Compare commits

...

171 Commits

Author SHA1 Message Date
09609cd553 feat(nodes): WIP restricted invocation context 2023-10-16 21:18:13 +11:00
0aedd6d9f0 feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-16 17:04:54 +11:00
70a1202deb fix(api): fix socketio breaking change (#4901)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

## Description

Fix for breaking change in `python-socketio` 5.10.0 in which
`enter_room` and `leave_room` were made coroutines.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->


- Closes #4899
2023-10-16 07:29:31 +05:30
9a1aea9caf fix(api): fix socketio breaking change
Fix for breaking change in `python-socketio` 5.10.0 in which `enter_room` and `leave_room` were made coroutines.
2023-10-16 12:18:46 +11:00
388d36b839 fix(db): use RLock instead of Lock
Fixes issues where a db-accessing service wants to call db-accessing methods with locks.
2023-10-16 11:45:24 +11:00
bedb35af8c translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 100.0% (1217 of 1217 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-16 07:57:41 +11:00
dc232438fb translationBot(ui): update translation (Italian)
Currently translated at 97.5% (1187 of 1217 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-16 07:57:41 +11:00
d7edf5aaad fix(ui): fix control adapter translation string (#4888)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

fix(ui): fix control adapter translation string

Missed this during a previous change

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

Reported by @Harvester62 :

https://discord.com/channels/1020123559063990373/1054129386447716433/1162018775437148160
2023-10-15 18:19:41 +05:30
3ad1226d1e Merge branch 'main' into fix/ui/control-adapter-translation-string 2023-10-15 18:16:48 +05:30
86ca9f122d Strip whitespace from model URLs (#4863)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

This PR strips leading and trailing whitespace from URLs that are
entered into either the Web Model Manager import field, or using the
TUI.

## Related Tickets & Documents

Closes #4536


## QA Instructions, Screenshots, Recordings

Try to import a URL with leading or trailing whitespace. Should not work
in current main. This PR should fix it.
2023-10-15 17:53:20 +05:30
2c6772f92f Merge branch 'main' into bugfix/trim-whitespace-from-urls 2023-10-15 17:41:41 +05:30
e6c1e03b8b Bugfix/ignore dot directories on model scan (#4865)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

Mac users have a recurring issue in which a `.DS_Store` directory is
created in their `models` hierarchy, causing the new model scanner to
freak out. This PR skips over any paths that begin with a dot. I haven't
tested it on a Macintosh, so I'm not 100% certain it will do the trick.

## Related Tickets & Documents

- Related Issue #4815 

## QA Instructions, Screenshots, Recordings

Someone with a Mac please try to reproduce the `.DS_Store` crash and
then see if applying this PR addresses the issue.
2023-10-15 17:33:11 +05:30
c9d95e5758 Merge branch 'main' into bugfix/ignore-dot-directories-on-model-scan 2023-10-15 17:23:02 +05:30
10755718b8 fix(ui): reset canvas batchIds on clear/batch cancel (#4890)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

This was in the original fix in #4829 but I must have removed it
accidentally.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #4889

## QA Instructions, Screenshots, Recordings

- Start from a fresh canvas session (may need to let a generation finish
or reset web UI if yours is locked)
- Invoke/add to queue
- Immediately cancel current, clear queue, or clear batch (can do this
from the queue tab)
- Canvas should return to normal state

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->
2023-10-15 17:10:38 +05:30
459c7b3b74 Merge branch 'main' into fix/ui/reset-canvas-batch-on-clear 2023-10-15 17:05:21 +05:30
353719f81d chore(ui): update deps (#4892)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Description

Update all dependencies

Resolves https://github.com/invoke-ai/InvokeAI/security/dependabot/26
2023-10-15 17:05:04 +05:30
bd4b260c23 Merge branch 'main' into fix/ui/reset-canvas-batch-on-clear 2023-10-15 17:03:08 +05:30
3e389d3f60 chore(ui): update deps 2023-10-15 19:30:39 +11:00
ffb01f1345 Update facetools.py
Facetools nodes were cutting off faces that extended beyond chunk boundaries in some cases. All faces found are considered and are coalesced rather than pruned, meaning that you should not see half a face any more.
2023-10-15 19:12:10 +11:00
faa0a8236c Merge branch 'main' into fix/ui/reset-canvas-batch-on-clear 2023-10-15 18:46:46 +11:00
e4d73d3659 Merge branch 'main' into fix/ui/control-adapter-translation-string 2023-10-15 18:46:40 +11:00
6994783c17 translationBot(ui): update translation (Italian)
Currently translated at 91.9% (1119 of 1217 strings)

Co-authored-by: psychedelicious <mabianfu@icloud.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-15 18:42:58 +11:00
3f9708f166 translationBot(ui): update translation (Italian)
Currently translated at 91.9% (1119 of 1217 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-15 18:42:58 +11:00
bcf0d8a590 fix(ui): use _other for control adapter collapse 2023-10-15 18:34:25 +11:00
2060ee22f2 fix(ui): reset canvas batchIds on clear/batch cancel
Closes #4889
2023-10-15 18:28:05 +11:00
3fd79b837f fix(ui): fix control adapter translation string 2023-10-15 18:16:10 +11:00
1c099e0abb feat(ui): add tooltip to clear intermediates button when disabled 2023-10-15 17:29:49 +11:00
95cca9493c feat(ui): disable clear intermediates button when queue has items 2023-10-15 17:29:49 +11:00
779c902402 chore(ui): lint 2023-10-15 17:29:49 +11:00
99e6bb48ba fixed problems 2023-10-15 17:29:49 +11:00
c3d6ff5b11 fixed bug #4857 2023-10-15 17:29:49 +11:00
bba962b82f fix(nodes,ui): optional metadata (#4884)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

## Description

[fix(nodes,ui): optional
metadata](78b8cfede3)

- Make all metadata items optional. This will reduce errors related to
metadata not being provided when we update the backend but old queue
items still exist
- Fix a bug in t2i adapter metadata handling where it checked for ip
adapter metadata instaed of t2i adapter metadata
- Fix some metadata fields that were not using `InputField`
2023-10-15 05:42:42 +05:30
78b8cfede3 fix(nodes,ui): optional metadata
- Make all metadata items optional. This will reduce errors related to metadata not being provided when we update the backend but old queue items still exist
- Fix a bug in t2i adapter metadata handling where it checked for ip adapter metadata instaed of t2i adapter metadata
- Fix some metadata fields that were not using `InputField`
2023-10-15 10:44:16 +11:00
e9879b9e1f Clean up communityNodes.md (#4870)
* Clean up communityNodes.md

* Update communityNodes.md
2023-10-14 22:01:20 +00:00
e21f3af5ab translationBot(ui): update translation files
Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-15 08:12:17 +11:00
2ab7c5f783 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 100.0% (1216 of 1216 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-15 08:12:17 +11:00
8bbd938be9 translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (1216 of 1216 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-10-15 08:12:17 +11:00
b4cee46936 translationBot(ui): update translation (Italian)
Currently translated at 91.4% (1112 of 1216 strings)

translationBot(ui): update translation (Italian)

Currently translated at 90.4% (1100 of 1216 strings)

translationBot(ui): update translation (Italian)

Currently translated at 90.4% (1100 of 1216 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-15 08:12:17 +11:00
48626c40fd fix(backend): handle systems with glibc < 2.33
`mallinfo2` is not available on `glibc` < 2.33.

On these systems, we successfully load the library but get an `AttributeError` on attempting to access `mallinfo2`.

I'm not sure if the old `mallinfo` will work, and not sure how to install it safely to test, so for now we just handle the `AttributeError`.

This means the enhanced memory snapshot logic will be skipped for these systems, which isn't a big deal.
2023-10-15 07:56:55 +11:00
a1001b6d10 Merge branch 'main' into bugfix/ignore-dot-directories-on-model-scan 2023-10-14 10:37:55 -04:00
50df641e1b Upload to pypi whenever a branch starting with "release/" is released (#4875)
## What type of PR is this? (check all applicable)


- [X] Optimization
- 

## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

This PR changes the pypi-release workflow so that it will upload to PyPi
whenever a release is initiated from the `main` branch or another branch
beginning with `release/`. Previous support for v2.3 branches has been
removed.
2023-10-14 10:24:01 -04:00
22dd64dfa4 Merge branch 'main' into chore/update-pypi-from-release-branches 2023-10-14 10:21:33 -04:00
0a929ca3de Fix/UI/sync translations (#4880)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

Weblate has some merge conflicts, attempting to resolve them...
2023-10-14 18:38:17 +05:30
8c61cda4b8 Merge branch 'main' into fix/ui/sync-translations 2023-10-14 18:35:48 +05:30
75663ec81e feat (ui, generation): High Resolution Fix MVP in Text2Image Linear Flow (#4819)
* added HrfScale type with initial value

* working

* working

* working

* working

* working

* added addHrfToGraph

* continueing to implement this

* working on this

* comments

* working

* made hrf into its own collapse

* working on adding strength slider

* working

* working

* refactoring

* working

* change of this working: 0

* removed onnx support since apparently its not used

* working

* made scale integer

* trying out psycicpebbles idea

* working

* working on this

* working

* added toggle

* comments

* self review

* fixing things

* remove 'any' type

* fixing typing

* changed initial strength value to 3 (large values cause issues)

* set denoising start to be 1 - strength to resemble image to image

* set initial value

* added image to image

* pr1

* pr2

* updating to resolution finding

* working

* working

* working

* working

* working

* working

* working

* working

* working

* use memo

* connect rescale hw to noise

* working

* fixed min bug

* nit

* hides elements conditionally

* style

* feat(ui): add config for HRF, disable if feature disabled or ONNX model in use

* fix(ui): use `useCallback` for HRF toggle

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-10-14 10:34:41 +00:00
40a568c060 Hide Metadata in Info View (#4787)
* #4665 hides value of the corresponding metadata item by click on arrow

* #4787 return recall button back:)

* #4787 optional hide of metadata item, truncation and scrolling

* remove unused import

* #4787 recall parameters as separate tab in panel

* #4787 remove debug code

* fix(ui): undo changes to dist/locales/en.json

This file is autogenerated by our translation system and shouldn't be modified directly

* feat(ui): use scrollbar-enabled component for parameter recall tab

* fix(ui): revert unnecessary changes to DataViewer component

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-10-14 21:25:07 +11:00
8e7aa74a16 Merge remote-tracking branch 'weblate/main' 2023-10-14 20:35:21 +11:00
fcba4382b2 upload to pypi whenever a branch starting with "release/" is released 2023-10-13 12:49:24 -04:00
bf9f7271dd add ref to pypi-release workflow to fix release with unintentional changes
v3.3.0 was accidentally released with more changes than intended. This workflows change will allow us release to pypi from a separate branch rather than main.
2023-10-13 18:58:36 +11:00
d3821594df Release/v3.3.0 (#4868)
## What type of PR is this? (check all applicable)

v3.3.0 release

## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No
2023-10-13 17:45:34 +11:00
631ad1596f Updated JS files 2023-10-13 17:27:41 +11:00
dfe32e467d Update version to 3.3.0 2023-10-13 17:27:41 +11:00
3575cf3b3b Enable the ram cache slider in invokeai-configure (#4866)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description

The `invokeai-configure` TUI's slider for the RAM cache was not picking
up the current settings in `invokeai.yaml`, leading users to think their
change hadn't taken effect. This is fixed in this PR.


## Related Tickets & Documents

First described here:


https://discord.com/channels/1020123559063990373/1161919551441735711/1162058518417907743
2023-10-13 16:08:03 +11:00
15cabc4968 Possibly closes #4815 2023-10-12 23:37:05 -04:00
29c3f49182 enable the ram cache slider in invokeai-configure 2023-10-12 23:04:16 -04:00
21d5969942 strip leading and trailing quotes as well as whitespace 2023-10-12 22:35:02 -04:00
334dcf71c4 Merge branch 'main' into bugfix/trim-whitespace-from-urls 2023-10-12 22:30:44 -04:00
d2149a8380 Fix gratuitous, parasitic, endlessly repeated, pointless menu in version 3.2.0 (#4864)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

A regression in 3.2.0 causes a seemingly nonsensical multiple choice
menu to appear when importing an SD-1 checkpoint model from the
autoimport directory. The menu asks the user to identify which type of
SD-2 model they are trying to import, which makes no sense.

In fact, the menu is popping up because there are now both "epsilon" and
"vprediction" SchedulerPredictionTypes for SD-1 as well as SD-2 models,
and the prober can't determine which prediction type to use. This PR
does two things:

1) rewords the menu as shown below
2) defaults to the most likely choice -- epsilon for v1 models and
vprediction for v2s

Here is the revised multiple-choice menu:
```
Please select the scheduler prediction type of the checkpoint named v1-5-pruned-emaonly.safetensors:
[1] "epsilon" - most v1.5 models and v2 models trained on 512 pixel images
[2] "vprediction" - v2 models trained on 768 pixel images and a few v1.5 models
[3] Accept the best guess;  you can fix it in the Web UI later

select [3]> 
```

Note that one can also put the appropriate config file into the same
directory as the checkpoint you wish to import. Give it the same name as
the model file, but with the extension `.yaml`. For example
`v1-5-pruned-emaonly.yaml`. The system will notice the yaml file and use
that, suppressing the quiz entirely.

## Related Tickets & Documents
- Closes #4768
- Closes #4827
2023-10-12 22:27:28 -04:00
6532d9ffa1 closes #4768 2023-10-12 22:04:54 -04:00
52274087f3 close #4536 2023-10-12 21:24:07 -04:00
89db8c83c2 Add a comment to warn about a necessary action before bumping the diffusers version. 2023-10-12 14:48:10 -04:00
fc09ab7e13 chore: typegen 2023-10-12 12:15:06 -04:00
9646157ad5 fix: fix test imports 2023-10-12 12:15:06 -04:00
b89ec2b9c3 chore(ui): regen types 2023-10-12 12:15:06 -04:00
d2fb29cf0d fix(app): remove errant logger line 2023-10-12 12:15:06 -04:00
d1fce4b70b chore: rebase conflicts 2023-10-12 12:15:06 -04:00
f50f95a81d fix: merge conflicts 2023-10-12 12:15:06 -04:00
3611029057 fix(backend): remove logic to create workflows column
Snuck in there while I was organising
2023-10-12 12:15:06 -04:00
402cf9b0ee feat: refactor services folder/module structure
Refactor services folder/module structure.

**Motivation**

While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.

**Services**

Services are now in their own folder with a few files:

- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc

Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.

There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.

**Shared**

Things that are used across disparate services are in `services/shared/`:

- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
2023-10-12 12:15:06 -04:00
88bee96ca3 feat(backend): rename db.py to sqlite.py 2023-10-12 12:15:06 -04:00
5048fc7c9e feat(backend): move pagination models to own file 2023-10-12 12:15:06 -04:00
2a35d93a4d feat(backend): organise service dependencies
**Service Dependencies**

Services that depend on other services now access those services via the `Invoker` object. This object is provided to the service as a kwarg to its `start()` method.

Until now, most services did not utilize this feature, and several services required their dependencies to be initialized and passed in on init.

Additionally, _all_ services are now registered as invocation services - including the low-level services. This obviates issues with inter-dependent services we would otherwise experience as we add workflow storage.

**Database Access**

Previously, we were passing in a separate sqlite connection and corresponding lock as args to services in their init. A good amount of posturing was done in each service that uses the db.

These objects, along with the sqlite startup and cleanup logic, is now abstracted into a simple `SqliteDatabase` class. This creates the shared connection and lock objects, enables foreign keys, and provides a `clean()` method to do startup db maintenance.

This is not a service as it's only used by sqlite services.
2023-10-12 12:15:06 -04:00
10fac5c085 feat(ui): set w/h to multiple of 64 on add t2i 2023-10-12 23:51:01 +11:00
58850ded22 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 98.0% (1186 of 1210 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 98.0% (1179 of 1203 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 97.9% (1175 of 1199 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
f21ebdfaca translationBot(ui): update translation files
Updated by "Remove blank strings" hook in Weblate.

translationBot(ui): update translation files

Updated by "Remove blank strings" hook in Weblate.

translationBot(ui): update translation files

Updated by "Remove blank strings" hook in Weblate.

translationBot(ui): update translation files

Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
c4f1e94cc4 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 92.0% (1104 of 1199 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 92.1% (1105 of 1199 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 83.2% (998 of 1199 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 83.0% (996 of 1199 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 67.5% (810 of 1199 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
dbbcce9f70 translationBot(ui): update translation files
Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
cc52896bd9 translationBot(ui): update translation (Italian)
Currently translated at 85.5% (1026 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 84.7% (1016 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 84.7% (1016 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 84.4% (1012 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 84.3% (1011 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 83.5% (1002 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.5% (978 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 80.8% (969 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 80.7% (968 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.3% (959 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.3% (959 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.3% (959 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.3% (959 of 1179 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
d12314fb8b translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
07b88e3017 translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (605 of 605 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
0b85f2487c translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (607 of 607 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (605 of 605 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
5530d3fcd2 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 95.7% (579 of 605 strings)

Co-authored-by: nemuruibai <nemuruibai@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
7b1b24900f translationBot(ui): update translation (Russian)
Currently translated at 65.5% (643 of 981 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (605 of 605 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
f52fb45276 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
fb9f0339a2 translationBot(ui): update translation (Italian)
Currently translated at 81.2% (958 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.2% (958 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 76.6% (904 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 76.5% (903 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 71.9% (848 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 71.7% (845 of 1177 strings)

translationBot(ui): update translation (Italian)

Currently translated at 71.7% (845 of 1177 strings)

translationBot(ui): update translation (Italian)

Currently translated at 67.8% (799 of 1177 strings)

translationBot(ui): update translation (Italian)

Currently translated at 58.5% (689 of 1177 strings)

translationBot(ui): update translation (Italian)

Currently translated at 59.8% (640 of 1069 strings)

translationBot(ui): update translation (Italian)

Currently translated at 57.2% (612 of 1069 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (607 of 607 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (605 of 605 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (605 of 605 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (602 of 602 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
ac501ee742 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 96.1% (579 of 602 strings)

Co-authored-by: nemuruibai <nemuruibai@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
2182ccf8d1 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
fc674ff1b8 translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (605 of 605 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
708ac6a511 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
d0e0b64fc8 translationBot(ui): update translation (Dutch)
Currently translated at 99.6% (591 of 593 strings)

Co-authored-by: Arnold Cordewiner <weblate@a14r.be>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
a23580664d translationBot(ui): update translation (Italian)
Currently translated at 97.8% (589 of 602 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (603 of 603 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (599 of 599 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (596 of 596 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (595 of 595 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (595 of 595 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (593 of 593 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (592 of 592 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
0edf01d927 translationBot(ui): update translation (Spanish)
Currently translated at 99.6% (601 of 603 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 99.5% (600 of 603 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (599 of 599 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (596 of 596 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 99.8% (594 of 595 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (593 of 593 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (592 of 592 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
4af5b9cbf7 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
1bf973d46e translationBot(ui): update translation (Polish)
Currently translated at 58.4% (338 of 578 strings)

Co-authored-by: Simona Liliac <simonaliliac@yandex.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pl/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
72252e3ff7 translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (563 of 563 strings)

translationBot(ui): update translation (Dutch)

Currently translated at 100.0% (563 of 563 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
8d2596c288 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (591 of 591 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.3% (587 of 591 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (586 of 586 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (578 of 578 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (563 of 563 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (559 of 559 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (559 of 559 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (551 of 551 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
0ffb7ecaa8 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
10f30fc599 translationBot(ui): update translation (Russian)
Currently translated at 99.5% (602 of 605 strings)

translationBot(ui): update translation (Russian)

Currently translated at 99.8% (605 of 606 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (596 of 596 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (595 of 595 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (593 of 593 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (592 of 592 strings)

translationBot(ui): update translation (Russian)

Currently translated at 90.2% (534 of 592 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (543 of 543 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
136570aa1d translationBot(ui): update translation (Italian)
Currently translated at 100.0% (550 of 550 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (548 of 548 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (546 of 546 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (541 of 541 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (544 of 544 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (543 of 543 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
5a30b507e0 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
d47fbf283c translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 88.0% (477 of 542 strings)

Co-authored-by: Song, Pengcheng <17528592@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
7c24312d3f translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
905cd8c639 translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (538 of 538 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
b13ba55c26 translationBot(ui): update translation (Chinese (Traditional))
Currently translated at 8.9% (48 of 536 strings)

Co-authored-by: nekowaiz <nekowaiz@hotmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hant/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
82747e2260 translationBot(ui): update translation (Russian)
Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Russian)

Currently translated at 98.8% (536 of 542 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (533 of 533 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
910553f49a translationBot(ui): update translation (Italian)
Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (540 of 540 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (538 of 538 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.8% (535 of 536 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (533 of 533 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (533 of 533 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
faabd83717 translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (591 of 591 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (586 of 586 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (578 of 578 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (563 of 563 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (550 of 550 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (550 of 550 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (548 of 548 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (546 of 546 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (544 of 544 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (543 of 543 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (540 of 540 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (533 of 533 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 99.8% (532 of 533 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
5ad77ece4b translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
6b3c413a5b translationBot(ui): update translation (Russian)
Currently translated at 100.0% (526 of 526 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (519 of 519 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
2a923d1f69 translationBot(ui): update translation (French)
Currently translated at 80.7% (419 of 519 strings)

Co-authored-by: pand4z31 <pand4zdev31@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fr/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
c54a5ce10e translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
14fbe41834 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (526 of 526 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (523 of 523 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (519 of 519 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (515 of 515 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
64ebe042b5 translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (526 of 526 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (523 of 523 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (519 of 519 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (515 of 515 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 23:45:46 +11:00
5b2ed4ffb4 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:45:13 +00:00
a49b8febed translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 98.0% (1186 of 1210 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 98.0% (1179 of 1203 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 97.9% (1175 of 1199 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 12:45:12 +00:00
e543db5a5d translationBot(ui): update translation files
Updated by "Remove blank strings" hook in Weblate.

translationBot(ui): update translation files

Updated by "Remove blank strings" hook in Weblate.

translationBot(ui): update translation files

Updated by "Remove blank strings" hook in Weblate.

translationBot(ui): update translation files

Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:45:10 +00:00
670f3aa165 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 92.0% (1104 of 1199 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 92.1% (1105 of 1199 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 83.2% (998 of 1199 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 83.0% (996 of 1199 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 67.5% (810 of 1199 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 12:45:09 +00:00
c0534d6519 translationBot(ui): update translation files
Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:45:07 +00:00
7bc6c23dfa translationBot(ui): update translation (Italian)
Currently translated at 87.1% (1054 of 1210 strings)

translationBot(ui): update translation (Italian)

Currently translated at 85.5% (1026 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 84.7% (1016 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 84.7% (1016 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 84.4% (1012 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 84.3% (1011 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 83.5% (1002 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.5% (978 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 80.8% (969 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 80.7% (968 of 1199 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.3% (959 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.3% (959 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.3% (959 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.3% (959 of 1179 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 12:45:05 +00:00
851ce36250 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:45:04 +00:00
d631088566 translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (605 of 605 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-10-12 12:45:01 +00:00
f0bf733309 translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (607 of 607 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (605 of 605 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 12:45:00 +00:00
65af7dd8f8 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 95.7% (579 of 605 strings)

Co-authored-by: nemuruibai <nemuruibai@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 12:44:59 +00:00
74c666aaa2 translationBot(ui): update translation (Russian)
Currently translated at 65.5% (643 of 981 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (605 of 605 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-10-12 12:44:58 +00:00
45f9aca7e5 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:44:56 +00:00
9fb624f390 translationBot(ui): update translation (Italian)
Currently translated at 81.2% (958 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 81.2% (958 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 76.6% (904 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 76.5% (903 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 71.9% (848 of 1179 strings)

translationBot(ui): update translation (Italian)

Currently translated at 71.7% (845 of 1177 strings)

translationBot(ui): update translation (Italian)

Currently translated at 71.7% (845 of 1177 strings)

translationBot(ui): update translation (Italian)

Currently translated at 67.8% (799 of 1177 strings)

translationBot(ui): update translation (Italian)

Currently translated at 58.5% (689 of 1177 strings)

translationBot(ui): update translation (Italian)

Currently translated at 59.8% (640 of 1069 strings)

translationBot(ui): update translation (Italian)

Currently translated at 57.2% (612 of 1069 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (607 of 607 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (605 of 605 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (605 of 605 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (602 of 602 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 12:44:53 +00:00
962e51320b translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 96.1% (579 of 602 strings)

Co-authored-by: nemuruibai <nemuruibai@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 12:44:52 +00:00
44932923eb translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:44:50 +00:00
ffcf6dfde6 translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (605 of 605 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 12:44:46 +00:00
be52eb153c translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:44:44 +00:00
bd97c6b708 translationBot(ui): update translation (Dutch)
Currently translated at 99.6% (591 of 593 strings)

Co-authored-by: Arnold Cordewiner <weblate@a14r.be>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-10-12 12:44:41 +00:00
9940cbfa87 translationBot(ui): update translation (Italian)
Currently translated at 97.8% (589 of 602 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (603 of 603 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (599 of 599 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (596 of 596 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (595 of 595 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (595 of 595 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (593 of 593 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (592 of 592 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 12:44:40 +00:00
77aeb9a421 translationBot(ui): update translation (Spanish)
Currently translated at 99.6% (601 of 603 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 99.5% (600 of 603 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (599 of 599 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (596 of 596 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 99.8% (594 of 595 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (593 of 593 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (592 of 592 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 12:44:38 +00:00
2bad8b9f29 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:44:36 +00:00
8e943b2ce1 translationBot(ui): update translation (Polish)
Currently translated at 58.4% (338 of 578 strings)

Co-authored-by: Simona Liliac <simonaliliac@yandex.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/pl/
Translation: InvokeAI/Web UI
2023-10-12 12:44:33 +00:00
5d3ab4f333 translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (563 of 563 strings)

translationBot(ui): update translation (Dutch)

