Compare commits

..

364 Commits

Author SHA1 Message Date
be48323a06 add a new FAQ for converting safetensors 2024-08-10 18:03:18 -04:00
8ecf72838d fix(api): image downloads with correct filename
Closes #6730
2024-08-10 09:53:56 -04:00
c3ab8a6aa8 chore(ui): bump rest of deps 2024-08-10 07:45:23 -04:00
1931aa3e70 chore(ui): typegen 2024-08-10 07:45:23 -04:00
d3d8055055 feat(ui): update typegen script 2024-08-10 07:45:23 -04:00
476b0a0403 chore(ui): bump openapi-typescript 2024-08-10 07:45:23 -04:00
f66584713c fix(api): sort OpenAPI schema properties for InvocationOutputMap
This makes the schema output deterministic!
2024-08-10 07:45:23 -04:00
33624fc2fa fix(api): duplicate operation id for get_image_full
There's a FastAPI bug that results in the OpenAPI spec outputting the same operation id for each operation when specifying multiple HTTP methods.

- Discussion: https://github.com/tiangolo/fastapi/discussions/8449
- Pending PR to fix: https://github.com/tiangolo/fastapi/pull/10694

In our case, we have a `get_image_full` endpoint that handles GET and HEAD.

This results in an invalid OpenAPI schema. A workaround is to use two route decorators for the operation handler. This works as expected - HEAD requests get the header, and GET requests get the resource. And the OpenAPI schema is valid.
2024-08-10 07:45:23 -04:00
09d1e190e7 show warning for maxUpscaleDimension if model tab is disabled 2024-08-09 14:07:55 -04:00
17ff8196cb Remove tmp code 2024-08-07 22:06:05 -04:00
68f993998a Add support for norm layer 2024-08-07 22:06:05 -04:00
7da6120b39 Fix LoKR refactor bug 2024-08-07 22:06:05 -04:00
6cd40965c4 Depth Anything V2 (#6674)
- Updated the previous DepthAnything manual implementation to use the
`transformers` implementation instead. So we can get upstream features.
- Plugged in the DepthAnything models to be handled by Invoke's Model
Manager.
- `small_v2` model will use DepthAnythingV2. This has been added as a
new model option and is now also the default in the Linear UI.


![opera_TxRhmbFole](https://github.com/user-attachments/assets/2a25abe3-ba0b-4f97-b75a-2ce5fd6246e6)


# Merge

Review and merge.
2024-08-07 20:26:58 +05:30
408a1d6dbb Merge branch 'main' into depth_anything_v2 2024-08-07 10:45:56 -04:00
140670d00e translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
70233fae5d translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 98.1% (1296 of 1321 strings)

Co-authored-by: Phrixus2023 <920414016@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
6f457a6c4c translationBot(ui): update translation (German)
Currently translated at 65.1% (860 of 1321 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
B N
5c319f5356 translationBot(ui): update translation (German)
Currently translated at 64.8% (857 of 1321 strings)

Co-authored-by: B N <berndnieschalk@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
991a04f090 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (1303 of 1321 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1302 of 1320 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1294 of 1312 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-08-06 17:54:47 +10:00
c39fa75113 docs(ui): add comment in useIsTooLargeToUpscale 2024-08-06 11:49:35 +10:00
f7863e17ce docs(ui): add docstring for maxUpscaleDimension 2024-08-06 11:49:35 +10:00
7c526390ed fix(ui): compare upscaledPixels vs square of max dimension 2024-08-06 11:49:35 +10:00
2cff20f87a update translations, change config value to be dimension instead of total pixels 2024-08-06 11:49:35 +10:00
90ec757802 lint 2024-08-06 11:49:35 +10:00
4b85dfcefe (ui): restore optioanl limit on upcsale output resolution 2024-08-06 11:49:35 +10:00
21deefdc41 (ui): add image resolution badge to initial upscale image 2024-08-06 11:49:35 +10:00
4d4f921a4e build: exclude matplotlib 3.9.1
There was a problem w/ this release on windows and the builds were pulled from pypi. When installing invoke on windows, pip attempts to build from source, but most (all?) systems won't have the prerequisites for this and installs fail.

This also affects GH actions.

The simple fix is to exclude version 3.9.1 from our deps.

For more information, see https://github.com/matplotlib/matplotlib/issues/28551
2024-08-05 08:38:44 +10:00
98db8f395b feat(app): clean up DiskImageStorage types 2024-08-04 09:43:20 +10:00
f465a956a3 feat(ui): remove "images can be restored" messages 2024-08-04 09:43:20 +10:00
9edb02d7ef build: remove send2trash dependency 2024-08-04 09:43:20 +10:00
6c4cf58a31 feat(app): delete model_images instead of using send2trash 2024-08-04 09:43:20 +10:00
08993c0d29 feat(app): delete images instead of using send2trash
Closes #6709
2024-08-04 09:43:20 +10:00
4f8a4b0f22 Merge branch 'main' into depth_anything_v2 2024-08-03 00:38:57 +05:30
a743f3c9b5 fix: implement model to func for depth anything 2024-08-03 00:37:17 +05:30
571ba87e13 fix(ui): include upscale metadata for SDXL multidiffusion 2024-08-01 21:30:42 -04:00
f27b6e2b44 Add Grounded SAM support (text prompt image segmentation) (#6701)
## Summary

This PR enables Grounded SAM workflows
(https://arxiv.org/pdf/2401.14159) via the following:
- `GroundingDinoInvocation` for running a Grounding DINO model.
- `SegmentAnythingModelInvocation` for running a SAM model.
- `MaskTensorToImageInvocation` for convenient visualization.

Other notes:
- Uses the transformers implementation of Grounding DINO and SAM.
- The new models are treated as 'utility models' meaning that they are
not visible in the Models tab, and are downloaded automatically the
first time that they are used.

