, unknown actions are typed as `unknown`. This forces type-safety upon us, requiring us to be more careful about the shape of actions.

In this case, we don't know if the rejection has a payload or what shape it may be in, so we need to do runtime checks. This is implemented with a simple zod schema, but probably the right way to handle this is to have consistent types in our RTK-Query error logic.
2023-12-09 16:09:26 +11:00
fb39f621c6 feat(ui): bump redux-remember 2023-12-09 16:09:26 +11:00
977d309692 fix(ui): fix memoized selectors
Some had the memoize options twice.
2023-12-09 16:09:26 +11:00
72cb8b83fe feat(ui): upgrade redux and RTK
There are a few breaking changes, which I've addressed.

The vast majority of changes are related to new handling of `reselect`'s `createSelector` options.

For better or worse, we memoize just about all our selectors using lodash `isEqual` for `resultEqualityCheck`. The upgrade requires we explicitly set the `memoize` option to `lruMemoize` to continue using lodash here.

Doing that required changing our `defaultSelectorOptions`.

Instead of changing that and finding dozens of instances where we weren't using that and instead were defining selector options manually, I've created a pre-configured selector: `createMemoizedSelector`.

This is now used everywhere instead of `createSelector`.
2023-12-09 16:09:26 +11:00
99f14b1dfe fix(ui): remove .ladle from tsconfig
was testing this out and forgot to remove
2023-12-09 16:03:09 +11:00
95a3c89a56 chore(ui): lint 2023-12-09 16:03:09 +11:00
b271474812 feat(ui): bump deps 2023-12-09 16:03:09 +11:00
2272925607 feat(ui): disable storybook telemetry 2023-12-09 16:03:09 +11:00
5902a52e40 feat(ui): add storybook 2023-12-09 16:03:09 +11:00
5140056b59 fix(actions): fix lint-frontend 2023-12-09 16:00:37 +11:00
f17b3d0068 feat(ui): migrate to pnpm
- update all scripts
- update the frontend GH action
- remove yarn-related files
- update ignores

Yarn classic + storybook has some weird module resolution issue due to how it hoists dependencies.

See https://github.com/storybookjs/storybook/issues/22431#issuecomment-1630086092

When I did the `package.json` solution in this thread, it broke vite. Next option is to upgrade to yarn 3 or pnpm. I chose pnpm.
2023-12-09 16:00:37 +11:00
5b9d25f57e translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-12-09 13:47:40 +11:00
73dbb8792e translationBot(ui): update translation (Italian)
Currently translated at 97.2% (1287 of 1324 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-12-09 13:47:40 +11:00
fc6cebb975 fix(ui): fix extra attrs added to workflow payload 2023-12-09 11:10:16 +11:00
06104f3851 fix(ui): disallow loading/deleting workflow if already open 2023-12-09 11:10:16 +11:00
6e028d691a fix(ui): use translation for unnamed workflows 2023-12-09 11:10:16 +11:00
6d176601cc feat(ui): track & indicate workflow saved status 2023-12-09 11:10:16 +11:00
4627a7c75f tidy(ui): remove unused components 2023-12-09 11:10:16 +11:00
d9a0efb20b chore)ui): typegen 2023-12-09 11:10:16 +11:00
7436aa8e3a feat(workflow_records): do not use default_factory for workflow id
Using default_factory to autogenerate UUIDs doesn't make sense here, and results awkward typescript types.

Remove the default factory and instead manually create a UUID for workflow id. There are only two places where this needs to happen so it's not a big change.
2023-12-09 11:10:16 +11:00
d75d3885c3 fix(ui): fix typo in uiPersistDenylist 2023-12-09 11:10:16 +11:00
db4763a742 feat(ui): use templates for edge validation of workflows
This addresses an edge case where:
1. the workflow references fields that are present on the workflow's nodes, but not on the invocation templates for those nodes and
2. The invocation template for that type does exist

This should be a fairly obscure edge case, but could happen if a user fiddled around with the workflow manually.

I ran into it as a result of two nodes having accidentally mixed up their invocation types, a problem introduced with a wonky merge commit.
2023-12-09 11:10:16 +11:00
13c9f8ffb7 fix(nodes): fix mismatched invocation decorator
This got messed up during a merge commit
2023-12-09 11:10:16 +11:00
e4f67628c0 feat(ui): revise workflow editor buttons
- Add menu to top-right of editor, save/saveas/download/upload/reset/settings moved in here
- Add workflow name to top-center
2023-12-09 11:10:16 +11:00
283bb73418 feat(ui): improve save/as workflow hook
Use a persistent updating toast to indicate saving progress.
2023-12-09 11:10:16 +11:00
5b5a71d40c fix(ui): do not append "(copy)" to workflow name when saving 2023-12-09 11:10:16 +11:00
61060f032a feat(ui): abstract out the global menu close trigger
This logic is moved into a hook.

This is needed for our context menus to close when the user clicks something in reactflow. It needed to be extended to support menus also.
2023-12-09 11:10:16 +11:00
3423b5848f fix(ui): do not disable the metadata and workflow tabs in viewer
Disabling these introduces an issue where, if you were on an image with a workflow/metadata, then switch to one without, you can end up on a disabled tab. This could potentially cause a runtime error.
2023-12-09 11:10:16 +11:00
fd8d1e13a0 feat(ui): clarify workflow building node filter 2023-12-09 11:10:16 +11:00
c42d692ea6 feat: workflow library (#5148)
* chore: bump pydantic to 2.5.2

This release fixes pydantic/pydantic#8175 and allows us to use `JsonValue`

* fix(ui): exclude public/en.json from prettier config

* fix(workflow_records): fix SQLite workflow insertion to ignore duplicates

* feat(backend): update workflows handling

Update workflows handling for Workflow Library.

**Updated Workflow Storage**

"Embedded Workflows" are workflows associated with images, and are now only stored in the image files. "Library Workflows" are not associated with images, and are stored only in DB.

This works out nicely. We have always saved workflows to files, but recently began saving them to the DB in addition to in image files. When that happened, we stopped reading workflows from files, so all the workflows that only existed in images were inaccessible. With this change, access to those workflows is restored, and no workflows are lost.

**Updated Workflow Handling in Nodes**

Prior to this change, workflows were embedded in images by passing the whole workflow JSON to a special workflow field on a node. In the node's `invoke()` function, the node was able to access this workflow and save it with the image. This (inaccurately) models workflows as a property of an image and is rather awkward technically.

A workflow is now a property of a batch/session queue item. It is available in the InvocationContext and therefore available to all nodes during `invoke()`.

**Database Migrations**

Added a `SQLiteMigrator` class to handle database migrations. Migrations were needed to accomodate the DB-related changes in this PR. See the code for details.

The `images`, `workflows` and `session_queue` tables required migrations for this PR, and are using the new migrator. Other tables/services are still creating tables themselves. A followup PR will adapt them to use the migrator.

**Other/Support Changes**

- Add a `has_workflow` column to `images` table to indicate that the image has an embedded workflow.
- Add handling for retrieving the workflow from an image in python. The image file must be fetched, the workflow extracted, and then sent to client, avoiding needing the browser to parse the image file. With the `has_workflow` column, the UI knows if there is a workflow to be fetched, and only fetches when the user requests to load the workflow.
- Add route to get the workflow from an image
- Add CRUD service/routes for the library workflows
- `workflow_images` table and services removed (no longer needed now that embedded workflows are not in the DB)

* feat(ui): updated workflow handling (WIP)

Clientside updates for the backend workflow changes.

Includes roughed-out workflow library UI.

* feat: revert SQLiteMigrator class

Will pursue this in a separate PR.

* feat(nodes): do not overwrite custom node module names

Use a different, simpler method to detect if a node is custom.

* feat(nodes): restore WithWorkflow as no-op class

This class is deprecated and no longer needed. Set its workflow attr value to None (meaning it is now a no-op), and issue a warning when an invocation subclasses it.

* fix(nodes): fix get_workflow from queue item dict func

* feat(backend): add WorkflowRecordListItemDTO

This is the id, name, description, created at and updated at workflow columns/attrs. Used to display lists of workflowsl

* chore(ui): typegen

* feat(ui): add workflow loading, deleting to workflow library UI

* feat(ui): workflow library pagination button styles

* wip

* feat: workflow library WIP

- Save to library
- Duplicate
- Filter/sort
- UI/queries

* feat: workflow library - system graphs - wip

* feat(backend): sync system workflows to db

* fix: merge conflicts

* feat: simplify default workflows

- Rename "system" -> "default"
- Simplify syncing logic
- Update UI to match

* feat(workflows): update default workflows

- Update TextToImage_SD15
- Add TextToImage_SDXL
- Add README

* feat(ui): refine workflow list UI

* fix(workflow_records): typo

* fix(tests): fix tests

* feat(ui): clean up workflow library hooks

* fix(db): fix mis-ordered db cleanup step

It was happening before pruning queue items - should happen afterwards, else you have to restart the app again to free disk space made available by the pruning.

* feat(ui): tweak reset workflow editor translations

* feat(ui): split out workflow redux state

The `nodes` slice is a rather complicated slice. Removing `workflow` makes it a bit more reasonable.

Also helps to flatten state out a bit.

* docs: update default workflows README

* fix: tidy up unused files, unrelated changes

* fix(backend): revert unrelated service organisational changes

* feat(backend): workflow_records.get_many arg "filter_text" -> "query"

* feat(ui): use custom hook in current image buttons

Already in use elsewhere, forgot to use it here.

* fix(ui): remove commented out property

* fix(ui): fix workflow loading

- Different handling for loading from library vs external
- Fix bug where only nodes and edges loaded

* fix(ui): fix save/save-as workflow naming

* fix(ui): fix circular dependency

* fix(db): fix bug with releasing without lock in db.clean()

* fix(db): remove extraneous lock

* chore: bump ruff

* fix(workflow_records): default `category` to `WorkflowCategory.User`

This allows old workflows to validate when reading them from the db or image files.

* hide workflow library buttons if feature is disabled

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-12-09 09:48:38 +11:00
5f37176938 ruff formatting 2023-12-08 19:40:10 +00:00
375a91db32 further updated tests 2023-12-08 19:38:16 +00:00
b7ba426249 Fixed some params on tile gen tests on tests 2023-12-08 18:53:28 +00:00
d3ad356c6a Ruff Formatting
Fix pyTest issues
2023-12-08 18:31:33 +00:00
fdb97c1d02 Merge branch 'main' into tiled-upscaling-graph 2023-12-08 18:22:05 +00:00
8cda42ab0a ruff formatting 2023-12-08 18:17:40 +00:00
fed2bdafeb Added Defaults to calc_tiles_min_overlap for overlap and round
Added tests for min_overlap and even_split tile gen
2023-12-08 18:16:13 +00:00
9ba5752770 fix link to xpuct/deliberate 2023-12-08 06:46:58 -08:00
8648c2c42e Update communityNodes.md with VeyDlin's nodes 2023-12-08 05:34:19 -08:00
b519b6e1e0 add middleware to handle 403 errors (#5245)
* add middleware to handle 403 errors

* remove log

* add logic to warn the user if not all requested images could be deleted

* lint

* fix copy

* feat(ui): simplify batchEnqueuedListener error toast logic

* feat(ui): use translations for error messages

* chore(ui): lint

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-12-07 19:26:15 -05:00
913c68982a Merge branch 'refactor/model-manager-3' of github.com:invoke-ai/InvokeAI into refactor/model-manager-3 2023-12-06 22:23:49 -05:00
6e1e67aa72 remove source filtering from list_models() 2023-12-06 22:23:08 -05:00
ee6fbabbfb Merge branch 'main' into refactor/model-manager-3 2023-12-06 22:20:06 -05:00
db58efbe65 translationBot(ui): update translation (German)
Currently translated at 62.9% (830 of 1319 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-12-07 00:09:57 +11:00
cd15d8b7a9 ruff formatting
reformatted due to ruff errors
2023-12-06 08:10:22 +00:00
3b4b4ba40a Merge branch 'main' into tiled-upscaling-graph 2023-12-06 08:00:31 +00:00
eecee472b1 chore(deps-dev): bump vite from 4.5.0 to 4.5.1 in /invokeai/frontend/web
Bumps [vite](https://github.com/vitejs/vite/tree/HEAD/packages/vite) from 4.5.0 to 4.5.1.
- [Release notes](https://github.com/vitejs/vite/releases)
- [Changelog](https://github.com/vitejs/vite/blob/v4.5.1/packages/vite/CHANGELOG.md)
- [Commits](https://github.com/vitejs/vite/commits/v4.5.1/packages/vite)

---
updated-dependencies:
- dependency-name: vite
  dependency-type: direct:development
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-12-06 16:57:35 +11:00
7b314116be feat(ui): remove husky (#5235)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

You can only have one pre-commit setup on a repo. Removing husky so it
doesn't interfere with the python pre-commit.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue
https://discord.com/channels/1020123559063990373/1149513625321603162/1181752622684831884
2023-12-06 09:03:43 +05:30
bc6d4111a2 feat(ui): remove husky
You can only have one pre-commit setup on a repo. Removing husky so it doesn't interfere with the python pre-commit.
2023-12-06 14:05:50 +11:00
674d9796d0 First check-in of new tile nodes
- calc_tiles_even_split
- calc_tiles_min_overlap
- merge_tiles_with_seam_blending
Update MergeTilesToImageInvocation with seam blending
2023-12-05 21:03:16 +00:00
5816320645 Merge branch 'main' into tiled-upscaling-graph 2023-12-05 15:32:49 +00:00
14254e8be8 First check-in of new tile nodes
- calc_tiles_even_split
- calc_tiles_min_overlap
- merge_tiles_with_seam_blending
Update MergeTilesToImageInvocation with seam blending
2023-12-05 12:29:55 +00:00
e990235d32 translationBot(ui): update translation (Korean)
Currently translated at 5.2% (70 of 1321 strings)

Co-authored-by: 이승석 <vidicwb@ajou.ac.kr>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ko/
Translation: InvokeAI/Web UI
2023-12-05 16:00:03 +11:00
5f122186bd translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 99.8% (1317 of 1319 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-12-05 16:00:03 +11:00
3bfaee9c57 Merge branch 'main' into refactor/model-manager-3 2023-12-04 22:51:45 -05:00
1ca0901cbe Ensure that fetching a logger doesn't reset its loglevel to default (#5222)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because: minor bug

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

While writing regression tests for the queued downloader I discovered
that when using `InvokeAILogger.get_logger()` to fetch a
previously-created logger it resets that logger's log level to the
default specified in the global config. In other words, this didn't work
as expected:

```
import logging
from invokeai.backend.util.logging import InvokeAILogger
logger1 = InvokeAILogger.get_logger('TestLogger')
logger1.setLevel(logging.DEBUG)
logger2 = InvokeAILogger.get_logger('TestLogger')
assert logger1.level == logging.DEBUG
assert logger2.level == logging.DEBUG
```

This PR fixes the problem and adds a corresponding pytest.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [X] Yes
- [ ] No

## [optional] Are there any post deployment tasks we need to perform?
2023-12-04 22:50:59 -05:00
2d7555b7b8 Merge branch 'bugfix/log-levels' of github.com:invoke-ai/InvokeAI into bugfix/log-levels 2023-12-04 22:42:06 -05:00
3c7d1fcd32 clean up get_logger() call 2023-12-04 22:41:59 -05:00
c7fa2db556 Merge branch 'main' into bugfix/log-levels 2023-12-04 22:01:42 -05:00
3b06cc6782 reformatted using newer version of ruff 2023-12-04 21:15:56 -05:00
7c9f48b84d fix ruff check 2023-12-04 21:14:02 -05:00
fed2bf6dab Merge branch 'refactor/model-manager-3' of github.com:invoke-ai/InvokeAI into refactor/model-manager-3 2023-12-04 21:12:40 -05:00
2b583ffcdf implement review suggestions from @RyanjDick 2023-12-04 21:12:10 -05:00
6f46d15c05 Update invokeai/app/services/model_install/model_install_base.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-12-04 20:09:41 -05:00
018ccebd6f make ModelLocalSource comparisons work across platforms 2023-12-04 19:07:25 -05:00
620b2d477a implement suggestions from first review by @psychedelicious 2023-12-04 17:08:33 -05:00
f73b678aae Merge branch 'main' into refactor/model-manager-3 2023-12-04 17:06:36 -05:00
bdb0d13a2d fix import order 2023-12-02 11:56:41 -05:00
2d2ef5d72c ensure that setting loglevel on one logger doesn't change others 2023-12-02 11:48:51 -05:00
e46ac45741 port probing changes from main model_probe.py to refactored probe.py 2023-12-01 09:19:24 -05:00
75089b7a9d merge in changes from main 2023-12-01 09:18:07 -05:00
778fd55f0d Merge branch 'main' into refactor/model-manager-3 2023-12-01 09:15:18 -05:00
bb87c988cb Change input field ordering of CropLatentsCoreInvocation to match ImageCropInvocation. 2023-11-29 10:23:55 -05:00
049b0239da Re-organize merge_tiles_with_linear_blending(...) to merge rows horizontally first and then vertically. This change achieves slightly more natural blending on the corners where 4 tiles overlap. 2023-11-29 09:48:56 -05:00
932de08fc0 Infer a tight-fitting output image size from the passed tiles in MergeTilesToImageInvocation. 2023-11-29 09:48:56 -05:00
303791d5c6 Add width and height fields to TileToPropertiesInvocation output to avoid having to calculate them with math nodes. 2023-11-29 09:48:56 -05:00
7e4a689370 Update tiling nodes to use width-before-height field ordering convention. 2023-11-29 09:48:56 -05:00
04e0fefdee Rename CropLatentsInvocation -> CropLatentsCoreInvocation to prevent conflict with custom node. And other minor tidying. 2023-11-29 09:48:56 -05:00
9b4e6da226 Improve documentation of CropLatentsInvocation. 2023-11-29 09:48:56 -05:00
e1c53a2465 Use LATENT_SCALE_FACTOR = 8 constant in CropLatentsInvocation. 2023-11-29 09:48:55 -05:00
121b930abf Copy CropLatentsInvocation from 74647fa9c1/images_to_grids.py (L1117C1-L1167C80). 2023-11-29 09:48:55 -05:00
436560da39 (minor) Add 'Invocation' suffix to all tiling node classes. 2023-11-29 09:48:55 -05:00
3980f79ed5 Tidy up tiles invocations, add documentation. 2023-11-29 09:48:55 -05:00
1d0dc7eeab Add unit tests for merge_tiles_with_linear_blending(...). 2023-11-29 09:48:55 -05:00
1f63fa8236 Add unit tests for calc_tiles_with_overlap(...) and fix a bug in its implementation. 2023-11-29 09:48:55 -05:00
caf47dee09 Add unit tests for tile paste(...) util function. 2023-11-29 09:48:55 -05:00
d742479810 Add nodes for tile splitting and merging. The main motivation for these nodes is for use in tiled upscaling workflows. 2023-11-29 09:48:55 -05:00
ecd3dcd5df Merge branch 'main' into refactor/model-manager-3 2023-11-27 22:15:51 -05:00
a79e814c8d Merge branch 'main' into refactor/model-manager-3 2023-11-27 16:06:42 -05:00
3fe1bef5cd Merge branch 'main' into refactor/model-manager-3 2023-11-27 08:08:01 -05:00
dbd0151c0e make test file path comparison work on windows systems (another fix) 2023-11-26 18:52:25 -05:00
6da508f147 make test file path comparison work on windows systems 2023-11-26 18:40:22 -05:00
8ef596eac7 further changes for ruff 2023-11-26 17:13:31 -05:00
8f4f4d48d5 fix import unsorted import block issues in the tests 2023-11-26 13:37:47 -05:00
60eae7443a Merge branch 'main' into refactor/model-manager-3 2023-11-26 13:33:41 -05:00
8695ad6f59 all features implemented, docs updated, ready for review 2023-11-26 13:18:21 -05:00
dc5c452ef9 rename test/nodes to test/aa_nodes to ensure these tests run first 2023-11-26 09:38:30 -05:00
8aefe2cefe import_model and list_install_jobs router APIs written 2023-11-25 21:45:59 -05:00
ec510d34b5 fix model probing for controlnet checkpoint legacy config files 2023-11-25 15:53:22 -05:00
19baea1883 all backend features in place; config scanning is failing on controlnet 2023-11-24 19:37:46 -05:00
80bc9be3ab make install_path and register_path work; refactor model probing 2023-11-23 23:15:32 -05:00
8c7a7bc897 Merge branch 'main' into refactor/model-manager-3 2023-11-22 22:29:23 -05:00
4aab728590 move name/description logic into model_probe.py 2023-11-22 22:29:02 -05:00
9cf060115d Merge branch 'main' into refactor/model-manager-3 2023-11-22 22:28:31 -05:00
9ea3126118 start implementation of installer 2023-11-20 23:02:30 -05:00
6c56233edc define install abstract base class 2023-11-20 21:57:10 -05:00
418 changed files with 23152 additions and 219483 deletions

View File

@ -42,6 +42,21 @@ Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Merge Plan
<!--
A merge plan describes how this PR should be handled after it is approved.
Example merge plans:
- "This PR can be merged when approved"
- "This must be squash-merged when approved"
- "DO NOT MERGE - I will rebase and tidy commits before merging"
- "#dev-chat on discord needs to be advised of this change when it is merged"
A merge plan is particularly important for large PRs or PRs that touch the
database in any way.
-->
## Added/updated tests?
- [ ] Yes

View File

@ -21,13 +21,23 @@ jobs:
if: github.event.pull_request.draft == false
runs-on: ubuntu-22.04
steps:
- name: Setup Node 18
uses: actions/setup-node@v3
- name: Setup Node 20
uses: actions/setup-node@v4
with:
node-version: '18'
- uses: actions/checkout@v3
- run: 'yarn install --frozen-lockfile'
- run: 'yarn run lint:tsc'
- run: 'yarn run lint:madge'
- run: 'yarn run lint:eslint'
- run: 'yarn run lint:prettier'
node-version: '20'
- name: Checkout
uses: actions/checkout@v4
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: 8
- name: Install dependencies
run: 'pnpm install --prefer-frozen-lockfile'
- name: Typescript
run: 'pnpm run lint:tsc'
- name: Madge
run: 'pnpm run lint:madge'
- name: ESLint
run: 'pnpm run lint:eslint'
- name: Prettier
run: 'pnpm run lint:prettier'

View File

@ -15,19 +15,37 @@ jobs:
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
TWINE_NON_INTERACTIVE: 1
steps:
- name: checkout sources
uses: actions/checkout@v3
- name: Checkout sources
uses: actions/checkout@v4
- name: install deps
- name: Setup Node 20
uses: actions/setup-node@v4
with:
node-version: '20'
- name: Setup pnpm
uses: pnpm/action-setup@v2
with:
version: 8
- name: Install pnpm dependencies
working-directory: invokeai/frontend/web
run: 'pnpm install --prefer-frozen-lockfile'
- name: Build frontend
working-directory: invokeai/frontend/web
run: 'pnpm build'
- name: Install python deps
run: pip install --upgrade build twine
- name: build package
- name: Build wheel package
run: python3 -m build
- name: check distribution
- name: Check distribution
run: twine check dist/*
- name: check PyPI versions
- name: Check PyPI versions
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
run: |
pip install --upgrade requests
@ -36,6 +54,6 @@ jobs:
EXISTS=scripts.pypi_helper.local_on_pypi(); \
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
- name: upload package
- name: Upload package
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != ''
run: twine upload dist/*

3
.gitignore vendored
View File

@ -16,7 +16,7 @@ __pycache__/
.Python
build/
develop-eggs/
# dist/
dist/
downloads/
eggs/
.eggs/
@ -187,3 +187,4 @@ installer/install.bat
installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/

View File

@ -1,6 +1,20 @@
# simple Makefile with scripts that are otherwise hard to remember
# to use, run from the repo root `make <command>`
default: help
help:
@echo Developer commands:
@echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
ruff check . --fix
@ -18,4 +32,21 @@ mypy:
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
# (many files are ignored by the config, so this is useful for checking all files)
mypy-all:
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
# Build the frontend
frontend-build:
cd invokeai/frontend/web && pnpm build
# Run the frontend in dev mode
frontend-dev:
cd invokeai/frontend/web && pnpm dev
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh
# Tag the release
tag-release:
cd installer && ./tag_release.sh

View File

@ -125,8 +125,8 @@ and go to http://localhost:9090.
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
later versions are not supported.
Node.js also needs to be installed along with yarn (can be installed with
the command `npm install -g yarn` if needed)
Node.js also needs to be installed along with `pnpm` (can be installed with
the command `npm install -g pnpm` if needed)
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:

View File

@ -100,6 +100,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
@ -117,7 +119,7 @@ WORKDIR ${INVOKEAI_SRC}
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python3 -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R 1000:1000 ${INVOKEAI_ROOT}
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]

View File

@ -10,40 +10,36 @@ model. These are the:
tracks the type of the model, its provenance, and where it can be
found on disk.
* _ModelLoadServiceBase_ Responsible for loading a model from disk
into RAM and VRAM and getting it ready for inference.
* _DownloadQueueServiceBase_ A multithreaded downloader responsible
for downloading models from a remote source to disk. The download
queue has special methods for downloading repo_id folders from
Hugging Face, as well as discriminating among model versions in
Civitai, but can be used for arbitrary content.
* _ModelInstallServiceBase_ A service for installing models to
disk. It uses `DownloadQueueServiceBase` to download models and
their metadata, and `ModelRecordServiceBase` to store that
information. It is also responsible for managing the InvokeAI
`models` directory and its contents.
* _DownloadQueueServiceBase_ (**CURRENTLY UNDER DEVELOPMENT - NOT IMPLEMENTED**)
A multithreaded downloader responsible
for downloading models from a remote source to disk. The download
queue has special methods for downloading repo_id folders from
Hugging Face, as well as discriminating among model versions in
Civitai, but can be used for arbitrary content.
* _ModelLoadServiceBase_ (**CURRENTLY UNDER DEVELOPMENT - NOT IMPLEMENTED**)
Responsible for loading a model from disk
into RAM and VRAM and getting it ready for inference.
## Location of the Code
All four of these services can be found in
`invokeai/app/services` in the following directories:
* `invokeai/app/services/model_records/`
* `invokeai/app/services/downloads/`
* `invokeai/app/services/model_loader/`
* `invokeai/app/services/model_install/`
With the exception of the install service, each of these is a thin
shell around a corresponding implementation located in
`invokeai/backend/model_manager`. The main difference between the
modules found in app services and those in the backend folder is that
the former add support for event reporting and are more tied to the
needs of the InvokeAI API.
* `invokeai/app/services/model_loader/` (**under development**)
* `invokeai/app/services/downloads/`(**under development**)
Code related to the FastAPI web API can be found in
`invokeai/app/api/routers/models.py`.
`invokeai/app/api/routers/model_records.py`.
***
@ -165,10 +161,6 @@ of the fields, including `name`, `model_type` and `base_model`, are
shared between `ModelConfigBase` and `ModelBase`, and this is a
potential source of confusion.
** TO DO: ** The `ModelBase` code needs to be revised to reduce the
duplication of similar classes and to support using the `key` as the
primary model identifier.
## Reading and Writing Model Configuration Records
The `ModelRecordService` provides the ability to retrieve model
@ -362,7 +354,7 @@ model and pass its key to `get_model()`.
Several methods allow you to create and update stored model config
records.
#### add_model(key, config) -> ModelConfigBase:
#### add_model(key, config) -> AnyModelConfig:
Given a key and a configuration, this will add the model's
configuration record to the database. `config` can either be a subclass of
@ -386,27 +378,356 @@ fields to be updated. This will return an `AnyModelConfig` on success,
or raise `InvalidModelConfigException` or `UnknownModelException`
exceptions on failure.
***TO DO:*** Investigate why `update_model()` returns an
`AnyModelConfig` while `add_model()` returns a `ModelConfigBase`.
### rename_model(key, new_name) -> ModelConfigBase:
This is a special case of `update_model()` for the use case of
changing the model's name. It is broken out because there are cases in
which the InvokeAI application wants to synchronize the model's name
with its path in the `models` directory after changing the name, type
or base. However, when using the ModelRecordService directly, the call
is equivalent to:
```
store.rename_model(key, {'name': 'new_name'})
```
***TO DO:*** Investigate why `rename_model()` is returning a
`ModelConfigBase` while `update_model()` returns a `AnyModelConfig`.
***
## Model installation
The `ModelInstallService` class implements the
`ModelInstallServiceBase` abstract base class, and provides a one-stop
shop for all your model install needs. It provides the following
functionality:
- Registering a model config record for a model already located on the
local filesystem, without moving it or changing its path.
- Installing a model alreadiy located on the local filesystem, by
moving it into the InvokeAI root directory under the
`models` folder (or wherever config parameter `models_dir`
specifies).
- Probing of models to determine their type, base type and other key
information.
- Interface with the InvokeAI event bus to provide status updates on
the download, installation and registration process.
- Downloading a model from an arbitrary URL and installing it in
`models_dir` (_implementation pending_).
- Special handling for Civitai model URLs which allow the user to
paste in a model page's URL or download link (_implementation pending_).
- Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16. (_implementation pending_)
### Initializing the installer
A default installer is created at InvokeAI api startup time and stored
in `ApiDependencies.invoker.services.model_install` and can
also be retrieved from an invocation's `context` argument with
`context.services.model_install`.
In the event you wish to create a new installer, you may use the
following initialization pattern:
```
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.model_records import ModelRecordServiceSQL
from invokeai.app.services.model_install import ModelInstallService
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger.get_logger(config=config)
db = SqliteDatabase(config, logger)
store = ModelRecordServiceSQL(db)
installer = ModelInstallService(config, store)
```
The full form of `ModelInstallService()` takes the following
required parameters:
| **Argument** | **Type** | **Description** |
|------------------|------------------------------|------------------------------|
| `config` | InvokeAIAppConfig | InvokeAI app configuration object |
| `record_store` | ModelRecordServiceBase | Config record storage database |
| `event_bus` | EventServiceBase | Optional event bus to send download/install progress events to |
Once initialized, the installer will provide the following methods:
#### install_job = installer.import_model()
The `import_model()` method is the core of the installer. The
following illustrates basic usage:
```
from invokeai.app.services.model_install import (
LocalModelSource,
HFModelSource,
URLModelSource,
)
source1 = LocalModelSource(path='/opt/models/sushi.safetensors') # a local safetensors file
source2 = LocalModelSource(path='/opt/models/sushi_diffusers') # a local diffusers folder
source3 = HFModelSource(repo_id='runwayml/stable-diffusion-v1-5') # a repo_id
source4 = HFModelSource(repo_id='runwayml/stable-diffusion-v1-5', subfolder='vae') # a subfolder within a repo_id
source5 = HFModelSource(repo_id='runwayml/stable-diffusion-v1-5', variant='fp16') # a named variant of a HF model
source6 = URLModelSource(url='https://civitai.com/api/download/models/63006') # model located at a URL
source7 = URLModelSource(url='https://civitai.com/api/download/models/63006', access_token='letmein') # with an access token
for source in [source1, source2, source3, source4, source5, source6, source7]:
install_job = installer.install_model(source)
source2job = installer.wait_for_installs()
for source in sources:
job = source2job[source]
if job.status == "completed":
model_config = job.config_out
model_key = model_config.key
print(f"{source} installed as {model_key}")
elif job.status == "error":
print(f"{source}: {job.error_type}.\nStack trace:\n{job.error}")
```
As shown here, the `import_model()` method accepts a variety of
sources, including local safetensors files, local diffusers folders,
HuggingFace repo_ids with and without a subfolder designation,
Civitai model URLs and arbitrary URLs that point to checkpoint files
(but not to folders).
Each call to `import_model()` return a `ModelInstallJob` job,
an object which tracks the progress of the install.
If a remote model is requested, the model's files are downloaded in
parallel across a multiple set of threads using the download
queue. During the download process, the `ModelInstallJob` is updated
to provide status and progress information. After the files (if any)
are downloaded, the remainder of the installation runs in a single
serialized background thread. These are the model probing, file
copying, and config record database update steps.
Multiple install jobs can be queued up. You may block until all
install jobs are completed (or errored) by calling the
`wait_for_installs()` method as shown in the code
example. `wait_for_installs()` will return a `dict` that maps the
requested source to its job. This object can be interrogated
to determine its status. If the job errored out, then the error type
and details can be recovered from `job.error_type` and `job.error`.
The full list of arguments to `import_model()` is as follows:
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `source` | Union[str, Path, AnyHttpUrl] | | The source of the model, Path, URL or repo_id |
| `inplace` | bool | True | Leave a local model in its current location |
| `variant` | str | None | Desired variant, such as 'fp16' or 'onnx' (HuggingFace only) |
| `subfolder` | str | None | Repository subfolder (HuggingFace only) |
| `config` | Dict[str, Any] | None | Override all or a portion of model's probed attributes |
| `access_token` | str | None | Provide authorization information needed to download |
The `inplace` field controls how local model Paths are handled. If
True (the default), then the model is simply registered in its current
location by the installer's `ModelConfigRecordService`. Otherwise, a
copy of the model put into the location specified by the `models_dir`
application configuration parameter.
The `variant` field is used for HuggingFace repo_ids only. If
provided, the repo_id download handler will look for and download
tensors files that follow the convention for the selected variant:
- "fp16" will select files named "*model.fp16.{safetensors,bin}"
- "onnx" will select files ending with the suffix ".onnx"
- "openvino" will select files beginning with "openvino_model"
In the special case of the "fp16" variant, the installer will select
the 32-bit version of the files if the 16-bit version is unavailable.
`subfolder` is used for HuggingFace repo_ids only. If provided, the
model will be downloaded from the designated subfolder rather than the
top-level repository folder. If a subfolder is attached to the repo_id
using the format `repo_owner/repo_name:subfolder`, then the subfolder
specified by the repo_id will override the subfolder argument.
`config` can be used to override all or a portion of the configuration
attributes returned by the model prober. See the section below for
details.
`access_token` is passed to the download queue and used to access
repositories that require it.
#### Monitoring the install job process
When you create an install job with `import_model()`, it launches the
download and installation process in the background and returns a
`ModelInstallJob` object for monitoring the process.
The `ModelInstallJob` class has the following structure:
| **Attribute** | **Type** | **Description** |
|----------------|-----------------|------------------|
| `status` | `InstallStatus` | An enum of ["waiting", "running", "completed" and "error" |
| `config_in` | `dict` | Overriding configuration values provided by the caller |
| `config_out` | `AnyModelConfig`| After successful completion, contains the configuration record written to the database |
| `inplace` | `boolean` | True if the caller asked to install the model in place using its local path |
| `source` | `ModelSource` | The local path, remote URL or repo_id of the model to be installed |
| `local_path` | `Path` | If a remote model, holds the path of the model after it is downloaded; if a local model, same as `source` |
| `error_type` | `str` | Name of the exception that led to an error status |
| `error` | `str` | Traceback of the error |
If the `event_bus` argument was provided, events will also be
broadcast to the InvokeAI event bus. The events will appear on the bus
as an event of type `EventServiceBase.model_event`, a timestamp and
the following event names:
- `model_install_started`
The payload will contain the keys `timestamp` and `source`. The latter
indicates the requested model source for installation.
- `model_install_progress`
Emitted at regular intervals when downloading a remote model, the
payload will contain the keys `timestamp`, `source`, `current_bytes`
and `total_bytes`. These events are _not_ emitted when a local model
already on the filesystem is imported.
- `model_install_completed`
Issued once at the end of a successful installation. The payload will
contain the keys `timestamp`, `source` and `key`, where `key` is the
ID under which the model has been registered.
- `model_install_error`
Emitted if the installation process fails for some reason. The payload
will contain the keys `timestamp`, `source`, `error_type` and
`error`. `error_type` is a short message indicating the nature of the
error, and `error` is the long traceback to help debug the problem.
#### Model confguration and probing
The install service uses the `invokeai.backend.model_manager.probe`
module during import to determine the model's type, base type, and
other configuration parameters. Among other things, it assigns a
default name and description for the model based on probed
fields.
When downloading remote models is implemented, additional
configuration information, such as list of trigger terms, will be
retrieved from the HuggingFace and Civitai model repositories.
The probed values can be overriden by providing a dictionary in the
optional `config` argument passed to `import_model()`. You may provide
overriding values for any of the model's configuration
attributes. Here is an example of setting the
`SchedulerPredictionType` and `name` for an sd-2 model:
This is typically used to set
the model's name and description, but can also be used to overcome
cases in which automatic probing is unable to (correctly) determine
the model's attribute. The most common situation is the
`prediction_type` field for sd-2 (and rare sd-1) models. Here is an
example of how it works:
```
install_job = installer.import_model(
source='stabilityai/stable-diffusion-2-1',
variant='fp16',
config=dict(
prediction_type=SchedulerPredictionType('v_prediction')
name='stable diffusion 2 base model',
)
)
```
### Other installer methods
This section describes additional methods provided by the installer class.
#### jobs = installer.wait_for_installs()
Block until all pending installs are completed or errored and then
returns a list of completed jobs.
#### jobs = installer.list_jobs([source])
Return a list of all active and complete `ModelInstallJobs`. An
optional `source` argument allows you to filter the returned list by a
model source string pattern using a partial string match.
#### jobs = installer.get_job(source)
Return a list of `ModelInstallJob` corresponding to the indicated
model source.
#### installer.prune_jobs
Remove non-pending jobs (completed or errored) from the job list
returned by `list_jobs()` and `get_job()`.
#### installer.app_config, installer.record_store,
installer.event_bus
Properties that provide access to the installer's `InvokeAIAppConfig`,
`ModelRecordServiceBase` and `EventServiceBase` objects.
#### key = installer.register_path(model_path, config), key = installer.install_path(model_path, config)
These methods bypass the download queue and directly register or
install the model at the indicated path, returning the unique ID for
the installed model.
Both methods accept a Path object corresponding to a checkpoint or
diffusers folder, and an optional dict of config attributes to use to
override the values derived from model probing.
The difference between `register_path()` and `install_path()` is that
the former creates a model configuration record without changing the
location of the model in the filesystem. The latter makes a copy of
the model inside the InvokeAI models directory before registering
it.
#### installer.unregister(key)
This will remove the model config record for the model at key, and is
equivalent to `installer.record_store.del_model(key)`
#### installer.delete(key)
This is similar to `unregister()` but has the additional effect of
conditionally deleting the underlying model file(s) if they reside
within the InvokeAI models directory
#### installer.unconditionally_delete(key)
This method is similar to `unregister()`, but also unconditionally
deletes the corresponding model weights file(s), regardless of whether
they are inside or outside the InvokeAI models hierarchy.
#### List[str]=installer.scan_directory(scan_dir: Path, install: bool)
This method will recursively scan the directory indicated in
`scan_dir` for new models and either install them in the models
directory or register them in place, depending on the setting of
`install` (default False).
The return value is the list of keys of the new installed/registered
models.
#### installer.sync_to_config()
This method synchronizes models in the models directory and autoimport
directory to those in the `ModelConfigRecordService` database. New
models are registered and orphan models are unregistered.
#### installer.start(invoker)
The `start` method is called by the API intialization routines when
the API starts up. Its effect is to call `sync_to_config()` to
synchronize the model record store database with what's currently on
disk.
# The remainder of this documentation is provisional, pending implementation of the Download and Load services
## Let's get loaded, the lowdown on ModelLoadService
The `ModelLoadService` is responsible for loading a named model into
@ -863,351 +1184,3 @@ other resources that it might have been using.
This will start/pause/cancel all jobs that have been submitted to the
queue and have not yet reached a terminal state.
## Model installation
The `ModelInstallService` class implements the
`ModelInstallServiceBase` abstract base class, and provides a one-stop
shop for all your model install needs. It provides the following
functionality:
- Registering a model config record for a model already located on the
local filesystem, without moving it or changing its path.
- Installing a model alreadiy located on the local filesystem, by
moving it into the InvokeAI root directory under the
`models` folder (or wherever config parameter `models_dir`
specifies).
- Downloading a model from an arbitrary URL and installing it in
`models_dir`.
- Special handling for Civitai model URLs which allow the user to
paste in a model page's URL or download link. Any metadata provided
by Civitai, such as trigger terms, are captured and placed in the
model config record.
- Special handling for HuggingFace repo_ids to recursively download
the contents of the repository, paying attention to alternative
variants such as fp16.
- Probing of models to determine their type, base type and other key
information.
- Interface with the InvokeAI event bus to provide status updates on
the download, installation and registration process.
### Initializing the installer
A default installer is created at InvokeAI api startup time and stored
in `ApiDependencies.invoker.services.model_install_service` and can
also be retrieved from an invocation's `context` argument with
`context.services.model_install_service`.
In the event you wish to create a new installer, you may use the
following initialization pattern:
```
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download_manager import DownloadQueueServive
from invokeai.app.services.model_record_service import ModelRecordServiceBase
config = InvokeAI.get_config()
queue = DownloadQueueService()
store = ModelRecordServiceBase.open(config)
installer = ModelInstallService(config=config, queue=queue, store=store)
```
The full form of `ModelInstallService()` takes the following
parameters. Each parameter will default to a reasonable value, but it
is recommended that you set them explicitly as shown in the above example.
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `config` | InvokeAIAppConfig | Use system-wide config | InvokeAI app configuration object |
| `queue` | DownloadQueueServiceBase | Create a new download queue for internal use | Download queue |
| `store` | ModelRecordServiceBase | Use config to select the database to open | Config storage database |
| `event_bus` | EventServiceBase | None | An event bus to send download/install progress events to |
| `event_handlers` | List[DownloadEventHandler] | None | Event handlers for the download queue |
Note that if `store` is not provided, then the class will use
`ModelRecordServiceBase.open(config)` to select the database to use.
Once initialized, the installer will provide the following methods:
#### install_job = installer.install_model()
The `install_model()` method is the core of the installer. The
following illustrates basic usage:
```
sources = [
Path('/opt/models/sushi.safetensors'), # a local safetensors file
Path('/opt/models/sushi_diffusers/'), # a local diffusers folder
'runwayml/stable-diffusion-v1-5', # a repo_id
'runwayml/stable-diffusion-v1-5:vae', # a subfolder within a repo_id
'https://civitai.com/api/download/models/63006', # a civitai direct download link
'https://civitai.com/models/8765?modelVersionId=10638', # civitai model page
'https://s3.amazon.com/fjacks/sd-3.safetensors', # arbitrary URL
]
for source in sources:
install_job = installer.install_model(source)
source2key = installer.wait_for_installs()
for source in sources:
model_key = source2key[source]
print(f"{source} installed as {model_key}")
```
As shown here, the `install_model()` method accepts a variety of
sources, including local safetensors files, local diffusers folders,
HuggingFace repo_ids with and without a subfolder designation,
Civitai model URLs and arbitrary URLs that point to checkpoint files
(but not to folders).
Each call to `install_model()` will return a `ModelInstallJob` job, a
subclass of `DownloadJobBase`. The install job has additional
install-specific fields described in the next section.
Each install job will run in a series of background threads using
the object's download queue. You may block until all install jobs are
completed (or errored) by calling the `wait_for_installs()` method as
shown in the code example. `wait_for_installs()` will return a `dict`
that maps the requested source to the key of the installed model. In
the case that a model fails to download or install, its value in the
dict will be None. The actual cause of the error will be reported in
the corresponding job's `error` field.
Alternatively you may install event handlers and/or listen for events
on the InvokeAI event bus in order to monitor the progress of the
requested installs.
The full list of arguments to `model_install()` is as follows:
| **Argument** | **Type** | **Default** | **Description** |
|------------------|------------------------------|-------------|-------------------------------------------|
| `source` | Union[str, Path, AnyHttpUrl] | | The source of the model, Path, URL or repo_id |
| `inplace` | bool | True | Leave a local model in its current location |
| `variant` | str | None | Desired variant, such as 'fp16' or 'onnx' (HuggingFace only) |
| `subfolder` | str | None | Repository subfolder (HuggingFace only) |
| `probe_override` | Dict[str, Any] | None | Override all or a portion of model's probed attributes |
| `metadata` | ModelSourceMetadata | None | Provide metadata that will be added to model's config |
| `access_token` | str | None | Provide authorization information needed to download |
| `priority` | int | 10 | Download queue priority for the job |
The `inplace` field controls how local model Paths are handled. If
True (the default), then the model is simply registered in its current
location by the installer's `ModelConfigRecordService`. Otherwise, the
model will be moved into the location specified by the `models_dir`
application configuration parameter.
The `variant` field is used for HuggingFace repo_ids only. If
provided, the repo_id download handler will look for and download
tensors files that follow the convention for the selected variant:
- "fp16" will select files named "*model.fp16.{safetensors,bin}"
- "onnx" will select files ending with the suffix ".onnx"
- "openvino" will select files beginning with "openvino_model"
In the special case of the "fp16" variant, the installer will select
the 32-bit version of the files if the 16-bit version is unavailable.
`subfolder` is used for HuggingFace repo_ids only. If provided, the
model will be downloaded from the designated subfolder rather than the
top-level repository folder. If a subfolder is attached to the repo_id
using the format `repo_owner/repo_name:subfolder`, then the subfolder
specified by the repo_id will override the subfolder argument.
`probe_override` can be used to override all or a portion of the
attributes returned by the model prober. This can be used to overcome
cases in which automatic probing is unable to (correctly) determine
the model's attribute. The most common situation is the
`prediction_type` field for sd-2 (and rare sd-1) models. Here is an
example of how it works:
```
install_job = installer.install_model(
source='stabilityai/stable-diffusion-2-1',
variant='fp16',
probe_override=dict(
prediction_type=SchedulerPredictionType('v_prediction')
)
)
```
`metadata` allows you to attach custom metadata to the installed
model. See the next section for details.
`priority` and `access_token` are passed to the download queue and
have the same effect as they do for the DownloadQueueServiceBase.
#### Monitoring the install job process
When you create an install job with `model_install()`, events will be
passed to the list of `DownloadEventHandlers` provided at installer
initialization time. Event handlers can also be added to individual
model install jobs by calling their `add_handler()` method as
described earlier for the `DownloadQueueService`.
If the `event_bus` argument was provided, events will also be
broadcast to the InvokeAI event bus. The events will appear on the bus
as a singular event type named `model_event` with a payload of
`job`. You can then retrieve the job and check its status.
** TO DO: ** consider breaking `model_event` into
`model_install_started`, `model_install_completed`, etc. The event bus
features have not yet been tested with FastAPI/websockets, and it may
turn out that the job object is not serializable.
#### Model metadata and probing
The install service has special handling for HuggingFace and Civitai
URLs that capture metadata from the source and include it in the model
configuration record. For example, fetching the Civitai model 8765
will produce a config record similar to this (using YAML
representation):
```
5abc3ef8600b6c1cc058480eaae3091e:
path: sd-1/lora/to8contrast-1-5.safetensors
name: to8contrast-1-5
base_model: sd-1
model_type: lora
model_format: lycoris
key: 5abc3ef8600b6c1cc058480eaae3091e
hash: 5abc3ef8600b6c1cc058480eaae3091e
description: 'Trigger terms: to8contrast style'
author: theovercomer8
license: allowCommercialUse=Sell; allowDerivatives=True; allowNoCredit=True
source: https://civitai.com/models/8765?modelVersionId=10638
thumbnail_url: null
tags:
- model
- style
- portraits
```
For sources that do not provide model metadata, you can attach custom
fields by providing a `metadata` argument to `model_install()` using
an initialized `ModelSourceMetadata` object (available for import from
`model_install_service.py`):
```
from invokeai.app.services.model_install_service import ModelSourceMetadata
meta = ModelSourceMetadata(
name="my model",
author="Sushi Chef",
description="Highly customized model; trigger with 'sushi',"
license="mit",
thumbnail_url="http://s3.amazon.com/ljack/pics/sushi.png",
tags=list('sfw', 'food')
)
install_job = installer.install_model(
source='sushi_chef/model3',
variant='fp16',
metadata=meta,
)
```
It is not currently recommended to provide custom metadata when
installing from Civitai or HuggingFace source, as the metadata
provided by the source will overwrite the fields you provide. Instead,
after the model is installed you can use
`ModelRecordService.update_model()` to change the desired fields.
** TO DO: ** Change the logic so that the caller's metadata fields take
precedence over those provided by the source.
#### Other installer methods
This section describes additional, less-frequently-used attributes and
methods provided by the installer class.
##### installer.wait_for_installs()
This is equivalent to the `DownloadQueue` `join()` method. It will
block until all the active jobs in the install queue have reached a
terminal state (completed, errored or cancelled).
##### installer.queue, installer.store, installer.config
These attributes provide access to the `DownloadQueueServiceBase`,
`ModelConfigRecordServiceBase`, and `InvokeAIAppConfig` objects that
the installer uses.
For example, to temporarily pause all pending installations, you can
do this:
```
installer.queue.pause_all_jobs()
```
##### key = installer.register_path(model_path, overrides), key = installer.install_path(model_path, overrides)
These methods bypass the download queue and directly register or
install the model at the indicated path, returning the unique ID for
the installed model.
Both methods accept a Path object corresponding to a checkpoint or
diffusers folder, and an optional dict of attributes to use to
override the values derived from model probing.
The difference between `register_path()` and `install_path()` is that
the former will not move the model from its current position, while
the latter will move it into the `models_dir` hierarchy.
##### installer.unregister(key)
This will remove the model config record for the model at key, and is
equivalent to `installer.store.unregister(key)`
##### installer.delete(key)
This is similar to `unregister()` but has the additional effect of
deleting the underlying model file(s) -- even if they were outside the
`models_dir` directory!
##### installer.conditionally_delete(key)
This method will call `unregister()` if the model identified by `key`
is outside the `models_dir` hierarchy, and call `delete()` if the
model is inside.
#### List[str]=installer.scan_directory(scan_dir: Path, install: bool)
This method will recursively scan the directory indicated in
`scan_dir` for new models and either install them in the models
directory or register them in place, depending on the setting of
`install` (default False).
The return value is the list of keys of the new installed/registered
models.
#### installer.scan_models_directory()
This method scans the models directory for new models and registers
them in place. Models that are present in the
`ModelConfigRecordService` database whose paths are not found will be
unregistered.
#### installer.sync_to_config()
This method synchronizes models in the models directory and autoimport
directory to those in the `ModelConfigRecordService` database. New
models are registered and orphan models are unregistered.
#### hash=installer.hash(model_path)
This method is calls the fasthash algorithm on a model's Path
(either a file or a folder) to generate a unique ID based on the
contents of the model.
##### installer.start(invoker)
The `start` method is called by the API intialization routines when
the API starts up. Its effect is to call `sync_to_config()` to
synchronize the model record store database with what's currently on
disk.
This method should not ordinarily be called manually.

View File

@ -154,14 +154,16 @@ groups in `invokeia.yaml`:
### Web Server
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
| Setting | Default Value | Description |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
| `ssl_certfile` | null | Path to an SSL certificate file, used to enable HTTPS. |
| `ssl_keyfile` | null | Path to an SSL keyfile, if the key is not included in the certificate file. |
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].

View File

@ -293,6 +293,19 @@ manager, please follow these steps:
## Developer Install
!!! warning
InvokeAI uses a SQLite database. By running on `main`, you accept responsibility for your database. This
means making regular backups (especially before pulling) and/or fixing it yourself in the event that a
PR introduces a schema change.
If you don't need persistent backend storage, you can use an ephemeral in-memory database by setting
`use_memory_db: true` under `Path:` in your `invokeai.yaml` file.
If this is untenable, you should run the application via the official installer or a manual install of the
python package from pypi. These releases will not break your database.
If you have an interest in how InvokeAI works, or you would like to
add features or bugfixes, you are encouraged to install the source
code for InvokeAI. For this to work, you will need to install the
@ -388,3 +401,5 @@ environment variable INVOKEAI_ROOT to point to the installation directory.
Note that if you run into problems with the Conda installation, the InvokeAI
staff will **not** be able to help you out. Caveat Emptor!
[dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939

View File

@ -0,0 +1,10 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "b5973bb1-476b-451e-8cf4-98de86745a10");
script.setAttribute("data-project-name", "Invoke.AI");
script.setAttribute("data-project-color", "#11213C");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/113954515?s=280&v=4");
script.async = true;
document.head.appendChild(script);
});

View File

@ -14,6 +14,10 @@ To use a community workflow, download the the `.json` node graph file and load i
- Community Nodes
+ [Average Images](#average-images)
+ [Clean Image Artifacts After Cut](#clean-image-artifacts-after-cut)
+ [Close Color Mask](#close-color-mask)
+ [Clothing Mask](#clothing-mask)
+ [Contrast Limited Adaptive Histogram Equalization](#contrast-limited-adaptive-histogram-equalization)
+ [Depth Map from Wavefront OBJ](#depth-map-from-wavefront-obj)
+ [Film Grain](#film-grain)
+ [Generative Grammar-Based Prompt Nodes](#generative-grammar-based-prompt-nodes)
@ -22,16 +26,22 @@ To use a community workflow, download the the `.json` node graph file and load i
+ [Halftone](#halftone)
+ [Ideal Size](#ideal-size)
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack)
+ [Image Dominant Color](#image-dominant-color)
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
+ [Image Picker](#image-picker)
+ [Image Resize Plus](#image-resize-plus)
+ [Load Video Frame](#load-video-frame)
+ [Make 3D](#make-3d)
+ [Mask Operations](#mask-operations)
+ [Match Histogram](#match-histogram)
+ [Negative Image](#negative-image)
+ [Oobabooga](#oobabooga)
+ [Prompt Tools](#prompt-tools)
+ [Remote Image](#remote-image)
+ [Remove Background](#remove-background)
+ [Retroize](#retroize)
+ [Size Stepper Nodes](#size-stepper-nodes)
+ [Simple Skin Detection](#simple-skin-detection)
+ [Text font to Image](#text-font-to-image)
+ [Thresholding](#thresholding)
+ [Unsharp Mask](#unsharp-mask)
@ -48,6 +58,46 @@ To use a community workflow, download the the `.json` node graph file and load i
**Node Link:** https://github.com/JPPhoto/average-images-node
--------------------------------
### Clean Image Artifacts After Cut
Description: Removes residual artifacts after an image is separated from its background.
Node Link: https://github.com/VeyDlin/clean-artifact-after-cut-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clean-artifact-after-cut-node/master/.readme/node.png" width="500" />
--------------------------------
### Close Color Mask
Description: Generates a mask for images based on a closely matching color, useful for color-based selections.
Node Link: https://github.com/VeyDlin/close-color-mask-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/close-color-mask-node/master/.readme/node.png" width="500" />
--------------------------------
### Clothing Mask
Description: Employs a U2NET neural network trained for the segmentation of clothing items in images.
Node Link: https://github.com/VeyDlin/clothing-mask-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clothing-mask-node/master/.readme/node.png" width="500" />
--------------------------------
### Contrast Limited Adaptive Histogram Equalization
Description: Enhances local image contrast using adaptive histogram equalization with contrast limiting.
Node Link: https://github.com/VeyDlin/clahe-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/clahe-node/master/.readme/node.png" width="500" />
--------------------------------
### Depth Map from Wavefront OBJ
@ -164,6 +214,16 @@ This includes 15 Nodes:
</br><img src="https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg" width="500" />
--------------------------------
### Image Dominant Color
Description: Identifies and extracts the dominant color from an image using k-means clustering.
Node Link: https://github.com/VeyDlin/image-dominant-color-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-dominant-color-node/master/.readme/node.png" width="500" />
--------------------------------
### Image to Character Art Image Nodes
@ -185,6 +245,17 @@ This includes 15 Nodes:
**Node Link:** https://github.com/JPPhoto/image-picker-node
--------------------------------
### Image Resize Plus
Description: Provides various image resizing options such as fill, stretch, fit, center, and crop.
Node Link: https://github.com/VeyDlin/image-resize-plus-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-resize-plus-node/master/.readme/node.png" width="500" />
--------------------------------
### Load Video Frame
@ -209,6 +280,16 @@ This includes 15 Nodes:
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png" width="300" />
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png" width="300" />
--------------------------------
### Mask Operations
Description: Offers logical operations (OR, SUB, AND) for combining and manipulating image masks.
Node Link: https://github.com/VeyDlin/mask-operations-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/mask-operations-node/master/.readme/node.png" width="500" />
--------------------------------
### Match Histogram
@ -226,6 +307,16 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
<img src="https://github.com/skunkworxdark/match_histogram/assets/21961335/ed12f329-a0ef-444a-9bae-129ed60d6097" width="300" />
--------------------------------
### Negative Image
Description: Creates a negative version of an image, effective for visual effects and mask inversion.
Node Link: https://github.com/VeyDlin/negative-image-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/negative-image-node/master/.readme/node.png" width="500" />
--------------------------------
### Oobabooga
@ -289,6 +380,15 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Node Link:** https://github.com/fieldOfView/InvokeAI-remote_image
--------------------------------
### Remove Background
Description: An integration of the rembg package to remove backgrounds from images using multiple U2NET models.
Node Link: https://github.com/VeyDlin/remove-background-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/remove-background-node/master/.readme/node.png" width="500" />
--------------------------------
### Retroize
@ -301,6 +401,17 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
--------------------------------
### Simple Skin Detection
Description: Detects skin in images based on predefined color thresholds.
Node Link: https://github.com/VeyDlin/simple-skin-detection-node
View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/simple-skin-detection-node/master/.readme/node.png" width="500" />
--------------------------------
### Size Stepper Nodes
@ -386,6 +497,7 @@ See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/READ
<img src="https://github.com/skunkworxdark/XYGrid_nodes/blob/main/images/collage.png" width="300" />
--------------------------------
### Example Node Template

View File

@ -2,43 +2,72 @@
set -e
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function is_bin_in_path {
builtin type -P "$1" &>/dev/null
}
function git_show {
git show -s --format='%h %s' $1
}
cd "$(dirname "$0")"
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
echo
# Some machines only have `python3` in PATH, others have `python` - make an alias.
# We can use a function to approximate an alias within a non-interactive shell.
if ! is_bin_in_path python && is_bin_in_path python3; then
function python {
python3 "$@"
}
fi
if [[ -v "VIRTUAL_ENV" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo "A virtual environment is activated. Please deactivate it before proceeding".
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
exit -1
fi
VERSION=$(cd ..; python -c "from invokeai.version import __version__ as version; print(version)")
VERSION=$(
cd ..
python -c "from invokeai.version import __version__ as version; print(version)"
)
PATCH=""
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v3-latest"
echo Building installer for version $VERSION
echo "Be certain that you're in the 'installer' directory before continuing."
read -p "Press any key to continue, or CTRL-C to exit..."
echo -e "${BGREEN}HEAD${RESET}:"
git_show
echo
read -e -p "Tag this repo with '${VERSION}' and '${LATEST_TAG}'? [n]: " input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
# ---------------------- FRONTEND ----------------------
git push origin :refs/tags/$VERSION
if ! git tag -fa $VERSION ; then
echo "Existing/invalid tag"
exit -1
fi
pushd ../invokeai/frontend/web >/dev/null
echo
echo "Installing frontend dependencies..."
echo
pnpm i --frozen-lockfile
echo
echo "Building frontend..."
echo
pnpm build
popd
git push origin :refs/tags/$LATEST_TAG
git tag -fa $LATEST_TAG
# ---------------------- BACKEND ----------------------
echo "remember to push --tags!"
fi
# ----------------------
echo Building the wheel
echo
echo "Building wheel..."
echo
# install the 'build' package in the user site packages, if needed
# could be improved by using a temporary venv, but it's tiny and harmless
@ -46,12 +75,15 @@ if [[ $(python -c 'from importlib.util import find_spec; print(find_spec("build"
pip install --user build
fi
rm -r ../build
rm -rf ../build
python -m build --wheel --outdir dist/ ../.
# ----------------------
echo Building installer zip fles for InvokeAI $VERSION
echo
echo "Building installer zip files for InvokeAI ${VERSION}..."
echo
# get rid of any old ones
rm -f *.zip
@ -72,7 +104,7 @@ cp install.sh.in InvokeAI-Installer/install.sh
chmod a+x InvokeAI-Installer/install.sh
# Windows
perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in > InvokeAI-Installer/install.bat
perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in >InvokeAI-Installer/install.bat
cp WinLongPathsEnabled.reg InvokeAI-Installer/
# Zip everything up

View File

@ -244,9 +244,9 @@ class InvokeAiInstance:
"numpy~=1.24.0", # choose versions that won't be uninstalled during phase 2
"urllib3~=1.26.0",
"requests~=2.28.0",
"torch==2.1.0",
"torch==2.1.1",
"torchmetrics==0.11.4",
"torchvision>=0.14.1",
"torchvision>=0.16.1",
"--force-reinstall",
"--find-links" if find_links is not None else None,
find_links,

71
installer/tag_release.sh Executable file
View File

@ -0,0 +1,71 @@
#!/bin/bash
set -e
BCYAN="\e[1;36m"
BYELLOW="\e[1;33m"
BGREEN="\e[1;32m"
BRED="\e[1;31m"
RED="\e[31m"
RESET="\e[0m"
function does_tag_exist {
git rev-parse --quiet --verify "refs/tags/$1" >/dev/null
}
function git_show_ref {
git show-ref --dereference $1 --abbrev 7
}
function git_show {
git show -s --format='%h %s' $1
}
VERSION=$(
cd ..
python -c "from invokeai.version import __version__ as version; print(version)"
)
PATCH=""
MAJOR_VERSION=$(echo $VERSION | sed 's/\..*$//')
VERSION="v${VERSION}${PATCH}"
LATEST_TAG="v${MAJOR_VERSION}-latest"
if does_tag_exist $VERSION; then
echo -e "${BCYAN}${VERSION}${RESET} already exists:"
git_show_ref tags/$VERSION
echo
fi
if does_tag_exist $LATEST_TAG; then
echo -e "${BCYAN}${LATEST_TAG}${RESET} already exists:"
git_show_ref tags/$LATEST_TAG
echo
fi
echo -e "${BGREEN}HEAD${RESET}:"
git_show
echo
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} and ${BCYAN}${LATEST_TAG}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on remote${RESET}? "
read -e -p 'y/n [n]: ' input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
echo
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on remote..."
git push --delete origin $VERSION
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} locally..."
if ! git tag -fa $VERSION; then
echo "Existing/invalid tag"
exit -1
fi
echo -e "Deleting ${BCYAN}${LATEST_TAG}${RESET} tag on remote..."
git push --delete origin $LATEST_TAG
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${LATEST_TAG}${RESET} locally..."
git tag -fa $LATEST_TAG
echo -e "Pushing updated tags to remote..."
git push origin --tags
fi
exit 0

View File

@ -2,6 +2,7 @@
from logging import Logger
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
@ -22,6 +23,7 @@ from ..services.invoker import Invoker
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
from ..services.model_install import ModelInstallService
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
@ -29,7 +31,6 @@ from ..services.session_processor.session_processor_default import DefaultSessio
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.shared.default_graphs import create_system_graphs
from ..services.shared.graph import GraphExecutionState, LibraryGraph
from ..services.shared.sqlite.sqlite_database import SqliteDatabase
from ..services.urls.urls_default import LocalUrlService
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from .events import FastAPIEventService
@ -66,8 +67,9 @@ class ApiDependencies:
logger.debug(f"Internet connectivity is {config.internet_available}")
output_folder = config.output_path
image_files = DiskImageFileStorage(f"{output_folder}/images")
db = SqliteDatabase(config, logger)
db = init_db(config=config, logger=logger, image_files=image_files)
configuration = config
logger = logger
@ -79,13 +81,15 @@ class ApiDependencies:
events = FastAPIEventService(event_handler_id)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
graph_library = SqliteItemStorage[LibraryGraph](db=db, table_name="graphs")
image_files = DiskImageFileStorage(f"{output_folder}/images")
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
model_manager = ModelManagerService(config, logger)
model_record_service = ModelRecordServiceSQL(db=db)
model_install_service = ModelInstallService(
app_config=config, record_store=model_record_service, event_bus=events
)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
processor = DefaultInvocationProcessor()
@ -112,6 +116,7 @@ class ApiDependencies:
logger=logger,
model_manager=model_manager,
model_records=model_record_service,
model_install=model_install_service,
names=names,
performance_statistics=performance_statistics,
processor=processor,