Currently translated at 100.0% (563 of 563 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-10-12 12:44:32 +00:00
1047d08835 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (591 of 591 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.3% (587 of 591 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (586 of 586 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (578 of 578 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (563 of 563 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (559 of 559 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (559 of 559 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (551 of 551 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 12:44:30 +00:00
516cc258f9 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:44:28 +00:00
7c2aa1dc20 translationBot(ui): update translation (Russian)
Currently translated at 99.5% (602 of 605 strings)

translationBot(ui): update translation (Russian)

Currently translated at 99.8% (605 of 606 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (596 of 596 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (595 of 595 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (593 of 593 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (592 of 592 strings)

translationBot(ui): update translation (Russian)

Currently translated at 90.2% (534 of 592 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (543 of 543 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-10-12 12:44:25 +00:00
035f1e12e1 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (550 of 550 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (548 of 548 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (546 of 546 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (541 of 541 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (544 of 544 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (543 of 543 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 12:44:23 +00:00
4c93202ee4 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:44:20 +00:00
227046bdb0 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Chinese (Simplified))

Currently translated at 88.0% (477 of 542 strings)

Co-authored-by: Song, Pengcheng <17528592@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-10-12 12:44:17 +00:00
83b123f1f6 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:44:15 +00:00
320ef15ee9 translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (538 of 538 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-10-12 12:44:11 +00:00
6905c61912 translationBot(ui): update translation (Chinese (Traditional))
Currently translated at 8.9% (48 of 536 strings)

Co-authored-by: nekowaiz <nekowaiz@hotmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hant/
Translation: InvokeAI/Web UI
2023-10-12 12:44:09 +00:00
494bde785e translationBot(ui): update translation (Russian)
Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Russian)

Currently translated at 98.8% (536 of 542 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (533 of 533 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-10-12 12:44:08 +00:00
732ab38ca6 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (540 of 540 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (538 of 538 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Italian)

Currently translated at 99.8% (535 of 536 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (533 of 533 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (533 of 533 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 12:44:07 +00:00
ba38aa56a5 translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (591 of 591 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (586 of 586 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (578 of 578 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (563 of 563 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (550 of 550 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (550 of 550 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (548 of 548 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (546 of 546 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (544 of 544 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (543 of 543 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (542 of 542 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (540 of 540 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (536 of 536 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (533 of 533 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 99.8% (532 of 533 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 12:44:04 +00:00
0a48c5a712 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:44:01 +00:00
133ab91c8d translationBot(ui): update translation (Russian)
Currently translated at 100.0% (526 of 526 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (519 of 519 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2023-10-12 12:43:56 +00:00
7a672bd2b2 translationBot(ui): update translation (French)
Currently translated at 80.7% (419 of 519 strings)

Co-authored-by: pand4z31 <pand4zdev31@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fr/
Translation: InvokeAI/Web UI
2023-10-12 12:43:51 +00:00
7dee6f51a3 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2023-10-12 12:43:50 +00:00
3c029eee29 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (526 of 526 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (523 of 523 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (519 of 519 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (515 of 515 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-10-12 12:43:47 +00:00
1a8f9d1ecb translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (526 of 526 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (523 of 523 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (519 of 519 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (515 of 515 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-10-12 12:43:45 +00:00
80d329c900 fix(ui): fix plurals (#4860) 2023-10-12 18:07:22 +05:30
89db749d89 fix(ui): add missing translation strings 2023-10-12 22:46:47 +11:00
18164fc72a fix(ui): prettier ignores translation files 2023-10-12 21:37:45 +11:00
75de20af6a fix(ui): fix plurals in translation 2023-10-12 21:34:24 +11:00
cb1509bf52 feat(ui): add translation strings for clear intermediates (#4856)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Description

feat(ui): add translation strings for clear intermediates

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #4851

## [optional] Are there any post deployment tasks we need to perform?

@Millu this can go into 3.3.0
2023-10-12 13:16:54 +05:30
10cd814cf7 feat(ui): add translation strings for clear intermediates 2023-10-12 18:35:33 +11:00
8ef38ecc7c fix(ui): only count enabled control adapters in collapse heading 2023-10-12 16:48:01 +11:00
69937d68d2 Maryhipp/dummy bulk download (#4852)
* UI for bulk downloading boards or groups of images

* placeholder route for bulk downloads that does nothing

* lint

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-10-11 23:27:22 +00:00
40f9e49b5e Demote model cache logs from warning to debug based on the conversation here: https://discord.com/channels/1020123559063990373/1049495067846524939/1161647290189090816 2023-10-11 12:02:46 -04:00
98fa234529 Bump safetensors to ~=0.4.0 (#4844)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

@Millu pointed out this safetensors PR a few weeks ago, which claimed to
offer a performance benefit:
https://github.com/huggingface/safetensors/pull/362 . It was superseded
by https://github.com/huggingface/safetensors/pull/363 and included in
the latest [safetensors 0.4.0
release](https://github.com/huggingface/safetensors/releases/tag/v0.4.0).

Here are the results from my local performance comparison:
```
Before(0.3.1) / After(0.4.0)

sdxl:main:tokenizer from disk to cpu in                              0.46s / 0.46s
sdxl:main:text_encoder from disk to cpu in                           2.12s / 2.32s
embroidered_style_v1_sdxl.safetensors:sdxl:lora' from disk to cpu in 0.67s / 0.36s
VoxelXL_v1.safetensors:sdxl:lora' from disk to cpu in                1.64s / 0.60s
ryan_db_sdxl_epoch640.safetensors:sdxl:lora' from disk to cpu in     2.46s / 1.40s
sdxl:main:tokenizer_2 from disk to cpu in                            0.37s / 0.39s
sdxl:main:text_encoder_2 from disk to cpu in                         3.78s / 4.70s
sdxl:main:unet from disk to cpu in                                   4.66s / 3.08s
sdxl:main:scheduler from disk to cpu in                              0.34s / 0.33s
sdxl:main:vae from disk to cpu in                                    0.66s / 0.51s

TOTAL GRAPH EXECUTION TIME:                                        56.489s / 53.416s
```

The benefit was marginal on my system (maybe even within measurement
error), but I figured we might as well pull it.
2023-10-11 09:40:47 -04:00
fe889235cc Bump safetensors to ~=0.4.0 2023-10-10 18:00:15 -04:00
462c1d4c9b Improve model load times from disk: skip unnecessary weight init (#4840)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description

This PR optimizes the time to load models from disk.
In my local testing, SDXL text_encoder_2 models saw the greatest
improvement:
- Before change, load time (disk to cpu): 14 secs
- After change, load time (disk to cpu): 4 secs

See the in-code documentation for an explanation of how this speedup is
achieved.

## Related Tickets & Documents

This change was previously proposed on the HF transformers repo, but did
not get any traction:
https://github.com/huggingface/transformers/issues/18505#issue-1330728188

## QA Instructions, Screenshots, Recordings

I don't expect any adverse effects, but the new context manager is
applied while loading **all** models, so it would make sense to exercise
everything.

## Added/updated tests?

- [x] Yes
- [ ] No
2023-10-10 13:40:20 -04:00
0ed36158c8 Merge branch 'main' into ryan/optimize-model-load 2023-10-10 13:31:08 -04:00
f3c138a208 (minor) Fix Flake8. 2023-10-10 10:06:53 -04:00
61242bf86a Fix bug in skip_torch_weight_init() where the original behavior of torch.nn.Conv*d modules wasn't being restored correctly. 2023-10-10 10:05:50 -04:00
d118d02df4 feat(ui): add mapping for sketch and scribble control adapter processors 2023-10-09 23:24:56 -04:00
58b56e9b1e Add a skip_torch_weight_init() context manager to improve model load times (from disk). 2023-10-09 14:12:56 -04:00
253 changed files with 13594 additions and 7656 deletions

View File

@ -28,7 +28,7 @@ jobs:
run: twine check dist/*
- name: check PyPI versions
if: github.ref == 'refs/heads/main' || github.ref == 'refs/heads/v2.3'
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
run: |
pip install --upgrade requests
python -c "\

View File

@ -8,28 +8,42 @@ To download a node, simply download the `.py` node file from the link and add it
To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
--------------------------------
- Community Nodes
+ [Depth Map from Wavefront OBJ](#depth-map-from-wavefront-obj)
+ [Film Grain](#film-grain)
+ [Generative Grammar-Based Prompt Nodes](#generative-grammar-based-prompt-nodes)
+ [GPT2RandomPromptMaker](#gpt2randompromptmaker)
+ [Grid to Gif](#grid-to-gif)
+ [Halftone](#halftone)
+ [Ideal Size](#ideal-size)
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack)
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
+ [Image Picker](#image-picker)
+ [Load Video Frame](#load-video-frame)
+ [Make 3D](#make-3d)
+ [Oobabooga](#oobabooga)
+ [Prompt Tools](#prompt-tools)
+ [Retroize](#retroize)
+ [Size Stepper Nodes](#size-stepper-nodes)
+ [Text font to Image](#text-font-to-image)
+ [Thresholding](#thresholding)
+ [XY Image to Grid and Images to Grids nodes](#xy-image-to-grid-and-images-to-grids-nodes)
- [Example Node Template](#example-node-template)
- [Disclaimer](#disclaimer)
- [Help](#help)
--------------------------------
### Make 3D
### Depth Map from Wavefront OBJ
**Description:** Create compelling 3D stereo images from 2D originals.
**Description:** Render depth maps from Wavefront .obj files (triangulated) using this simple 3D renderer utilizing numpy and matplotlib to compute and color the scene. There are simple parameters to change the FOV, camera position, and model orientation.
**Node Link:** [https://gitlab.com/srcrr/shift3d/-/raw/main/make3d.py](https://gitlab.com/srcrr/shift3d)
To be imported, an .obj must use triangulated meshes, so make sure to enable that option if exporting from a 3D modeling program. This renderer makes each triangle a solid color based on its average depth, so it will cause anomalies if your .obj has large triangles. In Blender, the Remesh modifier can be helpful to subdivide a mesh into small pieces that work well given these limitations.
**Example Node Graph:** https://gitlab.com/srcrr/shift3d/-/raw/main/example-workflow.json?ref_type=heads&inline=false
**Node Link:** https://github.com/dwringer/depth-from-obj-node
**Output Examples**
![Painting of a cozy delapidated house](https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png){: style="height:512px;width:512px"}
![Photo of cute puppies](https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png){: style="height:512px;width:512px"}
--------------------------------
### Ideal Size
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Node Link:** https://github.com/JPPhoto/ideal-size-node
**Example Usage:**
</br><img src="https://raw.githubusercontent.com/dwringer/depth-from-obj-node/main/depth_from_obj_usage.jpg" width="500" />
--------------------------------
### Film Grain
@ -39,68 +53,19 @@ To use a community workflow, download the the `.json` node graph file and load i
**Node Link:** https://github.com/JPPhoto/film-grain-node
--------------------------------
### Image Picker
### Generative Grammar-Based Prompt Nodes
**Description:** This InvokeAI node takes in a collection of images and randomly chooses one. This can be useful when you have a number of poses to choose from for a ControlNet node, or a number of input images for another purpose.
**Description:** This set of 3 nodes generates prompts from simple user-defined grammar rules (loaded from custom files - examples provided below). The prompts are made by recursively expanding a special template string, replacing nonterminal "parts-of-speech" until no nonterminal terms remain in the string.
**Node Link:** https://github.com/JPPhoto/image-picker-node
This includes 3 Nodes:
- *Lookup Table from File* - loads a YAML file "prompt" section (or of a whole folder of YAML's) into a JSON-ified dictionary (Lookups output)
- *Lookups Entry from Prompt* - places a single entry in a new Lookups output under the specified heading
- *Prompt from Lookup Table* - uses a Collection of Lookups as grammar rules from which to randomly generate prompts.
--------------------------------
### Thresholding
**Node Link:** https://github.com/dwringer/generative-grammar-prompt-nodes
**Description:** This node generates masks for highlights, midtones, and shadows given an input image. You can optionally specify a blur for the lookup table used in making those masks from the source image.
**Node Link:** https://github.com/JPPhoto/thresholding-node
**Examples**
Input:
![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/c88ada13-fb3d-484c-a4fe-947b44712632){: style="height:512px;width:512px"}
Highlights/Midtones/Shadows:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/727021c1-36ff-4ec8-90c8-105e00de986d" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0b721bfc-f051-404e-b905-2f16b824ddfe" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/04c1297f-1c88-42b6-a7df-dd090b976286" style="width: 30%" />
Highlights/Midtones/Shadows (with LUT blur enabled):
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/19aa718a-70c1-4668-8169-d68f4bd13771" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0a440e43-697f-4d17-82ee-f287467df0a5" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0701fd0f-2ca7-4fe2-8613-2b52547bafce" style="width: 30%" />
--------------------------------
### Halftone
**Description**: Halftone converts the source image to grayscale and then performs halftoning. CMYK Halftone converts the image to CMYK and applies a per-channel halftoning to make the source image look like a magazine or newspaper. For both nodes, you can specify angles and halftone dot spacing.
**Node Link:** https://github.com/JPPhoto/halftone-node
**Example**
Input:
![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/fd5efb9f-4355-4409-a1c2-c1ca99e0cab4){: style="height:512px;width:512px"}
Halftone Output:
![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/7e606f29-e68f-4d46-b3d5-97f799a4ec2f){: style="height:512px;width:512px"}
CMYK Halftone Output:
![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea){: style="height:512px;width:512px"}
--------------------------------
### Retroize
**Description:** Retroize is a collection of nodes for InvokeAI to "Retroize" images. Any image can be given a fresh coat of retro paint with these nodes, either from your gallery or from within the graph itself. It includes nodes to pixelize, quantize, palettize, and ditherize images; as well as to retrieve palettes from existing images.
**Node Link:** https://github.com/Ar7ific1al/invokeai-retroizeinode/
**Retroize Output Examples**
![image](https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974)
**Example Usage:**
</br><img src="https://raw.githubusercontent.com/dwringer/generative-grammar-prompt-nodes/main/lookuptables_usage.jpg" width="500" />
--------------------------------
### GPT2RandomPromptMaker
@ -113,76 +78,49 @@ CMYK Halftone Output:
Generated Prompt: An enchanted weapon will be usable by any character regardless of their alignment.
![9acf5aef-7254-40dd-95b3-8eac431dfab0 (1)](https://github.com/mickr777/InvokeAI/assets/115216705/8496ba09-bcdd-4ff7-8076-ff213b6a1e4c)
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/8496ba09-bcdd-4ff7-8076-ff213b6a1e4c" width="200" />
--------------------------------
### Load Video Frame
### Grid to Gif
**Description:** This is a video frame image provider + indexer/video creation nodes for hooking up to iterators and ranges and ControlNets and such for invokeAI node experimentation. Think animation + ControlNet outputs.
**Description:** One node that turns a grid image into an image collection, one node that turns an image collection into a gif.
**Node Link:** https://github.com/helix4u/load_video_frame
**Node Link:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/GridToGif.py
**Example Node Graph:** https://github.com/helix4u/load_video_frame/blob/main/Example_Workflow.json
**Example Node Graph:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/Grid%20to%20Gif%20Example%20Workflow.json
**Output Example:**
**Output Examples**
![Example animation](https://github.com/helix4u/load_video_frame/blob/main/testmp4_embed_converted.gif)
[Full mp4 of Example Output test.mp4](https://github.com/helix4u/load_video_frame/blob/main/test.mp4)
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/input.png" width="300" />
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/output.gif" width="300" />
--------------------------------
### Halftone
### Oobabooga
**Description**: Halftone converts the source image to grayscale and then performs halftoning. CMYK Halftone converts the image to CMYK and applies a per-channel halftoning to make the source image look like a magazine or newspaper. For both nodes, you can specify angles and halftone dot spacing.
**Description:** asks a local LLM running in Oobabooga's Text-Generation-Webui to write a prompt based on the user input.
**Node Link:** https://github.com/JPPhoto/halftone-node
**Link:** https://github.com/sammyf/oobabooga-node
**Example**
Input:
**Example:**
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/fd5efb9f-4355-4409-a1c2-c1ca99e0cab4" width="300" />
"describe a new mystical creature in its natural environment"
Halftone Output:
*can return*
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/7e606f29-e68f-4d46-b3d5-97f799a4ec2f" width="300" />
"The mystical creature I am describing to you is called the "Glimmerwing". It is a majestic, iridescent being that inhabits the depths of the most enchanted forests and glimmering lakes. Its body is covered in shimmering scales that reflect every color of the rainbow, and it has delicate, translucent wings that sparkle like diamonds in the sunlight. The Glimmerwing's home is a crystal-clear lake, surrounded by towering trees with leaves that shimmer like jewels. In this serene environment, the Glimmerwing spends its days swimming gracefully through the water, chasing schools of glittering fish and playing with the gentle ripples of the lake's surface.
As the sun sets, the Glimmerwing perches on a branch of one of the trees, spreading its wings to catch the last rays of light. The creature's scales glow softly, casting a rainbow of colors across the forest floor. The Glimmerwing sings a haunting melody, its voice echoing through the stillness of the night air. Its song is said to have the power to heal the sick and bring peace to troubled souls. Those who are lucky enough to hear the Glimmerwing's song are forever changed by its beauty and grace."
CMYK Halftone Output:
![glimmerwing_small](https://github.com/sammyf/oobabooga-node/assets/42468608/cecdd820-93dd-4c35-abbf-607e001fb2ed)
**Requirement**
a Text-Generation-Webui instance (might work remotely too, but I never tried it) and obviously InvokeAI 3.x
**Note**
This node works best with SDXL models, especially as the style can be described independantly of the LLM's output.
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea" width="300" />
--------------------------------
### Depth Map from Wavefront OBJ
### Ideal Size
**Description:** Render depth maps from Wavefront .obj files (triangulated) using this simple 3D renderer utilizing numpy and matplotlib to compute and color the scene. There are simple parameters to change the FOV, camera position, and model orientation.
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
To be imported, an .obj must use triangulated meshes, so make sure to enable that option if exporting from a 3D modeling program. This renderer makes each triangle a solid color based on its average depth, so it will cause anomalies if your .obj has large triangles. In Blender, the Remesh modifier can be helpful to subdivide a mesh into small pieces that work well given these limitations.
**Node Link:** https://github.com/dwringer/depth-from-obj-node
**Example Usage:**
![depth from obj usage graph](https://raw.githubusercontent.com/dwringer/depth-from-obj-node/main/depth_from_obj_usage.jpg)
--------------------------------
### Generative Grammar-Based Prompt Nodes
**Description:** This set of 3 nodes generates prompts from simple user-defined grammar rules (loaded from custom files - examples provided below). The prompts are made by recursively expanding a special template string, replacing nonterminal "parts-of-speech" until no more nonterminal terms remain in the string.
This includes 3 Nodes:
- *Lookup Table from File* - loads a YAML file "prompt" section (or of a whole folder of YAML's) into a JSON-ified dictionary (Lookups output)
- *Lookups Entry from Prompt* - places a single entry in a new Lookups output under the specified heading
- *Prompt from Lookup Table* - uses a Collection of Lookups as grammar rules from which to randomly generate prompts.
**Node Link:** https://github.com/dwringer/generative-grammar-prompt-nodes
**Example Usage:**
![lookups usage example graph](https://raw.githubusercontent.com/dwringer/generative-grammar-prompt-nodes/main/lookuptables_usage.jpg)
**Node Link:** https://github.com/JPPhoto/ideal-size-node
--------------------------------
### Image and Mask Composition Pack
@ -208,45 +146,88 @@ This includes 15 Nodes:
- *Text Mask (simple 2D)* - create and position a white on black (or black on white) line of text using any font locally available to Invoke.
**Node Link:** https://github.com/dwringer/composition-nodes
**Nodes and Output Examples:**
![composition nodes usage graph](https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg)
</br><img src="https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg" width="500" />
--------------------------------
### Size Stepper Nodes
### Image to Character Art Image Nodes
**Description:** This is a set of nodes for calculating the necessary size increments for doing upscaling workflows. Use the *Final Size & Orientation* node to enter your full size dimensions and orientation (portrait/landscape/random), then plug that and your initial generation dimensions into the *Ideal Size Stepper* and get 1, 2, or 3 intermediate pairs of dimensions for upscaling. Note this does not output the initial size or full size dimensions: the 1, 2, or 3 outputs of this node are only the intermediate sizes.
**Description:** Group of nodes to convert an input image into ascii/unicode art Image
A third node is included, *Random Switch (Integers)*, which is just a generic version of Final Size with no orientation selection.
**Node Link:** https://github.com/dwringer/size-stepper-nodes
**Example Usage:**
![size stepper usage graph](https://raw.githubusercontent.com/dwringer/size-stepper-nodes/main/size_nodes_usage.jpg)
--------------------------------
### Text font to Image
**Description:** text font to text image node for InvokeAI, download a font to use (or if in font cache uses it from there), the text is always resized to the image size, but can control that with padding, optional 2nd line
**Node Link:** https://github.com/mickr777/textfontimage
**Node Link:** https://github.com/mickr777/imagetoasciiimage
**Output Examples**
![a3609d48-d9b7-41f0-b280-063d857986fb](https://github.com/mickr777/InvokeAI/assets/115216705/c21b0af3-d9c6-4c16-9152-846a23effd36)
Results after using the depth controlnet
![9133eabb-bcda-4326-831e-1b641228b178](https://github.com/mickr777/InvokeAI/assets/115216705/915f1a53-968e-43eb-aa61-07cd8f1a733a)
![4f9a3fa8-9be9-4236-8a3e-fcec66decd2a](https://github.com/mickr777/InvokeAI/assets/115216705/821ef89e-8a60-44f5-b94e-471a9d8690cc)
![babd69c4-9d60-4a55-a834-5e8397f62610](https://github.com/mickr777/InvokeAI/assets/115216705/2befcb6d-49f4-4bfd-b5fc-1fee19274f89)
<img src="https://user-images.githubusercontent.com/115216705/271817646-8e061fcc-9a2c-4fa9-bcc7-c0f7b01e9056.png" width="300" /><img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/3c4990eb-2f42-46b9-90f9-0088b939dc6a" width="300" /></br>
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/fee7f800-a4a8-41e2-a66b-c66e4343307e" width="300" />
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/1d9c1003-a45f-45c2-aac7-46470bb89330" width="300" />
--------------------------------
### Image Picker
**Description:** This InvokeAI node takes in a collection of images and randomly chooses one. This can be useful when you have a number of poses to choose from for a ControlNet node, or a number of input images for another purpose.
**Node Link:** https://github.com/JPPhoto/image-picker-node
--------------------------------
### Load Video Frame
**Description:** This is a video frame image provider + indexer/video creation nodes for hooking up to iterators and ranges and ControlNets and such for invokeAI node experimentation. Think animation + ControlNet outputs.
**Node Link:** https://github.com/helix4u/load_video_frame
**Example Node Graph:** https://github.com/helix4u/load_video_frame/blob/main/Example_Workflow.json
**Output Example:**
<img src="https://github.com/helix4u/load_video_frame/blob/main/testmp4_embed_converted.gif" width="500" />
[Full mp4 of Example Output test.mp4](https://github.com/helix4u/load_video_frame/blob/main/test.mp4)
--------------------------------
### Make 3D
**Description:** Create compelling 3D stereo images from 2D originals.
**Node Link:** [https://gitlab.com/srcrr/shift3d/-/raw/main/make3d.py](https://gitlab.com/srcrr/shift3d)
**Example Node Graph:** https://gitlab.com/srcrr/shift3d/-/raw/main/example-workflow.json?ref_type=heads&inline=false
**Output Examples**
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png" width="300" />
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png" width="300" />
--------------------------------
### Oobabooga
**Description:** asks a local LLM running in Oobabooga's Text-Generation-Webui to write a prompt based on the user input.
**Link:** https://github.com/sammyf/oobabooga-node
**Example:**
"describe a new mystical creature in its natural environment"
*can return*
"The mystical creature I am describing to you is called the "Glimmerwing". It is a majestic, iridescent being that inhabits the depths of the most enchanted forests and glimmering lakes. Its body is covered in shimmering scales that reflect every color of the rainbow, and it has delicate, translucent wings that sparkle like diamonds in the sunlight. The Glimmerwing's home is a crystal-clear lake, surrounded by towering trees with leaves that shimmer like jewels. In this serene environment, the Glimmerwing spends its days swimming gracefully through the water, chasing schools of glittering fish and playing with the gentle ripples of the lake's surface.
As the sun sets, the Glimmerwing perches on a branch of one of the trees, spreading its wings to catch the last rays of light. The creature's scales glow softly, casting a rainbow of colors across the forest floor. The Glimmerwing sings a haunting melody, its voice echoing through the stillness of the night air. Its song is said to have the power to heal the sick and bring peace to troubled souls. Those who are lucky enough to hear the Glimmerwing's song are forever changed by its beauty and grace."
<img src="https://github.com/sammyf/oobabooga-node/assets/42468608/cecdd820-93dd-4c35-abbf-607e001fb2ed" width="300" />
**Requirement**
a Text-Generation-Webui instance (might work remotely too, but I never tried it) and obviously InvokeAI 3.x
**Note**
This node works best with SDXL models, especially as the style can be described independently of the LLM's output.
--------------------------------
### Prompt Tools
**Description:** A set of InvokeAI nodes that add general prompt manipulation tools. These where written to accompany the PromptsFromFile node and other prompt generation nodes.
**Description:** A set of InvokeAI nodes that add general prompt manipulation tools. These were written to accompany the PromptsFromFile node and other prompt generation nodes.
1. PromptJoin - Joins to prompts into one.
2. PromptReplace - performs a search and replace on a prompt. With the option of using regex.
@ -263,51 +244,83 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Node Link:** https://github.com/skunkworxdark/Prompt-tools-nodes
--------------------------------
### Retroize
**Description:** Retroize is a collection of nodes for InvokeAI to "Retroize" images. Any image can be given a fresh coat of retro paint with these nodes, either from your gallery or from within the graph itself. It includes nodes to pixelize, quantize, palettize, and ditherize images; as well as to retrieve palettes from existing images.
**Node Link:** https://github.com/Ar7ific1al/invokeai-retroizeinode/
**Retroize Output Examples**
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
--------------------------------
### Size Stepper Nodes
**Description:** This is a set of nodes for calculating the necessary size increments for doing upscaling workflows. Use the *Final Size & Orientation* node to enter your full size dimensions and orientation (portrait/landscape/random), then plug that and your initial generation dimensions into the *Ideal Size Stepper* and get 1, 2, or 3 intermediate pairs of dimensions for upscaling. Note this does not output the initial size or full size dimensions: the 1, 2, or 3 outputs of this node are only the intermediate sizes.
A third node is included, *Random Switch (Integers)*, which is just a generic version of Final Size with no orientation selection.
**Node Link:** https://github.com/dwringer/size-stepper-nodes
**Example Usage:**
</br><img src="https://raw.githubusercontent.com/dwringer/size-stepper-nodes/main/size_nodes_usage.jpg" width="500" />
--------------------------------
### Text font to Image
**Description:** text font to text image node for InvokeAI, download a font to use (or if in font cache uses it from there), the text is always resized to the image size, but can control that with padding, optional 2nd line
**Node Link:** https://github.com/mickr777/textfontimage
**Output Examples**
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/c21b0af3-d9c6-4c16-9152-846a23effd36" width="300" />
Results after using the depth controlnet
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/915f1a53-968e-43eb-aa61-07cd8f1a733a" width="300" />
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/821ef89e-8a60-44f5-b94e-471a9d8690cc" width="300" />
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/2befcb6d-49f4-4bfd-b5fc-1fee19274f89" width="300" />
--------------------------------
### Thresholding
**Description:** This node generates masks for highlights, midtones, and shadows given an input image. You can optionally specify a blur for the lookup table used in making those masks from the source image.
**Node Link:** https://github.com/JPPhoto/thresholding-node
**Examples**
Input:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c88ada13-fb3d-484c-a4fe-947b44712632" width="300" />
Highlights/Midtones/Shadows:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/727021c1-36ff-4ec8-90c8-105e00de986d" width="300" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0b721bfc-f051-404e-b905-2f16b824ddfe" width="300" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/04c1297f-1c88-42b6-a7df-dd090b976286" width="300" />
Highlights/Midtones/Shadows (with LUT blur enabled):
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/19aa718a-70c1-4668-8169-d68f4bd13771" width="300" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0a440e43-697f-4d17-82ee-f287467df0a5" width="300" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0701fd0f-2ca7-4fe2-8613-2b52547bafce" width="300" />
--------------------------------
### XY Image to Grid and Images to Grids nodes
**Description:** Image to grid nodes and supporting tools.
1. "Images To Grids" node - Takes a collection of images and creates a grid(s) of images. If there are more images than the size of a single grid then mutilple grids will be created until it runs out of images.
2. "XYImage To Grid" node - Converts a collection of XYImages into a labeled Grid of images. The XYImages collection has to be built using the supporoting nodes. See example node setups for more details.
1. "Images To Grids" node - Takes a collection of images and creates a grid(s) of images. If there are more images than the size of a single grid then multiple grids will be created until it runs out of images.
2. "XYImage To Grid" node - Converts a collection of XYImages into a labeled Grid of images. The XYImages collection has to be built using the supporting nodes. See example node setups for more details.
See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/README.md
**Node Link:** https://github.com/skunkworxdark/XYGrid_nodes
--------------------------------
### Image to Character Art Image Node's
**Description:** Group of nodes to convert an input image into ascii/unicode art Image
**Node Link:** https://github.com/mickr777/imagetoasciiimage
**Output Examples**
<img src="https://github.com/invoke-ai/InvokeAI/assets/115216705/8e061fcc-9a2c-4fa9-bcc7-c0f7b01e9056" width="300" />
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/3c4990eb-2f42-46b9-90f9-0088b939dc6a" width="300" /></br>
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/fee7f800-a4a8-41e2-a66b-c66e4343307e" width="300" />
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/1d9c1003-a45f-45c2-aac7-46470bb89330" width="300" />
--------------------------------
### Grid to Gif
**Description:** One node that turns a grid image into an image colletion, one node that turns an image collection into a gif
**Node Link:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/GridToGif.py
**Example Node Graph:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/Grid%20to%20Gif%20Example%20Workflow.json
**Output Examples**
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/input.png" width="300" />
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/output.gif" width="300" />
--------------------------------
### Example Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
@ -318,7 +331,7 @@ See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/READ
**Output Examples**
![Example Image](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png){: style="height:115px;width:240px"}
</br><img src="https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png" width="500" />
## Disclaimer