<img width="874" alt="image"
src="https://github.com/user-attachments/assets/1cbaa97d-0e27-4943-86b1-dc7327ba8675">

## Example

Input image

![be10ec0c-20a8-4ac7-840e-d1a05fffdb6a](https://github.com/user-attachments/assets/bf21572c-635d-4703-b4ab-7aba658a9671)

Prompt: "wheels", all other configs default
Result:

![2221c44e-64e6-4b18-b4cb-610514b7a554](https://github.com/user-attachments/assets/344b91f4-7f4a-4b70-8e2e-3b4a0e55176d)

## Related Issues / Discussions

Thanks to @blessedcoolant for the initial draft here:
https://github.com/invoke-ai/InvokeAI/pull/6678

## QA Instructions

Manual tests:
- [ ] Test that default settings work well.
- [ ] Test with / without apply_polygon_refinement
- [ ] Test mask_filter options
- [ ] Test detection_threshold values
- [ ] Test RGB input image
- [ ] Test RGBA input image
- [ ] Test grayscale input image
- [ ] Smoke test that an empty mask is returned when 0 objects are
detected
- [ ] Test on CPU
- [ ] Test on MPS (Works on Mac OS, but had to force both models to run
on CPU instead of MPS)

Performance:
- Peak GPU memory utilization with both Grounding DINO and SAM models
loaded is ~4.5GB. (The models do not need to be loaded at the same time,
so could be offloaded by the MM if needed.)
- On an RTX4090, with the models already cached, node execution takes
~0.6 secs.
- On my CPU, with the models cached, node execution takes ~10secs.

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-08-01 20:40:18 +02:00
981475a624 Merge branch 'main' into ryan/grounded-sam 2024-08-01 20:30:35 +02:00
27ac61a4fb Expose all model options in the GroundingDinoInvocation and the SegmentAnythingInvocation. 2024-08-01 14:23:32 -04:00
675ffc2757 Remove BoundingBoxInvocation field name overrides. 2024-08-01 14:05:44 -04:00
44b21f10f1 Add a pydantic model_validator to BoundingBoxField to check the validity of the coords. 2024-08-01 14:00:57 -04:00
c6d49e8b1f Shorten SegmentAnythingInvocation and GroundingDinoInvocatino docstrings, since they are used as the invocation descriptions in the UI. 2024-08-01 10:17:42 -04:00
e6a512aa86 (minor) Tweak order of mask operations. 2024-08-01 10:12:24 -04:00
c3a6a6fb22 Rename SegmentAnythingModelInvocation -> SegmentAnythingInvocation. 2024-08-01 10:00:36 -04:00
b9dc3460ba Rename SegmentAnythingModel -> SegmentAnythingPipeline. 2024-08-01 09:57:47 -04:00
63581ec980 (minor) Add None check to fix static type checking error. 2024-08-01 09:51:53 -04:00
08b1feeed7 add base prop for destination to direct users to different tabs on initial load (#6706)
## Summary
- we want a way to load the studio while being directed to a specific
tab, introduced a destination prop to achieve that
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 19:25:36 -04:00
f5cfdcf32d feat: Add BoundingBox Primitive Node 2024-08-01 04:09:08 +05:30
e78fb428f0 simplify destination prop handling 2024-07-31 18:06:22 -04:00
31e270e32c add base prop for destination to direct users to different tabs 2024-07-31 17:20:51 -04:00
b5832768dc Return a MaskOutput from SegmentAnythingModelInvocation. And add a MaskTensorToImageInvocation. 2024-07-31 17:16:14 -04:00
4ce64b69cb Modular backend - LoRA/LyCORIS (#6667)
## Summary

Code for lora patching from #6577.
Additionally made it the way, that lora can patch not only `weight`, but
also `bias`, because saw some loras which doing it.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Replace old lora patcher with new after review done.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 21:31:31 +02:00
5a9173f766 Merge branch 'main' into stalker-modular_lora 2024-07-31 15:13:22 -04:00
0bb7ed44f6 Add some docs to OriginalWeightsStorage and fix type hints. 2024-07-31 15:08:24 -04:00
332bc9da5b fix: Update depth anything node default to v2 2024-07-31 23:52:29 +05:30
08def3da95 fix: Update canvas depth anything processor default to v2 2024-07-31 23:50:13 +05:30
daf899f9c4 fix: Move the manual image resizing out of the depth anything pipeline 2024-07-31 23:38:12 +05:30
13fb2d1f49 fix: Add Depth Anything V2 as a new option
It is also now the default in the UI replacing Depth Anything V1 small
2024-07-31 23:29:43 +05:30
95dde802ea fix: assert the return depth map to be a PIL image 2024-07-31 23:22:01 +05:30
fca119773b Split invokeai/backend/image_util/segment_anything/ dir into grounding_dino/ and segment_anything/ 2024-07-31 12:28:47 -04:00
0193267a53 Split GroundedSamInvocation into GroundingDinoInvocation and SegmentAnythingModelInvocation. 2024-07-31 12:20:23 -04:00
b4cf78a95d fix: make DA Pipeline a subclass of RawModel 2024-07-31 21:14:49 +05:30
73386826d6 Make GroundingDinoPipeline and SegmentAnythingModel subclasses of RawModel for type checking purposes. 2024-07-31 10:25:34 -04:00
9f448fecb7 Move invokeai/backend/grounded_sam -> invokeai/backend/image_util/grounded_sam 2024-07-31 10:00:30 -04:00
bcd1483a14 Re-order GroundedSAMInvocation._to_numpy_masks(...) to do slightly more work on the GPU. 2024-07-31 09:51:14 -04:00
e206890e25 Use staticmethods rather than inner functions for the Grounding DINO and SAM model loaders. 2024-07-31 09:28:52 -04:00
0a7048f650 (minor) Simplify GroundedSAMInvocation._merge_masks(...). 2024-07-31 08:58:51 -04:00
e8ecf5e155 (minor) Move apply_polygon_refinement condition up a layer. 2024-07-31 08:50:56 -04:00
33e8604b57 Make Grounding DINO DetectionResult a Pydantic model. 2024-07-31 08:47:00 -04:00
cec7399366 (minor) Use a new variable name to satisfy type checks. 2024-07-31 08:27:01 -04:00
bdae81e429 (minor) Simplify GroundedSAMInvocation._filter_detections() 2024-07-31 08:25:19 -04:00
67c32f3d6c Fix typo: zip(..., strict=True) 2024-07-31 08:15:28 -04:00
94d64b8a78 Fix gradient mask values range (#6688)
## Summary

Gradient mask node outputs mask tensor with values in range [-1, 1],
which unexpected range for mask.
It handled in denoise node the way it translates to [0, 2] mask, which
looks even more wrongly)
From discussion with @dunkeroni I understand him as he thought that
negative values will be treated same as 0, so clamping values not change
intended node logic.