View File

@ -4,7 +4,7 @@
from hashlib import sha1
from random import randbytes
from typing import List, Optional
from typing import Any, Dict, List, Optional
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
@ -12,6 +12,7 @@ from pydantic import BaseModel, ConfigDict
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
@ -25,7 +26,7 @@ from invokeai.backend.model_manager.config import (
from ..dependencies import ApiDependencies
model_records_router = APIRouter(prefix="/v1/model/record", tags=["models"])
model_records_router = APIRouter(prefix="/v1/model/record", tags=["model_manager_v2"])
class ModelsList(BaseModel):
@ -43,15 +44,25 @@ class ModelsList(BaseModel):
async def list_model_records(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
model_name: Optional[str] = Query(default=None, description="Exact match on the name of the model"),
model_format: Optional[str] = Query(
default=None, description="Exact match on the format of the model (e.g. 'diffusers')"
),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_records
found_models: list[AnyModelConfig] = []
if base_models:
for base_model in base_models:
found_models.extend(record_store.search_by_attr(base_model=base_model, model_type=model_type))
found_models.extend(
record_store.search_by_attr(
base_model=base_model, model_type=model_type, model_name=model_name, model_format=model_format
)
)
else:
found_models.extend(record_store.search_by_attr(model_type=model_type))
found_models.extend(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
return ModelsList(models=found_models)
@ -117,12 +128,17 @@ async def update_model_record(
async def del_model_record(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""Delete Model"""
"""
Delete model record from database.
The configuration record will be removed. The corresponding weights files will be
deleted as well if they reside within the InvokeAI "models" directory.
"""
logger = ApiDependencies.invoker.services.logger
try:
record_store = ApiDependencies.invoker.services.model_records
record_store.del_model(key)
installer = ApiDependencies.invoker.services.model_install
installer.delete(key)
logger.info(f"Deleted model: {key}")
return Response(status_code=204)
except UnknownModelException as e:
@ -162,3 +178,145 @@ async def add_model_record(
# now fetch it out
return record_store.get_model(config.key)
@model_records_router.post(
"/import",
operation_id="import_model_record",
responses={
201: {"description": "The model imported successfully"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
)
async def import_model(
source: ModelSource,
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
),
) -> ModelInstallJob:
"""Add a model using its local path, repo_id, or remote URL.
Models will be downloaded, probed, configured and installed in a
series of background threads. The return object has `status` attribute
that can be used to monitor progress.
The source object is a discriminated Union of LocalModelSource,
HFModelSource and URLModelSource. Set the "type" field to the
appropriate value:
* To install a local path using LocalModelSource, pass a source of form:
`{
"type": "local",
"path": "/path/to/model",
"inplace": false
}`
The "inplace" flag, if true, will register the model in place in its
current filesystem location. Otherwise, the model will be copied
into the InvokeAI models directory.
* To install a HuggingFace repo_id using HFModelSource, pass a source of form:
`{
"type": "hf",
"repo_id": "stabilityai/stable-diffusion-2.0",
"variant": "fp16",
"subfolder": "vae",
"access_token": "f5820a918aaf01"
}`
The `variant`, `subfolder` and `access_token` fields are optional.
* To install a remote model using an arbitrary URL, pass:
`{
"type": "url",
"url": "http://www.civitai.com/models/123456",
"access_token": "f5820a918aaf01"
}`
The `access_token` field is optonal
The model's configuration record will be probed and filled in
automatically. To override the default guesses, pass "metadata"
with a Dict containing the attributes you wish to override.
Installation occurs in the background. Either use list_model_install_jobs()
to poll for completion, or listen on the event bus for the following events:
"model_install_started"
"model_install_completed"
"model_install_error"
On successful completion, the event's payload will contain the field "key"
containing the installed ID of the model. On an error, the event's payload
will contain the fields "error_type" and "error" describing the nature of the
error and its traceback, respectively.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_install
result: ModelInstallJob = installer.import_model(
source=source,
config=config,
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=424, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return result
@model_records_router.get(
"/import",
operation_id="list_model_install_jobs",
)
async def list_model_install_jobs() -> List[ModelInstallJob]:
"""
Return list of model install jobs.
If the optional 'source' argument is provided, then the list will be filtered
for partial string matches against the install source.
"""
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_install.list_jobs()
return jobs
@model_records_router.patch(
"/import",
operation_id="prune_model_install_jobs",
responses={
204: {"description": "All completed and errored jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_model_install_jobs() -> Response:
"""
Prune all completed and errored jobs from the install job list.
"""
ApiDependencies.invoker.services.model_install.prune_jobs()
return Response(status_code=204)
@model_records_router.patch(
"/sync",
operation_id="sync_models_to_config",
responses={
204: {"description": "Model config record database resynced with files on disk"},
400: {"description": "Bad request"},
},
)
async def sync_models_to_config() -> Response:
"""
Traverse the models and autoimport directories. Model files without a corresponding
record in the database are added. Orphan records without a models file are deleted.
"""
ApiDependencies.invoker.services.model_install.sync_to_config()
return Response(status_code=204)

View File

@ -20,6 +20,7 @@ class SocketIO:
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)
self.__sio.on("unsubscribe_queue", handler=self._handle_unsub_queue)
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event)
local_handler.register(event_name=EventServiceBase.model_event, _func=self._handle_model_event)
async def _handle_queue_event(self, event: Event):
await self.__sio.emit(
@ -28,10 +29,13 @@ class SocketIO:
room=event[1]["data"]["queue_id"],
)
async def _handle_sub_queue(self, sid, data, *args, **kwargs):
async def _handle_sub_queue(self, sid, data, *args, **kwargs) -> None:
if "queue_id" in data:
await self.__sio.enter_room(sid, data["queue_id"])
async def _handle_unsub_queue(self, sid, data, *args, **kwargs):
async def _handle_unsub_queue(self, sid, data, *args, **kwargs) -> None:
if "queue_id" in data:
await self.__sio.leave_room(sid, data["queue_id"])
async def _handle_model_event(self, event: Event) -> None:
await self.__sio.emit(event=event[1]["event"], data=event[1]["data"])

View File

@ -219,18 +219,19 @@ def overridden_redoc() -> HTMLResponse:
web_root_path = Path(list(web_dir.__path__)[0])
# Only serve the UI if we it has a build
if (web_root_path / "dist").exists():
# Cannot add headers to StaticFiles, so we must serve index.html with a custom route
# Add cache-control: no-store header to prevent caching of index.html, which leads to broken UIs at release
@app.get("/", include_in_schema=False, name="ui_root")
def get_index() -> FileResponse:
return FileResponse(Path(web_root_path, "dist/index.html"), headers={"Cache-Control": "no-store"})
# Cannot add headers to StaticFiles, so we must serve index.html with a custom route
# Add cache-control: no-store header to prevent caching of index.html, which leads to broken UIs at release
@app.get("/", include_in_schema=False, name="ui_root")
def get_index() -> FileResponse:
return FileResponse(Path(web_root_path, "dist/index.html"), headers={"Cache-Control": "no-store"})
# # Must mount *after* the other routes else it borks em
app.mount("/assets", StaticFiles(directory=Path(web_root_path, "dist/assets/")), name="assets")
app.mount("/locales", StaticFiles(directory=Path(web_root_path, "dist/locales/")), name="locales")
# # Must mount *after* the other routes else it borks em
app.mount("/static", StaticFiles(directory=Path(web_root_path, "static/")), name="static") # docs favicon is in here
app.mount("/assets", StaticFiles(directory=Path(web_root_path, "dist/assets/")), name="assets")
app.mount("/locales", StaticFiles(directory=Path(web_root_path, "dist/locales/")), name="locales")
def invoke_api() -> None:
@ -271,6 +272,8 @@ def invoke_api() -> None:
port=port,
loop="asyncio",
log_level=app_config.log_level,
ssl_certfile=app_config.ssl_certfile,
ssl_keyfile=app_config.ssl_keyfile,
)
server = uvicorn.Server(config)

View File

@ -4,6 +4,7 @@ from __future__ import annotations
import inspect
import re
import warnings
from abc import ABC, abstractmethod
from enum import Enum
from inspect import signature
@ -38,6 +39,19 @@ class InvalidFieldError(TypeError):
pass
class Classification(str, Enum, metaclass=MetaEnum):
"""
The classification of an Invocation.
- `Stable`: The invocation, including its inputs/outputs and internal logic, is stable. You may build workflows with it, having confidence that they will not break because of a change in this invocation.
- `Beta`: The invocation is not yet stable, but is planned to be stable in the future. Workflows built around this invocation may break, but we are committed to supporting this invocation long-term.
- `Prototype`: The invocation is not yet stable and may be removed from the application at any time. Workflows built around this invocation may break, and we are *not* committed to supporting this invocation.
"""
Stable = "stable"
Beta = "beta"
Prototype = "prototype"
class Input(str, Enum, metaclass=MetaEnum):
"""
The type of input a field accepts.
@ -438,6 +452,7 @@ class UIConfigBase(BaseModel):
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
)
node_pack: Optional[str] = Field(default=None, description="Whether or not this is a custom node")
classification: Classification = Field(default=Classification.Stable, description="The node's classification")
model_config = ConfigDict(
validate_assignment=True,
@ -606,6 +621,7 @@ class BaseInvocation(ABC, BaseModel):
schema["category"] = uiconfig.category
if uiconfig.node_pack is not None:
schema["node_pack"] = uiconfig.node_pack
schema["classification"] = uiconfig.classification
schema["version"] = uiconfig.version
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = []
@ -709,8 +725,10 @@ class _Model(BaseModel):
pass
# Get all pydantic model attrs, methods, etc
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=DeprecationWarning)
# Get all pydantic model attrs, methods, etc
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None:
@ -779,6 +797,7 @@ def invocation(
category: Optional[str] = None,
version: Optional[str] = None,
use_cache: Optional[bool] = True,
classification: Classification = Classification.Stable,
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
"""
Registers an invocation.
@ -789,6 +808,7 @@ def invocation(
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
:param Classification classification: The classification of the invocation. Defaults to FeatureClassification.Stable. Use Beta or Prototype if the invocation is unstable.
"""
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
@ -809,6 +829,7 @@ def invocation(
cls.UIConfig.title = title
cls.UIConfig.tags = tags
cls.UIConfig.category = category
cls.UIConfig.classification = classification
# Grab the node pack's name from the module name, if it's a custom node
is_custom_node = cls.__module__.rsplit(".", 1)[0] == "invokeai.app.invocations"

View File

@ -13,7 +13,15 @@ from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from .baseinvocation import BaseInvocation, Input, InputField, InvocationContext, WithMetadata, invocation
from .baseinvocation import (
BaseInvocation,
Classification,
Input,
InputField,
InvocationContext,
WithMetadata,
invocation,
)
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0")
@ -113,11 +121,11 @@ class ImageCropInvocation(BaseInvocation, WithMetadata):
@invocation(
"img_paste",
title="Paste Image",
tags=["image", "paste"],
invocation_type="img_pad_crop",
title="Center Pad or Crop Image",
category="image",
version="1.2.0",
tags=["image", "pad", "crop"],
version="1.0.0",
)
class CenterPadCropInvocation(BaseInvocation):
"""Pad or crop an image's sides from the center by specified pixels. Positive values are outside of the image."""
@ -168,11 +176,11 @@ class CenterPadCropInvocation(BaseInvocation):
@invocation(
invocation_type="img_pad_crop",
title="Center Pad or Crop Image",
"img_paste",
title="Paste Image",
tags=["image", "paste"],
category="image",
tags=["image", "pad", "crop"],
version="1.0.0",
version="1.2.0",
)
class ImagePasteInvocation(BaseInvocation, WithMetadata):
"""Pastes an image into another image."""
@ -421,6 +429,64 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata):
)
@invocation(
"unsharp_mask",
title="Unsharp Mask",
tags=["image", "unsharp_mask"],
category="image",
version="1.2.0",
classification=Classification.Beta,
)
class UnsharpMaskInvocation(BaseInvocation, WithMetadata):
"""Applies an unsharp mask filter to an image"""
image: ImageField = InputField(description="The image to use")
radius: float = InputField(gt=0, description="Unsharp mask radius", default=2)
strength: float = InputField(ge=0, description="Unsharp mask strength", default=50)
def pil_from_array(self, arr):
return Image.fromarray((arr * 255).astype("uint8"))
def array_from_pil(self, img):
return numpy.array(img) / 255
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
mode = image.mode
alpha_channel = image.getchannel("A") if mode == "RGBA" else None
image = image.convert("RGB")
image_blurred = self.array_from_pil(image.filter(ImageFilter.GaussianBlur(radius=self.radius)))
image = self.array_from_pil(image)
image += (image - image_blurred) * (self.strength / 100.0)
image = numpy.clip(image, 0, 1)
image = self.pil_from_array(image)
image = image.convert(mode)
# Make the image RGBA if we had a source alpha channel
if alpha_channel is not None:
image.putalpha(alpha_channel)
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image.width,
height=image.height,
)
PIL_RESAMPLING_MODES = Literal[
"nearest",
"box",

View File

@ -1,3 +1,5 @@
from typing import Literal
import numpy as np
from PIL import Image
from pydantic import BaseModel
@ -5,6 +7,8 @@ from pydantic import BaseModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
Input,
InputField,
InvocationContext,
OutputField,
@ -14,7 +18,13 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending
from invokeai.backend.tiles.tiles import (
calc_tiles_even_split,
calc_tiles_min_overlap,
calc_tiles_with_overlap,
merge_tiles_with_linear_blending,
merge_tiles_with_seam_blending,
)
from invokeai.backend.tiles.utils import Tile
@ -28,7 +38,14 @@ class CalculateImageTilesOutput(BaseInvocationOutput):
tiles: list[Tile] = OutputField(description="The tiles coordinates that cover a particular image shape.")
@invocation("calculate_image_tiles", title="Calculate Image Tiles", tags=["tiles"], category="tiles", version="1.0.0")
@invocation(
"calculate_image_tiles",
title="Calculate Image Tiles",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class CalculateImageTilesInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
@ -55,6 +72,79 @@ class CalculateImageTilesInvocation(BaseInvocation):
return CalculateImageTilesOutput(tiles=tiles)
@invocation(
"calculate_image_tiles_even_split",
title="Calculate Image Tiles Even Split",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
num_tiles_x: int = InputField(
default=2,
ge=1,
description="Number of tiles to divide image into on the x axis",
)
num_tiles_y: int = InputField(
default=2,
ge=1,
description="Number of tiles to divide image into on the y axis",
)
overlap_fraction: float = InputField(
default=0.25,
ge=0,
lt=1,
description="Overlap between adjacent tiles as a fraction of the tile's dimensions (0-1)",
)
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_even_split(
image_height=self.image_height,
image_width=self.image_width,
num_tiles_x=self.num_tiles_x,
num_tiles_y=self.num_tiles_y,
overlap_fraction=self.overlap_fraction,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation(
"calculate_image_tiles_min_overlap",
title="Calculate Image Tiles Minimum Overlap",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class CalculateImageTilesMinimumOverlapInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
tile_width: int = InputField(ge=1, default=576, description="The tile width, in pixels.")
tile_height: int = InputField(ge=1, default=576, description="The tile height, in pixels.")
min_overlap: int = InputField(default=128, ge=0, description="Minimum overlap between adjacent tiles, in pixels.")
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_min_overlap(
image_height=self.image_height,
image_width=self.image_width,
tile_height=self.tile_height,
tile_width=self.tile_width,
min_overlap=self.min_overlap,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation_output("tile_to_properties_output")
class TileToPropertiesOutput(BaseInvocationOutput):
coords_left: int = OutputField(description="Left coordinate of the tile relative to its parent image.")
@ -76,7 +166,14 @@ class TileToPropertiesOutput(BaseInvocationOutput):
overlap_right: int = OutputField(description="Overlap between this tile and its right neighbor.")
@invocation("tile_to_properties", title="Tile to Properties", tags=["tiles"], category="tiles", version="1.0.0")
@invocation(
"tile_to_properties",
title="Tile to Properties",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class TileToPropertiesInvocation(BaseInvocation):
"""Split a Tile into its individual properties."""
@ -102,7 +199,14 @@ class PairTileImageOutput(BaseInvocationOutput):
tile_with_image: TileWithImage = OutputField(description="A tile description with its corresponding image.")
@invocation("pair_tile_image", title="Pair Tile with Image", tags=["tiles"], category="tiles", version="1.0.0")
@invocation(
"pair_tile_image",
title="Pair Tile with Image",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class PairTileImageInvocation(BaseInvocation):
"""Pair an image with its tile properties."""
@ -121,13 +225,29 @@ class PairTileImageInvocation(BaseInvocation):
)
@invocation("merge_tiles_to_image", title="Merge Tiles to Image", tags=["tiles"], category="tiles", version="1.1.0")
BLEND_MODES = Literal["Linear", "Seam"]
@invocation(
"merge_tiles_to_image",
title="Merge Tiles to Image",
tags=["tiles"],
category="tiles",
version="1.1.0",
classification=Classification.Beta,
)
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
"""Merge multiple tile images into a single image."""
# Inputs
tiles_with_images: list[TileWithImage] = InputField(description="A list of tile images with tile properties.")
blend_mode: BLEND_MODES = InputField(
default="Seam",
description="blending type Linear or Seam",
input=Input.Direct,
)
blend_amount: int = InputField(
default=32,
ge=0,
description="The amount to blend adjacent tiles in pixels. Must be <= the amount of overlap between adjacent tiles.",
)
@ -157,10 +277,18 @@ class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
channels = tile_np_images[0].shape[-1]
dtype = tile_np_images[0].dtype
np_image = np.zeros(shape=(height, width, channels), dtype=dtype)
if self.blend_mode == "Linear":
merge_tiles_with_linear_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
elif self.blend_mode == "Seam":
merge_tiles_with_seam_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
else:
raise ValueError(f"Unsupported blend mode: '{self.blend_mode}'.")
merge_tiles_with_linear_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
# Convert into a PIL image and save
pil_image = Image.fromarray(np_image)
image_dto = context.services.images.create(

View File

@ -20,63 +20,6 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
self._conn = db.conn
self._cursor = self._conn.cursor()
try:
self._lock.acquire()
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `board_images` junction table."""
# Create the `board_images` junction table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS board_images (
board_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between boards and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (board_id) REFERENCES boards (board_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
)
# Add index for board id
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id ON board_images (board_id);
"""
)
# Add index for board id, sorted by created_at
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id_created_at ON board_images (board_id, created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_board_images_updated_at
AFTER UPDATE
ON board_images FOR EACH ROW
BEGIN
UPDATE board_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE board_id = old.board_id AND image_name = old.image_name;
END;
"""
)
def add_image_to_board(
self,
board_id: str,

View File

@ -28,52 +28,6 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
self._conn = db.conn
self._cursor = self._conn.cursor()
try:
self._lock.acquire()
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `boards` table and `board_images` junction table."""
# Create the `boards` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS boards (
board_id TEXT NOT NULL PRIMARY KEY,
board_name TEXT NOT NULL,
cover_image_name TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
FOREIGN KEY (cover_image_name) REFERENCES images (image_name) ON DELETE SET NULL
);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_boards_created_at ON boards (created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_boards_updated_at
AFTER UPDATE
ON boards FOR EACH ROW
BEGIN
UPDATE boards SET updated_at = current_timestamp
WHERE board_id = old.board_id;
END;
"""
)
def delete(self, board_id: str) -> None:
try:
self._lock.acquire()

View File

@ -1,6 +1,5 @@
"""
Init file for InvokeAI configure package
"""
"""Init file for InvokeAI configure package."""
from .config_base import PagingArgumentParser # noqa F401
from .config_default import InvokeAIAppConfig, get_invokeai_config # noqa F401
from .config_default import InvokeAIAppConfig, get_invokeai_config
__all__ = ["InvokeAIAppConfig", "get_invokeai_config"]

View File

@ -173,7 +173,7 @@ from __future__ import annotations
import os
from pathlib import Path
from typing import ClassVar, Dict, List, Literal, Optional, Union, get_type_hints
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union, get_type_hints
from omegaconf import DictConfig, OmegaConf
from pydantic import Field, TypeAdapter
@ -221,6 +221,9 @@ class InvokeAIAppConfig(InvokeAISettings):
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", json_schema_extra=Categories.WebServer)
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", json_schema_extra=Categories.WebServer)
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", json_schema_extra=Categories.WebServer)
# SSL options correspond to https://www.uvicorn.org/settings/#https
ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file (for HTTPS)", json_schema_extra=Categories.WebServer)
ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file", json_schema_extra=Categories.WebServer)
# FEATURES
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", json_schema_extra=Categories.Features)
@ -334,7 +337,7 @@ class InvokeAIAppConfig(InvokeAISettings):
)
@classmethod
def get_config(cls, **kwargs) -> InvokeAIAppConfig:
def get_config(cls, **kwargs: Dict[str, Any]) -> InvokeAIAppConfig:
"""Return a singleton InvokeAIAppConfig configuration object."""
if (
cls.singleton_config is None
@ -383,17 +386,17 @@ class InvokeAIAppConfig(InvokeAISettings):
return db_dir / DB_FILE
@property
def model_conf_path(self) -> Optional[Path]:
def model_conf_path(self) -> Path:
"""Path to models configuration file."""
return self._resolve(self.conf_path)
@property
def legacy_conf_path(self) -> Optional[Path]:
def legacy_conf_path(self) -> Path:
"""Path to directory of legacy configuration files (e.g. v1-inference.yaml)."""
return self._resolve(self.legacy_conf_dir)
@property
def models_path(self) -> Optional[Path]:
def models_path(self) -> Path:
"""Path to the models directory."""
return self._resolve(self.models_dir)

View File

@ -0,0 +1 @@
from .events_base import EventServiceBase # noqa F401

View File

@ -1,5 +1,6 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Optional
from invokeai.app.services.invocation_processor.invocation_processor_common import ProgressImage
@ -16,6 +17,7 @@ from invokeai.backend.model_management.models.base import BaseModelType, ModelTy
class EventServiceBase:
queue_event: str = "queue_event"
model_event: str = "model_event"
"""Basic event bus, to have an empty stand-in when not needed"""
@ -30,6 +32,13 @@ class EventServiceBase:
payload={"event": event_name, "data": payload},
)
def __emit_model_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.model_event,
payload={"event": event_name, "data": payload},
)
# Define events here for every event in the system.
# This will make them easier to integrate until we find a schema generator.
def emit_generator_progress(
@ -313,3 +322,73 @@ class EventServiceBase:
event_name="queue_cleared",
payload={"queue_id": queue_id},
)
def emit_model_install_started(self, source: str) -> None:
"""
Emitted when an install job is started.
:param source: Source of the model; local path, repo_id or url
"""
self.__emit_model_event(
event_name="model_install_started",
payload={"source": source},
)
def emit_model_install_completed(self, source: str, key: str) -> None:
"""
Emitted when an install job is completed successfully.
:param source: Source of the model; local path, repo_id or url
:param key: Model config record key
"""
self.__emit_model_event(
event_name="model_install_completed",
payload={
"source": source,
"key": key,
},
)
def emit_model_install_progress(
self,
source: str,
current_bytes: int,
total_bytes: int,
) -> None:
"""
Emitted while the install job is in progress.
(Downloaded models only)
:param source: Source of the model
:param current_bytes: Number of bytes downloaded so far
:param total_bytes: Total bytes to download
"""
self.__emit_model_event(
event_name="model_install_progress",
payload={
"source": source,
"current_bytes": int,
"total_bytes": int,
},
)
def emit_model_install_error(
self,
source: str,
error_type: str,
error: str,
) -> None:
"""
Emitted when an install job encounters an exception.
:param source: Source of the model
:param exception: The exception that raised the error
"""
self.__emit_model_event(
event_name="model_install_error",
payload={
"source": source,
"error_type": error_type,
"error": error,
},
)

View File

@ -32,101 +32,6 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
self._conn = db.conn
self._cursor = self._conn.cursor()
try:
self._lock.acquire()
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `images` table."""
# Create the `images` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS images (
image_name TEXT NOT NULL PRIMARY KEY,
-- This is an enum in python, unrestricted string here for flexibility
image_origin TEXT NOT NULL,
-- This is an enum in python, unrestricted string here for flexibility
image_category TEXT NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
session_id TEXT,
node_id TEXT,
metadata TEXT,
is_intermediate BOOLEAN DEFAULT FALSE,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME
);
"""
)
self._cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in self._cursor.fetchall()]
if "starred" not in columns:
self._cursor.execute(
"""--sql
ALTER TABLE images ADD COLUMN starred BOOLEAN DEFAULT FALSE;
"""
)
# Create the `images` table indices.
self._cursor.execute(
"""--sql
CREATE UNIQUE INDEX IF NOT EXISTS idx_images_image_name ON images(image_name);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_origin ON images(image_origin);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_category ON images(image_category);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_created_at ON images(created_at);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_starred ON images(starred);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_images_updated_at
AFTER UPDATE
ON images FOR EACH ROW
BEGIN
UPDATE images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE image_name = old.image_name;
END;
"""
)
self._cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in self._cursor.fetchall()]
if "has_workflow" not in columns:
self._cursor.execute(
"""--sql
ALTER TABLE images
ADD COLUMN has_workflow BOOLEAN DEFAULT FALSE;
"""
)
def get(self, image_name: str) -> ImageRecord:
try:
self._lock.acquire()

View File

@ -21,6 +21,7 @@ if TYPE_CHECKING:
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from .item_storage.item_storage_base import ItemStorageABC
from .latents_storage.latents_storage_base import LatentsStorageBase
from .model_install import ModelInstallServiceBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .model_records import ModelRecordServiceBase
from .names.names_base import NameServiceBase
@ -50,6 +51,7 @@ class InvocationServices:
logger: "Logger"
model_manager: "ModelManagerServiceBase"
model_records: "ModelRecordServiceBase"
model_install: "ModelInstallServiceBase"
processor: "InvocationProcessorABC"
performance_statistics: "InvocationStatsServiceBase"
queue: "InvocationQueueABC"
@ -77,6 +79,7 @@ class InvocationServices:
logger: "Logger",
model_manager: "ModelManagerServiceBase",
model_records: "ModelRecordServiceBase",
model_install: "ModelInstallServiceBase",
processor: "InvocationProcessorABC",
performance_statistics: "InvocationStatsServiceBase",
queue: "InvocationQueueABC",
@ -102,6 +105,7 @@ class InvocationServices:
self.logger = logger
self.model_manager = model_manager
self.model_records = model_records
self.model_install = model_install
self.processor = processor
self.performance_statistics = performance_statistics
self.queue = queue

View File

@ -0,0 +1,25 @@
"""Initialization file for model install service package."""
from .model_install_base import (
HFModelSource,
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelInstallServiceBase,
ModelSource,
UnknownInstallJobException,
URLModelSource,
)
from .model_install_default import ModelInstallService
__all__ = [
"ModelInstallServiceBase",
"ModelInstallService",
"InstallStatus",
"ModelInstallJob",
"UnknownInstallJobException",
"ModelSource",
"LocalModelSource",
"HFModelSource",
"URLModelSource",
]

View File

@ -0,0 +1,306 @@
import re
import traceback
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import BaseModel, Field, field_validator
from pydantic.networks import AnyHttpUrl
from typing_extensions import Annotated
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig
class InstallStatus(str, Enum):
"""State of an install job running in the background."""
WAITING = "waiting" # waiting to be dequeued
RUNNING = "running" # being processed
COMPLETED = "completed" # finished running
ERROR = "error" # terminated with an error message
class UnknownInstallJobException(Exception):
"""Raised when the status of an unknown job is requested."""
class StringLikeSource(BaseModel):
"""
Base class for model sources, implements functions that lets the source be sorted and indexed.
These shenanigans let this stuff work:
source1 = LocalModelSource(path='C:/users/mort/foo.safetensors')
mydict = {source1: 'model 1'}
assert mydict['C:/users/mort/foo.safetensors'] == 'model 1'
assert mydict[LocalModelSource(path='C:/users/mort/foo.safetensors')] == 'model 1'
source2 = LocalModelSource(path=Path('C:/users/mort/foo.safetensors'))
assert source1 == source2
assert source1 == 'C:/users/mort/foo.safetensors'
"""
def __hash__(self) -> int:
"""Return hash of the path field, for indexing."""
return hash(str(self))
def __lt__(self, other: object) -> int:
"""Return comparison of the stringified version, for sorting."""
return str(self) < str(other)
def __eq__(self, other: object) -> bool:
"""Return equality on the stringified version."""
if isinstance(other, Path):
return str(self) == other.as_posix()
else:
return str(self) == str(other)
class LocalModelSource(StringLikeSource):
"""A local file or directory path."""
path: str | Path
inplace: Optional[bool] = False
type: Literal["local"] = "local"
# these methods allow the source to be used in a string-like way,
# for example as an index into a dict
def __str__(self) -> str:
"""Return string version of path when string rep needed."""
return Path(self.path).as_posix()
class HFModelSource(StringLikeSource):
"""A HuggingFace repo_id, with optional variant and sub-folder."""
repo_id: str
variant: Optional[str] = None
subfolder: Optional[str | Path] = None
access_token: Optional[str] = None
type: Literal["hf"] = "hf"
@field_validator("repo_id")
@classmethod
def proper_repo_id(cls, v: str) -> str: # noqa D102
if not re.match(r"^([.\w-]+/[.\w-]+)$", v):
raise ValueError(f"{v}: invalid repo_id format")
return v
def __str__(self) -> str:
"""Return string version of repoid when string rep needed."""
base: str = self.repo_id
base += f":{self.subfolder}" if self.subfolder else ""
base += f" ({self.variant})" if self.variant else ""
return base
class URLModelSource(StringLikeSource):
"""A generic URL point to a checkpoint file."""
url: AnyHttpUrl
access_token: Optional[str] = None
type: Literal["generic_url"] = "generic_url"
def __str__(self) -> str:
"""Return string version of the url when string rep needed."""
return str(self.url)
ModelSource = Annotated[Union[LocalModelSource, HFModelSource, URLModelSource], Field(discriminator="type")]
class ModelInstallJob(BaseModel):
"""Object that tracks the current status of an install request."""
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
config_in: Dict[str, Any] = Field(
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
)
config_out: Optional[AnyModelConfig] = Field(
default=None, description="After successful installation, this will hold the configuration object."
)
inplace: bool = Field(
default=False, description="Leave model in its current location; otherwise install under models directory"
)
source: ModelSource = Field(description="Source (URL, repo_id, or local path) of model")
local_path: Path = Field(description="Path to locally-downloaded model; may be the same as the source")
error_type: Optional[str] = Field(default=None, description="Class name of the exception that led to status==ERROR")
error: Optional[str] = Field(default=None, description="Error traceback") # noqa #501
def set_error(self, e: Exception) -> None:
"""Record the error and traceback from an exception."""
self.error_type = e.__class__.__name__
self.error = "".join(traceback.format_exception(e))
self.status = InstallStatus.ERROR
class ModelInstallServiceBase(ABC):
"""Abstract base class for InvokeAI model installation."""
@abstractmethod
def __init__(
self,
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
event_bus: Optional["EventServiceBase"] = None,
):
"""
Create ModelInstallService object.
:param config: Systemwide InvokeAIAppConfig.
:param store: Systemwide ModelConfigStore
:param event_bus: InvokeAI event bus for reporting events to.
"""
def start(self, invoker: Invoker) -> None:
"""Call at InvokeAI startup time."""
self.sync_to_config()
@abstractmethod
def stop(self) -> None:
"""Stop the model install service. After this the objection can be safely deleted."""
@property
@abstractmethod
def app_config(self) -> InvokeAIAppConfig:
"""Return the appConfig object associated with the installer."""
@property
@abstractmethod
def record_store(self) -> ModelRecordServiceBase:
"""Return the ModelRecoreService object associated with the installer."""
@property
@abstractmethod
def event_bus(self) -> Optional[EventServiceBase]:
"""Return the event service base object associated with the installer."""
@abstractmethod
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str:
"""
Probe and register the model at model_path.
This keeps the model in its current location.
:param model_path: Filesystem Path to the model.
:param config: Dict of attributes that will override autoassigned values.
:returns id: The string ID of the registered model.
"""
@abstractmethod
def unregister(self, key: str) -> None:
"""Remove model with indicated key from the database."""
@abstractmethod
def delete(self, key: str) -> None:
"""Remove model with indicated key from the database. Delete its files only if they are within our models directory."""
@abstractmethod
def unconditionally_delete(self, key: str) -> None:
"""Remove model with indicated key from the database and unconditionally delete weight files from disk."""
@abstractmethod
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str:
"""
Probe, register and install the model in the models directory.
This moves the model from its current location into
the models directory handled by InvokeAI.
:param model_path: Filesystem Path to the model.
:param config: Dict of attributes that will override autoassigned values.
:returns id: The string ID of the registered model.
"""
@abstractmethod
def import_model(
self,
source: ModelSource,
config: Optional[Dict[str, Any]] = None,
) -> ModelInstallJob:
"""Install the indicated model.
:param source: ModelSource object
:param config: Optional dict. Any fields in this dict
will override corresponding autoassigned probe fields in the
model's config record. Use it to override
`name`, `description`, `base_type`, `model_type`, `format`,
`prediction_type`, `image_size`, and/or `ztsnr_training`.
This will download the model located at `source`,
probe it, and install it into the models directory.
This call is executed asynchronously in a separate
thread and will issue the following events on the event bus:
- model_install_started
- model_install_error
- model_install_completed
The `inplace` flag does not affect the behavior of downloaded
models, which are always moved into the `models` directory.
The call returns a ModelInstallJob object which can be
polled to learn the current status and/or error message.
Variants recognized by HuggingFace currently are:
1. onnx
2. openvino
3. fp16
4. None (usually returns fp32 model)
"""
@abstractmethod
def get_job(self, source: ModelSource) -> List[ModelInstallJob]:
"""Return the ModelInstallJob(s) corresponding to the provided source."""
@abstractmethod
def list_jobs(self) -> List[ModelInstallJob]: # noqa D102
"""
List active and complete install jobs.
"""
@abstractmethod
def prune_jobs(self) -> None:
"""Prune all completed and errored jobs."""
@abstractmethod
def wait_for_installs(self) -> List[ModelInstallJob]:
"""
Wait for all pending installs to complete.
This will block until all pending installs have
completed, been cancelled, or errored out. It will
block indefinitely if one or more jobs are in the
paused state.
It will return the current list of jobs.
"""
@abstractmethod
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]:
"""
Recursively scan directory for new models and register or install them.
:param scan_dir: Path to the directory to scan.
:param install: Install if True, otherwise register in place.
:returns list of IDs: Returns list of IDs of models registered/installed
"""
@abstractmethod
def sync_to_config(self) -> None:
"""Synchronize models on disk to those in the model record database."""

View File

@ -0,0 +1,395 @@
"""Model installation class."""
import threading
from hashlib import sha256
from logging import Logger
from pathlib import Path
from queue import Queue
from random import randbytes
from shutil import copyfile, copytree, move, rmtree
from typing import Any, Dict, List, Optional, Set, Union
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase, UnknownModelException
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
InvalidModelConfigException,
ModelType,
)
from invokeai.backend.model_manager.hash import FastModelHash
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import Chdir, InvokeAILogger
from .model_install_base import (
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelInstallServiceBase,
ModelSource,
)
# marker that the queue is done and that thread should exit
STOP_JOB = ModelInstallJob(
source=LocalModelSource(path="stop"),
local_path=Path("/dev/null"),
)
class ModelInstallService(ModelInstallServiceBase):
"""class for InvokeAI model installation."""
_app_config: InvokeAIAppConfig
_record_store: ModelRecordServiceBase
_event_bus: Optional[EventServiceBase] = None
_install_queue: Queue[ModelInstallJob]
_install_jobs: List[ModelInstallJob]
_logger: Logger
_cached_model_paths: Set[Path]
_models_installed: Set[str]
def __init__(
self,
app_config: InvokeAIAppConfig,
record_store: ModelRecordServiceBase,
event_bus: Optional[EventServiceBase] = None,
):
"""
Initialize the installer object.
:param app_config: InvokeAIAppConfig object
:param record_store: Previously-opened ModelRecordService database
:param event_bus: Optional EventService object
"""
self._app_config = app_config
self._record_store = record_store
self._event_bus = event_bus
self._logger = InvokeAILogger.get_logger(name=self.__class__.__name__)
self._install_jobs = []
self._install_queue = Queue()
self._cached_model_paths = set()
self._models_installed = set()
self._start_installer_thread()
@property
def app_config(self) -> InvokeAIAppConfig: # noqa D102
return self._app_config
@property
def record_store(self) -> ModelRecordServiceBase: # noqa D102
return self._record_store
@property
def event_bus(self) -> Optional[EventServiceBase]: # noqa D102
return self._event_bus
def stop(self, *args, **kwargs) -> None:
"""Stop the install thread; after this the object can be deleted and garbage collected."""
self._install_queue.put(STOP_JOB)
def _start_installer_thread(self) -> None:
threading.Thread(target=self._install_next_item, daemon=True).start()
def _install_next_item(self) -> None:
done = False
while not done:
job = self._install_queue.get()
if job == STOP_JOB:
done = True
continue
assert job.local_path is not None
try:
self._signal_job_running(job)
if job.inplace:
key = self.register_path(job.local_path, job.config_in)
else:
key = self.install_path(job.local_path, job.config_in)
job.config_out = self.record_store.get_model(key)
self._signal_job_completed(job)
except (OSError, DuplicateModelException, InvalidModelConfigException) as excp:
self._signal_job_errored(job, excp)
finally:
self._install_queue.task_done()
self._logger.info("Install thread exiting")
def _signal_job_running(self, job: ModelInstallJob) -> None:
job.status = InstallStatus.RUNNING
self._logger.info(f"{job.source}: model installation started")
if self._event_bus:
self._event_bus.emit_model_install_started(str(job.source))
def _signal_job_completed(self, job: ModelInstallJob) -> None:
job.status = InstallStatus.COMPLETED
assert job.config_out
self._logger.info(
f"{job.source}: model installation completed. {job.local_path} registered key {job.config_out.key}"
)
if self._event_bus:
assert job.local_path is not None
assert job.config_out is not None
key = job.config_out.key
self._event_bus.emit_model_install_completed(str(job.source), key)
def _signal_job_errored(self, job: ModelInstallJob, excp: Exception) -> None:
job.set_error(excp)
self._logger.info(f"{job.source}: model installation encountered an exception: {job.error_type}")
if self._event_bus:
error_type = job.error_type
error = job.error
assert error_type is not None
assert error is not None
self._event_bus.emit_model_install_error(str(job.source), error_type, error)
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if config.get("source") is None:
config["source"] = model_path.resolve().as_posix()
return self._register(model_path, config)
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if config.get("source") is None:
config["source"] = model_path.resolve().as_posix()
info: AnyModelConfig = self._probe_model(Path(model_path), config)
old_hash = info.original_hash
dest_path = self.app_config.models_path / info.base.value / info.type.value / model_path.name
new_path = self._copy_model(model_path, dest_path)
new_hash = FastModelHash.hash(new_path)
assert new_hash == old_hash, f"{model_path}: Model hash changed during installation, possibly corrupted."
return self._register(
new_path,
config,
info,
)
def import_model(
self,
source: ModelSource,
config: Optional[Dict[str, Any]] = None,
) -> ModelInstallJob: # noqa D102
if not config:
config = {}
# Installing a local path
if isinstance(source, LocalModelSource) and Path(source.path).exists(): # a path that is already on disk
job = ModelInstallJob(
source=source,
config_in=config,
local_path=Path(source.path),
)
self._install_jobs.append(job)
self._install_queue.put(job)
return job
else: # here is where we'd download a URL or repo_id. Implementation pending download queue.
raise UnknownModelException("File or directory not found")
def list_jobs(self) -> List[ModelInstallJob]: # noqa D102
return self._install_jobs
def get_job(self, source: ModelSource) -> List[ModelInstallJob]: # noqa D102
return [x for x in self._install_jobs if x.source == source]
def wait_for_installs(self) -> List[ModelInstallJob]: # noqa D102
self._install_queue.join()
return self._install_jobs
def prune_jobs(self) -> None:
"""Prune all completed and errored jobs."""
unfinished_jobs = [
x for x in self._install_jobs if x.status not in [InstallStatus.COMPLETED, InstallStatus.ERROR]
]
self._install_jobs = unfinished_jobs
def sync_to_config(self) -> None:
"""Synchronize models on disk to those in the config record store database."""
self._scan_models_directory()
if autoimport := self._app_config.autoimport_dir:
self._logger.info("Scanning autoimport directory for new models")
installed = self.scan_directory(self._app_config.root_path / autoimport)
self._logger.info(f"{len(installed)} new models registered")
self._logger.info("Model installer (re)initialized")
def scan_directory(self, scan_dir: Path, install: bool = False) -> List[str]: # noqa D102
self._cached_model_paths = {Path(x.path) for x in self.record_store.all_models()}
callback = self._scan_install if install else self._scan_register
search = ModelSearch(on_model_found=callback)
self._models_installed: Set[str] = set()
search.search(scan_dir)
return list(self._models_installed)
def _scan_models_directory(self) -> None:
"""
Scan the models directory for new and missing models.
New models will be added to the storage backend. Missing models
will be deleted.
"""
defunct_models = set()
installed = set()
with Chdir(self._app_config.models_path):
self._logger.info("Checking for models that have been moved or deleted from disk")
for model_config in self.record_store.all_models():
path = Path(model_config.path)
if not path.exists():
self._logger.info(f"{model_config.name}: path {path.as_posix()} no longer exists. Unregistering")
defunct_models.add(model_config.key)
for key in defunct_models:
self.unregister(key)
self._logger.info(f"Scanning {self._app_config.models_path} for new and orphaned models")
for cur_base_model in BaseModelType:
for cur_model_type in ModelType:
models_dir = Path(cur_base_model.value, cur_model_type.value)
installed.update(self.scan_directory(models_dir))
self._logger.info(f"{len(installed)} new models registered; {len(defunct_models)} unregistered")
def _sync_model_path(self, key: str, ignore_hash_change: bool = False) -> AnyModelConfig:
"""
Move model into the location indicated by its basetype, type and name.
Call this after updating a model's attributes in order to move
the model's path into the location indicated by its basetype, type and
name. Applies only to models whose paths are within the root `models_dir`
directory.
May raise an UnknownModelException.
"""
model = self.record_store.get_model(key)
old_path = Path(model.path)
models_dir = self.app_config.models_path
if not old_path.is_relative_to(models_dir):
return model
new_path = models_dir / model.base.value / model.type.value / model.name
self._logger.info(f"Moving {model.name} to {new_path}.")
new_path = self._move_model(old_path, new_path)
new_hash = FastModelHash.hash(new_path)
model.path = new_path.relative_to(models_dir).as_posix()
if model.current_hash != new_hash:
assert (
ignore_hash_change
), f"{model.name}: Model hash changed during installation, model is possibly corrupted"
model.current_hash = new_hash
self._logger.info(f"Model has new hash {model.current_hash}, but will continue to be identified by {key}")
self.record_store.update_model(key, model)
return model
def _scan_register(self, model: Path) -> bool:
if model in self._cached_model_paths:
return True
try:
id = self.register_path(model)
self._sync_model_path(id) # possibly move it to right place in `models`
self._logger.info(f"Registered {model.name} with id {id}")
self._models_installed.add(id)
except DuplicateModelException:
pass
return True
def _scan_install(self, model: Path) -> bool:
if model in self._cached_model_paths:
return True
try:
id = self.install_path(model)
self._logger.info(f"Installed {model} with id {id}")
self._models_installed.add(id)
except DuplicateModelException:
pass
return True
def unregister(self, key: str) -> None: # noqa D102
self.record_store.del_model(key)
def delete(self, key: str) -> None: # noqa D102
"""Unregister the model. Delete its files only if they are within our models directory."""
model = self.record_store.get_model(key)
models_dir = self.app_config.models_path
model_path = models_dir / model.path
if model_path.is_relative_to(models_dir):
self.unconditionally_delete(key)
else:
self.unregister(key)
def unconditionally_delete(self, key: str) -> None: # noqa D102
model = self.record_store.get_model(key)
path = self.app_config.models_path / model.path
if path.is_dir():
rmtree(path)
else:
path.unlink()
self.unregister(key)
def _copy_model(self, old_path: Path, new_path: Path) -> Path:
if old_path == new_path:
return old_path
new_path.parent.mkdir(parents=True, exist_ok=True)
if old_path.is_dir():
copytree(old_path, new_path)
else:
copyfile(old_path, new_path)
return new_path
def _move_model(self, old_path: Path, new_path: Path) -> Path:
if old_path == new_path:
return old_path
new_path.parent.mkdir(parents=True, exist_ok=True)
# if path already exists then we jigger the name to make it unique
counter: int = 1
while new_path.exists():
path = new_path.with_stem(new_path.stem + f"_{counter:02d}")
if not path.exists():
new_path = path
counter += 1
move(old_path, new_path)
return new_path
def _probe_model(self, model_path: Path, config: Optional[Dict[str, Any]] = None) -> AnyModelConfig:
info: AnyModelConfig = ModelProbe.probe(Path(model_path))
if config: # used to override probe fields
for key, value in config.items():
setattr(info, key, value)
return info
def _create_key(self) -> str:
return sha256(randbytes(100)).hexdigest()[0:32]
def _register(
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
) -> str:
info = info or ModelProbe.probe(model_path, config)
key = self._create_key()
model_path = model_path.absolute()
if model_path.is_relative_to(self.app_config.models_path):
model_path = model_path.relative_to(self.app_config.models_path)
info.path = model_path.as_posix()
# add 'main' specific fields
if hasattr(info, "config"):
# make config relative to our root
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config).resolve()
info.config = legacy_conf.relative_to(self.app_config.root_dir).as_posix()
self.record_store.add_model(key, info)
return key

View File

@ -6,3 +6,11 @@ from .model_records_base import ( # noqa F401
UnknownModelException,
)
from .model_records_sql import ModelRecordServiceSQL # noqa F401
__all__ = [
"ModelRecordServiceBase",
"ModelRecordServiceSQL",
"DuplicateModelException",
"InvalidModelException",
"UnknownModelException",
]

View File

@ -7,10 +7,7 @@ from abc import ABC, abstractmethod
from pathlib import Path
from typing import List, Optional, Union
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType
# should match the InvokeAI version when this is first released.
CONFIG_FILE_VERSION = "3.2.0"
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelFormat, ModelType
class DuplicateModelException(Exception):
@ -32,12 +29,6 @@ class ConfigFileVersionMismatchException(Exception):
class ModelRecordServiceBase(ABC):
"""Abstract base class for storage and retrieval of model configs."""
@property
@abstractmethod
def version(self) -> str:
"""Return the config file/database schema version."""
pass
@abstractmethod
def add_model(self, key: str, config: Union[dict, AnyModelConfig]) -> AnyModelConfig:
"""
@ -115,6 +106,7 @@ class ModelRecordServiceBase(ABC):
model_name: Optional[str] = None,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None,
model_format: Optional[ModelFormat] = None,
) -> List[AnyModelConfig]:
"""
Return models matching name, base and/or type.
@ -122,6 +114,7 @@ class ModelRecordServiceBase(ABC):
:param model_name: Filter by name of model (optional)
:param base_model: Filter by base model (optional)
:param model_type: Filter by type of model (optional)
:param model_format: Filter by model format (e.g. "diffusers") (optional)
If none of the optional filters are passed, will return all
models in the database.

View File

@ -49,12 +49,12 @@ from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelConfigFactory,
ModelFormat,
ModelType,
)
from ..shared.sqlite.sqlite_database import SqliteDatabase
from .model_records_base import (
CONFIG_FILE_VERSION,
DuplicateModelException,
ModelRecordServiceBase,
UnknownModelException,
@ -78,85 +78,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._db = db
self._cursor = self._db.conn.cursor()
with self._db.lock:
# Enable foreign keys
self._db.conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._db.conn.commit()
assert (
str(self.version) == CONFIG_FILE_VERSION
), f"Model config version {self.version} does not match expected version {CONFIG_FILE_VERSION}"
def _create_tables(self) -> None:
"""Create sqlite3 tables."""
# model_config table breaks out the fields that are common to all config objects
# and puts class-specific ones in a serialized json object
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS model_config (
id TEXT NOT NULL PRIMARY KEY,
-- The next 3 fields are enums in python, unrestricted string here
base TEXT NOT NULL,
type TEXT NOT NULL,
name TEXT NOT NULL,
path TEXT NOT NULL,
original_hash TEXT, -- could be null
-- Serialized JSON representation of the whole config object,
-- which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
"""
)
# metadata table
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS model_manager_metadata (
metadata_key TEXT NOT NULL PRIMARY KEY,
metadata_value TEXT NOT NULL
);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS model_config_updated_at
AFTER UPDATE
ON model_config FOR EACH ROW
BEGIN
UPDATE model_config SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
)
# Add indexes for searchable fields
for stmt in [
"CREATE INDEX IF NOT EXISTS base_index ON model_config(base);",
"CREATE INDEX IF NOT EXISTS type_index ON model_config(type);",
"CREATE INDEX IF NOT EXISTS name_index ON model_config(name);",
"CREATE UNIQUE INDEX IF NOT EXISTS path_index ON model_config(path);",
]:
self._cursor.execute(stmt)
# Add our version to the metadata table
self._cursor.execute(
"""--sql
INSERT OR IGNORE into model_manager_metadata (
metadata_key,
metadata_value
)
VALUES (?,?);
""",
("version", CONFIG_FILE_VERSION),
)
def add_model(self, key: str, config: Union[dict, AnyModelConfig]) -> AnyModelConfig:
"""
Add a model to the database.
@ -175,21 +96,13 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
"""--sql
INSERT INTO model_config (
id,
base,
type,
name,
path,
original_hash,
config
)
VALUES (?,?,?,?,?,?,?);
VALUES (?,?,?);
""",
(
key,
record.base,
record.type,
record.name,
record.path,
record.original_hash,
json_serialized,
),
@ -214,22 +127,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
return self.get_model(key)
@property
def version(self) -> str:
"""Return the version of the database schema."""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT metadata_value FROM model_manager_metadata
WHERE metadata_key=?;
""",
("version",),
)
rows = self._cursor.fetchone()
if not rows:
raise KeyError("Models database does not have metadata key 'version'")
return rows[0]
def del_model(self, key: str) -> None:
"""
Delete a model.
@ -269,14 +166,11 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._cursor.execute(
"""--sql
UPDATE model_config
SET base=?,
type=?,
name=?,
path=?,
SET
config=?
WHERE id=?;
""",
(record.base, record.type, record.name, record.path, json_serialized, key),
(json_serialized, key),
)
if self._cursor.rowcount == 0:
raise UnknownModelException("model not found")
@ -332,6 +226,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
model_name: Optional[str] = None,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None,
model_format: Optional[ModelFormat] = None,
) -> List[AnyModelConfig]:
"""
Return models matching name, base and/or type.
@ -339,6 +234,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
:param model_name: Filter by name of model (optional)
:param base_model: Filter by base model (optional)
:param model_type: Filter by type of model (optional)
:param model_format: Filter by model format (e.g. "diffusers") (optional)
If none of the optional filters are passed, will return all
models in the database.
@ -355,6 +251,9 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
if model_type:
where_clause.append("type=?")
bindings.append(model_type)
if model_format:
where_clause.append("format=?")
bindings.append(model_format)
where = f"WHERE {' AND '.join(where_clause)}" if where_clause else ""
with self._db.lock:
self._cursor.execute(
@ -374,7 +273,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._cursor.execute(
"""--sql
SELECT config FROM model_config
WHERE model_path=?;
WHERE path=?;
""",
(str(path),),
)

View File

@ -50,7 +50,6 @@ class SqliteSessionQueue(SessionQueueBase):
self.__lock = db.lock
self.__conn = db.conn
self.__cursor = self.__conn.cursor()
self._create_tables()
def _match_event_name(self, event: FastAPIEvent, match_in: list[str]) -> bool:
return event[1]["event"] in match_in
@ -98,123 +97,6 @@ class SqliteSessionQueue(SessionQueueBase):
except SessionQueueItemNotFoundError:
return
def _create_tables(self) -> None:
"""Creates the session queue tables, indicies, and triggers"""
try:
self.__lock.acquire()
self.__cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS session_queue (
item_id INTEGER PRIMARY KEY AUTOINCREMENT, -- used for ordering, cursor pagination
batch_id TEXT NOT NULL, -- identifier of the batch this queue item belongs to
queue_id TEXT NOT NULL, -- identifier of the queue this queue item belongs to
session_id TEXT NOT NULL UNIQUE, -- duplicated data from the session column, for ease of access
field_values TEXT, -- NULL if no values are associated with this queue item
session TEXT NOT NULL, -- the session to be executed
status TEXT NOT NULL DEFAULT 'pending', -- the status of the queue item, one of 'pending', 'in_progress', 'completed', 'failed', 'canceled'
priority INTEGER NOT NULL DEFAULT 0, -- the priority, higher is more important
error TEXT, -- any errors associated with this queue item
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')), -- updated via trigger
started_at DATETIME, -- updated via trigger
completed_at DATETIME -- updated via trigger, completed items are cleaned up on application startup
-- Ideally this is a FK, but graph_executions uses INSERT OR REPLACE, and REPLACE triggers the ON DELETE CASCADE...
-- FOREIGN KEY (session_id) REFERENCES graph_executions (id) ON DELETE CASCADE
);
"""
)
self.__cursor.execute(
"""--sql
CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_item_id ON session_queue(item_id);
"""
)
self.__cursor.execute(
"""--sql
CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_session_id ON session_queue(session_id);
"""
)
self.__cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_session_queue_batch_id ON session_queue(batch_id);
"""
)
self.__cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_session_queue_created_priority ON session_queue(priority);
"""
)
self.__cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_session_queue_created_status ON session_queue(status);
"""
)
self.__cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_completed_at
AFTER UPDATE OF status ON session_queue
FOR EACH ROW
WHEN
NEW.status = 'completed'
OR NEW.status = 'failed'
OR NEW.status = 'canceled'
BEGIN
UPDATE session_queue
SET completed_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = NEW.item_id;
END;
"""
)
self.__cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_started_at
AFTER UPDATE OF status ON session_queue
FOR EACH ROW
WHEN
NEW.status = 'in_progress'
BEGIN
UPDATE session_queue
SET started_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = NEW.item_id;
END;
"""
)
self.__cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_updated_at
AFTER UPDATE
ON session_queue FOR EACH ROW
BEGIN
UPDATE session_queue
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = old.item_id;
END;
"""
)
self.__cursor.execute("PRAGMA table_info(session_queue)")
columns = [column[1] for column in self.__cursor.fetchall()]
if "workflow" not in columns:
self.__cursor.execute(
"""--sql
ALTER TABLE session_queue ADD COLUMN workflow TEXT;
"""
)
self.__conn.commit()
except Exception:
self.__conn.rollback()
raise
finally:
self.__lock.release()
def _set_in_progress_to_canceled(self) -> None:
"""
Sets all in_progress queue items to canceled. Run on app startup, not associated with any queue.