View File

@ -1,35 +1,35 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import sqlite3
from logging import Logger
from invokeai.app.services.board_image_record_storage import SqliteBoardImageRecordStorage
from invokeai.app.services.board_images import BoardImagesService, BoardImagesServiceDependencies
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.session_processor.session_processor_default import DefaultSessionProcessor
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.urls import LocalUrlService
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
from ..services.default_graphs import create_system_graphs
from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.image_file_storage import DiskImageFileStorage
from ..services.invocation_queue import MemoryInvocationQueue
from ..services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
from ..services.board_images.board_images_default import BoardImagesService
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from ..services.boards.boards_default import BoardService
from ..services.config import InvokeAIAppConfig
from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from ..services.invocation_processor.invocation_processor_default import DefaultInvocationProcessor
from ..services.invocation_queue.invocation_queue_memory import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
from ..services.invocation_stats import InvocationStatsService
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..services.model_manager_service import ModelManagerService
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from ..services.thread import lock
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.shared.default_graphs import create_system_graphs
from ..services.shared.graph import GraphExecutionState, LibraryGraph
from ..services.shared.sqlite import SqliteDatabase
from ..services.urls.urls_default import LocalUrlService
from .events import FastAPIEventService
@ -63,100 +63,64 @@ class ApiDependencies:
logger.info(f"Root directory = {str(config.root_path)}")
logger.debug(f"Internet connectivity is {config.internet_available}")
events = FastAPIEventService(event_handler_id)
output_folder = config.output_path
# TODO: build a file/path manager?
if config.use_memory_db:
db_location = ":memory:"
else:
db_path = config.db_path
db_path.parent.mkdir(parents=True, exist_ok=True)
db_location = str(db_path)
db = SqliteDatabase(config, logger)
logger.info(f"Using database at {db_location}")
db_conn = sqlite3.connect(db_location, check_same_thread=False) # TODO: figure out a better threading solution
configuration = config
logger = logger
if config.log_sql:
db_conn.set_trace_callback(print)
db_conn.execute("PRAGMA foreign_keys = ON;")
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
conn=db_conn, table_name="graph_executions", lock=lock
)
urls = LocalUrlService()
image_record_storage = SqliteImageRecordStorage(conn=db_conn, lock=lock)
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
board_image_records = SqliteBoardImageRecordStorage(db=db)
board_images = BoardImagesService()
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
graph_library = SqliteItemStorage[LibraryGraph](db=db, table_name="graphs")
image_files = DiskImageFileStorage(f"{output_folder}/images")
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
board_record_storage = SqliteBoardRecordStorage(conn=db_conn, lock=lock)
board_image_record_storage = SqliteBoardImageRecordStorage(conn=db_conn, lock=lock)
boards = BoardService(
services=BoardServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
board_images = BoardImagesService(
services=BoardImagesServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
images = ImageService(
services=ImageServiceDependencies(
board_image_record_storage=board_image_record_storage,
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
)
model_manager = ModelManagerService(config, logger)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
processor = DefaultInvocationProcessor()
queue = MemoryInvocationQueue()
session_processor = DefaultSessionProcessor()
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService()
services = InvocationServices(
model_manager=ModelManagerService(config, logger),
events=events,
latents=latents,
images=images,
boards=boards,
board_image_records=board_image_records,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](conn=db_conn, lock=lock, table_name="graphs"),
board_records=board_records,
boards=boards,
configuration=configuration,
events=events,
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
configuration=config,
performance_statistics=InvocationStatsService(graph_execution_manager),
graph_library=graph_library,
image_files=image_files,
image_records=image_records,
images=images,
invocation_cache=invocation_cache,
latents=latents,
logger=logger,
session_queue=SqliteSessionQueue(conn=db_conn, lock=lock),
session_processor=DefaultSessionProcessor(),
invocation_cache=MemoryInvocationCache(max_cache_size=config.node_cache_size),
model_manager=model_manager,
names=names,
performance_statistics=performance_statistics,
processor=processor,
queue=queue,
session_processor=session_processor,
session_queue=session_queue,
urls=urls,
)
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services)
try:
lock.acquire()
db_conn.execute("VACUUM;")
db_conn.commit()
logger.info("Cleaned database")
finally:
lock.release()
db.clean()
@staticmethod
def shutdown():

View File

@ -7,7 +7,7 @@ from typing import Any
from fastapi_events.dispatcher import dispatch
from ..services.events import EventServiceBase
from ..services.events.events_base import EventServiceBase
class FastAPIEventService(EventServiceBase):

View File

@ -4,9 +4,9 @@ from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.services.board_record_storage import BoardChanges
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from ..dependencies import ApiDependencies

View File

@ -8,9 +8,9 @@ from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.image_record import ImageDTO, ImageRecordChanges, ImageUrlsDTO
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from ..dependencies import ApiDependencies
@ -42,7 +42,7 @@ async def upload_image(
crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"),
) -> ImageDTO:
"""Uploads an image"""
if not file.content_type.startswith("image"):
if not file.content_type or not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await file.read()
@ -322,3 +322,20 @@ async def unstar_images_in_list(
return ImagesUpdatedFromListResult(updated_image_names=updated_image_names)
except Exception:
raise HTTPException(status_code=500, detail="Failed to unstar images")
class ImagesDownloaded(BaseModel):
response: Optional[str] = Field(
description="If defined, the message to display to the user when images begin downloading"
)
@images_router.post("/download", operation_id="download_images_from_list", response_model=ImagesDownloaded)
async def download_images_from_list(
image_names: list[str] = Body(description="The list of names of images to download", embed=True),
board_id: Optional[str] = Body(
default=None, description="The board from which image should be downloaded from", embed=True
),
) -> ImagesDownloaded:
# return ImagesDownloaded(response="Your images are downloading")
raise HTTPException(status_code=501, detail="Endpoint is not yet implemented")

View File

@ -2,11 +2,11 @@
import pathlib
from typing import List, Literal, Optional, Union
from typing import Annotated, List, Literal, Optional, Union
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, parse_obj_as
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
from starlette.exceptions import HTTPException
from invokeai.backend import BaseModelType, ModelType
@ -23,8 +23,14 @@ from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
update_models_response_adapter = TypeAdapter(UpdateModelResponse)
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
import_models_response_adapter = TypeAdapter(ImportModelResponse)
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
convert_models_response_adapter = TypeAdapter(ConvertModelResponse)
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
@ -32,6 +38,11 @@ ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel):
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
model_config = ConfigDict(use_enum_values=True)
models_list_adapter = TypeAdapter(ModelsList)
@models_router.get(
"/",
@ -49,7 +60,7 @@ async def list_models(
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
else:
models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type)
models = parse_obj_as(ModelsList, {"models": models_raw})
models = models_list_adapter.validate_python({"models": models_raw})
return models
@ -105,11 +116,14 @@ async def update_model(
info.path = new_info.get("path")
# replace empty string values with None/null to avoid phenomenon of vae: ''
info_dict = info.dict()
info_dict = info.model_dump()
info_dict = {x: info_dict[x] if info_dict[x] else None for x in info_dict.keys()}
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name, base_model=base_model, model_type=model_type, model_attributes=info_dict
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info_dict,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
@ -117,7 +131,7 @@ async def update_model(
base_model=base_model,
model_type=model_type,
)
model_response = parse_obj_as(UpdateModelResponse, model_raw)
model_response = update_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
@ -152,13 +166,15 @@ async def import_model(
) -> ImportModelResponse:
"""Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically"""
location = location.strip("\"' ")
items_to_import = {location}
prediction_types = {x.value: x for x in SchedulerPredictionType}
logger = ApiDependencies.invoker.services.logger
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import=items_to_import, prediction_type_helper=lambda x: prediction_types.get(prediction_type)
items_to_import=items_to_import,
prediction_type_helper=lambda x: prediction_types.get(prediction_type),
)
info = installed_models.get(location)
@ -170,7 +186,7 @@ async def import_model(
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name, base_model=info.base_model, model_type=info.model_type
)
return parse_obj_as(ImportModelResponse, model_raw)
return import_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException as e:
logger.error(str(e))
@ -204,13 +220,18 @@ async def add_model(
try:
ApiDependencies.invoker.services.model_manager.add_model(
info.model_name, info.base_model, info.model_type, model_attributes=info.dict()
info.model_name,
info.base_model,
info.model_type,
model_attributes=info.model_dump(),
)
logger.info(f"Successfully added {info.model_name}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.model_name, base_model=info.base_model, model_type=info.model_type
model_name=info.model_name,
base_model=info.base_model,
model_type=info.model_type,
)
return parse_obj_as(ImportModelResponse, model_raw)
return import_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@ -222,7 +243,10 @@ async def add_model(
@models_router.delete(
"/{base_model}/{model_type}/{model_name}",
operation_id="del_model",
responses={204: {"description": "Model deleted successfully"}, 404: {"description": "Model not found"}},
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
response_model=None,
)
@ -278,7 +302,7 @@ async def convert_model(
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name, base_model=base_model, model_type=model_type
)
response = parse_obj_as(ConvertModelResponse, model_raw)
response = convert_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}")
except ValueError as e:
@ -301,7 +325,8 @@ async def search_for_models(
) -> List[pathlib.Path]:
if not search_path.is_dir():
raise HTTPException(
status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory"
status_code=404,
detail=f"The search path '{search_path}' does not exist or is not directory",
)
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path)
@ -336,6 +361,26 @@ async def sync_to_config() -> bool:
return True
# There's some weird pydantic-fastapi behaviour that requires this to be a separate class
# TODO: After a few updates, see if it works inside the route operation handler?
class MergeModelsBody(BaseModel):
model_names: List[str] = Field(description="model name", min_length=2, max_length=3)
merged_model_name: Optional[str] = Field(description="Name of destination model")
alpha: Optional[float] = Field(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5)
interp: Optional[MergeInterpolationMethod] = Field(description="Interpolation method")
force: Optional[bool] = Field(
description="Force merging of models created with different versions of diffusers",
default=False,
)
merge_dest_directory: Optional[str] = Field(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
)
model_config = ConfigDict(protected_namespaces=())
@models_router.put(
"/merge/{base_model}",
operation_id="merge_models",
@ -348,31 +393,23 @@ async def sync_to_config() -> bool:
response_model=MergeModelResponse,
)
async def merge_models(
body: Annotated[MergeModelsBody, Body(description="Model configuration", embed=True)],
base_model: BaseModelType = Path(description="Base model"),
model_names: List[str] = Body(description="model name", min_items=2, max_items=3),
merged_model_name: Optional[str] = Body(description="Name of destination model"),
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(
description="Force merging of models created with different versions of diffusers", default=False
),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {model_names} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
logger.info(
f"Merging models: {body.model_names} into {body.merge_dest_directory or '<MODELS>'}/{body.merged_model_name}"
)
dest = pathlib.Path(body.merge_dest_directory) if body.merge_dest_directory else None
result = ApiDependencies.invoker.services.model_manager.merge_models(
model_names,
base_model,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
model_names=body.model_names,
base_model=base_model,
merged_model_name=body.merged_model_name or "+".join(body.model_names),
alpha=body.alpha,
interp=body.interp,
force=body.force,
merge_dest_directory=dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
@ -380,9 +417,12 @@ async def merge_models(
base_model=base_model,
model_type=ModelType.Main,
)
response = parse_obj_as(ConvertModelResponse, model_raw)
response = convert_models_response_adapter.validate_python(model_raw)
except ModelNotFoundException:
raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found")
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{body.model_names}' not found",
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@ -18,9 +18,9 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueItemDTO,
SessionQueueStatus,
)
from invokeai.app.services.shared.models import CursorPaginatedResults
from invokeai.app.services.shared.graph import Graph
from invokeai.app.services.shared.pagination import CursorPaginatedResults
from ...services.graph import Graph
from ..dependencies import ApiDependencies
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])

View File

@ -6,11 +6,12 @@ from fastapi import Body, HTTPException, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic.fields import Field
from invokeai.app.services.shared.pagination import PaginatedResults
# Importing * is bad karma but needed here for node detection
from ...invocations import * # noqa: F401 F403
from ...invocations.baseinvocation import BaseInvocation
from ...services.graph import Edge, EdgeConnection, Graph, GraphExecutionState, NodeAlreadyExecutedError
from ...services.item_storage import PaginatedResults
from ...services.shared.graph import Edge, EdgeConnection, Graph, GraphExecutionState, NodeAlreadyExecutedError
from ..dependencies import ApiDependencies
session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])

View File

@ -1,4 +1,4 @@
from typing import Optional
from typing import Optional, Union
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from fastapi import Body
@ -27,6 +27,7 @@ async def parse_dynamicprompts(
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
) -> DynamicPromptsResponse:
"""Creates a batch process"""
generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator]
try:
error: Optional[str] = None
if combinatorial:

View File

@ -5,7 +5,7 @@ from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event
from socketio import ASGIApp, AsyncServer
from ..services.events import EventServiceBase
from ..services.events.events_base import EventServiceBase
class SocketIO:
@ -30,8 +30,8 @@ class SocketIO:
async def _handle_sub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data:
self.__sio.enter_room(sid, data["queue_id"])
await self.__sio.enter_room(sid, data["queue_id"])
async def _handle_unsub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data:
self.__sio.enter_room(sid, data["queue_id"])
await self.__sio.enter_room(sid, data["queue_id"])

View File

@ -22,7 +22,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from pydantic.schema import schema
from pydantic.json_schema import models_json_schema
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
@ -31,7 +31,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies
from .api.routers import app_info, board_images, boards, images, models, session_queue, sessions, utilities
from .api.routers import app_info, board_images, boards, images, models, session_queue, utilities
from .api.sockets import SocketIO
from .invocations.baseinvocation import BaseInvocation, UIConfigBase, _InputField, _OutputField
@ -51,7 +51,7 @@ mimetypes.add_type("text/css", ".css")
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None)
app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
# Add event handler
event_handler_id: int = id(app)
@ -63,18 +63,18 @@ app.add_middleware(
socket_io = SocketIO(app)
app.add_middleware(
CORSMiddleware,
allow_origins=app_config.allow_origins,
allow_credentials=app_config.allow_credentials,
allow_methods=app_config.allow_methods,
allow_headers=app_config.allow_headers,
)
# Add startup event to load dependencies
@app.on_event("startup")
async def startup_event():
app.add_middleware(
CORSMiddleware,
allow_origins=app_config.allow_origins,
allow_credentials=app_config.allow_credentials,
allow_methods=app_config.allow_methods,
allow_headers=app_config.allow_headers,
)
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
@ -85,12 +85,7 @@ async def shutdown_event():
# Include all routers
# TODO: REMOVE
# app.include_router(
# invocation.invocation_router,
# prefix = '/api')
app.include_router(sessions.session_router, prefix="/api")
# app.include_router(sessions.session_router, prefix="/api")
app.include_router(utilities.utilities_router, prefix="/api")
@ -117,6 +112,7 @@ def custom_openapi():
description="An API for invoking AI image operations",
version="1.0.0",
routes=app.routes,
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
)
# Add all outputs
@ -127,29 +123,32 @@ def custom_openapi():
output_type = signature(invoker.invoke).return_annotation
output_types.add(output_type)
output_schemas = schema(output_types, ref_prefix="#/components/schemas/")
for schema_key, output_schema in output_schemas["definitions"].items():
output_schema["class"] = "output"
openapi_schema["components"]["schemas"][schema_key] = output_schema
output_schemas = models_json_schema(
models=[(o, "serialization") for o in output_types], ref_template="#/components/schemas/{model}"
)
for schema_key, output_schema in output_schemas[1]["$defs"].items():
# TODO: note that we assume the schema_key here is the TYPE.__name__
# This could break in some cases, figure out a better way to do it
output_type_titles[schema_key] = output_schema["title"]
# Add Node Editor UI helper schemas
ui_config_schemas = schema([UIConfigBase, _InputField, _OutputField], ref_prefix="#/components/schemas/")
for schema_key, ui_config_schema in ui_config_schemas["definitions"].items():
ui_config_schemas = models_json_schema(
[(UIConfigBase, "serialization"), (_InputField, "serialization"), (_OutputField, "serialization")],
ref_template="#/components/schemas/{model}",
)
for schema_key, ui_config_schema in ui_config_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = ui_config_schema
# Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations:
invoker_name = invoker.__name__
output_type = signature(invoker.invoke).return_annotation
output_type = signature(obj=invoker.invoke).return_annotation
output_type_title = output_type_titles[output_type.__name__]
invoker_schema = openapi_schema["components"]["schemas"][invoker_name]
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref
invoker_schema["class"] = "invocation"
openapi_schema["components"]["schemas"][f"{output_type_title}"]["class"] = "output"
from invokeai.backend.model_management.models import get_model_config_enums
@ -172,7 +171,7 @@ def custom_openapi():
return app.openapi_schema
app.openapi = custom_openapi
app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid assignment
# Override API doc favicons
app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], "static/dream_web")), name="static")

View File

@ -24,8 +24,8 @@ def add_field_argument(command_parser, name: str, field, default_override=None):
if field.default_factory is None
else field.default_factory()
)
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
if get_origin(field.annotation) == Literal:
allowed_values = get_args(field.annotation)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
@ -38,15 +38,15 @@ def add_field_argument(command_parser, name: str, field, default_override=None):
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
help=field.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
type=field.annotation,
default=default,
help=field.field_info.description,
help=field.description,
)
@ -142,7 +142,6 @@ class BaseCommand(ABC, BaseModel):
"""A CLI command"""
# All commands must include a type name like this:
# type: Literal['your_command_name'] = 'your_command_name'
@classmethod
def get_all_subclasses(cls):

File diff suppressed because it is too large Load Diff

View File

@ -2,7 +2,7 @@
import numpy as np
from pydantic import validator
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.primitives import IntegerCollectionOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
@ -20,9 +20,9 @@ class RangeInvocation(BaseInvocation):
stop: int = InputField(default=10, description="The stop of the range")
step: int = InputField(default=1, description="The step of the range")
@validator("stop")
def stop_gt_start(cls, v, values):
if "start" in values and v <= values["start"]:
@field_validator("stop")
def stop_gt_start(cls, v: int, info: ValidationInfo):
if "start" in info.data and v <= info.data["start"]:
raise ValueError("stop must be greater than start")
return v

View File

@ -1,6 +1,6 @@
import re
from dataclasses import dataclass
from typing import List, Union
from typing import List, Optional, Union
import torch
from compel import Compel, ReturnedEmbeddingsType
@ -43,7 +43,13 @@ class ConditioningFieldData:
# PerpNeg = "perp_neg"
@invocation("compel", title="Prompt", tags=["prompt", "compel"], category="conditioning", version="1.0.0")
@invocation(
"compel",
title="Prompt",
tags=["prompt", "compel"],
category="conditioning",
version="1.0.0",
)
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
@ -60,23 +66,21 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
context=context,
tokenizer_info = context.get_model(
**self.clip.tokenizer.model_dump(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
context=context,
text_encoder_info = context.get_model(
**self.clip.text_encoder.model_dump(),
)
def _lora_loader():
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context)
lora_info = context.get_model(**lora.model_dump(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
# loras = [(context.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
@ -85,11 +89,10 @@ class CompelInvocation(BaseInvocation):
ti_list.append(
(
name,
context.services.model_manager.get_model(
context.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
@ -118,7 +121,7 @@ class CompelInvocation(BaseInvocation):
conjunction = Compel.parse_prompt_string(self.prompt)
if context.services.configuration.log_tokenization:
if context.config.log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
@ -139,8 +142,7 @@ class CompelInvocation(BaseInvocation):
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
conditioning_name = context.save_conditioning(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
@ -160,11 +162,11 @@ class SDXLPromptInvocationBase:
zero_on_empty: bool,
):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
**clip_field.tokenizer.model_dump(),
context=context,
)
text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(),
**clip_field.text_encoder.model_dump(),
context=context,
)
@ -172,7 +174,11 @@ class SDXLPromptInvocationBase:
if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.context.model
c = torch.zeros(
(1, cpu_text_encoder.config.max_position_embeddings, cpu_text_encoder.config.hidden_size),
(
1,
cpu_text_encoder.config.max_position_embeddings,
cpu_text_encoder.config.hidden_size,
),
dtype=text_encoder_info.context.cache.precision,
)
if get_pooled:
@ -186,7 +192,9 @@ class SDXLPromptInvocationBase:
def _lora_loader():
for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(**lora.dict(exclude={"weight"}), context=context)
lora_info = context.services.model_manager.get_model(
**lora.model_dump(exclude={"weight"}), context=context
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
@ -273,8 +281,16 @@ class SDXLPromptInvocationBase:
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
prompt: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea)
style: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea)
prompt: str = InputField(
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
style: str = InputField(
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="")
crop_top: int = InputField(default=0, description="")
@ -310,7 +326,9 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
[
c1,
torch.zeros(
(c1.shape[0], c2.shape[1] - c1.shape[1], c1.shape[2]), device=c1.device, dtype=c1.dtype
(c1.shape[0], c2.shape[1] - c1.shape[1], c1.shape[2]),
device=c1.device,
dtype=c1.dtype,
),
],
dim=1,
@ -321,7 +339,9 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
[
c2,
torch.zeros(
(c2.shape[0], c1.shape[1] - c2.shape[1], c2.shape[2]), device=c2.device, dtype=c2.dtype
(c2.shape[0], c1.shape[1] - c2.shape[1], c2.shape[2]),
device=c2.device,
dtype=c2.dtype,
),
],
dim=1,
@ -359,7 +379,9 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
"""Parse prompt using compel package to conditioning."""
style: str = InputField(
default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
) # TODO: ?
original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="")
@ -403,10 +425,16 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output"""
clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("clip_skip", title="CLIP Skip", tags=["clipskip", "clip", "skip"], category="conditioning", version="1.0.0")
@invocation(
"clip_skip",
title="CLIP Skip",
tags=["clipskip", "clip", "skip"],
category="conditioning",
version="1.0.0",
)
class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
@ -421,7 +449,9 @@ class ClipSkipInvocation(BaseInvocation):
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False
tokenizer,
prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False,
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt

View File

@ -2,7 +2,7 @@
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float
from typing import Dict, List, Literal, Optional, Union
from typing import Dict, List, Literal, Union
import cv2
import numpy as np
@ -24,12 +24,12 @@ from controlnet_aux import (
)
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, validator
from pydantic import BaseModel, ConfigDict, Field, field_validator
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from ...backend.model_management import BaseModelType
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@ -57,6 +57,8 @@ class ControlNetModelField(BaseModel):
model_name: str = Field(description="Name of the ControlNet model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class ControlField(BaseModel):
image: ImageField = Field(description="The control image")
@ -71,7 +73,7 @@ class ControlField(BaseModel):
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@validator("control_weight")
@field_validator("control_weight")
def validate_control_weight(cls, v):
"""Validate that all control weights in the valid range"""
if isinstance(v, list):
@ -124,9 +126,7 @@ class ControlNetInvocation(BaseInvocation):
)
@invocation(
"image_processor", title="Base Image Processor", tags=["controlnet"], category="controlnet", version="1.0.0"
)
# This invocation exists for other invocations to subclass it - do not register with @invocation!
class ImageProcessorInvocation(BaseInvocation):
"""Base class for invocations that preprocess images for ControlNet"""
@ -393,9 +393,9 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
h: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
w: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: Optional[int] = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
h: int = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector()
@ -575,14 +575,14 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
def run_processor(self, image: Image.Image):
image = image.convert("RGB")
image = np.array(image, dtype=np.uint8)
height, width = image.shape[:2]
np_image = np.array(image, dtype=np.uint8)
height, width = np_image.shape[:2]
width_tile_size = min(self.color_map_tile_size, width)
height_tile_size = min(self.color_map_tile_size, height)
color_map = cv2.resize(
image,
np_image,
(width // width_tile_size, height // height_tile_size),
interpolation=cv2.INTER_CUBIC,
)

View File

@ -6,7 +6,7 @@ import numpy
from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation

View File

@ -8,7 +8,7 @@ import numpy as np
from mediapipe.python.solutions.face_mesh import FaceMesh # type: ignore[import]
from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps
from PIL.Image import Image as ImageType
from pydantic import validator
from pydantic import field_validator
import invokeai.assets.fonts as font_assets
from invokeai.app.invocations.baseinvocation import (
@ -20,7 +20,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
@invocation_output("face_mask_output")
@ -46,6 +46,8 @@ class FaceResultData(TypedDict):
y_center: float
mesh_width: int
mesh_height: int
chunk_x_offset: int
chunk_y_offset: int
class FaceResultDataWithId(FaceResultData):
@ -78,6 +80,48 @@ FONT_SIZE = 32
FONT_STROKE_WIDTH = 4
def coalesce_faces(face1: FaceResultData, face2: FaceResultData) -> FaceResultData:
face1_x_offset = face1["chunk_x_offset"] - min(face1["chunk_x_offset"], face2["chunk_x_offset"])
face2_x_offset = face2["chunk_x_offset"] - min(face1["chunk_x_offset"], face2["chunk_x_offset"])
face1_y_offset = face1["chunk_y_offset"] - min(face1["chunk_y_offset"], face2["chunk_y_offset"])
face2_y_offset = face2["chunk_y_offset"] - min(face1["chunk_y_offset"], face2["chunk_y_offset"])
new_im_width = (
max(face1["image"].width, face2["image"].width)
+ max(face1["chunk_x_offset"], face2["chunk_x_offset"])
- min(face1["chunk_x_offset"], face2["chunk_x_offset"])
)
new_im_height = (
max(face1["image"].height, face2["image"].height)
+ max(face1["chunk_y_offset"], face2["chunk_y_offset"])
- min(face1["chunk_y_offset"], face2["chunk_y_offset"])
)
pil_image = Image.new(mode=face1["image"].mode, size=(new_im_width, new_im_height))
pil_image.paste(face1["image"], (face1_x_offset, face1_y_offset))
pil_image.paste(face2["image"], (face2_x_offset, face2_y_offset))
# Mask images are always from the origin
new_mask_im_width = max(face1["mask"].width, face2["mask"].width)
new_mask_im_height = max(face1["mask"].height, face2["mask"].height)
mask_pil = create_white_image(new_mask_im_width, new_mask_im_height)
black_image = create_black_image(face1["mask"].width, face1["mask"].height)
mask_pil.paste(black_image, (0, 0), ImageOps.invert(face1["mask"]))
black_image = create_black_image(face2["mask"].width, face2["mask"].height)
mask_pil.paste(black_image, (0, 0), ImageOps.invert(face2["mask"]))
new_face = FaceResultData(
image=pil_image,
mask=mask_pil,
x_center=max(face1["x_center"], face2["x_center"]),
y_center=max(face1["y_center"], face2["y_center"]),
mesh_width=max(face1["mesh_width"], face2["mesh_width"]),
mesh_height=max(face1["mesh_height"], face2["mesh_height"]),
chunk_x_offset=max(face1["chunk_x_offset"], face2["chunk_x_offset"]),
chunk_y_offset=max(face2["chunk_y_offset"], face2["chunk_y_offset"]),
)
return new_face
def prepare_faces_list(
face_result_list: list[FaceResultData],
) -> list[FaceResultDataWithId]:
@ -91,7 +135,7 @@ def prepare_faces_list(
should_add = True
candidate_x_center = candidate["x_center"]
candidate_y_center = candidate["y_center"]
for face in deduped_faces:
for idx, face in enumerate(deduped_faces):
face_center_x = face["x_center"]
face_center_y = face["y_center"]
face_radius_w = face["mesh_width"] / 2
@ -105,6 +149,7 @@ def prepare_faces_list(
)
if p < 1: # Inside of the already-added face's radius
deduped_faces[idx] = coalesce_faces(face, candidate)
should_add = False
break
@ -138,7 +183,6 @@ def generate_face_box_mask(
chunk_x_offset: int = 0,
chunk_y_offset: int = 0,
draw_mesh: bool = True,
check_bounds: bool = True,
) -> list[FaceResultData]:
result = []
mask_pil = None
@ -211,33 +255,20 @@ def generate_face_box_mask(
mask_pil = create_white_image(w + chunk_x_offset, h + chunk_y_offset)
mask_pil.paste(init_mask_pil, (chunk_x_offset, chunk_y_offset))
left_side = x_center - mesh_width
right_side = x_center + mesh_width
top_side = y_center - mesh_height
bottom_side = y_center + mesh_height
im_width, im_height = pil_image.size
over_w = im_width * 0.1
over_h = im_height * 0.1
if not check_bounds or (
(left_side >= -over_w)
and (right_side < im_width + over_w)
and (top_side >= -over_h)
and (bottom_side < im_height + over_h)
):
x_center = float(x_center)
y_center = float(y_center)
face = FaceResultData(
image=pil_image,
mask=mask_pil or create_white_image(*pil_image.size),
x_center=x_center + chunk_x_offset,
y_center=y_center + chunk_y_offset,
mesh_width=mesh_width,
mesh_height=mesh_height,
)
x_center = float(x_center)
y_center = float(y_center)
face = FaceResultData(
image=pil_image,
mask=mask_pil or create_white_image(*pil_image.size),
x_center=x_center + chunk_x_offset,
y_center=y_center + chunk_y_offset,
mesh_width=mesh_width,
mesh_height=mesh_height,
chunk_x_offset=chunk_x_offset,
chunk_y_offset=chunk_y_offset,
)
result.append(face)
else:
context.services.logger.info("FaceTools --> Face out of bounds, ignoring.")
result.append(face)
return result
@ -346,7 +377,6 @@ def get_faces_list(
chunk_x_offset=0,
chunk_y_offset=0,
draw_mesh=draw_mesh,
check_bounds=False,
)
if should_chunk or len(result) == 0:
context.services.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).")
@ -360,24 +390,26 @@ def get_faces_list(
if width > height:
# Landscape - slice the image horizontally
fx = 0.0
steps = int(width * 2 / height)
steps = int(width * 2 / height) + 1
increment = (width - height) / (steps - 1)
while fx <= (width - height):
x = int(fx)
image_chunks.append(image.crop((x, 0, x + height - 1, height - 1)))
image_chunks.append(image.crop((x, 0, x + height, height)))
x_offsets.append(x)
y_offsets.append(0)
fx += (width - height) / steps
fx += increment
context.services.logger.info(f"FaceTools --> Chunk starting at x = {x}")
elif height > width:
# Portrait - slice the image vertically
fy = 0.0
steps = int(height * 2 / width)
steps = int(height * 2 / width) + 1
increment = (height - width) / (steps - 1)
while fy <= (height - width):
y = int(fy)
image_chunks.append(image.crop((0, y, width - 1, y + width - 1)))
image_chunks.append(image.crop((0, y, width, y + width)))
x_offsets.append(0)
y_offsets.append(y)
fy += (height - width) / steps
fy += increment
context.services.logger.info(f"FaceTools --> Chunk starting at y = {y}")
for idx in range(len(image_chunks)):
@ -404,7 +436,7 @@ def get_faces_list(
return all_faces
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.0.1")
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.0.2")
class FaceOffInvocation(BaseInvocation):
"""Bound, extract, and mask a face from an image using MediaPipe detection"""
@ -498,7 +530,7 @@ class FaceOffInvocation(BaseInvocation):
return output
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.0.1")
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.0.2")
class FaceMaskInvocation(BaseInvocation):
"""Face mask creation using mediapipe face detection"""
@ -518,7 +550,7 @@ class FaceMaskInvocation(BaseInvocation):
)
invert_mask: bool = InputField(default=False, description="Toggle to invert the mask")
@validator("face_ids")
@field_validator("face_ids")
def validate_comma_separated_ints(cls, v) -> str:
comma_separated_ints_regex = re.compile(r"^\d*(,\d+)*$")
if comma_separated_ints_regex.match(v) is None:
@ -616,7 +648,7 @@ class FaceMaskInvocation(BaseInvocation):
@invocation(
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.0.1"
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.0.2"
)
class FaceIdentifierInvocation(BaseInvocation):
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""

View File

@ -9,10 +9,10 @@ from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, invocation
@ -36,7 +36,13 @@ class ShowImageInvocation(BaseInvocation):
)
@invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.0.0")
@invocation(
"blank_image",
title="Blank Image",
tags=["image"],
category="image",
version="1.0.0",
)
class BlankImageInvocation(BaseInvocation):
"""Creates a blank image and forwards it to the pipeline"""
@ -65,7 +71,13 @@ class BlankImageInvocation(BaseInvocation):
)
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.0.0")
@invocation(
"img_crop",
title="Crop Image",
tags=["image", "crop"],
category="image",
version="1.0.0",
)
class ImageCropInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image."""
@ -98,7 +110,13 @@ class ImageCropInvocation(BaseInvocation):
)
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.0.1")
@invocation(
"img_paste",
title="Paste Image",
tags=["image", "paste"],
category="image",
version="1.0.1",
)
class ImagePasteInvocation(BaseInvocation):
"""Pastes an image into another image."""
@ -151,7 +169,13 @@ class ImagePasteInvocation(BaseInvocation):
)
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.0.0")
@invocation(
"tomask",
title="Mask from Alpha",
tags=["image", "mask"],
category="image",
version="1.0.0",
)
class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask."""
@ -182,7 +206,13 @@ class MaskFromAlphaInvocation(BaseInvocation):
)
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.0.0")
@invocation(
"img_mul",
title="Multiply Images",
tags=["image", "multiply"],
category="image",
version="1.0.0",
)
class ImageMultiplyInvocation(BaseInvocation):
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
@ -215,7 +245,13 @@ class ImageMultiplyInvocation(BaseInvocation):
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.0.0")
@invocation(
"img_chan",
title="Extract Image Channel",
tags=["image", "channel"],
category="image",
version="1.0.0",
)
class ImageChannelInvocation(BaseInvocation):
"""Gets a channel from an image."""
@ -247,7 +283,13 @@ class ImageChannelInvocation(BaseInvocation):
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.0.0")
@invocation(
"img_conv",
title="Convert Image Mode",
tags=["image", "convert"],
category="image",
version="1.0.0",
)
class ImageConvertInvocation(BaseInvocation):
"""Converts an image to a different mode."""
@ -276,7 +318,13 @@ class ImageConvertInvocation(BaseInvocation):
)
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.0.0")
@invocation(
"img_blur",
title="Blur Image",
tags=["image", "blur"],
category="image",
version="1.0.0",
)
class ImageBlurInvocation(BaseInvocation):
"""Blurs an image"""
@ -330,7 +378,13 @@ PIL_RESAMPLING_MAP = {
}
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.0.0")
@invocation(
"img_resize",
title="Resize Image",
tags=["image", "resize"],
category="image",
version="1.0.0",
)
class ImageResizeInvocation(BaseInvocation):
"""Resizes an image to specific dimensions"""
@ -343,7 +397,7 @@ class ImageResizeInvocation(BaseInvocation):
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image = context.get_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
@ -352,25 +406,22 @@ class ImageResizeInvocation(BaseInvocation):
resample=resample_mode,
)
image_dto = context.services.images.create(
image=resize_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
image_name = context.save_image(image=resize_image)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
image=ImageField(image_name=image_name),
width=resize_image.width,
height=resize_image.height,
)
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.0.0")
@invocation(
"img_scale",
title="Scale Image",
tags=["image", "scale"],
category="image",
version="1.0.0",
)
class ImageScaleInvocation(BaseInvocation):
"""Scales an image by a factor"""
@ -411,7 +462,13 @@ class ImageScaleInvocation(BaseInvocation):
)
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.0.0")
@invocation(
"img_lerp",
title="Lerp Image",
tags=["image", "lerp"],
category="image",
version="1.0.0",
)
class ImageLerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image"""
@ -444,7 +501,13 @@ class ImageLerpInvocation(BaseInvocation):
)
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.0.0")
@invocation(
"img_ilerp",
title="Inverse Lerp Image",
tags=["image", "ilerp"],
category="image",
version="1.0.0",
)
class ImageInverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image"""
@ -456,7 +519,7 @@ class ImageInverseLerpInvocation(BaseInvocation):
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255
image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255 # type: ignore [assignment]
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
@ -477,7 +540,13 @@ class ImageInverseLerpInvocation(BaseInvocation):
)
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.0.0")
@invocation(
"img_nsfw",
title="Blur NSFW Image",
tags=["image", "nsfw"],
category="image",
version="1.0.0",
)
class ImageNSFWBlurInvocation(BaseInvocation):
"""Add blur to NSFW-flagged images"""
@ -505,7 +574,7 @@ class ImageNSFWBlurInvocation(BaseInvocation):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow,
)
@ -515,7 +584,7 @@ class ImageNSFWBlurInvocation(BaseInvocation):
height=image_dto.height,
)
def _get_caution_img(self) -> Image:
def _get_caution_img(self) -> Image.Image:
import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
@ -523,7 +592,11 @@ class ImageNSFWBlurInvocation(BaseInvocation):
@invocation(
"img_watermark", title="Add Invisible Watermark", tags=["image", "watermark"], category="image", version="1.0.0"
"img_watermark",
title="Add Invisible Watermark",
tags=["image", "watermark"],
category="image",
version="1.0.0",
)
class ImageWatermarkInvocation(BaseInvocation):
"""Add an invisible watermark to an image"""
@ -544,7 +617,7 @@ class ImageWatermarkInvocation(BaseInvocation):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow,
)
@ -555,7 +628,13 @@ class ImageWatermarkInvocation(BaseInvocation):
)
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.0.0")
@invocation(
"mask_edge",
title="Mask Edge",
tags=["image", "mask", "inpaint"],
category="image",
version="1.0.0",
)
class MaskEdgeInvocation(BaseInvocation):
"""Applies an edge mask to an image"""
@ -601,7 +680,11 @@ class MaskEdgeInvocation(BaseInvocation):
@invocation(
"mask_combine", title="Combine Masks", tags=["image", "mask", "multiply"], category="image", version="1.0.0"
"mask_combine",
title="Combine Masks",
tags=["image", "mask", "multiply"],
category="image",
version="1.0.0",
)
class MaskCombineInvocation(BaseInvocation):
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
@ -632,7 +715,13 @@ class MaskCombineInvocation(BaseInvocation):
)
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.0.0")
@invocation(
"color_correct",
title="Color Correct",
tags=["image", "color"],
category="image",
version="1.0.0",
)
class ColorCorrectInvocation(BaseInvocation):
"""
Shifts the colors of a target image to match the reference image, optionally
@ -742,7 +831,13 @@ class ColorCorrectInvocation(BaseInvocation):
)
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.0.0")
@invocation(
"img_hue_adjust",
title="Adjust Image Hue",
tags=["image", "hue"],
category="image",
version="1.0.0",
)
class ImageHueAdjustmentInvocation(BaseInvocation):
"""Adjusts the Hue of an image."""
@ -980,7 +1075,7 @@ class SaveImageInvocation(BaseInvocation):
image: ImageField = InputField(description=FieldDescriptions.image)
board: Optional[BoardField] = InputField(default=None, description=FieldDescriptions.board, input=Input.Direct)
metadata: CoreMetadata = InputField(
metadata: Optional[CoreMetadata] = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
@ -997,7 +1092,7 @@ class SaveImageInvocation(BaseInvocation):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow,
)

View File

@ -7,12 +7,12 @@ import numpy as np
from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES

View File

@ -2,7 +2,7 @@ import os
from builtins import float
from typing import List, Union
from pydantic import BaseModel, Field
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@ -25,11 +25,15 @@ class IPAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the IP-Adapter model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class CLIPVisionModelField(BaseModel):
model_name: str = Field(description="Name of the CLIP Vision image encoder model")
base_model: BaseModelType = Field(description="Base model (usually 'Any')")
model_config = ConfigDict(protected_namespaces=())
class IPAdapterField(BaseModel):
image: ImageField = Field(description="The IP-Adapter image prompt.")

View File

@ -19,7 +19,7 @@ from diffusers.models.attention_processor import (
)
from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import validator
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.ip_adapter import IPAdapterField
@ -34,6 +34,7 @@ from invokeai.app.invocations.primitives import (
build_latents_output,
)
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
@ -54,7 +55,6 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@ -84,12 +84,20 @@ class SchedulerOutput(BaseInvocationOutput):
scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
@invocation("scheduler", title="Scheduler", tags=["scheduler"], category="latents", version="1.0.0")
@invocation(
"scheduler",
title="Scheduler",
tags=["scheduler"],
category="latents",
version="1.0.0",
)
class SchedulerInvocation(BaseInvocation):
"""Selects a scheduler."""
scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
def invoke(self, context: InvocationContext) -> SchedulerOutput:
@ -97,7 +105,11 @@ class SchedulerInvocation(BaseInvocation):
@invocation(
"create_denoise_mask", title="Create Denoise Mask", tags=["mask", "denoise"], category="latents", version="1.0.0"
"create_denoise_mask",
title="Create Denoise Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.0",
)
class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
@ -106,7 +118,11 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32, ui_order=4)
fp32: bool = InputField(
default=DEFAULT_PRECISION == "float32",
description=FieldDescriptions.fp32,
ui_order=4,
)
def prep_mask_tensor(self, mask_image):
if mask_image.mode != "L":
@ -134,7 +150,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
if image is not None:
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
**self.vae.vae.model_dump(),
context=context,
)
@ -166,9 +182,8 @@ def get_scheduler(
seed: int,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict(),
context=context,
orig_scheduler_info = context.get_model(
**scheduler_info.model_dump(),
)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
@ -209,34 +224,64 @@ class DenoiseLatentsInvocation(BaseInvocation):
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
)
noise: Optional[LatentsField] = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=3)
noise: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
ui_order=3,
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField(
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale"
)
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet", ui_order=2)
control: Union[ControlField, list[ControlField]] = InputField(
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
ui_order=2,
)
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
default=None,
input=Input.Connection,
ui_order=5,
)
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField(
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection, ui_order=6
description=FieldDescriptions.ip_adapter,
title="IP-Adapter",
default=None,
input=Input.Connection,
ui_order=6,
)
t2i_adapter: Union[T2IAdapterField, list[T2IAdapterField]] = InputField(
description=FieldDescriptions.t2i_adapter, title="T2I-Adapter", default=None, input=Input.Connection, ui_order=7
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]] = InputField(
description=FieldDescriptions.t2i_adapter,
title="T2I-Adapter",
default=None,
input=Input.Connection,
ui_order=7,
)
latents: Optional[LatentsField] = InputField(
default=None, description=FieldDescriptions.latents, input=Input.Connection
)
latents: Optional[LatentsField] = InputField(description=FieldDescriptions.latents, input=Input.Connection)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None, description=FieldDescriptions.mask, input=Input.Connection, ui_order=8
default=None,
description=FieldDescriptions.mask,
input=Input.Connection,
ui_order=8,
)
@validator("cfg_scale")
@field_validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
@ -252,15 +297,12 @@ class DenoiseLatentsInvocation(BaseInvocation):
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
base_model: BaseModelType,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
base_model=base_model,
)
@ -271,11 +313,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
unet,
seed,
) -> ConditioningData:
positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
positive_cond_data = context.get_conditioning(self.positive_conditioning.conditioning_name)
c = positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
extra_conditioning_info = c.extra_conditioning
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
negative_cond_data = context.get_conditioning(self.negative_conditioning.conditioning_name)
uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
conditioning_data = ConditioningData(
@ -362,17 +404,16 @@ class DenoiseLatentsInvocation(BaseInvocation):
controlnet_data = []
for control_info in control_list:
control_model = exit_stack.enter_context(
context.services.model_manager.get_model(
context.get_model(
model_name=control_info.control_model.model_name,
model_type=ModelType.ControlNet,
base_model=control_info.control_model.base_model,
context=context,
)
)
# control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(control_image_field.image_name)
input_image = context.get_image(control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
@ -430,30 +471,29 @@ class DenoiseLatentsInvocation(BaseInvocation):
conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.services.model_manager.get_model(
context.get_model(
model_name=single_ip_adapter.ip_adapter_model.model_name,
model_type=ModelType.IPAdapter,
base_model=single_ip_adapter.ip_adapter_model.base_model,
context=context,
)
)
image_encoder_model_info = context.services.model_manager.get_model(
image_encoder_model_info = context.get_model(
model_name=single_ip_adapter.image_encoder_model.model_name,
model_type=ModelType.CLIPVision,
base_model=single_ip_adapter.image_encoder_model.base_model,
context=context,
)
input_image = context.services.images.get_pil_image(single_ip_adapter.image.image_name)
input_image = context.get_image(single_ip_adapter.image.image_name)
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model:
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
input_image, image_encoder_model
)
(
image_prompt_embeds,
uncond_image_prompt_embeds,
) = ip_adapter_model.get_image_embeds(input_image, image_encoder_model)
conditioning_data.ip_adapter_conditioning.append(
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds)
)
@ -488,13 +528,12 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_info = context.services.model_manager.get_model(
t2i_adapter_model_info = context.get_model(
model_name=t2i_adapter_field.t2i_adapter_model.model_name,
model_type=ModelType.T2IAdapter,
base_model=t2i_adapter_field.t2i_adapter_model.base_model,
context=context,
)
image = context.services.images.get_pil_image(t2i_adapter_field.image.image_name)
image = context.get_image(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_field.t2i_adapter_model.base_model == BaseModelType.StableDiffusion1:
@ -604,11 +643,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed = None
noise = None
if self.noise is not None:
noise = context.services.latents.get(self.noise.latents_name)
noise = context.get_latents(self.noise.latents_name)
seed = self.noise.seed
if self.latents is not None:
latents = context.services.latents.get(self.latents.latents_name)
latents = context.get_latents(self.latents.latents_name)
if seed is None:
seed = self.latents.seed
@ -628,29 +667,26 @@ class DenoiseLatentsInvocation(BaseInvocation):
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
t2i_adapter_data = self.run_t2i_adapters(
context, self.t2i_adapter, latents.shape, do_classifier_free_guidance=True
context,
self.t2i_adapter,
latents.shape,
do_classifier_free_guidance=True,
)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state, self.unet.unet.base_model)
self.dispatch_progress(context, state, self.unet.unet.base_model)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}),
context=context,
lora_info = context.get_model(
**lora.model_dump(exclude={"weight"}),
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(),
context=context,
unet_info = context.get_model(
**self.unet.unet.model_dump(),
)
with (
ExitStack() as exit_stack,
@ -700,7 +736,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end,
)
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
(
result_latents,
result_attention_map_saver,
) = pipeline.latents_from_embeddings(
latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
@ -722,13 +761,16 @@ class DenoiseLatentsInvocation(BaseInvocation):
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents, seed=seed)
latents_name = context.save_latents(result_latents)
return build_latents_output(latents_name=latents_name, latents=result_latents, seed=seed)
@invocation(
"l2i", title="Latents to Image", tags=["latents", "image", "vae", "l2i"], category="latents", version="1.0.0"
"l2i",
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.0.0",
)
class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
@ -743,7 +785,7 @@ class LatentsToImageInvocation(BaseInvocation):
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
metadata: CoreMetadata = InputField(
metadata: Optional[CoreMetadata] = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
@ -751,11 +793,10 @@ class LatentsToImageInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
latents = context.get_latents(self.latents.latents_name)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
context=context,
vae_info = context.get_model(
**self.vae.vae.model_dump(),
)
with set_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae:
@ -785,7 +826,7 @@ class LatentsToImageInvocation(BaseInvocation):
vae.to(dtype=torch.float16)
latents = latents.half()
if self.tiled or context.services.configuration.tiled_decode:
if self.tiled or context.config.tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
@ -809,28 +850,25 @@ class LatentsToImageInvocation(BaseInvocation):
if choose_torch_device() == torch.device("mps"):
mps.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
image_name = context.save_image(image, category=context.categories.GENERAL)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
image=ImageField(image_name=image_name),
width=image.width,
height=image.height,
)
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
@invocation("lresize", title="Resize Latents", tags=["latents", "resize"], category="latents", version="1.0.0")
@invocation(
"lresize",
title="Resize Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.0",
)
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
@ -876,7 +914,13 @@ class ResizeLatentsInvocation(BaseInvocation):
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation("lscale", title="Scale Latents", tags=["latents", "resize"], category="latents", version="1.0.0")
@invocation(
"lscale",
title="Scale Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.0",
)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
@ -915,7 +959,11 @@ class ScaleLatentsInvocation(BaseInvocation):
@invocation(
"i2l", title="Image to Latents", tags=["latents", "image", "vae", "i2l"], category="latents", version="1.0.0"
"i2l",
title="Image to Latents",
tags=["latents", "image", "vae", "i2l"],
category="latents",
version="1.0.0",
)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
@ -979,7 +1027,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image = context.services.images.get_pil_image(self.image.image_name)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
**self.vae.vae.model_dump(),
context=context,
)
@ -1007,7 +1055,13 @@ class ImageToLatentsInvocation(BaseInvocation):
return vae.encode(image_tensor).latents
@invocation("lblend", title="Blend Latents", tags=["latents", "blend"], category="latents", version="1.0.0")
@invocation(
"lblend",
title="Blend Latents",
tags=["latents", "blend"],
category="latents",
version="1.0.0",
)
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size."""