## Related Issues / Discussions

#6643 

## QA Instructions

\-

## Merge Plan

\-

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 06:37:32 +05:30
fa3c0c81b3 Merge branch 'main' into stalker7779/fix_gradient_mask 2024-07-31 06:30:44 +05:30
66547b99c1 Add more karras schedulers (#6695)
## Summary

Add karras variants of `deis`, `unipc`, `kdpm2` and `kdpm_2_a`
schedulers.
Also added `dpmpp_3` schedulers, but `dpmpp_3s` currently bugged, so
added only 3m:
https://github.com/huggingface/diffusers/issues/9007

## Related Issues / Discussions

\-

## QA Instructions

\-

## Merge Plan

~@psychedelicious We need to decide what to do with schedulers order, as
it looks a bit broken:~

![image](https://github.com/user-attachments/assets/e41674af-d87c-4432-8014-c90bd86965a6)

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-31 06:09:26 +05:30
328e58be4c Merge branch 'main' into stalker7779/new_karras_schedulers 2024-07-31 05:56:13 +05:30
18f89ed5ed fix: Make DepthAnything work with Invoke's Model Management 2024-07-31 03:57:54 +05:30
5701c79fab Prevent Grounding DINO and Segment Anything from being moved to MPS - they don't work on MPS devices. 2024-07-30 23:04:15 +02:00
2da9f913f3 Add detection_result.py - was forgotten in a prior commit 2024-07-30 16:04:29 -04:00
6b10b59abe Make GroundedSAMInvocation work with any input image mode (RGB, RGBA, grayscale). 2024-07-30 15:55:57 -04:00
918f77bce0 Move some logic from GroundedSAMInvocation to the backend classes. 2024-07-30 15:34:33 -04:00
f170697ebe Merge branch 'main' into depth_anything_v2 2024-07-31 00:53:32 +05:30
556c6a1d84 fix: Update DepthAnything to use the transformers implementation 2024-07-31 00:51:55 +05:30
aca2a2fa13 Add mask_filter and detection_threshold options to the GroundedSAMInvocation. 2024-07-30 14:22:40 -04:00
ff6398f7d8 Add a GroundedSamInvocation for image segmentation from a text prompt (Grounding DINO + Segment Anything Model). 2024-07-30 11:12:26 -04:00
cf996472b9 Suggested changes
Co-Authored-By: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-07-30 04:50:56 +03:00
156d14c349 Run api regen 2024-07-30 04:05:21 +03:00
86f705bf48 Optimize weights handling 2024-07-30 03:39:01 +03:00
1fd9631f2d Comments fix
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-30 00:39:50 +03:00
2227a2357f Suggested changes + simplify weights logic in patching
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-30 00:34:37 +03:00
58e7ab157d Ruff format 2024-07-29 22:59:17 +03:00
8d16fa6a49 Remove dpmpp_3s schedulers as it bugged now 2024-07-29 22:55:45 +03:00
55e810efa3 Add dpmpp_3 schedulers 2024-07-29 22:52:15 +03:00
2755316021 update delete board modal to be more descriptive (#6690)
## Summary

<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-29 13:43:17 -04:00
6525f18610 Merge branch 'main' into chainchompa/board-delete-info 2024-07-29 12:52:36 -04:00
2ad13ac7eb Modular backend - inpaint (#6643)
## Summary

Code for inpainting and inpaint models handling from
https://github.com/invoke-ai/InvokeAI/pull/6577.
Separated in 2 extensions as discussed briefly before, so wait for
discussion about such implementation.

## Related Issues / Discussions

#6606

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.
Try and compare outputs between backends in cases:
- Normal generation on inpaint model
- Inpainting on inpaint model
- Inpainting on normal model

## Merge Plan

Nope.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-29 10:27:25 -04:00
693a3eaff5 Merge branch 'main' into stalker-modular_inpaint-2 2024-07-29 10:14:45 -04:00
ffca792d5b edited copy for deleted boards message 2024-07-29 09:46:08 -04:00
86a92bb6b5 Add more karras schedulers 2024-07-29 15:14:34 +03:00
171a4e6d80 fix(ui): race condition when deleting a board and resetting selected/auto-add
We were checking the selected and auto-add board ids against the query cache to see if they still exist. If not, we reset.

This only works if the query cache is updated by the time we do the check - race condition!

We already have the board id from the query args, so there's no need to check the query cache - just compare the deleted board ID directly.

Previously this file's several listeners were all in a single one and I had adapted/split its logic up a bit wonkily, introducing these problems.
2024-07-29 11:36:03 +10:00
e3a75a8adf fix(ui): fix logic to reset selected/auto-add boards when toggling show archived boards
The logic was incorrect in two ways:
1. We only ran the logic if we _enable_ showing archived boards. It should be run we we _disable_ showing archived boards.
2. If we couldn't find the selected board in the query cache, we didn't do the reset. This is wrong - if the board isn't in the query cache, we _should_ do the reset. This inverted logic makes more sense before the fix for issue 1.
2024-07-29 11:36:03 +10:00
ee7503ce13 Modular backend - T2I Adapter (#6662)
## Summary

T2I Adapter code from #6577.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Nope.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-28 15:52:04 -04:00
8500bac3ca Use logger for warning 2024-07-28 22:51:52 +03:00
310719eb4c Merge branch 'main' into stalker-modular_t2i_adapter 2024-07-28 15:30:00 -04:00
e8e24822ec Modular backend - Seamless (#6651)
## Summary