View File

@ -3,45 +3,65 @@ import threading
from logging import Logger
from pathlib import Path
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.shared.sqlite.sqlite_common import sqlite_memory
class SqliteDatabase:
def __init__(self, config: InvokeAIAppConfig, logger: Logger):
self._logger = logger
self._config = config
"""
Manages a connection to an SQLite database.
if self._config.use_memory_db:
self.db_path = sqlite_memory
logger.info("Using in-memory database")
:param db_path: Path to the database file. If None, an in-memory database is used.
:param logger: Logger to use for logging.
:param verbose: Whether to log SQL statements. Provides `logger.debug` as the SQLite trace callback.
This is a light wrapper around the `sqlite3` module, providing a few conveniences:
- The database file is written to disk if it does not exist.
- Foreign key constraints are enabled by default.
- The connection is configured to use the `sqlite3.Row` row factory.
In addition to the constructor args, the instance provides the following attributes and methods:
- `conn`: A `sqlite3.Connection` object. Note that the connection must never be closed if the database is in-memory.
- `lock`: A shared re-entrant lock, used to approximate thread safety.
- `clean()`: Runs the SQL `VACUUM;` command and reports on the freed space.
"""
def __init__(self, db_path: Path | None, logger: Logger, verbose: bool = False) -> None:
"""Initializes the database. This is used internally by the class constructor."""
self.logger = logger
self.db_path = db_path
self.verbose = verbose
if not self.db_path:
logger.info("Initializing in-memory database")
else:
db_path = self._config.db_path
db_path.parent.mkdir(parents=True, exist_ok=True)
self.db_path = str(db_path)
self._logger.info(f"Using database at {self.db_path}")
self.db_path.parent.mkdir(parents=True, exist_ok=True)
self.logger.info(f"Initializing database at {self.db_path}")
self.conn = sqlite3.connect(self.db_path, check_same_thread=False)
self.conn = sqlite3.connect(database=self.db_path or sqlite_memory, check_same_thread=False)
self.lock = threading.RLock()
self.conn.row_factory = sqlite3.Row
if self._config.log_sql:
self.conn.set_trace_callback(self._logger.debug)
if self.verbose:
self.conn.set_trace_callback(self.logger.debug)
self.conn.execute("PRAGMA foreign_keys = ON;")
def clean(self) -> None:
"""
Cleans the database by running the VACUUM command, reporting on the freed space.
"""
# No need to clean in-memory database
if not self.db_path:
return
with self.lock:
try:
if self.db_path == sqlite_memory:
return
initial_db_size = Path(self.db_path).stat().st_size
self.conn.execute("VACUUM;")
self.conn.commit()
final_db_size = Path(self.db_path).stat().st_size
freed_space_in_mb = round((initial_db_size - final_db_size) / 1024 / 1024, 2)
if freed_space_in_mb > 0:
self._logger.info(f"Cleaned database (freed {freed_space_in_mb}MB)")
self.logger.info(f"Cleaned database (freed {freed_space_in_mb}MB)")
except Exception as e:
self._logger.error(f"Error cleaning database: {e}")
self.logger.error(f"Error cleaning database: {e}")
raise

View File

@ -0,0 +1,32 @@
from logging import Logger
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_1 import build_migration_1
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_2 import build_migration_2
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileStorageBase) -> SqliteDatabase:
"""
Initializes the SQLite database.
:param config: The app config
:param logger: The logger
:param image_files: The image files service (used by migration 2)
This function:
- Instantiates a :class:`SqliteDatabase`
- Instantiates a :class:`SqliteMigrator` and registers all migrations
- Runs all migrations
"""
db_path = None if config.use_memory_db else config.db_path
db = SqliteDatabase(db_path=db_path, logger=logger, verbose=config.log_sql)
migrator = SqliteMigrator(db=db)
migrator.register_migration(build_migration_1())
migrator.register_migration(build_migration_2(image_files=image_files, logger=logger))
migrator.run_migrations()
return db

View File

@ -0,0 +1,372 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration1Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
"""Migration callback for database version 1."""
self._create_board_images(cursor)
self._create_boards(cursor)
self._create_images(cursor)
self._create_model_config(cursor)
self._create_session_queue(cursor)
self._create_workflow_images(cursor)
self._create_workflows(cursor)
def _create_board_images(self, cursor: sqlite3.Cursor) -> None:
"""Creates the `board_images` table, indices and triggers."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS board_images (
board_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between boards and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (board_id) REFERENCES boards (board_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
]
indices = [
"CREATE INDEX IF NOT EXISTS idx_board_images_board_id ON board_images (board_id);",
"CREATE INDEX IF NOT EXISTS idx_board_images_board_id_created_at ON board_images (board_id, created_at);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_board_images_updated_at
AFTER UPDATE
ON board_images FOR EACH ROW
BEGIN
UPDATE board_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE board_id = old.board_id AND image_name = old.image_name;
END;
"""
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_boards(self, cursor: sqlite3.Cursor) -> None:
"""Creates the `boards` table, indices and triggers."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS boards (
board_id TEXT NOT NULL PRIMARY KEY,
board_name TEXT NOT NULL,
cover_image_name TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
FOREIGN KEY (cover_image_name) REFERENCES images (image_name) ON DELETE SET NULL
);
"""
]
indices = ["CREATE INDEX IF NOT EXISTS idx_boards_created_at ON boards (created_at);"]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_boards_updated_at
AFTER UPDATE
ON boards FOR EACH ROW
BEGIN
UPDATE boards SET updated_at = current_timestamp
WHERE board_id = old.board_id;
END;
"""
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_images(self, cursor: sqlite3.Cursor) -> None:
"""Creates the `images` table, indices and triggers. Adds the `starred` column."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS images (
image_name TEXT NOT NULL PRIMARY KEY,
-- This is an enum in python, unrestricted string here for flexibility
image_origin TEXT NOT NULL,
-- This is an enum in python, unrestricted string here for flexibility
image_category TEXT NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
session_id TEXT,
node_id TEXT,
metadata TEXT,
is_intermediate BOOLEAN DEFAULT FALSE,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME
);
"""
]
indices = [
"CREATE UNIQUE INDEX IF NOT EXISTS idx_images_image_name ON images(image_name);",
"CREATE INDEX IF NOT EXISTS idx_images_image_origin ON images(image_origin);",
"CREATE INDEX IF NOT EXISTS idx_images_image_category ON images(image_category);",
"CREATE INDEX IF NOT EXISTS idx_images_created_at ON images(created_at);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_images_updated_at
AFTER UPDATE
ON images FOR EACH ROW
BEGIN
UPDATE images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE image_name = old.image_name;
END;
"""
]
# Add the 'starred' column to `images` if it doesn't exist
cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in cursor.fetchall()]
if "starred" not in columns:
tables.append("ALTER TABLE images ADD COLUMN starred BOOLEAN DEFAULT FALSE;")
indices.append("CREATE INDEX IF NOT EXISTS idx_images_starred ON images(starred);")
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_model_config(self, cursor: sqlite3.Cursor) -> None:
"""Creates the `model_config` table, `model_manager_metadata` table, indices and triggers."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS model_config (
id TEXT NOT NULL PRIMARY KEY,
-- The next 3 fields are enums in python, unrestricted string here
base TEXT NOT NULL,
type TEXT NOT NULL,
name TEXT NOT NULL,
path TEXT NOT NULL,
original_hash TEXT, -- could be null
-- Serialized JSON representation of the whole config object,
-- which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
""",
"""--sql
CREATE TABLE IF NOT EXISTS model_manager_metadata (
metadata_key TEXT NOT NULL PRIMARY KEY,
metadata_value TEXT NOT NULL
);
""",
]
# Add trigger for `updated_at`.
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS model_config_updated_at
AFTER UPDATE
ON model_config FOR EACH ROW
BEGIN
UPDATE model_config SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
]
# Add indexes for searchable fields
indices = [
"CREATE INDEX IF NOT EXISTS base_index ON model_config(base);",
"CREATE INDEX IF NOT EXISTS type_index ON model_config(type);",
"CREATE INDEX IF NOT EXISTS name_index ON model_config(name);",
"CREATE UNIQUE INDEX IF NOT EXISTS path_index ON model_config(path);",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_session_queue(self, cursor: sqlite3.Cursor) -> None:
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS session_queue (
item_id INTEGER PRIMARY KEY AUTOINCREMENT, -- used for ordering, cursor pagination
batch_id TEXT NOT NULL, -- identifier of the batch this queue item belongs to
queue_id TEXT NOT NULL, -- identifier of the queue this queue item belongs to
session_id TEXT NOT NULL UNIQUE, -- duplicated data from the session column, for ease of access
field_values TEXT, -- NULL if no values are associated with this queue item
session TEXT NOT NULL, -- the session to be executed
status TEXT NOT NULL DEFAULT 'pending', -- the status of the queue item, one of 'pending', 'in_progress', 'completed', 'failed', 'canceled'
priority INTEGER NOT NULL DEFAULT 0, -- the priority, higher is more important
error TEXT, -- any errors associated with this queue item
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')), -- updated via trigger
started_at DATETIME, -- updated via trigger
completed_at DATETIME -- updated via trigger, completed items are cleaned up on application startup
-- Ideally this is a FK, but graph_executions uses INSERT OR REPLACE, and REPLACE triggers the ON DELETE CASCADE...
-- FOREIGN KEY (session_id) REFERENCES graph_executions (id) ON DELETE CASCADE
);
"""
]
indices = [
"CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_item_id ON session_queue(item_id);",
"CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_session_id ON session_queue(session_id);",
"CREATE INDEX IF NOT EXISTS idx_session_queue_batch_id ON session_queue(batch_id);",
"CREATE INDEX IF NOT EXISTS idx_session_queue_created_priority ON session_queue(priority);",
"CREATE INDEX IF NOT EXISTS idx_session_queue_created_status ON session_queue(status);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_completed_at
AFTER UPDATE OF status ON session_queue
FOR EACH ROW
WHEN
NEW.status = 'completed'
OR NEW.status = 'failed'
OR NEW.status = 'canceled'
BEGIN
UPDATE session_queue
SET completed_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = NEW.item_id;
END;
""",
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_started_at
AFTER UPDATE OF status ON session_queue
FOR EACH ROW
WHEN
NEW.status = 'in_progress'
BEGIN
UPDATE session_queue
SET started_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = NEW.item_id;
END;
""",
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_session_queue_updated_at
AFTER UPDATE
ON session_queue FOR EACH ROW
BEGIN
UPDATE session_queue
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE item_id = old.item_id;
END;
""",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_workflow_images(self, cursor: sqlite3.Cursor) -> None:
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS workflow_images (
workflow_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between workflows and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (workflow_id) REFERENCES workflows (workflow_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
]
indices = [
"CREATE INDEX IF NOT EXISTS idx_workflow_images_workflow_id ON workflow_images (workflow_id);",
"CREATE INDEX IF NOT EXISTS idx_workflow_images_workflow_id_created_at ON workflow_images (workflow_id, created_at);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_workflow_images_updated_at
AFTER UPDATE
ON workflow_images FOR EACH ROW
BEGIN
UPDATE workflow_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE workflow_id = old.workflow_id AND image_name = old.image_name;
END;
"""
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _create_workflows(self, cursor: sqlite3.Cursor) -> None:
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS workflows (
workflow TEXT NOT NULL,
workflow_id TEXT GENERATED ALWAYS AS (json_extract(workflow, '$.id')) VIRTUAL NOT NULL UNIQUE, -- gets implicit index
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')) -- updated via trigger
);
"""
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_workflows_updated_at
AFTER UPDATE
ON workflows FOR EACH ROW
BEGIN
UPDATE workflows
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE workflow_id = old.workflow_id;
END;
"""
]
for stmt in tables + triggers:
cursor.execute(stmt)
def build_migration_1() -> Migration:
"""
Builds the migration from database version 0 (init) to 1.
This migration represents the state of the database circa InvokeAI v3.4.0, which was the last
version to not use migrations to manage the database.
As such, this migration does include some ALTER statements, and the SQL statements are written
to be idempotent.
- Create `board_images` junction table
- Create `boards` table
- Create `images` table, add `starred` column
- Create `model_config` table
- Create `session_queue` table
- Create `workflow_images` junction table
- Create `workflows` table
"""
migration_1 = Migration(
from_version=0,
to_version=1,
callback=Migration1Callback(),
)
return migration_1

View File

@ -0,0 +1,198 @@
import sqlite3
from logging import Logger
from pydantic import ValidationError
from tqdm import tqdm
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_files.image_files_common import ImageFileNotFoundException
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
from invokeai.app.services.workflow_records.workflow_records_common import (
UnsafeWorkflowWithVersionValidator,
)
class Migration2Callback:
def __init__(self, image_files: ImageFileStorageBase, logger: Logger):
self._image_files = image_files
self._logger = logger
def __call__(self, cursor: sqlite3.Cursor):
self._add_images_has_workflow(cursor)
self._add_session_queue_workflow(cursor)
self._drop_old_workflow_tables(cursor)
self._add_workflow_library(cursor)
self._drop_model_manager_metadata(cursor)
self._recreate_model_config(cursor)
self._migrate_embedded_workflows(cursor)
def _add_images_has_workflow(self, cursor: sqlite3.Cursor) -> None:
"""Add the `has_workflow` column to `images` table."""
cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in cursor.fetchall()]
if "has_workflow" not in columns:
cursor.execute("ALTER TABLE images ADD COLUMN has_workflow BOOLEAN DEFAULT FALSE;")
def _add_session_queue_workflow(self, cursor: sqlite3.Cursor) -> None:
"""Add the `workflow` column to `session_queue` table."""
cursor.execute("PRAGMA table_info(session_queue)")
columns = [column[1] for column in cursor.fetchall()]
if "workflow" not in columns:
cursor.execute("ALTER TABLE session_queue ADD COLUMN workflow TEXT;")
def _drop_old_workflow_tables(self, cursor: sqlite3.Cursor) -> None:
"""Drops the `workflows` and `workflow_images` tables."""
cursor.execute("DROP TABLE IF EXISTS workflow_images;")
cursor.execute("DROP TABLE IF EXISTS workflows;")
def _add_workflow_library(self, cursor: sqlite3.Cursor) -> None:
"""Adds the `workflow_library` table and drops the `workflows` and `workflow_images` tables."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS workflow_library (
workflow_id TEXT NOT NULL PRIMARY KEY,
workflow TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated manually when retrieving workflow
opened_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Generated columns, needed for indexing and searching
category TEXT GENERATED ALWAYS as (json_extract(workflow, '$.meta.category')) VIRTUAL NOT NULL,
name TEXT GENERATED ALWAYS as (json_extract(workflow, '$.name')) VIRTUAL NOT NULL,
description TEXT GENERATED ALWAYS as (json_extract(workflow, '$.description')) VIRTUAL NOT NULL
);
""",
]
indices = [
"CREATE INDEX IF NOT EXISTS idx_workflow_library_created_at ON workflow_library(created_at);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_updated_at ON workflow_library(updated_at);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_opened_at ON workflow_library(opened_at);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_category ON workflow_library(category);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_name ON workflow_library(name);",
"CREATE INDEX IF NOT EXISTS idx_workflow_library_description ON workflow_library(description);",
]
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_workflow_library_updated_at
AFTER UPDATE
ON workflow_library FOR EACH ROW
BEGIN
UPDATE workflow_library
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE workflow_id = old.workflow_id;
END;
"""
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def _drop_model_manager_metadata(self, cursor: sqlite3.Cursor) -> None:
"""Drops the `model_manager_metadata` table."""
cursor.execute("DROP TABLE IF EXISTS model_manager_metadata;")
def _recreate_model_config(self, cursor: sqlite3.Cursor) -> None:
"""
Drops the `model_config` table, recreating it.
In 3.4.0, this table used explicit columns but was changed to use json_extract 3.5.0.
Because this table is not used in production, we are able to simply drop it and recreate it.
"""
cursor.execute("DROP TABLE IF EXISTS model_config;")
cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS model_config (
id TEXT NOT NULL PRIMARY KEY,
-- The next 3 fields are enums in python, unrestricted string here
base TEXT GENERATED ALWAYS as (json_extract(config, '$.base')) VIRTUAL NOT NULL,
type TEXT GENERATED ALWAYS as (json_extract(config, '$.type')) VIRTUAL NOT NULL,
name TEXT GENERATED ALWAYS as (json_extract(config, '$.name')) VIRTUAL NOT NULL,
path TEXT GENERATED ALWAYS as (json_extract(config, '$.path')) VIRTUAL NOT NULL,
format TEXT GENERATED ALWAYS as (json_extract(config, '$.format')) VIRTUAL NOT NULL,
original_hash TEXT, -- could be null
-- Serialized JSON representation of the whole config object,
-- which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
"""
)
def _migrate_embedded_workflows(self, cursor: sqlite3.Cursor) -> None:
"""
In the v3.5.0 release, InvokeAI changed how it handles embedded workflows. The `images` table in
the database now has a `has_workflow` column, indicating if an image has a workflow embedded.
This migrate callback checks each image for the presence of an embedded workflow, then updates its entry
in the database accordingly.
"""
# Get all image names
cursor.execute("SELECT image_name FROM images")
image_names: list[str] = [image[0] for image in cursor.fetchall()]
total_image_names = len(image_names)
if not total_image_names:
return
self._logger.info(f"Migrating workflows for {total_image_names} images")
# Migrate the images
to_migrate: list[tuple[bool, str]] = []
pbar = tqdm(image_names)
for idx, image_name in enumerate(pbar):
pbar.set_description(f"Checking image {idx + 1}/{total_image_names} for workflow")
try:
pil_image = self._image_files.get(image_name)
except ImageFileNotFoundException:
self._logger.warning(f"Image {image_name} not found, skipping")
continue
if "invokeai_workflow" in pil_image.info:
try:
UnsafeWorkflowWithVersionValidator.validate_json(pil_image.info.get("invokeai_workflow", ""))
except ValidationError:
self._logger.warning(f"Image {image_name} has invalid embedded workflow, skipping")
continue
to_migrate.append((True, image_name))
self._logger.info(f"Adding {len(to_migrate)} embedded workflows to database")
cursor.executemany("UPDATE images SET has_workflow = ? WHERE image_name = ?", to_migrate)
def build_migration_2(image_files: ImageFileStorageBase, logger: Logger) -> Migration:
"""
Builds the migration from database version 1 to 2.
Introduced in v3.5.0 for the new workflow library.
:param image_files: The image files service, used to check for embedded workflows
:param logger: The logger, used to log progress during embedded workflows handling
This migration does the following:
- Add `has_workflow` column to `images` table
- Add `workflow` column to `session_queue` table
- Drop `workflows` and `workflow_images` tables
- Add `workflow_library` table
- Drops the `model_manager_metadata` table
- Drops the `model_config` table, recreating it (at this point, there is no user data in this table)
- Populates the `has_workflow` column in the `images` table (requires `image_files` & `logger` dependencies)
"""
migration_2 = Migration(
from_version=1,
to_version=2,
callback=Migration2Callback(image_files=image_files, logger=logger),
)
return migration_2

View File

@ -0,0 +1,164 @@
import sqlite3
from typing import Optional, Protocol, runtime_checkable
from pydantic import BaseModel, ConfigDict, Field, model_validator
@runtime_checkable
class MigrateCallback(Protocol):
"""
A callback that performs a migration.
Migrate callbacks are provided an open cursor to the database. They should not commit their
transaction; this is handled by the migrator.
If the callback needs to access additional dependencies, will be provided to the callback at runtime.
See :class:`Migration` for an example.
"""
def __call__(self, cursor: sqlite3.Cursor) -> None:
...
class MigrationError(RuntimeError):
"""Raised when a migration fails."""
class MigrationVersionError(ValueError):
"""Raised when a migration version is invalid."""
class Migration(BaseModel):
"""
Represents a migration for a SQLite database.
:param from_version: The database version on which this migration may be run
:param to_version: The database version that results from this migration
:param migrate_callback: The callback to run to perform the migration
Migration callbacks will be provided an open cursor to the database. They should not commit their
transaction; this is handled by the migrator.
It is suggested to use a class to define the migration callback and a builder function to create
the :class:`Migration`. This allows the callback to be provided with additional dependencies and
keeps things tidy, as all migration logic is self-contained.
Example:
```py
# Define the migration callback class
class Migration1Callback:
# This migration needs a logger, so we define a class that accepts a logger in its constructor.
def __init__(self, image_files: ImageFileStorageBase) -> None:
self._image_files = ImageFileStorageBase
# This dunder method allows the instance of the class to be called like a function.
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._add_with_banana_column(cursor)
self._do_something_with_images(cursor)
def _add_with_banana_column(self, cursor: sqlite3.Cursor) -> None:
\"""Adds the with_banana column to the sushi table.\"""
# Execute SQL using the cursor, taking care to *not commit* a transaction
cursor.execute('ALTER TABLE sushi ADD COLUMN with_banana BOOLEAN DEFAULT TRUE;')
def _do_something_with_images(self, cursor: sqlite3.Cursor) -> None:
\"""Does something with the image files service.\"""
self._image_files.get(...)
# Define the migration builder function. This function creates an instance of the migration callback
# class and returns a Migration.
def build_migration_1(image_files: ImageFileStorageBase) -> Migration:
\"""Builds the migration from database version 0 to 1.
Requires the image files service to...
\"""
migration_1 = Migration(
from_version=0,
to_version=1,
migrate_callback=Migration1Callback(image_files=image_files),
)
return migration_1
# Register the migration after all dependencies have been initialized
db = SqliteDatabase(db_path, logger)
migrator = SqliteMigrator(db)
migrator.register_migration(build_migration_1(image_files))
migrator.run_migrations()
```
"""
from_version: int = Field(ge=0, strict=True, description="The database version on which this migration may be run")
to_version: int = Field(ge=1, strict=True, description="The database version that results from this migration")
callback: MigrateCallback = Field(description="The callback to run to perform the migration")
@model_validator(mode="after")
def validate_to_version(self) -> "Migration":
"""Validates that to_version is one greater than from_version."""
if self.to_version != self.from_version + 1:
raise MigrationVersionError("to_version must be one greater than from_version")
return self
def __hash__(self) -> int:
# Callables are not hashable, so we need to implement our own __hash__ function to use this class in a set.
return hash((self.from_version, self.to_version))
model_config = ConfigDict(arbitrary_types_allowed=True)
class MigrationSet:
"""
A set of Migrations. Performs validation during migration registration and provides utility methods.
Migrations should be registered with `register()`. Once all are registered, `validate_migration_chain()`
should be called to ensure that the migrations form a single chain of migrations from version 0 to the latest version.
"""
def __init__(self) -> None:
self._migrations: set[Migration] = set()
def register(self, migration: Migration) -> None:
"""Registers a migration."""
migration_from_already_registered = any(m.from_version == migration.from_version for m in self._migrations)
migration_to_already_registered = any(m.to_version == migration.to_version for m in self._migrations)
if migration_from_already_registered or migration_to_already_registered:
raise MigrationVersionError("Migration with from_version or to_version already registered")
self._migrations.add(migration)
def get(self, from_version: int) -> Optional[Migration]:
"""Gets the migration that may be run on the given database version."""
# register() ensures that there is only one migration with a given from_version, so this is safe.
return next((m for m in self._migrations if m.from_version == from_version), None)
def validate_migration_chain(self) -> None:
"""
Validates that the migrations form a single chain of migrations from version 0 to the latest version,
Raises a MigrationError if there is a problem.
"""
if self.count == 0:
return
if self.latest_version == 0:
return
next_migration = self.get(from_version=0)
if next_migration is None:
raise MigrationError("Migration chain is fragmented")
touched_count = 1
while next_migration is not None:
next_migration = self.get(next_migration.to_version)
if next_migration is not None:
touched_count += 1
if touched_count != self.count:
raise MigrationError("Migration chain is fragmented")
@property
def count(self) -> int:
"""The count of registered migrations."""
return len(self._migrations)
@property
def latest_version(self) -> int:
"""Gets latest to_version among registered migrations. Returns 0 if there are no migrations registered."""
if self.count == 0:
return 0
return sorted(self._migrations, key=lambda m: m.to_version)[-1].to_version

View File

@ -0,0 +1,130 @@
import sqlite3
from pathlib import Path
from typing import Optional
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration, MigrationError, MigrationSet
class SqliteMigrator:
"""
Manages migrations for a SQLite database.
:param db: The instance of :class:`SqliteDatabase` to migrate.
Migrations should be registered with :meth:`register_migration`.
Each migration is run in a transaction. If a migration fails, the transaction is rolled back.
Example Usage:
```py
db = SqliteDatabase(db_path="my_db.db", logger=logger)
migrator = SqliteMigrator(db=db)
migrator.register_migration(build_migration_1())
migrator.register_migration(build_migration_2())
migrator.run_migrations()
```
"""
backup_path: Optional[Path] = None
def __init__(self, db: SqliteDatabase) -> None:
self._db = db
self._logger = db.logger
self._migration_set = MigrationSet()
def register_migration(self, migration: Migration) -> None:
"""Registers a migration."""
self._migration_set.register(migration)
self._logger.debug(f"Registered migration {migration.from_version} -> {migration.to_version}")
def run_migrations(self) -> bool:
"""Migrates the database to the latest version."""
with self._db.lock:
# This throws if there is a problem.
self._migration_set.validate_migration_chain()
cursor = self._db.conn.cursor()
self._create_migrations_table(cursor=cursor)
if self._migration_set.count == 0:
self._logger.debug("No migrations registered")
return False
if self._get_current_version(cursor=cursor) == self._migration_set.latest_version:
self._logger.debug("Database is up to date, no migrations to run")
return False
self._logger.info("Database update needed")
next_migration = self._migration_set.get(from_version=self._get_current_version(cursor))
while next_migration is not None:
self._run_migration(next_migration)
next_migration = self._migration_set.get(self._get_current_version(cursor))
self._logger.info("Database updated successfully")
return True
def _run_migration(self, migration: Migration) -> None:
"""Runs a single migration."""
try:
# Using sqlite3.Connection as a context manager commits a the transaction on exit, or rolls it back if an
# exception is raised.
with self._db.lock, self._db.conn as conn:
cursor = conn.cursor()
if self._get_current_version(cursor) != migration.from_version:
raise MigrationError(
f"Database is at version {self._get_current_version(cursor)}, expected {migration.from_version}"
)
self._logger.debug(f"Running migration from {migration.from_version} to {migration.to_version}")
# Run the actual migration
migration.callback(cursor)
# Update the version
cursor.execute("INSERT INTO migrations (version) VALUES (?);", (migration.to_version,))
self._logger.debug(
f"Successfully migrated database from {migration.from_version} to {migration.to_version}"
)
# We want to catch *any* error, mirroring the behaviour of the sqlite3 module.
except Exception as e:
# The connection context manager has already rolled back the migration, so we don't need to do anything.
msg = f"Error migrating database from {migration.from_version} to {migration.to_version}: {e}"
self._logger.error(msg)
raise MigrationError(msg) from e
def _create_migrations_table(self, cursor: sqlite3.Cursor) -> None:
"""Creates the migrations table for the database, if one does not already exist."""
with self._db.lock:
try:
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='migrations';")
if cursor.fetchone() is not None:
return
cursor.execute(
"""--sql
CREATE TABLE migrations (
version INTEGER PRIMARY KEY,
migrated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW'))
);
"""
)
cursor.execute("INSERT INTO migrations (version) VALUES (0);")
cursor.connection.commit()
self._logger.debug("Created migrations table")
except sqlite3.Error as e:
msg = f"Problem creating migrations table: {e}"
self._logger.error(msg)
cursor.connection.rollback()
raise MigrationError(msg) from e
@classmethod
def _get_current_version(cls, cursor: sqlite3.Cursor) -> int:
"""Gets the current version of the database, or 0 if the migrations table does not exist."""
try:
cursor.execute("SELECT MAX(version) FROM migrations;")
version: int = cursor.fetchone()[0]
if version is None:
return 0
return version
except sqlite3.OperationalError as e:
if "no such table" in str(e):
return 0
raise

View File

@ -3,10 +3,9 @@ from enum import Enum
from typing import Any, Union
import semver
from pydantic import BaseModel, Field, JsonValue, TypeAdapter, field_validator
from pydantic import BaseModel, ConfigDict, Field, JsonValue, TypeAdapter, field_validator
from invokeai.app.util.metaenum import MetaEnum
from invokeai.app.util.misc import uuid_string
__workflow_meta_version__ = semver.Version.parse("1.0.0")
@ -32,12 +31,13 @@ class WorkflowRecordOrderBy(str, Enum, metaclass=MetaEnum):
class WorkflowCategory(str, Enum, metaclass=MetaEnum):
User = "user"
Default = "default"
Project = "project"
class WorkflowMeta(BaseModel):
version: str = Field(description="The version of the workflow schema.")
category: WorkflowCategory = Field(description="The category of the workflow (user or default).")
category: WorkflowCategory = Field(
default=WorkflowCategory.User, description="The category of the workflow (user or default)."
)
@field_validator("version")
def validate_version(cls, version: str):
@ -65,12 +65,26 @@ class WorkflowWithoutID(BaseModel):
nodes: list[dict[str, JsonValue]] = Field(description="The nodes of the workflow.")
edges: list[dict[str, JsonValue]] = Field(description="The edges of the workflow.")
model_config = ConfigDict(extra="ignore")
WorkflowWithoutIDValidator = TypeAdapter(WorkflowWithoutID)
class UnsafeWorkflowWithVersion(BaseModel):
"""
This utility model only requires a workflow to have a valid version string.
It is used to validate a workflow version without having to validate the entire workflow.
"""
meta: WorkflowMeta = Field(description="The meta of the workflow.")
UnsafeWorkflowWithVersionValidator = TypeAdapter(UnsafeWorkflowWithVersion)
class Workflow(WorkflowWithoutID):
id: str = Field(default_factory=uuid_string, description="The id of the workflow.")
id: str = Field(description="The id of the workflow.")
WorkflowValidator = TypeAdapter(Workflow)

View File

@ -14,9 +14,10 @@ from invokeai.app.services.workflow_records.workflow_records_common import (
WorkflowRecordListItemDTO,
WorkflowRecordListItemDTOValidator,
WorkflowRecordOrderBy,
WorkflowValidator,
WorkflowWithoutID,
WorkflowWithoutIDValidator,
)
from invokeai.app.util.misc import uuid_string
class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
@ -25,7 +26,6 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
self._create_tables()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
@ -66,7 +66,7 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
try:
# Only user workflows may be created by this method
assert workflow.meta.category is WorkflowCategory.User
workflow_with_id = WorkflowValidator.validate_python(workflow.model_dump())
workflow_with_id = Workflow(**workflow.model_dump(), id=uuid_string())
self._lock.acquire()
self._cursor.execute(
"""--sql
@ -204,7 +204,8 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
workflow_paths = workflows_dir.glob("*.json")
for path in workflow_paths:
bytes_ = path.read_bytes()
workflow = WorkflowValidator.validate_json(bytes_)
workflow_without_id = WorkflowWithoutIDValidator.validate_json(bytes_)
workflow = Workflow(**workflow_without_id.model_dump(), id=uuid_string())
workflows.append(workflow)
# Only default workflows may be managed by this method
assert all(w.meta.category is WorkflowCategory.Default for w in workflows)
@ -231,87 +232,3 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
raise
finally:
self._lock.release()
def _create_tables(self) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS workflow_library (
workflow_id TEXT NOT NULL PRIMARY KEY,
workflow TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated manually when retrieving workflow
opened_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Generated columns, needed for indexing and searching
category TEXT GENERATED ALWAYS as (json_extract(workflow, '$.meta.category')) VIRTUAL NOT NULL,
name TEXT GENERATED ALWAYS as (json_extract(workflow, '$.name')) VIRTUAL NOT NULL,
description TEXT GENERATED ALWAYS as (json_extract(workflow, '$.description')) VIRTUAL NOT NULL
);
"""
)
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_workflow_library_updated_at
AFTER UPDATE
ON workflow_library FOR EACH ROW
BEGIN
UPDATE workflow_library
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE workflow_id = old.workflow_id;
END;
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_workflow_library_created_at ON workflow_library(created_at);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_workflow_library_updated_at ON workflow_library(updated_at);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_workflow_library_opened_at ON workflow_library(opened_at);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_workflow_library_category ON workflow_library(category);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_workflow_library_name ON workflow_library(name);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_workflow_library_description ON workflow_library(description);
"""
)
# We do not need the original `workflows` table or `workflow_images` junction table.
self._cursor.execute(
"""--sql
DROP TABLE IF EXISTS workflow_images;
"""
)
self._cursor.execute(
"""--sql
DROP TABLE IF EXISTS workflows;
"""
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()

View File

@ -32,6 +32,8 @@ class ModelProbeInfo(object):
upcast_attention: bool
format: Literal["diffusers", "checkpoint", "lycoris", "olive", "onnx"]
image_size: int
name: Optional[str] = None
description: Optional[str] = None
class ProbeBase(object):
@ -113,12 +115,16 @@ class ModelProbe(object):
base_type = probe.get_base_type()
variant_type = probe.get_variant_type()
prediction_type = probe.get_scheduler_prediction_type()
name = cls.get_model_name(model_path)
description = f"{base_type.value} {model_type.value} model {name}"
format = probe.get_format()
model_info = ModelProbeInfo(
model_type=model_type,
base_type=base_type,
variant_type=variant_type,
prediction_type=prediction_type,
name=name,
description=description,
upcast_attention=(
base_type == BaseModelType.StableDiffusion2
and prediction_type == SchedulerPredictionType.VPrediction
@ -142,6 +148,13 @@ class ModelProbe(object):
return model_info
@classmethod
def get_model_name(cls, model_path: Path) -> str:
if model_path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
return model_path.stem
else:
return model_path.name
@classmethod
def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: dict) -> ModelType:
if model_path.suffix not in (".bin", ".pt", ".ckpt", ".safetensors", ".pth"):

View File

@ -0,0 +1,29 @@
"""Re-export frequently-used symbols from the Model Manager backend."""
from .config import (
AnyModelConfig,
BaseModelType,
InvalidModelConfigException,
ModelConfigFactory,
ModelFormat,
ModelType,
ModelVariantType,
SchedulerPredictionType,
SubModelType,
)
from .probe import ModelProbe
from .search import ModelSearch
__all__ = [
"ModelProbe",
"ModelSearch",
"InvalidModelConfigException",
"ModelConfigFactory",
"BaseModelType",
"ModelType",
"SubModelType",
"ModelVariantType",
"ModelFormat",
"SchedulerPredictionType",
"AnyModelConfig",
]

View File

@ -23,7 +23,7 @@ from enum import Enum
from typing import Literal, Optional, Type, Union
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
from typing_extensions import Annotated
from typing_extensions import Annotated, Any, Dict
class InvalidModelConfigException(Exception):
@ -122,7 +122,7 @@ class ModelConfigBase(BaseModel):
validate_assignment=True,
)
def update(self, attributes: dict):
def update(self, attributes: Dict[str, Any]) -> None:
"""Update the object with fields in dict."""
for key, value in attributes.items():
setattr(self, key, value) # may raise a validation error
@ -195,8 +195,6 @@ class MainCheckpointConfig(_CheckpointConfig, _MainConfig):
"""Model config for main checkpoint models."""
type: Literal[ModelType.Main] = ModelType.Main
# Note that we do not need prediction_type or upcast_attention here
# because they are provided in the checkpoint's own config file.
class MainDiffusersConfig(_DiffusersConfig, _MainConfig):

View File

@ -2,6 +2,7 @@
"""Migrate from the InvokeAI v2 models.yaml format to the v3 sqlite format."""
from hashlib import sha1
from logging import Logger
from omegaconf import DictConfig, OmegaConf
from pydantic import TypeAdapter
@ -10,6 +11,7 @@ from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.model_records import (
DuplicateModelException,
ModelRecordServiceSQL,
UnknownModelException,
)
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.model_manager.config import (
@ -38,24 +40,27 @@ class MigrateModelYamlToDb:
"""
config: InvokeAIAppConfig
logger: InvokeAILogger
logger: Logger
def __init__(self):
def __init__(self) -> None:
self.config = InvokeAIAppConfig.get_config()
self.config.parse_args()
self.logger = InvokeAILogger.get_logger()
def get_db(self) -> ModelRecordServiceSQL:
"""Fetch the sqlite3 database for this installation."""
db = SqliteDatabase(self.config, self.logger)
db_path = None if self.config.use_memory_db else self.config.db_path
db = SqliteDatabase(db_path=db_path, logger=self.logger, verbose=self.config.log_sql)
return ModelRecordServiceSQL(db)
def get_yaml(self) -> DictConfig:
"""Fetch the models.yaml DictConfig for this installation."""
yaml_path = self.config.model_conf_path
return OmegaConf.load(yaml_path)
omegaconf = OmegaConf.load(yaml_path)
assert isinstance(omegaconf, DictConfig)
return omegaconf
def migrate(self):
def migrate(self) -> None:
"""Do the migration from models.yaml to invokeai.db."""
db = self.get_db()
yaml = self.get_yaml()
@ -69,6 +74,7 @@ class MigrateModelYamlToDb:
base_type, model_type, model_name = str(model_key).split("/")
hash = FastModelHash.hash(self.config.models_path / stanza.path)
assert isinstance(model_key, str)
new_key = sha1(model_key.encode("utf-8")).hexdigest()
stanza["base"] = BaseModelType(base_type)
@ -77,12 +83,20 @@ class MigrateModelYamlToDb:
stanza["original_hash"] = hash
stanza["current_hash"] = hash
new_config = ModelsValidator.validate_python(stanza)
self.logger.info(f"Adding model {model_name} with key {model_key}")
new_config: AnyModelConfig = ModelsValidator.validate_python(stanza) # type: ignore # see https://github.com/pydantic/pydantic/discussions/7094
try:
db.add_model(new_key, new_config)
if original_record := db.search_by_path(stanza.path):
key = original_record[0].key
self.logger.info(f"Updating model {model_name} with information from models.yaml using key {key}")
db.update_model(key, new_config)
else:
self.logger.info(f"Adding model {model_name} with key {model_key}")
db.add_model(new_key, new_config)
except DuplicateModelException:
self.logger.warning(f"Model {model_name} is already in the database")
except UnknownModelException:
self.logger.warning(f"Model at {stanza.path} could not be found in database")
def main():

View File

@ -0,0 +1,684 @@
import json
import re
from pathlib import Path
from typing import Any, Dict, Literal, Optional, Union
import safetensors.torch
import torch
from picklescan.scanner import scan_file_path
from invokeai.backend.model_management.models.base import read_checkpoint_meta
from invokeai.backend.model_management.models.ip_adapter import IPAdapterModelFormat
from invokeai.backend.model_management.util import lora_token_vector_length
from invokeai.backend.util.util import SilenceWarnings
from .config import (
AnyModelConfig,
BaseModelType,
InvalidModelConfigException,
ModelConfigFactory,
ModelFormat,
ModelType,
ModelVariantType,
SchedulerPredictionType,
)
from .hash import FastModelHash
CkptType = Dict[str, Any]
LEGACY_CONFIGS: Dict[BaseModelType, Dict[ModelVariantType, Union[str, Dict[SchedulerPredictionType, str]]]] = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: "v2-inference.yaml",
SchedulerPredictionType.VPrediction: "v2-inference-v.yaml",
},
ModelVariantType.Inpaint: {
SchedulerPredictionType.Epsilon: "v2-inpainting-inference.yaml",
SchedulerPredictionType.VPrediction: "v2-inpainting-inference-v.yaml",
},
},
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: "sd_xl_base.yaml",
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: "sd_xl_refiner.yaml",
},
}
class ProbeBase(object):
"""Base class for probes."""
def __init__(self, model_path: Path):
self.model_path = model_path
def get_base_type(self) -> BaseModelType:
"""Get model base type."""
raise NotImplementedError
def get_format(self) -> ModelFormat:
"""Get model file format."""
raise NotImplementedError
def get_variant_type(self) -> Optional[ModelVariantType]:
"""Get model variant type."""
return None
def get_scheduler_prediction_type(self) -> Optional[SchedulerPredictionType]:
"""Get model scheduler prediction type."""
return None
class ModelProbe(object):
PROBES: Dict[str, Dict[ModelType, type[ProbeBase]]] = {
"diffusers": {},
"checkpoint": {},
"onnx": {},
}
CLASS2TYPE = {
"StableDiffusionPipeline": ModelType.Main,
"StableDiffusionInpaintPipeline": ModelType.Main,
"StableDiffusionXLPipeline": ModelType.Main,
"StableDiffusionXLImg2ImgPipeline": ModelType.Main,
"StableDiffusionXLInpaintPipeline": ModelType.Main,
"LatentConsistencyModelPipeline": ModelType.Main,
"AutoencoderKL": ModelType.Vae,
"AutoencoderTiny": ModelType.Vae,
"ControlNetModel": ModelType.ControlNet,
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
"T2IAdapter": ModelType.T2IAdapter,
}
@classmethod
def register_probe(
cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: type[ProbeBase]
) -> None:
cls.PROBES[format][model_type] = probe_class
@classmethod
def heuristic_probe(
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
) -> AnyModelConfig:
return cls.probe(model_path, fields)
@classmethod
def probe(
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
) -> AnyModelConfig:
"""
Probe the model at model_path and return its configuration record.
:param model_path: Path to the model file (checkpoint) or directory (diffusers).
:param fields: An optional dictionary that can be used to override probed
fields. Typically used for fields that don't probe well, such as prediction_type.
Returns: The appropriate model configuration derived from ModelConfigBase.
"""
if fields is None:
fields = {}
format_type = ModelFormat.Diffusers if model_path.is_dir() else ModelFormat.Checkpoint
model_info = None
model_type = None
if format_type == "diffusers":
model_type = cls.get_model_type_from_folder(model_path)
else:
model_type = cls.get_model_type_from_checkpoint(model_path)
format_type = ModelFormat.Onnx if model_type == ModelType.ONNX else format_type
probe_class = cls.PROBES[format_type].get(model_type)
if not probe_class:
raise InvalidModelConfigException(f"Unhandled combination of {format_type} and {model_type}")
hash = FastModelHash.hash(model_path)
probe = probe_class(model_path)
fields["path"] = model_path.as_posix()
fields["type"] = fields.get("type") or model_type
fields["base"] = fields.get("base") or probe.get_base_type()
fields["variant"] = fields.get("variant") or probe.get_variant_type()
fields["prediction_type"] = fields.get("prediction_type") or probe.get_scheduler_prediction_type()
fields["name"] = fields.get("name") or cls.get_model_name(model_path)
fields["description"] = (
fields.get("description") or f"{fields['base'].value} {fields['type'].value} model {fields['name']}"
)
fields["format"] = fields.get("format") or probe.get_format()
fields["original_hash"] = fields.get("original_hash") or hash
fields["current_hash"] = fields.get("current_hash") or hash
# additional fields needed for main and controlnet models
if fields["type"] in [ModelType.Main, ModelType.ControlNet] and fields["format"] == ModelFormat.Checkpoint:
fields["config"] = cls._get_checkpoint_config_path(
model_path,
model_type=fields["type"],
base_type=fields["base"],
variant_type=fields["variant"],
prediction_type=fields["prediction_type"],
).as_posix()
# additional fields needed for main non-checkpoint models
elif fields["type"] == ModelType.Main and fields["format"] in [
ModelFormat.Onnx,
ModelFormat.Olive,
ModelFormat.Diffusers,
]:
fields["upcast_attention"] = fields.get("upcast_attention") or (
fields["base"] == BaseModelType.StableDiffusion2
and fields["prediction_type"] == SchedulerPredictionType.VPrediction
)
model_info = ModelConfigFactory.make_config(fields)
return model_info
@classmethod
def get_model_name(cls, model_path: Path) -> str:
if model_path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
return model_path.stem
else:
return model_path.name
@classmethod
def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: Optional[CkptType] = None) -> ModelType:
if model_path.suffix not in (".bin", ".pt", ".ckpt", ".safetensors", ".pth"):
raise InvalidModelConfigException(f"{model_path}: unrecognized suffix")
if model_path.name == "learned_embeds.bin":
return ModelType.TextualInversion
ckpt = checkpoint if checkpoint else read_checkpoint_meta(model_path, scan=True)
ckpt = ckpt.get("state_dict", ckpt)
for key in ckpt.keys():
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
return ModelType.Main
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
return ModelType.Vae
elif any(key.startswith(v) for v in {"lora_te_", "lora_unet_"}):
return ModelType.Lora
elif any(key.endswith(v) for v in {"to_k_lora.up.weight", "to_q_lora.down.weight"}):
return ModelType.Lora
elif any(key.startswith(v) for v in {"control_model", "input_blocks"}):
return ModelType.ControlNet
elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion
else:
# diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
return ModelType.TextualInversion
raise InvalidModelConfigException(f"Unable to determine model type for {model_path}")
@classmethod
def get_model_type_from_folder(cls, folder_path: Path) -> ModelType:
"""Get the model type of a hugging-face style folder."""
class_name = None
error_hint = None
for suffix in ["bin", "safetensors"]:
if (folder_path / f"learned_embeds.{suffix}").exists():
return ModelType.TextualInversion
if (folder_path / f"pytorch_lora_weights.{suffix}").exists():
return ModelType.Lora
if (folder_path / "unet/model.onnx").exists():
return ModelType.ONNX
if (folder_path / "image_encoder.txt").exists():
return ModelType.IPAdapter
i = folder_path / "model_index.json"
c = folder_path / "config.json"
config_path = i if i.exists() else c if c.exists() else None
if config_path:
with open(config_path, "r") as file:
conf = json.load(file)
if "_class_name" in conf:
class_name = conf["_class_name"]
elif "architectures" in conf:
class_name = conf["architectures"][0]
else:
class_name = None
else:
error_hint = f"No model_index.json or config.json found in {folder_path}."
if class_name and (type := cls.CLASS2TYPE.get(class_name)):
return type
else:
error_hint = f"class {class_name} is not one of the supported classes [{', '.join(cls.CLASS2TYPE.keys())}]"
# give up
raise InvalidModelConfigException(
f"Unable to determine model type for {folder_path}" + (f"; {error_hint}" if error_hint else "")
)
@classmethod
def _get_checkpoint_config_path(
cls,
model_path: Path,
model_type: ModelType,
base_type: BaseModelType,
variant_type: ModelVariantType,
prediction_type: SchedulerPredictionType,
) -> Path:
# look for a YAML file adjacent to the model file first
possible_conf = model_path.with_suffix(".yaml")
if possible_conf.exists():
return possible_conf.absolute()
if model_type == ModelType.Main:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
elif model_type == ModelType.ControlNet:
config_file = (
"../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml"
)
else:
raise InvalidModelConfigException(
f"{model_path}: Unrecognized combination of model_type={model_type}, base_type={base_type}"
)
assert isinstance(config_file, str)
return Path(config_file)
@classmethod
def _scan_and_load_checkpoint(cls, model_path: Path) -> CkptType:
with SilenceWarnings():
if model_path.suffix.endswith((".ckpt", ".pt", ".bin")):
cls._scan_model(model_path.name, model_path)
model = torch.load(model_path)
assert isinstance(model, dict)
return model
else:
return safetensors.torch.load_file(model_path)
@classmethod
def _scan_model(cls, model_name: str, checkpoint: Path) -> None:
"""
Apply picklescanner to the indicated checkpoint and issue a warning
and option to exit if an infected file is identified.
"""
# scan model
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise Exception("The model {model_name} is potentially infected by malware. Aborting import.")
# ##################################################3
# Checkpoint probing
# ##################################################3
class CheckpointProbeBase(ProbeBase):
def __init__(self, model_path: Path):
super().__init__(model_path)
self.checkpoint = ModelProbe._scan_and_load_checkpoint(model_path)
def get_format(self) -> ModelFormat:
return ModelFormat("checkpoint")
def get_variant_type(self) -> ModelVariantType:
model_type = ModelProbe.get_model_type_from_checkpoint(self.model_path, self.checkpoint)
if model_type != ModelType.Main:
return ModelVariantType.Normal
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
if in_channels == 9:
return ModelVariantType.Inpaint
elif in_channels == 5:
return ModelVariantType.Depth
elif in_channels == 4:
return ModelVariantType.Normal
else:
raise InvalidModelConfigException(
f"Cannot determine variant type (in_channels={in_channels}) at {self.model_path}"
)
class PipelineCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2
key_name = "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 2048:
return BaseModelType.StableDiffusionXL
elif key_name in state_dict and state_dict[key_name].shape[-1] == 1280:
return BaseModelType.StableDiffusionXLRefiner
else:
raise InvalidModelConfigException("Cannot determine base type")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
"""Return model prediction type."""
type = self.get_base_type()
if type == BaseModelType.StableDiffusion2:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if "global_step" in checkpoint:
if checkpoint["global_step"] == 220000:
return SchedulerPredictionType.Epsilon
elif checkpoint["global_step"] == 110000:
return SchedulerPredictionType.VPrediction
return SchedulerPredictionType.VPrediction # a guess for sd2 ckpts
elif type == BaseModelType.StableDiffusion1:
return SchedulerPredictionType.Epsilon # a reasonable guess for sd1 ckpts
else:
return SchedulerPredictionType.Epsilon
class VaeCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
# I can't find any standalone 2.X VAEs to test with!
return BaseModelType.StableDiffusion1
class LoRACheckpointProbe(CheckpointProbeBase):
"""Class for LoRA checkpoints."""
def get_format(self) -> ModelFormat:
return ModelFormat("lycoris")
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
token_vector_length = lora_token_vector_length(checkpoint)
if token_vector_length == 768:
return BaseModelType.StableDiffusion1
elif token_vector_length == 1024:
return BaseModelType.StableDiffusion2
elif token_vector_length == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown LoRA type: {self.model_path}")
class TextualInversionCheckpointProbe(CheckpointProbeBase):
"""Class for probing embeddings."""
def get_format(self) -> ModelFormat:
return ModelFormat.EmbeddingFile
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
if "string_to_token" in checkpoint:
token_dim = list(checkpoint["string_to_param"].values())[0].shape[-1]
elif "emb_params" in checkpoint:
token_dim = checkpoint["emb_params"].shape[-1]
elif "clip_g" in checkpoint:
token_dim = checkpoint["clip_g"].shape[-1]
else:
token_dim = list(checkpoint.values())[0].shape[0]
if token_dim == 768:
return BaseModelType.StableDiffusion1
elif token_dim == 1024:
return BaseModelType.StableDiffusion2
elif token_dim == 1280:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"{self.model_path}: Could not determine base type")
class ControlNetCheckpointProbe(CheckpointProbeBase):
"""Class for probing controlnets."""
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
for key_name in (
"control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
"input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
):
if key_name not in checkpoint:
continue
if checkpoint[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
elif checkpoint[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2
raise InvalidModelConfigException("{self.model_path}: Unable to determine base type")
class IPAdapterCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
class CLIPVisionCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
class T2IAdapterCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
########################################################
# classes for probing folders
#######################################################
class FolderProbeBase(ProbeBase):
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal
def get_format(self) -> ModelFormat:
return ModelFormat("diffusers")
class PipelineFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
with open(self.model_path / "unet" / "config.json", "r") as file:
unet_conf = json.load(file)
if unet_conf["cross_attention_dim"] == 768:
return BaseModelType.StableDiffusion1
elif unet_conf["cross_attention_dim"] == 1024:
return BaseModelType.StableDiffusion2
elif unet_conf["cross_attention_dim"] == 1280:
return BaseModelType.StableDiffusionXLRefiner
elif unet_conf["cross_attention_dim"] == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
with open(self.model_path / "scheduler" / "scheduler_config.json", "r") as file:
scheduler_conf = json.load(file)
if scheduler_conf["prediction_type"] == "v_prediction":
return SchedulerPredictionType.VPrediction
elif scheduler_conf["prediction_type"] == "epsilon":
return SchedulerPredictionType.Epsilon
else:
raise InvalidModelConfigException("Unknown scheduler prediction type: {scheduler_conf['prediction_type']}")
def get_variant_type(self) -> ModelVariantType:
# This only works for pipelines! Any kind of
# exception results in our returning the
# "normal" variant type
try:
config_file = self.model_path / "unet" / "config.json"
with open(config_file, "r") as file:
conf = json.load(file)
in_channels = conf["in_channels"]
if in_channels == 9:
return ModelVariantType.Inpaint
elif in_channels == 5:
return ModelVariantType.Depth
elif in_channels == 4:
return ModelVariantType.Normal
except Exception:
pass
return ModelVariantType.Normal
class VaeFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
if self._config_looks_like_sdxl():
return BaseModelType.StableDiffusionXL
elif self._name_looks_like_sdxl():
# but SD and SDXL VAE are the same shape (3-channel RGB to 4-channel float scaled down
# by a factor of 8), we can't necessarily tell them apart by config hyperparameters.
return BaseModelType.StableDiffusionXL
else:
return BaseModelType.StableDiffusion1
def _config_looks_like_sdxl(self) -> bool:
# config values that distinguish Stability's SD 1.x VAE from their SDXL VAE.
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
return config.get("scaling_factor", 0) == 0.13025 and config.get("sample_size") in [512, 1024]
def _name_looks_like_sdxl(self) -> bool:
return bool(re.search(r"xl\b", self._guess_name(), re.IGNORECASE))
def _guess_name(self) -> str:
name = self.model_path.name
if name == "vae":
name = self.model_path.parent.name
return name
class TextualInversionFolderProbe(FolderProbeBase):
def get_format(self) -> ModelFormat:
return ModelFormat.EmbeddingFolder
def get_base_type(self) -> BaseModelType:
path = self.model_path / "learned_embeds.bin"
if not path.exists():
raise InvalidModelConfigException(
f"{self.model_path.as_posix()} does not contain expected 'learned_embeds.bin' file"
)
return TextualInversionCheckpointProbe(path).get_base_type()
class ONNXFolderProbe(FolderProbeBase):
def get_format(self) -> ModelFormat:
return ModelFormat("onnx")
def get_base_type(self) -> BaseModelType:
return BaseModelType.StableDiffusion1
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal
class ControlNetFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
# no obvious way to distinguish between sd2-base and sd2-768
dimension = config["cross_attention_dim"]
base_model = (
BaseModelType.StableDiffusion1
if dimension == 768
else (
BaseModelType.StableDiffusion2
if dimension == 1024
else BaseModelType.StableDiffusionXL
if dimension == 2048
else None
)
)
if not base_model:
raise InvalidModelConfigException(f"Unable to determine model base for {self.model_path}")
return base_model
class LoRAFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
model_file = None
for suffix in ["safetensors", "bin"]:
base_file = self.model_path / f"pytorch_lora_weights.{suffix}"
if base_file.exists():
model_file = base_file
break
if not model_file:
raise InvalidModelConfigException("Unknown LoRA format encountered")
return LoRACheckpointProbe(model_file).get_base_type()
class IPAdapterFolderProbe(FolderProbeBase):
def get_format(self) -> IPAdapterModelFormat:
return IPAdapterModelFormat.InvokeAI.value
def get_base_type(self) -> BaseModelType:
model_file = self.model_path / "ip_adapter.bin"
if not model_file.exists():
raise InvalidModelConfigException("Unknown IP-Adapter model format.")
state_dict = torch.load(model_file, map_location="cpu")
cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1]
if cross_attention_dim == 768:
return BaseModelType.StableDiffusion1
elif cross_attention_dim == 1024:
return BaseModelType.StableDiffusion2
elif cross_attention_dim == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(
f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}."
)
class CLIPVisionFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
return BaseModelType.Any
class T2IAdapterFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
adapter_type = config.get("adapter_type", None)
if adapter_type == "full_adapter_xl":
return BaseModelType.StableDiffusionXL
elif adapter_type == "full_adapter" or "light_adapter":
# I haven't seen any T2I adapter models for SD2, so assume that this is an SD1 adapter.
return BaseModelType.StableDiffusion1
else:
raise InvalidModelConfigException(
f"Unable to determine base model for '{self.model_path}' (adapter_type = {adapter_type})."
)
############## register probe classes ######
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Vae, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Lora, LoRAFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.T2IAdapter, T2IAdapterFolderProbe)
ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.CLIPVision, CLIPVisionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.T2IAdapter, T2IAdapterCheckpointProbe)
ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)

View File

@ -0,0 +1,190 @@
# Copyright 2023, Lincoln D. Stein and the InvokeAI Team
"""
Abstract base class and implementation for recursive directory search for models.
Example usage:
```
from invokeai.backend.model_manager import ModelSearch, ModelProbe
def find_main_models(model: Path) -> bool:
info = ModelProbe.probe(model)
if info.model_type == 'main' and info.base_type == 'sd-1':
return True
else:
return False
search = ModelSearch(on_model_found=report_it)
found = search.search('/tmp/models')
print(found) # list of matching model paths
print(search.stats) # search stats
```
"""
import os
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Callable, Optional, Set, Union
from pydantic import BaseModel, Field
from invokeai.backend.util.logging import InvokeAILogger
default_logger = InvokeAILogger.get_logger()
class SearchStats(BaseModel):
items_scanned: int = 0
models_found: int = 0
models_filtered: int = 0
class ModelSearchBase(ABC, BaseModel):
"""
Abstract directory traversal model search class
Usage:
search = ModelSearchBase(
on_search_started = search_started_callback,
on_search_completed = search_completed_callback,
on_model_found = model_found_callback,
)
models_found = search.search('/path/to/directory')
"""
# fmt: off
on_search_started : Optional[Callable[[Path], None]] = Field(default=None, description="Called just before the search starts.") # noqa E221
on_model_found : Optional[Callable[[Path], bool]] = Field(default=None, description="Called when a model is found.") # noqa E221
on_search_completed : Optional[Callable[[Set[Path]], None]] = Field(default=None, description="Called when search is complete.") # noqa E221
stats : SearchStats = Field(default_factory=SearchStats, description="Summary statistics after search") # noqa E221
logger : InvokeAILogger = Field(default=default_logger, description="Logger instance.") # noqa E221
# fmt: on
class Config:
arbitrary_types_allowed = True
@abstractmethod
def search_started(self) -> None:
"""
Called before the scan starts.
Passes the root search directory to the Callable `on_search_started`.
"""
pass
@abstractmethod
def model_found(self, model: Path) -> None:
"""
Called when a model is found during search.
:param model: Model to process - could be a directory or checkpoint.
Passes the model's Path to the Callable `on_model_found`.
This Callable receives the path to the model and returns a boolean
to indicate whether the model should be returned in the search
results.
"""
pass
@abstractmethod
def search_completed(self) -> None:
"""
Called before the scan starts.
Passes the Set of found model Paths to the Callable `on_search_completed`.
"""
pass
@abstractmethod
def search(self, directory: Union[Path, str]) -> Set[Path]:
"""
Recursively search for models in `directory` and return a set of model paths.
If provided, the `on_search_started`, `on_model_found` and `on_search_completed`
Callables will be invoked during the search.
"""
pass
class ModelSearch(ModelSearchBase):
"""
Implementation of ModelSearch with callbacks.
Usage:
search = ModelSearch()
search.model_found = lambda path : 'anime' in path.as_posix()
found = search.list_models(['/tmp/models1','/tmp/models2'])
# returns all models that have 'anime' in the path
"""
models_found: Set[Path] = Field(default=None)
scanned_dirs: Set[Path] = Field(default=None)
pruned_paths: Set[Path] = Field(default=None)
def search_started(self) -> None:
self.models_found = set()
self.scanned_dirs = set()
self.pruned_paths = set()
if self.on_search_started:
self.on_search_started(self._directory)
def model_found(self, model: Path) -> None:
self.stats.models_found += 1
if not self.on_model_found or self.on_model_found(model):
self.stats.models_filtered += 1
self.models_found.add(model)
def search_completed(self) -> None:
if self.on_search_completed:
self.on_search_completed(self._models_found)
def search(self, directory: Union[Path, str]) -> Set[Path]:
self._directory = Path(directory)
self.stats = SearchStats() # zero out
self.search_started() # This will initialize _models_found to empty
self._walk_directory(directory)
self.search_completed()
return self.models_found
def _walk_directory(self, path: Union[Path, str]) -> None:
for root, dirs, files in os.walk(path, followlinks=True):
# don't descend into directories that start with a "."
# to avoid the Mac .DS_STORE issue.
if str(Path(root).name).startswith("."):
self.pruned_paths.add(Path(root))
if any(Path(root).is_relative_to(x) for x in self.pruned_paths):
continue
self.stats.items_scanned += len(dirs) + len(files)
for d in dirs:
path = Path(root) / d
if path.parent in self.scanned_dirs:
self.scanned_dirs.add(path)
continue
if any(
(path / x).exists()
for x in [
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
]
):
self.scanned_dirs.add(path)
try:
self.model_found(path)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
for f in files:
path = Path(root) / f
if path.parent in self.scanned_dirs:
continue
if path.suffix in {".ckpt", ".bin", ".pth", ".safetensors", ".pt"}:
try:
self.model_found(path)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))

View File

@ -242,17 +242,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
control_model: ControlNetModel = None,
):
super().__init__(
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
requires_safety_checker,
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
@ -260,9 +249,9 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
# FIXME: can't currently register control module
# control_model=control_model,
requires_safety_checker=requires_safety_checker,
)
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
self.control_model = control_model
self.use_ip_adapter = False

View File

@ -3,7 +3,42 @@ from typing import Union
import numpy as np
from invokeai.backend.tiles.utils import TBLR, Tile, paste
from invokeai.app.invocations.latent import LATENT_SCALE_FACTOR
from invokeai.backend.tiles.utils import TBLR, Tile, paste, seam_blend
def calc_overlap(tiles: list[Tile], num_tiles_x: int, num_tiles_y: int) -> list[Tile]:
"""Calculate and update the overlap of a list of tiles.
Args:
tiles (list[Tile]): The list of tiles describing the locations of the respective `tile_images`.
num_tiles_x: the number of tiles on the x axis.
num_tiles_y: the number of tiles on the y axis.
"""
def get_tile_or_none(idx_y: int, idx_x: int) -> Union[Tile, None]:
if idx_y < 0 or idx_y > num_tiles_y or idx_x < 0 or idx_x > num_tiles_x:
return None
return tiles[idx_y * num_tiles_x + idx_x]
for tile_idx_y in range(num_tiles_y):
for tile_idx_x in range(num_tiles_x):
cur_tile = get_tile_or_none(tile_idx_y, tile_idx_x)
top_neighbor_tile = get_tile_or_none(tile_idx_y - 1, tile_idx_x)
left_neighbor_tile = get_tile_or_none(tile_idx_y, tile_idx_x - 1)
assert cur_tile is not None
# Update cur_tile top-overlap and corresponding top-neighbor bottom-overlap.
if top_neighbor_tile is not None:
cur_tile.overlap.top = max(0, top_neighbor_tile.coords.bottom - cur_tile.coords.top)
top_neighbor_tile.overlap.bottom = cur_tile.overlap.top
# Update cur_tile left-overlap and corresponding left-neighbor right-overlap.
if left_neighbor_tile is not None:
cur_tile.overlap.left = max(0, left_neighbor_tile.coords.right - cur_tile.coords.left)
left_neighbor_tile.overlap.right = cur_tile.overlap.left
return tiles
def calc_tiles_with_overlap(
@ -63,31 +98,129 @@ def calc_tiles_with_overlap(
tiles.append(tile)
def get_tile_or_none(idx_y: int, idx_x: int) -> Union[Tile, None]:
if idx_y < 0 or idx_y > num_tiles_y or idx_x < 0 or idx_x > num_tiles_x:
return None
return tiles[idx_y * num_tiles_x + idx_x]
return calc_overlap(tiles, num_tiles_x, num_tiles_y)
# Iterate over tiles again and calculate overlaps.
def calc_tiles_even_split(
image_height: int, image_width: int, num_tiles_x: int, num_tiles_y: int, overlap_fraction: float = 0
) -> list[Tile]:
"""Calculate the tile coordinates for a given image shape with the number of tiles requested.
Args:
image_height (int): The image height in px.
image_width (int): The image width in px.
num_x_tiles (int): The number of tile to split the image into on the X-axis.
num_y_tiles (int): The number of tile to split the image into on the Y-axis.
overlap_fraction (float, optional): The target overlap as fraction of the tiles size. Defaults to 0.
Returns:
list[Tile]: A list of tiles that cover the image shape. Ordered from left-to-right, top-to-bottom.
"""
# Ensure tile size is divisible by 8
if image_width % LATENT_SCALE_FACTOR != 0 or image_height % LATENT_SCALE_FACTOR != 0:
raise ValueError(f"image size (({image_width}, {image_height})) must be divisible by {LATENT_SCALE_FACTOR}")
# Calculate the overlap size based on the percentage and adjust it to be divisible by 8 (rounding up)
overlap_x = LATENT_SCALE_FACTOR * math.ceil(
int((image_width / num_tiles_x) * overlap_fraction) / LATENT_SCALE_FACTOR
)
overlap_y = LATENT_SCALE_FACTOR * math.ceil(
int((image_height / num_tiles_y) * overlap_fraction) / LATENT_SCALE_FACTOR
)
# Calculate the tile size based on the number of tiles and overlap, and ensure it's divisible by 8 (rounding down)
tile_size_x = LATENT_SCALE_FACTOR * math.floor(
((image_width + overlap_x * (num_tiles_x - 1)) // num_tiles_x) / LATENT_SCALE_FACTOR
)
tile_size_y = LATENT_SCALE_FACTOR * math.floor(
((image_height + overlap_y * (num_tiles_y - 1)) // num_tiles_y) / LATENT_SCALE_FACTOR
)
# tiles[y * num_tiles_x + x] is the tile for the y'th row, x'th column.
tiles: list[Tile] = []
# Calculate tile coordinates. (Ignore overlap values for now.)
for tile_idx_y in range(num_tiles_y):
# Calculate the top and bottom of the row
top = tile_idx_y * (tile_size_y - overlap_y)
bottom = min(top + tile_size_y, image_height)
# For the last row adjust bottom to be the height of the image
if tile_idx_y == num_tiles_y - 1:
bottom = image_height
for tile_idx_x in range(num_tiles_x):
cur_tile = get_tile_or_none(tile_idx_y, tile_idx_x)
top_neighbor_tile = get_tile_or_none(tile_idx_y - 1, tile_idx_x)
left_neighbor_tile = get_tile_or_none(tile_idx_y, tile_idx_x - 1)
# Calculate the left & right coordinate of each tile
left = tile_idx_x * (tile_size_x - overlap_x)
right = min(left + tile_size_x, image_width)
# For the last tile in the row adjust right to be the width of the image
if tile_idx_x == num_tiles_x - 1:
right = image_width
assert cur_tile is not None
tile = Tile(
coords=TBLR(top=top, bottom=bottom, left=left, right=right),
overlap=TBLR(top=0, bottom=0, left=0, right=0),
)
# Update cur_tile top-overlap and corresponding top-neighbor bottom-overlap.
if top_neighbor_tile is not None:
cur_tile.overlap.top = max(0, top_neighbor_tile.coords.bottom - cur_tile.coords.top)
top_neighbor_tile.overlap.bottom = cur_tile.overlap.top
tiles.append(tile)
# Update cur_tile left-overlap and corresponding left-neighbor right-overlap.
if left_neighbor_tile is not None:
cur_tile.overlap.left = max(0, left_neighbor_tile.coords.right - cur_tile.coords.left)
left_neighbor_tile.overlap.right = cur_tile.overlap.left
return calc_overlap(tiles, num_tiles_x, num_tiles_y)
return tiles
def calc_tiles_min_overlap(
image_height: int,
image_width: int,
tile_height: int,
tile_width: int,
min_overlap: int = 0,
) -> list[Tile]:
"""Calculate the tile coordinates for a given image shape under a simple tiling scheme with overlaps.
Args:
image_height (int): The image height in px.
image_width (int): The image width in px.
tile_height (int): The tile height in px. All tiles will have this height.
tile_width (int): The tile width in px. All tiles will have this width.
min_overlap (int): The target minimum overlap between adjacent tiles. If the tiles do not evenly cover the image
shape, then the overlap will be spread between the tiles.
Returns:
list[Tile]: A list of tiles that cover the image shape. Ordered from left-to-right, top-to-bottom.
"""
assert min_overlap < tile_height
assert min_overlap < tile_width
# catches the cases when the tile size is larger than the images size and adjusts the tile size
if image_width < tile_width:
tile_width = image_width
if image_height < tile_height:
tile_height = image_height
num_tiles_x = math.ceil((image_width - min_overlap) / (tile_width - min_overlap))
num_tiles_y = math.ceil((image_height - min_overlap) / (tile_height - min_overlap))
# tiles[y * num_tiles_x + x] is the tile for the y'th row, x'th column.
tiles: list[Tile] = []
# Calculate tile coordinates. (Ignore overlap values for now.)
for tile_idx_y in range(num_tiles_y):
top = (tile_idx_y * (image_height - tile_height)) // (num_tiles_y - 1) if num_tiles_y > 1 else 0
bottom = top + tile_height
for tile_idx_x in range(num_tiles_x):
left = (tile_idx_x * (image_width - tile_width)) // (num_tiles_x - 1) if num_tiles_x > 1 else 0
right = left + tile_width
tile = Tile(
coords=TBLR(top=top, bottom=bottom, left=left, right=right),
overlap=TBLR(top=0, bottom=0, left=0, right=0),
)
tiles.append(tile)
return calc_overlap(tiles, num_tiles_x, num_tiles_y)
def merge_tiles_with_linear_blending(
@ -199,3 +332,91 @@ def merge_tiles_with_linear_blending(
),
mask=mask,
)
def merge_tiles_with_seam_blending(
dst_image: np.ndarray, tiles: list[Tile], tile_images: list[np.ndarray], blend_amount: int
):
"""Merge a set of image tiles into `dst_image` with seam blending between the tiles.
We expect every tile edge to either:
1) have an overlap of 0, because it is aligned with the image edge, or
2) have an overlap >= blend_amount.
If neither of these conditions are satisfied, we raise an exception.
The seam blending is centered on a seam of least energy of the overlap between adjacent tiles.
Args:
dst_image (np.ndarray): The destination image. Shape: (H, W, C).
tiles (list[Tile]): The list of tiles describing the locations of the respective `tile_images`.
tile_images (list[np.ndarray]): The tile images to merge into `dst_image`.
blend_amount (int): The amount of blending (in px) between adjacent overlapping tiles.
"""
# Sort tiles and images first by left x coordinate, then by top y coordinate. During tile processing, we want to
# iterate over tiles left-to-right, top-to-bottom.
tiles_and_images = list(zip(tiles, tile_images, strict=True))
tiles_and_images = sorted(tiles_and_images, key=lambda x: x[0].coords.left)
tiles_and_images = sorted(tiles_and_images, key=lambda x: x[0].coords.top)
# Organize tiles into rows.
tile_and_image_rows: list[list[tuple[Tile, np.ndarray]]] = []
cur_tile_and_image_row: list[tuple[Tile, np.ndarray]] = []
first_tile_in_cur_row, _ = tiles_and_images[0]
for tile_and_image in tiles_and_images:
tile, _ = tile_and_image
if not (
tile.coords.top == first_tile_in_cur_row.coords.top
and tile.coords.bottom == first_tile_in_cur_row.coords.bottom
):
# Store the previous row, and start a new one.
tile_and_image_rows.append(cur_tile_and_image_row)
cur_tile_and_image_row = []
first_tile_in_cur_row, _ = tile_and_image
cur_tile_and_image_row.append(tile_and_image)
tile_and_image_rows.append(cur_tile_and_image_row)
for tile_and_image_row in tile_and_image_rows:
first_tile_in_row, _ = tile_and_image_row[0]
row_height = first_tile_in_row.coords.bottom - first_tile_in_row.coords.top
row_image = np.zeros((row_height, dst_image.shape[1], dst_image.shape[2]), dtype=dst_image.dtype)
# Blend the tiles in the row horizontally.
for tile, tile_image in tile_and_image_row:
# We expect the tiles to be ordered left-to-right.
# For each tile:
# - extract the overlap regions and pass to seam_blend()
# - apply blended region to the row_image
# - apply the un-blended region to the row_image
tile_height, tile_width, _ = tile_image.shape
overlap_size = tile.overlap.left
# Left blending:
if overlap_size > 0:
assert overlap_size >= blend_amount
overlap_coord_right = tile.coords.left + overlap_size
src_overlap = row_image[:, tile.coords.left : overlap_coord_right]
dst_overlap = tile_image[:, :overlap_size]
blended_overlap = seam_blend(src_overlap, dst_overlap, blend_amount, x_seam=False)
row_image[:, tile.coords.left : overlap_coord_right] = blended_overlap
row_image[:, overlap_coord_right : tile.coords.right] = tile_image[:, overlap_size:]
else:
# no overlap just paste the tile
row_image[:, tile.coords.left : tile.coords.right] = tile_image
# Blend the row into the dst_image
# We assume that the entire row has the same vertical overlaps as the first_tile_in_row.
# Rows are processed in the same way as tiles (extract overlap, blend, apply)
row_overlap_size = first_tile_in_row.overlap.top
if row_overlap_size > 0:
assert row_overlap_size >= blend_amount
overlap_coords_bottom = first_tile_in_row.coords.top + row_overlap_size
src_overlap = dst_image[first_tile_in_row.coords.top : overlap_coords_bottom, :]
dst_overlap = row_image[:row_overlap_size, :]
blended_overlap = seam_blend(src_overlap, dst_overlap, blend_amount, x_seam=True)
dst_image[first_tile_in_row.coords.top : overlap_coords_bottom, :] = blended_overlap
dst_image[overlap_coords_bottom : first_tile_in_row.coords.bottom, :] = row_image[row_overlap_size:, :]
else:
# no overlap just paste the row
dst_image[first_tile_in_row.coords.top : first_tile_in_row.coords.bottom, :] = row_image