View File

@ -3,7 +3,7 @@
from typing import Literal
import numpy as np
from pydantic import validator
from pydantic import field_validator
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
@ -72,7 +72,14 @@ class RandomIntInvocation(BaseInvocation):
return IntegerOutput(value=np.random.randint(self.low, self.high))
@invocation("rand_float", title="Random Float", tags=["math", "float", "random"], category="math", version="1.0.0")
@invocation(
"rand_float",
title="Random Float",
tags=["math", "float", "random"],
category="math",
version="1.0.1",
use_cache=False,
)
class RandomFloatInvocation(BaseInvocation):
"""Outputs a single random float"""
@ -178,7 +185,7 @@ class IntegerMathInvocation(BaseInvocation):
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
@validator("b")
@field_validator("b")
def no_unrepresentable_results(cls, v, values):
if values["operation"] == "DIV" and v == 0:
raise ValueError("Cannot divide by zero")
@ -252,7 +259,7 @@ class FloatMathInvocation(BaseInvocation):
a: float = InputField(default=0, description=FieldDescriptions.num_1)
b: float = InputField(default=0, description=FieldDescriptions.num_2)
@validator("b")
@field_validator("b")
def no_unrepresentable_results(cls, v, values):
if values["operation"] == "DIV" and v == 0:
raise ValueError("Cannot divide by zero")

View File

@ -44,28 +44,31 @@ class CoreMetadata(BaseModelExcludeNull):
"""Core generation metadata for an image generated in InvokeAI."""
app_version: str = Field(default=__version__, description="The version of InvokeAI used to generate this image")
generation_mode: str = Field(
generation_mode: Optional[str] = Field(
default=None,
description="The generation mode that output this image",
)
created_by: Optional[str] = Field(description="The name of the creator of the image")
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
height: int = Field(description="The height parameter")
seed: int = Field(description="The seed used for noise generation")
rand_device: str = Field(description="The device used for random number generation")
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference")
positive_prompt: Optional[str] = Field(default=None, description="The positive prompt parameter")
negative_prompt: Optional[str] = Field(default=None, description="The negative prompt parameter")
width: Optional[int] = Field(default=None, description="The width parameter")
height: Optional[int] = Field(default=None, description="The height parameter")
seed: Optional[int] = Field(default=None, description="The seed used for noise generation")
rand_device: Optional[str] = Field(default=None, description="The device used for random number generation")
cfg_scale: Optional[float] = Field(default=None, description="The classifier-free guidance scale parameter")
steps: Optional[int] = Field(default=None, description="The number of steps used for inference")
scheduler: Optional[str] = Field(default=None, description="The scheduler used for inference")
clip_skip: Optional[int] = Field(
default=None,
description="The number of skipped CLIP layers",
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
ipAdapters: list[IPAdapterMetadataField] = Field(description="The IP Adapters used for inference")
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference")
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
model: Optional[MainModelField] = Field(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlField]] = Field(default=None, description="The ControlNets used for inference")
ipAdapters: Optional[list[IPAdapterMetadataField]] = Field(
default=None, description="The IP Adapters used for inference"
)
t2iAdapters: Optional[list[T2IAdapterField]] = Field(default=None, description="The IP Adapters used for inference")
loras: Optional[list[LoRAMetadataField]] = Field(default=None, description="The LoRAs used for inference")
vae: Optional[VAEModelField] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
@ -122,27 +125,34 @@ class MetadataAccumulatorOutput(BaseInvocationOutput):
class MetadataAccumulatorInvocation(BaseInvocation):
"""Outputs a Core Metadata Object"""
generation_mode: str = InputField(
generation_mode: Optional[str] = InputField(
default=None,
description="The generation mode that output this image",
)
positive_prompt: str = InputField(description="The positive prompt parameter")
negative_prompt: str = InputField(description="The negative prompt parameter")
width: int = InputField(description="The width parameter")
height: int = InputField(description="The height parameter")
seed: int = InputField(description="The seed used for noise generation")
rand_device: str = InputField(description="The device used for random number generation")
cfg_scale: float = InputField(description="The classifier-free guidance scale parameter")
steps: int = InputField(description="The number of steps used for inference")
scheduler: str = InputField(description="The scheduler used for inference")
clip_skip: Optional[int] = Field(
positive_prompt: Optional[str] = InputField(default=None, description="The positive prompt parameter")
negative_prompt: Optional[str] = InputField(default=None, description="The negative prompt parameter")
width: Optional[int] = InputField(default=None, description="The width parameter")
height: Optional[int] = InputField(default=None, description="The height parameter")
seed: Optional[int] = InputField(default=None, description="The seed used for noise generation")
rand_device: Optional[str] = InputField(default=None, description="The device used for random number generation")
cfg_scale: Optional[float] = InputField(default=None, description="The classifier-free guidance scale parameter")
steps: Optional[int] = InputField(default=None, description="The number of steps used for inference")
scheduler: Optional[str] = InputField(default=None, description="The scheduler used for inference")
clip_skip: Optional[int] = InputField(
default=None,
description="The number of skipped CLIP layers",
)
model: MainModelField = InputField(description="The main model used for inference")
controlnets: list[ControlField] = InputField(description="The ControlNets used for inference")
ipAdapters: list[IPAdapterMetadataField] = InputField(description="The IP Adapters used for inference")
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference")
loras: list[LoRAMetadataField] = InputField(description="The LoRAs used for inference")
model: Optional[MainModelField] = InputField(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlField]] = InputField(
default=None, description="The ControlNets used for inference"
)
ipAdapters: Optional[list[IPAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
t2iAdapters: Optional[list[T2IAdapterField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
loras: Optional[list[LoRAMetadataField]] = InputField(default=None, description="The LoRAs used for inference")
strength: Optional[float] = InputField(
default=None,
description="The strength used for latents-to-latents",
@ -156,6 +166,20 @@ class MetadataAccumulatorInvocation(BaseInvocation):
description="The VAE used for decoding, if the main model's default was not used",
)
# High resolution fix metadata.
hrf_width: Optional[int] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
)
hrf_height: Optional[int] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
)
hrf_strength: Optional[float] = InputField(
default=None,
description="The high resolution fix img2img strength used in the upscale pass.",
)
# SDXL
positive_style_prompt: Optional[str] = InputField(
default=None,
@ -199,4 +223,4 @@ class MetadataAccumulatorInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
"""Collects and outputs a CoreMetadata object"""
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.model_dump()))

View File

@ -1,7 +1,7 @@
import copy
from typing import List, Optional
from pydantic import BaseModel, Field
from pydantic import BaseModel, ConfigDict, Field
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import (
@ -24,6 +24,8 @@ class ModelInfo(BaseModel):
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
model_config = ConfigDict(protected_namespaces=())
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
@ -65,6 +67,8 @@ class MainModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
class LoRAModelField(BaseModel):
"""LoRA model field"""
@ -72,8 +76,16 @@ class LoRAModelField(BaseModel):
model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation("main_model_loader", title="Main Model", tags=["model"], category="model", version="1.0.0")
@invocation(
"main_model_loader",
title="Main Model",
tags=["model"],
category="model",
version="1.0.0",
)
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
@ -86,7 +98,7 @@ class MainModelLoaderInvocation(BaseInvocation):
model_type = ModelType.Main
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
if not context.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
@ -180,10 +192,16 @@ class LoraLoaderInvocation(BaseInvocation):
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP"
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
)
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
@ -244,20 +262,35 @@ class SDXLLoraLoaderOutput(BaseInvocationOutput):
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
@invocation("sdxl_lora_loader", title="SDXL LoRA", tags=["lora", "model"], category="model", version="1.0.0")
@invocation(
"sdxl_lora_loader",
title="SDXL LoRA",
tags=["lora", "model"],
category="model",
version="1.0.0",
)
class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
clip: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1"
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 1",
)
clip2: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2"
default=None,
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
)
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
@ -330,6 +363,8 @@ class VAEModelField(BaseModel):
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation_output("vae_loader_output")
class VaeLoaderOutput(BaseInvocationOutput):
@ -343,7 +378,10 @@ class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
vae_model: VAEModelField = InputField(
description=FieldDescriptions.vae_model, input=Input.Direct, ui_type=UIType.VaeModel, title="VAE"
description=FieldDescriptions.vae_model,
input=Input.Direct,
ui_type=UIType.VaeModel,
title="VAE",
)
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
@ -372,19 +410,31 @@ class VaeLoaderInvocation(BaseInvocation):
class SeamlessModeOutput(BaseInvocationOutput):
"""Modified Seamless Model output"""
unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE")
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE")
@invocation("seamless", title="Seamless", tags=["seamless", "model"], category="model", version="1.0.0")
@invocation(
"seamless",
title="Seamless",
tags=["seamless", "model"],
category="model",
version="1.0.0",
)
class SeamlessModeInvocation(BaseInvocation):
"""Applies the seamless transformation to the Model UNet and VAE."""
unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
default=None,
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
vae: Optional[VaeField] = InputField(
default=None, description=FieldDescriptions.vae_model, input=Input.Connection, title="VAE"
default=None,
description=FieldDescriptions.vae_model,
input=Input.Connection,
title="VAE",
)
seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless")
seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless")

View File

@ -2,7 +2,7 @@
import torch
from pydantic import validator
from pydantic import field_validator
from invokeai.app.invocations.latent import LatentsField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
@ -65,7 +65,7 @@ Nodes
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
noise: LatentsField = OutputField(default=None, description=FieldDescriptions.noise)
noise: LatentsField = OutputField(description=FieldDescriptions.noise)
width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height)
@ -78,7 +78,13 @@ def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
)
@invocation("noise", title="Noise", tags=["latents", "noise"], category="latents", version="1.0.0")
@invocation(
"noise",
title="Noise",
tags=["latents", "noise"],
category="latents",
version="1.0.0",
)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
@ -105,7 +111,7 @@ class NoiseInvocation(BaseInvocation):
description="Use CPU for noise generation (for reproducible results across platforms)",
)
@validator("seed", pre=True)
@field_validator("seed", mode="before")
def modulo_seed(cls, v):
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1)
@ -118,6 +124,5 @@ class NoiseInvocation(BaseInvocation):
seed=self.seed,
use_cpu=self.use_cpu,
)
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise, seed=self.seed)
latents_name = context.save_latents(noise)
return build_noise_output(latents_name=latents_name, latents=noise, seed=self.seed)

View File

@ -9,18 +9,18 @@ from typing import List, Literal, Optional, Union
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from pydantic import BaseModel, Field, validator
from pydantic import BaseModel, ConfigDict, Field, field_validator
from tqdm import tqdm
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend import BaseModelType, ModelType, SubModelType
from ...backend.model_management import ONNXModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util import choose_torch_device
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@ -63,14 +63,17 @@ class ONNXPromptInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
**self.clip.tokenizer.model_dump(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
**self.clip.text_encoder.model_dump(),
)
with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder: # , ExitStack() as stack:
loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
(
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.clip.loras
]
@ -175,14 +178,14 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
description=FieldDescriptions.unet,
input=Input.Connection,
)
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
control: Union[ControlField, list[ControlField]] = InputField(
default=None,
description=FieldDescriptions.control,
)
# seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'")
@validator("cfg_scale")
@field_validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
@ -241,7 +244,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
node=self.model_dump(),
source_node_id=source_node_id,
)
@ -254,12 +257,15 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
eta=0.0,
)
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
unet_info = context.services.model_manager.get_model(**self.unet.unet.model_dump())
with unet_info as unet: # , ExitStack() as stack:
# loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
(
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.unet.loras
]
@ -346,7 +352,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation):
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
**self.vae.vae.model_dump(),
)
# clear memory as vae decode can request a lot
@ -375,7 +381,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
metadata=self.metadata.model_dump() if self.metadata else None,
workflow=self.workflow,
)
@ -403,6 +409,8 @@ class OnnxModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
@invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model", version="1.0.0")
class OnnxModelLoaderInvocation(BaseInvocation):

View File

@ -44,13 +44,22 @@ from invokeai.app.invocations.primitives import FloatCollectionOutput
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@invocation("float_range", title="Float Range", tags=["math", "range"], category="math", version="1.0.0")
@invocation(
"float_range",
title="Float Range",
tags=["math", "range"],
category="math",
version="1.0.0",
)
class FloatLinearRangeInvocation(BaseInvocation):
"""Creates a range"""
start: float = InputField(default=5, description="The first value of the range")
stop: float = InputField(default=10, description="The last value of the range")
steps: int = InputField(default=30, description="number of values to interpolate over (including start and stop)")
steps: int = InputField(
default=30,
description="number of values to interpolate over (including start and stop)",
)
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps))
@ -95,7 +104,13 @@ EASING_FUNCTION_KEYS = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
# actually I think for now could just use CollectionOutput (which is list[Any]
@invocation("step_param_easing", title="Step Param Easing", tags=["step", "easing"], category="step", version="1.0.0")
@invocation(
"step_param_easing",
title="Step Param Easing",
tags=["step", "easing"],
category="step",
version="1.0.0",
)
class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps"""
@ -159,7 +174,9 @@ class StepParamEasingInvocation(BaseInvocation):
context.services.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = num_easing_steps % 2 == 0 # even number of steps
easing_function = easing_class(
start=self.start_value, end=self.end_value, duration=base_easing_duration - 1
start=self.start_value,
end=self.end_value,
duration=base_easing_duration - 1,
)
base_easing_vals = list()
for step_index in range(base_easing_duration):
@ -199,7 +216,11 @@ class StepParamEasingInvocation(BaseInvocation):
#
else: # no mirroring (default)
easing_function = easing_class(start=self.start_value, end=self.end_value, duration=num_easing_steps - 1)
easing_function = easing_class(
start=self.start_value,
end=self.end_value,
duration=num_easing_steps - 1,
)
for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)

View File

@ -3,7 +3,7 @@ from typing import Optional, Union
import numpy as np
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from pydantic import validator
from pydantic import field_validator
from invokeai.app.invocations.primitives import StringCollectionOutput
@ -21,7 +21,10 @@ from .baseinvocation import BaseInvocation, InputField, InvocationContext, UICom
class DynamicPromptInvocation(BaseInvocation):
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
prompt: str = InputField(description="The prompt to parse with dynamicprompts", ui_component=UIComponent.Textarea)
prompt: str = InputField(
description="The prompt to parse with dynamicprompts",
ui_component=UIComponent.Textarea,
)
max_prompts: int = InputField(default=1, description="The number of prompts to generate")
combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator")
@ -36,21 +39,31 @@ class DynamicPromptInvocation(BaseInvocation):
return StringCollectionOutput(collection=prompts)
@invocation("prompt_from_file", title="Prompts from File", tags=["prompt", "file"], category="prompt", version="1.0.0")
@invocation(
"prompt_from_file",
title="Prompts from File",
tags=["prompt", "file"],
category="prompt",
version="1.0.0",
)
class PromptsFromFileInvocation(BaseInvocation):
"""Loads prompts from a text file"""
file_path: str = InputField(description="Path to prompt text file")
pre_prompt: Optional[str] = InputField(
default=None, description="String to prepend to each prompt", ui_component=UIComponent.Textarea
default=None,
description="String to prepend to each prompt",
ui_component=UIComponent.Textarea,
)
post_prompt: Optional[str] = InputField(
default=None, description="String to append to each prompt", ui_component=UIComponent.Textarea
default=None,
description="String to append to each prompt",
ui_component=UIComponent.Textarea,
)
start_line: int = InputField(default=1, ge=1, description="Line in the file to start start from")
max_prompts: int = InputField(default=1, ge=0, description="Max lines to read from file (0=all)")
@validator("file_path")
@field_validator("file_path")
def file_path_exists(cls, v):
if not exists(v):
raise ValueError(FileNotFoundError)
@ -79,6 +92,10 @@ class PromptsFromFileInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> StringCollectionOutput:
prompts = self.promptsFromFile(
self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts
self.file_path,
self.pre_prompt,
self.post_prompt,
self.start_line,
self.max_prompts,
)
return StringCollectionOutput(collection=prompts)

View File

@ -1,6 +1,6 @@
from typing import Union
from pydantic import BaseModel, Field
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@ -23,6 +23,8 @@ class T2IAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the T2I-Adapter model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class T2IAdapterField(BaseModel):
image: ImageField = Field(description="The T2I-Adapter image prompt.")

View File

@ -7,10 +7,11 @@ import numpy as np
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from pydantic import ConfigDict
from realesrgan import RealESRGANer
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.util.devices import choose_torch_device
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@ -38,6 +39,8 @@ class ESRGANInvocation(BaseInvocation):
default=400, ge=0, description="Tile size for tiled ESRGAN upscaling (0=tiling disabled)"
)
model_config = ConfigDict(protected_namespaces=())
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
models_path = context.services.configuration.models_path

View File

@ -1,4 +0,0 @@
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@ -1,71 +0,0 @@
from enum import Enum
from pydantic import BaseModel, Field
from invokeai.app.util.metaenum import MetaEnum
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image).
- INTERNAL: The resource was created by the application.
- EXTERNAL: The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
INTERNAL = "internal"
"""The resource was created by the application."""
EXTERNAL = "external"
"""The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
class InvalidOriginException(ValueError):
"""Raised when a provided value is not a valid ResourceOrigin.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid resource origin."):
super().__init__(message)
class ImageCategory(str, Enum, metaclass=MetaEnum):
"""The category of an image.
- GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose.
- MASK: The image is a mask image.
- CONTROL: The image is a ControlNet control image.
- USER: The image is a user-provide image.
- OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes.
"""
GENERAL = "general"
"""GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose."""
MASK = "mask"
"""MASK: The image is a mask image."""
CONTROL = "control"
"""CONTROL: The image is a ControlNet control image."""
USER = "user"
"""USER: The image is a user-provide image."""
OTHER = "other"
"""OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes."""
class InvalidImageCategoryException(ValueError):
"""Raised when a provided value is not a valid ImageCategory.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid image category."):
super().__init__(message)

View File

@ -0,0 +1,47 @@
from abc import ABC, abstractmethod
from typing import Optional
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
@abstractmethod
def get_image_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of images for a board."""
pass

View File

@ -1,69 +1,24 @@
import sqlite3
import threading
from abc import ABC, abstractmethod
from typing import Optional, cast
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.image_record import ImageRecord, deserialize_image_record
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
@abstractmethod
def get_image_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of images for a board."""
pass
from .board_image_records_base import BoardImageRecordStorageBase
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
_lock: threading.RLock
def __init__(self, conn: sqlite3.Connection, lock: threading.Lock) -> None:
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = conn
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
self._lock = lock
try:
self._lock.acquire()

View File

@ -1,112 +0,0 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import Optional
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.board_record_storage import BoardRecord, BoardRecordStorageBase
from invokeai.app.services.image_record_storage import ImageRecordStorageBase
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.urls import UrlServiceBase
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
class BoardImagesServiceDependencies:
"""Service dependencies for the BoardImagesService."""
board_image_records: BoardImageRecordStorageBase
board_records: BoardRecordStorageBase
image_records: ImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
def __init__(
self,
board_image_record_storage: BoardImageRecordStorageBase,
image_record_storage: ImageRecordStorageBase,
board_record_storage: BoardRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
):
self.board_image_records = board_image_record_storage
self.image_records = image_record_storage
self.board_records = board_record_storage
self.urls = url
self.logger = logger
class BoardImagesService(BoardImagesServiceABC):
_services: BoardImagesServiceDependencies
def __init__(self, services: BoardImagesServiceDependencies):
self._services = services
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
self._services.board_image_records.add_image_to_board(board_id, image_name)
def remove_image_from_board(
self,
image_name: str,
) -> None:
self._services.board_image_records.remove_image_from_board(image_name)
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
return self._services.board_image_records.get_all_board_image_names_for_board(board_id)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
board_id = self._services.board_image_records.get_board_for_image(image_name)
return board_id
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.dict(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@ -0,0 +1,39 @@
from abc import ABC, abstractmethod
from typing import Optional
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass

View File

@ -0,0 +1,38 @@
from typing import Optional
from invokeai.app.services.invoker import Invoker
from .board_images_base import BoardImagesServiceABC
class BoardImagesService(BoardImagesServiceABC):
__invoker: Invoker
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
self.__invoker.services.board_image_records.add_image_to_board(board_id, image_name)
def remove_image_from_board(
self,
image_name: str,
) -> None:
self.__invoker.services.board_image_records.remove_image_from_board(image_name)
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
return self.__invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
board_id = self.__invoker.services.board_image_records.get_board_for_image(image_name)
return board_id

View File

@ -0,0 +1,55 @@
from abc import ABC, abstractmethod
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .board_records_common import BoardChanges, BoardRecord
class BoardRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the board record store."""
@abstractmethod
def delete(self, board_id: str) -> None:
"""Deletes a board record."""
pass
@abstractmethod
def save(
self,
board_name: str,
) -> BoardRecord:
"""Saves a board record."""
pass
@abstractmethod
def get(
self,
board_id: str,
) -> BoardRecord:
"""Gets a board record."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
"""Updates a board record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
"""Gets many board records."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardRecord]:
"""Gets all board records."""
pass

View File

@ -1,7 +1,7 @@
from datetime import datetime
from typing import Optional, Union
from pydantic import Field
from pydantic import BaseModel, Field
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
@ -18,21 +18,12 @@ class BoardRecord(BaseModelExcludeNull):
"""The created timestamp of the image."""
updated_at: Union[datetime, str] = Field(description="The updated timestamp of the board.")
"""The updated timestamp of the image."""
deleted_at: Union[datetime, str, None] = Field(description="The deleted timestamp of the board.")
deleted_at: Optional[Union[datetime, str]] = Field(default=None, description="The deleted timestamp of the board.")
"""The updated timestamp of the image."""
cover_image_name: Optional[str] = Field(description="The name of the cover image of the board.")
cover_image_name: Optional[str] = Field(default=None, description="The name of the cover image of the board.")
"""The name of the cover image of the board."""
class BoardDTO(BoardRecord):
"""Deserialized board record with cover image URL and image count."""
cover_image_name: Optional[str] = Field(description="The name of the board's cover image.")
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
def deserialize_board_record(board_dict: dict) -> BoardRecord:
"""Deserializes a board record."""
@ -53,3 +44,29 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
updated_at=updated_at,
deleted_at=deleted_at,
)
class BoardChanges(BaseModel, extra="forbid"):
board_name: Optional[str] = Field(default=None, description="The board's new name.")
cover_image_name: Optional[str] = Field(default=None, description="The name of the board's new cover image.")
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message="Board record not deleted"):
super().__init__(message)

View File

@ -1,103 +1,32 @@
import sqlite3
import threading
from abc import ABC, abstractmethod
from typing import Optional, Union, cast
from typing import Union, cast
from pydantic import BaseModel, Extra, Field
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardRecord, deserialize_board_record
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.util.misc import uuid_string
class BoardChanges(BaseModel, extra=Extra.forbid):
board_name: Optional[str] = Field(description="The board's new name.")
cover_image_name: Optional[str] = Field(description="The name of the board's new cover image.")
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message="Board record not deleted"):
super().__init__(message)
class BoardRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the board record store."""
@abstractmethod
def delete(self, board_id: str) -> None:
"""Deletes a board record."""
pass
@abstractmethod
def save(
self,
board_name: str,
) -> BoardRecord:
"""Saves a board record."""
pass
@abstractmethod
def get(
self,
board_id: str,
) -> BoardRecord:
"""Gets a board record."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
"""Updates a board record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
"""Gets many board records."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardRecord]:
"""Gets all board records."""
pass
from .board_records_base import BoardRecordStorageBase
from .board_records_common import (
BoardChanges,
BoardRecord,
BoardRecordDeleteException,
BoardRecordNotFoundException,
BoardRecordSaveException,
deserialize_board_record,
)
class SqliteBoardRecordStorage(BoardRecordStorageBase):
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
_lock: threading.RLock
def __init__(self, conn: sqlite3.Connection, lock: threading.Lock) -> None:
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = conn
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
self._lock = lock
try:
self._lock.acquire()