Seamless code from #6577.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Nope.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-28 13:57:38 -04:00
c57a7afb87 Merge branch 'main' into stalker7779/modular_seamless 2024-07-28 13:49:43 -04:00
84d028898c Revert wrong comment copy 2024-07-27 13:20:58 +03:00
ed0174fbc6 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-27 13:18:28 +03:00
9e582563eb Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-27 04:25:15 +03:00
faa88f72bf Make lora as separate extensions 2024-07-27 02:39:53 +03:00
0d69a31df0 Merge branch 'main' into chainchompa/board-delete-info 2024-07-26 14:03:18 -04:00
daa5a88eb2 Update docker image to use pnpm version 8 2024-07-26 13:57:33 -04:00
5b84e117b2 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-26 20:51:12 +03:00
eb257d2d28 update delete board modal to be more descriptive 2024-07-26 13:34:25 -04:00
5810cee6c9 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-26 19:47:28 +03:00
eef88d1f83 Update gradient mask node version 2024-07-26 19:33:41 +03:00
78f6850fc0 Fix gradient mask values range 2024-07-26 19:28:00 +03:00
bd8890be11 Revert "Fix create gradient mask node output"
This reverts commit 9d1fcba415.
2024-07-26 19:24:46 +03:00
adf1a977ea Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-26 19:22:26 +03:00
e1509bcb45 bump version to 4.2.7 2024-07-26 09:11:17 -07:00
edcaf8287d feat(app): remove beta from multidiffusion workflows 2024-07-26 13:47:51 +10:00
39bd30f2a0 feat(app): update default workflows
- Update `MultiDiffusion SDXL (Beta)`
- Add `MultiDiffusion SD1.5 (Beta)`
2024-07-26 13:47:51 +10:00
102b47190f feat(ui): update qr code cnet starter model
- For SD1.5, use the new V2 version
- Add the SDXL version
2024-07-26 13:34:32 +10:00
269fe2e3bb track accordions in tabs separately so open/close state isnt shared 2024-07-26 08:20:24 +10:00
b32aa1c77f fix missing quote in translation 2024-07-26 08:20:24 +10:00
6656544ed5 tooltip copy updates
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-07-26 08:20:24 +10:00
4c75b93410 feat(ui): add informational popovers for upscale params 2024-07-26 08:20:24 +10:00
5be0de967d feat(ui): close generation and advanced accordions when switching to upscale tab 2024-07-26 08:20:24 +10:00
f8e27b837b fix(ui): memoize model manager components 2024-07-26 07:52:10 +10:00
47414be1e6 fix(ui): dropped model config cache breaking model edit UI
The model edit UI's composition allows for the model edit form to be instantiated before the model's config has been received. This results in the form having no values - all the fields are blank instead of populated by the model config.

Part of the fix is to pass the model config around directly instead of relying on _all_ components to fetch the model directly.

I also fixed a crapload of performance issues related to improper use of redux selectors.
2024-07-26 07:52:10 +10:00
74cef38bcf fix(backend): add refiner to single-file load_classes
Fixes single-file refiner loading.
2024-07-26 05:08:01 +10:00
bb876b8d4e fix(ui): copied edges must have new ids set
Problems this was causing:
- Deleting an edge was a copy of another edge deletes both edges
- Deleting a node that was a copy-with-edges of another node deletes its edges and it's original edges, leaving what I will call "ghost noodles" behind
2024-07-26 04:54:33 +10:00
ba747373db feat(ui): add button to disable info popovers from info popover 2024-07-25 08:06:41 -04:00
95661c8b21 feat(ui): enable info popovers by default 2024-07-25 08:06:41 -04:00
e5d9ca013e fix: use v1 models for large and base versions 2024-07-25 17:24:12 +05:30
4166c756ce wip: depth_anything_v2 init lint fixes 2024-07-25 14:41:22 +05:30
4f0dfbd34d wip: depth_anything_v2 initial implementation 2024-07-25 13:53:06 +05:30
b70ac88684 perf(ui): throttle page changes
Previously you could spam the next/prev buttons and really thrash the server. Throttled to 500ms, which feels like a happy medium between responsive and not-thrash-y.
2024-07-25 11:57:54 +10:00
24609da6ab feat(ui): tweak pagination styles 2024-07-25 11:57:54 +10:00
524647b1f1 fix(ui): jumpto interactions
- Autofocus on popover open
- Autoselect number on popover open
- Enter works to change page when input is focused
- Esc works to close popover when input is focused
2024-07-25 11:57:54 +10:00
cf1af94f53 feat(ui): make jump to page a popover 2024-07-25 11:57:54 +10:00
2a9fdc6314 feat(ui): add jump to option for gallery pagination 2024-07-25 11:57:54 +10:00
46c632e7cc Change layer detection keys according to LyCORIS repository 2024-07-25 02:10:47 +03:00
653f63ae71 Add layer keys check 2024-07-25 02:03:08 +03:00
8a9e2f57a4 Handle bias in full/diff lora layer 2024-07-25 02:02:37 +03:00
31949ed2f2 Refactor code a bit 2024-07-25 02:00:30 +03:00
3657285b1b chore: bump version v4.2.7rc1 2024-07-25 06:23:50 +10:00
e4b5975305 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-07-25 06:09:04 +10:00
b59825edc0 translationBot(ui): update translation (Spanish)
Currently translated at 34.4% (448 of 1300 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-07-25 06:09:04 +10:00
25788f6869 translationBot(ui): update translation (Italian)
Currently translated at 98.6% (1289 of 1307 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1277 of 1296 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-07-25 06:09:04 +10:00
0ccb304b8b Ruff format 2024-07-24 16:01:29 +03:00
ca5a4ee59d fix(ui): few cases where board totals don't updated when moving 2024-07-24 22:30:44 +10:00
4fdefe58c7 feat(ui): clear gallery search on esc key 2024-07-24 14:10:16 +10:00
9870f5a96f fix(ui): race condition with gallery search
It was possible to clear the search term while a debounced setSearchTerm is still pending. This resulted in the gallery getting out of sync w/ the search term.