View File

@ -1,5 +1,7 @@
import math
from typing import Optional
import cv2
import numpy as np
from pydantic import BaseModel, Field
@ -31,10 +33,10 @@ def paste(dst_image: np.ndarray, src_image: np.ndarray, box: TBLR, mask: Optiona
"""Paste a source image into a destination image.
Args:
dst_image (torch.Tensor): The destination image to paste into. Shape: (H, W, C).
src_image (torch.Tensor): The source image to paste. Shape: (H, W, C). H and W must be compatible with 'box'.
dst_image (np.array): The destination image to paste into. Shape: (H, W, C).
src_image (np.array): The source image to paste. Shape: (H, W, C). H and W must be compatible with 'box'.
box (TBLR): Box defining the region in the 'dst_image' where 'src_image' will be pasted.
mask (Optional[torch.Tensor]): A mask that defines the blending between 'src_image' and 'dst_image'.
mask (Optional[np.array]): A mask that defines the blending between 'src_image' and 'dst_image'.
Range: [0.0, 1.0], Shape: (H, W). The output is calculate per-pixel according to
`src * mask + dst * (1 - mask)`.
"""
@ -45,3 +47,106 @@ def paste(dst_image: np.ndarray, src_image: np.ndarray, box: TBLR, mask: Optiona
mask = np.expand_dims(mask, -1)
dst_image_box = dst_image[box.top : box.bottom, box.left : box.right]
dst_image[box.top : box.bottom, box.left : box.right] = src_image * mask + dst_image_box * (1.0 - mask)
def seam_blend(ia1: np.ndarray, ia2: np.ndarray, blend_amount: int, x_seam: bool) -> np.ndarray:
"""Blend two overlapping tile sections using a seams to find a path.
It is assumed that input images will be RGB np arrays and are the same size.
Args:
ia1 (np.array): Image array 1 Shape: (H, W, C).
ia2 (np.array): Image array 2 Shape: (H, W, C).
x_seam (bool): If the images should be blended on the x axis or not.
blend_amount (int): The size of the blur to use on the seam. Half of this value will be used to avoid the edges of the image.
"""
assert ia1.shape == ia2.shape
assert ia2.size == ia2.size
def shift(arr, num, fill_value=255.0):
result = np.full_like(arr, fill_value)
if num > 0:
result[num:] = arr[:-num]
elif num < 0:
result[:num] = arr[-num:]
else:
result[:] = arr
return result
# Assume RGB and convert to grey
# Could offer other options for the luminance conversion
# BT.709 [0.2126, 0.7152, 0.0722], BT.2020 [0.2627, 0.6780, 0.0593])
# it might not have a huge impact due to the blur that is applied over the seam
iag1 = np.dot(ia1, [0.2989, 0.5870, 0.1140]) # BT.601 perceived brightness
iag2 = np.dot(ia2, [0.2989, 0.5870, 0.1140])
# Calc Difference between the images
ia = iag2 - iag1
# If the seam is on the X-axis rotate the array so we can treat it like a vertical seam
if x_seam:
ia = np.rot90(ia, 1)
# Calc max and min X & Y limits
# gutter is used to avoid the blur hitting the edge of the image
gutter = math.ceil(blend_amount / 2) if blend_amount > 0 else 0
max_y, max_x = ia.shape
max_x -= gutter
min_x = gutter
# Calc the energy in the difference
# Could offer different energy calculations e.g. Sobel or Scharr
energy = np.abs(np.gradient(ia, axis=0)) + np.abs(np.gradient(ia, axis=1))
# Find the starting position of the seam
res = np.copy(energy)
for y in range(1, max_y):
row = res[y, :]
rowl = shift(row, -1)
rowr = shift(row, 1)
res[y, :] = res[y - 1, :] + np.min([row, rowl, rowr], axis=0)
# create an array max_y long
lowest_energy_line = np.empty([max_y], dtype="uint16")
lowest_energy_line[max_y - 1] = np.argmin(res[max_y - 1, min_x : max_x - 1])
# Calc the path of the seam
# could offer options for larger search than just 1 pixel by adjusting lpos and rpos
for ypos in range(max_y - 2, -1, -1):
lowest_pos = lowest_energy_line[ypos + 1]
lpos = lowest_pos - 1
rpos = lowest_pos + 1
lpos = np.clip(lpos, min_x, max_x - 1)
rpos = np.clip(rpos, min_x, max_x - 1)
lowest_energy_line[ypos] = np.argmin(energy[ypos, lpos : rpos + 1]) + lpos
# Draw the mask
mask = np.zeros_like(ia)
for ypos in range(0, max_y):
to_fill = lowest_energy_line[ypos]
mask[ypos, :to_fill] = 1
# If the seam is on the X-axis rotate the array back
if x_seam:
mask = np.rot90(mask, 3)
# blur the seam mask if required
if blend_amount > 0:
mask = cv2.blur(mask, (blend_amount, blend_amount))
# for visual debugging
# from PIL import Image
# m_image = Image.fromarray((mask * 255.0).astype("uint8"))
# copy ia2 over ia1 while applying the seam mask
mask = np.expand_dims(mask, -1)
blended_image = ia1 * mask + ia2 * (1.0 - mask)
# for visual debugging
# i1 = Image.fromarray(ia1.astype("uint8"))
# i2 = Image.fromarray(ia2.astype("uint8"))
# b_image = Image.fromarray(blended_image.astype("uint8"))
# print(f"{ia1.shape}, {ia2.shape}, {mask.shape}, {blended_image.shape}")
# print(f"{i1.size}, {i2.size}, {m_image.size}, {b_image.size}")
return blended_image

View File

@ -11,4 +11,7 @@ from .devices import ( # noqa: F401
normalize_device,
torch_dtype,
)
from .logging import InvokeAILogger
from .util import Chdir, ask_user, download_with_resume, instantiate_from_config, url_attachment_name # noqa: F401
__all__ = ["Chdir", "InvokeAILogger", "choose_precision", "choose_torch_device"]

View File

@ -342,14 +342,13 @@ class InvokeAILogger(object): # noqa D102
cls, name: str = "InvokeAI", config: InvokeAIAppConfig = InvokeAIAppConfig.get_config()
) -> logging.Logger: # noqa D102
if name in cls.loggers:
logger = cls.loggers[name]
logger.handlers.clear()
else:
logger = logging.getLogger(name)
return cls.loggers[name]
logger = logging.getLogger(name)
logger.setLevel(config.log_level.upper()) # yes, strings work here
for ch in cls.get_loggers(config):
logger.addHandler(ch)
cls.loggers[name] = logger
cls.loggers[name] = logger
return cls.loggers[name]
@classmethod
@ -358,7 +357,7 @@ class InvokeAILogger(object): # noqa D102
handlers = []
for handler in handler_strs:
handler_name, *args = handler.split("=", 2)
args = args[0] if len(args) > 0 else None
arg = args[0] if len(args) > 0 else None
# console and file get the fancy formatter.
# syslog gets a simple one
@ -370,16 +369,16 @@ class InvokeAILogger(object): # noqa D102
handlers.append(ch)
elif handler_name == "syslog":
ch = cls._parse_syslog_args(args)
ch = cls._parse_syslog_args(arg)
handlers.append(ch)
elif handler_name == "file":
ch = cls._parse_file_args(args)
ch = cls._parse_file_args(arg)
ch.setFormatter(formatter())
handlers.append(ch)
elif handler_name == "http":
ch = cls._parse_http_args(args)
ch = cls._parse_http_args(arg)
handlers.append(ch)
return handlers

View File

@ -32,9 +32,9 @@ sd-1/main/Analog-Diffusion:
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
repo_id: wavymulder/Analog-Diffusion
recommended: False
sd-1/main/Deliberate:
sd-1/main/Deliberate_v5:
description: Versatile model that produces detailed images up to 768px (4.27 GB)
repo_id: XpucT/Deliberate
path: https://huggingface.co/XpucT/Deliberate/resolve/main/Deliberate_v5.safetensors
recommended: False
sd-1/main/Dungeons-and-Diffusion:
description: Dungeons & Dragons characters (2.13 GB)

View File

@ -11,6 +11,7 @@ module.exports = {
'plugin:react-hooks/recommended',
'plugin:react/jsx-runtime',
'prettier',
'plugin:storybook/recommended',
],
parser: '@typescript-eslint/parser',
parserOptions: {
@ -26,6 +27,7 @@ module.exports = {
'eslint-plugin-react-hooks',
'i18next',
'path',
'unused-imports',
],
root: true,
rules: {
@ -44,9 +46,16 @@ module.exports = {
radix: 'error',
'space-before-blocks': 'error',
'import/prefer-default-export': 'off',
'@typescript-eslint/no-unused-vars': [
'@typescript-eslint/no-unused-vars': 'off',
'unused-imports/no-unused-imports': 'error',
'unused-imports/no-unused-vars': [
'warn',
{ varsIgnorePattern: '^_', argsIgnorePattern: '^_' },
{
vars: 'all',
varsIgnorePattern: '^_',
args: 'after-used',
argsIgnorePattern: '^_',
},
],
'@typescript-eslint/ban-ts-comment': 'warn',
'@typescript-eslint/no-explicit-any': 'warn',

View File

@ -9,7 +9,8 @@ lerna-debug.log*
node_modules
# We want to distribute the repo
# dist
dist
dist/**
dist-ssr
*.local
@ -38,4 +39,4 @@ stats.html
# Yalc
.yalc
yalc.lock
yalc.lock

View File

@ -1,4 +0,0 @@
#!/usr/bin/env sh
. "$(dirname -- "$0")/_/husky.sh"
cd invokeai/frontend/web/ && npm run lint-staged

View File

@ -12,3 +12,4 @@ index.html
src/services/api/schema.d.ts
static/
src/theme/css/overlayscrollbars.css
pnpm-lock.yaml

View File

@ -0,0 +1,21 @@
import type { StorybookConfig } from '@storybook/react-vite';
const config: StorybookConfig = {
stories: ['../src/**/*.mdx', '../src/**/*.stories.@(js|jsx|mjs|ts|tsx)'],
addons: [
'@storybook/addon-links',
'@storybook/addon-essentials',
'@storybook/addon-interactions',
],
framework: {
name: '@storybook/react-vite',
options: {},
},
docs: {
autodocs: 'tag',
},
core: {
disableTelemetry: true,
},
};
export default config;

View File

@ -0,0 +1,6 @@
import { addons } from '@storybook/manager-api';
import { themes } from '@storybook/theming';
addons.setConfig({
theme: themes.dark,
});

View File

@ -0,0 +1,47 @@
import { Preview } from '@storybook/react';
import { themes } from '@storybook/theming';
import i18n from 'i18next';
import React from 'react';
import { initReactI18next } from 'react-i18next';
import { Provider } from 'react-redux';
import GlobalHotkeys from '../src/app/components/GlobalHotkeys';
import ThemeLocaleProvider from '../src/app/components/ThemeLocaleProvider';
import { createStore } from '../src/app/store/store';
// TODO: Disabled for IDE performance issues with our translation JSON
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
// @ts-ignore
import translationEN from '../public/locales/en.json';
i18n.use(initReactI18next).init({
lng: 'en',
resources: {
en: { translation: translationEN },
},
debug: true,
interpolation: {
escapeValue: false,
},
returnNull: false,
});
const store = createStore(undefined, false);
const preview: Preview = {
decorators: [
(Story) => (
<Provider store={store}>
<ThemeLocaleProvider>
<GlobalHotkeys />
<Story />
</ThemeLocaleProvider>
</Provider>
),
],
parameters: {
docs: {
theme: themes.dark,
},
},
};
export default preview;

File diff suppressed because one or more lines are too long

View File

@ -1,5 +0,0 @@
# THIS IS AN AUTOGENERATED FILE. DO NOT EDIT THIS FILE DIRECTLY.
# yarn lockfile v1
yarn-path ".yarn/releases/yarn-1.22.19.cjs"

View File

@ -1 +0,0 @@
yarnPath: .yarn/releases/yarn-1.22.19.cjs

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,280 +0,0 @@
import{I as s,ie as T,v as l,$ as A,ig as R,aa as V,ih as z,ii as j,ij as D,ik as F,il as G,im as W,io as K,az as H,ip as U,iq as Y}from"./index-f820e2e3.js";import{M as Z}from"./MantineProvider-a6a1d85c.js";var P=String.raw,E=P`
:root,
:host {
--chakra-vh: 100vh;
}
@supports (height: -webkit-fill-available) {
:root,
:host {
--chakra-vh: -webkit-fill-available;
}
}
@supports (height: -moz-fill-available) {
:root,
:host {
--chakra-vh: -moz-fill-available;
}
}
@supports (height: 100dvh) {
:root,
:host {
--chakra-vh: 100dvh;
}
}
`,B=()=>s.jsx(T,{styles:E}),J=({scope:e=""})=>s.jsx(T,{styles:P`
html {
line-height: 1.5;
-webkit-text-size-adjust: 100%;
font-family: system-ui, sans-serif;
-webkit-font-smoothing: antialiased;
text-rendering: optimizeLegibility;
-moz-osx-font-smoothing: grayscale;
touch-action: manipulation;
}
body {
position: relative;
min-height: 100%;
margin: 0;
font-feature-settings: "kern";
}
${e} :where(*, *::before, *::after) {
border-width: 0;
border-style: solid;
box-sizing: border-box;
word-wrap: break-word;
}
main {
display: block;
}
${e} hr {
border-top-width: 1px;
box-sizing: content-box;
height: 0;
overflow: visible;
}
${e} :where(pre, code, kbd,samp) {
font-family: SFMono-Regular, Menlo, Monaco, Consolas, monospace;
font-size: 1em;
}
${e} a {
background-color: transparent;
color: inherit;
text-decoration: inherit;
}
${e} abbr[title] {
border-bottom: none;
text-decoration: underline;
-webkit-text-decoration: underline dotted;
text-decoration: underline dotted;
}
${e} :where(b, strong) {
font-weight: bold;
}
${e} small {
font-size: 80%;
}
${e} :where(sub,sup) {
font-size: 75%;
line-height: 0;
position: relative;
vertical-align: baseline;
}
${e} sub {
bottom: -0.25em;
}
${e} sup {
top: -0.5em;
}
${e} img {
border-style: none;
}
${e} :where(button, input, optgroup, select, textarea) {
font-family: inherit;
font-size: 100%;
line-height: 1.15;
margin: 0;
}
${e} :where(button, input) {
overflow: visible;
}
${e} :where(button, select) {
text-transform: none;
}
${e} :where(
button::-moz-focus-inner,
[type="button"]::-moz-focus-inner,
[type="reset"]::-moz-focus-inner,
[type="submit"]::-moz-focus-inner
) {
border-style: none;
padding: 0;
}
${e} fieldset {
padding: 0.35em 0.75em 0.625em;
}
${e} legend {
box-sizing: border-box;
color: inherit;
display: table;
max-width: 100%;
padding: 0;
white-space: normal;
}
${e} progress {
vertical-align: baseline;
}
${e} textarea {
overflow: auto;
}
${e} :where([type="checkbox"], [type="radio"]) {
box-sizing: border-box;
padding: 0;
}
${e} input[type="number"]::-webkit-inner-spin-button,
${e} input[type="number"]::-webkit-outer-spin-button {
-webkit-appearance: none !important;
}
${e} input[type="number"] {
-moz-appearance: textfield;
}
${e} input[type="search"] {
-webkit-appearance: textfield;
outline-offset: -2px;
}
${e} input[type="search"]::-webkit-search-decoration {
-webkit-appearance: none !important;
}
${e} ::-webkit-file-upload-button {
-webkit-appearance: button;
font: inherit;
}
${e} details {
display: block;
}
${e} summary {
display: list-item;
}
template {
display: none;
}
[hidden] {
display: none !important;
}
${e} :where(
blockquote,
dl,
dd,
h1,
h2,
h3,
h4,
h5,
h6,
hr,
figure,
p,
pre
) {
margin: 0;
}
${e} button {
background: transparent;
padding: 0;
}
${e} fieldset {
margin: 0;
padding: 0;
}
${e} :where(ol, ul) {
margin: 0;
padding: 0;
}
${e} textarea {
resize: vertical;
}
${e} :where(button, [role="button"]) {
cursor: pointer;
}
${e} button::-moz-focus-inner {
border: 0 !important;
}
${e} table {
border-collapse: collapse;
}
${e} :where(h1, h2, h3, h4, h5, h6) {
font-size: inherit;
font-weight: inherit;
}
${e} :where(button, input, optgroup, select, textarea) {
padding: 0;
line-height: inherit;
color: inherit;
}
${e} :where(img, svg, video, canvas, audio, iframe, embed, object) {
display: block;
}
${e} :where(img, video) {
max-width: 100%;
height: auto;
}
[data-js-focus-visible]
:focus:not([data-focus-visible-added]):not(
[data-focus-visible-disabled]
) {
outline: none;
box-shadow: none;
}
${e} select::-ms-expand {
display: none;
}
${E}
`}),g={light:"chakra-ui-light",dark:"chakra-ui-dark"};function Q(e={}){const{preventTransition:o=!0}=e,n={setDataset:r=>{const t=o?n.preventTransition():void 0;document.documentElement.dataset.theme=r,document.documentElement.style.colorScheme=r,t==null||t()},setClassName(r){document.body.classList.add(r?g.dark:g.light),document.body.classList.remove(r?g.light:g.dark)},query(){return window.matchMedia("(prefers-color-scheme: dark)")},getSystemTheme(r){var t;return((t=n.query().matches)!=null?t:r==="dark")?"dark":"light"},addListener(r){const t=n.query(),i=a=>{r(a.matches?"dark":"light")};return typeof t.addListener=="function"?t.addListener(i):t.addEventListener("change",i),()=>{typeof t.removeListener=="function"?t.removeListener(i):t.removeEventListener("change",i)}},preventTransition(){const r=document.createElement("style");return r.appendChild(document.createTextNode("*{-webkit-transition:none!important;-moz-transition:none!important;-o-transition:none!important;-ms-transition:none!important;transition:none!important}")),document.head.appendChild(r),()=>{window.getComputedStyle(document.body),requestAnimationFrame(()=>{requestAnimationFrame(()=>{document.head.removeChild(r)})})}}};return n}var X="chakra-ui-color-mode";function L(e){return{ssr:!1,type:"localStorage",get(o){if(!(globalThis!=null&&globalThis.document))return o;let n;try{n=localStorage.getItem(e)||o}catch{}return n||o},set(o){try{localStorage.setItem(e,o)}catch{}}}}var ee=L(X),M=()=>{};function S(e,o){return e.type==="cookie"&&e.ssr?e.get(o):o}function O(e){const{value:o,children:n,options:{useSystemColorMode:r,initialColorMode:t,disableTransitionOnChange:i}={},colorModeManager:a=ee}=e,d=t==="dark"?"dark":"light",[u,p]=l.useState(()=>S(a,d)),[y,b]=l.useState(()=>S(a)),{getSystemTheme:w,setClassName:k,setDataset:x,addListener:$}=l.useMemo(()=>Q({preventTransition:i}),[i]),v=t==="system"&&!u?y:u,c=l.useCallback(m=>{const f=m==="system"?w():m;p(f),k(f==="dark"),x(f),a.set(f)},[a,w,k,x]);A(()=>{t==="system"&&b(w())},[]),l.useEffect(()=>{const m=a.get();if(m){c(m);return}if(t==="system"){c("system");return}c(d)},[a,d,t,c]);const C=l.useCallback(()=>{c(v==="dark"?"light":"dark")},[v,c]);l.useEffect(()=>{if(r)return $(c)},[r,$,c]);const N=l.useMemo(()=>({colorMode:o??v,toggleColorMode:o?M:C,setColorMode:o?M:c,forced:o!==void 0}),[v,C,c,o]);return s.jsx(R.Provider,{value:N,children:n})}O.displayName="ColorModeProvider";var te=["borders","breakpoints","colors","components","config","direction","fonts","fontSizes","fontWeights","letterSpacings","lineHeights","radii","shadows","sizes","space","styles","transition","zIndices"];function re(e){return V(e)?te.every(o=>Object.prototype.hasOwnProperty.call(e,o)):!1}function h(e){return typeof e=="function"}function oe(...e){return o=>e.reduce((n,r)=>r(n),o)}var ne=e=>function(...n){let r=[...n],t=n[n.length-1];return re(t)&&r.length>1?r=r.slice(0,r.length-1):t=e,oe(...r.map(i=>a=>h(i)?i(a):ae(a,i)))(t)},ie=ne(j);function ae(...e){return z({},...e,_)}function _(e,o,n,r){if((h(e)||h(o))&&Object.prototype.hasOwnProperty.call(r,n))return(...t)=>{const i=h(e)?e(...t):e,a=h(o)?o(...t):o;return z({},i,a,_)}}var q=l.createContext({getDocument(){return document},getWindow(){return window}});q.displayName="EnvironmentContext";function I(e){const{children:o,environment:n,disabled:r}=e,t=l.useRef(null),i=l.useMemo(()=>n||{getDocument:()=>{var d,u;return(u=(d=t.current)==null?void 0:d.ownerDocument)!=null?u:document},getWindow:()=>{var d,u;return(u=(d=t.current)==null?void 0:d.ownerDocument.defaultView)!=null?u:window}},[n]),a=!r||!n;return s.jsxs(q.Provider,{value:i,children:[o,a&&s.jsx("span",{id:"__chakra_env",hidden:!0,ref:t})]})}I.displayName="EnvironmentProvider";var se=e=>{const{children:o,colorModeManager:n,portalZIndex:r,resetScope:t,resetCSS:i=!0,theme:a={},environment:d,cssVarsRoot:u,disableEnvironment:p,disableGlobalStyle:y}=e,b=s.jsx(I,{environment:d,disabled:p,children:o});return s.jsx(D,{theme:a,cssVarsRoot:u,children:s.jsxs(O,{colorModeManager:n,options:a.config,children:[i?s.jsx(J,{scope:t}):s.jsx(B,{}),!y&&s.jsx(F,{}),r?s.jsx(G,{zIndex:r,children:b}):b]})})},le=e=>function({children:n,theme:r=e,toastOptions:t,...i}){return s.jsxs(se,{theme:r,...i,children:[s.jsx(W,{value:t==null?void 0:t.defaultOptions,children:n}),s.jsx(K,{...t})]})},de=le(j);const ue=()=>l.useMemo(()=>({colorScheme:"dark",fontFamily:"'Inter Variable', sans-serif",components:{ScrollArea:{defaultProps:{scrollbarSize:10},styles:{scrollbar:{"&:hover":{backgroundColor:"var(--invokeai-colors-baseAlpha-300)"}},thumb:{backgroundColor:"var(--invokeai-colors-baseAlpha-300)"}}}}}),[]),ce=L("@@invokeai-color-mode");function me({children:e}){const{i18n:o}=H(),n=o.dir(),r=l.useMemo(()=>ie({...U,direction:n}),[n]);l.useEffect(()=>{document.body.dir=n},[n]);const t=ue();return s.jsx(Z,{theme:t,children:s.jsx(de,{theme:r,colorModeManager:ce,toastOptions:Y,children:e})})}const ve=l.memo(me);export{ve as default};

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 116 KiB

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

View File

@ -1,25 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate">
<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Expires" content="0">
<title>InvokeAI - A Stable Diffusion Toolkit</title>
<link rel="shortcut icon" type="icon" href="./assets/favicon-0d253ced.ico" />
<style>
html,
body {
padding: 0;
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-f820e2e3.js"></script>
</head>
<body dir="ltr">
<div id="root"></div>
</body>
</html>

View File

@ -1,504 +0,0 @@
{
"common": {
"hotkeysLabel": "مفاتيح الأختصار",
"languagePickerLabel": "منتقي اللغة",
"reportBugLabel": "بلغ عن خطأ",
"settingsLabel": "إعدادات",
"img2img": "صورة إلى صورة",
"unifiedCanvas": "لوحة موحدة",
"nodes": "عقد",
"langArabic": "العربية",
"nodesDesc": "نظام مبني على العقد لإنتاج الصور قيد التطوير حاليًا. تبقى على اتصال مع تحديثات حول هذه الميزة المذهلة.",
"postProcessing": "معالجة بعد الإصدار",
"postProcessDesc1": "Invoke AI توفر مجموعة واسعة من ميزات المعالجة بعد الإصدار. تحسين الصور واستعادة الوجوه متاحين بالفعل في واجهة الويب. يمكنك الوصول إليهم من الخيارات المتقدمة في قائمة الخيارات في علامة التبويب Text To Image و Image To Image. يمكن أيضًا معالجة الصور مباشرةً باستخدام أزرار الإجراء على الصورة فوق عرض الصورة الحالي أو في العارض.",
"postProcessDesc2": "سيتم إصدار واجهة رسومية مخصصة قريبًا لتسهيل عمليات المعالجة بعد الإصدار المتقدمة.",
"postProcessDesc3": "واجهة سطر الأوامر Invoke AI توفر ميزات أخرى عديدة بما في ذلك Embiggen.",
"training": "تدريب",
"trainingDesc1": "تدفق خاص مخصص لتدريب تضميناتك الخاصة ونقاط التحقق باستخدام العكس النصي و دريم بوث من واجهة الويب.",
"trainingDesc2": " استحضر الذكاء الصناعي يدعم بالفعل تدريب تضمينات مخصصة باستخدام العكس النصي باستخدام السكريبت الرئيسي.",
"upload": "رفع",
"close": "إغلاق",
"load": "تحميل",
"back": "الى الخلف",
"statusConnected": "متصل",
"statusDisconnected": "غير متصل",
"statusError": "خطأ",
"statusPreparing": "جاري التحضير",
"statusProcessingCanceled": "تم إلغاء المعالجة",
"statusProcessingComplete": "اكتمال المعالجة",
"statusGenerating": "جاري التوليد",
"statusGeneratingTextToImage": "جاري توليد النص إلى الصورة",
"statusGeneratingImageToImage": "جاري توليد الصورة إلى الصورة",
"statusGeneratingInpainting": "جاري توليد Inpainting",
"statusGeneratingOutpainting": "جاري توليد Outpainting",
"statusGenerationComplete": "اكتمال التوليد",
"statusIterationComplete": "اكتمال التكرار",
"statusSavingImage": "جاري حفظ الصورة",
"statusRestoringFaces": "جاري استعادة الوجوه",
"statusRestoringFacesGFPGAN": "تحسيت الوجوه (جي إف بي جان)",
"statusRestoringFacesCodeFormer": "تحسين الوجوه (كود فورمر)",
"statusUpscaling": "تحسين الحجم",
"statusUpscalingESRGAN": "تحسين الحجم (إي إس آر جان)",
"statusLoadingModel": "تحميل النموذج",
"statusModelChanged": "تغير النموذج"
},
"gallery": {
"generations": "الأجيال",
"showGenerations": "عرض الأجيال",
"uploads": "التحميلات",
"showUploads": "عرض التحميلات",
"galleryImageSize": "حجم الصورة",
"galleryImageResetSize": "إعادة ضبط الحجم",
"gallerySettings": "إعدادات المعرض",
"maintainAspectRatio": "الحفاظ على نسبة الأبعاد",
"autoSwitchNewImages": "التبديل التلقائي إلى الصور الجديدة",
"singleColumnLayout": "تخطيط عمود واحد",
"allImagesLoaded": "تم تحميل جميع الصور",
"loadMore": "تحميل المزيد",
"noImagesInGallery": "لا توجد صور في المعرض"
},
"hotkeys": {
"keyboardShortcuts": "مفاتيح الأزرار المختصرة",
"appHotkeys": "مفاتيح التطبيق",
"generalHotkeys": "مفاتيح عامة",
"galleryHotkeys": "مفاتيح المعرض",
"unifiedCanvasHotkeys": "مفاتيح اللوحةالموحدة ",
"invoke": {
"title": "أدعو",
"desc": "إنشاء صورة"
},
"cancel": {
"title": "إلغاء",
"desc": "إلغاء إنشاء الصورة"
},
"focusPrompt": {
"title": "تركيز الإشعار",
"desc": "تركيز منطقة الإدخال الإشعار"
},
"toggleOptions": {
"title": "تبديل الخيارات",
"desc": "فتح وإغلاق لوحة الخيارات"
},
"pinOptions": {
"title": "خيارات التثبيت",
"desc": "ثبت لوحة الخيارات"
},
"toggleViewer": {
"title": "تبديل العارض",
"desc": "فتح وإغلاق مشاهد الصور"
},
"toggleGallery": {
"title": "تبديل المعرض",
"desc": "فتح وإغلاق درابزين المعرض"
},
"maximizeWorkSpace": {
"title": "تكبير مساحة العمل",
"desc": "إغلاق اللوحات وتكبير مساحة العمل"
},
"changeTabs": {
"title": "تغيير الألسنة",
"desc": "التبديل إلى مساحة عمل أخرى"
},
"consoleToggle": {
"title": "تبديل الطرفية",
"desc": "فتح وإغلاق الطرفية"
},
"setPrompt": {
"title": "ضبط التشعب",
"desc": "استخدم تشعب الصورة الحالية"
},
"setSeed": {
"title": "ضبط البذور",
"desc": "استخدم بذور الصورة الحالية"
},
"setParameters": {
"title": "ضبط المعلمات",
"desc": "استخدم جميع المعلمات الخاصة بالصورة الحالية"
},
"restoreFaces": {
"title": "استعادة الوجوه",
"desc": "استعادة الصورة الحالية"
},
"upscale": {
"title": "تحسين الحجم",
"desc": "تحسين حجم الصورة الحالية"
},
"showInfo": {
"title": "عرض المعلومات",
"desc": "عرض معلومات البيانات الخاصة بالصورة الحالية"
},
"sendToImageToImage": {
"title": "أرسل إلى صورة إلى صورة",
"desc": "أرسل الصورة الحالية إلى صورة إلى صورة"
},
"deleteImage": {
"title": "حذف الصورة",
"desc": "حذف الصورة الحالية"
},
"closePanels": {
"title": "أغلق اللوحات",
"desc": "يغلق اللوحات المفتوحة"
},
"previousImage": {
"title": "الصورة السابقة",
"desc": "عرض الصورة السابقة في الصالة"
},
"nextImage": {
"title": "الصورة التالية",
"desc": "عرض الصورة التالية في الصالة"
},
"toggleGalleryPin": {
"title": "تبديل تثبيت الصالة",
"desc": "يثبت ويفتح تثبيت الصالة على الواجهة الرسومية"
},
"increaseGalleryThumbSize": {
"title": "زيادة حجم صورة الصالة",
"desc": "يزيد حجم الصور المصغرة في الصالة"
},
"decreaseGalleryThumbSize": {
"title": "انقاص حجم صورة الصالة",
"desc": "ينقص حجم الصور المصغرة في الصالة"
},
"selectBrush": {
"title": "تحديد الفرشاة",
"desc": "يحدد الفرشاة على اللوحة"
},
"selectEraser": {
"title": "تحديد الممحاة",
"desc": "يحدد الممحاة على اللوحة"
},
"decreaseBrushSize": {
"title": "تصغير حجم الفرشاة",
"desc": "يصغر حجم الفرشاة/الممحاة على اللوحة"
},
"increaseBrushSize": {
"title": "زيادة حجم الفرشاة",
"desc": "يزيد حجم فرشة اللوحة / الممحاة"
},
"decreaseBrushOpacity": {
"title": "تخفيض شفافية الفرشاة",
"desc": "يخفض شفافية فرشة اللوحة"
},
"increaseBrushOpacity": {
"title": "زيادة شفافية الفرشاة",
"desc": "يزيد شفافية فرشة اللوحة"
},
"moveTool": {
"title": "أداة التحريك",
"desc": "يتيح التحرك في اللوحة"
},
"fillBoundingBox": {
"title": "ملء الصندوق المحدد",
"desc": "يملأ الصندوق المحدد بلون الفرشاة"
},
"eraseBoundingBox": {
"title": "محو الصندوق المحدد",
"desc": "يمحو منطقة الصندوق المحدد"
},
"colorPicker": {
"title": "اختيار منتقي اللون",
"desc": "يختار منتقي اللون الخاص باللوحة"
},
"toggleSnap": {
"title": "تبديل التأكيد",
"desc": "يبديل تأكيد الشبكة"
},
"quickToggleMove": {
"title": "تبديل سريع للتحريك",
"desc": "يبديل مؤقتا وضع التحريك"
},
"toggleLayer": {
"title": "تبديل الطبقة",
"desc": "يبديل إختيار الطبقة القناع / الأساسية"
},
"clearMask": {
"title": "مسح القناع",
"desc": "مسح القناع بأكمله"
},
"hideMask": {
"title": "إخفاء الكمامة",
"desc": "إخفاء وإظهار الكمامة"
},
"showHideBoundingBox": {
"title": "إظهار / إخفاء علبة التحديد",
"desc": "تبديل ظهور علبة التحديد"
},
"mergeVisible": {
"title": "دمج الطبقات الظاهرة",
"desc": "دمج جميع الطبقات الظاهرة في اللوحة"
},
"saveToGallery": {
"title": "حفظ إلى صالة الأزياء",
"desc": "حفظ اللوحة الحالية إلى صالة الأزياء"
},
"copyToClipboard": {
"title": "نسخ إلى الحافظة",
"desc": "نسخ اللوحة الحالية إلى الحافظة"
},
"downloadImage": {
"title": "تنزيل الصورة",
"desc": "تنزيل اللوحة الحالية"
},
"undoStroke": {
"title": "تراجع عن الخط",
"desc": "تراجع عن خط الفرشاة"
},
"redoStroke": {
"title": "إعادة الخط",
"desc": "إعادة خط الفرشاة"
},
"resetView": {
"title": "إعادة تعيين العرض",
"desc": "إعادة تعيين عرض اللوحة"
},
"previousStagingImage": {
"title": "الصورة السابقة في المرحلة التجريبية",
"desc": "الصورة السابقة في منطقة المرحلة التجريبية"
},
"nextStagingImage": {
"title": "الصورة التالية في المرحلة التجريبية",
"desc": "الصورة التالية في منطقة المرحلة التجريبية"
},
"acceptStagingImage": {
"title": "قبول الصورة في المرحلة التجريبية",
"desc": "قبول الصورة الحالية في منطقة المرحلة التجريبية"
}
},
"modelManager": {
"modelManager": "مدير النموذج",
"model": "نموذج",
"allModels": "جميع النماذج",
"checkpointModels": "نقاط التحقق",
"diffusersModels": "المصادر المتعددة",
"safetensorModels": "التنسورات الآمنة",
"modelAdded": "تمت إضافة النموذج",
"modelUpdated": "تم تحديث النموذج",
"modelEntryDeleted": "تم حذف مدخل النموذج",
"cannotUseSpaces": "لا يمكن استخدام المساحات",
"addNew": "إضافة جديد",
"addNewModel": "إضافة نموذج جديد",
"addCheckpointModel": "إضافة نقطة تحقق / نموذج التنسور الآمن",
"addDiffuserModel": "إضافة مصادر متعددة",
"addManually": "إضافة يدويًا",
"manual": "يدوي",
"name": "الاسم",
"nameValidationMsg": "أدخل اسما لنموذجك",
"description": "الوصف",
"descriptionValidationMsg": "أضف وصفا لنموذجك",
"config": "تكوين",
"configValidationMsg": "مسار الملف الإعدادي لنموذجك.",
"modelLocation": "موقع النموذج",
"modelLocationValidationMsg": "موقع النموذج على الجهاز الخاص بك.",
"repo_id": "معرف المستودع",
"repoIDValidationMsg": "المستودع الإلكتروني لنموذجك",
"vaeLocation": "موقع فاي إي",
"vaeLocationValidationMsg": "موقع فاي إي على الجهاز الخاص بك.",
"vaeRepoID": "معرف مستودع فاي إي",
"vaeRepoIDValidationMsg": "المستودع الإلكتروني فاي إي",
"width": "عرض",
"widthValidationMsg": "عرض افتراضي لنموذجك.",
"height": "ارتفاع",
"heightValidationMsg": "ارتفاع افتراضي لنموذجك.",
"addModel": "أضف نموذج",
"updateModel": "تحديث النموذج",
"availableModels": "النماذج المتاحة",
"search": "بحث",
"load": "تحميل",
"active": "نشط",
"notLoaded": "غير محمل",
"cached": "مخبأ",
"checkpointFolder": "مجلد التدقيق",
"clearCheckpointFolder": "مسح مجلد التدقيق",
"findModels": "إيجاد النماذج",
"scanAgain": "فحص مرة أخرى",
"modelsFound": "النماذج الموجودة",
"selectFolder": "حدد المجلد",
"selected": "تم التحديد",
"selectAll": "حدد الكل",
"deselectAll": "إلغاء تحديد الكل",
"showExisting": "إظهار الموجود",
"addSelected": "أضف المحدد",
"modelExists": "النموذج موجود",
"selectAndAdd": "حدد وأضف النماذج المدرجة أدناه",
"noModelsFound": "لم يتم العثور على نماذج",
"delete": "حذف",
"deleteModel": "حذف النموذج",
"deleteConfig": "حذف التكوين",
"deleteMsg1": "هل أنت متأكد من رغبتك في حذف إدخال النموذج هذا من استحضر الذكاء الصناعي",
"deleteMsg2": "هذا لن يحذف ملف نقطة التحكم للنموذج من القرص الخاص بك. يمكنك إعادة إضافتهم إذا كنت ترغب في ذلك.",
"formMessageDiffusersModelLocation": "موقع النموذج للمصعد",
"formMessageDiffusersModelLocationDesc": "يرجى إدخال واحد على الأقل.",
"formMessageDiffusersVAELocation": "موقع فاي إي",
"formMessageDiffusersVAELocationDesc": "إذا لم يتم توفيره، سيبحث استحضر الذكاء الصناعي عن ملف فاي إي داخل موقع النموذج المعطى أعلاه."
},
"parameters": {
"images": "الصور",
"steps": "الخطوات",
"cfgScale": "مقياس الإعداد الذاتي للجملة",
"width": "عرض",
"height": "ارتفاع",
"seed": "بذرة",
"randomizeSeed": "تبديل بذرة",
"shuffle": "تشغيل",
"noiseThreshold": "عتبة الضوضاء",
"perlinNoise": "ضجيج برلين",
"variations": "تباينات",
"variationAmount": "كمية التباين",
"seedWeights": "أوزان البذور",
"faceRestoration": "استعادة الوجه",
"restoreFaces": "استعادة الوجوه",
"type": "نوع",
"strength": "قوة",
"upscaling": "تصغير",
"upscale": "تصغير",
"upscaleImage": "تصغير الصورة",
"scale": "مقياس",
"otherOptions": "خيارات أخرى",
"seamlessTiling": "تجهيز بلاستيكي بدون تشققات",
"hiresOptim": "تحسين الدقة العالية",
"imageFit": "ملائمة الصورة الأولية لحجم الخرج",
"codeformerFidelity": "الوثوقية",
"scaleBeforeProcessing": "تحجيم قبل المعالجة",
"scaledWidth": "العرض المحجوب",
"scaledHeight": "الارتفاع المحجوب",
"infillMethod": "طريقة التعبئة",
"tileSize": "حجم البلاطة",
"boundingBoxHeader": "صندوق التحديد",
"seamCorrectionHeader": "تصحيح التشقق",
"infillScalingHeader": "التعبئة والتحجيم",
"img2imgStrength": "قوة صورة إلى صورة",
"toggleLoopback": "تبديل الإعادة",
"sendTo": "أرسل إلى",
"sendToImg2Img": "أرسل إلى صورة إلى صورة",
"sendToUnifiedCanvas": "أرسل إلى الخطوط الموحدة",
"copyImage": "نسخ الصورة",
"copyImageToLink": "نسخ الصورة إلى الرابط",
"downloadImage": "تحميل الصورة",
"openInViewer": "فتح في العارض",
"closeViewer": "إغلاق العارض",
"usePrompt": "استخدم المحث",
"useSeed": "استخدام البذور",
"useAll": "استخدام الكل",
"useInitImg": "استخدام الصورة الأولية",
"info": "معلومات",
"initialImage": "الصورة الأولية",
"showOptionsPanel": "إظهار لوحة الخيارات"
},
"settings": {
"models": "موديلات",
"displayInProgress": "عرض الصور المؤرشفة",
"saveSteps": "حفظ الصور كل n خطوات",
"confirmOnDelete": "تأكيد عند الحذف",
"displayHelpIcons": "عرض أيقونات المساعدة",
"enableImageDebugging": "تمكين التصحيح عند التصوير",
"resetWebUI": "إعادة تعيين واجهة الويب",
"resetWebUIDesc1": "إعادة تعيين واجهة الويب يعيد فقط ذاكرة التخزين المؤقت للمتصفح لصورك وإعداداتك المذكورة. لا يحذف أي صور من القرص.",
"resetWebUIDesc2": "إذا لم تظهر الصور في الصالة أو إذا كان شيء آخر غير ناجح، يرجى المحاولة إعادة تعيين قبل تقديم مشكلة على جيت هب.",
"resetComplete": "تم إعادة تعيين واجهة الويب. تحديث الصفحة لإعادة التحميل."
},
"toast": {
"tempFoldersEmptied": "تم تفريغ مجلد المؤقت",
"uploadFailed": "فشل التحميل",
"uploadFailedUnableToLoadDesc": "تعذر تحميل الملف",
"downloadImageStarted": "بدأ تنزيل الصورة",
"imageCopied": "تم نسخ الصورة",
"imageLinkCopied": "تم نسخ رابط الصورة",
"imageNotLoaded": "لم يتم تحميل أي صورة",
"imageNotLoadedDesc": "لم يتم العثور على صورة لإرسالها إلى وحدة الصورة",
"imageSavedToGallery": "تم حفظ الصورة في المعرض",
"canvasMerged": "تم دمج الخط",
"sentToImageToImage": "تم إرسال إلى صورة إلى صورة",
"sentToUnifiedCanvas": "تم إرسال إلى لوحة موحدة",
"parametersSet": "تم تعيين المعلمات",
"parametersNotSet": "لم يتم تعيين المعلمات",
"parametersNotSetDesc": "لم يتم العثور على معلمات بيانية لهذه الصورة.",
"parametersFailed": "حدث مشكلة في تحميل المعلمات",
"parametersFailedDesc": "تعذر تحميل صورة البدء.",
"seedSet": "تم تعيين البذرة",
"seedNotSet": "لم يتم تعيين البذرة",
"seedNotSetDesc": "تعذر العثور على البذرة لهذه الصورة.",
"promptSet": "تم تعيين الإشعار",
"promptNotSet": "Prompt Not Set",
"promptNotSetDesc": "تعذر العثور على الإشعار لهذه الصورة.",
"upscalingFailed": "فشل التحسين",
"faceRestoreFailed": "فشل استعادة الوجه",
"metadataLoadFailed": "فشل تحميل البيانات الوصفية",
"initialImageSet": "تم تعيين الصورة الأولية",
"initialImageNotSet": "لم يتم تعيين الصورة الأولية",
"initialImageNotSetDesc": "تعذر تحميل الصورة الأولية"
},
"tooltip": {
"feature": {
"prompt": "هذا هو حقل التحذير. يشمل التحذير عناصر الإنتاج والمصطلحات الأسلوبية. يمكنك إضافة الأوزان (أهمية الرمز) في التحذير أيضًا، ولكن أوامر CLI والمعلمات لن تعمل.",
"gallery": "تعرض Gallery منتجات من مجلد الإخراج عندما يتم إنشاؤها. تخزن الإعدادات داخل الملفات ويتم الوصول إليها عن طريق قائمة السياق.",
"other": "ستمكن هذه الخيارات من وضع عمليات معالجة بديلة لـاستحضر الذكاء الصناعي. سيؤدي 'الزخرفة بلا جدران' إلى إنشاء أنماط تكرارية في الإخراج. 'دقة عالية' هي الإنتاج خلال خطوتين عبر صورة إلى صورة: استخدم هذا الإعداد عندما ترغب في توليد صورة أكبر وأكثر تجانبًا دون العيوب. ستستغرق الأشياء وقتًا أطول من نص إلى صورة المعتاد.",
"seed": "يؤثر قيمة البذور على الضوضاء الأولي الذي يتم تكوين الصورة منه. يمكنك استخدام البذور الخاصة بالصور السابقة. 'عتبة الضوضاء' يتم استخدامها لتخفيف العناصر الخللية في قيم CFG العالية (جرب مدى 0-10), و Perlin لإضافة ضوضاء Perlin أثناء الإنتاج: كلا منهما يعملان على إضافة التنوع إلى النتائج الخاصة بك.",
"variations": "جرب التغيير مع قيمة بين 0.1 و 1.0 لتغيير النتائج لبذور معينة. التغييرات المثيرة للاهتمام للبذور تكون بين 0.1 و 0.3.",
"upscale": "استخدم إي إس آر جان لتكبير الصورة على الفور بعد الإنتاج.",
"faceCorrection": "تصحيح الوجه باستخدام جي إف بي جان أو كود فورمر: يكتشف الخوارزمية الوجوه في الصورة وتصحح أي عيوب. قيمة عالية ستغير الصورة أكثر، مما يؤدي إلى وجوه أكثر جمالا. كود فورمر بدقة أعلى يحتفظ بالصورة الأصلية على حساب تصحيح وجه أكثر قوة.",
"imageToImage": "تحميل صورة إلى صورة أي صورة كأولية، والتي يتم استخدامها لإنشاء صورة جديدة مع التشعيب. كلما كانت القيمة أعلى، كلما تغيرت نتيجة الصورة. من الممكن أن تكون القيم بين 0.0 و 1.0، وتوصي النطاق الموصى به هو .25-.75",
"boundingBox": "مربع الحدود هو نفس الإعدادات العرض والارتفاع لنص إلى صورة أو صورة إلى صورة. فقط المنطقة في المربع سيتم معالجتها.",
"seamCorrection": "يتحكم بالتعامل مع الخطوط المرئية التي تحدث بين الصور المولدة في سطح اللوحة.",
"infillAndScaling": "إدارة أساليب التعبئة (المستخدمة على المناطق المخفية أو الممحوة في سطح اللوحة) والزيادة في الحجم (مفيدة لحجوزات الإطارات الصغيرة)."
}
},
"unifiedCanvas": {
"layer": "طبقة",
"base": "قاعدة",
"mask": "قناع",
"maskingOptions": "خيارات القناع",
"enableMask": "مكن القناع",
"preserveMaskedArea": "الحفاظ على المنطقة المقنعة",
"clearMask": "مسح القناع",
"brush": "فرشاة",
"eraser": "ممحاة",
"fillBoundingBox": "ملئ إطار الحدود",
"eraseBoundingBox": "مسح إطار الحدود",
"colorPicker": "اختيار اللون",
"brushOptions": "خيارات الفرشاة",
"brushSize": "الحجم",
"move": "تحريك",
"resetView": "إعادة تعيين العرض",
"mergeVisible": "دمج الظاهر",
"saveToGallery": "حفظ إلى المعرض",
"copyToClipboard": "نسخ إلى الحافظة",
"downloadAsImage": "تنزيل على شكل صورة",
"undo": "تراجع",
"redo": "إعادة",
"clearCanvas": "مسح سبيكة الكاملة",
"canvasSettings": "إعدادات سبيكة الكاملة",
"showIntermediates": "إظهار الوسطاء",
"showGrid": "إظهار الشبكة",
"snapToGrid": "الالتفاف إلى الشبكة",
"darkenOutsideSelection": "تعمية خارج التحديد",
"autoSaveToGallery": "حفظ تلقائي إلى المعرض",
"saveBoxRegionOnly": "حفظ منطقة الصندوق فقط",
"limitStrokesToBox": "تحديد عدد الخطوط إلى الصندوق",
"showCanvasDebugInfo": "إظهار معلومات تصحيح سبيكة الكاملة",
"clearCanvasHistory": "مسح تاريخ سبيكة الكاملة",
"clearHistory": "مسح التاريخ",
"clearCanvasHistoryMessage": "مسح تاريخ اللوحة تترك اللوحة الحالية عائمة، ولكن تمسح بشكل غير قابل للتراجع تاريخ التراجع والإعادة.",
"clearCanvasHistoryConfirm": "هل أنت متأكد من رغبتك في مسح تاريخ اللوحة؟",
"emptyTempImageFolder": "إفراغ مجلد الصور المؤقتة",
"emptyFolder": "إفراغ المجلد",
"emptyTempImagesFolderMessage": "إفراغ مجلد الصور المؤقتة يؤدي أيضًا إلى إعادة تعيين اللوحة الموحدة بشكل كامل. وهذا يشمل كل تاريخ التراجع / الإعادة والصور في منطقة التخزين وطبقة الأساس لللوحة.",
"emptyTempImagesFolderConfirm": "هل أنت متأكد من رغبتك في إفراغ مجلد الصور المؤقتة؟",
"activeLayer": "الطبقة النشطة",
"canvasScale": "مقياس اللوحة",
"boundingBox": "صندوق الحدود",
"scaledBoundingBox": "صندوق الحدود المكبر",
"boundingBoxPosition": "موضع صندوق الحدود",
"canvasDimensions": "أبعاد اللوحة",
"canvasPosition": "موضع اللوحة",
"cursorPosition": "موضع المؤشر",
"previous": "السابق",
"next": "التالي",
"accept": "قبول",
"showHide": "إظهار/إخفاء",
"discardAll": "تجاهل الكل",
"betaClear": "مسح",
"betaDarkenOutside": "ظل الخارج",
"betaLimitToBox": "تحديد إلى الصندوق",
"betaPreserveMasked": "المحافظة على المخفية"
}
}