View File

@ -1,158 +0,0 @@
from abc import ABC, abstractmethod
from logging import Logger
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.board_images import board_record_to_dto
from invokeai.app.services.board_record_storage import BoardChanges, BoardRecordStorageBase
from invokeai.app.services.image_record_storage import ImageRecordStorageBase, OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.urls import UrlServiceBase
class BoardServiceABC(ABC):
"""High-level service for board management."""
@abstractmethod
def create(
self,
board_name: str,
) -> BoardDTO:
"""Creates a board."""
pass
@abstractmethod
def get_dto(
self,
board_id: str,
) -> BoardDTO:
"""Gets a board."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
"""Updates a board."""
pass
@abstractmethod
def delete(
self,
board_id: str,
) -> None:
"""Deletes a board."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardDTO]:
"""Gets many boards."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardDTO]:
"""Gets all boards."""
pass
class BoardServiceDependencies:
"""Service dependencies for the BoardService."""
board_image_records: BoardImageRecordStorageBase
board_records: BoardRecordStorageBase
image_records: ImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
def __init__(
self,
board_image_record_storage: BoardImageRecordStorageBase,
image_record_storage: ImageRecordStorageBase,
board_record_storage: BoardRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
):
self.board_image_records = board_image_record_storage
self.image_records = image_record_storage
self.board_records = board_record_storage
self.urls = url
self.logger = logger
class BoardService(BoardServiceABC):
_services: BoardServiceDependencies
def __init__(self, services: BoardServiceDependencies):
self._services = services
def create(
self,
board_name: str,
) -> BoardDTO:
board_record = self._services.board_records.save(board_name)
return board_record_to_dto(board_record, None, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self._services.board_records.get(board_id)
cover_image = self._services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
board_record = self._services.board_records.update(board_id, changes)
cover_image = self._services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None:
self._services.board_records.delete(board_id)
def get_many(self, offset: int = 0, limit: int = 10) -> OffsetPaginatedResults[BoardDTO]:
board_records = self._services.board_records.get_many(offset, limit)
board_dtos = []
for r in board_records.items:
cover_image = self._services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
def get_all(self) -> list[BoardDTO]:
board_records = self._services.board_records.get_all()
board_dtos = []
for r in board_records:
cover_image = self._services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos

View File

View File

@ -0,0 +1,59 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .boards_common import BoardDTO
class BoardServiceABC(ABC):
"""High-level service for board management."""
@abstractmethod
def create(
self,
board_name: str,
) -> BoardDTO:
"""Creates a board."""
pass
@abstractmethod
def get_dto(
self,
board_id: str,
) -> BoardDTO:
"""Gets a board."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
"""Updates a board."""
pass
@abstractmethod
def delete(
self,
board_id: str,
) -> None:
"""Deletes a board."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardDTO]:
"""Gets many boards."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardDTO]:
"""Gets all boards."""
pass

View File

@ -0,0 +1,23 @@
from typing import Optional
from pydantic import Field
from ..board_records.board_records_common import BoardRecord
class BoardDTO(BoardRecord):
"""Deserialized board record with cover image URL and image count."""
cover_image_name: Optional[str] = Field(description="The name of the board's cover image.")
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.model_dump(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@ -0,0 +1,79 @@
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .boards_base import BoardServiceABC
from .boards_common import board_record_to_dto
class BoardService(BoardServiceABC):
__invoker: Invoker
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
def create(
self,
board_name: str,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.save(board_name)
return board_record_to_dto(board_record, None, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self.__invoker.services.board_records.get(board_id)
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.update(board_id, changes)
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None:
self.__invoker.services.board_records.delete(board_id)
def get_many(self, offset: int = 0, limit: int = 10) -> OffsetPaginatedResults[BoardDTO]:
board_records = self.__invoker.services.board_records.get_many(offset, limit)
board_dtos = []
for r in board_records.items:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
def get_all(self) -> list[BoardDTO]:
board_records = self.__invoker.services.board_records.get_all()
board_dtos = []
for r in board_records:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos

View File

@ -2,5 +2,5 @@
Init file for InvokeAI configure package
"""
from .base import PagingArgumentParser # noqa F401
from .invokeai_config import InvokeAIAppConfig, get_invokeai_config # noqa F401
from .config_base import PagingArgumentParser # noqa F401
from .config_default import InvokeAIAppConfig, get_invokeai_config # noqa F401

View File

@ -12,25 +12,15 @@ from __future__ import annotations
import argparse
import os
import pydoc
import sys
from argparse import ArgumentParser
from pathlib import Path
from typing import ClassVar, Dict, List, Literal, Optional, Union, get_args, get_origin, get_type_hints
from omegaconf import DictConfig, ListConfig, OmegaConf
from pydantic import BaseSettings
from pydantic_settings import BaseSettings, SettingsConfigDict
class PagingArgumentParser(argparse.ArgumentParser):
"""
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
"""
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
from invokeai.app.services.config.config_common import PagingArgumentParser, int_or_float_or_str
class InvokeAISettings(BaseSettings):
@ -42,12 +32,14 @@ class InvokeAISettings(BaseSettings):
initconf: ClassVar[Optional[DictConfig]] = None
argparse_groups: ClassVar[Dict] = {}
model_config = SettingsConfigDict(env_file_encoding="utf-8", arbitrary_types_allowed=True, case_sensitive=True)
def parse_args(self, argv: Optional[list] = sys.argv[1:]):
parser = self.get_parser()
opt, unknown_opts = parser.parse_known_args(argv)
if len(unknown_opts) > 0:
print("Unknown args:", unknown_opts)
for name in self.__fields__:
for name in self.model_fields:
if name not in self._excluded():
value = getattr(opt, name)
if isinstance(value, ListConfig):
@ -64,10 +56,12 @@ class InvokeAISettings(BaseSettings):
cls = self.__class__
type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type: dict()})
for name, field in self.__fields__.items():
for name, field in self.model_fields.items():
if name in cls._excluded_from_yaml():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
category = (
field.json_schema_extra.get("category", "Uncategorized") if field.json_schema_extra else "Uncategorized"
)
value = getattr(self, name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
@ -83,7 +77,7 @@ class InvokeAISettings(BaseSettings):
else:
settings_stanza = "Uncategorized"
env_prefix = getattr(cls.Config, "env_prefix", None)
env_prefix = getattr(cls.model_config, "env_prefix", None)
env_prefix = env_prefix if env_prefix is not None else settings_stanza.upper()
initconf = (
@ -99,14 +93,18 @@ class InvokeAISettings(BaseSettings):
for key, value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
fields = cls.model_fields
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category", "Uncategorized")
category = (
field.json_schema_extra.get("category", "Uncategorized")
if field.json_schema_extra
else "Uncategorized"
)
env_name = env_prefix + "_" + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
@ -156,11 +154,6 @@ class InvokeAISettings(BaseSettings):
"tiled_decode",
]
class Config:
env_file_encoding = "utf-8"
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override=None):
field_type = get_type_hints(cls).get(name)
@ -171,7 +164,7 @@ class InvokeAISettings(BaseSettings):
if field.default_factory is None
else field.default_factory()
)
if category := field.field_info.extra.get("category"):
if category := (field.json_schema_extra.get("category", None) if field.json_schema_extra else None):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
@ -179,7 +172,7 @@ class InvokeAISettings(BaseSettings):
argparse_group = command_parser
if get_origin(field_type) == Literal:
allowed_values = get_args(field.type_)
allowed_values = get_args(field.annotation)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
@ -192,7 +185,7 @@ class InvokeAISettings(BaseSettings):
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
help=field.description,
)
elif get_origin(field_type) == Union:
@ -201,7 +194,7 @@ class InvokeAISettings(BaseSettings):
dest=name,
type=int_or_float_or_str,
default=default,
help=field.field_info.description,
help=field.description,
)
elif get_origin(field_type) == list:
@ -209,32 +202,17 @@ class InvokeAISettings(BaseSettings):
f"--{name}",
dest=name,
nargs="*",
type=field.type_,
type=field.annotation,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
action=argparse.BooleanOptionalAction if field.annotation == bool else "store",
help=field.description,
)
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
type=field.annotation,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
action=argparse.BooleanOptionalAction if field.annotation == bool else "store",
help=field.description,
)
def int_or_float_or_str(value: str) -> Union[int, float, str]:
"""
Workaround for argparse type checking.
"""
try:
return int(value)
except Exception as e: # noqa F841
pass
try:
return float(value)
except Exception as e: # noqa F841
pass
return str(value)

View File

@ -0,0 +1,41 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
"""
Base class for the InvokeAI configuration system.
It defines a type of pydantic BaseSettings object that
is able to read and write from an omegaconf-based config file,
with overriding of settings from environment variables and/or
the command line.
"""
from __future__ import annotations
import argparse
import pydoc
from typing import Union
class PagingArgumentParser(argparse.ArgumentParser):
"""
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
"""
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def int_or_float_or_str(value: str) -> Union[int, float, str]:
"""
Workaround for argparse type checking.
"""
try:
return int(value)
except Exception as e: # noqa F841
pass
try:
return float(value)
except Exception as e: # noqa F841
pass
return str(value)

View File

@ -144,8 +144,8 @@ which is set to the desired top-level name. For example, to create a
class InvokeBatch(InvokeAISettings):
type: Literal["InvokeBatch"] = "InvokeBatch"
node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources')
cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources')
node_count : int = Field(default=1, description="Number of nodes to run on", json_schema_extra=dict(category='Resources'))
cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", json_schema_extra=dict(category='Resources'))
This will now read and write from the "InvokeBatch" section of the
config file, look for environment variables named INVOKEBATCH_*, and
@ -175,9 +175,10 @@ from pathlib import Path
from typing import ClassVar, Dict, List, Literal, Optional, Union, get_type_hints
from omegaconf import DictConfig, OmegaConf
from pydantic import Field, parse_obj_as
from pydantic import Field, TypeAdapter
from pydantic_settings import SettingsConfigDict
from .base import InvokeAISettings
from .config_base import InvokeAISettings
INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db")
@ -185,6 +186,21 @@ LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_MAX_VRAM = 0.5
class Categories(object):
WebServer = dict(category="Web Server")
Features = dict(category="Features")
Paths = dict(category="Paths")
Logging = dict(category="Logging")
Development = dict(category="Development")
Other = dict(category="Other")
ModelCache = dict(category="Model Cache")
Device = dict(category="Device")
Generation = dict(category="Generation")
Queue = dict(category="Queue")
Nodes = dict(category="Nodes")
MemoryPerformance = dict(category="Memory/Performance")
class InvokeAIAppConfig(InvokeAISettings):
"""
Generate images using Stable Diffusion. Use "invokeai" to launch
@ -201,86 +217,88 @@ class InvokeAIAppConfig(InvokeAISettings):
type: Literal["InvokeAI"] = "InvokeAI"
# WEB
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server')
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server')
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server')
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server')
host : str = Field(default="127.0.0.1", description="IP address to bind to", json_schema_extra=Categories.WebServer)
port : int = Field(default=9090, description="Port to bind to", json_schema_extra=Categories.WebServer)
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", json_schema_extra=Categories.WebServer)
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", json_schema_extra=Categories.WebServer)
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", json_schema_extra=Categories.WebServer)
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", json_schema_extra=Categories.WebServer)
# FEATURES
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features')
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", json_schema_extra=Categories.Features)
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", json_schema_extra=Categories.Features)
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", json_schema_extra=Categories.Features)
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", json_schema_extra=Categories.Features)
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', json_schema_extra=Categories.Features)
# PATHS
root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
controlnet_dir : Path = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
root : Optional[Path] = Field(default=None, description='InvokeAI runtime root directory', json_schema_extra=Categories.Paths)
autoimport_dir : Optional[Path] = Field(default=Path('autoimport'), description='Path to a directory of models files to be imported on startup.', json_schema_extra=Categories.Paths)
lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths)
embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
conf_path : Optional[Path] = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Paths)
models_dir : Optional[Path] = Field(default=Path('models'), description='Path to the models directory', json_schema_extra=Categories.Paths)
legacy_conf_dir : Optional[Path] = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files', json_schema_extra=Categories.Paths)
db_dir : Optional[Path] = Field(default=Path('databases'), description='Path to InvokeAI databases directory', json_schema_extra=Categories.Paths)
outdir : Optional[Path] = Field(default=Path('outputs'), description='Default folder for output images', json_schema_extra=Categories.Paths)
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', json_schema_extra=Categories.Paths)
from_file : Optional[Path] = Field(default=None, description='Take command input from the indicated file (command-line client only)', json_schema_extra=Categories.Paths)
# LOGGING
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', json_schema_extra=Categories.Logging)
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
log_sql : bool = Field(default=False, description="Log SQL queries", category="Logging")
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', json_schema_extra=Categories.Logging)
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", json_schema_extra=Categories.Logging)
log_sql : bool = Field(default=False, description="Log SQL queries", json_schema_extra=Categories.Logging)
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", category="Development")
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", json_schema_extra=Categories.Development)
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other)
# CACHE
ram : Union[float, Literal["auto"]] = Field(default=7.5, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number or 'auto')", category="Model Cache", )
vram : Union[float, Literal["auto"]] = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number or 'auto')", category="Model Cache", )
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", category="Model Cache", )
ram : float = Field(default=7.5, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
vram : float = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number, GB)", json_schema_extra=Categories.ModelCache, )
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", json_schema_extra=Categories.ModelCache, )
# DEVICE
device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", category="Device", )
precision : Literal["auto", "float16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", category="Device", )
device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", json_schema_extra=Categories.Device)
precision : Literal["auto", "float16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", json_schema_extra=Categories.Device)
# GENERATION
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category="Generation", )
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", category="Generation", )
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', category="Generation", )
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",)
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",)
png_compress_level : int = Field(default=6, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", category="Generation", )
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", json_schema_extra=Categories.Generation)
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", json_schema_extra=Categories.Generation)
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', json_schema_extra=Categories.Generation)
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Generation)
png_compress_level : int = Field(default=6, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
# QUEUE
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", category="Queue", )
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", json_schema_extra=Categories.Queue)
# NODES
allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", category="Nodes")
deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", category="Nodes")
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", category="Nodes", )
allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", json_schema_extra=Categories.Nodes)
deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes)
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes)
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance)
free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance)
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.MemoryPerformance)
max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", json_schema_extra=Categories.MemoryPerformance)
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", json_schema_extra=Categories.MemoryPerformance)
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.MemoryPerformance)
# See InvokeAIAppConfig subclass below for CACHE and DEVICE categories
# fmt: on
class Config:
validate_assignment = True
env_prefix = "INVOKEAI"
model_config = SettingsConfigDict(validate_assignment=True, env_prefix="INVOKEAI")
def parse_args(self, argv: Optional[list[str]] = None, conf: Optional[DictConfig] = None, clobber=False):
def parse_args(
self,
argv: Optional[list[str]] = None,
conf: Optional[DictConfig] = None,
clobber=False,
):
"""
Update settings with contents of init file, environment, and
command-line settings.
@ -308,7 +326,11 @@ class InvokeAIAppConfig(InvokeAISettings):
if self.singleton_init and not clobber:
hints = get_type_hints(self.__class__)
for k in self.singleton_init:
setattr(self, k, parse_obj_as(hints[k], self.singleton_init[k]))
setattr(
self,
k,
TypeAdapter(hints[k]).validate_python(self.singleton_init[k]),
)
@classmethod
def get_config(cls, **kwargs) -> InvokeAIAppConfig:

View File

View File

@ -2,8 +2,7 @@
from typing import Any, Optional
from invokeai.app.models.image import ProgressImage
from invokeai.app.services.model_manager_service import BaseModelType, ModelInfo, ModelType, SubModelType
from invokeai.app.services.invocation_processor.invocation_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
BatchStatus,
EnqueueBatchResult,
@ -11,6 +10,8 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueStatus,
)
from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_management.model_manager import ModelInfo
from invokeai.backend.model_management.models.base import BaseModelType, ModelType, SubModelType
class EventServiceBase:
@ -54,7 +55,7 @@ class EventServiceBase:
graph_execution_state_id=graph_execution_state_id,
node_id=node.get("id"),
source_node_id=source_node_id,
progress_image=progress_image.dict() if progress_image is not None else None,
progress_image=progress_image.model_dump() if progress_image is not None else None,
step=step,
order=order,
total_steps=total_steps,
@ -290,8 +291,8 @@ class EventServiceBase:
started_at=str(session_queue_item.started_at) if session_queue_item.started_at else None,
completed_at=str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
),
batch_status=batch_status.dict(),
queue_status=queue_status.dict(),
batch_status=batch_status.model_dump(),
queue_status=queue_status.model_dump(),
),
)

View File

@ -0,0 +1,43 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Optional
from PIL.Image import Image as PILImageType
class ImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, image_name: str) -> PILImageType:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> Path:
"""Gets the internal path to an image or thumbnail."""
pass
# TODO: We need to validate paths before starlette makes the FileResponse, else we get a
# 500 internal server error. I don't like having this method on the service.
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates the path given for an image or thumbnail."""
pass
@abstractmethod
def save(
self,
image: PILImageType,
image_name: str,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass

View File

@ -0,0 +1,20 @@
# TODO: Should these excpetions subclass existing python exceptions?
class ImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message="Image file not found"):
super().__init__(message)
class ImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message="Image file not saved"):
super().__init__(message)
class ImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message="Image file not deleted"):
super().__init__(message)

View File

@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
import json
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict, Optional, Union
@ -9,68 +8,11 @@ from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
# TODO: Should these excpetions subclass existing python exceptions?
class ImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message="Image file not found"):
super().__init__(message)
class ImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message="Image file not saved"):
super().__init__(message)
class ImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message="Image file not deleted"):
super().__init__(message)
class ImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, image_name: str) -> PILImageType:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the internal path to an image or thumbnail."""
pass
# TODO: We need to validate paths before starlette makes the FileResponse, else we get a
# 500 internal server error. I don't like having this method on the service.
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates the path given for an image or thumbnail."""
pass
@abstractmethod
def save(
self,
image: PILImageType,
image_name: str,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
from .image_files_base import ImageFileStorageBase
from .image_files_common import ImageFileDeleteException, ImageFileNotFoundException, ImageFileSaveException
class DiskImageFileStorage(ImageFileStorageBase):
@ -80,7 +22,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[Path, PILImageType]
__max_cache_size: int
__compress_level: int
__invoker: Invoker
def __init__(self, output_folder: Union[str, Path]):
self.__cache = dict()
@ -89,10 +31,12 @@ class DiskImageFileStorage(ImageFileStorageBase):
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
self.__compress_level = InvokeAIAppConfig.get_config().png_compress_level
# Validate required output folders at launch
self.__validate_storage_folders()
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
def get(self, image_name: str) -> PILImageType:
try:
image_path = self.get_path(image_name)
@ -136,7 +80,12 @@ class DiskImageFileStorage(ImageFileStorageBase):
if original_workflow is not None:
pnginfo.add_text("invokeai_workflow", original_workflow)
image.save(image_path, "PNG", pnginfo=pnginfo, compress_level=self.__compress_level)
image.save(
image_path,
"PNG",
pnginfo=pnginfo,
compress_level=self.__invoker.services.configuration.png_compress_level,
)
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(thumbnail_name, thumbnail=True)

View File

@ -0,0 +1,84 @@
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Optional
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .image_records_common import ImageCategory, ImageRecord, ImageRecordChanges, ResourceOrigin
class ImageRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the image record store."""
# TODO: Implement an `update()` method
@abstractmethod
def get(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_metadata(self, image_name: str) -> Optional[dict]:
"""Gets an image's metadata'."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> None:
"""Updates an image record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets a page of image records."""
pass
# TODO: The database has a nullable `deleted_at` column, currently unused.
# Should we implement soft deletes? Would need coordination with ImageFileStorage.
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image record."""
pass
@abstractmethod
def delete_many(self, image_names: list[str]) -> None:
"""Deletes many image records."""
pass
@abstractmethod
def delete_intermediates(self) -> list[str]:
"""Deletes all intermediate image records, returning a list of deleted image names."""
pass
@abstractmethod
def save(
self,
image_name: str,
image_origin: ResourceOrigin,
image_category: ImageCategory,
width: int,
height: int,
is_intermediate: Optional[bool] = False,
starred: Optional[bool] = False,
session_id: Optional[str] = None,
node_id: Optional[str] = None,
metadata: Optional[dict] = None,
) -> datetime:
"""Saves an image record."""
pass
@abstractmethod
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
"""Gets the most recent image for a board."""
pass

View File

@ -1,13 +1,117 @@
# TODO: Should these excpetions subclass existing python exceptions?
import datetime
from enum import Enum
from typing import Optional, Union
from pydantic import Extra, Field, StrictBool, StrictStr
from pydantic import Field, StrictBool, StrictStr
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.util.metaenum import MetaEnum
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image).
- INTERNAL: The resource was created by the application.
- EXTERNAL: The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
INTERNAL = "internal"
"""The resource was created by the application."""
EXTERNAL = "external"
"""The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
class InvalidOriginException(ValueError):
"""Raised when a provided value is not a valid ResourceOrigin.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid resource origin."):
super().__init__(message)
class ImageCategory(str, Enum, metaclass=MetaEnum):
"""The category of an image.
- GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose.
- MASK: The image is a mask image.
- CONTROL: The image is a ControlNet control image.
- USER: The image is a user-provide image.
- OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes.
"""
GENERAL = "general"
"""GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose."""
MASK = "mask"
"""MASK: The image is a mask image."""
CONTROL = "control"
"""CONTROL: The image is a ControlNet control image."""
USER = "user"
"""USER: The image is a user-provide image."""
OTHER = "other"
"""OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes."""
class InvalidImageCategoryException(ValueError):
"""Raised when a provided value is not a valid ImageCategory.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid image category."):
super().__init__(message)
class ImageRecordNotFoundException(Exception):
"""Raised when an image record is not found."""
def __init__(self, message="Image record not found"):
super().__init__(message)
class ImageRecordSaveException(Exception):
"""Raised when an image record cannot be saved."""
def __init__(self, message="Image record not saved"):
super().__init__(message)
class ImageRecordDeleteException(Exception):
"""Raised when an image record cannot be deleted."""
def __init__(self, message="Image record not deleted"):
super().__init__(message)
IMAGE_DTO_COLS = ", ".join(
list(
map(
lambda c: "images." + c,
[
"image_name",
"image_origin",
"image_category",
"width",
"height",
"session_id",
"node_id",
"is_intermediate",
"created_at",
"updated_at",
"deleted_at",
"starred",
],
)
)
)
class ImageRecord(BaseModelExcludeNull):
"""Deserialized image record without metadata."""
@ -25,7 +129,9 @@ class ImageRecord(BaseModelExcludeNull):
"""The created timestamp of the image."""
updated_at: Union[datetime.datetime, str] = Field(description="The updated timestamp of the image.")
"""The updated timestamp of the image."""
deleted_at: Union[datetime.datetime, str, None] = Field(description="The deleted timestamp of the image.")
deleted_at: Optional[Union[datetime.datetime, str]] = Field(
default=None, description="The deleted timestamp of the image."
)
"""The deleted timestamp of the image."""
is_intermediate: bool = Field(description="Whether this is an intermediate image.")
"""Whether this is an intermediate image."""
@ -43,7 +149,7 @@ class ImageRecord(BaseModelExcludeNull):
"""Whether this image is starred."""
class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid):
class ImageRecordChanges(BaseModelExcludeNull, extra="allow"):
"""A set of changes to apply to an image record.
Only limited changes are valid:
@ -66,41 +172,6 @@ class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid):
"""The image's new `starred` state."""
class ImageUrlsDTO(BaseModelExcludeNull):
"""The URLs for an image and its thumbnail."""
image_name: str = Field(description="The unique name of the image.")
"""The unique name of the image."""
image_url: str = Field(description="The URL of the image.")
"""The URL of the image."""
thumbnail_url: str = Field(description="The URL of the image's thumbnail.")
"""The URL of the image's thumbnail."""
class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend."""
board_id: Optional[str] = Field(description="The id of the board the image belongs to, if one exists.")
"""The id of the board the image belongs to, if one exists."""
pass
def image_record_to_dto(
image_record: ImageRecord,
image_url: str,
thumbnail_url: str,
board_id: Optional[str],
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(
**image_record.dict(),
image_url=image_url,
thumbnail_url=thumbnail_url,
board_id=board_id,
)
def deserialize_image_record(image_dict: dict) -> ImageRecord:
"""Deserializes an image record."""