To fix this, we need to lift the state up a bit and  cancel any pending debounced setSearchTerm calls when closing the search or clearing the search term box.
2024-07-24 14:10:16 +10:00
c296ae8cfe feat(ui): add useAssertSingleton hook
Use this to enforce singleton components and hooks.
2024-07-24 14:10:16 +10:00
17493f4ae0 fix(ui): close boards search when toggling panel 2024-07-24 14:10:16 +10:00
2503dca813 fix(ui): show boards panel when opening board search 2024-07-24 14:10:16 +10:00
cb61ef9bb1 feat(ui): use color instead of super tiny icon change to indicate board search toggle state
You can't even see the icon, no point in changing it. Blue = active/open, Grey = closed.
2024-07-24 14:10:16 +10:00
1831ed620f fix(ui): gallery tabs layout 2024-07-24 14:10:16 +10:00
c385e76356 fix(ui): DeleteBoardModal must be a singleton 2024-07-24 14:10:16 +10:00
ff1972fbb3 fix(ui): spacing issue w/ boards search 2024-07-24 14:10:16 +10:00
c4b3405bfa fix(ui): make uncategorized and board components same height 2024-07-24 14:10:16 +10:00
ab2548c0cd feat(ui): minor padding tweaks in boardslist 2024-07-24 14:10:16 +10:00
dc2a3363b0 feat(ui): layout shift when using a collapse w/ flex gap
the gap isn't handled smoothly, there's always a jump. cannot use gap in the collapsible's container
2024-07-24 14:10:16 +10:00
d7a5fe2805 feat(ui): make arrow icon rotate on boards list 2024-07-24 14:10:16 +10:00
4e49689d46 feat(ui): make isPrivate required on BoardsList 2024-07-24 14:10:16 +10:00
ca8441a32f fix(ui): alignment & overflow on gallery header 2024-07-24 14:10:16 +10:00
44284d671c feat(ui): tweak padding for boards in list 2024-07-24 14:10:16 +10:00
e89de1d5b7 feat(ui): tweak board tooltip styles
When the totals were high enough, the image looked really off. Also fixed some inconsistent padding.
2024-07-24 14:10:16 +10:00
6db63349f8 fix(ui): missing key on list element 2024-07-24 14:10:16 +10:00
7f6f892533 fix circular dep 2024-07-24 14:10:16 +10:00
d1bbd0cf80 cleanup 2024-07-24 14:10:16 +10:00
bd73b6b2af reorganize the gallery - move board name to top of image grid, add hide/view boards button for toggle 2024-07-24 14:10:16 +10:00
0d40a7d865 exclude uncategorized from search and make sure list is always correct 2024-07-24 14:10:16 +10:00
c2f6b80246 move Uncategorized back to private board list 2024-07-24 14:10:16 +10:00
80f5f8210a increase font size of Move for boards 2024-07-24 14:10:16 +10:00
b7383cc0e5 board UI updates: always show search for boards and images if a term is entered, clear search when view is toggled off 2024-07-24 14:10:16 +10:00
2172e4d292 board UI updates: font tweaks, add cover image to tooltip, move uncategorized out of board list, allow collapsible board list if private enabled 2024-07-24 14:10:16 +10:00
ab0bfa709a Handle loras in modular denoise 2024-07-24 05:07:29 +03:00
6af659b1da Handle t2i adapter in modular denoise 2024-07-24 02:55:33 +03:00
db664afc49 fix(ui): model select overflowing when model names are too long 2024-07-24 09:35:32 +10:00
b99a53e64e tidy(ui): organise postprocessing listeners 2024-07-24 08:22:46 +10:00
5f4ce6fda3 tidy(ui): organise postprocessing files 2024-07-24 08:22:46 +10:00
93e95ce53f chore(ui): lint 2024-07-24 08:22:46 +10:00
2997f0a1f8 fix(ui): ts issue 2024-07-24 08:22:46 +10:00
40b262bcc2 tidy(ui): "simpleUpscale" -> "postProcessing" 2024-07-24 08:22:46 +10:00
a26f050cbb feat(ui): rename ad-hoc upscale stuff to post-processing 2024-07-24 08:22:46 +10:00
94b5b2a467 feat(ui): improve starter model search for spandrel models 2024-07-24 08:22:46 +10:00
b4519ea61f tidy(ui): remove unused maxUpscalePixels config 2024-07-24 08:22:46 +10:00
7f7ce291b5 feat(ui): revised simple upscale warning UI 2024-07-24 08:22:46 +10:00
aeb53563ff feat(ui): use graph util for ad-hoc upscale graph 2024-07-24 08:22:46 +10:00
e8d2e2330e fix(ui): set board in ad-hoc upscale graph 2024-07-24 08:22:46 +10:00
4c6b9ce7c9 fix(ui): use spandrel autoscale node in upscaling tab 2024-07-24 08:22:46 +10:00
87a2221d72 chore(ui): typegen 2024-07-24 08:22:46 +10:00
76aa6bdf05 feat(nodes): split spandrel node
`spandrel_image_to_image` now just runs the model with no changes.