View File

@ -1,973 +0,0 @@
{
"common": {
"languagePickerLabel": "Sprachauswahl",
"reportBugLabel": "Fehler melden",
"settingsLabel": "Einstellungen",
"img2img": "Bild zu Bild",
"nodes": "Knoten Editor",
"langGerman": "Deutsch",
"nodesDesc": "Ein knotenbasiertes System, für die Erzeugung von Bildern, ist derzeit in der Entwicklung. Bleiben Sie gespannt auf Updates zu dieser fantastischen Funktion.",
"postProcessing": "Nachbearbeitung",
"postProcessDesc1": "InvokeAI bietet eine breite Palette von Nachbearbeitungsfunktionen. Bildhochskalierung und Gesichtsrekonstruktion sind bereits in der WebUI verfügbar. Sie können sie über das Menü Erweiterte Optionen der Reiter Text in Bild und Bild in Bild aufrufen. Sie können Bilder auch direkt bearbeiten, indem Sie die Schaltflächen für Bildaktionen oberhalb der aktuellen Bildanzeige oder im Viewer verwenden.",
"postProcessDesc2": "Eine spezielle Benutzeroberfläche wird in Kürze veröffentlicht, um erweiterte Nachbearbeitungs-Workflows zu erleichtern.",
"postProcessDesc3": "Die InvokeAI Kommandozeilen-Schnittstelle bietet verschiedene andere Funktionen, darunter Embiggen.",
"training": "trainieren",
"trainingDesc1": "Ein spezieller Arbeitsablauf zum Trainieren Ihrer eigenen Embeddings und Checkpoints mit Textual Inversion und Dreambooth über die Weboberfläche.",
"trainingDesc2": "InvokeAI unterstützt bereits das Training von benutzerdefinierten Embeddings mit Textual Inversion unter Verwendung des Hauptskripts.",
"upload": "Hochladen",
"close": "Schließen",
"load": "Laden",
"statusConnected": "Verbunden",
"statusDisconnected": "Getrennt",
"statusError": "Fehler",
"statusPreparing": "Vorbereiten",
"statusProcessingCanceled": "Verarbeitung abgebrochen",
"statusProcessingComplete": "Verarbeitung komplett",
"statusGenerating": "Generieren",
"statusGeneratingTextToImage": "Erzeugen von Text zu Bild",
"statusGeneratingImageToImage": "Erzeugen von Bild zu Bild",
"statusGeneratingInpainting": "Erzeuge Inpainting",
"statusGeneratingOutpainting": "Erzeuge Outpainting",
"statusGenerationComplete": "Generierung abgeschlossen",
"statusIterationComplete": "Iteration abgeschlossen",
"statusSavingImage": "Speichere Bild",
"statusRestoringFaces": "Gesichter restaurieren",
"statusRestoringFacesGFPGAN": "Gesichter restaurieren (GFPGAN)",
"statusRestoringFacesCodeFormer": "Gesichter restaurieren (CodeFormer)",
"statusUpscaling": "Hochskalierung",
"statusUpscalingESRGAN": "Hochskalierung (ESRGAN)",
"statusLoadingModel": "Laden des Modells",
"statusModelChanged": "Modell Geändert",
"cancel": "Abbrechen",
"accept": "Annehmen",
"back": "Zurück",
"langEnglish": "Englisch",
"langDutch": "Niederländisch",
"langFrench": "Französisch",
"langItalian": "Italienisch",
"langPortuguese": "Portugiesisch",
"langRussian": "Russisch",
"langUkranian": "Ukrainisch",
"hotkeysLabel": "Tastenkombinationen",
"githubLabel": "Github",
"discordLabel": "Discord",
"txt2img": "Text zu Bild",
"postprocessing": "Nachbearbeitung",
"langPolish": "Polnisch",
"langJapanese": "Japanisch",
"langArabic": "Arabisch",
"langKorean": "Koreanisch",
"langHebrew": "Hebräisch",
"langSpanish": "Spanisch",
"t2iAdapter": "T2I Adapter",
"communityLabel": "Gemeinschaft",
"dontAskMeAgain": "Frag mich nicht nochmal",
"loadingInvokeAI": "Lade Invoke AI",
"statusMergedModels": "Modelle zusammengeführt",
"areYouSure": "Bist du dir sicher?",
"statusConvertingModel": "Model konvertieren",
"on": "An",
"nodeEditor": "Knoten Editor",
"statusMergingModels": "Modelle zusammenführen",
"langSimplifiedChinese": "Vereinfachtes Chinesisch",
"ipAdapter": "IP Adapter",
"controlAdapter": "Control Adapter",
"auto": "Automatisch",
"controlNet": "ControlNet",
"imageFailedToLoad": "Kann Bild nicht laden",
"statusModelConverted": "Model konvertiert",
"modelManager": "Model Manager",
"lightMode": "Heller Modus",
"generate": "Erstellen",
"learnMore": "Mehr lernen",
"darkMode": "Dunkler Modus",
"loading": "Lade",
"random": "Zufall",
"batch": "Stapel-Manager",
"advanced": "Erweitert",
"langBrPortuguese": "Portugiesisch (Brasilien)",
"unifiedCanvas": "Einheitliche Leinwand",
"openInNewTab": "In einem neuem Tab öffnen",
"statusProcessing": "wird bearbeitet",
"linear": "Linear",
"imagePrompt": "Bild Prompt"
},
"gallery": {
"generations": "Erzeugungen",
"showGenerations": "Zeige Erzeugnisse",
"uploads": "Uploads",
"showUploads": "Zeige Uploads",
"galleryImageSize": "Bildgröße",
"galleryImageResetSize": "Größe zurücksetzen",
"gallerySettings": "Galerie-Einstellungen",
"maintainAspectRatio": "Seitenverhältnis beibehalten",
"autoSwitchNewImages": "Automatisch zu neuen Bildern wechseln",
"singleColumnLayout": "Einspaltiges Layout",
"allImagesLoaded": "Alle Bilder geladen",
"loadMore": "Mehr laden",
"noImagesInGallery": "Keine Bilder in der Galerie",
"loading": "Lade",
"preparingDownload": "bereite Download vor",
"preparingDownloadFailed": "Problem beim Download vorbereiten",
"deleteImage": "Lösche Bild",
"images": "Bilder",
"copy": "Kopieren",
"download": "Runterladen",
"setCurrentImage": "Setze aktuelle Bild",
"featuresWillReset": "Wenn Sie dieses Bild löschen, werden diese Funktionen sofort zurückgesetzt.",
"deleteImageBin": "Gelöschte Bilder werden an den Papierkorb Ihres Betriebssystems gesendet.",
"unableToLoad": "Galerie kann nicht geladen werden",
"downloadSelection": "Auswahl herunterladen",
"currentlyInUse": "Dieses Bild wird derzeit in den folgenden Funktionen verwendet:",
"deleteImagePermanent": "Gelöschte Bilder können nicht wiederhergestellt werden.",
"autoAssignBoardOnClick": "Board per Klick automatisch zuweisen"
},
"hotkeys": {
"keyboardShortcuts": "Tastenkürzel",
"appHotkeys": "App-Tastenkombinationen",
"generalHotkeys": "Allgemeine Tastenkürzel",
"galleryHotkeys": "Galerie Tastenkürzel",
"unifiedCanvasHotkeys": "Unified Canvas Tastenkürzel",
"invoke": {
"desc": "Ein Bild erzeugen",
"title": "Invoke"
},
"cancel": {
"title": "Abbrechen",
"desc": "Bilderzeugung abbrechen"
},
"focusPrompt": {
"title": "Fokussiere Prompt",
"desc": "Fokussieren des Eingabefeldes für den Prompt"
},
"toggleOptions": {
"title": "Optionen umschalten",
"desc": "Öffnen und Schließen des Optionsfeldes"
},
"pinOptions": {
"title": "Optionen anheften",
"desc": "Anheften des Optionsfeldes"
},
"toggleViewer": {
"title": "Bildbetrachter umschalten",
"desc": "Bildbetrachter öffnen und schließen"
},
"toggleGallery": {
"title": "Galerie umschalten",
"desc": "Öffnen und Schließen des Galerie-Schubfachs"
},
"maximizeWorkSpace": {
"title": "Arbeitsbereich maximieren",
"desc": "Schließen Sie die Panels und maximieren Sie den Arbeitsbereich"
},
"changeTabs": {
"title": "Tabs wechseln",
"desc": "Zu einem anderen Arbeitsbereich wechseln"
},
"consoleToggle": {
"title": "Konsole Umschalten",
"desc": "Konsole öffnen und schließen"
},
"setPrompt": {
"title": "Prompt setzen",
"desc": "Verwende den Prompt des aktuellen Bildes"
},
"setSeed": {
"title": "Seed setzen",
"desc": "Verwende den Seed des aktuellen Bildes"
},
"setParameters": {
"title": "Parameter setzen",
"desc": "Alle Parameter des aktuellen Bildes verwenden"
},
"restoreFaces": {
"title": "Gesicht restaurieren",
"desc": "Das aktuelle Bild restaurieren"
},
"upscale": {
"title": "Hochskalieren",
"desc": "Das aktuelle Bild hochskalieren"
},
"showInfo": {
"title": "Info anzeigen",
"desc": "Metadaten des aktuellen Bildes anzeigen"
},
"sendToImageToImage": {
"title": "An Bild zu Bild senden",
"desc": "Aktuelles Bild an Bild zu Bild senden"
},
"deleteImage": {
"title": "Bild löschen",
"desc": "Aktuelles Bild löschen"
},
"closePanels": {
"title": "Panels schließen",
"desc": "Schließt offene Panels"
},
"previousImage": {
"title": "Vorheriges Bild",
"desc": "Vorheriges Bild in der Galerie anzeigen"
},
"nextImage": {
"title": "Nächstes Bild",
"desc": "Nächstes Bild in Galerie anzeigen"
},
"toggleGalleryPin": {
"title": "Galerie anheften umschalten",
"desc": "Heftet die Galerie an die Benutzeroberfläche bzw. löst die sie"
},
"increaseGalleryThumbSize": {
"title": "Größe der Galeriebilder erhöhen",
"desc": "Vergrößert die Galerie-Miniaturansichten"
},
"decreaseGalleryThumbSize": {
"title": "Größe der Galeriebilder verringern",
"desc": "Verringert die Größe der Galerie-Miniaturansichten"
},
"selectBrush": {
"title": "Pinsel auswählen",
"desc": "Wählt den Leinwandpinsel aus"
},
"selectEraser": {
"title": "Radiergummi auswählen",
"desc": "Wählt den Radiergummi für die Leinwand aus"
},
"decreaseBrushSize": {
"title": "Pinselgröße verkleinern",
"desc": "Verringert die Größe des Pinsels/Radiergummis"
},
"increaseBrushSize": {
"title": "Pinselgröße erhöhen",
"desc": "Erhöht die Größe des Pinsels/Radiergummis"
},
"decreaseBrushOpacity": {
"title": "Deckkraft des Pinsels vermindern",
"desc": "Verringert die Deckkraft des Pinsels"
},
"increaseBrushOpacity": {
"title": "Deckkraft des Pinsels erhöhen",
"desc": "Erhöht die Deckkraft des Pinsels"
},
"moveTool": {
"title": "Verschieben Werkzeug",
"desc": "Ermöglicht die Navigation auf der Leinwand"
},
"fillBoundingBox": {
"title": "Begrenzungsrahmen füllen",
"desc": "Füllt den Begrenzungsrahmen mit Pinselfarbe"
},
"eraseBoundingBox": {
"title": "Begrenzungsrahmen löschen",
"desc": "Löscht den Bereich des Begrenzungsrahmens"
},
"colorPicker": {
"title": "Farbpipette",
"desc": "Farben aus dem Bild aufnehmen"
},
"toggleSnap": {
"title": "Einrasten umschalten",
"desc": "Schaltet Einrasten am Raster ein und aus"
},
"quickToggleMove": {
"title": "Schnell Verschiebemodus",
"desc": "Schaltet vorübergehend den Verschiebemodus um"
},
"toggleLayer": {
"title": "Ebene umschalten",
"desc": "Schaltet die Auswahl von Maske/Basisebene um"
},
"clearMask": {
"title": "Lösche Maske",
"desc": "Die gesamte Maske löschen"
},
"hideMask": {
"title": "Maske ausblenden",
"desc": "Maske aus- und einblenden"
},
"showHideBoundingBox": {
"title": "Begrenzungsrahmen ein-/ausblenden",
"desc": "Sichtbarkeit des Begrenzungsrahmens ein- und ausschalten"
},
"mergeVisible": {
"title": "Sichtbares Zusammenführen",
"desc": "Alle sichtbaren Ebenen der Leinwand zusammenführen"
},
"saveToGallery": {
"title": "In Galerie speichern",
"desc": "Aktuelle Leinwand in Galerie speichern"
},
"copyToClipboard": {
"title": "In die Zwischenablage kopieren",
"desc": "Aktuelle Leinwand in die Zwischenablage kopieren"
},
"downloadImage": {
"title": "Bild herunterladen",
"desc": "Aktuelle Leinwand herunterladen"
},
"undoStroke": {
"title": "Pinselstrich rückgängig machen",
"desc": "Einen Pinselstrich rückgängig machen"
},
"redoStroke": {
"title": "Pinselstrich wiederherstellen",
"desc": "Einen Pinselstrich wiederherstellen"
},
"resetView": {
"title": "Ansicht zurücksetzen",
"desc": "Leinwandansicht zurücksetzen"
},
"previousStagingImage": {
"title": "Vorheriges Staging-Bild",
"desc": "Bild des vorherigen Staging-Bereichs"
},
"nextStagingImage": {
"title": "Nächstes Staging-Bild",
"desc": "Bild des nächsten Staging-Bereichs"
},
"acceptStagingImage": {
"title": "Staging-Bild akzeptieren",
"desc": "Akzeptieren Sie das aktuelle Bild des Staging-Bereichs"
},
"nodesHotkeys": "Knoten Tastenkürzel",
"addNodes": {
"title": "Knotenpunkt hinzufügen",
"desc": "Öffnet das Menü zum Hinzufügen von Knoten"
}
},
"modelManager": {
"modelAdded": "Model hinzugefügt",
"modelUpdated": "Model aktualisiert",
"modelEntryDeleted": "Modelleintrag gelöscht",
"cannotUseSpaces": "Leerzeichen können nicht verwendet werden",
"addNew": "Neue hinzufügen",
"addNewModel": "Neues Model hinzufügen",
"addManually": "Manuell hinzufügen",
"nameValidationMsg": "Geben Sie einen Namen für Ihr Model ein",
"description": "Beschreibung",
"descriptionValidationMsg": "Fügen Sie eine Beschreibung für Ihr Model hinzu",
"config": "Konfiguration",
"configValidationMsg": "Pfad zur Konfigurationsdatei Ihres Models.",
"modelLocation": "Ort des Models",
"modelLocationValidationMsg": "Pfad zum Speicherort Ihres Models",
"vaeLocation": "VAE Ort",
"vaeLocationValidationMsg": "Pfad zum Speicherort Ihres VAE.",
"width": "Breite",
"widthValidationMsg": "Standardbreite Ihres Models.",
"height": "Höhe",
"heightValidationMsg": "Standardbhöhe Ihres Models.",
"addModel": "Model hinzufügen",
"updateModel": "Model aktualisieren",
"availableModels": "Verfügbare Models",
"search": "Suche",
"load": "Laden",
"active": "Aktiv",
"notLoaded": "nicht geladen",
"cached": "zwischengespeichert",
"checkpointFolder": "Checkpoint-Ordner",
"clearCheckpointFolder": "Checkpoint-Ordner löschen",
"findModels": "Models finden",
"scanAgain": "Erneut scannen",
"modelsFound": "Models gefunden",
"selectFolder": "Ordner auswählen",
"selected": "Ausgewählt",
"selectAll": "Alles auswählen",
"deselectAll": "Alle abwählen",
"showExisting": "Vorhandene anzeigen",
"addSelected": "Auswahl hinzufügen",
"modelExists": "Model existiert",
"selectAndAdd": "Unten aufgeführte Models auswählen und hinzufügen",
"noModelsFound": "Keine Models gefunden",
"delete": "Löschen",
"deleteModel": "Model löschen",
"deleteConfig": "Konfiguration löschen",
"deleteMsg1": "Möchten Sie diesen Model-Eintrag wirklich aus InvokeAI löschen?",
"deleteMsg2": "Dadurch WIRD das Modell von der Festplatte gelöscht WENN es im InvokeAI Root Ordner liegt. Wenn es in einem anderem Ordner liegt wird das Modell NICHT von der Festplatte gelöscht.",
"customConfig": "Benutzerdefinierte Konfiguration",
"invokeRoot": "InvokeAI Ordner",
"formMessageDiffusersVAELocationDesc": "Falls nicht angegeben, sucht InvokeAI nach der VAE-Datei innerhalb des oben angegebenen Modell Speicherortes.",
"checkpointModels": "Kontrollpunkte",
"convert": "Umwandeln",
"addCheckpointModel": "Kontrollpunkt / SafeTensors Modell hinzufügen",
"allModels": "Alle Modelle",
"alpha": "Alpha",
"addDifference": "Unterschied hinzufügen",
"convertToDiffusersHelpText2": "Bei diesem Vorgang wird Ihr Eintrag im Modell-Manager durch die Diffusor-Version desselben Modells ersetzt.",
"convertToDiffusersHelpText5": "Bitte stellen Sie sicher, dass Sie über genügend Speicherplatz verfügen. Die Modelle sind in der Regel zwischen 2 GB und 7 GB groß.",
"convertToDiffusersHelpText3": "Ihre Kontrollpunktdatei auf der Festplatte wird NICHT gelöscht oder in irgendeiner Weise verändert. Sie können Ihren Kontrollpunkt dem Modell-Manager wieder hinzufügen, wenn Sie dies wünschen.",
"convertToDiffusersHelpText4": "Dies ist ein einmaliger Vorgang. Er kann je nach den Spezifikationen Ihres Computers etwa 30-60 Sekunden dauern.",
"convertToDiffusersHelpText6": "Möchten Sie dieses Modell konvertieren?",
"custom": "Benutzerdefiniert",
"modelConverted": "Modell umgewandelt",
"inverseSigmoid": "Inverses Sigmoid",
"invokeAIFolder": "Invoke AI Ordner",
"formMessageDiffusersModelLocationDesc": "Bitte geben Sie mindestens einen an.",
"customSaveLocation": "Benutzerdefinierter Speicherort",
"formMessageDiffusersVAELocation": "VAE Speicherort",
"mergedModelCustomSaveLocation": "Benutzerdefinierter Pfad",
"modelMergeHeaderHelp2": "Nur Diffusers sind für die Zusammenführung verfügbar. Wenn Sie ein Kontrollpunktmodell zusammenführen möchten, konvertieren Sie es bitte zuerst in Diffusers.",
"manual": "Manuell",
"modelManager": "Modell Manager",
"modelMergeAlphaHelp": "Alpha steuert die Überblendungsstärke für die Modelle. Niedrigere Alphawerte führen zu einem geringeren Einfluss des zweiten Modells.",
"modelMergeHeaderHelp1": "Sie können bis zu drei verschiedene Modelle miteinander kombinieren, um eine Mischung zu erstellen, die Ihren Bedürfnissen entspricht.",
"ignoreMismatch": "Unstimmigkeiten zwischen ausgewählten Modellen ignorieren",
"model": "Modell",
"convertToDiffusersSaveLocation": "Speicherort",
"pathToCustomConfig": "Pfad zur benutzerdefinierten Konfiguration",
"v1": "v1",
"modelMergeInterpAddDifferenceHelp": "In diesem Modus wird zunächst Modell 3 von Modell 2 subtrahiert. Die resultierende Version wird mit Modell 1 mit dem oben eingestellten Alphasatz gemischt.",
"modelTwo": "Modell 2",
"modelOne": "Modell 1",
"v2_base": "v2 (512px)",
"scanForModels": "Nach Modellen suchen",
"name": "Name",
"safetensorModels": "SafeTensors",
"pickModelType": "Modell Typ auswählen",
"sameFolder": "Gleicher Ordner",
"modelThree": "Modell 3",
"v2_768": "v2 (768px)",
"none": "Nix",
"repoIDValidationMsg": "Online Repo Ihres Modells",
"vaeRepoIDValidationMsg": "Online Repo Ihrer VAE",
"importModels": "Importiere Modelle",
"merge": "Zusammenführen",
"addDiffuserModel": "Diffusers hinzufügen",
"advanced": "Erweitert",
"closeAdvanced": "Schließe Erweitert",
"convertingModelBegin": "Konvertiere Modell. Bitte warten.",
"customConfigFileLocation": "Benutzerdefinierte Konfiguration Datei Speicherort",
"baseModel": "Basis Modell",
"convertToDiffusers": "Konvertiere zu Diffusers",
"diffusersModels": "Diffusers",
"noCustomLocationProvided": "Kein benutzerdefinierter Standort angegeben",
"onnxModels": "Onnx",
"vaeRepoID": "VAE-Repo-ID",
"weightedSum": "Gewichtete Summe",
"syncModelsDesc": "Wenn Ihre Modelle nicht mit dem Backend synchronisiert sind, können Sie sie mit dieser Option aktualisieren. Dies ist im Allgemeinen praktisch, wenn Sie Ihre models.yaml-Datei manuell aktualisieren oder Modelle zum InvokeAI-Stammordner hinzufügen, nachdem die Anwendung gestartet wurde.",
"vae": "VAE",
"noModels": "Keine Modelle gefunden",
"statusConverting": "Konvertieren",
"sigmoid": "Sigmoid",
"predictionType": "Vorhersagetyp (für Stable Diffusion 2.x-Modelle und gelegentliche Stable Diffusion 1.x-Modelle)",
"selectModel": "Wählen Sie Modell aus",
"repo_id": "Repo-ID",
"modelSyncFailed": "Modellsynchronisierung fehlgeschlagen",
"quickAdd": "Schnell hinzufügen",
"simpleModelDesc": "Geben Sie einen Pfad zu einem lokalen Diffusers-Modell, einem lokalen Checkpoint-/Safetensors-Modell, einer HuggingFace-Repo-ID oder einer Checkpoint-/Diffusers-Modell-URL an.",
"modelDeleted": "Modell gelöscht",
"inpainting": "v1 Ausmalen",
"modelUpdateFailed": "Modellaktualisierung fehlgeschlagen",
"useCustomConfig": "Benutzerdefinierte Konfiguration verwenden",
"settings": "Einstellungen",
"modelConversionFailed": "Modellkonvertierung fehlgeschlagen",
"syncModels": "Modelle synchronisieren",
"mergedModelSaveLocation": "Speicherort",
"modelType": "Modelltyp",
"modelsMerged": "Modelle zusammengeführt",
"modelsMergeFailed": "Modellzusammenführung fehlgeschlagen",
"convertToDiffusersHelpText1": "Dieses Modell wird in das 🧨 Diffusers-Format konvertiert.",
"modelsSynced": "Modelle synchronisiert",
"vaePrecision": "VAE-Präzision",
"mergeModels": "Modelle zusammenführen",
"interpolationType": "Interpolationstyp",
"oliveModels": "Olives",
"variant": "Variante",
"loraModels": "LoRAs",
"modelDeleteFailed": "Modell konnte nicht gelöscht werden",
"mergedModelName": "Zusammengeführter Modellname"
},
"parameters": {
"images": "Bilder",
"steps": "Schritte",
"cfgScale": "CFG-Skala",
"width": "Breite",
"height": "Höhe",
"randomizeSeed": "Zufälliger Seed",
"shuffle": "Mischen",
"noiseThreshold": "Rausch-Schwellenwert",
"perlinNoise": "Perlin-Rauschen",
"variations": "Variationen",
"variationAmount": "Höhe der Abweichung",
"seedWeights": "Seed-Gewichte",
"faceRestoration": "Gesichtsrestaurierung",
"restoreFaces": "Gesichter wiederherstellen",
"type": "Art",
"strength": "Stärke",
"upscaling": "Hochskalierung",
"upscale": "Hochskalieren (Shift + U)",
"upscaleImage": "Bild hochskalieren",
"scale": "Maßstab",
"otherOptions": "Andere Optionen",
"seamlessTiling": "Nahtlose Kacheln",
"hiresOptim": "High-Res-Optimierung",
"imageFit": "Ausgangsbild an Ausgabegröße anpassen",
"codeformerFidelity": "Glaubwürdigkeit",
"scaleBeforeProcessing": "Skalieren vor der Verarbeitung",
"scaledWidth": "Skaliert W",
"scaledHeight": "Skaliert H",
"infillMethod": "Infill-Methode",
"tileSize": "Kachelgröße",
"boundingBoxHeader": "Begrenzungsrahmen",
"seamCorrectionHeader": "Nahtkorrektur",
"infillScalingHeader": "Infill und Skalierung",
"img2imgStrength": "Bild-zu-Bild-Stärke",
"toggleLoopback": "Loopback umschalten",
"sendTo": "Senden an",
"sendToImg2Img": "Senden an Bild zu Bild",
"sendToUnifiedCanvas": "Senden an Unified Canvas",
"copyImageToLink": "Bild-Link kopieren",
"downloadImage": "Bild herunterladen",
"openInViewer": "Im Viewer öffnen",
"closeViewer": "Viewer schließen",
"usePrompt": "Prompt verwenden",
"useSeed": "Seed verwenden",
"useAll": "Alle verwenden",
"useInitImg": "Ausgangsbild verwenden",
"initialImage": "Ursprüngliches Bild",
"showOptionsPanel": "Optionsleiste zeigen",
"cancel": {
"setType": "Abbruchart festlegen",
"immediate": "Sofort abbrechen",
"schedule": "Abbrechen nach der aktuellen Iteration",
"isScheduled": "Abbrechen"
},
"copyImage": "Bild kopieren",
"denoisingStrength": "Stärke der Entrauschung",
"symmetry": "Symmetrie",
"imageToImage": "Bild zu Bild",
"info": "Information",
"general": "Allgemein",
"hiresStrength": "High Res Stärke",
"hidePreview": "Verstecke Vorschau",
"showPreview": "Zeige Vorschau"
},
"settings": {
"displayInProgress": "Bilder in Bearbeitung anzeigen",
"saveSteps": "Speichern der Bilder alle n Schritte",
"confirmOnDelete": "Bestätigen beim Löschen",
"displayHelpIcons": "Hilfesymbole anzeigen",
"enableImageDebugging": "Bild-Debugging aktivieren",
"resetWebUI": "Web-Oberfläche zurücksetzen",
"resetWebUIDesc1": "Das Zurücksetzen der Web-Oberfläche setzt nur den lokalen Cache des Browsers mit Ihren Bildern und gespeicherten Einstellungen zurück. Es werden keine Bilder von der Festplatte gelöscht.",
"resetWebUIDesc2": "Wenn die Bilder nicht in der Galerie angezeigt werden oder etwas anderes nicht funktioniert, versuchen Sie bitte, die Einstellungen zurückzusetzen, bevor Sie einen Fehler auf GitHub melden.",
"resetComplete": "Die Web-Oberfläche wurde zurückgesetzt.",
"models": "Modelle",
"useSlidersForAll": "Schieberegler für alle Optionen verwenden"
},
"toast": {
"tempFoldersEmptied": "Temp-Ordner geleert",
"uploadFailed": "Hochladen fehlgeschlagen",
"uploadFailedUnableToLoadDesc": "Datei kann nicht geladen werden",
"downloadImageStarted": "Bild wird heruntergeladen",
"imageCopied": "Bild kopiert",
"imageLinkCopied": "Bildlink kopiert",
"imageNotLoaded": "Kein Bild geladen",
"imageNotLoadedDesc": "Konnte kein Bild finden",
"imageSavedToGallery": "Bild in die Galerie gespeichert",
"canvasMerged": "Leinwand zusammengeführt",
"sentToImageToImage": "Gesendet an Bild zu Bild",
"sentToUnifiedCanvas": "Gesendet an Unified Canvas",
"parametersSet": "Parameter festlegen",
"parametersNotSet": "Parameter nicht festgelegt",
"parametersNotSetDesc": "Keine Metadaten für dieses Bild gefunden.",
"parametersFailed": "Problem beim Laden der Parameter",
"parametersFailedDesc": "Ausgangsbild kann nicht geladen werden.",
"seedSet": "Seed festlegen",
"seedNotSet": "Saatgut nicht festgelegt",
"seedNotSetDesc": "Für dieses Bild wurde kein Seed gefunden.",
"promptSet": "Prompt festgelegt",
"promptNotSet": "Prompt nicht festgelegt",
"promptNotSetDesc": "Für dieses Bild wurde kein Prompt gefunden.",
"upscalingFailed": "Hochskalierung fehlgeschlagen",
"faceRestoreFailed": "Gesichtswiederherstellung fehlgeschlagen",
"metadataLoadFailed": "Metadaten konnten nicht geladen werden",
"initialImageSet": "Ausgangsbild festgelegt",
"initialImageNotSet": "Ausgangsbild nicht festgelegt",
"initialImageNotSetDesc": "Ausgangsbild konnte nicht geladen werden"
},
"tooltip": {
"feature": {
"prompt": "Dies ist das Prompt-Feld. Ein Prompt enthält Generierungsobjekte und stilistische Begriffe. Sie können auch Gewichtungen (Token-Bedeutung) dem Prompt hinzufügen, aber CLI-Befehle und Parameter funktionieren nicht.",
"gallery": "Die Galerie zeigt erzeugte Bilder aus dem Ausgabeordner an, sobald sie erstellt wurden. Die Einstellungen werden in den Dateien gespeichert und können über das Kontextmenü aufgerufen werden.",
"other": "Mit diesen Optionen werden alternative Verarbeitungsmodi für InvokeAI aktiviert. 'Nahtlose Kachelung' erzeugt sich wiederholende Muster in der Ausgabe. 'Hohe Auflösungen' werden in zwei Schritten mit img2img erzeugt: Verwenden Sie diese Einstellung, wenn Sie ein größeres und kohärenteres Bild ohne Artefakte wünschen. Es dauert länger als das normale txt2img.",
"seed": "Der Seed-Wert beeinflusst das Ausgangsrauschen, aus dem das Bild erstellt wird. Sie können die bereits vorhandenen Seeds von früheren Bildern verwenden. 'Der Rauschschwellenwert' wird verwendet, um Artefakte bei hohen CFG-Werten abzuschwächen (versuchen Sie es im Bereich 0-10), und Perlin, um während der Erzeugung Perlin-Rauschen hinzuzufügen: Beide dienen dazu, Ihre Ergebnisse zu variieren.",
"variations": "Versuchen Sie eine Variation mit einem Wert zwischen 0,1 und 1,0, um das Ergebnis für ein bestimmtes Seed zu ändern. Interessante Variationen des Seeds liegen zwischen 0,1 und 0,3.",
"upscale": "Verwenden Sie ESRGAN, um das Bild unmittelbar nach der Erzeugung zu vergrößern.",
"faceCorrection": "Gesichtskorrektur mit GFPGAN oder Codeformer: Der Algorithmus erkennt Gesichter im Bild und korrigiert alle Fehler. Ein hoher Wert verändert das Bild stärker, was zu attraktiveren Gesichtern führt. Codeformer mit einer höheren Genauigkeit bewahrt das Originalbild auf Kosten einer stärkeren Gesichtskorrektur.",
"imageToImage": "Bild zu Bild lädt ein beliebiges Bild als Ausgangsbild, aus dem dann zusammen mit dem Prompt ein neues Bild erzeugt wird. Je höher der Wert ist, desto stärker wird das Ergebnisbild verändert. Werte von 0,0 bis 1,0 sind möglich, der empfohlene Bereich ist .25-.75",
"boundingBox": "Der Begrenzungsrahmen ist derselbe wie die Einstellungen für Breite und Höhe bei Text zu Bild oder Bild zu Bild. Es wird nur der Bereich innerhalb des Rahmens verarbeitet.",
"seamCorrection": "Steuert die Behandlung von sichtbaren Übergängen, die zwischen den erzeugten Bildern auf der Leinwand auftreten.",
"infillAndScaling": "Verwalten Sie Infill-Methoden (für maskierte oder gelöschte Bereiche der Leinwand) und Skalierung (nützlich für kleine Begrenzungsrahmengrößen)."
}
},
"unifiedCanvas": {
"layer": "Ebene",
"base": "Basis",
"mask": "Maske",
"maskingOptions": "Maskierungsoptionen",
"enableMask": "Maske aktivieren",
"preserveMaskedArea": "Maskierten Bereich bewahren",
"clearMask": "Maske löschen",
"brush": "Pinsel",
"eraser": "Radierer",
"fillBoundingBox": "Begrenzungsrahmen füllen",
"eraseBoundingBox": "Begrenzungsrahmen löschen",
"colorPicker": "Farbpipette",
"brushOptions": "Pinseloptionen",
"brushSize": "Größe",
"move": "Bewegen",
"resetView": "Ansicht zurücksetzen",
"mergeVisible": "Sichtbare Zusammenführen",
"saveToGallery": "In Galerie speichern",
"copyToClipboard": "In Zwischenablage kopieren",
"downloadAsImage": "Als Bild herunterladen",
"undo": "Rückgängig",
"redo": "Wiederherstellen",
"clearCanvas": "Leinwand löschen",
"canvasSettings": "Leinwand-Einstellungen",
"showIntermediates": "Zwischenprodukte anzeigen",
"showGrid": "Gitternetz anzeigen",
"snapToGrid": "Am Gitternetz einrasten",
"darkenOutsideSelection": "Außerhalb der Auswahl verdunkeln",
"autoSaveToGallery": "Automatisch in Galerie speichern",
"saveBoxRegionOnly": "Nur Auswahlbox speichern",
"limitStrokesToBox": "Striche auf Box beschränken",
"showCanvasDebugInfo": "Zusätzliche Informationen zur Leinwand anzeigen",
"clearCanvasHistory": "Leinwand-Verlauf löschen",
"clearHistory": "Verlauf löschen",
"clearCanvasHistoryMessage": "Wenn Sie den Verlauf der Leinwand löschen, bleibt die aktuelle Leinwand intakt, aber der Verlauf der Rückgängig- und Wiederherstellung wird unwiderruflich gelöscht.",
"clearCanvasHistoryConfirm": "Sind Sie sicher, dass Sie den Verlauf der Leinwand löschen möchten?",
"emptyTempImageFolder": "Temp-Image Ordner leeren",
"emptyFolder": "Leerer Ordner",
"emptyTempImagesFolderMessage": "Wenn Sie den Ordner für temporäre Bilder leeren, wird auch der Unified Canvas vollständig zurückgesetzt. Dies umfasst den gesamten Verlauf der Rückgängig-/Wiederherstellungsvorgänge, die Bilder im Bereitstellungsbereich und die Leinwand-Basisebene.",
"emptyTempImagesFolderConfirm": "Sind Sie sicher, dass Sie den temporären Ordner leeren wollen?",
"activeLayer": "Aktive Ebene",
"canvasScale": "Leinwand Maßstab",
"boundingBox": "Begrenzungsrahmen",
"scaledBoundingBox": "Skalierter Begrenzungsrahmen",
"boundingBoxPosition": "Begrenzungsrahmen Position",
"canvasDimensions": "Maße der Leinwand",
"canvasPosition": "Leinwandposition",
"cursorPosition": "Position des Cursors",
"previous": "Vorherige",
"next": "Nächste",
"accept": "Akzeptieren",
"showHide": "Einblenden/Ausblenden",
"discardAll": "Alles verwerfen",
"betaClear": "Löschen",
"betaDarkenOutside": "Außen abdunkeln",
"betaLimitToBox": "Begrenzung auf das Feld",
"betaPreserveMasked": "Maskiertes bewahren",
"antialiasing": "Kantenglättung",
"showResultsOn": "Zeige Ergebnisse (An)",
"showResultsOff": "Zeige Ergebnisse (Aus)"
},
"accessibility": {
"modelSelect": "Model Auswahl",
"uploadImage": "Bild hochladen",
"previousImage": "Voriges Bild",
"useThisParameter": "Benutze diesen Parameter",
"copyMetadataJson": "Kopiere Metadaten JSON",
"zoomIn": "Vergrößern",
"rotateClockwise": "Im Uhrzeigersinn drehen",
"flipHorizontally": "Horizontal drehen",
"flipVertically": "Vertikal drehen",
"modifyConfig": "Optionen einstellen",
"toggleAutoscroll": "Auroscroll ein/ausschalten",
"toggleLogViewer": "Log Betrachter ein/ausschalten",
"showOptionsPanel": "Zeige Optionen",
"reset": "Zurücksetzten",
"nextImage": "Nächstes Bild",
"zoomOut": "Verkleinern",
"rotateCounterClockwise": "Gegen den Uhrzeigersinn verdrehen",
"showGalleryPanel": "Galeriefenster anzeigen",
"exitViewer": "Betrachten beenden",
"menu": "Menü",
"loadMore": "Mehr laden",
"invokeProgressBar": "Invoke Fortschrittsanzeige"
},
"boards": {
"autoAddBoard": "Automatisches Hinzufügen zum Ordner",
"topMessage": "Dieser Ordner enthält Bilder die in den folgenden Funktionen verwendet werden:",
"move": "Bewegen",
"menuItemAutoAdd": "Automatisches Hinzufügen zu diesem Ordner",
"myBoard": "Meine Ordner",
"searchBoard": "Ordner durchsuchen...",
"noMatching": "Keine passenden Ordner",
"selectBoard": "Ordner aussuchen",
"cancel": "Abbrechen",
"addBoard": "Ordner hinzufügen",
"uncategorized": "Nicht kategorisiert",
"downloadBoard": "Ordner runterladen",
"changeBoard": "Ordner wechseln",
"loading": "Laden...",
"clearSearch": "Suche leeren",
"bottomMessage": "Durch das Löschen dieses Ordners und seiner Bilder werden alle Funktionen zurückgesetzt, die sie derzeit verwenden."
},
"controlnet": {
"showAdvanced": "Zeige Erweitert",
"contentShuffleDescription": "Mischt den Inhalt von einem Bild",
"addT2IAdapter": "$t(common.t2iAdapter) hinzufügen",
"importImageFromCanvas": "Importieren Bild von Zeichenfläche",
"lineartDescription": "Konvertiere Bild zu Lineart",
"importMaskFromCanvas": "Importiere Maske von Zeichenfläche",
"hed": "HED",
"hideAdvanced": "Verstecke Erweitert",
"contentShuffle": "Inhalt mischen",
"controlNetEnabledT2IDisabled": "$t(common.controlNet) ist aktiv, $t(common.t2iAdapter) ist deaktiviert",
"ipAdapterModel": "Adapter Modell",
"beginEndStepPercent": "Start / Ende Step Prozent",
"duplicate": "Kopieren",
"f": "F",
"h": "H",
"depthMidasDescription": "Tiefenmap erstellen mit Midas",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"t2iEnabledControlNetDisabled": "$t(common.t2iAdapter) ist aktiv, $t(common.controlNet) ist deaktiviert",
"weight": "Breite",
"selectModel": "Wähle ein Modell",
"depthMidas": "Tiefe (Midas)",
"w": "W",
"addControlNet": "$t(common.controlNet) hinzufügen",
"none": "Kein",
"incompatibleBaseModel": "Inkompatibles Basismodell:",
"enableControlnet": "Aktiviere ControlNet",
"detectResolution": "Auflösung erkennen",
"controlNetT2IMutexDesc": "$t(common.controlNet) und $t(common.t2iAdapter) zur gleichen Zeit wird nicht unterstützt.",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"fill": "Füllen",
"addIPAdapter": "$t(common.ipAdapter) hinzufügen",
"colorMapDescription": "Erstelle eine Farbkarte von diesem Bild",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"imageResolution": "Bild Auflösung",
"depthZoe": "Tiefe (Zoe)",
"colorMap": "Farbe",
"lowThreshold": "Niedrige Schwelle",
"highThreshold": "Hohe Schwelle",
"toggleControlNet": "Schalten ControlNet um",
"delete": "Löschen",
"controlAdapter_one": "Control Adapter",
"controlAdapter_other": "Control Adapters",
"colorMapTileSize": "Tile Größe",
"depthZoeDescription": "Tiefenmap erstellen mit Zoe",
"setControlImageDimensions": "Setze Control Bild Auflösung auf Breite/Höhe",
"handAndFace": "Hand und Gesicht",
"enableIPAdapter": "Aktiviere IP Adapter",
"resize": "Größe ändern",
"resetControlImage": "Zurücksetzen vom Referenz Bild",
"balanced": "Ausgewogen",
"prompt": "Prompt",
"resizeMode": "Größenänderungsmodus",
"processor": "Prozessor",
"saveControlImage": "Speichere Referenz Bild",
"safe": "Speichern",
"ipAdapterImageFallback": "Kein IP Adapter Bild ausgewählt",
"resetIPAdapterImage": "Zurücksetzen vom IP Adapter Bild",
"pidi": "PIDI",
"normalBae": "Normales BAE",
"mlsdDescription": "Minimalistischer Liniensegmentdetektor",
"openPoseDescription": "Schätzung der menschlichen Pose mit Openpose",
"control": "Kontrolle",
"coarse": "Coarse",
"crop": "Zuschneiden",
"pidiDescription": "PIDI-Bildverarbeitung",
"mediapipeFace": "Mediapipe Gesichter",
"mlsd": "M-LSD",
"controlMode": "Steuermodus",
"cannyDescription": "Canny Ecken Erkennung",
"lineart": "Lineart",
"lineartAnimeDescription": "Lineart-Verarbeitung im Anime-Stil",
"minConfidence": "Minimales Vertrauen",
"megaControl": "Mega-Kontrolle",
"autoConfigure": "Prozessor automatisch konfigurieren",
"normalBaeDescription": "Normale BAE-Verarbeitung",
"noneDescription": "Es wurde keine Verarbeitung angewendet",
"openPose": "Openpose",
"lineartAnime": "Lineart Anime",
"mediapipeFaceDescription": "Gesichtserkennung mit Mediapipe",
"canny": "Canny",
"hedDescription": "Ganzheitlich verschachtelte Kantenerkennung",
"scribble": "Scribble",
"maxFaces": "Maximal Anzahl Gesichter"
},
"queue": {
"status": "Status",
"cancelTooltip": "Aktuellen Aufgabe abbrechen",
"queueEmpty": "Warteschlange leer",
"in_progress": "In Arbeit",
"queueFront": "An den Anfang der Warteschlange tun",
"completed": "Fertig",
"queueBack": "In die Warteschlange",
"clearFailed": "Probleme beim leeren der Warteschlange",
"clearSucceeded": "Warteschlange geleert",
"pause": "Pause",
"cancelSucceeded": "Auftrag abgebrochen",
"queue": "Warteschlange",
"batch": "Stapel",
"pending": "Ausstehend",
"clear": "Leeren",
"prune": "Leeren",
"total": "Gesamt",
"canceled": "Abgebrochen",
"clearTooltip": "Abbrechen und alle Aufträge leeren",
"current": "Aktuell",
"failed": "Fehler",
"cancelItem": "Abbruch Auftrag",
"next": "Nächste",
"cancel": "Abbruch",
"session": "Sitzung",
"queueTotal": "{{total}} Gesamt",
"resume": "Wieder aufnehmen",
"item": "Auftrag",
"notReady": "Warteschlange noch nicht bereit",
"batchValues": "Stapel Werte",
"queueCountPrediction": "{{predicted}} zur Warteschlange hinzufügen",
"queuedCount": "{{pending}} wartenden Elemente",
"clearQueueAlertDialog": "Die Warteschlange leeren, stoppt den aktuellen Prozess und leert die Warteschlange komplett.",
"completedIn": "Fertig in",
"cancelBatchSucceeded": "Stapel abgebrochen",
"cancelBatch": "Stapel stoppen",
"enqueueing": "Stapel in der Warteschlange",
"queueMaxExceeded": "Maximum von {{max_queue_size}} Elementen erreicht, würde {{skip}} Elemente überspringen",
"cancelBatchFailed": "Problem beim Abbruch vom Stapel",
"clearQueueAlertDialog2": "bist du sicher die Warteschlange zu leeren?",
"pruneSucceeded": "{{item_count}} abgeschlossene Elemente aus der Warteschlange entfernt",
"pauseSucceeded": "Prozessor angehalten",
"cancelFailed": "Problem beim Stornieren des Auftrags",
"pauseFailed": "Problem beim Anhalten des Prozessors",
"front": "Vorne",
"pruneTooltip": "Bereinigen Sie {{item_count}} abgeschlossene Aufträge",
"resumeFailed": "Problem beim wieder aufnehmen von Prozessor",
"pruneFailed": "Problem beim leeren der Warteschlange",
"pauseTooltip": "Pause von Prozessor",
"back": "Hinten",
"resumeSucceeded": "Prozessor wieder aufgenommen",
"resumeTooltip": "Prozessor wieder aufnehmen"
},
"metadata": {
"negativePrompt": "Negativ Beschreibung",
"metadata": "Meta-Data",
"strength": "Bild zu Bild stärke",
"imageDetails": "Bild Details",
"model": "Modell",
"noImageDetails": "Keine Bild Details gefunden",
"cfgScale": "CFG-Skala",
"fit": "Bild zu Bild passen",
"height": "Höhe",
"noMetaData": "Keine Meta-Data gefunden",
"width": "Breite",
"createdBy": "Erstellt von",
"steps": "Schritte",
"seamless": "Nahtlos",
"positivePrompt": "Positiver Prompt",
"generationMode": "Generierungsmodus",
"Threshold": "Noise Schwelle",
"seed": "Samen",
"perlin": "Perlin Noise",
"hiresFix": "Optimierung für hohe Auflösungen",
"initImage": "Erstes Bild",
"variations": "Samengewichtspaare",
"vae": "VAE",
"workflow": "Arbeitsablauf",
"scheduler": "Scheduler",
"noRecallParameters": "Es wurden keine Parameter zum Abrufen gefunden"
},
"popovers": {
"noiseUseCPU": {
"heading": "Nutze Prozessor rauschen"
},
"paramModel": {
"heading": "Modell"
},
"paramIterations": {
"heading": "Iterationen"
},
"paramCFGScale": {
"heading": "CFG-Skala"
},
"paramSteps": {
"heading": "Schritte"
},
"lora": {
"heading": "LoRA Gewichte"
},
"infillMethod": {
"heading": "Füllmethode"
},
"paramVAE": {
"heading": "VAE"
}
},
"ui": {
"lockRatio": "Verhältnis sperren",
"hideProgressImages": "Verstecke Prozess Bild",
"showProgressImages": "Zeige Prozess Bild"
},
"invocationCache": {
"disable": "Deaktivieren",
"misses": "Cache Nötig",
"hits": "Cache Treffer",
"enable": "Aktivieren",
"clear": "Leeren",
"maxCacheSize": "Maximale Cache Größe",
"cacheSize": "Cache Größe"
},
"embedding": {
"noMatchingEmbedding": "Keine passenden Embeddings",
"addEmbedding": "Embedding hinzufügen",
"incompatibleModel": "Inkompatibles Basismodell:"
},
"nodes": {
"booleanPolymorphicDescription": "Eine Sammlung boolescher Werte.",
"colorFieldDescription": "Eine RGBA-Farbe.",
"conditioningCollection": "Konditionierungssammlung",
"addNode": "Knoten hinzufügen",
"conditioningCollectionDescription": "Konditionierung kann zwischen Knoten weitergegeben werden.",
"colorPolymorphic": "Farbpolymorph",
"colorCodeEdgesHelp": "Farbkodieren Sie Kanten entsprechend ihren verbundenen Feldern",
"animatedEdges": "Animierte Kanten",
"booleanCollectionDescription": "Eine Sammlung boolescher Werte.",
"colorField": "Farbe",
"collectionItem": "Objekt in Sammlung",
"animatedEdgesHelp": "Animieren Sie ausgewählte Kanten und Kanten, die mit ausgewählten Knoten verbunden sind",
"cannotDuplicateConnection": "Es können keine doppelten Verbindungen erstellt werden",
"booleanPolymorphic": "Boolesche Polymorphie",
"colorPolymorphicDescription": "Eine Sammlung von Farben.",
"clipFieldDescription": "Tokenizer- und text_encoder-Untermodelle.",
"clipField": "Clip",
"colorCollection": "Eine Sammlung von Farben.",
"boolean": "Boolesche Werte",
"currentImage": "Aktuelles Bild",
"booleanDescription": "Boolesche Werte sind wahr oder falsch.",
"collection": "Sammlung",
"cannotConnectInputToInput": "Eingang kann nicht mit Eingang verbunden werden",
"conditioningField": "Konditionierung",
"cannotConnectOutputToOutput": "Ausgang kann nicht mit Ausgang verbunden werden",
"booleanCollection": "Boolesche Werte Sammlung",
"cannotConnectToSelf": "Es kann keine Verbindung zu sich selbst hergestellt werden",
"colorCodeEdges": "Farbkodierte Kanten",
"addNodeToolTip": "Knoten hinzufügen (Umschalt+A, Leertaste)"
},
"hrf": {
"enableHrf": "Aktivieren Sie die Korrektur für hohe Auflösungen",
"upscaleMethod": "Vergrößerungsmethoden",
"enableHrfTooltip": "Generieren Sie mit einer niedrigeren Anfangsauflösung, skalieren Sie auf die Basisauflösung hoch und führen Sie dann Image-to-Image aus.",
"metadata": {
"strength": "Hochauflösender Fix Stärke",
"enabled": "Hochauflösender Fix aktiviert",
"method": "Hochauflösender Fix Methode"
},
"hrf": "Hochauflösender Fix",
"hrfStrength": "Hochauflösende Fix Stärke",
"strengthTooltip": "Niedrigere Werte führen zu weniger Details, wodurch potenzielle Artefakte reduziert werden können."
},
"models": {
"noMatchingModels": "Keine passenden Modelle",
"loading": "lade",
"noMatchingLoRAs": "Keine passenden LoRAs",
"noLoRAsAvailable": "Keine LoRAs verfügbar",
"noModelsAvailable": "Keine Modelle verfügbar",
"selectModel": "Wählen ein Modell aus",
"noRefinerModelsInstalled": "Keine SDXL Refiner-Modelle installiert",
"noLoRAsInstalled": "Keine LoRAs installiert",
"selectLoRA": "Wählen ein LoRA aus"
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,737 +0,0 @@
{
"common": {
"hotkeysLabel": "Atajos de teclado",
"languagePickerLabel": "Selector de idioma",
"reportBugLabel": "Reportar errores",
"settingsLabel": "Ajustes",
"img2img": "Imagen a Imagen",
"unifiedCanvas": "Lienzo Unificado",
"nodes": "Editor del flujo de trabajo",
"langSpanish": "Español",
"nodesDesc": "Un sistema de generación de imágenes basado en nodos, actualmente se encuentra en desarrollo. Mantente pendiente a nuestras actualizaciones acerca de esta fabulosa funcionalidad.",
"postProcessing": "Post-procesamiento",
"postProcessDesc1": "Invoke AI ofrece una gran variedad de funciones de post-procesamiento, El aumento de tamaño y Restauración de Rostros ya se encuentran disponibles en la interfaz web, puedes acceder desde el menú de Opciones Avanzadas en las pestañas de Texto a Imagen y de Imagen a Imagen. También puedes acceder a estas funciones directamente mediante el botón de acciones en el menú superior de la imagen actual o en el visualizador.",
"postProcessDesc2": "Una interfaz de usuario dedicada se lanzará pronto para facilitar flujos de trabajo de postprocesamiento más avanzado.",
"postProcessDesc3": "La Interfaz de Línea de Comandos de Invoke AI ofrece muchas otras características, incluyendo -Embiggen-.",
"training": "Entrenamiento",
"trainingDesc1": "Un flujo de trabajo dedicado para el entrenamiento de sus propios -embeddings- y puntos de control utilizando Inversión Textual y Dreambooth desde la interfaz web.",
"trainingDesc2": "InvokeAI ya admite el entrenamiento de incrustaciones personalizadas mediante la inversión textual mediante el script principal.",
"upload": "Subir imagen",
"close": "Cerrar",
"load": "Cargar",
"statusConnected": "Conectado",
"statusDisconnected": "Desconectado",
"statusError": "Error",
"statusPreparing": "Preparando",
"statusProcessingCanceled": "Procesamiento Cancelado",
"statusProcessingComplete": "Procesamiento Completo",
"statusGenerating": "Generando",
"statusGeneratingTextToImage": "Generando Texto a Imagen",
"statusGeneratingImageToImage": "Generando Imagen a Imagen",
"statusGeneratingInpainting": "Generando pintura interior",
"statusGeneratingOutpainting": "Generando pintura exterior",
"statusGenerationComplete": "Generación Completa",
"statusIterationComplete": "Iteración Completa",
"statusSavingImage": "Guardando Imagen",
"statusRestoringFaces": "Restaurando Rostros",
"statusRestoringFacesGFPGAN": "Restaurando Rostros (GFPGAN)",
"statusRestoringFacesCodeFormer": "Restaurando Rostros (CodeFormer)",
"statusUpscaling": "Aumentando Tamaño",
"statusUpscalingESRGAN": "Restaurando Rostros(ESRGAN)",
"statusLoadingModel": "Cargando Modelo",
"statusModelChanged": "Modelo cambiado",
"statusMergedModels": "Modelos combinados",
"githubLabel": "Github",
"discordLabel": "Discord",
"langEnglish": "Inglés",
"langDutch": "Holandés",
"langFrench": "Francés",
"langGerman": "Alemán",
"langItalian": "Italiano",
"langArabic": "Árabe",
"langJapanese": "Japones",
"langPolish": "Polaco",
"langBrPortuguese": "Portugués brasileño",
"langRussian": "Ruso",
"langSimplifiedChinese": "Chino simplificado",
"langUkranian": "Ucraniano",
"back": "Atrás",
"statusConvertingModel": "Convertir el modelo",
"statusModelConverted": "Modelo adaptado",
"statusMergingModels": "Fusionar modelos",
"langPortuguese": "Portugués",
"langKorean": "Coreano",
"langHebrew": "Hebreo",
"loading": "Cargando",
"loadingInvokeAI": "Cargando invocar a la IA",
"postprocessing": "Tratamiento posterior",
"txt2img": "De texto a imagen",
"accept": "Aceptar",
"cancel": "Cancelar",
"linear": "Lineal",
"random": "Aleatorio",
"generate": "Generar",
"openInNewTab": "Abrir en una nueva pestaña",
"dontAskMeAgain": "No me preguntes de nuevo",
"areYouSure": "¿Estas seguro?",
"imagePrompt": "Indicación de imagen",
"batch": "Administrador de lotes",
"darkMode": "Modo oscuro",
"lightMode": "Modo claro",
"modelManager": "Administrador de modelos",
"communityLabel": "Comunidad"
},
"gallery": {
"generations": "Generaciones",
"showGenerations": "Mostrar Generaciones",
"uploads": "Subidas de archivos",
"showUploads": "Mostar Subidas",
"galleryImageSize": "Tamaño de la imagen",
"galleryImageResetSize": "Restablecer tamaño de la imagen",
"gallerySettings": "Ajustes de la galería",
"maintainAspectRatio": "Mantener relación de aspecto",
"autoSwitchNewImages": "Auto seleccionar Imágenes nuevas",
"singleColumnLayout": "Diseño de una columna",
"allImagesLoaded": "Todas las imágenes cargadas",
"loadMore": "Cargar más",
"noImagesInGallery": "No hay imágenes para mostrar",
"deleteImage": "Eliminar Imagen",
"deleteImageBin": "Las imágenes eliminadas se enviarán a la papelera de tu sistema operativo.",
"deleteImagePermanent": "Las imágenes eliminadas no se pueden restaurar.",
"images": "Imágenes",
"assets": "Activos",
"autoAssignBoardOnClick": "Asignación automática de tableros al hacer clic"
},
"hotkeys": {
"keyboardShortcuts": "Atajos de teclado",
"appHotkeys": "Atajos de applicación",
"generalHotkeys": "Atajos generales",
"galleryHotkeys": "Atajos de galería",
"unifiedCanvasHotkeys": "Atajos de lienzo unificado",
"invoke": {
"title": "Invocar",
"desc": "Generar una imagen"
},
"cancel": {
"title": "Cancelar",
"desc": "Cancelar el proceso de generación de imagen"
},
"focusPrompt": {
"title": "Mover foco a Entrada de texto",
"desc": "Mover foco hacia el campo de texto de la Entrada"
},
"toggleOptions": {
"title": "Alternar opciones",
"desc": "Mostar y ocultar el panel de opciones"
},
"pinOptions": {
"title": "Fijar opciones",
"desc": "Fijar el panel de opciones"
},
"toggleViewer": {
"title": "Alternar visor",
"desc": "Mostar y ocultar el visor de imágenes"
},
"toggleGallery": {
"title": "Alternar galería",
"desc": "Mostar y ocultar la galería de imágenes"
},
"maximizeWorkSpace": {
"title": "Maximizar espacio de trabajo",
"desc": "Cerrar otros páneles y maximizar el espacio de trabajo"
},
"changeTabs": {
"title": "Cambiar",
"desc": "Cambiar entre áreas de trabajo"
},
"consoleToggle": {
"title": "Alternar consola",
"desc": "Mostar y ocultar la consola"
},
"setPrompt": {
"title": "Establecer Entrada",
"desc": "Usar el texto de entrada de la imagen actual"
},
"setSeed": {
"title": "Establecer semilla",
"desc": "Usar la semilla de la imagen actual"
},
"setParameters": {
"title": "Establecer parámetros",
"desc": "Usar todos los parámetros de la imagen actual"
},
"restoreFaces": {
"title": "Restaurar rostros",
"desc": "Restaurar rostros en la imagen actual"
},
"upscale": {
"title": "Aumentar resolución",
"desc": "Aumentar la resolución de la imagen actual"
},
"showInfo": {
"title": "Mostrar información",
"desc": "Mostar metadatos de la imagen actual"
},
"sendToImageToImage": {
"title": "Enviar hacia Imagen a Imagen",
"desc": "Enviar imagen actual hacia Imagen a Imagen"
},
"deleteImage": {
"title": "Eliminar imagen",
"desc": "Eliminar imagen actual"
},
"closePanels": {
"title": "Cerrar páneles",
"desc": "Cerrar los páneles abiertos"
},
"previousImage": {
"title": "Imagen anterior",
"desc": "Muetra la imagen anterior en la galería"
},
"nextImage": {
"title": "Imagen siguiente",
"desc": "Muetra la imagen siguiente en la galería"
},
"toggleGalleryPin": {
"title": "Alternar fijado de galería",
"desc": "Fijar o desfijar la galería en la interfaz"
},
"increaseGalleryThumbSize": {
"title": "Aumentar imagen en galería",
"desc": "Aumenta el tamaño de las miniaturas de la galería"
},
"decreaseGalleryThumbSize": {
"title": "Reducir imagen en galería",
"desc": "Reduce el tamaño de las miniaturas de la galería"
},
"selectBrush": {
"title": "Seleccionar pincel",
"desc": "Selecciona el pincel en el lienzo"
},
"selectEraser": {
"title": "Seleccionar borrador",
"desc": "Selecciona el borrador en el lienzo"
},
"decreaseBrushSize": {
"title": "Disminuir tamaño de herramienta",
"desc": "Disminuye el tamaño del pincel/borrador en el lienzo"
},
"increaseBrushSize": {
"title": "Aumentar tamaño del pincel",
"desc": "Aumenta el tamaño del pincel en el lienzo"
},
"decreaseBrushOpacity": {
"title": "Disminuir opacidad del pincel",
"desc": "Disminuye la opacidad del pincel en el lienzo"
},
"increaseBrushOpacity": {
"title": "Aumentar opacidad del pincel",
"desc": "Aumenta la opacidad del pincel en el lienzo"
},
"moveTool": {
"title": "Herramienta de movimiento",
"desc": "Permite navegar por el lienzo"
},
"fillBoundingBox": {
"title": "Rellenar Caja contenedora",
"desc": "Rellena la caja contenedora con el color seleccionado"
},
"eraseBoundingBox": {
"title": "Borrar Caja contenedora",
"desc": "Borra el contenido dentro de la caja contenedora"
},
"colorPicker": {
"title": "Selector de color",
"desc": "Selecciona un color del lienzo"
},
"toggleSnap": {
"title": "Alternar ajuste de cuadrícula",
"desc": "Activa o desactiva el ajuste automático a la cuadrícula"
},
"quickToggleMove": {
"title": "Alternar movimiento rápido",
"desc": "Activa momentáneamente la herramienta de movimiento"
},
"toggleLayer": {
"title": "Alternar capa",
"desc": "Alterna entre las capas de máscara y base"
},
"clearMask": {
"title": "Limpiar máscara",
"desc": "Limpia toda la máscara actual"
},
"hideMask": {
"title": "Ocultar máscara",
"desc": "Oculta o muetre la máscara actual"
},
"showHideBoundingBox": {
"title": "Alternar caja contenedora",
"desc": "Muestra u oculta la caja contenedora"
},
"mergeVisible": {
"title": "Consolida capas visibles",
"desc": "Consolida todas las capas visibles en una sola"
},
"saveToGallery": {
"title": "Guardar en galería",
"desc": "Guardar la imagen actual del lienzo en la galería"
},
"copyToClipboard": {
"title": "Copiar al portapapeles",
"desc": "Copiar el lienzo actual al portapapeles"
},
"downloadImage": {
"title": "Descargar imagen",
"desc": "Descargar la imagen actual del lienzo"
},
"undoStroke": {
"title": "Deshar trazo",
"desc": "Desahacer el último trazo del pincel"
},
"redoStroke": {
"title": "Rehacer trazo",
"desc": "Rehacer el último trazo del pincel"
},
"resetView": {
"title": "Restablecer vista",
"desc": "Restablecer la vista del lienzo"
},
"previousStagingImage": {
"title": "Imagen anterior",
"desc": "Imagen anterior en el área de preparación"
},
"nextStagingImage": {
"title": "Imagen siguiente",
"desc": "Siguiente imagen en el área de preparación"
},
"acceptStagingImage": {
"title": "Aceptar imagen",
"desc": "Aceptar la imagen actual en el área de preparación"
},
"addNodes": {
"title": "Añadir Nodos",
"desc": "Abre el menú para añadir nodos"
},
"nodesHotkeys": "Teclas de acceso rápido a los nodos"
},
"modelManager": {
"modelManager": "Gestor de Modelos",
"model": "Modelo",
"modelAdded": "Modelo añadido",
"modelUpdated": "Modelo actualizado",
"modelEntryDeleted": "Endrada de Modelo eliminada",
"cannotUseSpaces": "No se pueden usar Spaces",
"addNew": "Añadir nuevo",
"addNewModel": "Añadir nuevo modelo",
"addManually": "Añadir manualmente",
"manual": "Manual",
"name": "Nombre",
"nameValidationMsg": "Introduce un nombre para tu modelo",
"description": "Descripción",
"descriptionValidationMsg": "Introduce una descripción para tu modelo",
"config": "Configurar",
"configValidationMsg": "Ruta del archivo de configuración del modelo.",
"modelLocation": "Ubicación del Modelo",
"modelLocationValidationMsg": "Ruta del archivo de modelo.",
"vaeLocation": "Ubicación VAE",
"vaeLocationValidationMsg": "Ruta del archivo VAE.",
"width": "Ancho",
"widthValidationMsg": "Ancho predeterminado de tu modelo.",
"height": "Alto",
"heightValidationMsg": "Alto predeterminado de tu modelo.",
"addModel": "Añadir Modelo",
"updateModel": "Actualizar Modelo",
"availableModels": "Modelos disponibles",
"search": "Búsqueda",
"load": "Cargar",
"active": "activo",
"notLoaded": "no cargado",
"cached": "en caché",
"checkpointFolder": "Directorio de Checkpoint",
"clearCheckpointFolder": "Limpiar directorio de checkpoint",
"findModels": "Buscar modelos",
"scanAgain": "Escanear de nuevo",
"modelsFound": "Modelos encontrados",
"selectFolder": "Selecciona un directorio",
"selected": "Seleccionado",
"selectAll": "Seleccionar todo",
"deselectAll": "Deseleccionar todo",
"showExisting": "Mostrar existentes",
"addSelected": "Añadir seleccionados",
"modelExists": "Modelo existente",
"selectAndAdd": "Selecciona de la lista un modelo para añadir",
"noModelsFound": "No se encontró ningún modelo",
"delete": "Eliminar",
"deleteModel": "Eliminar Modelo",
"deleteConfig": "Eliminar Configuración",
"deleteMsg1": "¿Estás seguro de que deseas eliminar este modelo de InvokeAI?",
"deleteMsg2": "Esto eliminará el modelo del disco si está en la carpeta raíz de InvokeAI. Si está utilizando una ubicación personalizada, el modelo NO se eliminará del disco.",
"safetensorModels": "SafeTensors",
"addDiffuserModel": "Añadir difusores",
"inpainting": "v1 Repintado",
"repoIDValidationMsg": "Repositorio en línea de tu modelo",
"checkpointModels": "Puntos de control",
"convertToDiffusersHelpText4": "Este proceso se realiza una sola vez. Puede tardar entre 30 y 60 segundos dependiendo de las especificaciones de tu ordenador.",
"diffusersModels": "Difusores",
"addCheckpointModel": "Agregar modelo de punto de control/Modelo Safetensor",
"vaeRepoID": "Identificador del repositorio de VAE",
"vaeRepoIDValidationMsg": "Repositorio en línea de tú VAE",
"formMessageDiffusersModelLocation": "Difusores Modelo Ubicación",
"formMessageDiffusersModelLocationDesc": "Por favor, introduzca al menos uno.",
"formMessageDiffusersVAELocation": "Ubicación VAE",
"formMessageDiffusersVAELocationDesc": "Si no se proporciona, InvokeAI buscará el archivo VAE dentro de la ubicación del modelo indicada anteriormente.",
"convert": "Convertir",
"convertToDiffusers": "Convertir en difusores",
"convertToDiffusersHelpText1": "Este modelo se convertirá al formato 🧨 Difusores.",
"convertToDiffusersHelpText2": "Este proceso sustituirá su entrada del Gestor de Modelos por la versión de Difusores del mismo modelo.",
"convertToDiffusersHelpText3": "Tu archivo del punto de control en el disco se eliminará si está en la carpeta raíz de InvokeAI. Si está en una ubicación personalizada, NO se eliminará.",
"convertToDiffusersHelpText5": "Por favor, asegúrate de tener suficiente espacio en el disco. Los modelos generalmente varían entre 2 GB y 7 GB de tamaño.",
"convertToDiffusersHelpText6": "¿Desea transformar este modelo?",
"convertToDiffusersSaveLocation": "Guardar ubicación",
"v1": "v1",
"statusConverting": "Adaptar",
"modelConverted": "Modelo adaptado",
"sameFolder": "La misma carpeta",
"invokeRoot": "Carpeta InvokeAI",
"custom": "Personalizado",
"customSaveLocation": "Ubicación personalizada para guardar",
"merge": "Fusión",
"modelsMerged": "Modelos fusionados",
"mergeModels": "Combinar modelos",
"modelOne": "Modelo 1",
"modelTwo": "Modelo 2",
"modelThree": "Modelo 3",
"mergedModelName": "Nombre del modelo combinado",
"alpha": "Alfa",
"interpolationType": "Tipo de interpolación",
"mergedModelSaveLocation": "Guardar ubicación",
"mergedModelCustomSaveLocation": "Ruta personalizada",
"invokeAIFolder": "Invocar carpeta de la inteligencia artificial",
"modelMergeHeaderHelp2": "Sólo se pueden fusionar difusores. Si desea fusionar un modelo de punto de control, conviértalo primero en difusores.",
"modelMergeAlphaHelp": "Alfa controla la fuerza de mezcla de los modelos. Los valores alfa más bajos reducen la influencia del segundo modelo.",
"modelMergeInterpAddDifferenceHelp": "En este modo, el Modelo 3 se sustrae primero del Modelo 2. La versión resultante se mezcla con el Modelo 1 con la tasa alfa establecida anteriormente. La versión resultante se mezcla con el Modelo 1 con la tasa alfa establecida anteriormente.",
"ignoreMismatch": "Ignorar discrepancias entre modelos seleccionados",
"modelMergeHeaderHelp1": "Puede unir hasta tres modelos diferentes para crear una combinación que se adapte a sus necesidades.",
"inverseSigmoid": "Sigmoideo inverso",
"weightedSum": "Modelo de suma ponderada",
"sigmoid": "Función sigmoide",
"allModels": "Todos los modelos",
"repo_id": "Identificador del repositorio",
"pathToCustomConfig": "Ruta a la configuración personalizada",
"customConfig": "Configuración personalizada",
"v2_base": "v2 (512px)",
"none": "ninguno",
"pickModelType": "Elige el tipo de modelo",
"v2_768": "v2 (768px)",
"addDifference": "Añadir una diferencia",
"scanForModels": "Buscar modelos",
"vae": "VAE",
"variant": "Variante",
"baseModel": "Modelo básico",
"modelConversionFailed": "Conversión al modelo fallida",
"selectModel": "Seleccionar un modelo",
"modelUpdateFailed": "Error al actualizar el modelo",
"modelsMergeFailed": "Fusión del modelo fallida",
"convertingModelBegin": "Convirtiendo el modelo. Por favor, espere.",
"modelDeleted": "Modelo eliminado",
"modelDeleteFailed": "Error al borrar el modelo",
"noCustomLocationProvided": "No se proporcionó una ubicación personalizada",
"importModels": "Importar los modelos",
"settings": "Ajustes",
"syncModels": "Sincronizar las plantillas",
"syncModelsDesc": "Si tus plantillas no están sincronizados con el backend, puedes actualizarlas usando esta opción. Esto suele ser útil en los casos en los que actualizas manualmente tu archivo models.yaml o añades plantillas a la carpeta raíz de InvokeAI después de que la aplicación haya arrancado.",
"modelsSynced": "Plantillas sincronizadas",
"modelSyncFailed": "La sincronización de la plantilla falló",
"loraModels": "LoRA",
"onnxModels": "Onnx",
"oliveModels": "Olives"
},
"parameters": {
"images": "Imágenes",
"steps": "Pasos",
"cfgScale": "Escala CFG",
"width": "Ancho",
"height": "Alto",
"seed": "Semilla",
"randomizeSeed": "Semilla aleatoria",
"shuffle": "Semilla aleatoria",
"noiseThreshold": "Umbral de Ruido",
"perlinNoise": "Ruido Perlin",
"variations": "Variaciones",
"variationAmount": "Cantidad de Variación",
"seedWeights": "Peso de las semillas",
"faceRestoration": "Restauración de Rostros",
"restoreFaces": "Restaurar rostros",
"type": "Tipo",
"strength": "Fuerza",
"upscaling": "Aumento de resolución",
"upscale": "Aumentar resolución",
"upscaleImage": "Aumentar la resolución de la imagen",
"scale": "Escala",
"otherOptions": "Otras opciones",
"seamlessTiling": "Mosaicos sin parches",
"hiresOptim": "Optimización de Alta Resolución",
"imageFit": "Ajuste tamaño de imagen inicial al tamaño objetivo",
"codeformerFidelity": "Fidelidad",
"scaleBeforeProcessing": "Redimensionar antes de procesar",
"scaledWidth": "Ancho escalado",
"scaledHeight": "Alto escalado",
"infillMethod": "Método de relleno",
"tileSize": "Tamaño del mosaico",
"boundingBoxHeader": "Caja contenedora",
"seamCorrectionHeader": "Corrección de parches",
"infillScalingHeader": "Remplazo y escalado",
"img2imgStrength": "Peso de Imagen a Imagen",
"toggleLoopback": "Alternar Retroalimentación",
"sendTo": "Enviar a",
"sendToImg2Img": "Enviar a Imagen a Imagen",
"sendToUnifiedCanvas": "Enviar a Lienzo Unificado",
"copyImageToLink": "Copiar imagen a enlace",
"downloadImage": "Descargar imagen",
"openInViewer": "Abrir en Visor",
"closeViewer": "Cerrar Visor",
"usePrompt": "Usar Entrada",
"useSeed": "Usar Semilla",
"useAll": "Usar Todo",
"useInitImg": "Usar Imagen Inicial",
"info": "Información",
"initialImage": "Imagen Inicial",
"showOptionsPanel": "Mostrar panel de opciones",
"symmetry": "Simetría",
"vSymmetryStep": "Paso de simetría V",
"hSymmetryStep": "Paso de simetría H",
"cancel": {
"immediate": "Cancelar inmediatamente",
"schedule": "Cancelar tras la iteración actual",
"isScheduled": "Cancelando",
"setType": "Tipo de cancelación"
},
"copyImage": "Copiar la imagen",
"general": "General",
"imageToImage": "Imagen a imagen",
"denoisingStrength": "Intensidad de la eliminación del ruido",
"hiresStrength": "Alta resistencia",
"showPreview": "Mostrar la vista previa",
"hidePreview": "Ocultar la vista previa",
"noiseSettings": "Ruido",
"seamlessXAxis": "Eje x",
"seamlessYAxis": "Eje y",
"scheduler": "Programador",
"boundingBoxWidth": "Anchura del recuadro",
"boundingBoxHeight": "Altura del recuadro",
"positivePromptPlaceholder": "Prompt Positivo",
"negativePromptPlaceholder": "Prompt Negativo",
"controlNetControlMode": "Modo de control",
"clipSkip": "Omitir el CLIP",
"aspectRatio": "Relación",
"maskAdjustmentsHeader": "Ajustes de la máscara",
"maskBlur": "Difuminar",
"maskBlurMethod": "Método del desenfoque",
"seamHighThreshold": "Alto",
"seamLowThreshold": "Bajo",
"coherencePassHeader": "Parámetros de la coherencia",
"compositingSettingsHeader": "Ajustes de la composición",
"coherenceSteps": "Pasos",
"coherenceStrength": "Fuerza",
"patchmatchDownScaleSize": "Reducir a escala",
"coherenceMode": "Modo"
},
"settings": {
"models": "Modelos",
"displayInProgress": "Mostrar las imágenes del progreso",
"saveSteps": "Guardar imágenes cada n pasos",
"confirmOnDelete": "Confirmar antes de eliminar",
"displayHelpIcons": "Mostrar iconos de ayuda",
"enableImageDebugging": "Habilitar depuración de imágenes",
"resetWebUI": "Restablecer interfaz web",
"resetWebUIDesc1": "Al restablecer la interfaz web, solo se restablece la caché local del navegador de sus imágenes y la configuración guardada. No se elimina ninguna imagen de su disco duro.",
"resetWebUIDesc2": "Si las imágenes no se muestran en la galería o algo más no funciona, intente restablecer antes de reportar un incidente en GitHub.",
"resetComplete": "Se ha restablecido la interfaz web.",
"useSlidersForAll": "Utilice controles deslizantes para todas las opciones",
"general": "General",
"consoleLogLevel": "Nivel del registro",
"shouldLogToConsole": "Registro de la consola",
"developer": "Desarrollador",
"antialiasProgressImages": "Imágenes del progreso de Antialias",
"showProgressInViewer": "Mostrar las imágenes del progreso en el visor",
"ui": "Interfaz del usuario",
"generation": "Generación",
"favoriteSchedulers": "Programadores favoritos",
"favoriteSchedulersPlaceholder": "No hay programadores favoritos",
"showAdvancedOptions": "Mostrar las opciones avanzadas",
"alternateCanvasLayout": "Diseño alternativo del lienzo",
"beta": "Beta",
"enableNodesEditor": "Activar el editor de nodos",
"experimental": "Experimental",
"autoChangeDimensions": "Actualiza W/H a los valores predeterminados del modelo cuando se modifica"
},
"toast": {
"tempFoldersEmptied": "Directorio temporal vaciado",
"uploadFailed": "Error al subir archivo",
"uploadFailedUnableToLoadDesc": "No se pudo cargar la imágen",
"downloadImageStarted": "Descargando imágen",
"imageCopied": "Imágen copiada",
"imageLinkCopied": "Enlace de imágen copiado",
"imageNotLoaded": "No se cargó la imágen",
"imageNotLoadedDesc": "No se pudo encontrar la imagen",
"imageSavedToGallery": "Imágen guardada en la galería",
"canvasMerged": "Lienzo consolidado",
"sentToImageToImage": "Enviar hacia Imagen a Imagen",
"sentToUnifiedCanvas": "Enviar hacia Lienzo Consolidado",
"parametersSet": "Parámetros establecidos",
"parametersNotSet": "Parámetros no establecidos",
"parametersNotSetDesc": "No se encontraron metadatos para esta imágen.",
"parametersFailed": "Error cargando parámetros",
"parametersFailedDesc": "No fue posible cargar la imagen inicial.",
"seedSet": "Semilla establecida",
"seedNotSet": "Semilla no establecida",
"seedNotSetDesc": "No se encontró una semilla para esta imágen.",
"promptSet": "Entrada establecida",
"promptNotSet": "Entrada no establecida",
"promptNotSetDesc": "No se encontró una entrada para esta imágen.",
"upscalingFailed": "Error al aumentar tamaño de imagn",
"faceRestoreFailed": "Restauración de rostro fallida",
"metadataLoadFailed": "Error al cargar metadatos",
"initialImageSet": "Imágen inicial establecida",
"initialImageNotSet": "Imagen inicial no establecida",
"initialImageNotSetDesc": "Error al establecer la imágen inicial",
"serverError": "Error en el servidor",
"disconnected": "Desconectado del servidor",
"canceled": "Procesando la cancelación",
"connected": "Conectado al servidor",
"problemCopyingImageLink": "No se puede copiar el enlace de la imagen",
"uploadFailedInvalidUploadDesc": "Debe ser una sola imagen PNG o JPEG",
"parameterSet": "Conjunto de parámetros",
"parameterNotSet": "Parámetro no configurado",
"nodesSaved": "Nodos guardados",
"nodesLoadedFailed": "Error al cargar los nodos",
"nodesLoaded": "Nodos cargados",
"nodesCleared": "Nodos borrados",
"problemCopyingImage": "No se puede copiar la imagen",
"nodesNotValidJSON": "JSON no válido",
"nodesCorruptedGraph": "No se puede cargar. El gráfico parece estar dañado.",
"nodesUnrecognizedTypes": "No se puede cargar. El gráfico tiene tipos no reconocidos",
"nodesNotValidGraph": "Gráfico del nodo InvokeAI no válido",
"nodesBrokenConnections": "No se puede cargar. Algunas conexiones están rotas."
},
"tooltip": {
"feature": {
"prompt": "Este campo tomará todo el texto de entrada, incluidos tanto los términos de contenido como los estilísticos. Si bien se pueden incluir pesos en la solicitud, los comandos/parámetros estándar de línea de comandos no funcionarán.",
"gallery": "Conforme se generan nuevas invocaciones, los archivos del directorio de salida se mostrarán aquí. Las generaciones tienen opciones adicionales para configurar nuevas generaciones.",
"other": "Estas opciones habilitarán modos de procesamiento alternativos para Invoke. 'Seamless mosaico' creará patrones repetitivos en la salida. 'Alta resolución' es la generación en dos pasos con img2img: use esta configuración cuando desee una imagen más grande y más coherente sin artefactos. tomar más tiempo de lo habitual txt2img.",
"seed": "Los valores de semilla proporcionan un conjunto inicial de ruido que guían el proceso de eliminación de ruido y se pueden aleatorizar o rellenar con una semilla de una invocación anterior. La función Umbral se puede usar para mitigar resultados indeseables a valores CFG más altos (intente entre 0-10), y Perlin se puede usar para agregar ruido Perlin al proceso de eliminación de ruido. Ambos sirven para agregar variación a sus salidas.",
"variations": "Pruebe una variación con una cantidad entre 0 y 1 para cambiar la imagen de salida para la semilla establecida. Se encuentran variaciones interesantes en la semilla entre 0.1 y 0.3.",
"upscale": "Usando ESRGAN, puede aumentar la resolución de salida sin requerir un ancho/alto más alto en la generación inicial.",
"faceCorrection": "Usando GFPGAN o Codeformer, la corrección de rostros intentará identificar rostros en las salidas y corregir cualquier defecto/anormalidad. Los valores de fuerza más altos aplicarán una presión correctiva más fuerte en las salidas, lo que resultará en rostros más atractivos. Con Codeformer, una mayor fidelidad intentará preservar la imagen original, a expensas de la fuerza de corrección de rostros.",
"imageToImage": "Imagen a Imagen permite cargar una imagen inicial, que InvokeAI usará para guiar el proceso de generación, junto con una solicitud. Un valor más bajo para esta configuración se parecerá más a la imagen original. Se aceptan valores entre 0-1, y se recomienda un rango de .25-.75",
"boundingBox": "La caja delimitadora es análoga a las configuraciones de Ancho y Alto para Texto a Imagen o Imagen a Imagen. Solo se procesará el área en la caja.",
"seamCorrection": "Controla el manejo de parches visibles que pueden ocurrir cuando se pega una imagen generada de nuevo en el lienzo.",
"infillAndScaling": "Administra los métodos de relleno (utilizados en áreas enmascaradas o borradas del lienzo) y la escala (útil para tamaños de caja delimitadora pequeños)."
}
},
"unifiedCanvas": {
"layer": "Capa",
"base": "Base",
"mask": "Máscara",
"maskingOptions": "Opciones de máscara",
"enableMask": "Habilitar Máscara",
"preserveMaskedArea": "Preservar área enmascarada",
"clearMask": "Limpiar máscara",
"brush": "Pincel",
"eraser": "Borrador",
"fillBoundingBox": "Rellenar Caja Contenedora",
"eraseBoundingBox": "Eliminar Caja Contenedora",
"colorPicker": "Selector de color",
"brushOptions": "Opciones de pincel",
"brushSize": "Tamaño",
"move": "Mover",
"resetView": "Restablecer vista",
"mergeVisible": "Consolidar vista",
"saveToGallery": "Guardar en galería",
"copyToClipboard": "Copiar al portapapeles",
"downloadAsImage": "Descargar como imagen",
"undo": "Deshacer",
"redo": "Rehacer",
"clearCanvas": "Limpiar lienzo",
"canvasSettings": "Ajustes de lienzo",
"showIntermediates": "Mostrar intermedios",
"showGrid": "Mostrar cuadrícula",
"snapToGrid": "Ajustar a cuadrícula",
"darkenOutsideSelection": "Oscurecer fuera de la selección",
"autoSaveToGallery": "Guardar automáticamente en galería",
"saveBoxRegionOnly": "Guardar solo región dentro de la caja",
"limitStrokesToBox": "Limitar trazos a la caja",
"showCanvasDebugInfo": "Mostrar la información adicional del lienzo",
"clearCanvasHistory": "Limpiar historial de lienzo",
"clearHistory": "Limpiar historial",
"clearCanvasHistoryMessage": "Limpiar el historial de lienzo también restablece completamente el lienzo unificado. Esto incluye todo el historial de deshacer/rehacer, las imágenes en el área de preparación y la capa base del lienzo.",
"clearCanvasHistoryConfirm": "¿Está seguro de que desea limpiar el historial del lienzo?",
"emptyTempImageFolder": "Vaciar directorio de imágenes temporales",
"emptyFolder": "Vaciar directorio",
"emptyTempImagesFolderMessage": "Vaciar el directorio de imágenes temporales también restablece completamente el lienzo unificado. Esto incluye todo el historial de deshacer/rehacer, las imágenes en el área de preparación y la capa base del lienzo.",
"emptyTempImagesFolderConfirm": "¿Está seguro de que desea vaciar el directorio temporal?",
"activeLayer": "Capa activa",
"canvasScale": "Escala de lienzo",
"boundingBox": "Caja contenedora",
"scaledBoundingBox": "Caja contenedora escalada",
"boundingBoxPosition": "Posición de caja contenedora",
"canvasDimensions": "Dimensiones de lienzo",
"canvasPosition": "Posición de lienzo",
"cursorPosition": "Posición del cursor",
"previous": "Anterior",
"next": "Siguiente",
"accept": "Aceptar",
"showHide": "Mostrar/Ocultar",
"discardAll": "Descartar todo",
"betaClear": "Limpiar",
"betaDarkenOutside": "Oscurecer fuera",
"betaLimitToBox": "Limitar a caja",
"betaPreserveMasked": "Preservar área enmascarada",
"antialiasing": "Suavizado"
},
"accessibility": {
"invokeProgressBar": "Activar la barra de progreso",
"modelSelect": "Seleccionar modelo",
"reset": "Reiniciar",
"uploadImage": "Cargar imagen",
"previousImage": "Imagen anterior",
"nextImage": "Siguiente imagen",
"useThisParameter": "Utiliza este parámetro",
"copyMetadataJson": "Copiar los metadatos JSON",
"exitViewer": "Salir del visor",
"zoomIn": "Acercar",
"zoomOut": "Alejar",
"rotateCounterClockwise": "Girar en sentido antihorario",
"rotateClockwise": "Girar en sentido horario",
"flipHorizontally": "Voltear horizontalmente",
"flipVertically": "Voltear verticalmente",
"modifyConfig": "Modificar la configuración",
"toggleAutoscroll": "Activar el autodesplazamiento",
"toggleLogViewer": "Alternar el visor de registros",
"showOptionsPanel": "Mostrar el panel lateral",
"menu": "Menú"
},
"ui": {
"hideProgressImages": "Ocultar el progreso de la imagen",
"showProgressImages": "Mostrar el progreso de la imagen",
"swapSizes": "Cambiar los tamaños",
"lockRatio": "Proporción del bloqueo"
},
"nodes": {
"showGraphNodes": "Mostrar la superposición de los gráficos",
"zoomInNodes": "Acercar",
"hideMinimapnodes": "Ocultar el minimapa",
"fitViewportNodes": "Ajustar la vista",
"zoomOutNodes": "Alejar",
"hideGraphNodes": "Ocultar la superposición de los gráficos",
"hideLegendNodes": "Ocultar la leyenda del tipo de campo",
"showLegendNodes": "Mostrar la leyenda del tipo de campo",
"showMinimapnodes": "Mostrar el minimapa",
"reloadNodeTemplates": "Recargar las plantillas de nodos",
"loadWorkflow": "Cargar el flujo de trabajo",
"resetWorkflow": "Reiniciar e flujo de trabajo",
"resetWorkflowDesc": "¿Está seguro de que deseas restablecer este flujo de trabajo?",
"resetWorkflowDesc2": "Al reiniciar el flujo de trabajo se borrarán todos los nodos, aristas y detalles del flujo de trabajo.",
"downloadWorkflow": "Descargar el flujo de trabajo en un archivo JSON"
}
}