View File

@ -1,164 +1,36 @@
import json
import sqlite3
import threading
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Generic, Optional, TypeVar, cast
from typing import Optional, Union, cast
from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.models.image_record import ImageRecord, ImageRecordChanges, deserialize_image_record
T = TypeVar("T", bound=BaseModel)
class OffsetPaginatedResults(GenericModel, Generic[T]):
"""Offset-paginated results"""
# fmt: off
items: list[T] = Field(description="Items")
offset: int = Field(description="Offset from which to retrieve items")
limit: int = Field(description="Limit of items to get")
total: int = Field(description="Total number of items in result")
# fmt: on
# TODO: Should these excpetions subclass existing python exceptions?
class ImageRecordNotFoundException(Exception):
"""Raised when an image record is not found."""
def __init__(self, message="Image record not found"):
super().__init__(message)
class ImageRecordSaveException(Exception):
"""Raised when an image record cannot be saved."""
def __init__(self, message="Image record not saved"):
super().__init__(message)
class ImageRecordDeleteException(Exception):
"""Raised when an image record cannot be deleted."""
def __init__(self, message="Image record not deleted"):
super().__init__(message)
IMAGE_DTO_COLS = ", ".join(
list(
map(
lambda c: "images." + c,
[
"image_name",
"image_origin",
"image_category",
"width",
"height",
"session_id",
"node_id",
"is_intermediate",
"created_at",
"updated_at",
"deleted_at",
"starred",
],
)
)
from .image_records_base import ImageRecordStorageBase
from .image_records_common import (
IMAGE_DTO_COLS,
ImageCategory,
ImageRecord,
ImageRecordChanges,
ImageRecordDeleteException,
ImageRecordNotFoundException,
ImageRecordSaveException,
ResourceOrigin,
deserialize_image_record,
)
class ImageRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the image record store."""
# TODO: Implement an `update()` method
@abstractmethod
def get(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_metadata(self, image_name: str) -> Optional[dict]:
"""Gets an image's metadata'."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> None:
"""Updates an image record."""
pass
@abstractmethod
def get_many(
self,
offset: Optional[int] = None,
limit: Optional[int] = None,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets a page of image records."""
pass
# TODO: The database has a nullable `deleted_at` column, currently unused.
# Should we implement soft deletes? Would need coordination with ImageFileStorage.
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image record."""
pass
@abstractmethod
def delete_many(self, image_names: list[str]) -> None:
"""Deletes many image records."""
pass
@abstractmethod
def delete_intermediates(self) -> list[str]:
"""Deletes all intermediate image records, returning a list of deleted image names."""
pass
@abstractmethod
def save(
self,
image_name: str,
image_origin: ResourceOrigin,
image_category: ImageCategory,
width: int,
height: int,
session_id: Optional[str],
node_id: Optional[str],
metadata: Optional[dict],
is_intermediate: bool = False,
starred: bool = False,
) -> datetime:
"""Saves an image record."""
pass
@abstractmethod
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
"""Gets the most recent image for a board."""
pass
class SqliteImageRecordStorage(ImageRecordStorageBase):
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
_lock: threading.RLock
def __init__(self, conn: sqlite3.Connection, lock: threading.Lock) -> None:
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = conn
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
self._lock = lock
try:
self._lock.acquire()
@ -245,7 +117,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
"""
)
def get(self, image_name: str) -> Optional[ImageRecord]:
def get(self, image_name: str) -> ImageRecord:
try:
self._lock.acquire()
@ -351,8 +223,8 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
def get_many(
self,
offset: Optional[int] = None,
limit: Optional[int] = None,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
@ -377,7 +249,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
"""
query_conditions = ""
query_params = []
query_params: list[Union[int, str, bool]] = []
if image_origin is not None:
query_conditions += """--sql
@ -515,13 +387,13 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
image_name: str,
image_origin: ResourceOrigin,
image_category: ImageCategory,
session_id: Optional[str],
width: int,
height: int,
node_id: Optional[str],
metadata: Optional[dict],
is_intermediate: bool = False,
starred: bool = False,
is_intermediate: Optional[bool] = False,
starred: Optional[bool] = False,
session_id: Optional[str] = None,
node_id: Optional[str] = None,
metadata: Optional[dict] = None,
) -> datetime:
try:
metadata_json = None if metadata is None else json.dumps(metadata)

View File

@ -1,449 +0,0 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import TYPE_CHECKING, Callable, Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import (
ImageCategory,
InvalidImageCategoryException,
InvalidOriginException,
ResourceOrigin,
)
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.image_file_storage import (
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
ImageFileStorageBase,
)
from invokeai.app.services.image_record_storage import (
ImageRecordDeleteException,
ImageRecordNotFoundException,
ImageRecordSaveException,
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.item_storage import ItemStorageABC
from invokeai.app.services.models.image_record import ImageDTO, ImageRecord, ImageRecordChanges, image_record_to_dto
from invokeai.app.services.resource_name import NameServiceBase
from invokeai.app.services.urls import UrlServiceBase
from invokeai.app.util.metadata import get_metadata_graph_from_raw_session
if TYPE_CHECKING:
from invokeai.app.services.graph import GraphExecutionState
class ImageServiceABC(ABC):
"""High-level service for image management."""
_on_changed_callbacks: list[Callable[[ImageDTO], None]]
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
def on_changed(self, on_changed: Callable[[ImageDTO], None]) -> None:
"""Register a callback for when an image is changed"""
self._on_changed_callbacks.append(on_changed)
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
"""Register a callback for when an image is deleted"""
self._on_deleted_callbacks.append(on_deleted)
def _on_changed(self, item: ImageDTO) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)
@abstractmethod
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
"""Updates an image."""
pass
@abstractmethod
def get_pil_image(self, image_name: str) -> PILImageType:
"""Gets an image as a PIL image."""
pass
@abstractmethod
def get_record(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_dto(self, image_name: str) -> ImageDTO:
"""Gets an image DTO."""
pass
@abstractmethod
def get_metadata(self, image_name: str) -> ImageMetadata:
"""Gets an image's metadata."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's path."""
pass
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image's path."""
pass
@abstractmethod
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's or thumbnail's URL."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
pass
@abstractmethod
def delete(self, image_name: str):
"""Deletes an image."""
pass
@abstractmethod
def delete_intermediates(self) -> int:
"""Deletes all intermediate images."""
pass
@abstractmethod
def delete_images_on_board(self, board_id: str):
"""Deletes all images on a board."""
pass
class ImageServiceDependencies:
"""Service dependencies for the ImageService."""
image_records: ImageRecordStorageBase
image_files: ImageFileStorageBase
board_image_records: BoardImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
names: NameServiceBase
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
def __init__(
self,
image_record_storage: ImageRecordStorageBase,
image_file_storage: ImageFileStorageBase,
board_image_record_storage: BoardImageRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
names: NameServiceBase,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
):
self.image_records = image_record_storage
self.image_files = image_file_storage
self.board_image_records = board_image_record_storage
self.urls = url
self.logger = logger
self.names = names
self.graph_execution_manager = graph_execution_manager
class ImageService(ImageServiceABC):
_services: ImageServiceDependencies
def __init__(self, services: ImageServiceDependencies):
super().__init__()
self._services = services
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
if image_origin not in ResourceOrigin:
raise InvalidOriginException
if image_category not in ImageCategory:
raise InvalidImageCategoryException
image_name = self._services.names.create_image_name()
# TODO: Do we want to store the graph in the image at all? I don't think so...
# graph = None
# if session_id is not None:
# session_raw = self._services.graph_execution_manager.get_raw(session_id)
# if session_raw is not None:
# try:
# graph = get_metadata_graph_from_raw_session(session_raw)
# except Exception as e:
# self._services.logger.warn(f"Failed to parse session graph: {e}")
# graph = None
(width, height) = image.size
try:
# TODO: Consider using a transaction here to ensure consistency between storage and database
self._services.image_records.save(
# Non-nullable fields
image_name=image_name,
image_origin=image_origin,
image_category=image_category,
width=width,
height=height,
# Meta fields
is_intermediate=is_intermediate,
# Nullable fields
node_id=node_id,
metadata=metadata,
session_id=session_id,
)
if board_id is not None:
self._services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
self._services.image_files.save(image_name=image_name, image=image, metadata=metadata, workflow=workflow)
image_dto = self.get_dto(image_name)
self._on_changed(image_dto)
return image_dto
except ImageRecordSaveException:
self._services.logger.error("Failed to save image record")
raise
except ImageFileSaveException:
self._services.logger.error("Failed to save image file")
raise
except Exception as e:
self._services.logger.error(f"Problem saving image record and file: {str(e)}")
raise e
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
try:
self._services.image_records.update(image_name, changes)
image_dto = self.get_dto(image_name)
self._on_changed(image_dto)
return image_dto
except ImageRecordSaveException:
self._services.logger.error("Failed to update image record")
raise
except Exception as e:
self._services.logger.error("Problem updating image record")
raise e
def get_pil_image(self, image_name: str) -> PILImageType:
try:
return self._services.image_files.get(image_name)
except ImageFileNotFoundException:
self._services.logger.error("Failed to get image file")
raise
except Exception as e:
self._services.logger.error("Problem getting image file")
raise e
def get_record(self, image_name: str) -> ImageRecord:
try:
return self._services.image_records.get(image_name)
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise
except Exception as e:
self._services.logger.error("Problem getting image record")
raise e
def get_dto(self, image_name: str) -> ImageDTO:
try:
image_record = self._services.image_records.get(image_name)
image_dto = image_record_to_dto(
image_record,
self._services.urls.get_image_url(image_name),
self._services.urls.get_image_url(image_name, True),
self._services.board_image_records.get_board_for_image(image_name),
)
return image_dto
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise
except Exception as e:
self._services.logger.error("Problem getting image DTO")
raise e
def get_metadata(self, image_name: str) -> Optional[ImageMetadata]:
try:
image_record = self._services.image_records.get(image_name)
metadata = self._services.image_records.get_metadata(image_name)
if not image_record.session_id:
return ImageMetadata(metadata=metadata)
session_raw = self._services.graph_execution_manager.get_raw(image_record.session_id)
graph = None
if session_raw:
try:
graph = get_metadata_graph_from_raw_session(session_raw)
except Exception as e:
self._services.logger.warn(f"Failed to parse session graph: {e}")
graph = None
return ImageMetadata(graph=graph, metadata=metadata)
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise
except Exception as e:
self._services.logger.error("Problem getting image DTO")
raise e
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self._services.image_files.get_path(image_name, thumbnail)
except Exception as e:
self._services.logger.error("Problem getting image path")
raise e
def validate_path(self, path: str) -> bool:
try:
return self._services.image_files.validate_path(path)
except Exception as e:
self._services.logger.error("Problem validating image path")
raise e
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self._services.urls.get_image_url(image_name, thumbnail)
except Exception as e:
self._services.logger.error("Problem getting image path")
raise e
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
try:
results = self._services.image_records.get_many(
offset,
limit,
image_origin,
categories,
is_intermediate,
board_id,
)
image_dtos = list(
map(
lambda r: image_record_to_dto(
r,
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
self._services.board_image_records.get_board_for_image(r.image_name),
),
results.items,
)
)
return OffsetPaginatedResults[ImageDTO](
items=image_dtos,
offset=results.offset,
limit=results.limit,
total=results.total,
)
except Exception as e:
self._services.logger.error("Problem getting paginated image DTOs")
raise e
def delete(self, image_name: str):
try:
self._services.image_files.delete(image_name)
self._services.image_records.delete(image_name)
self._on_deleted(image_name)
except ImageRecordDeleteException:
self._services.logger.error("Failed to delete image record")
raise
except ImageFileDeleteException:
self._services.logger.error("Failed to delete image file")
raise
except Exception as e:
self._services.logger.error("Problem deleting image record and file")
raise e
def delete_images_on_board(self, board_id: str):
try:
image_names = self._services.board_image_records.get_all_board_image_names_for_board(board_id)
for image_name in image_names:
self._services.image_files.delete(image_name)
self._services.image_records.delete_many(image_names)
for image_name in image_names:
self._on_deleted(image_name)
except ImageRecordDeleteException:
self._services.logger.error("Failed to delete image records")
raise
except ImageFileDeleteException:
self._services.logger.error("Failed to delete image files")
raise
except Exception as e:
self._services.logger.error("Problem deleting image records and files")
raise e
def delete_intermediates(self) -> int:
try:
image_names = self._services.image_records.delete_intermediates()
count = len(image_names)
for image_name in image_names:
self._services.image_files.delete(image_name)
self._on_deleted(image_name)
return count
except ImageRecordDeleteException:
self._services.logger.error("Failed to delete image records")
raise
except ImageFileDeleteException:
self._services.logger.error("Failed to delete image files")
raise
except Exception as e:
self._services.logger.error("Problem deleting image records and files")
raise e

View File

View File

@ -0,0 +1,129 @@
from abc import ABC, abstractmethod
from typing import Callable, Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,
ImageRecordChanges,
ResourceOrigin,
)
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
class ImageServiceABC(ABC):
"""High-level service for image management."""
_on_changed_callbacks: list[Callable[[ImageDTO], None]]
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
def on_changed(self, on_changed: Callable[[ImageDTO], None]) -> None:
"""Register a callback for when an image is changed"""
self._on_changed_callbacks.append(on_changed)
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
"""Register a callback for when an image is deleted"""
self._on_deleted_callbacks.append(on_deleted)
def _on_changed(self, item: ImageDTO) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)
@abstractmethod
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: Optional[bool] = False,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
"""Updates an image."""
pass
@abstractmethod
def get_pil_image(self, image_name: str) -> PILImageType:
"""Gets an image as a PIL image."""
pass
@abstractmethod
def get_record(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_dto(self, image_name: str) -> ImageDTO:
"""Gets an image DTO."""
pass
@abstractmethod
def get_metadata(self, image_name: str) -> ImageMetadata:
"""Gets an image's metadata."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's path."""
pass
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image's path."""
pass
@abstractmethod
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's or thumbnail's URL."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
pass
@abstractmethod
def delete(self, image_name: str):
"""Deletes an image."""
pass
@abstractmethod
def delete_intermediates(self) -> int:
"""Deletes all intermediate images."""
pass
@abstractmethod
def delete_images_on_board(self, board_id: str):
"""Deletes all images on a board."""
pass

View File

@ -0,0 +1,43 @@
from typing import Optional
from pydantic import Field
from invokeai.app.services.image_records.image_records_common import ImageRecord
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class ImageUrlsDTO(BaseModelExcludeNull):
"""The URLs for an image and its thumbnail."""
image_name: str = Field(description="The unique name of the image.")
"""The unique name of the image."""
image_url: str = Field(description="The URL of the image.")
"""The URL of the image."""
thumbnail_url: str = Field(description="The URL of the image's thumbnail.")
"""The URL of the image's thumbnail."""
class ImageDTO(ImageRecord, ImageUrlsDTO):
"""Deserialized image record, enriched for the frontend."""
board_id: Optional[str] = Field(
default=None, description="The id of the board the image belongs to, if one exists."
)
"""The id of the board the image belongs to, if one exists."""
pass
def image_record_to_dto(
image_record: ImageRecord,
image_url: str,
thumbnail_url: str,
board_id: Optional[str],
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(
**image_record.model_dump(),
image_url=image_url,
thumbnail_url=thumbnail_url,
board_id=board_id,
)

View File

@ -0,0 +1,286 @@
from typing import Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.util.metadata import get_metadata_graph_from_raw_session
from ..image_files.image_files_common import (
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
)
from ..image_records.image_records_common import (
ImageCategory,
ImageRecord,
ImageRecordChanges,
ImageRecordDeleteException,
ImageRecordNotFoundException,
ImageRecordSaveException,
InvalidImageCategoryException,
InvalidOriginException,
ResourceOrigin,
)
from .images_base import ImageServiceABC
from .images_common import ImageDTO, image_record_to_dto
class ImageService(ImageServiceABC):
__invoker: Invoker
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
board_id: Optional[str] = None,
is_intermediate: Optional[bool] = False,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
if image_origin not in ResourceOrigin:
raise InvalidOriginException
if image_category not in ImageCategory:
raise InvalidImageCategoryException
image_name = self.__invoker.services.names.create_image_name()
(width, height) = image.size
try:
# TODO: Consider using a transaction here to ensure consistency between storage and database
self.__invoker.services.image_records.save(
# Non-nullable fields
image_name=image_name,
image_origin=image_origin,
image_category=image_category,
width=width,
height=height,
# Meta fields
is_intermediate=is_intermediate,
# Nullable fields
node_id=node_id,
metadata=metadata,
session_id=session_id,
)
if board_id is not None:
self.__invoker.services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
self.__invoker.services.image_files.save(
image_name=image_name, image=image, metadata=metadata, workflow=workflow
)
image_dto = self.get_dto(image_name)
self._on_changed(image_dto)
return image_dto
except ImageRecordSaveException:
self.__invoker.services.logger.error("Failed to save image record")
raise
except ImageFileSaveException:
self.__invoker.services.logger.error("Failed to save image file")
raise
except Exception as e:
self.__invoker.services.logger.error(f"Problem saving image record and file: {str(e)}")
raise e
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
try:
self.__invoker.services.image_records.update(image_name, changes)
image_dto = self.get_dto(image_name)
self._on_changed(image_dto)
return image_dto
except ImageRecordSaveException:
self.__invoker.services.logger.error("Failed to update image record")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem updating image record")
raise e
def get_pil_image(self, image_name: str) -> PILImageType:
try:
return self.__invoker.services.image_files.get(image_name)
except ImageFileNotFoundException:
self.__invoker.services.logger.error("Failed to get image file")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem getting image file")
raise e
def get_record(self, image_name: str) -> ImageRecord:
try:
return self.__invoker.services.image_records.get(image_name)
except ImageRecordNotFoundException:
self.__invoker.services.logger.error("Image record not found")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem getting image record")
raise e
def get_dto(self, image_name: str) -> ImageDTO:
try:
image_record = self.__invoker.services.image_records.get(image_name)
image_dto = image_record_to_dto(
image_record,
self.__invoker.services.urls.get_image_url(image_name),
self.__invoker.services.urls.get_image_url(image_name, True),
self.__invoker.services.board_image_records.get_board_for_image(image_name),
)
return image_dto
except ImageRecordNotFoundException:
self.__invoker.services.logger.error("Image record not found")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem getting image DTO")
raise e
def get_metadata(self, image_name: str) -> ImageMetadata:
try:
image_record = self.__invoker.services.image_records.get(image_name)
metadata = self.__invoker.services.image_records.get_metadata(image_name)
if not image_record.session_id:
return ImageMetadata(metadata=metadata)
session_raw = self.__invoker.services.graph_execution_manager.get_raw(image_record.session_id)
graph = None
if session_raw:
try:
graph = get_metadata_graph_from_raw_session(session_raw)
except Exception as e:
self.__invoker.services.logger.warn(f"Failed to parse session graph: {e}")
graph = None
return ImageMetadata(graph=graph, metadata=metadata)
except ImageRecordNotFoundException:
self.__invoker.services.logger.error("Image record not found")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem getting image DTO")
raise e
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
try:
return str(self.__invoker.services.image_files.get_path(image_name, thumbnail))
except Exception as e:
self.__invoker.services.logger.error("Problem getting image path")
raise e
def validate_path(self, path: str) -> bool:
try:
return self.__invoker.services.image_files.validate_path(path)
except Exception as e:
self.__invoker.services.logger.error("Problem validating image path")
raise e
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self.__invoker.services.urls.get_image_url(image_name, thumbnail)
except Exception as e:
self.__invoker.services.logger.error("Problem getting image path")
raise e
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
try:
results = self.__invoker.services.image_records.get_many(
offset,
limit,
image_origin,
categories,
is_intermediate,
board_id,
)
image_dtos = list(
map(
lambda r: image_record_to_dto(
r,
self.__invoker.services.urls.get_image_url(r.image_name),
self.__invoker.services.urls.get_image_url(r.image_name, True),
self.__invoker.services.board_image_records.get_board_for_image(r.image_name),
),
results.items,
)
)
return OffsetPaginatedResults[ImageDTO](
items=image_dtos,
offset=results.offset,
limit=results.limit,
total=results.total,
)
except Exception as e:
self.__invoker.services.logger.error("Problem getting paginated image DTOs")
raise e
def delete(self, image_name: str):
try:
self.__invoker.services.image_files.delete(image_name)
self.__invoker.services.image_records.delete(image_name)
self._on_deleted(image_name)
except ImageRecordDeleteException:
self.__invoker.services.logger.error("Failed to delete image record")
raise
except ImageFileDeleteException:
self.__invoker.services.logger.error("Failed to delete image file")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem deleting image record and file")
raise e
def delete_images_on_board(self, board_id: str):
try:
image_names = self.__invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
for image_name in image_names:
self.__invoker.services.image_files.delete(image_name)
self.__invoker.services.image_records.delete_many(image_names)
for image_name in image_names:
self._on_deleted(image_name)
except ImageRecordDeleteException:
self.__invoker.services.logger.error("Failed to delete image records")
raise
except ImageFileDeleteException:
self.__invoker.services.logger.error("Failed to delete image files")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem deleting image records and files")
raise e
def delete_intermediates(self) -> int:
try:
image_names = self.__invoker.services.image_records.delete_intermediates()
count = len(image_names)
for image_name in image_names:
self.__invoker.services.image_files.delete(image_name)
self._on_deleted(image_name)
return count
except ImageRecordDeleteException:
self.__invoker.services.logger.error("Failed to delete image records")
raise
except ImageFileDeleteException:
self.__invoker.services.logger.error("Failed to delete image files")
raise
except Exception as e:
self.__invoker.services.logger.error("Problem deleting image records and files")
raise e

View File

@ -58,7 +58,12 @@ class MemoryInvocationCache(InvocationCacheBase):
# If the cache is full, we need to remove the least used
number_to_delete = len(self._cache) + 1 - self._max_cache_size
self._delete_oldest_access(number_to_delete)
self._cache[key] = CachedItem(invocation_output, invocation_output.json())
self._cache[key] = CachedItem(
invocation_output,
invocation_output.model_dump_json(
warnings=False, exclude_defaults=True, exclude_unset=True, include={"type"}
),
)
def _delete_oldest_access(self, number_to_delete: int) -> None:
number_to_delete = min(number_to_delete, len(self._cache))
@ -85,7 +90,7 @@ class MemoryInvocationCache(InvocationCacheBase):
@staticmethod
def create_key(invocation: BaseInvocation) -> int:
return hash(invocation.json(exclude={"id"}))
return hash(invocation.model_dump_json(exclude={"id"}, warnings=False))
def disable(self) -> None:
with self._lock:

View File

@ -0,0 +1,5 @@
from abc import ABC
class InvocationProcessorABC(ABC):
pass

View File

@ -0,0 +1,15 @@
from pydantic import BaseModel, Field
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@ -4,12 +4,12 @@ from threading import BoundedSemaphore, Event, Thread
from typing import Optional
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import AppInvocationContext
from invokeai.app.services.invocation_queue.invocation_queue_common import InvocationQueueItem
from ..invocations.baseinvocation import InvocationContext
from ..models.exceptions import CanceledException
from .invocation_queue import InvocationQueueItem
from .invocation_stats import InvocationStatsServiceBase
from .invoker import InvocationProcessorABC, Invoker
from ..invoker import Invoker
from .invocation_processor_base import InvocationProcessorABC
from .invocation_processor_common import CanceledException
class DefaultInvocationProcessor(InvocationProcessorABC):
@ -37,7 +37,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
def __process(self, stop_event: Event):
try:
self.__threadLimit.acquire()
statistics: InvocationStatsServiceBase = self.__invoker.services.performance_statistics
queue_item: Optional[InvocationQueueItem] = None
while not stop_event.is_set():
@ -90,26 +89,28 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
node=invocation.model_dump(),
source_node_id=source_node_id,
)
# Invoke
try:
graph_id = graph_execution_state.id
model_manager = self.__invoker.services.model_manager
with statistics.collect_stats(invocation, graph_id, model_manager):
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
with self.__invoker.services.performance_statistics.collect_stats(invocation, graph_id):
# use the internal invoke_internal(), which wraps the node's invoke() method,
# which handles a few things:
# - nodes that require a value, but get it only from a connection
# - referencing the invocation cache instead of executing the node
outputs = invocation.invoke_internal(
InvocationContext(
AppInvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
queue_batch_id=queue_item.session_queue_batch_id,
source_node_id=source_node_id,
)
)
@ -129,17 +130,17 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
node=invocation.model_dump(),
source_node_id=source_node_id,
result=outputs.dict(),
result=outputs.model_dump(),
)
statistics.log_stats()
self.__invoker.services.performance_statistics.log_stats()
except KeyboardInterrupt:
pass
except CanceledException:
statistics.reset_stats(graph_execution_state.id)
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state.id)
pass
except Exception as e:
@ -159,12 +160,12 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
node=invocation.model_dump(),
source_node_id=source_node_id,
error_type=e.__class__.__name__,
error=error,
)
statistics.reset_stats(graph_execution_state.id)
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state.id)
pass
# Check queue to see if this is canceled, and skip if so
@ -189,7 +190,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item_id=queue_item.session_queue_item_id,
queue_id=queue_item.session_queue_id,
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
node=invocation.model_dump(),
source_node_id=source_node_id,
error_type=e.__class__.__name__,
error=traceback.format_exc(),

View File

@ -0,0 +1,26 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from typing import Optional
from .invocation_queue_common import InvocationQueueItem
class InvocationQueueABC(ABC):
"""Abstract base class for all invocation queues"""
@abstractmethod
def get(self) -> InvocationQueueItem:
pass
@abstractmethod
def put(self, item: Optional[InvocationQueueItem]) -> None:
pass
@abstractmethod
def cancel(self, graph_execution_state_id: str) -> None:
pass
@abstractmethod
def is_canceled(self, graph_execution_state_id: str) -> bool:
pass

View File

@ -0,0 +1,19 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from pydantic import BaseModel, Field
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
session_queue_id: str = Field(description="The ID of the session queue from which this invocation queue item came")
session_queue_item_id: int = Field(
description="The ID of session queue item from which this invocation queue item came"
)
session_queue_batch_id: str = Field(
description="The ID of the session batch from which this invocation queue item came"
)
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)

View File

@ -1,45 +1,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from abc import ABC, abstractmethod
from queue import Queue
from typing import Optional
from pydantic import BaseModel, Field
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
session_queue_id: str = Field(description="The ID of the session queue from which this invocation queue item came")
session_queue_item_id: int = Field(
description="The ID of session queue item from which this invocation queue item came"
)
session_queue_batch_id: str = Field(
description="The ID of the session batch from which this invocation queue item came"
)
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)
class InvocationQueueABC(ABC):
"""Abstract base class for all invocation queues"""
@abstractmethod
def get(self) -> InvocationQueueItem:
pass
@abstractmethod
def put(self, item: Optional[InvocationQueueItem]) -> None:
pass
@abstractmethod
def cancel(self, graph_execution_state_id: str) -> None:
pass
@abstractmethod
def is_canceled(self, graph_execution_state_id: str) -> bool:
pass
from .invocation_queue_base import InvocationQueueABC
from .invocation_queue_common import InvocationQueueItem
class MemoryInvocationQueue(InvocationQueueABC):