`spandrel_image_to_image_autoscale` runs the model repeatedly until the desired scale is reached. previously, `spandrel_image_to_image` did this.
2024-07-24 08:22:46 +10:00
416d29fb83 Ruff format 2024-07-24 01:17:28 +03:00
0c1994d682 fix(ui): restore pnpm-lock.yaml
#6645 inadvertently removed the lockfile
2024-07-24 08:07:32 +10:00
19c00241c6 Use non-inverted mask generally(except inpaint model handling) 2024-07-24 00:59:13 +03:00
633bbb4e85 [MM2] Use typed ModelRecordChanges for model_install() rather than untyped dict (#6645)
* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* documentation fix

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* documentation fix

* remove v9 pnpm lockfile

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* remove v9 pnpm lockfile

* regenerate schema.ts

* prettified

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-07-23 21:41:00 +00:00
a221ab2fb6 fix(ui): upsell menuitem styling 2024-07-24 06:58:27 +10:00
0279a27f66 fix(ui): render settingsmenu in portal, no zindex 2024-07-24 06:58:27 +10:00
54aef4959c cleanup 2024-07-24 06:56:02 +10:00
4017609b91 clean up useIsAllowedToUpscale since its no longer necessary 2024-07-24 06:56:02 +10:00
cb0bffedd5 fix board handling for simple upscale 2024-07-24 06:56:02 +10:00
1fd2a91ccd only show warning for simple upscale if no simple upscale model is available 2024-07-24 06:56:02 +10:00
c323a760a5 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-23 23:34:28 +03:00
9d1fcba415 Fix create gradient mask node output 2024-07-23 23:29:28 +03:00
075e0405f9 Update Simple Upscale Button to work with spandrel models (#6649)
## Summary
Update Simple Upscale Button to work with spandrel models, add
UpscaleWarning when models aren't available, clean up ESRGAN logic
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-23 13:33:01 -04:00
bf6066d834 Merge branch 'main' into chainchompa/simple-upscale-updates 2024-07-23 13:27:48 -04:00
5635f65ee9 feat(ui): add upsells for pro edition to settings menu 2024-07-23 13:27:00 -04:00
6317cf8ef9 move handleSimpleUpscaleModels logic into handleSpandrelImageToImageModels listener 2024-07-23 13:13:21 -04:00
9e1daf06f7 Merge branch 'main' into chainchompa/simple-upscale-updates 2024-07-23 12:16:44 -04:00
e1a718b512 cleanup 2024-07-23 12:16:35 -04:00
cbce89162b update simple upscale metadata to match upscale metadata 2024-07-23 12:15:26 -04:00
b46b20210d handle simple upscale models on modelsLoaded 2024-07-23 11:53:43 -04:00
8e89157a83 reuse ParamSpandrelModel for simple upscale 2024-07-23 11:36:46 -04:00
ca21996a97 Remove old seamless class 2024-07-23 18:04:33 +03:00
62aa064e56 Handle seamless in modular denoise 2024-07-23 18:03:59 +03:00
7c975f0d00 Modular backend - add ControlNet (#6642)
## Summary

ControlNet code from #6577.

## Related Issues / Discussions

#6606

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Merge #6641 firstly, to be able see output difference properly.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-23 10:37:25 -04:00
8107884c8d Merge branch 'main' into chainchompa/simple-upscale-updates 2024-07-23 10:28:11 -04:00
a2f49ef7c1 cleanup esrgan frontend code 2024-07-23 10:22:38 -04:00
e2e47fd606 Merge branch 'main' into stalker-modular_controlnet 2024-07-23 10:19:12 -04:00
c098edc6b2 updated simple upscale to use spandrel node and list of available spandrel models 2024-07-23 10:15:31 -04:00
bc1d9748ce updated upscale warning to work for simple upscale 2024-07-23 10:04:31 -04:00
7b8e25f525 Modular backend - add FreeU (#6641)
## Summary

FreeU code from https://github.com/invoke-ai/InvokeAI/pull/6577.
Also fix issue with sometimes slightly different output.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.

## Merge Plan

Nope.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-23 10:02:56 -04:00
db52f5606f Merge branch 'main' into stalker-modular_freeu 2024-07-23 09:53:32 -04:00
de39c5ed21 Modular backend - add rescale cfg (#6640)
## Summary

Rescale CFG code from #6577.

## Related Issues / Discussions

#6606 

https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.
~~Note: for some reasons there slightly different output from run to
run, but I able sometimes to get same output on main and this branch.~~
Fix presented in #6641.