View File

@ -1,114 +0,0 @@
{
"accessibility": {
"reset": "Resetoi",
"useThisParameter": "Käytä tätä parametria",
"modelSelect": "Mallin Valinta",
"exitViewer": "Poistu katselimesta",
"uploadImage": "Lataa kuva",
"copyMetadataJson": "Kopioi metadata JSON:iin",
"invokeProgressBar": "Invoken edistymispalkki",
"nextImage": "Seuraava kuva",
"previousImage": "Edellinen kuva",
"zoomIn": "Lähennä",
"flipHorizontally": "Käännä vaakasuoraan",
"zoomOut": "Loitonna",
"rotateCounterClockwise": "Kierrä vastapäivään",
"rotateClockwise": "Kierrä myötäpäivään",
"flipVertically": "Käännä pystysuoraan",
"modifyConfig": "Muokkaa konfiguraatiota",
"toggleAutoscroll": "Kytke automaattinen vieritys",
"toggleLogViewer": "Kytke lokin katselutila",
"showOptionsPanel": "Näytä asetukset"
},
"common": {
"postProcessDesc2": "Erillinen käyttöliittymä tullaan julkaisemaan helpottaaksemme työnkulkua jälkikäsittelyssä.",
"training": "Kouluta",
"statusLoadingModel": "Ladataan mallia",
"statusModelChanged": "Malli vaihdettu",
"statusConvertingModel": "Muunnetaan mallia",
"statusModelConverted": "Malli muunnettu",
"langFrench": "Ranska",
"langItalian": "Italia",
"languagePickerLabel": "Kielen valinta",
"hotkeysLabel": "Pikanäppäimet",
"reportBugLabel": "Raportoi Bugista",
"langPolish": "Puola",
"langDutch": "Hollanti",
"settingsLabel": "Asetukset",
"githubLabel": "Github",
"langGerman": "Saksa",
"langPortuguese": "Portugali",
"discordLabel": "Discord",
"langEnglish": "Englanti",
"langRussian": "Venäjä",
"langUkranian": "Ukraina",
"langSpanish": "Espanja",
"upload": "Lataa",
"statusMergedModels": "Mallit yhdistelty",
"img2img": "Kuva kuvaksi",
"nodes": "Solmut",
"nodesDesc": "Solmupohjainen järjestelmä kuvien generoimiseen on parhaillaan kehitteillä. Pysy kuulolla päivityksistä tähän uskomattomaan ominaisuuteen liittyen.",
"postProcessDesc1": "Invoke AI tarjoaa monenlaisia jälkikäsittelyominaisuukisa. Kuvan laadun skaalaus sekä kasvojen korjaus ovat jo saatavilla WebUI:ssä. Voit ottaa ne käyttöön lisäasetusten valikosta teksti kuvaksi sekä kuva kuvaksi -välilehdiltä. Voit myös suoraan prosessoida kuvia käyttämällä kuvan toimintapainikkeita nykyisen kuvan yläpuolella tai tarkastelussa.",
"postprocessing": "Jälkikäsitellään",
"postProcessing": "Jälkikäsitellään",
"cancel": "Peruuta",
"close": "Sulje",
"accept": "Hyväksy",
"statusConnected": "Yhdistetty",
"statusError": "Virhe",
"statusProcessingComplete": "Prosessointi valmis",
"load": "Lataa",
"back": "Takaisin",
"statusGeneratingTextToImage": "Generoidaan tekstiä kuvaksi",
"trainingDesc2": "InvokeAI tukee jo mukautettujen upotusten kouluttamista tekstin inversiolla käyttäen pääskriptiä.",
"statusDisconnected": "Yhteys katkaistu",
"statusPreparing": "Valmistellaan",
"statusIterationComplete": "Iteraatio valmis",
"statusMergingModels": "Yhdistellään malleja",
"statusProcessingCanceled": "Valmistelu peruutettu",
"statusSavingImage": "Tallennetaan kuvaa",
"statusGeneratingImageToImage": "Generoidaan kuvaa kuvaksi",
"statusRestoringFacesGFPGAN": "Korjataan kasvoja (GFPGAN)",
"statusRestoringFacesCodeFormer": "Korjataan kasvoja (CodeFormer)",
"statusGeneratingInpainting": "Generoidaan sisällemaalausta",
"statusGeneratingOutpainting": "Generoidaan ulosmaalausta",
"statusRestoringFaces": "Korjataan kasvoja",
"loadingInvokeAI": "Ladataan Invoke AI:ta",
"loading": "Ladataan",
"statusGenerating": "Generoidaan",
"txt2img": "Teksti kuvaksi",
"trainingDesc1": "Erillinen työnkulku omien upotusten ja tarkastuspisteiden kouluttamiseksi käyttäen tekstin inversiota ja dreamboothia selaimen käyttöliittymässä.",
"postProcessDesc3": "Invoke AI:n komentorivi tarjoaa paljon muita ominaisuuksia, kuten esimerkiksi Embiggenin.",
"unifiedCanvas": "Yhdistetty kanvas",
"statusGenerationComplete": "Generointi valmis"
},
"gallery": {
"uploads": "Lataukset",
"showUploads": "Näytä lataukset",
"galleryImageResetSize": "Resetoi koko",
"maintainAspectRatio": "Säilytä kuvasuhde",
"galleryImageSize": "Kuvan koko",
"showGenerations": "Näytä generaatiot",
"singleColumnLayout": "Yhden sarakkeen asettelu",
"generations": "Generoinnit",
"gallerySettings": "Gallerian asetukset",
"autoSwitchNewImages": "Vaihda uusiin kuviin automaattisesti",
"allImagesLoaded": "Kaikki kuvat ladattu",
"noImagesInGallery": "Ei kuvia galleriassa",
"loadMore": "Lataa lisää"
},
"hotkeys": {
"keyboardShortcuts": "näppäimistön pikavalinnat",
"appHotkeys": "Sovelluksen pikanäppäimet",
"generalHotkeys": "Yleiset pikanäppäimet",
"galleryHotkeys": "Gallerian pikanäppäimet",
"unifiedCanvasHotkeys": "Yhdistetyn kanvaan pikanäppäimet",
"cancel": {
"desc": "Peruuta kuvan luominen",
"title": "Peruuta"
},
"invoke": {
"desc": "Luo kuva"
}
}
}

View File

@ -1,531 +0,0 @@
{
"common": {
"hotkeysLabel": "Raccourcis clavier",
"languagePickerLabel": "Sélecteur de langue",
"reportBugLabel": "Signaler un bug",
"settingsLabel": "Paramètres",
"img2img": "Image en image",
"unifiedCanvas": "Canvas unifié",
"nodes": "Nœuds",
"langFrench": "Français",
"nodesDesc": "Un système basé sur les nœuds pour la génération d'images est actuellement en développement. Restez à l'écoute pour des mises à jour à ce sujet.",
"postProcessing": "Post-traitement",
"postProcessDesc1": "Invoke AI offre une grande variété de fonctionnalités de post-traitement. Le redimensionnement d'images et la restauration de visages sont déjà disponibles dans la WebUI. Vous pouvez y accéder à partir du menu 'Options avancées' des onglets 'Texte vers image' et 'Image vers image'. Vous pouvez également traiter les images directement en utilisant les boutons d'action d'image au-dessus de l'affichage d'image actuel ou dans le visualiseur.",
"postProcessDesc2": "Une interface dédiée sera bientôt disponible pour faciliter les workflows de post-traitement plus avancés.",
"postProcessDesc3": "L'interface en ligne de commande d'Invoke AI offre diverses autres fonctionnalités, notamment Embiggen.",
"training": "Formation",
"trainingDesc1": "Un workflow dédié pour former vos propres embeddings et checkpoints en utilisant Textual Inversion et Dreambooth depuis l'interface web.",
"trainingDesc2": "InvokeAI prend déjà en charge la formation d'embeddings personnalisés en utilisant Textual Inversion en utilisant le script principal.",
"upload": "Télécharger",
"close": "Fermer",
"load": "Charger",
"back": "Retour",
"statusConnected": "En ligne",
"statusDisconnected": "Hors ligne",
"statusError": "Erreur",
"statusPreparing": "Préparation",
"statusProcessingCanceled": "Traitement annulé",
"statusProcessingComplete": "Traitement terminé",
"statusGenerating": "Génération",
"statusGeneratingTextToImage": "Génération Texte vers Image",
"statusGeneratingImageToImage": "Génération Image vers Image",
"statusGeneratingInpainting": "Génération de réparation",
"statusGeneratingOutpainting": "Génération de complétion",
"statusGenerationComplete": "Génération terminée",
"statusIterationComplete": "Itération terminée",
"statusSavingImage": "Sauvegarde de l'image",
"statusRestoringFaces": "Restauration des visages",
"statusRestoringFacesGFPGAN": "Restauration des visages (GFPGAN)",
"statusRestoringFacesCodeFormer": "Restauration des visages (CodeFormer)",
"statusUpscaling": "Mise à échelle",
"statusUpscalingESRGAN": "Mise à échelle (ESRGAN)",
"statusLoadingModel": "Chargement du modèle",
"statusModelChanged": "Modèle changé",
"discordLabel": "Discord",
"githubLabel": "Github",
"accept": "Accepter",
"statusMergingModels": "Mélange des modèles",
"loadingInvokeAI": "Chargement de Invoke AI",
"cancel": "Annuler",
"langEnglish": "Anglais",
"statusConvertingModel": "Conversion du modèle",
"statusModelConverted": "Modèle converti",
"loading": "Chargement",
"statusMergedModels": "Modèles mélangés",
"txt2img": "Texte vers image",
"postprocessing": "Post-Traitement"
},
"gallery": {
"generations": "Générations",
"showGenerations": "Afficher les générations",
"uploads": "Téléchargements",
"showUploads": "Afficher les téléchargements",
"galleryImageSize": "Taille de l'image",
"galleryImageResetSize": "Réinitialiser la taille",
"gallerySettings": "Paramètres de la galerie",
"maintainAspectRatio": "Maintenir le rapport d'aspect",
"autoSwitchNewImages": "Basculer automatiquement vers de nouvelles images",
"singleColumnLayout": "Mise en page en colonne unique",
"allImagesLoaded": "Toutes les images chargées",
"loadMore": "Charger plus",
"noImagesInGallery": "Aucune image dans la galerie"
},
"hotkeys": {
"keyboardShortcuts": "Raccourcis clavier",
"appHotkeys": "Raccourcis de l'application",
"generalHotkeys": "Raccourcis généraux",
"galleryHotkeys": "Raccourcis de la galerie",
"unifiedCanvasHotkeys": "Raccourcis du canvas unifié",
"invoke": {
"title": "Invoquer",
"desc": "Générer une image"
},
"cancel": {
"title": "Annuler",
"desc": "Annuler la génération d'image"
},
"focusPrompt": {
"title": "Prompt de focus",
"desc": "Mettre en focus la zone de saisie de la commande"
},
"toggleOptions": {
"title": "Affichage des options",
"desc": "Afficher et masquer le panneau d'options"
},
"pinOptions": {
"title": "Epinglage des options",
"desc": "Epingler le panneau d'options"
},
"toggleViewer": {
"title": "Affichage de la visionneuse",
"desc": "Afficher et masquer la visionneuse d'image"
},
"toggleGallery": {
"title": "Affichage de la galerie",
"desc": "Afficher et masquer la galerie"
},
"maximizeWorkSpace": {
"title": "Maximiser la zone de travail",
"desc": "Fermer les panneaux et maximiser la zone de travail"
},
"changeTabs": {
"title": "Changer d'onglet",
"desc": "Passer à un autre espace de travail"
},
"consoleToggle": {
"title": "Affichage de la console",
"desc": "Afficher et masquer la console"
},
"setPrompt": {
"title": "Définir le prompt",
"desc": "Utiliser le prompt de l'image actuelle"
},
"setSeed": {
"title": "Définir la graine",
"desc": "Utiliser la graine de l'image actuelle"
},
"setParameters": {
"title": "Définir les paramètres",
"desc": "Utiliser tous les paramètres de l'image actuelle"
},
"restoreFaces": {
"title": "Restaurer les visages",
"desc": "Restaurer l'image actuelle"
},
"upscale": {
"title": "Agrandir",
"desc": "Agrandir l'image actuelle"
},
"showInfo": {
"title": "Afficher les informations",
"desc": "Afficher les informations de métadonnées de l'image actuelle"
},
"sendToImageToImage": {
"title": "Envoyer à l'image à l'image",
"desc": "Envoyer l'image actuelle à l'image à l'image"
},
"deleteImage": {
"title": "Supprimer l'image",
"desc": "Supprimer l'image actuelle"
},
"closePanels": {
"title": "Fermer les panneaux",
"desc": "Fermer les panneaux ouverts"
},
"previousImage": {
"title": "Image précédente",
"desc": "Afficher l'image précédente dans la galerie"
},
"nextImage": {
"title": "Image suivante",
"desc": "Afficher l'image suivante dans la galerie"
},
"toggleGalleryPin": {
"title": "Activer/désactiver l'épinglage de la galerie",
"desc": "Épingle ou dépingle la galerie à l'interface"
},
"increaseGalleryThumbSize": {
"title": "Augmenter la taille des miniatures de la galerie",
"desc": "Augmente la taille des miniatures de la galerie"
},
"decreaseGalleryThumbSize": {
"title": "Diminuer la taille des miniatures de la galerie",
"desc": "Diminue la taille des miniatures de la galerie"
},
"selectBrush": {
"title": "Sélectionner un pinceau",
"desc": "Sélectionne le pinceau de la toile"
},
"selectEraser": {
"title": "Sélectionner un gomme",
"desc": "Sélectionne la gomme de la toile"
},
"decreaseBrushSize": {
"title": "Diminuer la taille du pinceau",
"desc": "Diminue la taille du pinceau/gomme de la toile"
},
"increaseBrushSize": {
"title": "Augmenter la taille du pinceau",
"desc": "Augmente la taille du pinceau/gomme de la toile"
},
"decreaseBrushOpacity": {
"title": "Diminuer l'opacité du pinceau",
"desc": "Diminue l'opacité du pinceau de la toile"
},
"increaseBrushOpacity": {
"title": "Augmenter l'opacité du pinceau",
"desc": "Augmente l'opacité du pinceau de la toile"
},
"moveTool": {
"title": "Outil de déplacement",
"desc": "Permet la navigation sur la toile"
},
"fillBoundingBox": {
"title": "Remplir la boîte englobante",
"desc": "Remplit la boîte englobante avec la couleur du pinceau"
},
"eraseBoundingBox": {
"title": "Effacer la boîte englobante",
"desc": "Efface la zone de la boîte englobante"
},
"colorPicker": {
"title": "Sélectionnez le sélecteur de couleur",
"desc": "Sélectionne le sélecteur de couleur de la toile"
},
"toggleSnap": {
"title": "Basculer Snap",
"desc": "Basculer Snap à la grille"
},
"quickToggleMove": {
"title": "Basculer rapidement déplacer",
"desc": "Basculer temporairement le mode Déplacer"
},
"toggleLayer": {
"title": "Basculer la couche",
"desc": "Basculer la sélection de la couche masque/base"
},
"clearMask": {
"title": "Effacer le masque",
"desc": "Effacer entièrement le masque"
},
"hideMask": {
"title": "Masquer le masque",
"desc": "Masquer et démasquer le masque"
},
"showHideBoundingBox": {
"title": "Afficher/Masquer la boîte englobante",
"desc": "Basculer la visibilité de la boîte englobante"
},
"mergeVisible": {
"title": "Fusionner visible",
"desc": "Fusionner toutes les couches visibles de la toile"
},
"saveToGallery": {
"title": "Enregistrer dans la galerie",
"desc": "Enregistrer la toile actuelle dans la galerie"
},
"copyToClipboard": {
"title": "Copier dans le presse-papiers",
"desc": "Copier la toile actuelle dans le presse-papiers"
},
"downloadImage": {
"title": "Télécharger l'image",
"desc": "Télécharger la toile actuelle"
},
"undoStroke": {
"title": "Annuler le trait",
"desc": "Annuler un coup de pinceau"
},
"redoStroke": {
"title": "Rétablir le trait",
"desc": "Rétablir un coup de pinceau"
},
"resetView": {
"title": "Réinitialiser la vue",
"desc": "Réinitialiser la vue de la toile"
},
"previousStagingImage": {
"title": "Image de mise en scène précédente",
"desc": "Image précédente de la zone de mise en scène"
},
"nextStagingImage": {
"title": "Image de mise en scène suivante",
"desc": "Image suivante de la zone de mise en scène"
},
"acceptStagingImage": {
"title": "Accepter l'image de mise en scène",
"desc": "Accepter l'image actuelle de la zone de mise en scène"
}
},
"modelManager": {
"modelManager": "Gestionnaire de modèle",
"model": "Modèle",
"allModels": "Tous les modèles",
"checkpointModels": "Points de contrôle",
"diffusersModels": "Diffuseurs",
"safetensorModels": "SafeTensors",
"modelAdded": "Modèle ajouté",
"modelUpdated": "Modèle mis à jour",
"modelEntryDeleted": "Entrée de modèle supprimée",
"cannotUseSpaces": "Ne peut pas utiliser d'espaces",
"addNew": "Ajouter un nouveau",
"addNewModel": "Ajouter un nouveau modèle",
"addCheckpointModel": "Ajouter un modèle de point de contrôle / SafeTensor",
"addDiffuserModel": "Ajouter des diffuseurs",
"addManually": "Ajouter manuellement",
"manual": "Manuel",
"name": "Nom",
"nameValidationMsg": "Entrez un nom pour votre modèle",
"description": "Description",
"descriptionValidationMsg": "Ajoutez une description pour votre modèle",
"config": "Config",
"configValidationMsg": "Chemin vers le fichier de configuration de votre modèle.",
"modelLocation": "Emplacement du modèle",
"modelLocationValidationMsg": "Chemin vers où votre modèle est situé localement.",
"repo_id": "ID de dépôt",
"repoIDValidationMsg": "Dépôt en ligne de votre modèle",
"vaeLocation": "Emplacement VAE",
"vaeLocationValidationMsg": "Chemin vers où votre VAE est situé.",
"vaeRepoID": "ID de dépôt VAE",
"vaeRepoIDValidationMsg": "Dépôt en ligne de votre VAE",
"width": "Largeur",
"widthValidationMsg": "Largeur par défaut de votre modèle.",
"height": "Hauteur",
"heightValidationMsg": "Hauteur par défaut de votre modèle.",
"addModel": "Ajouter un modèle",
"updateModel": "Mettre à jour le modèle",
"availableModels": "Modèles disponibles",
"search": "Rechercher",
"load": "Charger",
"active": "actif",
"notLoaded": "non chargé",
"cached": "en cache",
"checkpointFolder": "Dossier de point de contrôle",
"clearCheckpointFolder": "Effacer le dossier de point de contrôle",
"findModels": "Trouver des modèles",
"scanAgain": "Scanner à nouveau",
"modelsFound": "Modèles trouvés",
"selectFolder": "Sélectionner un dossier",
"selected": "Sélectionné",
"selectAll": "Tout sélectionner",
"deselectAll": "Tout désélectionner",
"showExisting": "Afficher existant",
"addSelected": "Ajouter sélectionné",
"modelExists": "Modèle existant",
"selectAndAdd": "Sélectionner et ajouter les modèles listés ci-dessous",
"noModelsFound": "Aucun modèle trouvé",
"delete": "Supprimer",
"deleteModel": "Supprimer le modèle",
"deleteConfig": "Supprimer la configuration",
"deleteMsg1": "Voulez-vous vraiment supprimer cette entrée de modèle dans InvokeAI ?",
"deleteMsg2": "Cela n'effacera pas le fichier de point de contrôle du modèle de votre disque. Vous pouvez les réajouter si vous le souhaitez.",
"formMessageDiffusersModelLocation": "Emplacement du modèle de diffuseurs",
"formMessageDiffusersModelLocationDesc": "Veuillez en entrer au moins un.",
"formMessageDiffusersVAELocation": "Emplacement VAE",
"formMessageDiffusersVAELocationDesc": "Si non fourni, InvokeAI recherchera le fichier VAE à l'emplacement du modèle donné ci-dessus."
},
"parameters": {
"images": "Images",
"steps": "Etapes",
"cfgScale": "CFG Echelle",
"width": "Largeur",
"height": "Hauteur",
"seed": "Graine",
"randomizeSeed": "Graine Aléatoire",
"shuffle": "Mélanger",
"noiseThreshold": "Seuil de Bruit",
"perlinNoise": "Bruit de Perlin",
"variations": "Variations",
"variationAmount": "Montant de Variation",
"seedWeights": "Poids des Graines",
"faceRestoration": "Restauration de Visage",
"restoreFaces": "Restaurer les Visages",
"type": "Type",
"strength": "Force",
"upscaling": "Agrandissement",
"upscale": "Agrandir",
"upscaleImage": "Image en Agrandissement",
"scale": "Echelle",
"otherOptions": "Autres Options",
"seamlessTiling": "Carreau Sans Joint",
"hiresOptim": "Optimisation Haute Résolution",
"imageFit": "Ajuster Image Initiale à la Taille de Sortie",
"codeformerFidelity": "Fidélité",
"scaleBeforeProcessing": "Echelle Avant Traitement",
"scaledWidth": "Larg. Échelle",
"scaledHeight": "Haut. Échelle",
"infillMethod": "Méthode de Remplissage",
"tileSize": "Taille des Tuiles",
"boundingBoxHeader": "Boîte Englobante",
"seamCorrectionHeader": "Correction des Joints",
"infillScalingHeader": "Remplissage et Mise à l'Échelle",
"img2imgStrength": "Force de l'Image à l'Image",
"toggleLoopback": "Activer/Désactiver la Boucle",
"sendTo": "Envoyer à",
"sendToImg2Img": "Envoyer à Image à Image",
"sendToUnifiedCanvas": "Envoyer au Canvas Unifié",
"copyImage": "Copier Image",
"copyImageToLink": "Copier l'Image en Lien",
"downloadImage": "Télécharger Image",
"openInViewer": "Ouvrir dans le visualiseur",
"closeViewer": "Fermer le visualiseur",
"usePrompt": "Utiliser la suggestion",
"useSeed": "Utiliser la graine",
"useAll": "Tout utiliser",
"useInitImg": "Utiliser l'image initiale",
"info": "Info",
"initialImage": "Image initiale",
"showOptionsPanel": "Afficher le panneau d'options"
},
"settings": {
"models": "Modèles",
"displayInProgress": "Afficher les images en cours",
"saveSteps": "Enregistrer les images tous les n étapes",
"confirmOnDelete": "Confirmer la suppression",
"displayHelpIcons": "Afficher les icônes d'aide",
"enableImageDebugging": "Activer le débogage d'image",
"resetWebUI": "Réinitialiser l'interface Web",
"resetWebUIDesc1": "Réinitialiser l'interface Web ne réinitialise que le cache local du navigateur de vos images et de vos paramètres enregistrés. Cela n'efface pas les images du disque.",
"resetWebUIDesc2": "Si les images ne s'affichent pas dans la galerie ou si quelque chose d'autre ne fonctionne pas, veuillez essayer de réinitialiser avant de soumettre une demande sur GitHub.",
"resetComplete": "L'interface Web a été réinitialisée. Rafraîchissez la page pour recharger."
},
"toast": {
"tempFoldersEmptied": "Dossiers temporaires vidés",
"uploadFailed": "Téléchargement échoué",
"uploadFailedUnableToLoadDesc": "Impossible de charger le fichier",
"downloadImageStarted": "Téléchargement de l'image démarré",
"imageCopied": "Image copiée",
"imageLinkCopied": "Lien d'image copié",
"imageNotLoaded": "Aucune image chargée",
"imageNotLoadedDesc": "Aucune image trouvée pour envoyer à module d'image",
"imageSavedToGallery": "Image enregistrée dans la galerie",
"canvasMerged": "Canvas fusionné",
"sentToImageToImage": "Envoyé à Image à Image",
"sentToUnifiedCanvas": "Envoyé à Canvas unifié",
"parametersSet": "Paramètres définis",
"parametersNotSet": "Paramètres non définis",
"parametersNotSetDesc": "Aucune métadonnée trouvée pour cette image.",
"parametersFailed": "Problème de chargement des paramètres",
"parametersFailedDesc": "Impossible de charger l'image d'initiation.",
"seedSet": "Graine définie",
"seedNotSet": "Graine non définie",
"seedNotSetDesc": "Impossible de trouver la graine pour cette image.",
"promptSet": "Invite définie",
"promptNotSet": "Invite non définie",
"promptNotSetDesc": "Impossible de trouver l'invite pour cette image.",
"upscalingFailed": "Échec de la mise à l'échelle",
"faceRestoreFailed": "Échec de la restauration du visage",
"metadataLoadFailed": "Échec du chargement des métadonnées",
"initialImageSet": "Image initiale définie",
"initialImageNotSet": "Image initiale non définie",
"initialImageNotSetDesc": "Impossible de charger l'image initiale"
},
"tooltip": {
"feature": {
"prompt": "Ceci est le champ prompt. Le prompt inclut des objets de génération et des termes stylistiques. Vous pouvez également ajouter un poids (importance du jeton) dans le prompt, mais les commandes CLI et les paramètres ne fonctionneront pas.",
"gallery": "La galerie affiche les générations à partir du dossier de sortie à mesure qu'elles sont créées. Les paramètres sont stockés dans des fichiers et accessibles via le menu contextuel.",
"other": "Ces options activent des modes de traitement alternatifs pour Invoke. 'Tuilage seamless' créera des motifs répétitifs dans la sortie. 'Haute résolution' est la génération en deux étapes avec img2img : utilisez ce paramètre lorsque vous souhaitez une image plus grande et plus cohérente sans artefacts. Cela prendra plus de temps que d'habitude txt2img.",
"seed": "La valeur de grain affecte le bruit initial à partir duquel l'image est formée. Vous pouvez utiliser les graines déjà existantes provenant d'images précédentes. 'Seuil de bruit' est utilisé pour atténuer les artefacts à des valeurs CFG élevées (essayez la plage de 0 à 10), et Perlin pour ajouter du bruit Perlin pendant la génération : les deux servent à ajouter de la variété à vos sorties.",
"variations": "Essayez une variation avec une valeur comprise entre 0,1 et 1,0 pour changer le résultat pour une graine donnée. Des variations intéressantes de la graine sont entre 0,1 et 0,3.",
"upscale": "Utilisez ESRGAN pour agrandir l'image immédiatement après la génération.",
"faceCorrection": "Correction de visage avec GFPGAN ou Codeformer : l'algorithme détecte les visages dans l'image et corrige tout défaut. La valeur élevée changera plus l'image, ce qui donnera des visages plus attirants. Codeformer avec une fidélité plus élevée préserve l'image originale au prix d'une correction de visage plus forte.",
"imageToImage": "Image to Image charge n'importe quelle image en tant qu'initiale, qui est ensuite utilisée pour générer une nouvelle avec le prompt. Plus la valeur est élevée, plus l'image de résultat changera. Des valeurs de 0,0 à 1,0 sont possibles, la plage recommandée est de 0,25 à 0,75",
"boundingBox": "La boîte englobante est la même que les paramètres Largeur et Hauteur pour Texte à Image ou Image à Image. Seulement la zone dans la boîte sera traitée.",
"seamCorrection": "Contrôle la gestion des coutures visibles qui se produisent entre les images générées sur la toile.",
"infillAndScaling": "Gérer les méthodes de remplissage (utilisées sur les zones masquées ou effacées de la toile) et le redimensionnement (utile pour les petites tailles de boîte englobante)."
}
},
"unifiedCanvas": {
"layer": "Couche",
"base": "Base",
"mask": "Masque",
"maskingOptions": "Options de masquage",
"enableMask": "Activer le masque",
"preserveMaskedArea": "Préserver la zone masquée",
"clearMask": "Effacer le masque",
"brush": "Pinceau",
"eraser": "Gomme",
"fillBoundingBox": "Remplir la boîte englobante",
"eraseBoundingBox": "Effacer la boîte englobante",
"colorPicker": "Sélecteur de couleur",
"brushOptions": "Options de pinceau",
"brushSize": "Taille",
"move": "Déplacer",
"resetView": "Réinitialiser la vue",
"mergeVisible": "Fusionner les visibles",
"saveToGallery": "Enregistrer dans la galerie",
"copyToClipboard": "Copier dans le presse-papiers",
"downloadAsImage": "Télécharger en tant qu'image",
"undo": "Annuler",
"redo": "Refaire",
"clearCanvas": "Effacer le canvas",
"canvasSettings": "Paramètres du canvas",
"showIntermediates": "Afficher les intermédiaires",
"showGrid": "Afficher la grille",
"snapToGrid": "Aligner sur la grille",
"darkenOutsideSelection": "Assombrir à l'extérieur de la sélection",
"autoSaveToGallery": "Enregistrement automatique dans la galerie",
"saveBoxRegionOnly": "Enregistrer uniquement la région de la boîte",
"limitStrokesToBox": "Limiter les traits à la boîte",
"showCanvasDebugInfo": "Afficher les informations de débogage du canvas",
"clearCanvasHistory": "Effacer l'historique du canvas",
"clearHistory": "Effacer l'historique",
"clearCanvasHistoryMessage": "Effacer l'historique du canvas laisse votre canvas actuel intact, mais efface de manière irréversible l'historique annuler et refaire.",
"clearCanvasHistoryConfirm": "Voulez-vous vraiment effacer l'historique du canvas ?",
"emptyTempImageFolder": "Vider le dossier d'images temporaires",
"emptyFolder": "Vider le dossier",
"emptyTempImagesFolderMessage": "Vider le dossier d'images temporaires réinitialise également complètement le canvas unifié. Cela inclut tout l'historique annuler/refaire, les images dans la zone de mise en attente et la couche de base du canvas.",
"emptyTempImagesFolderConfirm": "Voulez-vous vraiment vider le dossier temporaire ?",
"activeLayer": "Calque actif",
"canvasScale": "Échelle du canevas",
"boundingBox": "Boîte englobante",
"scaledBoundingBox": "Boîte englobante mise à l'échelle",
"boundingBoxPosition": "Position de la boîte englobante",
"canvasDimensions": "Dimensions du canevas",
"canvasPosition": "Position du canevas",
"cursorPosition": "Position du curseur",
"previous": "Précédent",
"next": "Suivant",
"accept": "Accepter",
"showHide": "Afficher/Masquer",
"discardAll": "Tout abandonner",
"betaClear": "Effacer",
"betaDarkenOutside": "Assombrir à l'extérieur",
"betaLimitToBox": "Limiter à la boîte",
"betaPreserveMasked": "Conserver masqué"
},
"accessibility": {
"uploadImage": "Charger une image",
"reset": "Réinitialiser",
"nextImage": "Image suivante",
"previousImage": "Image précédente",
"useThisParameter": "Utiliser ce paramètre",
"zoomIn": "Zoom avant",
"zoomOut": "Zoom arrière",
"showOptionsPanel": "Montrer la page d'options",
"modelSelect": "Choix du modèle",
"invokeProgressBar": "Barre de Progression Invoke",
"copyMetadataJson": "Copie des métadonnées JSON",
"menu": "Menu"
}
}