View File

@ -6,21 +6,27 @@ from typing import TYPE_CHECKING
if TYPE_CHECKING:
from logging import Logger
from invokeai.app.services.board_images import BoardImagesServiceABC
from invokeai.app.services.boards import BoardServiceABC
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.graph import GraphExecutionState, LibraryGraph
from invokeai.app.services.images import ImageServiceABC
from invokeai.app.services.invocation_cache.invocation_cache_base import InvocationCacheBase
from invokeai.app.services.invocation_queue import InvocationQueueABC
from invokeai.app.services.invocation_stats import InvocationStatsServiceBase
from invokeai.app.services.invoker import InvocationProcessorABC
from invokeai.app.services.item_storage import ItemStorageABC
from invokeai.app.services.latent_storage import LatentsStorageBase
from invokeai.app.services.model_manager_service import ModelManagerServiceBase
from invokeai.app.services.session_processor.session_processor_base import SessionProcessorBase
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
from .board_image_records.board_image_records_base import BoardImageRecordStorageBase
from .board_images.board_images_base import BoardImagesServiceABC
from .board_records.board_records_base import BoardRecordStorageBase
from .boards.boards_base import BoardServiceABC
from .config import InvokeAIAppConfig
from .events.events_base import EventServiceBase
from .image_files.image_files_base import ImageFileStorageBase
from .image_records.image_records_base import ImageRecordStorageBase
from .images.images_base import ImageServiceABC
from .invocation_cache.invocation_cache_base import InvocationCacheBase
from .invocation_processor.invocation_processor_base import InvocationProcessorABC
from .invocation_queue.invocation_queue_base import InvocationQueueABC
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from .item_storage.item_storage_base import ItemStorageABC
from .latents_storage.latents_storage_base import LatentsStorageBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .names.names_base import NameServiceBase
from .session_processor.session_processor_base import SessionProcessorBase
from .session_queue.session_queue_base import SessionQueueBase
from .shared.graph import GraphExecutionState, LibraryGraph
from .urls.urls_base import UrlServiceBase
class InvocationServices:
@ -28,12 +34,16 @@ class InvocationServices:
# TODO: Just forward-declared everything due to circular dependencies. Fix structure.
board_images: "BoardImagesServiceABC"
board_image_record_storage: "BoardImageRecordStorageBase"
boards: "BoardServiceABC"
board_records: "BoardRecordStorageBase"
configuration: "InvokeAIAppConfig"
events: "EventServiceBase"
graph_execution_manager: "ItemStorageABC[GraphExecutionState]"
graph_library: "ItemStorageABC[LibraryGraph]"
images: "ImageServiceABC"
image_records: "ImageRecordStorageBase"
image_files: "ImageFileStorageBase"
latents: "LatentsStorageBase"
logger: "Logger"
model_manager: "ModelManagerServiceBase"
@ -43,16 +53,22 @@ class InvocationServices:
session_queue: "SessionQueueBase"
session_processor: "SessionProcessorBase"
invocation_cache: "InvocationCacheBase"
names: "NameServiceBase"
urls: "UrlServiceBase"
def __init__(
self,
board_images: "BoardImagesServiceABC",
board_image_records: "BoardImageRecordStorageBase",
boards: "BoardServiceABC",
board_records: "BoardRecordStorageBase",
configuration: "InvokeAIAppConfig",
events: "EventServiceBase",
graph_execution_manager: "ItemStorageABC[GraphExecutionState]",
graph_library: "ItemStorageABC[LibraryGraph]",
images: "ImageServiceABC",
image_files: "ImageFileStorageBase",
image_records: "ImageRecordStorageBase",
latents: "LatentsStorageBase",
logger: "Logger",
model_manager: "ModelManagerServiceBase",
@ -62,14 +78,20 @@ class InvocationServices:
session_queue: "SessionQueueBase",
session_processor: "SessionProcessorBase",
invocation_cache: "InvocationCacheBase",
names: "NameServiceBase",
urls: "UrlServiceBase",
):
self.board_images = board_images
self.board_image_records = board_image_records
self.boards = boards
self.board_records = board_records
self.configuration = configuration
self.events = events
self.graph_execution_manager = graph_execution_manager
self.graph_library = graph_library
self.images = images
self.image_files = image_files
self.image_records = image_records
self.latents = latents
self.logger = logger
self.model_manager = model_manager
@ -79,3 +101,5 @@ class InvocationServices:
self.session_queue = session_queue
self.session_processor = session_processor
self.invocation_cache = invocation_cache
self.names = names
self.urls = urls

View File

@ -0,0 +1,121 @@
# Copyright 2023 Lincoln D. Stein <lincoln.stein@gmail.com>
"""Utility to collect execution time and GPU usage stats on invocations in flight
Usage:
statistics = InvocationStatsService(graph_execution_manager)
with statistics.collect_stats(invocation, graph_execution_state.id):
... execute graphs...
statistics.log_stats()
Typical output:
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader 1 0.005s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip 1 0.004s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel 2 0.512s 0.26G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l 1 3.541s 1.93G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i 1 0.679s 0.58G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 4.749s
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G
The abstract base class for this class is InvocationStatsServiceBase. An implementing class which
writes to the system log is stored in InvocationServices.performance_statistics.
"""
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
from typing import Dict
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.backend.model_management.model_cache import CacheStats
from .invocation_stats_common import NodeLog
class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics"
# {graph_id => NodeLog}
_stats: Dict[str, NodeLog]
_cache_stats: Dict[str, CacheStats]
ram_used: float
ram_changed: float
@abstractmethod
def __init__(self):
"""
Initialize the InvocationStatsService and reset counters to zero
"""
pass
@abstractmethod
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
) -> AbstractContextManager:
"""
Return a context object that will capture the statistics on the execution
of invocaation. Use with: to place around the part of the code that executes the invocation.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state_id: The id of the current session.
"""
pass
@abstractmethod
def reset_stats(self, graph_execution_state_id: str):
"""
Reset all statistics for the indicated graph
:param graph_execution_state_id
"""
pass
@abstractmethod
def reset_all_stats(self):
"""Zero all statistics"""
pass
@abstractmethod
def update_invocation_stats(
self,
graph_id: str,
invocation_type: str,
time_used: float,
vram_used: float,
):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB)
"""
pass
@abstractmethod
def log_stats(self):
"""
Write out the accumulated statistics to the log or somewhere else.
"""
pass
@abstractmethod
def update_mem_stats(
self,
ram_used: float,
ram_changed: float,
):
"""
Update the collector with RAM memory usage info.
:param ram_used: How much RAM is currently in use.
:param ram_changed: How much RAM changed since last generation.
"""
pass

View File

@ -0,0 +1,25 @@
from dataclasses import dataclass, field
from typing import Dict
# size of GIG in bytes
GIG = 1073741824
@dataclass
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
cache_hits: int = 0
cache_misses: int = 0
cache_high_watermark: int = 0
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)

View File

@ -1,171 +1,35 @@
# Copyright 2023 Lincoln D. Stein <lincoln.stein@gmail.com>
"""Utility to collect execution time and GPU usage stats on invocations in flight
Usage:
statistics = InvocationStatsService(graph_execution_manager)
with statistics.collect_stats(invocation, graph_execution_state.id):
... execute graphs...
statistics.log_stats()
Typical output:
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader 1 0.005s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip 1 0.004s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel 2 0.512s 0.26G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l 1 3.541s 1.93G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i 1 0.679s 0.58G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 4.749s
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G
The abstract base class for this class is InvocationStatsServiceBase. An implementing class which
writes to the system log is stored in InvocationServices.performance_statistics.
"""
import time
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
from dataclasses import dataclass, field
from typing import Dict
import psutil
import torch
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.backend.model_management.model_cache import CacheStats
from ..invocations.baseinvocation import BaseInvocation
from .graph import GraphExecutionState
from .item_storage import ItemStorageABC
from .model_manager_service import ModelManagerService
# size of GIG in bytes
GIG = 1073741824
@dataclass
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
cache_hits: int = 0
cache_misses: int = 0
cache_high_watermark: int = 0
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)
class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics"
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
# {graph_id => NodeLog}
_stats: Dict[str, NodeLog]
_cache_stats: Dict[str, CacheStats]
ram_used: float
ram_changed: float
@abstractmethod
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
"""
Initialize the InvocationStatsService and reset counters to zero
:param graph_execution_manager: Graph execution manager for this session
"""
pass
@abstractmethod
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
) -> AbstractContextManager:
"""
Return a context object that will capture the statistics on the execution
of invocaation. Use with: to place around the part of the code that executes the invocation.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state: GraphExecutionState object from the current session.
"""
pass
@abstractmethod
def reset_stats(self, graph_execution_state_id: str):
"""
Reset all statistics for the indicated graph
:param graph_execution_state_id
"""
pass
@abstractmethod
def reset_all_stats(self):
"""Zero all statistics"""
pass
@abstractmethod
def update_invocation_stats(
self,
graph_id: str,
invocation_type: str,
time_used: float,
vram_used: float,
):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB)
"""
pass
@abstractmethod
def log_stats(self):
"""
Write out the accumulated statistics to the log or somewhere else.
"""
pass
@abstractmethod
def update_mem_stats(
self,
ram_used: float,
ram_changed: float,
):
"""
Update the collector with RAM memory usage info.
:param ram_used: How much RAM is currently in use.
:param ram_changed: How much RAM changed since last generation.
"""
pass
from .invocation_stats_base import InvocationStatsServiceBase
from .invocation_stats_common import GIG, NodeLog, NodeStats
class InvocationStatsService(InvocationStatsServiceBase):
"""Accumulate performance information about a running graph. Collects time spent in each node,
as well as the maximum and current VRAM utilisation for CUDA systems"""
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
self.graph_execution_manager = graph_execution_manager
_invoker: Invoker
def __init__(self):
# {graph_id => NodeLog}
self._stats: Dict[str, NodeLog] = {}
self._cache_stats: Dict[str, CacheStats] = {}
self.ram_used: float = 0.0
self.ram_changed: float = 0.0
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
class StatsContext:
"""Context manager for collecting statistics."""
@ -174,13 +38,13 @@ class InvocationStatsService(InvocationStatsServiceBase):
graph_id: str
start_time: float
ram_used: int
model_manager: ModelManagerService
model_manager: ModelManagerServiceBase
def __init__(
self,
invocation: BaseInvocation,
graph_id: str,
model_manager: ModelManagerService,
model_manager: ModelManagerServiceBase,
collector: "InvocationStatsServiceBase",
):
"""Initialize statistics for this run."""
@ -208,7 +72,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
)
self.collector.update_invocation_stats(
graph_id=self.graph_id,
invocation_type=self.invocation.type, # type: ignore - `type` is not on the `BaseInvocation` model, but *is* on all invocations
invocation_type=self.invocation.type, # type: ignore # `type` is not on the `BaseInvocation` model, but *is* on all invocations
time_used=time.time() - self.start_time,
vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0,
)
@ -217,12 +81,11 @@ class InvocationStatsService(InvocationStatsServiceBase):
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
model_manager: ModelManagerService,
) -> StatsContext:
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
self._stats[graph_execution_state_id] = NodeLog()
self._cache_stats[graph_execution_state_id] = CacheStats()
return self.StatsContext(invocation, graph_execution_state_id, model_manager, self)
return self.StatsContext(invocation, graph_execution_state_id, self._invoker.services.model_manager, self)
def reset_all_stats(self):
"""Zero all statistics"""
@ -261,7 +124,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
errored = set()
for graph_id, node_log in self._stats.items():
try:
current_graph_state = self.graph_execution_manager.get(graph_id)
current_graph_state = self._invoker.services.graph_execution_manager.get(graph_id)
except Exception:
errored.add(graph_id)
continue

View File

@ -1,11 +1,10 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC
from typing import Optional
from .graph import Graph, GraphExecutionState
from .invocation_queue import InvocationQueueItem
from .invocation_queue.invocation_queue_common import InvocationQueueItem
from .invocation_services import InvocationServices
from .shared.graph import Graph, GraphExecutionState
class Invoker:
@ -84,7 +83,3 @@ class Invoker:
self.__stop_service(getattr(self.services, service))
self.services.queue.put(None)
class InvocationProcessorABC(ABC):
pass

View File

@ -1,25 +1,16 @@
from abc import ABC, abstractmethod
from typing import Callable, Generic, Optional, TypeVar
from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
from pydantic import BaseModel
from invokeai.app.services.shared.pagination import PaginatedResults
T = TypeVar("T", bound=BaseModel)
class PaginatedResults(GenericModel, Generic[T]):
"""Paginated results"""
# fmt: off
items: list[T] = Field(description="Items")
page: int = Field(description="Current Page")
pages: int = Field(description="Total number of pages")
per_page: int = Field(description="Number of items per page")
total: int = Field(description="Total number of items in result")
# fmt: on
class ItemStorageABC(ABC, Generic[T]):
"""Provides storage for a single type of item. The type must be a Pydantic model."""
_on_changed_callbacks: list[Callable[[T], None]]
_on_deleted_callbacks: list[Callable[[str], None]]

View File

@ -2,30 +2,33 @@ import sqlite3
import threading
from typing import Generic, Optional, TypeVar, get_args
from pydantic import BaseModel, parse_raw_as
from pydantic import BaseModel, TypeAdapter
from .item_storage import ItemStorageABC, PaginatedResults
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.services.shared.sqlite import SqliteDatabase
from .item_storage_base import ItemStorageABC
T = TypeVar("T", bound=BaseModel)
sqlite_memory = ":memory:"
class SqliteItemStorage(ItemStorageABC, Generic[T]):
_table_name: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_id_field: str
_lock: threading.Lock
_lock: threading.RLock
_adapter: Optional[TypeAdapter[T]]
def __init__(self, conn: sqlite3.Connection, table_name: str, lock: threading.Lock, id_field: str = "id"):
def __init__(self, db: SqliteDatabase, table_name: str, id_field: str = "id"):
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._table_name = table_name
self._id_field = id_field # TODO: validate that T has this field
self._lock = lock
self._conn = conn
self._cursor = self._conn.cursor()
self._adapter: Optional[TypeAdapter[T]] = None
self._create_table()
@ -44,15 +47,21 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._lock.release()
def _parse_item(self, item: str) -> T:
item_type = get_args(self.__orig_class__)[0]
return parse_raw_as(item_type, item)
if self._adapter is None:
"""
We don't get access to `__orig_class__` in `__init__()`, and we need this before start(), so
we can create it when it is first needed instead.
__orig_class__ is technically an implementation detail of the typing module, not a supported API
"""
self._adapter = TypeAdapter(get_args(self.__orig_class__)[0]) # type: ignore [attr-defined]
return self._adapter.validate_json(item)
def set(self, item: T):
try:
self._lock.acquire()
self._cursor.execute(
f"""INSERT OR REPLACE INTO {self._table_name} (item) VALUES (?);""",
(item.json(),),
(item.model_dump_json(warnings=False, exclude_none=True),),
)
self._conn.commit()
finally:

View File

@ -1,119 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Callable, Dict, Optional, Union
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
_on_changed_callbacks: list[Callable[[torch.Tensor], None]]
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
@abstractmethod
def get(self, name: str) -> torch.Tensor:
pass
@abstractmethod
def save(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
def delete(self, name: str) -> None:
pass
def on_changed(self, on_changed: Callable[[torch.Tensor], None]) -> None:
"""Register a callback for when an item is changed"""
self._on_changed_callbacks.append(on_changed)
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
"""Register a callback for when an item is deleted"""
self._on_deleted_callbacks.append(on_deleted)
def _on_changed(self, item: torch.Tensor) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
__underlying_storage: LatentsStorageBase
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
super().__init__()
self.__underlying_storage = underlying_storage
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:
return cache_item
latent = self.__underlying_storage.get(name)
self.__set_cache(name, latent)
return latent
def save(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.save(name, data)
self.__set_cache(name, data)
self._on_changed(data)
def delete(self, name: str) -> None:
self.__underlying_storage.delete(name)
if name in self.__cache:
del self.__cache[name]
self._on_deleted(name)
def __get_cache(self, name: str) -> Optional[torch.Tensor]:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if name not in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:
self.__cache.pop(self.__cache_ids.get())
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: Union[str, Path]
def __init__(self, output_folder: Union[str, Path]):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def save(self, name: str, data: torch.Tensor) -> None:
self.__output_folder.mkdir(parents=True, exist_ok=True)
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
latent_path.unlink()
def get_path(self, name: str) -> Path:
return self.__output_folder / name

View File

@ -0,0 +1,45 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC, abstractmethod
from typing import Callable
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
_on_changed_callbacks: list[Callable[[torch.Tensor], None]]
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
@abstractmethod
def get(self, name: str) -> torch.Tensor:
pass
@abstractmethod
def save(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
def delete(self, name: str) -> None:
pass
def on_changed(self, on_changed: Callable[[torch.Tensor], None]) -> None:
"""Register a callback for when an item is changed"""
self._on_changed_callbacks.append(on_changed)
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
"""Register a callback for when an item is deleted"""
self._on_deleted_callbacks.append(on_deleted)
def _on_changed(self, item: torch.Tensor) -> None:
for callback in self._on_changed_callbacks:
callback(item)
def _on_deleted(self, item_id: str) -> None:
for callback in self._on_deleted_callbacks:
callback(item_id)

View File

@ -0,0 +1,34 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from pathlib import Path
from typing import Union
import torch
from .latents_storage_base import LatentsStorageBase
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: Path
def __init__(self, output_folder: Union[str, Path]):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def save(self, name: str, data: torch.Tensor) -> None:
self.__output_folder.mkdir(parents=True, exist_ok=True)
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
latent_path.unlink()
def get_path(self, name: str) -> Path:
return self.__output_folder / name

View File

@ -0,0 +1,54 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from queue import Queue
from typing import Dict, Optional
import torch
from .latents_storage_base import LatentsStorageBase
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
__underlying_storage: LatentsStorageBase
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
super().__init__()
self.__underlying_storage = underlying_storage
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:
return cache_item
latent = self.__underlying_storage.get(name)
self.__set_cache(name, latent)
return latent
def save(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.save(name, data)
self.__set_cache(name, data)
self._on_changed(data)
def delete(self, name: str) -> None:
self.__underlying_storage.delete(name)
if name in self.__cache:
del self.__cache[name]
self._on_deleted(name)
def __get_cache(self, name: str) -> Optional[torch.Tensor]:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if name not in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:
self.__cache.pop(self.__cache_ids.get())

View File

@ -0,0 +1,289 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
from __future__ import annotations
from abc import ABC, abstractmethod
from logging import Logger
from pathlib import Path
from typing import TYPE_CHECKING, Callable, List, Literal, Optional, Tuple, Union
from pydantic import Field
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.backend.model_management import (
AddModelResult,
BaseModelType,
MergeInterpolationMethod,
ModelInfo,
ModelType,
SchedulerPredictionType,
SubModelType,
)
from invokeai.backend.model_management.model_cache import CacheStats
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation, InvocationContext
class ModelManagerServiceBase(ABC):
"""Responsible for managing models on disk and in memory"""
@abstractmethod
def __init__(
self,
config: InvokeAIAppConfig,
logger: Logger,
):
"""
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
pass
@abstractmethod
def get_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
) -> ModelInfo:
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
of a diffusers pipeline."""
pass
@property
@abstractmethod
def logger(self):
pass
@abstractmethod
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
pass
@abstractmethod
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
Uses the exact format as the omegaconf stanza.
"""
pass
@abstractmethod
def list_models(self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None) -> dict:
"""
Return a dict of models in the format:
{ model_type1:
{ model_name1: {'status': 'active'|'cached'|'not loaded',
'model_name' : name,
'model_type' : SDModelType,
'description': description,
'format': 'folder'|'safetensors'|'ckpt'
},
model_name2: { etc }
},
model_type2:
{ model_name_n: etc
}
"""
pass
@abstractmethod
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
pass
@abstractmethod
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
pass
@abstractmethod
def add_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def del_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
pass
@abstractmethod
def rename_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str,
):
"""
Rename the indicated model.
"""
pass
@abstractmethod
def list_checkpoint_configs(self) -> List[Path]:
"""
List the checkpoint config paths from ROOT/configs/stable-diffusion.
"""
pass
@abstractmethod
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Literal[ModelType.Main, ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
pass
@abstractmethod
def heuristic_import(
self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
) -> dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
"""
pass
@abstractmethod
def merge_models(
self,
model_names: List[str] = Field(
default=None, min_length=2, max_length=3, description="List of model names to merge"
),
base_model: Union[BaseModelType, str] = Field(
default=None, description="Base model shared by all models to be merged"
),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = None,
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
"""
pass
@abstractmethod
def search_for_models(self, directory: Path) -> List[Path]:
"""
Return list of all models found in the designated directory.
"""
pass
@abstractmethod
def sync_to_config(self):
"""
Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the
model manager API.
"""
pass
@abstractmethod
def collect_cache_stats(self, cache_stats: CacheStats):
"""
Reset model cache statistics for graph with graph_id.
"""
pass
@abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
pass

View File

@ -2,16 +2,16 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from logging import Logger
from pathlib import Path
from types import ModuleType
from typing import TYPE_CHECKING, Callable, List, Literal, Optional, Tuple, Union
import torch
from pydantic import Field
from invokeai.app.models.exceptions import CanceledException
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.invocation_processor.invocation_processor_common import CanceledException
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_management import (
AddModelResult,
BaseModelType,
@ -26,273 +26,12 @@ from invokeai.backend.model_management import (
)
from invokeai.backend.model_management.model_cache import CacheStats
from invokeai.backend.model_management.model_search import FindModels
from invokeai.backend.util import choose_precision, choose_torch_device
from ...backend.util import choose_precision, choose_torch_device
from .config import InvokeAIAppConfig
from .model_manager_base import ModelManagerServiceBase
if TYPE_CHECKING:
from ..invocations.baseinvocation import BaseInvocation, InvocationContext
class ModelManagerServiceBase(ABC):
"""Responsible for managing models on disk and in memory"""
@abstractmethod
def __init__(
self,
config: InvokeAIAppConfig,
logger: ModuleType,
):
"""
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
pass
@abstractmethod
def get_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
) -> ModelInfo:
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
of a diffusers pipeline."""
pass
@property
@abstractmethod
def logger(self):
pass
@abstractmethod
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
pass
@abstractmethod
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
Uses the exact format as the omegaconf stanza.
"""
pass
@abstractmethod
def list_models(self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None) -> dict:
"""
Return a dict of models in the format:
{ model_type1:
{ model_name1: {'status': 'active'|'cached'|'not loaded',
'model_name' : name,
'model_type' : SDModelType,
'description': description,
'format': 'folder'|'safetensors'|'ckpt'
},
model_name2: { etc }
},
model_type2:
{ model_name_n: etc
}
"""
pass
@abstractmethod
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
pass
@abstractmethod
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
pass
@abstractmethod
def add_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def del_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
):
"""
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
pass
@abstractmethod
def rename_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str,
):
"""
Rename the indicated model.
"""
pass
@abstractmethod
def list_checkpoint_configs(self) -> List[Path]:
"""
List the checkpoint config paths from ROOT/configs/stable-diffusion.
"""
pass
@abstractmethod
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Literal[ModelType.Main, ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
pass
@abstractmethod
def heuristic_import(
self,
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
) -> dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
"""
pass
@abstractmethod
def merge_models(
self,
model_names: List[str] = Field(
default=None, min_items=2, max_items=3, description="List of model names to merge"
),
base_model: Union[BaseModelType, str] = Field(
default=None, description="Base model shared by all models to be merged"
),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = None,
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
"""
pass
@abstractmethod
def search_for_models(self, directory: Path) -> List[Path]:
"""
Return list of all models found in the designated directory.
"""
pass
@abstractmethod
def sync_to_config(self):
"""
Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the
model manager API.
"""
pass
@abstractmethod
def collect_cache_stats(self, cache_stats: CacheStats):
"""
Reset model cache statistics for graph with graph_id.
"""
pass
@abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
pass
from invokeai.app.invocations.baseinvocation import InvocationContext
# simple implementation
@ -348,28 +87,35 @@ class ModelManagerService(ModelManagerServiceBase):
)
logger.info("Model manager service initialized")
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def get_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
submodel: Optional[SubModelType] = None,
context: Optional[InvocationContext] = None,
) -> ModelInfo:
"""
Retrieve the indicated model. submodel can be used to get a
part (such as the vae) of a diffusers mode.
"""
# we can emit model loading events if we are executing with access to the invocation context
if context:
self._emit_load_event(
context=context,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
)
self._emit_load_event(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
)
model_info = self.mgr.get_model(
model_name,
@ -378,15 +124,17 @@ class ModelManagerService(ModelManagerServiceBase):
submodel,
)
if context:
self._emit_load_event(
context=context,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info,
)
self._emit_load_event(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info,
)
return model_info
@ -525,22 +273,25 @@ class ModelManagerService(ModelManagerServiceBase):
def _emit_load_event(
self,
context: InvocationContext,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
submodel: Optional[SubModelType] = None,
model_info: Optional[ModelInfo] = None,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
if self._invoker.services.queue.is_canceled(graph_execution_state_id):
raise CanceledException()
if model_info:
context.services.events.emit_model_load_completed(
queue_id=context.queue_id,
queue_item_id=context.queue_item_id,
queue_batch_id=context.queue_batch_id,
graph_execution_state_id=context.graph_execution_state_id,
self._invoker.services.events.emit_model_load_completed(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
@ -548,11 +299,11 @@ class ModelManagerService(ModelManagerServiceBase):
model_info=model_info,
)
else:
context.services.events.emit_model_load_started(
queue_id=context.queue_id,
queue_item_id=context.queue_item_id,
queue_batch_id=context.queue_batch_id,
graph_execution_state_id=context.graph_execution_state_id,
self._invoker.services.events.emit_model_load_started(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
@ -589,7 +340,7 @@ class ModelManagerService(ModelManagerServiceBase):
def merge_models(
self,
model_names: List[str] = Field(
default=None, min_items=2, max_items=3, description="List of model names to merge"
default=None, min_length=2, max_length=3, description="List of model names to merge"
),
base_model: Union[BaseModelType, str] = Field(
default=None, description="Base model shared by all models to be merged"

View File

View File

@ -0,0 +1,11 @@
from abc import ABC, abstractmethod
class NameServiceBase(ABC):
"""Low-level service responsible for naming resources (images, latents, etc)."""
# TODO: Add customizable naming schemes
@abstractmethod
def create_image_name(self) -> str:
"""Creates a name for an image."""
pass

View File

@ -0,0 +1,8 @@
from enum import Enum, EnumMeta
class ResourceType(str, Enum, metaclass=EnumMeta):
"""Enum for resource types."""
IMAGE = "image"
LATENT = "latent"

View File

@ -0,0 +1,13 @@
from invokeai.app.util.misc import uuid_string
from .names_base import NameServiceBase
class SimpleNameService(NameServiceBase):
"""Creates image names from UUIDs."""
# TODO: Add customizable naming schemes
def create_image_name(self) -> str:
uuid_str = uuid_string()
filename = f"{uuid_str}.png"
return filename

Some files were not shown because too many files have changed in this diff Show More