## Merge Plan

~~Nope.~~ Merge #6641 firstly, to be able see output difference
properly.
If you think that there should be some kind of tests - feel free to add.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-23 09:45:30 -04:00
d014dc94fd Merge branch 'main' into stalker7779/modular_rescale_cfg 2024-07-23 09:34:22 -04:00
39e804d0f8 Use consistent param names in patch_extension(...) functions: context -> ctx. 2024-07-23 09:18:04 -04:00
154e8f6e78 chore(ui): lint 2024-07-23 15:42:16 +10:00
2d31b82e60 feat(ui): tweak layout for warning message 2024-07-23 15:42:16 +10:00
8f934747f3 feat(ui): updated upscale tab warnings 2024-07-23 15:42:16 +10:00
4352341a00 feat(ui): starter models filter matches spandrel models to "upscale" search term 2024-07-23 15:42:16 +10:00
d7e0ec52ff feat(ui): make model install tab controlled
This lets us navigate directly to eg the Starter Models tab
2024-07-23 15:42:16 +10:00
1072b74c0e fix(ui): edge cases in starter models search 2024-07-23 15:42:16 +10:00
46dc8c6641 chore(ui): lint 2024-07-23 15:42:16 +10:00
a8bc6ab5b1 fix(ui): typos 2024-07-23 15:42:16 +10:00
bd91bd4a84 Math Updates 2024-07-23 15:42:16 +10:00
8756a6b8c3 fix(ui): remove sharpness param 2024-07-23 10:55:54 +10:00
2e0cebb571 fix(ui): bug where viewer would disappear on upscaling tab 2024-07-23 10:55:54 +10:00
c3a8184431 feat(ui): add number input to scale slider 2024-07-23 10:55:54 +10:00
ffa39d74b3 feat(ui): remove first unsharp from upscale graph 2024-07-23 10:55:54 +10:00
f9d3966ea2 feat(ui): add scale param to upscaling tab 2024-07-23 10:55:54 +10:00
7cee4e42a7 feat(ui): add addEdgeToMetadata graph helper 2024-07-23 10:55:54 +10:00
071c7c7c7e chore(ui): typegen 2024-07-23 10:55:54 +10:00
818045f678 tidy(ui): use × instead of translation string 2024-07-23 10:55:54 +10:00
7edefbefff feat(ui): add translation for upscaling tab 2024-07-23 10:55:54 +10:00
29efab70b7 feat(nodes): spandrel_image_to_image.scale defaults to 4.0 2024-07-23 10:55:54 +10:00
ac6adc392a feat(nodes): add scale and fit_to_multiple_of_8 to spandrel node 2024-07-23 10:55:54 +10:00
a2ef5d56ee feat(nodes): split out spandrel node upscale logic into utils 2024-07-23 10:55:54 +10:00
13f3560e55 more lint fixes 2024-07-23 10:55:54 +10:00
c4bd60e00f knip fix 2024-07-23 10:55:54 +10:00
54eda9163c remove tiledVAE option and make it true 2024-07-23 10:55:54 +10:00
582f384fff lint fix 2024-07-23 10:55:54 +10:00
a43211e650 math updates for controlnet tiles 2024-07-23 10:55:54 +10:00
6cb0581b0d add description to upscale model dropdown tooltip 2024-07-23 10:55:54 +10:00
845d77916e lint fix 2024-07-23 10:55:54 +10:00
f18431a999 use fn to get width/height of output image 2024-07-23 10:55:54 +10:00
5060bf2f62 lint fix 2024-07-23 10:55:54 +10:00
7854d913b2 add upscaling data to metadata 2024-07-23 10:55:54 +10:00
890a3ce32a add limited metadata 2024-07-23 10:55:54 +10:00
fb4b3f3350 fix creativity/sharpness/structure scales, move where loras are added, get scale const working 2024-07-23 10:55:54 +10:00
d166b08b6a restore scale but hardcode it to 2 regardless of upscale model 2024-07-23 10:55:54 +10:00
5266e9e682 fix(ui): remove unused scale param 2024-07-23 10:55:54 +10:00
d0265e21b0 fix(ui): use spandrel node for upscaling 2024-07-23 10:55:54 +10:00
3126e8e49a chore(ui): typegen 2024-07-23 10:55:54 +10:00
9e3412d776 translations and lint fix 2024-07-23 10:55:54 +10:00
4a09cc57be use the tile conttrolnet in graph instad of marys hardcoded key 2024-07-23 10:55:54 +10:00
5ab36e0433 add warning if no upscale model or no tile controlnet for base model 2024-07-23 10:55:54 +10:00
d2bf3629bf base scale off of upscale model selected 2024-07-23 10:55:54 +10:00
d9b217d908 hook up sharpness, structure, and creativity 2024-07-23 10:55:54 +10:00
2847f1b5ac add vae toggle, lint fix 2024-07-23 10:55:54 +10:00
bc30850f3a hardcode marys tile cnet key 2024-07-23 10:55:54 +10:00
7668dc68a0 cleanup, add loras 2024-07-23 10:55:54 +10:00
ea449f5a0a upscale graph built, no multidiffusion yet 2024-07-23 10:55:54 +10:00
5a1ed99ca1 restore adhoc upscale button 2024-07-23 10:55:54 +10:00
3a2707ac02 disable invoke button properly for upscaling tab 2024-07-23 10:55:54 +10:00
ce5b1103ed add send to upscale to context menu 2024-07-23 10:55:54 +10:00
fd91b83d86 build out the rest of the accordions 2024-07-23 10:55:54 +10:00
a0a54348e8 removed upscale button, created spandrel model dropdown, created upscale initial image that works with dnd 2024-07-23 10:55:54 +10:00
43b3e242b0 tidy(ui): refactor parameters panel components to be 1:1 with tabs 2024-07-23 10:55:54 +10:00
4e8dcb7a1a Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-23 01:46:29 +03:00
3cb13d6288 Rename as suggested in other PRs
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-23 01:01:18 +03:00
4f01c0f2d3 fix: update uncategorized board totals when deleting and moving images (#6646)
## Summary
- currently the total for uncategorized images is not updating when
moving and deleting images, this will update that count when making
those actions
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-22 17:10:52 -04:00
87eb018380 Revert debug change 2024-07-22 23:49:20 +03:00
5003e5d763 Same changes as in other PRs, add check for running inpainting on inpaint model without source image
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-22 23:47:39 +03:00
e92af52fb8 fix moving items to uncategorized updating 2024-07-22 16:11:36 -04:00
5f0fe3c8a9 Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-22 23:09:11 +03:00
339dddd018 update uncategorized board totals when deleting and moving images 2024-07-22 16:03:01 -04:00
1b359b55cb Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-22 22:17:29 +03:00
d0435575c1 chore(deps): bump fastapi-events to the next minor version 2024-07-22 04:15:36 -07:00
58f3072b91 Handle inpainting on normal models 2024-07-21 22:17:29 +03:00
9e7b470189 Handle inpaint models 2024-07-21 20:45:55 +03:00
42356ec866 Add ControlNet support to denoise 2024-07-21 20:01:30 +03:00
1748848b7b Ruff fixes 2024-07-21 18:37:20 +03:00
5772965f09 Fix slightly different output with old backend 2024-07-21 18:31:30 +03:00
e046e60e1c Add FreeU support to denoise 2024-07-21 18:31:10 +03:00
9a1420280e Add rescale cfg support to denoise 2024-07-21 17:33:43 +03:00
f9c61f1b6c Fix function call that we forgot to update in #6606 (#6636)
## Summary

Fix function call that we forgot to update in #6606

## QA Instructions

Run a TiledMultiDiffusionDenoiseLatents invocation and make sure it
doesn't crash.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-19 17:19:32 -04:00
a8cc5caf96 Fix function call that we forgot to update in https://github.com/invoke-ai/InvokeAI/pull/6606 2024-07-19 17:07:52 -04:00
930ff559e4 add sdxl tile to starter models 2024-07-19 16:49:33 -04:00
473f4cc1c3 Base of modular backend (#6606)
## Summary

Base code of new modular backend from #6577.
Contains normal generation and regional prompts support.
Also preview extension included to test if extensions logic works.

## Related Issues / Discussions


https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d

## QA Instructions

Run with and without set `USE_MODULAR_DENOISE` environment.
Currently only normal and regional conditionings supported, so just
generate some images and compare with main output.