View File

@ -1,575 +0,0 @@
{
"modelManager": {
"cannotUseSpaces": "לא ניתן להשתמש ברווחים",
"addNew": "הוסף חדש",
"vaeLocationValidationMsg": "נתיב למקום שבו ממוקם ה- VAE שלך.",
"height": "גובה",
"load": "טען",
"search": "חיפוש",
"heightValidationMsg": "גובה ברירת המחדל של המודל שלך.",
"addNewModel": "הוסף מודל חדש",
"allModels": "כל המודלים",
"checkpointModels": "נקודות ביקורת",
"diffusersModels": "מפזרים",
"safetensorModels": "טנסורים בטוחים",
"modelAdded": "מודל התווסף",
"modelUpdated": "מודל עודכן",
"modelEntryDeleted": "רשומת המודל נמחקה",
"addCheckpointModel": "הוסף נקודת ביקורת / מודל טנסור בטוח",
"addDiffuserModel": "הוסף מפזרים",
"addManually": "הוספה ידנית",
"manual": "ידני",
"name": "שם",
"description": "תיאור",
"descriptionValidationMsg": "הוסף תיאור למודל שלך",
"config": "תצורה",
"configValidationMsg": "נתיב לקובץ התצורה של המודל שלך.",
"modelLocation": "מיקום המודל",
"modelLocationValidationMsg": "נתיב למקום שבו המודל שלך ממוקם באופן מקומי.",
"repo_id": "מזהה מאגר",
"repoIDValidationMsg": "מאגר מקוון של המודל שלך",
"vaeLocation": "מיקום VAE",
"vaeRepoIDValidationMsg": "המאגר המקוון של VAE שלך",
"width": "רוחב",
"widthValidationMsg": "רוחב ברירת המחדל של המודל שלך.",
"addModel": "הוסף מודל",
"updateModel": "עדכן מודל",
"active": "פעיל",
"modelsFound": "מודלים נמצאו",
"cached": "נשמר במטמון",
"checkpointFolder": "תיקיית נקודות ביקורת",
"findModels": "מצא מודלים",
"scanAgain": "סרוק מחדש",
"selectFolder": "בחירת תיקייה",
"selected": "נבחר",
"selectAll": "בחר הכל",
"deselectAll": "ביטול בחירת הכל",
"showExisting": "הצג קיים",
"addSelected": "הוסף פריטים שנבחרו",
"modelExists": "המודל קיים",
"selectAndAdd": "בחר והוסך מודלים המפורטים להלן",
"deleteModel": "מחיקת מודל",
"deleteConfig": "מחיקת תצורה",
"formMessageDiffusersModelLocation": "מיקום מפזרי המודל",
"formMessageDiffusersModelLocationDesc": "נא להזין לפחות אחד.",
"convertToDiffusersHelpText5": "אנא ודא/י שיש לך מספיק מקום בדיסק. גדלי מודלים בדרך כלל הינם בין 4GB-7GB.",
"convertToDiffusersHelpText1": "מודל זה יומר לפורמט 🧨 המפזרים.",
"convertToDiffusersHelpText2": "תהליך זה יחליף את הרשומה של מנהל המודלים שלך בגרסת המפזרים של אותו המודל.",
"convertToDiffusersHelpText6": "האם ברצונך להמיר מודל זה?",
"convertToDiffusersSaveLocation": "שמירת מיקום",
"inpainting": "v1 צביעת תוך",
"statusConverting": "ממיר",
"modelConverted": "מודל הומר",
"sameFolder": "אותה תיקיה",
"custom": "התאמה אישית",
"merge": "מזג",
"modelsMerged": "מודלים מוזגו",
"mergeModels": "מזג מודלים",
"modelOne": "מודל 1",
"customSaveLocation": "מיקום שמירה מותאם אישית",
"alpha": "אלפא",
"mergedModelSaveLocation": "שמירת מיקום",
"mergedModelCustomSaveLocation": "נתיב מותאם אישית",
"ignoreMismatch": "התעלמות מאי-התאמות בין מודלים שנבחרו",
"modelMergeHeaderHelp1": "ניתן למזג עד שלושה מודלים שונים כדי ליצור שילוב שמתאים לצרכים שלכם.",
"modelMergeAlphaHelp": "אלפא שולט בחוזק מיזוג עבור המודלים. ערכי אלפא נמוכים יותר מובילים להשפעה נמוכה יותר של המודל השני.",
"nameValidationMsg": "הכנס שם למודל שלך",
"vaeRepoID": "מזהה מאגר ה VAE",
"modelManager": "מנהל המודלים",
"model": "מודל",
"availableModels": "מודלים זמינים",
"notLoaded": "לא נטען",
"clearCheckpointFolder": "נקה את תיקיית נקודות הביקורת",
"noModelsFound": "לא נמצאו מודלים",
"delete": "מחיקה",
"deleteMsg1": "האם אתה בטוח שברצונך למחוק רשומת מודל זו מ- InvokeAI?",
"deleteMsg2": "פעולה זו לא תמחק את קובץ נקודת הביקורת מהדיסק שלך. ניתן לקרוא אותם מחדש במידת הצורך.",
"formMessageDiffusersVAELocation": "מיקום VAE",
"formMessageDiffusersVAELocationDesc": "במידה ולא מסופק, InvokeAI תחפש את קובץ ה-VAE במיקום המודל המופיע לעיל.",
"convertToDiffusers": "המרה למפזרים",
"convert": "המרה",
"modelTwo": "מודל 2",
"modelThree": "מודל 3",
"mergedModelName": "שם מודל ממוזג",
"v1": "v1",
"invokeRoot": "תיקיית InvokeAI",
"customConfig": "תצורה מותאמת אישית",
"pathToCustomConfig": "נתיב לתצורה מותאמת אישית",
"interpolationType": "סוג אינטרפולציה",
"invokeAIFolder": "תיקיית InvokeAI",
"sigmoid": "סיגמואיד",
"weightedSum": "סכום משוקלל",
"modelMergeHeaderHelp2": "רק מפזרים זמינים למיזוג. אם ברצונך למזג מודל של נקודת ביקורת, המר אותו תחילה למפזרים.",
"inverseSigmoid": "הפוך סיגמואיד",
"convertToDiffusersHelpText3": "קובץ נקודת הביקורת שלך בדיסק לא יימחק או ישונה בכל מקרה. אתה יכול להוסיף את נקודת הביקורת שלך למנהל המודלים שוב אם תרצה בכך.",
"convertToDiffusersHelpText4": "זהו תהליך חד פעמי בלבד. התהליך עשוי לקחת בסביבות 30-60 שניות, תלוי במפרט המחשב שלך.",
"modelMergeInterpAddDifferenceHelp": "במצב זה, מודל 3 מופחת תחילה ממודל 2. הגרסה המתקבלת משולבת עם מודל 1 עם קצב האלפא שנקבע לעיל."
},
"common": {
"nodesDesc": "מערכת מבוססת צמתים עבור יצירת תמונות עדיין תחת פיתוח. השארו קשובים לעדכונים עבור הפיצ׳ר המדהים הזה.",
"languagePickerLabel": "בחירת שפה",
"githubLabel": "גיטהאב",
"discordLabel": "דיסקורד",
"settingsLabel": "הגדרות",
"langEnglish": "אנגלית",
"langDutch": "הולנדית",
"langArabic": "ערבית",
"langFrench": "צרפתית",
"langGerman": "גרמנית",
"langJapanese": "יפנית",
"langBrPortuguese": "פורטוגזית",
"langRussian": "רוסית",
"langSimplifiedChinese": "סינית",
"langUkranian": "אוקראינית",
"langSpanish": "ספרדית",
"img2img": "תמונה לתמונה",
"unifiedCanvas": "קנבס מאוחד",
"nodes": "צמתים",
"postProcessing": "לאחר עיבוד",
"postProcessDesc2": "תצוגה ייעודית תשוחרר בקרוב על מנת לתמוך בתהליכים ועיבודים מורכבים.",
"postProcessDesc3": "ממשק שורת הפקודה של Invoke AI מציע תכונות שונות אחרות כולל Embiggen.",
"close": "סגירה",
"statusConnected": "מחובר",
"statusDisconnected": "מנותק",
"statusError": "שגיאה",
"statusPreparing": "בהכנה",
"statusProcessingCanceled": "עיבוד בוטל",
"statusProcessingComplete": "עיבוד הסתיים",
"statusGenerating": "מייצר",
"statusGeneratingTextToImage": "מייצר טקסט לתמונה",
"statusGeneratingImageToImage": "מייצר תמונה לתמונה",
"statusGeneratingInpainting": "מייצר ציור לתוך",
"statusGeneratingOutpainting": "מייצר ציור החוצה",
"statusIterationComplete": "איטרציה הסתיימה",
"statusRestoringFaces": "משחזר פרצופים",
"statusRestoringFacesCodeFormer": "משחזר פרצופים (CodeFormer)",
"statusUpscaling": "העלאת קנה מידה",
"statusUpscalingESRGAN": "העלאת קנה מידה (ESRGAN)",
"statusModelChanged": "מודל השתנה",
"statusConvertingModel": "ממיר מודל",
"statusModelConverted": "מודל הומר",
"statusMergingModels": "מיזוג מודלים",
"statusMergedModels": "מודלים מוזגו",
"hotkeysLabel": "מקשים חמים",
"reportBugLabel": "דווח באג",
"langItalian": "איטלקית",
"upload": "העלאה",
"langPolish": "פולנית",
"training": "אימון",
"load": "טעינה",
"back": "אחורה",
"statusSavingImage": "שומר תמונה",
"statusGenerationComplete": "ייצור הסתיים",
"statusRestoringFacesGFPGAN": "משחזר פרצופים (GFPGAN)",
"statusLoadingModel": "טוען מודל",
"trainingDesc2": "InvokeAI כבר תומך באימון הטמעות מותאמות אישית באמצעות היפוך טקסט באמצעות הסקריפט הראשי.",
"postProcessDesc1": "InvokeAI מציעה מגוון רחב של תכונות עיבוד שלאחר. העלאת קנה מידה של תמונה ושחזור פנים כבר זמינים בממשק המשתמש. ניתן לגשת אליהם מתפריט 'אפשרויות מתקדמות' בכרטיסיות 'טקסט לתמונה' ו'תמונה לתמונה'. ניתן גם לעבד תמונות ישירות, באמצעות לחצני הפעולה של התמונה מעל תצוגת התמונה הנוכחית או בתוך המציג.",
"trainingDesc1": "תהליך עבודה ייעודי לאימון ההטמעות ונקודות הביקורת שלך באמצעות היפוך טקסט ו-Dreambooth מממשק המשתמש."
},
"hotkeys": {
"toggleGallery": {
"desc": "פתח וסגור את מגירת הגלריה",
"title": "הצג את הגלריה"
},
"keyboardShortcuts": "קיצורי מקלדת",
"appHotkeys": "קיצורי אפליקציה",
"generalHotkeys": "קיצורי דרך כלליים",
"galleryHotkeys": "קיצורי דרך של הגלריה",
"unifiedCanvasHotkeys": "קיצורי דרך לקנבס המאוחד",
"invoke": {
"title": "הפעל",
"desc": "צור תמונה"
},
"focusPrompt": {
"title": "התמקדות על הבקשה",
"desc": "התמקדות על איזור הקלדת הבקשה"
},
"toggleOptions": {
"desc": "פתח וסגור את פאנל ההגדרות",
"title": "הצג הגדרות"
},
"pinOptions": {
"title": "הצמד הגדרות",
"desc": "הצמד את פאנל ההגדרות"
},
"toggleViewer": {
"title": "הצג את חלון ההצגה",
"desc": "פתח וסגור את מציג התמונות"
},
"changeTabs": {
"title": "החלף לשוניות",
"desc": "החלף לאיזור עבודה אחר"
},
"consoleToggle": {
"desc": "פתח וסגור את הקונסול",
"title": "הצג קונסול"
},
"setPrompt": {
"title": "הגדרת בקשה",
"desc": "שימוש בבקשה של התמונה הנוכחית"
},
"restoreFaces": {
"desc": "שחזור התמונה הנוכחית",
"title": "שחזור פרצופים"
},
"upscale": {
"title": "הגדלת קנה מידה",
"desc": "הגדל את התמונה הנוכחית"
},
"showInfo": {
"title": "הצג מידע",
"desc": "הצגת פרטי מטא-נתונים של התמונה הנוכחית"
},
"sendToImageToImage": {
"title": "שלח לתמונה לתמונה",
"desc": "שלח תמונה נוכחית לתמונה לתמונה"
},
"deleteImage": {
"title": "מחק תמונה",
"desc": "מחק את התמונה הנוכחית"
},
"closePanels": {
"title": "סגור לוחות",
"desc": "סוגר לוחות פתוחים"
},
"previousImage": {
"title": "תמונה קודמת",
"desc": "הצג את התמונה הקודמת בגלריה"
},
"toggleGalleryPin": {
"title": "הצג את מצמיד הגלריה",
"desc": "הצמדה וביטול הצמדה של הגלריה לממשק המשתמש"
},
"decreaseGalleryThumbSize": {
"title": "הקטנת גודל תמונת גלריה",
"desc": "מקטין את גודל התמונות הממוזערות של הגלריה"
},
"selectBrush": {
"desc": "בוחר את מברשת הקנבס",
"title": "בחר מברשת"
},
"selectEraser": {
"title": "בחר מחק",
"desc": "בוחר את מחק הקנבס"
},
"decreaseBrushSize": {
"title": "הקטנת גודל המברשת",
"desc": "מקטין את גודל מברשת הקנבס/מחק"
},
"increaseBrushSize": {
"desc": "מגדיל את גודל מברשת הקנבס/מחק",
"title": "הגדלת גודל המברשת"
},
"decreaseBrushOpacity": {
"title": "הפחת את אטימות המברשת",
"desc": "מקטין את האטימות של מברשת הקנבס"
},
"increaseBrushOpacity": {
"title": "הגדל את אטימות המברשת",
"desc": "מגביר את האטימות של מברשת הקנבס"
},
"moveTool": {
"title": "כלי הזזה",
"desc": "מאפשר ניווט על קנבס"
},
"fillBoundingBox": {
"desc": "ממלא את התיבה התוחמת בצבע מברשת",
"title": "מילוי תיבה תוחמת"
},
"eraseBoundingBox": {
"desc": "מוחק את אזור התיבה התוחמת",
"title": "מחק תיבה תוחמת"
},
"colorPicker": {
"title": "בחר בבורר צבעים",
"desc": "בוחר את בורר צבעי הקנבס"
},
"toggleSnap": {
"title": "הפעל הצמדה",
"desc": "מפעיל הצמדה לרשת"
},
"quickToggleMove": {
"title": "הפעלה מהירה להזזה",
"desc": "מפעיל זמנית את מצב ההזזה"
},
"toggleLayer": {
"title": "הפעל שכבה",
"desc": "הפעל בחירת שכבת בסיס/מסיכה"
},
"clearMask": {
"title": "נקה מסיכה",
"desc": "נקה את כל המסכה"
},
"hideMask": {
"desc": "הסתרה והצגה של מסיכה",
"title": "הסתר מסיכה"
},
"showHideBoundingBox": {
"title": "הצגה/הסתרה של תיבה תוחמת",
"desc": "הפעל תצוגה של התיבה התוחמת"
},
"mergeVisible": {
"title": "מיזוג תוכן גלוי",
"desc": "מיזוג כל השכבות הגלויות של הקנבס"
},
"saveToGallery": {
"title": "שמור לגלריה",
"desc": "שמור את הקנבס הנוכחי בגלריה"
},
"copyToClipboard": {
"title": "העתק ללוח ההדבקה",
"desc": "העתק את הקנבס הנוכחי ללוח ההדבקה"
},
"downloadImage": {
"title": "הורד תמונה",
"desc": "הורד את הקנבס הנוכחי"
},
"undoStroke": {
"title": "בטל משיכה",
"desc": "בטל משיכת מברשת"
},
"redoStroke": {
"title": "בצע שוב משיכה",
"desc": "ביצוע מחדש של משיכת מברשת"
},
"resetView": {
"title": "איפוס תצוגה",
"desc": "אפס תצוגת קנבס"
},
"previousStagingImage": {
"desc": "תמונת אזור ההערכות הקודמת",
"title": "תמונת הערכות קודמת"
},
"nextStagingImage": {
"title": "תמנות הערכות הבאה",
"desc": "תמונת אזור ההערכות הבאה"
},
"acceptStagingImage": {
"desc": "אשר את תמונת איזור ההערכות הנוכחית",
"title": "אשר תמונת הערכות"
},
"cancel": {
"desc": "ביטול יצירת תמונה",
"title": "ביטול"
},
"maximizeWorkSpace": {
"title": "מקסם את איזור העבודה",
"desc": "סגור פאנלים ומקסם את איזור העבודה"
},
"setSeed": {
"title": "הגדר זרע",
"desc": "השתמש בזרע התמונה הנוכחית"
},
"setParameters": {
"title": "הגדרת פרמטרים",
"desc": "שימוש בכל הפרמטרים של התמונה הנוכחית"
},
"increaseGalleryThumbSize": {
"title": "הגדל את גודל תמונת הגלריה",
"desc": "מגדיל את התמונות הממוזערות של הגלריה"
},
"nextImage": {
"title": "תמונה הבאה",
"desc": "הצג את התמונה הבאה בגלריה"
}
},
"gallery": {
"uploads": "העלאות",
"galleryImageSize": "גודל תמונה",
"gallerySettings": "הגדרות גלריה",
"maintainAspectRatio": "שמור על יחס רוחב-גובה",
"autoSwitchNewImages": "החלף אוטומטית לתמונות חדשות",
"singleColumnLayout": "תצוגת עמודה אחת",
"allImagesLoaded": "כל התמונות נטענו",
"loadMore": "טען עוד",
"noImagesInGallery": "אין תמונות בגלריה",
"galleryImageResetSize": "איפוס גודל",
"generations": "דורות",
"showGenerations": "הצג דורות",
"showUploads": "הצג העלאות"
},
"parameters": {
"images": "תמונות",
"steps": "צעדים",
"cfgScale": "סולם CFG",
"width": "רוחב",
"height": "גובה",
"seed": "זרע",
"imageToImage": "תמונה לתמונה",
"randomizeSeed": "זרע אקראי",
"variationAmount": "כמות וריאציה",
"seedWeights": "משקלי זרע",
"faceRestoration": "שחזור פנים",
"restoreFaces": "שחזר פנים",
"type": "סוג",
"strength": "חוזק",
"upscale": "הגדלת קנה מידה",
"upscaleImage": "הגדלת קנה מידת התמונה",
"denoisingStrength": "חוזק מנטרל הרעש",
"otherOptions": "אפשרויות אחרות",
"hiresOptim": "אופטימיזצית רזולוציה גבוהה",
"hiresStrength": "חוזק רזולוציה גבוהה",
"codeformerFidelity": "דבקות",
"scaleBeforeProcessing": "שנה קנה מידה לפני עיבוד",
"scaledWidth": "קנה מידה לאחר שינוי W",
"scaledHeight": "קנה מידה לאחר שינוי H",
"infillMethod": "שיטת מילוי",
"tileSize": "גודל אריח",
"boundingBoxHeader": "תיבה תוחמת",
"seamCorrectionHeader": "תיקון תפר",
"infillScalingHeader": "מילוי וקנה מידה",
"toggleLoopback": "הפעל לולאה חוזרת",
"symmetry": "סימטריה",
"vSymmetryStep": "צעד סימטריה V",
"hSymmetryStep": "צעד סימטריה H",
"cancel": {
"schedule": "ביטול לאחר האיטרציה הנוכחית",
"isScheduled": "מבטל",
"immediate": "ביטול מיידי",
"setType": "הגדר סוג ביטול"
},
"sendTo": "שליחה אל",
"copyImage": "העתקת תמונה",
"downloadImage": "הורדת תמונה",
"sendToImg2Img": "שליחה לתמונה לתמונה",
"sendToUnifiedCanvas": "שליחה אל קנבס מאוחד",
"openInViewer": "פתח במציג",
"closeViewer": "סגור מציג",
"usePrompt": "שימוש בבקשה",
"useSeed": "שימוש בזרע",
"useAll": "שימוש בהכל",
"useInitImg": "שימוש בתמונה ראשונית",
"info": "פרטים",
"showOptionsPanel": "הצג חלונית אפשרויות",
"shuffle": "ערבוב",
"noiseThreshold": "סף רעש",
"perlinNoise": "רעש פרלין",
"variations": "וריאציות",
"imageFit": "התאמת תמונה ראשונית לגודל הפלט",
"general": "כללי",
"upscaling": "מגדיל את קנה מידה",
"scale": "סולם",
"seamlessTiling": "ריצוף חלק",
"img2imgStrength": "חוזק תמונה לתמונה",
"initialImage": "תמונה ראשונית",
"copyImageToLink": "העתקת תמונה לקישור"
},
"settings": {
"models": "מודלים",
"displayInProgress": "הצגת תמונות בתהליך",
"confirmOnDelete": "אישור בעת המחיקה",
"useSlidersForAll": "שימוש במחוונים לכל האפשרויות",
"resetWebUI": "איפוס ממשק משתמש",
"resetWebUIDesc1": "איפוס ממשק המשתמש האינטרנטי מאפס רק את המטמון המקומי של הדפדפן של התמונות וההגדרות שנשמרו. זה לא מוחק תמונות מהדיסק.",
"resetComplete": "ממשק המשתמש אופס. יש לבצע רענון דף בכדי לטעון אותו מחדש.",
"enableImageDebugging": "הפעלת איתור באגים בתמונה",
"displayHelpIcons": "הצג סמלי עזרה",
"saveSteps": "שמירת תמונות כל n צעדים",
"resetWebUIDesc2": "אם תמונות לא מופיעות בגלריה או שמשהו אחר לא עובד, נא לנסות איפוס /או אתחול לפני שליחת תקלה ב-GitHub."
},
"toast": {
"uploadFailed": "העלאה נכשלה",
"imageCopied": "התמונה הועתקה",
"imageLinkCopied": "קישור תמונה הועתק",
"imageNotLoadedDesc": "לא נמצאה תמונה לשליחה למודול תמונה לתמונה",
"imageSavedToGallery": "התמונה נשמרה בגלריה",
"canvasMerged": "קנבס מוזג",
"sentToImageToImage": "נשלח לתמונה לתמונה",
"sentToUnifiedCanvas": "נשלח אל קנבס מאוחד",
"parametersSet": "הגדרת פרמטרים",
"parametersNotSet": "פרמטרים לא הוגדרו",
"parametersNotSetDesc": "לא נמצאו מטא-נתונים עבור תמונה זו.",
"parametersFailedDesc": "לא ניתן לטעון תמונת התחלה.",
"seedSet": "זרע הוגדר",
"seedNotSetDesc": "לא ניתן היה למצוא זרע לתמונה זו.",
"promptNotSetDesc": "לא היתה אפשרות למצוא בקשה עבור תמונה זו.",
"metadataLoadFailed": "טעינת מטא-נתונים נכשלה",
"initialImageSet": "סט תמונה ראשוני",
"initialImageNotSet": "התמונה הראשונית לא הוגדרה",
"initialImageNotSetDesc": "לא ניתן היה לטעון את התמונה הראשונית",
"uploadFailedUnableToLoadDesc": "לא ניתן לטעון את הקובץ",
"tempFoldersEmptied": "התיקייה הזמנית רוקנה",
"downloadImageStarted": "הורדת התמונה החלה",
"imageNotLoaded": "לא נטענה תמונה",
"parametersFailed": "בעיה בטעינת פרמטרים",
"promptNotSet": "בקשה לא הוגדרה",
"upscalingFailed": "העלאת קנה המידה נכשלה",
"faceRestoreFailed": "שחזור הפנים נכשל",
"seedNotSet": "זרע לא הוגדר",
"promptSet": "בקשה הוגדרה"
},
"tooltip": {
"feature": {
"gallery": "הגלריה מציגה יצירות מתיקיית הפלטים בעת יצירתם. ההגדרות מאוחסנות בתוך קבצים ונגישות באמצעות תפריט הקשר.",
"upscale": "השתמש ב-ESRGAN כדי להגדיל את התמונה מיד לאחר היצירה.",
"imageToImage": "תמונה לתמונה טוענת כל תמונה כראשונית, המשמשת לאחר מכן ליצירת תמונה חדשה יחד עם הבקשה. ככל שהערך גבוה יותר, כך תמונת התוצאה תשתנה יותר. ערכים מ- 0.0 עד 1.0 אפשריים, הטווח המומלץ הוא .25-.75",
"seamCorrection": "שליטה בטיפול בתפרים גלויים המתרחשים בין תמונות שנוצרו על בד הציור.",
"prompt": "זהו שדה הבקשה. הבקשה כוללת אובייקטי יצירה ומונחים סגנוניים. באפשרותך להוסיף משקל (חשיבות אסימון) גם בשורת הפקודה, אך פקודות ופרמטרים של CLI לא יפעלו.",
"variations": "נסה וריאציה עם ערך בין 0.1 ל- 1.0 כדי לשנות את התוצאה עבור זרע נתון. וריאציות מעניינות של הזרע הן בין 0.1 ל -0.3.",
"other": "אפשרויות אלה יאפשרו מצבי עיבוד חלופיים עבור ההרצה. 'ריצוף חלק' ייצור תבניות חוזרות בפלט. 'רזולוציה גבוהה' נוצר בשני שלבים עם img2img: השתמש בהגדרה זו כאשר אתה רוצה תמונה גדולה וקוהרנטית יותר ללא חפצים. פעולה זאת תקח יותר זמן מפעולת טקסט לתמונה רגילה.",
"faceCorrection": "תיקון פנים עם GFPGAN או Codeformer: האלגוריתם מזהה פרצופים בתמונה ומתקן כל פגם. ערך גבוה ישנה את התמונה יותר, וכתוצאה מכך הפרצופים יהיו אטרקטיביים יותר. Codeformer עם נאמנות גבוהה יותר משמר את התמונה המקורית על חשבון תיקון פנים חזק יותר.",
"seed": "ערך הזרע משפיע על הרעש הראשוני שממנו נוצרת התמונה. אתה יכול להשתמש בזרעים שכבר קיימים מתמונות קודמות. 'סף רעש' משמש להפחתת חפצים בערכי CFG גבוהים (נסה את טווח 0-10), ופרלין כדי להוסיף רעשי פרלין במהלך היצירה: שניהם משמשים להוספת וריאציה לתפוקות שלך.",
"infillAndScaling": "נהל שיטות מילוי (המשמשות באזורים עם מסיכה או אזורים שנמחקו בבד הציור) ושינוי קנה מידה (שימושי לגדלים קטנים של תיבות תוחמות).",
"boundingBox": "התיבה התוחמת זהה להגדרות 'רוחב' ו'גובה' עבור 'טקסט לתמונה' או 'תמונה לתמונה'. רק האזור בתיבה יעובד."
}
},
"unifiedCanvas": {
"layer": "שכבה",
"base": "בסיס",
"maskingOptions": "אפשרויות מסכות",
"enableMask": "הפעלת מסיכה",
"colorPicker": "בוחר הצבעים",
"preserveMaskedArea": "שימור איזור ממוסך",
"clearMask": "ניקוי מסיכה",
"brush": "מברשת",
"eraser": "מחק",
"fillBoundingBox": "מילוי תיבה תוחמת",
"eraseBoundingBox": "מחק תיבה תוחמת",
"copyToClipboard": "העתק ללוח ההדבקה",
"downloadAsImage": "הורדה כתמונה",
"undo": "ביטול",
"redo": "ביצוע מחדש",
"clearCanvas": "ניקוי קנבס",
"showGrid": "הצגת רשת",
"snapToGrid": "הצמדה לרשת",
"darkenOutsideSelection": "הכהיית בחירה חיצונית",
"saveBoxRegionOnly": "שמירת איזור תיבה בלבד",
"limitStrokesToBox": "הגבלת משיכות לקופסא",
"showCanvasDebugInfo": "הצגת מידע איתור באגים בקנבס",
"clearCanvasHistory": "ניקוי הסטוריית קנבס",
"clearHistory": "ניקוי היסטוריה",
"clearCanvasHistoryConfirm": "האם את/ה בטוח/ה שברצונך לנקות את היסטוריית הקנבס?",
"emptyFolder": "ריקון תיקייה",
"emptyTempImagesFolderConfirm": "האם את/ה בטוח/ה שברצונך לרוקן את התיקיה הזמנית?",
"activeLayer": "שכבה פעילה",
"canvasScale": "קנה מידה של קנבס",
"betaLimitToBox": "הגבל לקופסא",
"betaDarkenOutside": "הכההת הבחוץ",
"canvasDimensions": "מידות קנבס",
"previous": "הקודם",
"next": "הבא",
"accept": "אישור",
"showHide": "הצג/הסתר",
"discardAll": "בטל הכל",
"betaClear": "איפוס",
"boundingBox": "תיבה תוחמת",
"scaledBoundingBox": "תיבה תוחמת לאחר שינוי קנה מידה",
"betaPreserveMasked": "שמר מסיכה",
"brushOptions": "אפשרויות מברשת",
"brushSize": "גודל",
"mergeVisible": "מיזוג תוכן גלוי",
"move": "הזזה",
"resetView": "איפוס תצוגה",
"saveToGallery": "שמור לגלריה",
"canvasSettings": "הגדרות קנבס",
"showIntermediates": "הצגת מתווכים",
"autoSaveToGallery": "שמירה אוטומטית בגלריה",
"emptyTempImageFolder": "ריקון תיקיית תמונות זמניות",
"clearCanvasHistoryMessage": "ניקוי היסטוריית הקנבס משאיר את הקנבס הנוכחי ללא שינוי, אך מנקה באופן בלתי הפיך את היסטוריית הביטול והביצוע מחדש.",
"emptyTempImagesFolderMessage": "ריקון תיקיית התמונה הזמנית גם מאפס באופן מלא את הקנבס המאוחד. זה כולל את כל היסטוריית הביטול/ביצוע מחדש, תמונות באזור ההערכות ושכבת הבסיס של בד הציור.",
"boundingBoxPosition": "מיקום תיבה תוחמת",
"canvasPosition": "מיקום קנבס",
"cursorPosition": "מיקום הסמן",
"mask": "מסכה"
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,816 +0,0 @@
{
"common": {
"languagePickerLabel": "言語",
"reportBugLabel": "バグ報告",
"settingsLabel": "設定",
"langJapanese": "日本語",
"nodesDesc": "現在、画像生成のためのノードベースシステムを開発中です。機能についてのアップデートにご期待ください。",
"postProcessing": "後処理",
"postProcessDesc1": "Invoke AIは、多彩な後処理の機能を備えています。アップスケーリングと顔修復は、すでにWebUI上で利用可能です。これらは、[Text To Image]および[Image To Image]タブの[詳細オプション]メニューからアクセスできます。また、現在の画像表示の上やビューア内の画像アクションボタンを使って、画像を直接処理することもできます。",
"postProcessDesc2": "より高度な後処理の機能を実現するための専用UIを近日中にリリース予定です。",
"postProcessDesc3": "Invoke AI CLIでは、この他にもEmbiggenをはじめとする様々な機能を利用することができます。",
"training": "追加学習",
"trainingDesc1": "Textual InversionとDreamboothを使って、WebUIから独自のEmbeddingとチェックポイントを追加学習するための専用ワークフローです。",
"trainingDesc2": "InvokeAIは、すでにメインスクリプトを使ったTextual Inversionによるカスタム埋め込み追加学習にも対応しています。",
"upload": "アップロード",
"close": "閉じる",
"load": "ロード",
"back": "戻る",
"statusConnected": "接続済",
"statusDisconnected": "切断済",
"statusError": "エラー",
"statusPreparing": "準備中",
"statusProcessingCanceled": "処理をキャンセル",
"statusProcessingComplete": "処理完了",
"statusGenerating": "生成中",
"statusGeneratingTextToImage": "Text To Imageで生成中",
"statusGeneratingImageToImage": "Image To Imageで生成中",
"statusGenerationComplete": "生成完了",
"statusSavingImage": "画像を保存",
"statusRestoringFaces": "顔の修復",
"statusRestoringFacesGFPGAN": "顔の修復 (GFPGAN)",
"statusRestoringFacesCodeFormer": "顔の修復 (CodeFormer)",
"statusUpscaling": "アップスケーリング",
"statusUpscalingESRGAN": "アップスケーリング (ESRGAN)",
"statusLoadingModel": "モデルを読み込む",
"statusModelChanged": "モデルを変更",
"cancel": "キャンセル",
"accept": "同意",
"langBrPortuguese": "Português do Brasil",
"langRussian": "Русский",
"langSimplifiedChinese": "简体中文",
"langUkranian": "Украї́нська",
"langSpanish": "Español",
"img2img": "img2img",
"unifiedCanvas": "Unified Canvas",
"statusMergingModels": "モデルのマージ",
"statusModelConverted": "変換済モデル",
"statusGeneratingInpainting": "Inpaintingを生成",
"statusIterationComplete": "Iteration Complete",
"statusGeneratingOutpainting": "Outpaintingを生成",
"loading": "ロード中",
"loadingInvokeAI": "Invoke AIをロード中",
"statusConvertingModel": "モデルの変換",
"statusMergedModels": "マージ済モデル",
"githubLabel": "Github",
"hotkeysLabel": "ホットキー",
"langHebrew": "עברית",
"discordLabel": "Discord",
"langItalian": "Italiano",
"langEnglish": "English",
"langArabic": "アラビア語",
"langDutch": "Nederlands",
"langFrench": "Français",
"langGerman": "Deutsch",
"langPortuguese": "Português",
"nodes": "ワークフローエディター",
"langKorean": "한국어",
"langPolish": "Polski",
"txt2img": "txt2img",
"postprocessing": "Post Processing",
"t2iAdapter": "T2I アダプター",
"communityLabel": "コミュニティ",
"dontAskMeAgain": "次回から確認しない",
"areYouSure": "本当によろしいですか?",
"on": "オン",
"nodeEditor": "ノードエディター",
"ipAdapter": "IPアダプター",
"controlAdapter": "コントロールアダプター",
"auto": "自動",
"openInNewTab": "新しいタブで開く",
"controlNet": "コントロールネット",
"statusProcessing": "処理中",
"linear": "リニア",
"imageFailedToLoad": "画像が読み込めません",
"imagePrompt": "画像プロンプト",
"modelManager": "モデルマネージャー",
"lightMode": "ライトモード",
"generate": "生成",
"learnMore": "もっと学ぶ",
"darkMode": "ダークモード",
"random": "ランダム",
"batch": "バッチマネージャー",
"advanced": "高度な設定"
},
"gallery": {
"uploads": "アップロード",
"showUploads": "アップロードした画像を見る",
"galleryImageSize": "画像のサイズ",
"galleryImageResetSize": "サイズをリセット",
"gallerySettings": "ギャラリーの設定",
"maintainAspectRatio": "アスペクト比を維持",
"singleColumnLayout": "1カラムレイアウト",
"allImagesLoaded": "すべての画像を読み込む",
"loadMore": "さらに読み込む",
"noImagesInGallery": "ギャラリーに画像がありません",
"generations": "生成",
"showGenerations": "生成過程を見る",
"autoSwitchNewImages": "新しい画像に自動切替"
},
"hotkeys": {
"keyboardShortcuts": "キーボードショートカット",
"appHotkeys": "アプリのホットキー",
"generalHotkeys": "Generalのホットキー",
"galleryHotkeys": "ギャラリーのホットキー",
"unifiedCanvasHotkeys": "Unified Canvasのホットキー",
"invoke": {
"desc": "画像を生成",
"title": "Invoke"
},
"cancel": {
"title": "キャンセル",
"desc": "画像の生成をキャンセル"
},
"focusPrompt": {
"desc": "プロンプトテキストボックスにフォーカス",
"title": "プロジェクトにフォーカス"
},
"toggleOptions": {
"title": "オプションパネルのトグル",
"desc": "オプションパネルの開閉"
},
"pinOptions": {
"title": "ピン",
"desc": "オプションパネルを固定"
},
"toggleViewer": {
"title": "ビュワーのトグル",
"desc": "ビュワーを開閉"
},
"toggleGallery": {
"title": "ギャラリーのトグル",
"desc": "ギャラリードロワーの開閉"
},
"maximizeWorkSpace": {
"title": "作業領域の最大化",
"desc": "パネルを閉じて、作業領域を最大に"
},
"changeTabs": {
"title": "タブの切替",
"desc": "他の作業領域と切替"
},
"consoleToggle": {
"title": "コンソールのトグル",
"desc": "コンソールの開閉"
},
"setPrompt": {
"title": "プロンプトをセット",
"desc": "現在の画像のプロンプトを使用"
},
"setSeed": {
"title": "シード値をセット",
"desc": "現在の画像のシード値を使用"
},
"setParameters": {
"title": "パラメータをセット",
"desc": "現在の画像のすべてのパラメータを使用"
},
"restoreFaces": {
"title": "顔の修復",
"desc": "現在の画像を修復"
},
"upscale": {
"title": "アップスケール",
"desc": "現在の画像をアップスケール"
},
"showInfo": {
"title": "情報を見る",
"desc": "現在の画像のメタデータ情報を表示"
},
"sendToImageToImage": {
"title": "Image To Imageに転送",
"desc": "現在の画像をImage to Imageに転送"
},
"deleteImage": {
"title": "画像を削除",
"desc": "現在の画像を削除"
},
"closePanels": {
"title": "パネルを閉じる",
"desc": "開いているパネルを閉じる"
},
"previousImage": {
"title": "前の画像",
"desc": "ギャラリー内の1つ前の画像を表示"
},
"nextImage": {
"title": "次の画像",
"desc": "ギャラリー内の1つ後の画像を表示"
},
"toggleGalleryPin": {
"title": "ギャラリードロワーの固定",
"desc": "ギャラリーをUIにピン留め/解除"
},
"increaseGalleryThumbSize": {
"title": "ギャラリーの画像を拡大",
"desc": "ギャラリーのサムネイル画像を拡大"
},
"decreaseGalleryThumbSize": {
"title": "ギャラリーの画像サイズを縮小",
"desc": "ギャラリーのサムネイル画像を縮小"
},
"selectBrush": {
"title": "ブラシを選択",
"desc": "ブラシを選択"
},
"selectEraser": {
"title": "消しゴムを選択",
"desc": "消しゴムを選択"
},
"decreaseBrushSize": {
"title": "ブラシサイズを縮小",
"desc": "ブラシ/消しゴムのサイズを縮小"
},
"increaseBrushSize": {
"title": "ブラシサイズを拡大",
"desc": "ブラシ/消しゴムのサイズを拡大"
},
"decreaseBrushOpacity": {
"title": "ブラシの不透明度を下げる",
"desc": "キャンバスブラシの不透明度を下げる"
},
"increaseBrushOpacity": {
"title": "ブラシの不透明度を上げる",
"desc": "キャンバスブラシの不透明度を上げる"
},
"fillBoundingBox": {
"title": "バウンディングボックスを塗りつぶす",
"desc": "ブラシの色でバウンディングボックス領域を塗りつぶす"
},
"eraseBoundingBox": {
"title": "バウンディングボックスを消す",
"desc": "バウンディングボックス領域を消す"
},
"colorPicker": {
"title": "カラーピッカーを選択",
"desc": "カラーピッカーを選択"
},
"toggleLayer": {
"title": "レイヤーを切替",
"desc": "マスク/ベースレイヤの選択を切替"
},
"clearMask": {
"title": "マスクを消す",
"desc": "マスク全体を消す"
},
"hideMask": {
"title": "マスクを非表示",
"desc": "マスクを表示/非表示"
},
"showHideBoundingBox": {
"title": "バウンディングボックスを表示/非表示",
"desc": "バウンディングボックスの表示/非表示を切替"
},
"saveToGallery": {
"title": "ギャラリーに保存",
"desc": "現在のキャンバスをギャラリーに保存"
},
"copyToClipboard": {
"title": "クリップボードにコピー",
"desc": "現在のキャンバスをクリップボードにコピー"
},
"downloadImage": {
"title": "画像をダウンロード",
"desc": "現在の画像をダウンロード"
},
"resetView": {
"title": "キャンバスをリセット",
"desc": "キャンバスをリセット"
}
},
"modelManager": {
"modelManager": "モデルマネージャ",
"model": "モデル",
"allModels": "すべてのモデル",
"modelAdded": "モデルを追加",
"modelUpdated": "モデルをアップデート",
"addNew": "新規に追加",
"addNewModel": "新規モデル追加",
"addCheckpointModel": "Checkpointを追加 / Safetensorモデル",
"addDiffuserModel": "Diffusersを追加",
"addManually": "手動で追加",
"manual": "手動",
"name": "名前",
"nameValidationMsg": "モデルの名前を入力",
"description": "概要",
"descriptionValidationMsg": "モデルの概要を入力",
"config": "Config",
"configValidationMsg": "モデルの設定ファイルへのパス",
"modelLocation": "モデルの場所",
"modelLocationValidationMsg": "ディフューザーモデルのあるローカルフォルダーのパスを入力してください",
"repo_id": "Repo ID",
"repoIDValidationMsg": "モデルのリモートリポジトリ",
"vaeLocation": "VAEの場所",
"vaeLocationValidationMsg": "Vaeが配置されている場所へのパス",
"vaeRepoIDValidationMsg": "Vaeのリモートリポジトリ",
"width": "幅",
"widthValidationMsg": "モデルのデフォルトの幅",
"height": "高さ",
"heightValidationMsg": "モデルのデフォルトの高さ",
"addModel": "モデルを追加",
"updateModel": "モデルをアップデート",
"availableModels": "モデルを有効化",
"search": "検索",
"load": "Load",
"active": "active",
"notLoaded": "読み込まれていません",
"cached": "キャッシュ済",
"checkpointFolder": "Checkpointフォルダ",
"clearCheckpointFolder": "Checkpointフォルダ内を削除",
"findModels": "モデルを見つける",
"scanAgain": "再度スキャン",
"modelsFound": "モデルを発見",
"selectFolder": "フォルダを選択",
"selected": "選択済",
"selectAll": "すべて選択",
"deselectAll": "すべて選択解除",
"showExisting": "既存を表示",
"addSelected": "選択済を追加",
"modelExists": "モデルの有無",
"selectAndAdd": "以下のモデルを選択し、追加できます。",
"noModelsFound": "モデルが見つかりません。",
"delete": "削除",
"deleteModel": "モデルを削除",
"deleteConfig": "設定を削除",
"deleteMsg1": "InvokeAIからこのモデルを削除してよろしいですか?",
"deleteMsg2": "これは、モデルがInvokeAIルートフォルダ内にある場合、ディスクからモデルを削除します。カスタム保存場所を使用している場合、モデルはディスクから削除されません。",
"formMessageDiffusersModelLocation": "Diffusersモデルの場所",
"formMessageDiffusersModelLocationDesc": "最低でも1つは入力してください。",
"formMessageDiffusersVAELocation": "VAEの場所s",
"formMessageDiffusersVAELocationDesc": "指定しない場合、InvokeAIは上記のモデルの場所にあるVAEファイルを探します。",
"importModels": "モデルをインポート",
"custom": "カスタム",
"none": "なし",
"convert": "変換",
"statusConverting": "変換中",
"cannotUseSpaces": "スペースは使えません",
"convertToDiffusersHelpText6": "このモデルを変換しますか?",
"checkpointModels": "チェックポイント",
"settings": "設定",
"convertingModelBegin": "モデルを変換しています...",
"baseModel": "ベースモデル",
"modelDeleteFailed": "モデルの削除ができませんでした",
"convertToDiffusers": "ディフューザーに変換",
"alpha": "アルファ",
"diffusersModels": "ディフューザー",
"pathToCustomConfig": "カスタム設定のパス",
"noCustomLocationProvided": "カスタムロケーションが指定されていません",
"modelConverted": "モデル変換が完了しました",
"weightedSum": "重み付け総和",
"inverseSigmoid": "逆シグモイド",
"invokeAIFolder": "Invoke AI フォルダ",
"syncModelsDesc": "モデルがバックエンドと同期していない場合、このオプションを使用してモデルを更新できます。通常、モデル.yamlファイルを手動で更新したり、アプリケーションの起動後にモデルをInvokeAIルートフォルダに追加した場合に便利です。",
"noModels": "モデルが見つかりません",
"sigmoid": "シグモイド",
"merge": "マージ",
"modelMergeInterpAddDifferenceHelp": "このモードでは、モデル3がまずモデル2から減算されます。その結果得られたバージョンが、上記で設定されたアルファ率でモデル1とブレンドされます。",
"customConfig": "カスタム設定",
"predictionType": "予測タイプ(安定したディフュージョン 2.x モデルおよび一部の安定したディフュージョン 1.x モデル用)",
"selectModel": "モデルを選択",
"modelSyncFailed": "モデルの同期に失敗しました",
"quickAdd": "クイック追加",
"simpleModelDesc": "ローカルのDiffusersモデル、ローカルのチェックポイント/safetensorsモデル、HuggingFaceリポジトリのID、またはチェックポイント/ DiffusersモデルのURLへのパスを指定してください。",
"customSaveLocation": "カスタム保存場所",
"advanced": "高度な設定",
"modelDeleted": "モデルが削除されました",
"convertToDiffusersHelpText2": "このプロセスでは、モデルマネージャーのエントリーを同じモデルのディフューザーバージョンに置き換えます。",
"modelUpdateFailed": "モデル更新が失敗しました",
"useCustomConfig": "カスタム設定を使用する",
"convertToDiffusersHelpText5": "十分なディスク空き容量があることを確認してください。モデルは一般的に2GBから7GBのサイズがあります。",
"modelConversionFailed": "モデル変換が失敗しました",
"modelEntryDeleted": "モデルエントリーが削除されました",
"syncModels": "モデルを同期",
"mergedModelSaveLocation": "保存場所",
"closeAdvanced": "高度な設定を閉じる",
"modelType": "モデルタイプ",
"modelsMerged": "モデルマージ完了",
"modelsMergeFailed": "モデルマージ失敗",
"scanForModels": "モデルをスキャン",
"customConfigFileLocation": "カスタム設定ファイルの場所",
"convertToDiffusersHelpText1": "このモデルは 🧨 Diffusers フォーマットに変換されます。",
"modelsSynced": "モデルが同期されました",
"invokeRoot": "InvokeAIフォルダ",
"mergedModelCustomSaveLocation": "カスタムパス",
"mergeModels": "マージモデル",
"interpolationType": "補間タイプ",
"modelMergeHeaderHelp2": "マージできるのはDiffusersのみです。チェックポイントモデルをマージしたい場合は、まずDiffusersに変換してください。",
"convertToDiffusersSaveLocation": "保存場所",
"pickModelType": "モデルタイプを選択",
"sameFolder": "同じフォルダ",
"convertToDiffusersHelpText3": "チェックポイントファイルは、InvokeAIルートフォルダ内にある場合、ディスクから削除されます。カスタムロケーションにある場合は、削除されません。",
"loraModels": "LoRA",
"modelMergeAlphaHelp": "アルファはモデルのブレンド強度を制御します。アルファ値が低いと、2番目のモデルの影響が低くなります。",
"addDifference": "差分を追加",
"modelMergeHeaderHelp1": "あなたのニーズに適したブレンドを作成するために、異なるモデルを最大3つまでマージすることができます。",
"ignoreMismatch": "選択されたモデル間の不一致を無視する",
"convertToDiffusersHelpText4": "これは一回限りのプロセスです。コンピュータの仕様によっては、約30秒から60秒かかる可能性があります。",
"mergedModelName": "マージされたモデル名"
},
"parameters": {
"images": "画像",
"steps": "ステップ数",
"width": "幅",
"height": "高さ",
"seed": "シード値",
"randomizeSeed": "ランダムなシード値",
"shuffle": "シャッフル",
"seedWeights": "シード値の重み",
"faceRestoration": "顔の修復",
"restoreFaces": "顔の修復",
"strength": "強度",
"upscaling": "アップスケーリング",
"upscale": "アップスケール",
"upscaleImage": "画像をアップスケール",
"scale": "Scale",
"otherOptions": "その他のオプション",
"scaleBeforeProcessing": "処理前のスケール",
"scaledWidth": "幅のスケール",
"scaledHeight": "高さのスケール",
"boundingBoxHeader": "バウンディングボックス",
"img2imgStrength": "Image To Imageの強度",
"sendTo": "転送",
"sendToImg2Img": "Image to Imageに転送",
"sendToUnifiedCanvas": "Unified Canvasに転送",
"downloadImage": "画像をダウンロード",
"openInViewer": "ビュワーを開く",
"closeViewer": "ビュワーを閉じる",
"usePrompt": "プロンプトを使用",
"useSeed": "シード値を使用",
"useAll": "すべてを使用",
"info": "情報",
"showOptionsPanel": "オプションパネルを表示"
},
"settings": {
"models": "モデル",
"displayInProgress": "生成中の画像を表示する",
"saveSteps": "nステップごとに画像を保存",
"confirmOnDelete": "削除時に確認",
"displayHelpIcons": "ヘルプアイコンを表示",
"enableImageDebugging": "画像のデバッグを有効化",
"resetWebUI": "WebUIをリセット",
"resetWebUIDesc1": "WebUIのリセットは、画像と保存された設定のキャッシュをリセットするだけです。画像を削除するわけではありません。",
"resetWebUIDesc2": "もしギャラリーに画像が表示されないなど、何か問題が発生した場合はGitHubにissueを提出する前にリセットを試してください。",
"resetComplete": "WebUIはリセットされました。F5を押して再読み込みしてください。"
},
"toast": {
"uploadFailed": "アップロード失敗",
"uploadFailedUnableToLoadDesc": "ファイルを読み込むことができません。",
"downloadImageStarted": "画像ダウンロード開始",
"imageCopied": "画像をコピー",
"imageLinkCopied": "画像のURLをコピー",
"imageNotLoaded": "画像を読み込めません。",
"imageNotLoadedDesc": "Image To Imageに転送する画像が見つかりません。",
"imageSavedToGallery": "画像をギャラリーに保存する",
"canvasMerged": "Canvas Merged",
"sentToImageToImage": "Image To Imageに転送",
"sentToUnifiedCanvas": "Unified Canvasに転送",
"parametersNotSetDesc": "この画像にはメタデータがありません。",
"parametersFailed": "パラメータ読み込みの不具合",
"parametersFailedDesc": "initイメージを読み込めません。",
"seedNotSetDesc": "この画像のシード値が見つかりません。",
"promptNotSetDesc": "この画像のプロンプトが見つかりませんでした。",
"upscalingFailed": "アップスケーリング失敗",
"faceRestoreFailed": "顔の修復に失敗",
"metadataLoadFailed": "メタデータの読み込みに失敗。"
},
"tooltip": {
"feature": {
"prompt": "これはプロンプトフィールドです。プロンプトには生成オブジェクトや文法用語が含まれます。プロンプトにも重み(Tokenの重要度)を付けることができますが、CLIコマンドやパラメータは機能しません。",
"gallery": "ギャラリーは、出力先フォルダから生成物を表示します。設定はファイル内に保存され、コンテキストメニューからアクセスできます。.",
"seed": "シード値は、画像が形成される際の初期イズに影響します。以前の画像から既に存在するシードを使用することができます。イズしきい値は高いCFG値でのアーティファクトを軽減するために使用され、Perlinは生成中にPerlinイズを追加します(0-10の範囲を試してみてください): どちらも出力にバリエーションを追加するのに役立ちます。",
"variations": "0.1から1.0の間の値で試し、付与されたシードに対する結果を変えてみてください。面白いバリュエーションは0.1〜0.3の間です。",
"upscale": "生成直後の画像をアップスケールするには、ESRGANを使用します。",
"faceCorrection": "GFPGANまたはCodeformerによる顔の修復: 画像内の顔を検出し不具合を修正するアルゴリズムです。高い値を設定すると画像がより変化し、より魅力的な顔になります。Codeformerは顔の修復を犠牲にして、元の画像をできる限り保持します。",
"imageToImage": "Image To Imageは任意の画像を初期値として読み込み、プロンプトとともに新しい画像を生成するために使用されます。値が高いほど結果画像はより変化します。0.0から1.0までの値が可能で、推奨範囲は0.25から0.75です。",
"boundingBox": "バウンディングボックスは、Text To ImageまたはImage To Imageの幅/高さの設定と同じです。ボックス内の領域のみが処理されます。",
"seamCorrection": "キャンバス上の生成された画像間に発生する可視可能な境界の処理を制御します。"
}
},
"unifiedCanvas": {
"mask": "マスク",
"maskingOptions": "マスクのオプション",
"enableMask": "マスクを有効化",
"preserveMaskedArea": "マスク領域の保存",
"clearMask": "マスクを解除",
"brush": "ブラシ",
"eraser": "消しゴム",
"fillBoundingBox": "バウンディングボックスの塗りつぶし",
"eraseBoundingBox": "バウンディングボックスの消去",
"colorPicker": "カラーピッカー",
"brushOptions": "ブラシオプション",
"brushSize": "サイズ",
"saveToGallery": "ギャラリーに保存",
"copyToClipboard": "クリップボードにコピー",
"downloadAsImage": "画像としてダウンロード",
"undo": "取り消し",
"redo": "やり直し",
"clearCanvas": "キャンバスを片付ける",
"canvasSettings": "キャンバスの設定",
"showGrid": "グリッドを表示",
"darkenOutsideSelection": "外周を暗くする",
"autoSaveToGallery": "ギャラリーに自動保存",
"saveBoxRegionOnly": "ボックス領域のみ保存",
"showCanvasDebugInfo": "キャンバスのデバッグ情報を表示",
"clearCanvasHistory": "キャンバスの履歴を削除",
"clearHistory": "履歴を削除",
"clearCanvasHistoryMessage": "履歴を消去すると現在のキャンバスは残りますが、取り消しややり直しの履歴は不可逆的に消去されます。",
"clearCanvasHistoryConfirm": "履歴を削除しますか?",
"emptyTempImageFolder": "Empty Temp Image Folde",
"emptyFolder": "空のフォルダ",
"emptyTempImagesFolderMessage": "一時フォルダを空にすると、Unified Canvasも完全にリセットされます。これには、すべての取り消し/やり直しの履歴、ステージング領域の画像、およびキャンバスのベースレイヤーが含まれます。",
"emptyTempImagesFolderConfirm": "一時フォルダを削除しますか?",
"activeLayer": "Active Layer",
"canvasScale": "Canvas Scale",
"boundingBox": "バウンディングボックス",
"boundingBoxPosition": "バウンディングボックスの位置",
"canvasDimensions": "キャンバスの大きさ",
"canvasPosition": "キャンバスの位置",
"cursorPosition": "カーソルの位置",
"previous": "前",
"next": "次",
"accept": "同意",
"showHide": "表示/非表示",
"discardAll": "すべて破棄",
"snapToGrid": "グリッドにスナップ"
},
"accessibility": {
"modelSelect": "モデルを選択",
"invokeProgressBar": "進捗バー",
"reset": "リセット",
"uploadImage": "画像をアップロード",
"previousImage": "前の画像",
"nextImage": "次の画像",
"useThisParameter": "このパラメータを使用する",
"copyMetadataJson": "メタデータをコピー(JSON)",
"zoomIn": "ズームイン",
"exitViewer": "ビューアーを終了",
"zoomOut": "ズームアウト",
"rotateCounterClockwise": "反時計回りに回転",
"rotateClockwise": "時計回りに回転",
"flipHorizontally": "水平方向に反転",
"flipVertically": "垂直方向に反転",
"toggleAutoscroll": "自動スクロールの切替",
"modifyConfig": "Modify Config",
"toggleLogViewer": "Log Viewerの切替",
"showOptionsPanel": "サイドパネルを表示",
"showGalleryPanel": "ギャラリーパネルを表示",
"menu": "メニュー",
"loadMore": "さらに読み込む"
},
"controlnet": {
"resize": "リサイズ",
"showAdvanced": "高度な設定を表示",
"addT2IAdapter": "$t(common.t2iAdapter)を追加",
"importImageFromCanvas": "キャンバスから画像をインポート",
"lineartDescription": "画像を線画に変換",
"importMaskFromCanvas": "キャンバスからマスクをインポート",
"hideAdvanced": "高度な設定を非表示",
"ipAdapterModel": "アダプターモデル",
"resetControlImage": "コントロール画像をリセット",
"beginEndStepPercent": "開始 / 終了ステップパーセンテージ",
"duplicate": "複製",
"balanced": "バランス",
"prompt": "プロンプト",
"depthMidasDescription": "Midasを使用して深度マップを生成",
"openPoseDescription": "Openposeを使用してポーズを推定",
"control": "コントロール",
"resizeMode": "リサイズモード",
"weight": "重み",
"selectModel": "モデルを選択",
"crop": "切り抜き",
"w": "幅",
"processor": "プロセッサー",
"addControlNet": "$t(common.controlNet)を追加",
"none": "なし",
"incompatibleBaseModel": "互換性のないベースモデル:",
"enableControlnet": "コントロールネットを有効化",
"detectResolution": "検出解像度",
"controlNetT2IMutexDesc": "$t(common.controlNet)と$t(common.t2iAdapter)の同時使用は現在サポートされていません。",
"pidiDescription": "PIDI画像処理",
"controlMode": "コントロールモード",
"fill": "塗りつぶし",
"cannyDescription": "Canny 境界検出",
"addIPAdapter": "$t(common.ipAdapter)を追加",
"colorMapDescription": "画像からカラーマップを生成",
"lineartAnimeDescription": "アニメスタイルの線画処理",
"imageResolution": "画像解像度",
"megaControl": "メガコントロール",
"lowThreshold": "最低閾値",
"autoConfigure": "プロセッサーを自動設定",
"highThreshold": "最大閾値",
"saveControlImage": "コントロール画像を保存",
"toggleControlNet": "このコントロールネットを切り替え",
"delete": "削除",
"controlAdapter_other": "コントロールアダプター",
"colorMapTileSize": "タイルサイズ",
"ipAdapterImageFallback": "IP Adapterの画像が選択されていません",
"mediapipeFaceDescription": "Mediapipeを使用して顔を検出",
"depthZoeDescription": "Zoeを使用して深度マップを生成",
"setControlImageDimensions": "コントロール画像のサイズを幅と高さにセット",
"resetIPAdapterImage": "IP Adapterの画像をリセット",
"handAndFace": "手と顔",
"enableIPAdapter": "IP Adapterを有効化",
"amult": "a_mult",
"contentShuffleDescription": "画像の内容をシャッフルします",
"bgth": "bg_th",
"controlNetEnabledT2IDisabled": "$t(common.controlNet) が有効化され、$t(common.t2iAdapter)s が無効化されました",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"t2iEnabledControlNetDisabled": "$t(common.t2iAdapter) が有効化され、$t(common.controlNet)s が無効化されました",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"minConfidence": "最小確信度",
"colorMap": "Color",
"noneDescription": "処理は行われていません",
"canny": "Canny",
"hedDescription": "階層的エッジ検出",
"maxFaces": "顔の最大数"
},
"metadata": {
"seamless": "シームレス",
"Threshold": "ノイズ閾値",
"seed": "シード",
"width": "幅",
"workflow": "ワークフロー",
"steps": "ステップ",
"scheduler": "スケジューラー",
"positivePrompt": "ポジティブプロンプト",
"strength": "Image to Image 強度",
"perlin": "パーリンノイズ",
"recallParameters": "パラメータを呼び出す"
},
"queue": {
"queueEmpty": "キューが空です",
"pauseSucceeded": "処理が一時停止されました",
"queueFront": "キューの先頭へ追加",
"queueBack": "キューに追加",
"queueCountPrediction": "{{predicted}}をキューに追加",
"queuedCount": "保留中 {{pending}}",
"pause": "一時停止",
"queue": "キュー",
"pauseTooltip": "処理を一時停止",
"cancel": "キャンセル",
"queueTotal": "合計 {{total}}",
"resumeSucceeded": "処理が再開されました",
"resumeTooltip": "処理を再開",
"resume": "再会",
"status": "ステータス",
"pruneSucceeded": "キューから完了アイテム{{item_count}}件を削除しました",
"cancelTooltip": "現在のアイテムをキャンセル",
"in_progress": "進行中",
"notReady": "キューに追加できません",
"batchFailedToQueue": "バッチをキューに追加できませんでした",
"completed": "完了",
"batchValues": "バッチの値",
"cancelFailed": "アイテムのキャンセルに問題があります",
"batchQueued": "バッチをキューに追加しました",
"pauseFailed": "処理の一時停止に問題があります",
"clearFailed": "キューのクリアに問題があります",
"front": "先頭",
"clearSucceeded": "キューがクリアされました",
"pruneTooltip": "{{item_count}} の完了アイテムを削除",
"cancelSucceeded": "アイテムがキャンセルされました",
"batchQueuedDesc_other": "{{count}} セッションをキューの{{direction}}に追加しました",
"graphQueued": "グラフをキューに追加しました",
"batch": "バッチ",
"clearQueueAlertDialog": "キューをクリアすると、処理中のアイテムは直ちにキャンセルされ、キューは完全にクリアされます。",
"pending": "保留中",
"resumeFailed": "処理の再開に問題があります",
"clear": "クリア",
"total": "合計",
"canceled": "キャンセル",
"pruneFailed": "キューの削除に問題があります",
"cancelBatchSucceeded": "バッチがキャンセルされました",
"clearTooltip": "全てのアイテムをキャンセルしてクリア",
"current": "現在",
"failed": "失敗",
"cancelItem": "項目をキャンセル",
"next": "次",
"cancelBatch": "バッチをキャンセル",
"session": "セッション",
"enqueueing": "バッチをキューに追加",
"queueMaxExceeded": "{{max_queue_size}} の最大値を超えたため、{{skip}} をスキップします",
"cancelBatchFailed": "バッチのキャンセルに問題があります",
"clearQueueAlertDialog2": "キューをクリアしてもよろしいですか?",
"item": "アイテム",
"graphFailedToQueue": "グラフをキューに追加できませんでした"
},
"models": {
"noMatchingModels": "一致するモデルがありません",
"loading": "読み込み中",
"noMatchingLoRAs": "一致するLoRAがありません",
"noLoRAsAvailable": "使用可能なLoRAがありません",
"noModelsAvailable": "使用可能なモデルがありません",
"selectModel": "モデルを選択してください",
"selectLoRA": "LoRAを選択してください"
},
"nodes": {
"addNode": "ノードを追加",
"boardField": "ボード",
"boolean": "ブーリアン",
"boardFieldDescription": "ギャラリーボード",
"addNodeToolTip": "ノードを追加 (Shift+A, Space)",
"booleanPolymorphicDescription": "ブーリアンのコレクション。",
"inputField": "入力フィールド",
"latentsFieldDescription": "潜在空間はノード間で伝達できます。",
"floatCollectionDescription": "浮動小数点のコレクション。",
"missingTemplate": "テンプレートが見つかりません",
"ipAdapterPolymorphicDescription": "IP-Adaptersのコレクション。",
"latentsPolymorphicDescription": "潜在空間はノード間で伝達できます。",
"colorFieldDescription": "RGBAカラー。",
"ipAdapterCollection": "IP-Adapterコレクション",
"conditioningCollection": "条件付きコレクション",
"hideGraphNodes": "グラフオーバーレイを非表示",
"loadWorkflow": "ワークフローを読み込み",
"integerPolymorphicDescription": "整数のコレクション。",
"hideLegendNodes": "フィールドタイプの凡例を非表示",
"float": "浮動小数点",
"booleanCollectionDescription": "ブーリアンのコレクション。",
"integer": "整数",
"colorField": "カラー",
"nodeTemplate": "ノードテンプレート",
"integerDescription": "整数は小数点を持たない数値です。",
"imagePolymorphicDescription": "画像のコレクション。",
"doesNotExist": "存在しません",
"ipAdapterCollectionDescription": "IP-Adaptersのコレクション。",
"inputMayOnlyHaveOneConnection": "入力は1つの接続しか持つことができません",
"nodeOutputs": "ノード出力",
"currentImageDescription": "ノードエディタ内の現在の画像を表示",
"downloadWorkflow": "ワークフローのJSONをダウンロード",
"integerCollection": "整数コレクション",
"collectionItem": "コレクションアイテム",
"fieldTypesMustMatch": "フィールドタイプが一致している必要があります",
"edge": "輪郭",
"inputNode": "入力ノード",
"imageField": "画像",
"animatedEdgesHelp": "選択したエッジおよび選択したノードに接続されたエッジをアニメーション化します",
"cannotDuplicateConnection": "重複した接続は作れません",
"noWorkflow": "ワークフローがありません",
"integerCollectionDescription": "整数のコレクション。",
"colorPolymorphicDescription": "カラーのコレクション。",
"missingCanvaInitImage": "キャンバスの初期画像が見つかりません",
"clipFieldDescription": "トークナイザーとテキストエンコーダーサブモデル。",
"fullyContainNodesHelp": "ノードは選択ボックス内に完全に存在する必要があります",
"clipField": "クリップ",
"nodeType": "ノードタイプ",
"executionStateInProgress": "処理中",
"executionStateError": "エラー",
"ipAdapterModel": "IP-Adapterモデル",
"ipAdapterDescription": "イメージプロンプトアダプター(IP-Adapter)。",
"missingCanvaInitMaskImages": "キャンバスの初期画像およびマスクが見つかりません",
"hideMinimapnodes": "ミニマップを非表示",
"fitViewportNodes": "全体を表示",
"executionStateCompleted": "完了",
"node": "ノード",
"currentImage": "現在の画像",
"controlField": "コントロール",
"booleanDescription": "ブーリアンはtrueかfalseです。",
"collection": "コレクション",
"ipAdapterModelDescription": "IP-Adapterモデルフィールド",
"cannotConnectInputToInput": "入力から入力には接続できません",
"invalidOutputSchema": "無効な出力スキーマ",
"floatDescription": "浮動小数点は、小数点を持つ数値です。",
"floatPolymorphicDescription": "浮動小数点のコレクション。",
"floatCollection": "浮動小数点コレクション",
"latentsField": "潜在空間",
"cannotConnectOutputToOutput": "出力から出力には接続できません",
"booleanCollection": "ブーリアンコレクション",
"cannotConnectToSelf": "自身のノードには接続できません",
"inputFields": "入力フィールド(複数)",
"colorCodeEdges": "カラー-Code Edges",
"imageCollectionDescription": "画像のコレクション。",
"loadingNodes": "ノードを読み込み中...",
"imageCollection": "画像コレクション"
},
"boards": {
"autoAddBoard": "自動追加するボード",
"move": "移動",
"menuItemAutoAdd": "このボードに自動追加",
"myBoard": "マイボード",
"searchBoard": "ボードを検索...",
"noMatching": "一致するボードがありません",
"selectBoard": "ボードを選択",
"cancel": "キャンセル",
"addBoard": "ボードを追加",
"uncategorized": "未分類",
"downloadBoard": "ボードをダウンロード",
"changeBoard": "ボードを変更",
"loading": "ロード中...",
"topMessage": "このボードには、以下の機能で使用されている画像が含まれています:",
"bottomMessage": "このボードおよび画像を削除すると、現在これらを利用している機能はリセットされます。",
"clearSearch": "検索をクリア"
},
"embedding": {
"noMatchingEmbedding": "一致する埋め込みがありません",
"addEmbedding": "埋め込みを追加",
"incompatibleModel": "互換性のないベースモデル:"
},
"invocationCache": {
"invocationCache": "呼び出しキャッシュ",
"clearSucceeded": "呼び出しキャッシュをクリアしました",
"clearFailed": "呼び出しキャッシュのクリアに問題があります",
"enable": "有効",
"clear": "クリア",
"maxCacheSize": "最大キャッシュサイズ",
"cacheSize": "キャッシュサイズ"
}
}

View File

@ -1,76 +0,0 @@
{
"common": {
"languagePickerLabel": "언어 설정",
"reportBugLabel": "버그 리포트",
"githubLabel": "Github",
"settingsLabel": "설정",
"langArabic": "العربية",
"langEnglish": "English",
"langDutch": "Nederlands",
"unifiedCanvas": "통합 캔버스",
"langFrench": "Français",
"langGerman": "Deutsch",
"langItalian": "Italiano",
"langJapanese": "日本語",
"langBrPortuguese": "Português do Brasil",
"langRussian": "Русский",
"langSpanish": "Español",
"nodes": "노드",
"nodesDesc": "이미지 생성을 위한 노드 기반 시스템은 현재 개발 중입니다. 이 놀라운 기능에 대한 업데이트를 계속 지켜봐 주세요.",
"postProcessing": "후처리",
"postProcessDesc2": "보다 진보된 후처리 작업을 위한 전용 UI가 곧 출시될 예정입니다.",
"postProcessDesc3": "Invoke AI CLI는 Embiggen을 비롯한 다양한 기능을 제공합니다.",
"training": "학습",
"trainingDesc1": "Textual Inversion과 Dreambooth를 이용해 Web UI에서 나만의 embedding 및 checkpoint를 교육하기 위한 전용 워크플로우입니다.",
"trainingDesc2": "InvokeAI는 이미 메인 스크립트를 사용한 Textual Inversion를 이용한 Custom embedding 학습을 지원하고 있습니다.",
"upload": "업로드",
"close": "닫기",
"load": "로드",
"back": "뒤로 가기",
"statusConnected": "연결됨",
"statusDisconnected": "연결 끊김",
"statusError": "에러",
"statusPreparing": "준비 중",
"langSimplifiedChinese": "简体中文",
"statusGenerating": "생성 중",
"statusGeneratingTextToImage": "텍스트->이미지 생성",
"statusGeneratingInpainting": "인페인팅 생성",
"statusGeneratingOutpainting": "아웃페인팅 생성",
"statusGenerationComplete": "생성 완료",
"statusRestoringFaces": "얼굴 복원",
"statusRestoringFacesGFPGAN": "얼굴 복원 (GFPGAN)",
"statusRestoringFacesCodeFormer": "얼굴 복원 (CodeFormer)",
"statusUpscaling": "업스케일링",
"statusUpscalingESRGAN": "업스케일링 (ESRGAN)",
"statusLoadingModel": "모델 로딩중",
"statusModelChanged": "모델 변경됨",
"statusConvertingModel": "모델 컨버팅",
"statusModelConverted": "모델 컨버팅됨",
"statusMergedModels": "모델 병합됨",
"statusMergingModels": "모델 병합중",
"hotkeysLabel": "단축키 설정",
"img2img": "이미지->이미지",
"discordLabel": "Discord",
"langPolish": "Polski",
"postProcessDesc1": "Invoke AI는 다양한 후처리 기능을 제공합니다. 이미지 업스케일링 및 얼굴 복원은 이미 Web UI에서 사용할 수 있습니다. 텍스트->이미지 또는 이미지->이미지 탭의 고급 옵션 메뉴에서 사용할 수 있습니다. 또한 현재 이미지 표시 위, 또는 뷰어에서 액션 버튼을 사용하여 이미지를 직접 처리할 수도 있습니다.",
"langUkranian": "Украї́нська",
"statusProcessingCanceled": "처리 취소됨",
"statusGeneratingImageToImage": "이미지->이미지 생성",
"statusProcessingComplete": "처리 완료",
"statusIterationComplete": "반복(Iteration) 완료",
"statusSavingImage": "이미지 저장"
},
"gallery": {
"showGenerations": "생성된 이미지 보기",
"generations": "생성된 이미지",
"uploads": "업로드된 이미지",
"showUploads": "업로드된 이미지 보기",
"galleryImageSize": "이미지 크기",
"galleryImageResetSize": "사이즈 리셋",
"gallerySettings": "갤러리 설정",
"maintainAspectRatio": "종횡비 유지"
},
"unifiedCanvas": {
"betaPreserveMasked": "마스크 레이어 유지"
}
}

View File

@ -1 +0,0 @@
{}

File diff suppressed because it is too large Load Diff

View File

@ -1,461 +0,0 @@
{
"common": {
"hotkeysLabel": "Skróty klawiszowe",
"languagePickerLabel": "Wybór języka",
"reportBugLabel": "Zgłoś błąd",
"settingsLabel": "Ustawienia",
"img2img": "Obraz na obraz",
"unifiedCanvas": "Tryb uniwersalny",
"nodes": "Węzły",
"langPolish": "Polski",
"nodesDesc": "W tym miejscu powstanie graficzny system generowania obrazów oparty na węzłach. Jest na co czekać!",
"postProcessing": "Przetwarzanie końcowe",
"postProcessDesc1": "Invoke AI oferuje wiele opcji przetwarzania końcowego. Z poziomu przeglądarki dostępne jest już zwiększanie rozdzielczości oraz poprawianie twarzy. Znajdziesz je wśród ustawień w trybach \"Tekst na obraz\" oraz \"Obraz na obraz\". Są również obecne w pasku menu wyświetlanym nad podglądem wygenerowanego obrazu.",
"postProcessDesc2": "Niedługo zostanie udostępniony specjalny interfejs, który będzie oferował jeszcze więcej możliwości.",
"postProcessDesc3": "Z poziomu linii poleceń już teraz dostępne są inne opcje, takie jak skalowanie obrazu metodą Embiggen.",
"training": "Trenowanie",
"trainingDesc1": "W tym miejscu dostępny będzie system przeznaczony do tworzenia własnych zanurzeń (ang. embeddings) i punktów kontrolnych przy użyciu metod w rodzaju inwersji tekstowej lub Dreambooth.",
"trainingDesc2": "Obecnie jest możliwe tworzenie własnych zanurzeń przy użyciu skryptów wywoływanych z linii poleceń.",
"upload": "Prześlij",
"close": "Zamknij",
"load": "Załaduj",
"statusConnected": "Połączono z serwerem",
"statusDisconnected": "Odłączono od serwera",
"statusError": "Błąd",
"statusPreparing": "Przygotowywanie",
"statusProcessingCanceled": "Anulowano przetwarzanie",
"statusProcessingComplete": "Zakończono przetwarzanie",
"statusGenerating": "Przetwarzanie",
"statusGeneratingTextToImage": "Przetwarzanie tekstu na obraz",
"statusGeneratingImageToImage": "Przetwarzanie obrazu na obraz",
"statusGeneratingInpainting": "Przemalowywanie",
"statusGeneratingOutpainting": "Domalowywanie",
"statusGenerationComplete": "Zakończono generowanie",
"statusIterationComplete": "Zakończono iterację",
"statusSavingImage": "Zapisywanie obrazu",
"statusRestoringFaces": "Poprawianie twarzy",
"statusRestoringFacesGFPGAN": "Poprawianie twarzy (GFPGAN)",
"statusRestoringFacesCodeFormer": "Poprawianie twarzy (CodeFormer)",
"statusUpscaling": "Powiększanie obrazu",
"statusUpscalingESRGAN": "Powiększanie (ESRGAN)",
"statusLoadingModel": "Wczytywanie modelu",
"statusModelChanged": "Zmieniono model",
"githubLabel": "GitHub",
"discordLabel": "Discord",
"darkMode": "Tryb ciemny",
"lightMode": "Tryb jasny"
},
"gallery": {
"generations": "Wygenerowane",
"showGenerations": "Pokaż wygenerowane obrazy",
"uploads": "Przesłane",
"showUploads": "Pokaż przesłane obrazy",
"galleryImageSize": "Rozmiar obrazów",
"galleryImageResetSize": "Resetuj rozmiar",
"gallerySettings": "Ustawienia galerii",
"maintainAspectRatio": "Zachowaj proporcje",
"autoSwitchNewImages": "Przełączaj na nowe obrazy",
"singleColumnLayout": "Układ jednokolumnowy",
"allImagesLoaded": "Koniec listy",
"loadMore": "Wczytaj więcej",
"noImagesInGallery": "Brak obrazów w galerii"
},
"hotkeys": {
"keyboardShortcuts": "Skróty klawiszowe",
"appHotkeys": "Podstawowe",
"generalHotkeys": "Pomocnicze",
"galleryHotkeys": "Galeria",
"unifiedCanvasHotkeys": "Tryb uniwersalny",
"invoke": {
"title": "Wywołaj",
"desc": "Generuje nowy obraz"
},
"cancel": {
"title": "Anuluj",
"desc": "Zatrzymuje generowanie obrazu"
},
"focusPrompt": {
"title": "Aktywuj pole tekstowe",
"desc": "Aktywuje pole wprowadzania sugestii"
},
"toggleOptions": {
"title": "Przełącz panel opcji",
"desc": "Wysuwa lub chowa panel opcji"
},
"pinOptions": {
"title": "Przypnij opcje",
"desc": "Przypina panel opcji"
},
"toggleViewer": {
"title": "Przełącz podgląd",
"desc": "Otwiera lub zamyka widok podglądu"
},
"toggleGallery": {
"title": "Przełącz galerię",
"desc": "Wysuwa lub chowa galerię"
},
"maximizeWorkSpace": {
"title": "Powiększ obraz roboczy",
"desc": "Chowa wszystkie panele, zostawia tylko podgląd obrazu"
},
"changeTabs": {
"title": "Przełącznie trybu",
"desc": "Przełącza na n-ty tryb pracy"
},
"consoleToggle": {
"title": "Przełącz konsolę",
"desc": "Otwiera lub chowa widok konsoli"
},
"setPrompt": {
"title": "Skopiuj sugestie",
"desc": "Kopiuje sugestie z aktywnego obrazu"
},
"setSeed": {
"title": "Skopiuj inicjator",
"desc": "Kopiuje inicjator z aktywnego obrazu"
},
"setParameters": {
"title": "Skopiuj wszystko",
"desc": "Kopiuje wszystkie parametry z aktualnie aktywnego obrazu"
},
"restoreFaces": {
"title": "Popraw twarze",
"desc": "Uruchamia proces poprawiania twarzy dla aktywnego obrazu"
},
"upscale": {
"title": "Powiększ",
"desc": "Uruchamia proces powiększania aktywnego obrazu"
},
"showInfo": {
"title": "Pokaż informacje",
"desc": "Pokazuje metadane zapisane w aktywnym obrazie"
},
"sendToImageToImage": {
"title": "Użyj w trybie \"Obraz na obraz\"",
"desc": "Ustawia aktywny obraz jako źródło w trybie \"Obraz na obraz\""
},
"deleteImage": {
"title": "Usuń obraz",
"desc": "Usuwa aktywny obraz"
},
"closePanels": {
"title": "Zamknij panele",
"desc": "Zamyka wszystkie otwarte panele"
},
"previousImage": {
"title": "Poprzedni obraz",
"desc": "Aktywuje poprzedni obraz z galerii"
},
"nextImage": {
"title": "Następny obraz",
"desc": "Aktywuje następny obraz z galerii"
},
"toggleGalleryPin": {
"title": "Przypnij galerię",
"desc": "Przypina lub odpina widok galerii"
},
"increaseGalleryThumbSize": {
"title": "Powiększ obrazy",
"desc": "Powiększa rozmiar obrazów w galerii"
},
"decreaseGalleryThumbSize": {
"title": "Pomniejsz obrazy",
"desc": "Pomniejsza rozmiar obrazów w galerii"
},
"selectBrush": {
"title": "Aktywuj pędzel",
"desc": "Aktywuje narzędzie malowania"
},
"selectEraser": {
"title": "Aktywuj gumkę",
"desc": "Aktywuje narzędzie usuwania"
},
"decreaseBrushSize": {
"title": "Zmniejsz rozmiar narzędzia",
"desc": "Zmniejsza rozmiar aktywnego narzędzia"
},
"increaseBrushSize": {
"title": "Zwiększ rozmiar narzędzia",
"desc": "Zwiększa rozmiar aktywnego narzędzia"
},
"decreaseBrushOpacity": {
"title": "Zmniejsz krycie",
"desc": "Zmniejsza poziom krycia pędzla"
},
"increaseBrushOpacity": {
"title": "Zwiększ",
"desc": "Zwiększa poziom krycia pędzla"
},
"moveTool": {
"title": "Aktywuj przesunięcie",
"desc": "Włącza narzędzie przesuwania"
},
"fillBoundingBox": {
"title": "Wypełnij zaznaczenie",
"desc": "Wypełnia zaznaczony obszar aktualnym kolorem pędzla"
},
"eraseBoundingBox": {
"title": "Wyczyść zaznaczenia",
"desc": "Usuwa całą zawartość zaznaczonego obszaru"
},
"colorPicker": {
"title": "Aktywuj pipetę",
"desc": "Włącza narzędzie kopiowania koloru"
},
"toggleSnap": {
"title": "Przyciąganie do siatki",
"desc": "Włącza lub wyłącza opcje przyciągania do siatki"
},
"quickToggleMove": {
"title": "Szybkie przesunięcie",
"desc": "Tymczasowo włącza tryb przesuwania obszaru roboczego"
},
"toggleLayer": {
"title": "Przełącz wartwę",
"desc": "Przełącza pomiędzy warstwą bazową i maskowania"
},
"clearMask": {
"title": "Wyczyść maskę",
"desc": "Usuwa całą zawartość warstwy maskowania"
},
"hideMask": {
"title": "Przełącz maskę",
"desc": "Pokazuje lub ukrywa podgląd maski"
},
"showHideBoundingBox": {
"title": "Przełącz zaznaczenie",
"desc": "Pokazuje lub ukrywa podgląd zaznaczenia"
},
"mergeVisible": {
"title": "Połącz widoczne",
"desc": "Łączy wszystkie widoczne maski w jeden obraz"
},
"saveToGallery": {
"title": "Zapisz w galerii",
"desc": "Zapisuje całą zawartość płótna w galerii"
},
"copyToClipboard": {
"title": "Skopiuj do schowka",
"desc": "Zapisuje zawartość płótna w schowku systemowym"
},
"downloadImage": {
"title": "Pobierz obraz",
"desc": "Zapisuje zawartość płótna do pliku obrazu"
},
"undoStroke": {
"title": "Cofnij",
"desc": "Cofa ostatnie pociągnięcie pędzlem"
},
"redoStroke": {
"title": "Ponawia",
"desc": "Ponawia cofnięte pociągnięcie pędzlem"
},
"resetView": {
"title": "Resetuj widok",
"desc": "Centruje widok płótna"
},
"previousStagingImage": {
"title": "Poprzedni obraz tymczasowy",
"desc": "Pokazuje poprzedni obraz tymczasowy"
},
"nextStagingImage": {
"title": "Następny obraz tymczasowy",
"desc": "Pokazuje następny obraz tymczasowy"
},
"acceptStagingImage": {
"title": "Akceptuj obraz tymczasowy",
"desc": "Akceptuje aktualnie wybrany obraz tymczasowy"
}
},
"parameters": {
"images": "L. obrazów",
"steps": "L. kroków",
"cfgScale": "Skala CFG",
"width": "Szerokość",
"height": "Wysokość",
"seed": "Inicjator",
"randomizeSeed": "Losowy inicjator",
"shuffle": "Losuj",
"noiseThreshold": "Poziom szumu",
"perlinNoise": "Szum Perlina",
"variations": "Wariacje",
"variationAmount": "Poziom zróżnicowania",
"seedWeights": "Wariacje inicjatora",
"faceRestoration": "Poprawianie twarzy",
"restoreFaces": "Popraw twarze",
"type": "Metoda",
"strength": "Siła",
"upscaling": "Powiększanie",
"upscale": "Powiększ",
"upscaleImage": "Powiększ obraz",
"scale": "Skala",
"otherOptions": "Pozostałe opcje",
"seamlessTiling": "Płynne scalanie",
"hiresOptim": "Optymalizacja wys. rozdzielczości",
"imageFit": "Przeskaluj oryginalny obraz",
"codeformerFidelity": "Dokładność",
"scaleBeforeProcessing": "Tryb skalowania",
"scaledWidth": "Sk. do szer.",
"scaledHeight": "Sk. do wys.",
"infillMethod": "Metoda wypełniania",
"tileSize": "Rozmiar kafelka",
"boundingBoxHeader": "Zaznaczony obszar",
"seamCorrectionHeader": "Scalanie",
"infillScalingHeader": "Wypełnienie i skalowanie",
"img2imgStrength": "Wpływ sugestii na obraz",
"toggleLoopback": "Wł/wył sprzężenie zwrotne",
"sendTo": "Wyślij do",
"sendToImg2Img": "Użyj w trybie \"Obraz na obraz\"",
"sendToUnifiedCanvas": "Użyj w trybie uniwersalnym",
"copyImageToLink": "Skopiuj adres obrazu",
"downloadImage": "Pobierz obraz",
"openInViewer": "Otwórz podgląd",
"closeViewer": "Zamknij podgląd",
"usePrompt": "Skopiuj sugestie",
"useSeed": "Skopiuj inicjator",
"useAll": "Skopiuj wszystko",
"useInitImg": "Użyj oryginalnego obrazu",
"info": "Informacje",
"initialImage": "Oryginalny obraz",
"showOptionsPanel": "Pokaż panel ustawień"
},
"settings": {
"models": "Modele",
"displayInProgress": "Podgląd generowanego obrazu",
"saveSteps": "Zapisuj obrazy co X kroków",
"confirmOnDelete": "Potwierdzaj usuwanie",
"displayHelpIcons": "Wyświetlaj ikony pomocy",
"enableImageDebugging": "Włącz debugowanie obrazu",
"resetWebUI": "Zresetuj interfejs",
"resetWebUIDesc1": "Resetowanie interfejsu wyczyści jedynie dane i ustawienia zapisane w pamięci przeglądarki. Nie usunie żadnych obrazów z dysku.",
"resetWebUIDesc2": "Jeśli obrazy nie są poprawnie wyświetlane w galerii lub doświadczasz innych problemów, przed zgłoszeniem błędu spróbuj zresetować interfejs.",
"resetComplete": "Interfejs został zresetowany. Odśwież stronę, aby załadować ponownie."
},
"toast": {
"tempFoldersEmptied": "Wyczyszczono folder tymczasowy",
"uploadFailed": "Błąd przesyłania obrazu",
"uploadFailedUnableToLoadDesc": "Błąd wczytywania obrazu",
"downloadImageStarted": "Rozpoczęto pobieranie",
"imageCopied": "Skopiowano obraz",
"imageLinkCopied": "Skopiowano link do obrazu",
"imageNotLoaded": "Nie wczytano obrazu",
"imageNotLoadedDesc": "Nie znaleziono obrazu, który można użyć w Obraz na obraz",
"imageSavedToGallery": "Zapisano obraz w galerii",
"canvasMerged": "Scalono widoczne warstwy",
"sentToImageToImage": "Wysłano do Obraz na obraz",
"sentToUnifiedCanvas": "Wysłano do trybu uniwersalnego",
"parametersSet": "Ustawiono parametry",
"parametersNotSet": "Nie ustawiono parametrów",
"parametersNotSetDesc": "Nie znaleziono metadanych dla wybranego obrazu",
"parametersFailed": "Problem z wczytaniem parametrów",
"parametersFailedDesc": "Problem z wczytaniem oryginalnego obrazu",
"seedSet": "Ustawiono inicjator",
"seedNotSet": "Nie ustawiono inicjatora",
"seedNotSetDesc": "Nie znaleziono inicjatora dla wybranego obrazu",
"promptSet": "Ustawiono sugestie",
"promptNotSet": "Nie ustawiono sugestii",
"promptNotSetDesc": "Nie znaleziono zapytania dla wybranego obrazu",
"upscalingFailed": "Błąd powiększania obrazu",
"faceRestoreFailed": "Błąd poprawiania twarzy",
"metadataLoadFailed": "Błąd wczytywania metadanych",
"initialImageSet": "Ustawiono oryginalny obraz",
"initialImageNotSet": "Nie ustawiono oryginalnego obrazu",
"initialImageNotSetDesc": "Błąd wczytywania oryginalnego obrazu"
},
"tooltip": {
"feature": {
"prompt": "To pole musi zawierać cały tekst sugestii, w tym zarówno opis oczekiwanej zawartości, jak i terminy stylistyczne. Chociaż wagi mogą być zawarte w sugestiach, inne parametry znane z linii poleceń nie będą działać.",
"gallery": "W miarę generowania nowych wywołań w tym miejscu będą wyświetlane pliki z katalogu wyjściowego. Obrazy mają dodatkowo opcje konfiguracji nowych wywołań.",
"other": "Opcje umożliwią alternatywne tryby przetwarzania. Płynne scalanie będzie pomocne przy generowaniu powtarzających się wzorów. Optymalizacja wysokiej rozdzielczości wykonuje dwuetapowy cykl generowania i powinna być używana przy wyższych rozdzielczościach, gdy potrzebny jest bardziej spójny obraz/kompozycja.",
"seed": "Inicjator określa początkowy zestaw szumów, który kieruje procesem odszumiania i może być losowy lub pobrany z poprzedniego wywołania. Funkcja \"Poziom szumu\" może być użyta do złagodzenia saturacji przy wyższych wartościach CFG (spróbuj między 0-10), a Perlin może być użyty w celu dodania wariacji do twoich wyników.",
"variations": "Poziom zróżnicowania przyjmuje wartości od 0 do 1 i pozwala zmienić obraz wyjściowy dla ustawionego inicjatora. Interesujące wyniki uzyskuje się zwykle między 0,1 a 0,3.",
"upscale": "Korzystając z ESRGAN, możesz zwiększyć rozdzielczość obrazu wyjściowego bez konieczności zwiększania szerokości/wysokości w ustawieniach początkowych.",
"faceCorrection": "Poprawianie twarzy próbuje identyfikować twarze na obrazie wyjściowym i korygować wszelkie defekty/nieprawidłowości. W GFPGAN im większa siła, tym mocniejszy efekt. W metodzie Codeformer wyższa wartość oznacza bardziej wierne odtworzenie oryginalnej twarzy, nawet kosztem siły korekcji.",
"imageToImage": "Tryb \"Obraz na obraz\" pozwala na załadowanie obrazu wzorca, który obok wprowadzonych sugestii zostanie użyty porzez InvokeAI do wygenerowania nowego obrazu. Niższa wartość tego ustawienia będzie bardziej przypominać oryginalny obraz. Akceptowane są wartości od 0 do 1, a zalecany jest zakres od 0,25 do 0,75.",
"boundingBox": "Zaznaczony obszar odpowiada ustawieniom wysokości i szerokości w trybach Tekst na obraz i Obraz na obraz. Jedynie piksele znajdujące się w obszarze zaznaczenia zostaną uwzględnione podczas wywoływania nowego obrazu.",
"seamCorrection": "Opcje wpływające na poziom widoczności szwów, które mogą wystąpić, gdy wygenerowany obraz jest ponownie wklejany na płótno.",
"infillAndScaling": "Zarządzaj metodami wypełniania (używanymi na zamaskowanych lub wymazanych obszarach płótna) i skalowaniem (przydatne w przypadku zaznaczonego obszaru o b. małych rozmiarach)."
}
},
"unifiedCanvas": {
"layer": "Warstwa",
"base": "Główna",
"mask": "Maska",
"maskingOptions": "Opcje maski",
"enableMask": "Włącz maskę",
"preserveMaskedArea": "Zachowaj obszar",
"clearMask": "Wyczyść maskę",
"brush": "Pędzel",
"eraser": "Gumka",
"fillBoundingBox": "Wypełnij zaznaczenie",
"eraseBoundingBox": "Wyczyść zaznaczenie",
"colorPicker": "Pipeta",
"brushOptions": "Ustawienia pędzla",
"brushSize": "Rozmiar",
"move": "Przesunięcie",
"resetView": "Resetuj widok",
"mergeVisible": "Scal warstwy",
"saveToGallery": "Zapisz w galerii",
"copyToClipboard": "Skopiuj do schowka",
"downloadAsImage": "Zapisz do pliku",
"undo": "Cofnij",
"redo": "Ponów",
"clearCanvas": "Wyczyść obraz",
"canvasSettings": "Ustawienia obrazu",
"showIntermediates": "Pokazuj stany pośrednie",
"showGrid": "Pokazuj siatkę",
"snapToGrid": "Przyciągaj do siatki",
"darkenOutsideSelection": "Przyciemnij poza zaznaczeniem",
"autoSaveToGallery": "Zapisuj automatycznie do galerii",
"saveBoxRegionOnly": "Zapisuj tylko zaznaczony obszar",
"limitStrokesToBox": "Rysuj tylko wewnątrz zaznaczenia",
"showCanvasDebugInfo": "Informacje dla developera",
"clearCanvasHistory": "Wyczyść historię operacji",
"clearHistory": "Wyczyść historię",
"clearCanvasHistoryMessage": "Wyczyszczenie historii nie będzie miało wpływu na sam obraz, ale niemożliwe będzie cofnięcie i otworzenie wszystkich wykonanych do tej pory operacji.",
"clearCanvasHistoryConfirm": "Czy na pewno chcesz wyczyścić historię operacji?",
"emptyTempImageFolder": "Wyczyść folder tymczasowy",
"emptyFolder": "Wyczyść",
"emptyTempImagesFolderMessage": "Wyczyszczenie folderu tymczasowego spowoduje usunięcie obrazu i maski w trybie uniwersalnym, historii operacji, oraz wszystkich wygenerowanych ale niezapisanych obrazów.",
"emptyTempImagesFolderConfirm": "Czy na pewno chcesz wyczyścić folder tymczasowy?",
"activeLayer": "Warstwa aktywna",
"canvasScale": "Poziom powiększenia",
"boundingBox": "Rozmiar zaznaczenia",
"scaledBoundingBox": "Rozmiar po skalowaniu",
"boundingBoxPosition": "Pozycja zaznaczenia",
"canvasDimensions": "Rozmiar płótna",
"canvasPosition": "Pozycja płótna",
"cursorPosition": "Pozycja kursora",
"previous": "Poprzedni",
"next": "Następny",
"accept": "Zaakceptuj",
"showHide": "Pokaż/Ukryj",
"discardAll": "Odrzuć wszystkie",
"betaClear": "Wyczyść",
"betaDarkenOutside": "Przyciemnienie",
"betaLimitToBox": "Ogranicz do zaznaczenia",
"betaPreserveMasked": "Zachowaj obszar"
},
"accessibility": {
"zoomIn": "Przybliż",
"exitViewer": "Wyjdź z podglądu",
"modelSelect": "Wybór modelu",
"invokeProgressBar": "Pasek postępu",
"reset": "Zerowanie",
"useThisParameter": "Użyj tego parametru",
"copyMetadataJson": "Kopiuj metadane JSON",
"uploadImage": "Wgrywanie obrazu",
"previousImage": "Poprzedni obraz",
"nextImage": "Następny obraz",
"zoomOut": "Oddal",
"rotateClockwise": "Obróć zgodnie ze wskazówkami zegara",
"rotateCounterClockwise": "Obróć przeciwnie do wskazówek zegara",
"flipHorizontally": "Odwróć horyzontalnie",
"flipVertically": "Odwróć wertykalnie",
"modifyConfig": "Modyfikuj ustawienia",
"toggleAutoscroll": "Przełącz autoprzewijanie",
"toggleLogViewer": "Przełącz podgląd logów",
"showOptionsPanel": "Pokaż panel opcji",
"menu": "Menu"
}
}

View File

@ -1,602 +0,0 @@
{
"common": {
"langArabic": "العربية",
"reportBugLabel": "Reportar Bug",
"settingsLabel": "Configurações",
"langBrPortuguese": "Português do Brasil",
"languagePickerLabel": "Seletor de Idioma",
"langDutch": "Nederlands",
"langEnglish": "English",
"hotkeysLabel": "Hotkeys",
"langPolish": "Polski",
"langFrench": "Français",
"langGerman": "Deutsch",
"langItalian": "Italiano",
"langJapanese": "日本語",
"langSimplifiedChinese": "简体中文",
"langSpanish": "Espanhol",
"langRussian": "Русский",
"langUkranian": "Украї́нська",
"img2img": "Imagem para Imagem",
"unifiedCanvas": "Tela Unificada",
"nodes": "Nós",
"nodesDesc": "Um sistema baseado em nós para a geração de imagens está em desenvolvimento atualmente. Fique atento para atualizações sobre este recurso incrível.",
"postProcessDesc3": "A Interface de Linha de Comando do Invoke AI oferece vários outros recursos, incluindo o Embiggen.",
"postProcessing": "Pós Processamento",
"postProcessDesc1": "O Invoke AI oferece uma ampla variedade de recursos de pós-processamento. O aumento de resolução de imagem e a restauração de rosto já estão disponíveis na interface do usuário da Web. Você pode acessá-los no menu Opções Avançadas das guias Texto para Imagem e Imagem para Imagem. Você também pode processar imagens diretamente, usando os botões de ação de imagem acima da exibição da imagem atual ou no visualizador.",
"postProcessDesc2": "Em breve, uma interface do usuário dedicada será lançada para facilitar fluxos de trabalho de pós-processamento mais avançados.",
"trainingDesc1": "Um fluxo de trabalho dedicado para treinar seus próprios embeddings e checkpoints usando Textual Inversion e Dreambooth da interface da web.",
"trainingDesc2": "O InvokeAI já oferece suporte ao treinamento de embeddings personalizados usando a Inversão Textual por meio do script principal.",
"upload": "Upload",
"statusError": "Erro",
"statusGeneratingTextToImage": "Gerando Texto para Imagem",
"close": "Fechar",
"load": "Abrir",
"back": "Voltar",
"statusConnected": "Conectado",
"statusDisconnected": "Desconectado",
"statusPreparing": "Preparando",
"statusGenerating": "Gerando",
"statusProcessingCanceled": "Processamento Cancelado",
"statusProcessingComplete": "Processamento Completo",
"statusGeneratingImageToImage": "Gerando Imagem para Imagem",
"statusGeneratingInpainting": "Geração de Preenchimento de Lacunas",
"statusIterationComplete": "Iteração Completa",
"statusSavingImage": "Salvando Imagem",
"statusRestoringFacesGFPGAN": "Restaurando Faces (GFPGAN)",
"statusRestoringFaces": "Restaurando Faces",
"statusRestoringFacesCodeFormer": "Restaurando Faces (CodeFormer)",
"statusUpscaling": "Ampliando",
"statusUpscalingESRGAN": "Ampliando (ESRGAN)",
"statusConvertingModel": "Convertendo Modelo",
"statusModelConverted": "Modelo Convertido",
"statusLoadingModel": "Carregando Modelo",
"statusModelChanged": "Modelo Alterado",
"githubLabel": "Github",
"discordLabel": "Discord",
"training": "Treinando",
"statusGeneratingOutpainting": "Geração de Ampliação",
"statusGenerationComplete": "Geração Completa",
"statusMergingModels": "Mesclando Modelos",
"statusMergedModels": "Modelos Mesclados",
"loading": "A carregar",
"loadingInvokeAI": "A carregar Invoke AI",
"langPortuguese": "Português"
},
"gallery": {
"galleryImageResetSize": "Resetar Imagem",
"gallerySettings": "Configurações de Galeria",
"maintainAspectRatio": "Mater Proporções",
"autoSwitchNewImages": "Trocar para Novas Imagens Automaticamente",
"singleColumnLayout": "Disposição em Coluna Única",
"allImagesLoaded": "Todas as Imagens Carregadas",
"loadMore": "Carregar Mais",
"noImagesInGallery": "Sem Imagens na Galeria",
"generations": "Gerações",
"showGenerations": "Mostrar Gerações",
"uploads": "Enviados",
"showUploads": "Mostrar Enviados",
"galleryImageSize": "Tamanho da Imagem"
},
"hotkeys": {
"generalHotkeys": "Atalhos Gerais",
"galleryHotkeys": "Atalhos da Galeria",
"toggleViewer": {
"title": "Ativar Visualizador",
"desc": "Abrir e fechar o Visualizador de Imagens"
},
"maximizeWorkSpace": {
"desc": "Fechar painéis e maximixar área de trabalho",
"title": "Maximizar a Área de Trabalho"
},
"changeTabs": {
"title": "Mudar Guias",
"desc": "Trocar para outra área de trabalho"
},
"consoleToggle": {
"desc": "Abrir e fechar console",
"title": "Ativar Console"
},
"setPrompt": {
"title": "Definir Prompt",
"desc": "Usar o prompt da imagem atual"
},
"sendToImageToImage": {
"desc": "Manda a imagem atual para Imagem Para Imagem",
"title": "Mandar para Imagem Para Imagem"
},
"previousImage": {
"desc": "Mostra a imagem anterior na galeria",
"title": "Imagem Anterior"
},
"nextImage": {
"title": "Próxima Imagem",
"desc": "Mostra a próxima imagem na galeria"
},
"decreaseGalleryThumbSize": {
"desc": "Diminui o tamanho das thumbs na galeria",
"title": "Diminuir Tamanho da Galeria de Imagem"
},
"selectBrush": {
"title": "Selecionar Pincel",
"desc": "Seleciona o pincel"
},
"selectEraser": {
"title": "Selecionar Apagador",
"desc": "Seleciona o apagador"
},
"decreaseBrushSize": {
"title": "Diminuir Tamanho do Pincel",
"desc": "Diminui o tamanho do pincel/apagador"
},
"increaseBrushOpacity": {
"desc": "Aumenta a opacidade do pincel",
"title": "Aumentar Opacidade do Pincel"
},
"moveTool": {
"title": "Ferramenta Mover",
"desc": "Permite navegar pela tela"
},
"decreaseBrushOpacity": {
"desc": "Diminui a opacidade do pincel",
"title": "Diminuir Opacidade do Pincel"
},
"toggleSnap": {
"title": "Ativar Encaixe",
"desc": "Ativa Encaixar na Grade"
},
"quickToggleMove": {
"title": "Ativar Mover Rapidamente",
"desc": "Temporariamente ativa o modo Mover"
},
"toggleLayer": {
"title": "Ativar Camada",
"desc": "Ativa a seleção de camada de máscara/base"
},
"clearMask": {
"title": "Limpar Máscara",
"desc": "Limpa toda a máscara"
},
"hideMask": {
"title": "Esconder Máscara",
"desc": "Esconde e Revela a máscara"
},
"mergeVisible": {
"title": "Fundir Visível",
"desc": "Fundir todas as camadas visíveis das telas"
},
"downloadImage": {
"desc": "Descarregar a tela atual",
"title": "Descarregar Imagem"
},
"undoStroke": {
"title": "Desfazer Traço",
"desc": "Desfaz um traço de pincel"
},
"redoStroke": {
"title": "Refazer Traço",
"desc": "Refaz o traço de pincel"
},
"keyboardShortcuts": "Atalhos de Teclado",
"appHotkeys": "Atalhos do app",
"invoke": {
"title": "Invocar",
"desc": "Gerar uma imagem"
},
"cancel": {
"title": "Cancelar",
"desc": "Cancelar geração de imagem"
},
"focusPrompt": {
"title": "Foco do Prompt",
"desc": "Foco da área de texto do prompt"
},
"toggleOptions": {
"title": "Ativar Opções",
"desc": "Abrir e fechar o painel de opções"
},
"pinOptions": {
"title": "Fixar Opções",
"desc": "Fixar o painel de opções"
},
"closePanels": {
"title": "Fechar Painéis",
"desc": "Fecha os painéis abertos"
},
"unifiedCanvasHotkeys": "Atalhos da Tela Unificada",
"toggleGallery": {
"title": "Ativar Galeria",
"desc": "Abrir e fechar a gaveta da galeria"
},
"setSeed": {
"title": "Definir Seed",
"desc": "Usar seed da imagem atual"
},
"setParameters": {
"title": "Definir Parâmetros",
"desc": "Usar todos os parâmetros da imagem atual"
},
"restoreFaces": {
"title": "Restaurar Rostos",
"desc": "Restaurar a imagem atual"
},
"upscale": {
"title": "Redimensionar",
"desc": "Redimensionar a imagem atual"
},
"showInfo": {
"title": "Mostrar Informações",
"desc": "Mostrar metadados de informações da imagem atual"
},
"deleteImage": {
"title": "Apagar Imagem",
"desc": "Apaga a imagem atual"
},
"toggleGalleryPin": {
"title": "Ativar Fixar Galeria",
"desc": "Fixa e desafixa a galeria na interface"
},
"increaseGalleryThumbSize": {
"title": "Aumentar Tamanho da Galeria de Imagem",
"desc": "Aumenta o tamanho das thumbs na galeria"
},
"increaseBrushSize": {
"title": "Aumentar Tamanho do Pincel",
"desc": "Aumenta o tamanho do pincel/apagador"
},
"fillBoundingBox": {
"title": "Preencher Caixa Delimitadora",
"desc": "Preenche a caixa delimitadora com a cor do pincel"
},
"eraseBoundingBox": {
"title": "Apagar Caixa Delimitadora",
"desc": "Apaga a área da caixa delimitadora"
},
"colorPicker": {
"title": "Selecionar Seletor de Cor",
"desc": "Seleciona o seletor de cores"
},
"showHideBoundingBox": {
"title": "Mostrar/Esconder Caixa Delimitadora",
"desc": "Ativa a visibilidade da caixa delimitadora"
},
"saveToGallery": {
"title": "Gravara Na Galeria",
"desc": "Grava a tela atual na galeria"
},
"copyToClipboard": {
"title": "Copiar para a Área de Transferência",
"desc": "Copia a tela atual para a área de transferência"
},
"resetView": {
"title": "Resetar Visualização",
"desc": "Reseta Visualização da Tela"
},
"previousStagingImage": {
"title": "Imagem de Preparação Anterior",
"desc": "Área de Imagem de Preparação Anterior"
},
"nextStagingImage": {
"title": "Próxima Imagem de Preparação Anterior",
"desc": "Próxima Área de Imagem de Preparação Anterior"
},
"acceptStagingImage": {
"title": "Aceitar Imagem de Preparação Anterior",
"desc": "Aceitar Área de Imagem de Preparação Anterior"
}
},
"modelManager": {
"modelAdded": "Modelo Adicionado",
"modelUpdated": "Modelo Atualizado",
"modelEntryDeleted": "Entrada de modelo excluída",
"description": "Descrição",
"modelLocationValidationMsg": "Caminho para onde o seu modelo está localizado.",
"repo_id": "Repo ID",
"vaeRepoIDValidationMsg": "Repositório Online do seu VAE",
"width": "Largura",
"widthValidationMsg": "Largura padrão do seu modelo.",
"height": "Altura",
"heightValidationMsg": "Altura padrão do seu modelo.",
"findModels": "Encontrar Modelos",
"scanAgain": "Digitalize Novamente",
"deselectAll": "Deselecionar Tudo",
"showExisting": "Mostrar Existente",
"deleteConfig": "Apagar Config",
"convertToDiffusersHelpText6": "Deseja converter este modelo?",
"mergedModelName": "Nome do modelo mesclado",
"alpha": "Alpha",
"interpolationType": "Tipo de Interpolação",
"modelMergeHeaderHelp1": "Pode mesclar até três modelos diferentes para criar uma mistura que atenda às suas necessidades.",
"modelMergeHeaderHelp2": "Apenas Diffusers estão disponíveis para mesclagem. Se deseja mesclar um modelo de checkpoint, por favor, converta-o para Diffusers primeiro.",
"modelMergeInterpAddDifferenceHelp": "Neste modo, o Modelo 3 é primeiro subtraído do Modelo 2. A versão resultante é mesclada com o Modelo 1 com a taxa alpha definida acima.",
"nameValidationMsg": "Insira um nome para o seu modelo",
"descriptionValidationMsg": "Adicione uma descrição para o seu modelo",
"config": "Configuração",
"modelExists": "Modelo Existe",
"selectAndAdd": "Selecione e Adicione Modelos Listados Abaixo",
"noModelsFound": "Nenhum Modelo Encontrado",
"v2_768": "v2 (768px)",
"inpainting": "v1 Inpainting",
"customConfig": "Configuração personalizada",
"pathToCustomConfig": "Caminho para configuração personalizada",
"statusConverting": "A converter",
"modelConverted": "Modelo Convertido",
"ignoreMismatch": "Ignorar Divergências entre Modelos Selecionados",
"addDifference": "Adicionar diferença",
"pickModelType": "Escolha o tipo de modelo",
"safetensorModels": "SafeTensors",
"cannotUseSpaces": "Não pode usar espaços",
"addNew": "Adicionar Novo",
"addManually": "Adicionar Manualmente",
"manual": "Manual",
"name": "Nome",
"configValidationMsg": "Caminho para o ficheiro de configuração do seu modelo.",
"modelLocation": "Localização do modelo",
"repoIDValidationMsg": "Repositório Online do seu Modelo",
"updateModel": "Atualizar Modelo",
"availableModels": "Modelos Disponíveis",
"load": "Carregar",
"active": "Ativado",
"notLoaded": "Não carregado",
"deleteModel": "Apagar modelo",
"deleteMsg1": "Tem certeza de que deseja apagar esta entrada do modelo de InvokeAI?",
"deleteMsg2": "Isso não vai apagar o ficheiro de modelo checkpoint do seu disco. Pode lê-los, se desejar.",
"convertToDiffusers": "Converter para Diffusers",
"convertToDiffusersHelpText1": "Este modelo será convertido ao formato 🧨 Diffusers.",
"convertToDiffusersHelpText2": "Este processo irá substituir a sua entrada de Gestor de Modelos por uma versão Diffusers do mesmo modelo.",
"convertToDiffusersHelpText3": "O seu ficheiro de ponto de verificação no disco NÃO será excluído ou modificado de forma alguma. Pode adicionar o seu ponto de verificação ao Gestor de modelos novamente, se desejar.",
"convertToDiffusersSaveLocation": "Local para Gravar",
"v2_base": "v2 (512px)",
"mergeModels": "Mesclar modelos",
"modelOne": "Modelo 1",
"modelTwo": "Modelo 2",
"modelThree": "Modelo 3",
"mergedModelSaveLocation": "Local de Salvamento",
"merge": "Mesclar",
"modelsMerged": "Modelos mesclados",
"mergedModelCustomSaveLocation": "Caminho Personalizado",
"invokeAIFolder": "Pasta Invoke AI",
"inverseSigmoid": "Sigmóide Inversa",
"none": "nenhum",
"modelManager": "Gerente de Modelo",
"model": "Modelo",
"allModels": "Todos os Modelos",
"checkpointModels": "Checkpoints",
"diffusersModels": "Diffusers",
"addNewModel": "Adicionar Novo modelo",
"addCheckpointModel": "Adicionar Modelo de Checkpoint/Safetensor",
"addDiffuserModel": "Adicionar Diffusers",
"vaeLocation": "Localização VAE",
"vaeLocationValidationMsg": "Caminho para onde o seu VAE está localizado.",
"vaeRepoID": "VAE Repo ID",
"addModel": "Adicionar Modelo",
"search": "Procurar",
"cached": "Em cache",
"checkpointFolder": "Pasta de Checkpoint",
"clearCheckpointFolder": "Apagar Pasta de Checkpoint",
"modelsFound": "Modelos Encontrados",
"selectFolder": "Selecione a Pasta",
"selected": "Selecionada",
"selectAll": "Selecionar Tudo",
"addSelected": "Adicione Selecionado",
"delete": "Apagar",
"formMessageDiffusersModelLocation": "Localização dos Modelos Diffusers",
"formMessageDiffusersModelLocationDesc": "Por favor entre com ao menos um.",
"formMessageDiffusersVAELocation": "Localização do VAE",
"formMessageDiffusersVAELocationDesc": "Se não provido, InvokeAI irá procurar pelo ficheiro VAE dentro do local do modelo.",
"convert": "Converter",
"convertToDiffusersHelpText4": "Este é um processo único. Pode levar cerca de 30 a 60s, a depender das especificações do seu computador.",
"convertToDiffusersHelpText5": "Por favor, certifique-se de que tenha espaço suficiente no disco. Os modelos geralmente variam entre 4GB e 7GB de tamanho.",
"v1": "v1",
"sameFolder": "Mesma pasta",
"invokeRoot": "Pasta do InvokeAI",
"custom": "Personalizado",
"customSaveLocation": "Local de salvamento personalizado",
"modelMergeAlphaHelp": "Alpha controla a força da mistura dos modelos. Valores de alpha mais baixos resultam numa influência menor do segundo modelo.",
"sigmoid": "Sigmóide",
"weightedSum": "Soma Ponderada"
},
"parameters": {
"width": "Largura",
"seed": "Seed",
"hiresStrength": "Força da Alta Resolução",
"general": "Geral",
"randomizeSeed": "Seed Aleatório",
"shuffle": "Embaralhar",
"noiseThreshold": "Limite de Ruído",
"perlinNoise": "Ruído de Perlin",
"variations": "Variatções",
"seedWeights": "Pesos da Seed",
"restoreFaces": "Restaurar Rostos",
"faceRestoration": "Restauração de Rosto",
"type": "Tipo",
"denoisingStrength": "A força de remoção de ruído",
"scale": "Escala",
"otherOptions": "Outras Opções",
"seamlessTiling": "Ladrilho Sem Fronteira",
"hiresOptim": "Otimização de Alta Res",
"imageFit": "Caber Imagem Inicial No Tamanho de Saída",
"codeformerFidelity": "Fidelidade",
"tileSize": "Tamanho do Ladrilho",
"boundingBoxHeader": "Caixa Delimitadora",
"seamCorrectionHeader": "Correção de Fronteira",
"infillScalingHeader": "Preencimento e Escala",
"img2imgStrength": "Força de Imagem Para Imagem",
"toggleLoopback": "Ativar Loopback",
"symmetry": "Simetria",
"sendTo": "Mandar para",
"openInViewer": "Abrir No Visualizador",
"closeViewer": "Fechar Visualizador",
"usePrompt": "Usar Prompt",
"initialImage": "Imagem inicial",
"showOptionsPanel": "Mostrar Painel de Opções",
"strength": "Força",
"upscaling": "Redimensionando",
"upscale": "Redimensionar",
"upscaleImage": "Redimensionar Imagem",
"scaleBeforeProcessing": "Escala Antes do Processamento",
"images": "Imagems",
"steps": "Passos",
"cfgScale": "Escala CFG",
"height": "Altura",
"imageToImage": "Imagem para Imagem",
"variationAmount": "Quntidade de Variatções",
"scaledWidth": "L Escalada",
"scaledHeight": "A Escalada",
"infillMethod": "Método de Preenchimento",
"hSymmetryStep": "H Passo de Simetria",
"vSymmetryStep": "V Passo de Simetria",
"cancel": {
"immediate": "Cancelar imediatamente",
"schedule": "Cancelar após a iteração atual",
"isScheduled": "A cancelar",
"setType": "Definir tipo de cancelamento"
},
"sendToImg2Img": "Mandar para Imagem Para Imagem",
"sendToUnifiedCanvas": "Mandar para Tela Unificada",
"copyImage": "Copiar imagem",
"copyImageToLink": "Copiar Imagem Para a Ligação",
"downloadImage": "Descarregar Imagem",
"useSeed": "Usar Seed",
"useAll": "Usar Todos",
"useInitImg": "Usar Imagem Inicial",
"info": "Informações"
},
"settings": {
"confirmOnDelete": "Confirmar Antes de Apagar",
"displayHelpIcons": "Mostrar Ícones de Ajuda",
"enableImageDebugging": "Ativar Depuração de Imagem",
"useSlidersForAll": "Usar deslizadores para todas as opções",
"resetWebUIDesc1": "Reiniciar a interface apenas reinicia o cache local do broswer para imagens e configurações lembradas. Não apaga nenhuma imagem do disco.",
"models": "Modelos",
"displayInProgress": "Mostrar Progresso de Imagens Em Andamento",
"saveSteps": "Gravar imagens a cada n passos",
"resetWebUI": "Reiniciar Interface",
"resetWebUIDesc2": "Se as imagens não estão a aparecer na galeria ou algo mais não está a funcionar, favor tentar reiniciar antes de postar um problema no GitHub.",
"resetComplete": "A interface foi reiniciada. Atualize a página para carregar."
},
"toast": {
"uploadFailed": "Envio Falhou",
"uploadFailedUnableToLoadDesc": "Não foj possível carregar o ficheiro",
"downloadImageStarted": "Download de Imagem Começou",
"imageNotLoadedDesc": "Nenhuma imagem encontrada a enviar para o módulo de imagem para imagem",
"imageLinkCopied": "Ligação de Imagem Copiada",
"imageNotLoaded": "Nenhuma Imagem Carregada",
"parametersFailed": "Problema ao carregar parâmetros",
"parametersFailedDesc": "Não foi possível carregar imagem incial.",
"seedSet": "Seed Definida",
"upscalingFailed": "Redimensionamento Falhou",
"promptNotSet": "Prompt Não Definido",
"tempFoldersEmptied": "Pasta de Ficheiros Temporários Esvaziada",
"imageCopied": "Imagem Copiada",
"imageSavedToGallery": "Imagem Salva na Galeria",
"canvasMerged": "Tela Fundida",
"sentToImageToImage": "Mandar Para Imagem Para Imagem",
"sentToUnifiedCanvas": "Enviada para a Tela Unificada",
"parametersSet": "Parâmetros Definidos",
"parametersNotSet": "Parâmetros Não Definidos",
"parametersNotSetDesc": "Nenhum metadado foi encontrado para essa imagem.",
"seedNotSet": "Seed Não Definida",
"seedNotSetDesc": "Não foi possível achar a seed para a imagem.",
"promptSet": "Prompt Definido",
"promptNotSetDesc": "Não foi possível achar prompt para essa imagem.",
"faceRestoreFailed": "Restauração de Rosto Falhou",
"metadataLoadFailed": "Falha ao tentar carregar metadados",
"initialImageSet": "Imagem Inicial Definida",
"initialImageNotSet": "Imagem Inicial Não Definida",
"initialImageNotSetDesc": "Não foi possível carregar imagem incial"
},
"tooltip": {
"feature": {
"prompt": "Este é o campo de prompt. O prompt inclui objetos de geração e termos estilísticos. Também pode adicionar peso (importância do token) no prompt, mas comandos e parâmetros de CLI não funcionarão.",
"other": "Essas opções ativam modos alternativos de processamento para o Invoke. 'Seamless tiling' criará padrões repetidos na saída. 'High resolution' é uma geração em duas etapas com img2img: use essa configuração quando desejar uma imagem maior e mais coerente sem artefatos. Levará mais tempo do que o txt2img usual.",
"seed": "O valor da semente afeta o ruído inicial a partir do qual a imagem é formada. Pode usar as sementes já existentes de imagens anteriores. 'Limiar de ruído' é usado para mitigar artefatos em valores CFG altos (experimente a faixa de 0-10) e o Perlin para adicionar ruído Perlin durante a geração: ambos servem para adicionar variação às suas saídas.",
"imageToImage": "Image to Image carrega qualquer imagem como inicial, que é então usada para gerar uma nova junto com o prompt. Quanto maior o valor, mais a imagem resultante mudará. Valores de 0.0 a 1.0 são possíveis, a faixa recomendada é de 0.25 a 0.75",
"faceCorrection": "Correção de rosto com GFPGAN ou Codeformer: o algoritmo detecta rostos na imagem e corrige quaisquer defeitos. Um valor alto mudará mais a imagem, a resultar em rostos mais atraentes. Codeformer com uma fidelidade maior preserva a imagem original às custas de uma correção de rosto mais forte.",
"seamCorrection": "Controla o tratamento das emendas visíveis que ocorrem entre as imagens geradas no canvas.",
"gallery": "A galeria exibe as gerações da pasta de saída conforme elas são criadas. As configurações são armazenadas em ficheiros e acessadas pelo menu de contexto.",
"variations": "Experimente uma variação com um valor entre 0,1 e 1,0 para mudar o resultado para uma determinada semente. Variações interessantes da semente estão entre 0,1 e 0,3.",
"upscale": "Use o ESRGAN para ampliar a imagem imediatamente após a geração.",
"boundingBox": "A caixa delimitadora é a mesma que as configurações de largura e altura para Texto para Imagem ou Imagem para Imagem. Apenas a área na caixa será processada.",
"infillAndScaling": "Gira os métodos de preenchimento (usados em áreas mascaradas ou apagadas do canvas) e a escala (útil para tamanhos de caixa delimitadora pequenos)."
}
},
"unifiedCanvas": {
"emptyTempImagesFolderMessage": "Esvaziar a pasta de ficheiros de imagem temporários também reseta completamente a Tela Unificada. Isso inclui todo o histórico de desfazer/refazer, imagens na área de preparação e a camada base da tela.",
"scaledBoundingBox": "Caixa Delimitadora Escalada",
"boundingBoxPosition": "Posição da Caixa Delimitadora",
"next": "Próximo",
"accept": "Aceitar",
"showHide": "Mostrar/Esconder",
"discardAll": "Descartar Todos",
"betaClear": "Limpar",
"betaDarkenOutside": "Escurecer Externamente",
"base": "Base",
"brush": "Pincel",
"showIntermediates": "Mostrar Intermediários",
"showGrid": "Mostrar Grade",
"clearCanvasHistoryConfirm": "Tem certeza que quer limpar o histórico de tela?",
"boundingBox": "Caixa Delimitadora",
"canvasDimensions": "Dimensões da Tela",
"canvasPosition": "Posição da Tela",
"cursorPosition": "Posição do cursor",
"previous": "Anterior",
"betaLimitToBox": "Limitar á Caixa",
"layer": "Camada",
"mask": "Máscara",
"maskingOptions": "Opções de Mascaramento",
"enableMask": "Ativar Máscara",
"preserveMaskedArea": "Preservar Área da Máscara",
"clearMask": "Limpar Máscara",
"eraser": "Apagador",
"fillBoundingBox": "Preencher Caixa Delimitadora",
"eraseBoundingBox": "Apagar Caixa Delimitadora",
"colorPicker": "Seletor de Cor",
"brushOptions": "Opções de Pincel",
"brushSize": "Tamanho",
"move": "Mover",
"resetView": "Resetar Visualização",
"mergeVisible": "Fundir Visível",
"saveToGallery": "Gravar na Galeria",
"copyToClipboard": "Copiar para a Área de Transferência",
"downloadAsImage": "Descarregar Como Imagem",
"undo": "Desfazer",
"redo": "Refazer",
"clearCanvas": "Limpar Tela",
"canvasSettings": "Configurações de Tela",
"snapToGrid": "Encaixar na Grade",
"darkenOutsideSelection": "Escurecer Seleção Externa",
"autoSaveToGallery": "Gravar Automaticamente na Galeria",
"saveBoxRegionOnly": "Gravar Apenas a Região da Caixa",
"limitStrokesToBox": "Limitar Traços à Caixa",
"showCanvasDebugInfo": "Mostrar Informações de Depuração daTela",
"clearCanvasHistory": "Limpar o Histórico da Tela",
"clearHistory": "Limpar Históprico",
"clearCanvasHistoryMessage": "Limpar o histórico de tela deixa a sua tela atual intacta, mas limpa de forma irreversível o histórico de desfazer e refazer.",
"emptyTempImageFolder": "Esvaziar a Pasta de Ficheiros de Imagem Temporários",
"emptyFolder": "Esvaziar Pasta",
"emptyTempImagesFolderConfirm": "Tem certeza que quer esvaziar a pasta de ficheiros de imagem temporários?",
"activeLayer": "Camada Ativa",
"canvasScale": "Escala da Tela",
"betaPreserveMasked": "Preservar Máscarado"
},
"accessibility": {
"invokeProgressBar": "Invocar barra de progresso",
"reset": "Repôr",
"nextImage": "Próxima imagem",
"useThisParameter": "Usar este parâmetro",
"copyMetadataJson": "Copiar metadados JSON",
"zoomIn": "Ampliar",
"zoomOut": "Reduzir",
"rotateCounterClockwise": "Girar no sentido anti-horário",
"rotateClockwise": "Girar no sentido horário",
"flipVertically": "Espelhar verticalmente",
"modifyConfig": "Modificar config",
"toggleAutoscroll": "Alternar rolagem automática",
"showOptionsPanel": "Mostrar painel de opções",
"uploadImage": "Enviar imagem",
"previousImage": "Imagem anterior",
"flipHorizontally": "Espelhar horizontalmente",
"toggleLogViewer": "Alternar visualizador de registo"
}
}

View File

@ -1,577 +0,0 @@
{
"common": {
"hotkeysLabel": "Teclas de atalho",
"languagePickerLabel": "Seletor de Idioma",
"reportBugLabel": "Relatar Bug",
"settingsLabel": "Configurações",
"img2img": "Imagem Para Imagem",
"unifiedCanvas": "Tela Unificada",
"nodes": "Nódulos",
"langBrPortuguese": "Português do Brasil",
"nodesDesc": "Um sistema baseado em nódulos para geração de imagens está em contrução. Fique ligado para atualizações sobre essa funcionalidade incrível.",
"postProcessing": "Pós-processamento",
"postProcessDesc1": "Invoke AI oferece uma variedade e funcionalidades de pós-processamento. Redimensionador de Imagem e Restauração Facial já estão disponíveis na interface. Você pode acessar elas no menu de Opções Avançadas na aba de Texto para Imagem e Imagem para Imagem. Você também pode processar imagens diretamente, usando os botões de ação de imagem acima da atual tela de imagens ou visualizador.",
"postProcessDesc2": "Uma interface dedicada será lançada em breve para facilitar fluxos de trabalho com opções mais avançadas de pós-processamento.",
"postProcessDesc3": "A interface do comando de linha da Invoke oferece várias funcionalidades incluindo Ampliação.",
"training": "Treinando",
"trainingDesc1": "Um fluxo de trabalho dedicado para treinar suas próprias incorporações e chockpoints usando Inversão Textual e Dreambooth na interface web.",
"trainingDesc2": "InvokeAI já suporta treinar incorporações personalizadas usando Inversão Textual com o script principal.",
"upload": "Enviar",
"close": "Fechar",
"load": "Carregar",
"statusConnected": "Conectado",
"statusDisconnected": "Disconectado",
"statusError": "Erro",
"statusPreparing": "Preparando",
"statusProcessingCanceled": "Processamento Canceledo",
"statusProcessingComplete": "Processamento Completo",
"statusGenerating": "Gerando",
"statusGeneratingTextToImage": "Gerando Texto Para Imagem",
"statusGeneratingImageToImage": "Gerando Imagem Para Imagem",
"statusGeneratingInpainting": "Gerando Inpainting",
"statusGeneratingOutpainting": "Gerando Outpainting",
"statusGenerationComplete": "Geração Completa",
"statusIterationComplete": "Iteração Completa",
"statusSavingImage": "Salvando Imagem",
"statusRestoringFaces": "Restaurando Rostos",
"statusRestoringFacesGFPGAN": "Restaurando Rostos (GFPGAN)",
"statusRestoringFacesCodeFormer": "Restaurando Rostos (CodeFormer)",
"statusUpscaling": "Redimensinando",
"statusUpscalingESRGAN": "Redimensinando (ESRGAN)",
"statusLoadingModel": "Carregando Modelo",
"statusModelChanged": "Modelo Alterado",
"githubLabel": "Github",
"discordLabel": "Discord",
"langArabic": "Árabe",
"langEnglish": "Inglês",
"langDutch": "Holandês",
"langFrench": "Francês",
"langGerman": "Alemão",
"langItalian": "Italiano",
"langJapanese": "Japonês",
"langPolish": "Polonês",
"langSimplifiedChinese": "Chinês",
"langUkranian": "Ucraniano",
"back": "Voltar",
"statusConvertingModel": "Convertendo Modelo",
"statusModelConverted": "Modelo Convertido",
"statusMergingModels": "Mesclando Modelos",
"statusMergedModels": "Modelos Mesclados",
"langRussian": "Russo",
"langSpanish": "Espanhol",
"loadingInvokeAI": "Carregando Invoke AI",
"loading": "Carregando"
},
"gallery": {
"generations": "Gerações",
"showGenerations": "Mostrar Gerações",
"uploads": "Enviados",
"showUploads": "Mostrar Enviados",
"galleryImageSize": "Tamanho da Imagem",
"galleryImageResetSize": "Resetar Imagem",
"gallerySettings": "Configurações de Galeria",
"maintainAspectRatio": "Mater Proporções",
"autoSwitchNewImages": "Trocar para Novas Imagens Automaticamente",
"singleColumnLayout": "Disposição em Coluna Única",
"allImagesLoaded": "Todas as Imagens Carregadas",
"loadMore": "Carregar Mais",
"noImagesInGallery": "Sem Imagens na Galeria"
},
"hotkeys": {
"keyboardShortcuts": "Atalhos de Teclado",
"appHotkeys": "Atalhos do app",
"generalHotkeys": "Atalhos Gerais",
"galleryHotkeys": "Atalhos da Galeria",
"unifiedCanvasHotkeys": "Atalhos da Tela Unificada",
"invoke": {
"title": "Invoke",
"desc": "Gerar uma imagem"
},
"cancel": {
"title": "Cancelar",
"desc": "Cancelar geração de imagem"
},
"focusPrompt": {
"title": "Foco do Prompt",
"desc": "Foco da área de texto do prompt"
},
"toggleOptions": {
"title": "Ativar Opções",
"desc": "Abrir e fechar o painel de opções"
},
"pinOptions": {
"title": "Fixar Opções",
"desc": "Fixar o painel de opções"
},
"toggleViewer": {
"title": "Ativar Visualizador",
"desc": "Abrir e fechar o Visualizador de Imagens"
},
"toggleGallery": {
"title": "Ativar Galeria",
"desc": "Abrir e fechar a gaveta da galeria"
},
"maximizeWorkSpace": {
"title": "Maximizar a Área de Trabalho",
"desc": "Fechar painéis e maximixar área de trabalho"
},
"changeTabs": {
"title": "Mudar Abas",
"desc": "Trocar para outra área de trabalho"
},
"consoleToggle": {
"title": "Ativar Console",
"desc": "Abrir e fechar console"
},
"setPrompt": {
"title": "Definir Prompt",
"desc": "Usar o prompt da imagem atual"
},
"setSeed": {
"title": "Definir Seed",
"desc": "Usar seed da imagem atual"
},
"setParameters": {
"title": "Definir Parâmetros",
"desc": "Usar todos os parâmetros da imagem atual"
},
"restoreFaces": {
"title": "Restaurar Rostos",
"desc": "Restaurar a imagem atual"
},
"upscale": {
"title": "Redimensionar",
"desc": "Redimensionar a imagem atual"
},
"showInfo": {
"title": "Mostrar Informações",
"desc": "Mostrar metadados de informações da imagem atual"
},
"sendToImageToImage": {
"title": "Mandar para Imagem Para Imagem",
"desc": "Manda a imagem atual para Imagem Para Imagem"
},
"deleteImage": {
"title": "Apagar Imagem",
"desc": "Apaga a imagem atual"
},
"closePanels": {
"title": "Fechar Painéis",
"desc": "Fecha os painéis abertos"
},
"previousImage": {
"title": "Imagem Anterior",
"desc": "Mostra a imagem anterior na galeria"
},
"nextImage": {
"title": "Próxima Imagem",
"desc": "Mostra a próxima imagem na galeria"
},
"toggleGalleryPin": {
"title": "Ativar Fixar Galeria",
"desc": "Fixa e desafixa a galeria na interface"
},
"increaseGalleryThumbSize": {
"title": "Aumentar Tamanho da Galeria de Imagem",
"desc": "Aumenta o tamanho das thumbs na galeria"
},
"decreaseGalleryThumbSize": {
"title": "Diminuir Tamanho da Galeria de Imagem",
"desc": "Diminui o tamanho das thumbs na galeria"
},
"selectBrush": {
"title": "Selecionar Pincel",
"desc": "Seleciona o pincel"
},
"selectEraser": {
"title": "Selecionar Apagador",
"desc": "Seleciona o apagador"
},
"decreaseBrushSize": {
"title": "Diminuir Tamanho do Pincel",
"desc": "Diminui o tamanho do pincel/apagador"
},
"increaseBrushSize": {
"title": "Aumentar Tamanho do Pincel",
"desc": "Aumenta o tamanho do pincel/apagador"
},
"decreaseBrushOpacity": {
"title": "Diminuir Opacidade do Pincel",
"desc": "Diminui a opacidade do pincel"
},
"increaseBrushOpacity": {
"title": "Aumentar Opacidade do Pincel",
"desc": "Aumenta a opacidade do pincel"
},
"moveTool": {
"title": "Ferramenta Mover",
"desc": "Permite navegar pela tela"
},
"fillBoundingBox": {
"title": "Preencher Caixa Delimitadora",
"desc": "Preenche a caixa delimitadora com a cor do pincel"
},
"eraseBoundingBox": {
"title": "Apagar Caixa Delimitadora",
"desc": "Apaga a área da caixa delimitadora"
},
"colorPicker": {
"title": "Selecionar Seletor de Cor",
"desc": "Seleciona o seletor de cores"
},
"toggleSnap": {
"title": "Ativar Encaixe",
"desc": "Ativa Encaixar na Grade"
},
"quickToggleMove": {
"title": "Ativar Mover Rapidamente",
"desc": "Temporariamente ativa o modo Mover"
},
"toggleLayer": {
"title": "Ativar Camada",
"desc": "Ativa a seleção de camada de máscara/base"
},
"clearMask": {
"title": "Limpar Máscara",
"desc": "Limpa toda a máscara"
},
"hideMask": {
"title": "Esconder Máscara",
"desc": "Esconde e Revela a máscara"
},
"showHideBoundingBox": {
"title": "Mostrar/Esconder Caixa Delimitadora",
"desc": "Ativa a visibilidade da caixa delimitadora"
},
"mergeVisible": {
"title": "Fundir Visível",
"desc": "Fundir todas as camadas visíveis em tela"
},
"saveToGallery": {
"title": "Salvara Na Galeria",
"desc": "Salva a tela atual na galeria"
},
"copyToClipboard": {
"title": "Copiar para a Área de Transferência",
"desc": "Copia a tela atual para a área de transferência"
},
"downloadImage": {
"title": "Baixar Imagem",
"desc": "Baixa a tela atual"
},
"undoStroke": {
"title": "Desfazer Traço",
"desc": "Desfaz um traço de pincel"
},
"redoStroke": {
"title": "Refazer Traço",
"desc": "Refaz o traço de pincel"
},
"resetView": {
"title": "Resetar Visualização",
"desc": "Reseta Visualização da Tela"
},
"previousStagingImage": {
"title": "Imagem de Preparação Anterior",
"desc": "Área de Imagem de Preparação Anterior"
},
"nextStagingImage": {
"title": "Próxima Imagem de Preparação Anterior",
"desc": "Próxima Área de Imagem de Preparação Anterior"
},
"acceptStagingImage": {
"title": "Aceitar Imagem de Preparação Anterior",
"desc": "Aceitar Área de Imagem de Preparação Anterior"
}
},
"modelManager": {
"modelManager": "Gerente de Modelo",
"model": "Modelo",
"modelAdded": "Modelo Adicionado",
"modelUpdated": "Modelo Atualizado",
"modelEntryDeleted": "Entrada de modelo excluída",
"cannotUseSpaces": "Não pode usar espaços",
"addNew": "Adicionar Novo",
"addNewModel": "Adicionar Novo modelo",
"addManually": "Adicionar Manualmente",
"manual": "Manual",
"name": "Nome",
"nameValidationMsg": "Insira um nome para o seu modelo",
"description": "Descrição",
"descriptionValidationMsg": "Adicione uma descrição para o seu modelo",
"config": "Configuração",
"configValidationMsg": "Caminho para o arquivo de configuração do seu modelo.",
"modelLocation": "Localização do modelo",
"modelLocationValidationMsg": "Caminho para onde seu modelo está localizado.",
"vaeLocation": "Localização VAE",
"vaeLocationValidationMsg": "Caminho para onde seu VAE está localizado.",
"width": "Largura",
"widthValidationMsg": "Largura padrão do seu modelo.",
"height": "Altura",
"heightValidationMsg": "Altura padrão do seu modelo.",
"addModel": "Adicionar Modelo",
"updateModel": "Atualizar Modelo",
"availableModels": "Modelos Disponíveis",
"search": "Procurar",
"load": "Carregar",
"active": "Ativado",
"notLoaded": "Não carregado",
"cached": "Em cache",
"checkpointFolder": "Pasta de Checkpoint",
"clearCheckpointFolder": "Apagar Pasta de Checkpoint",
"findModels": "Encontrar Modelos",
"modelsFound": "Modelos Encontrados",
"selectFolder": "Selecione a Pasta",
"selected": "Selecionada",
"selectAll": "Selecionar Tudo",
"deselectAll": "Deselecionar Tudo",
"showExisting": "Mostrar Existente",
"addSelected": "Adicione Selecionado",
"modelExists": "Modelo Existe",
"delete": "Excluir",
"deleteModel": "Excluir modelo",
"deleteConfig": "Excluir Config",
"deleteMsg1": "Tem certeza de que deseja excluir esta entrada do modelo de InvokeAI?",
"deleteMsg2": "Isso não vai excluir o arquivo de modelo checkpoint do seu disco. Você pode lê-los, se desejar.",
"checkpointModels": "Checkpoints",
"diffusersModels": "Diffusers",
"safetensorModels": "SafeTensors",
"addCheckpointModel": "Adicionar Modelo de Checkpoint/Safetensor",
"addDiffuserModel": "Adicionar Diffusers",
"repo_id": "Repo ID",
"vaeRepoID": "VAE Repo ID",
"vaeRepoIDValidationMsg": "Repositório Online do seu VAE",
"scanAgain": "Digitalize Novamente",
"selectAndAdd": "Selecione e Adicione Modelos Listados Abaixo",
"noModelsFound": "Nenhum Modelo Encontrado",
"formMessageDiffusersModelLocation": "Localização dos Modelos Diffusers",
"formMessageDiffusersModelLocationDesc": "Por favor entre com ao menos um.",
"formMessageDiffusersVAELocation": "Localização do VAE",
"formMessageDiffusersVAELocationDesc": "Se não provido, InvokeAI irá procurar pelo arquivo VAE dentro do local do modelo.",
"convertToDiffusers": "Converter para Diffusers",
"convertToDiffusersHelpText1": "Este modelo será convertido para o formato 🧨 Diffusers.",
"convertToDiffusersHelpText5": "Por favor, certifique-se de que você tenha espaço suficiente em disco. Os modelos geralmente variam entre 4GB e 7GB de tamanho.",
"convertToDiffusersHelpText6": "Você deseja converter este modelo?",
"convertToDiffusersSaveLocation": "Local para Salvar",
"v1": "v1",
"inpainting": "v1 Inpainting",
"customConfig": "Configuração personalizada",
"pathToCustomConfig": "Caminho para configuração personalizada",
"convertToDiffusersHelpText3": "Seu arquivo de ponto de verificação no disco NÃO será excluído ou modificado de forma alguma. Você pode adicionar seu ponto de verificação ao Gerenciador de modelos novamente, se desejar.",
"convertToDiffusersHelpText4": "Este é um processo único. Pode levar cerca de 30 a 60s, dependendo das especificações do seu computador.",
"merge": "Mesclar",
"modelsMerged": "Modelos mesclados",
"mergeModels": "Mesclar modelos",
"modelOne": "Modelo 1",
"modelTwo": "Modelo 2",
"modelThree": "Modelo 3",
"statusConverting": "Convertendo",
"modelConverted": "Modelo Convertido",
"sameFolder": "Mesma pasta",
"invokeRoot": "Pasta do InvokeAI",
"custom": "Personalizado",
"customSaveLocation": "Local de salvamento personalizado",
"mergedModelName": "Nome do modelo mesclado",
"alpha": "Alpha",
"allModels": "Todos os Modelos",
"repoIDValidationMsg": "Repositório Online do seu Modelo",
"convert": "Converter",
"convertToDiffusersHelpText2": "Este processo irá substituir sua entrada de Gerenciador de Modelos por uma versão Diffusers do mesmo modelo.",
"mergedModelCustomSaveLocation": "Caminho Personalizado",
"mergedModelSaveLocation": "Local de Salvamento",
"interpolationType": "Tipo de Interpolação",
"ignoreMismatch": "Ignorar Divergências entre Modelos Selecionados",
"invokeAIFolder": "Pasta Invoke AI",
"weightedSum": "Soma Ponderada",
"sigmoid": "Sigmóide",
"inverseSigmoid": "Sigmóide Inversa",
"modelMergeHeaderHelp1": "Você pode mesclar até três modelos diferentes para criar uma mistura que atenda às suas necessidades.",
"modelMergeInterpAddDifferenceHelp": "Neste modo, o Modelo 3 é primeiro subtraído do Modelo 2. A versão resultante é mesclada com o Modelo 1 com a taxa alpha definida acima.",
"modelMergeAlphaHelp": "Alpha controla a força da mistura dos modelos. Valores de alpha mais baixos resultam em uma influência menor do segundo modelo.",
"modelMergeHeaderHelp2": "Apenas Diffusers estão disponíveis para mesclagem. Se você deseja mesclar um modelo de checkpoint, por favor, converta-o para Diffusers primeiro."
},
"parameters": {
"images": "Imagems",
"steps": "Passos",
"cfgScale": "Escala CFG",
"width": "Largura",
"height": "Altura",
"seed": "Seed",
"randomizeSeed": "Seed Aleatório",
"shuffle": "Embaralhar",
"noiseThreshold": "Limite de Ruído",
"perlinNoise": "Ruído de Perlin",
"variations": "Variatções",
"variationAmount": "Quntidade de Variatções",
"seedWeights": "Pesos da Seed",
"faceRestoration": "Restauração de Rosto",
"restoreFaces": "Restaurar Rostos",
"type": "Tipo",
"strength": "Força",
"upscaling": "Redimensionando",
"upscale": "Redimensionar",
"upscaleImage": "Redimensionar Imagem",
"scale": "Escala",
"otherOptions": "Outras Opções",
"seamlessTiling": "Ladrilho Sem Fronteira",
"hiresOptim": "Otimização de Alta Res",
"imageFit": "Caber Imagem Inicial No Tamanho de Saída",
"codeformerFidelity": "Fidelidade",
"scaleBeforeProcessing": "Escala Antes do Processamento",
"scaledWidth": "L Escalada",
"scaledHeight": "A Escalada",
"infillMethod": "Método de Preenchimento",
"tileSize": "Tamanho do Ladrilho",
"boundingBoxHeader": "Caixa Delimitadora",
"seamCorrectionHeader": "Correção de Fronteira",
"infillScalingHeader": "Preencimento e Escala",
"img2imgStrength": "Força de Imagem Para Imagem",
"toggleLoopback": "Ativar Loopback",
"sendTo": "Mandar para",
"sendToImg2Img": "Mandar para Imagem Para Imagem",
"sendToUnifiedCanvas": "Mandar para Tela Unificada",
"copyImageToLink": "Copiar Imagem Para Link",
"downloadImage": "Baixar Imagem",
"openInViewer": "Abrir No Visualizador",
"closeViewer": "Fechar Visualizador",
"usePrompt": "Usar Prompt",
"useSeed": "Usar Seed",
"useAll": "Usar Todos",
"useInitImg": "Usar Imagem Inicial",
"info": "Informações",
"initialImage": "Imagem inicial",
"showOptionsPanel": "Mostrar Painel de Opções",
"vSymmetryStep": "V Passo de Simetria",
"hSymmetryStep": "H Passo de Simetria",
"symmetry": "Simetria",
"copyImage": "Copiar imagem",
"hiresStrength": "Força da Alta Resolução",
"denoisingStrength": "A força de remoção de ruído",
"imageToImage": "Imagem para Imagem",
"cancel": {
"setType": "Definir tipo de cancelamento",
"isScheduled": "Cancelando",
"schedule": "Cancelar após a iteração atual",
"immediate": "Cancelar imediatamente"
},
"general": "Geral"
},
"settings": {
"models": "Modelos",
"displayInProgress": "Mostrar Progresso de Imagens Em Andamento",
"saveSteps": "Salvar imagens a cada n passos",
"confirmOnDelete": "Confirmar Antes de Apagar",
"displayHelpIcons": "Mostrar Ícones de Ajuda",
"enableImageDebugging": "Ativar Depuração de Imagem",
"resetWebUI": "Reiniciar Interface",
"resetWebUIDesc1": "Reiniciar a interface apenas reinicia o cache local do broswer para imagens e configurações lembradas. Não apaga nenhuma imagem do disco.",
"resetWebUIDesc2": "Se as imagens não estão aparecendo na galeria ou algo mais não está funcionando, favor tentar reiniciar antes de postar um problema no GitHub.",
"resetComplete": "A interface foi reiniciada. Atualize a página para carregar.",
"useSlidersForAll": "Usar deslizadores para todas as opções"
},
"toast": {
"tempFoldersEmptied": "Pasta de Arquivos Temporários Esvaziada",
"uploadFailed": "Envio Falhou",
"uploadFailedUnableToLoadDesc": "Não foj possível carregar o arquivo",
"downloadImageStarted": "Download de Imagem Começou",
"imageCopied": "Imagem Copiada",
"imageLinkCopied": "Link de Imagem Copiada",
"imageNotLoaded": "Nenhuma Imagem Carregada",
"imageNotLoadedDesc": "Nenhuma imagem encontrar para mandar para o módulo de imagem para imagem",
"imageSavedToGallery": "Imagem Salva na Galeria",
"canvasMerged": "Tela Fundida",
"sentToImageToImage": "Mandar Para Imagem Para Imagem",
"sentToUnifiedCanvas": "Enviada para a Tela Unificada",
"parametersSet": "Parâmetros Definidos",
"parametersNotSet": "Parâmetros Não Definidos",
"parametersNotSetDesc": "Nenhum metadado foi encontrado para essa imagem.",
"parametersFailed": "Problema ao carregar parâmetros",
"parametersFailedDesc": "Não foi possível carregar imagem incial.",
"seedSet": "Seed Definida",
"seedNotSet": "Seed Não Definida",
"seedNotSetDesc": "Não foi possível achar a seed para a imagem.",
"promptSet": "Prompt Definido",
"promptNotSet": "Prompt Não Definido",
"promptNotSetDesc": "Não foi possível achar prompt para essa imagem.",
"upscalingFailed": "Redimensionamento Falhou",
"faceRestoreFailed": "Restauração de Rosto Falhou",
"metadataLoadFailed": "Falha ao tentar carregar metadados",
"initialImageSet": "Imagem Inicial Definida",
"initialImageNotSet": "Imagem Inicial Não Definida",
"initialImageNotSetDesc": "Não foi possível carregar imagem incial"
},
"unifiedCanvas": {
"layer": "Camada",
"base": "Base",
"mask": "Máscara",
"maskingOptions": "Opções de Mascaramento",
"enableMask": "Ativar Máscara",
"preserveMaskedArea": "Preservar Área da Máscara",
"clearMask": "Limpar Máscara",
"brush": "Pincel",
"eraser": "Apagador",
"fillBoundingBox": "Preencher Caixa Delimitadora",
"eraseBoundingBox": "Apagar Caixa Delimitadora",
"colorPicker": "Seletor de Cor",
"brushOptions": "Opções de Pincel",
"brushSize": "Tamanho",
"move": "Mover",
"resetView": "Resetar Visualização",
"mergeVisible": "Fundir Visível",
"saveToGallery": "Salvar na Galeria",
"copyToClipboard": "Copiar para a Área de Transferência",
"downloadAsImage": "Baixar Como Imagem",
"undo": "Desfazer",
"redo": "Refazer",
"clearCanvas": "Limpar Tela",
"canvasSettings": "Configurações de Tela",
"showIntermediates": "Mostrar Intermediários",
"showGrid": "Mostrar Grade",
"snapToGrid": "Encaixar na Grade",
"darkenOutsideSelection": "Escurecer Seleção Externa",
"autoSaveToGallery": "Salvar Automaticamente na Galeria",
"saveBoxRegionOnly": "Salvar Apenas a Região da Caixa",
"limitStrokesToBox": "Limitar Traços para a Caixa",
"showCanvasDebugInfo": "Mostrar Informações de Depuração daTela",
"clearCanvasHistory": "Limpar o Histórico da Tela",
"clearHistory": "Limpar Históprico",
"clearCanvasHistoryMessage": "Limpar o histórico de tela deixa sua tela atual intacta, mas limpa de forma irreversível o histórico de desfazer e refazer.",
"clearCanvasHistoryConfirm": "Tem certeza que quer limpar o histórico de tela?",
"emptyTempImageFolder": "Esvaziar a Pasta de Arquivos de Imagem Temporários",
"emptyFolder": "Esvaziar Pasta",
"emptyTempImagesFolderMessage": "Esvaziar a pasta de arquivos de imagem temporários também reseta completamente a Tela Unificada. Isso inclui todo o histórico de desfazer/refazer, imagens na área de preparação e a camada base da tela.",
"emptyTempImagesFolderConfirm": "Tem certeza que quer esvaziar a pasta de arquivos de imagem temporários?",
"activeLayer": "Camada Ativa",
"canvasScale": "Escala da Tela",
"boundingBox": "Caixa Delimitadora",
"scaledBoundingBox": "Caixa Delimitadora Escalada",
"boundingBoxPosition": "Posição da Caixa Delimitadora",
"canvasDimensions": "Dimensões da Tela",
"canvasPosition": "Posição da Tela",
"cursorPosition": "Posição do cursor",
"previous": "Anterior",
"next": "Próximo",
"accept": "Aceitar",
"showHide": "Mostrar/Esconder",
"discardAll": "Descartar Todos",
"betaClear": "Limpar",
"betaDarkenOutside": "Escurecer Externamente",
"betaLimitToBox": "Limitar Para a Caixa",
"betaPreserveMasked": "Preservar Máscarado"
},
"tooltip": {
"feature": {
"seed": "O valor da semente afeta o ruído inicial a partir do qual a imagem é formada. Você pode usar as sementes já existentes de imagens anteriores. 'Limiar de ruído' é usado para mitigar artefatos em valores CFG altos (experimente a faixa de 0-10), e o Perlin para adicionar ruído Perlin durante a geração: ambos servem para adicionar variação às suas saídas.",
"gallery": "A galeria exibe as gerações da pasta de saída conforme elas são criadas. As configurações são armazenadas em arquivos e acessadas pelo menu de contexto.",
"other": "Essas opções ativam modos alternativos de processamento para o Invoke. 'Seamless tiling' criará padrões repetidos na saída. 'High resolution' é uma geração em duas etapas com img2img: use essa configuração quando desejar uma imagem maior e mais coerente sem artefatos. Levará mais tempo do que o txt2img usual.",
"boundingBox": "A caixa delimitadora é a mesma que as configurações de largura e altura para Texto para Imagem ou Imagem para Imagem. Apenas a área na caixa será processada.",
"upscale": "Use o ESRGAN para ampliar a imagem imediatamente após a geração.",
"seamCorrection": "Controla o tratamento das emendas visíveis que ocorrem entre as imagens geradas no canvas.",
"faceCorrection": "Correção de rosto com GFPGAN ou Codeformer: o algoritmo detecta rostos na imagem e corrige quaisquer defeitos. Um valor alto mudará mais a imagem, resultando em rostos mais atraentes. Codeformer com uma fidelidade maior preserva a imagem original às custas de uma correção de rosto mais forte.",
"prompt": "Este é o campo de prompt. O prompt inclui objetos de geração e termos estilísticos. Você também pode adicionar peso (importância do token) no prompt, mas comandos e parâmetros de CLI não funcionarão.",
"infillAndScaling": "Gerencie os métodos de preenchimento (usados em áreas mascaradas ou apagadas do canvas) e a escala (útil para tamanhos de caixa delimitadora pequenos).",
"imageToImage": "Image to Image carrega qualquer imagem como inicial, que é então usada para gerar uma nova junto com o prompt. Quanto maior o valor, mais a imagem resultante mudará. Valores de 0.0 a 1.0 são possíveis, a faixa recomendada é de 0.25 a 0.75",
"variations": "Experimente uma variação com um valor entre 0,1 e 1,0 para mudar o resultado para uma determinada semente. Variações interessantes da semente estão entre 0,1 e 0,3."
}
}
}

Some files were not shown because too many files have changed in this diff Show More