## Merge Plan

Discuss a bit more about injection point names?
As if for example in future unet will be overridable, current
`pre_unet`/`post_unet` assumes to name override as `unet` what feels a
bit odd.
Also `apply_cfg` - future implementation could ignore/not use cfg, so in
this case `combine_noise_predictions`/`combine_noise` seems more
suitable.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-19 16:37:57 -04:00
78d2b1b650 Merge branch 'main' into stalker-backend_base 2024-07-19 16:25:20 -04:00
39e10d894c Add invocation cancellation logic to patchers 2024-07-19 23:17:01 +03:00
e16faa6370 Add gradient blending to tile seams in MultiDiffusion. 2024-07-19 13:05:50 -07:00
83a86abce2 Add unit tests for ExtensionsManager and ExtensionBase. 2024-07-19 14:15:46 -04:00
0c56d4a581 Ryan's suggested changes to extension manager/extensions
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
2024-07-18 23:49:44 +03:00
97a7f51721 don't use cpu state_dict for model unpatching when executing on cpu (#6631)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-07-18 15:34:01 -04:00
710dc6b487 Merge branch 'main' into stalker7779/backend_base 2024-07-18 01:08:04 +03:00
2ef3b49a79 Add run cancelling logic to extension manager 2024-07-17 04:39:15 +03:00
3f79467f7b Ruff format 2024-07-17 04:24:45 +03:00
2c2ec8f0bc Comments, a bit refactor 2024-07-17 04:20:31 +03:00
79e35bd0d3 Minor fixes 2024-07-17 03:48:37 +03:00
137202b77c Remove patch_unet logic for now 2024-07-17 03:40:27 +03:00
03e22c257b Convert conditioning_mode to enum 2024-07-17 03:37:11 +03:00
ae6d4fbc78 Move out _concat_conditionings_for_batch submethods 2024-07-17 03:31:26 +03:00
cd1bc1595a Rename sequential as private variable 2024-07-17 03:24:11 +03:00
0583101c1c Add Spandrel upscale starter models (#6605)
## Summary

This PR adds some spandrel upscale models to the starter model list.

In the future we may also want to add:
- Some DAT models
(https://drive.google.com/drive/folders/1iBdf_-LVZuz_PAbFtuxSKd_11RL1YKxM)

## QA Instructions

I installed the starter models via the model manager UI, and tested that
I could use them in a workflow.

## Merge Plan

- [ ] Merge the preceding Spandrel PRs first, then change the target
branch to `main`.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-16 16:04:52 -04:00
f866b49255 Add some ESRGAN and SwinIR upscale models to the starter models list. 2024-07-16 15:55:10 -04:00
b7c6c63005 Added some comments 2024-07-16 22:52:44 +03:00
95e9f5323b Add tiling to SpandrelImageToImageInvocation (#6594)
## Summary

Add tiling to the `SpandrelImageToImageInvocation` node so that it can
process large images.

Tiling enables this node to run on effectively any input image
dimension. Of course, the computation time increases quadratically with
the image dimension.

Some profiling results on an RTX4090:
- Input 1024x1024, 4x upscale, 4x UltraSharp ESRGAN: `13 secs`, `<4 GB
VRAM`
- Input 4096x4096, 4x upscale, 4x UltraSharop ESRGAN: `46 secs`, `<4 GB
VRAM`
- Input 4096x4096, 2x upscale, SwinIR: `165 secs`, `<5 GB VRAM`

A lot of the time is spent PNG encoding the final image:
- PNG encoding of a 16384x16384 image takes `83secs @
pil_compress_level=7`, `24secs @ pil_compress_level=1`

Callout: If we want to start building workflows that pass large images
between nodes, we are going to have to find a way to avoid the PNG
encode/decode roundtrip that we are currently doing. As is, we will be
incurring a huge penalty for every node that receives/produces a large
image.

## QA Instructions

- [x] Tested with tiling up to 4096x4096 -> 16384x16384.
- [x] Test on images with an alpha channel (the alpha channel is
dropped).
- [x] Test on images with odd dimension.
- [x] Test no tiling (`tile_size=0`)

## Merge Plan

- [x] Merge #6556 first, and change the target branch to `main`.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-16 15:51:15 -04:00
6b0ca88177 Merge branch 'main' into ryan/spandrel-upscale-tiling 2024-07-16 15:40:14 -04:00
7ad32dcad2 Add support for Spandrel Image-to-Image models (e.g. ESRGAN, Real-ESRGAN, Swin-IR, DAT, etc.) (#6556)
## Summary

- Add support for all
[spandrel](https://github.com/chaiNNer-org/spandrel) image-to-image
models - this is a collection of many popular super-resolution models
(e.g. ESRGAN, Real-ESRGAN, SwinIR, DAT, etc.)

Examples of supported models:

- DAT:
https://drive.google.com/drive/folders/1iBdf_-LVZuz_PAbFtuxSKd_11RL1YKxM
- SwinIR: https://github.com/JingyunLiang/SwinIR/releases
- Any ESRGAN / Real-ESRGAN model

## Related Issues

Closes #6394 

## QA Instructions

- [x] Test that unsupported models still fail the probe (i.e. no false
positive spandrel models)
- [x] Test adding a few non-spandrel model types
- [x] Test adding a handful of spandrel model types: ESRGAN,
Real-ESRGAN, SwinIR, DAT
- [x] Verify model size estimation for the model cache
- [x] Test using the spandrel models in a practical image upscaling
workflow

## Merge Plan

- [x] Get approval from @brandonrising and @maryhipp before merging -
this PR has commercial implications.
- [x] Merge #6571 and change the target branch to `main`

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-16 15:37:20 -04:00
81991e072b Merge branch 'main' into ryan/spandrel-upscale 2024-07-16 15:14:08 -04:00
cec345cb5c Change attention processor apply logic 2024-07-16 20:03:29 +03:00
608cbe3f5c Separate inputs in denoise context 2024-07-16 19:30:29 +03:00
7905a46ca4 chore: bump version to 4.2.6post1 2024-07-16 09:09:04 +10:00
38343917f8 fix(backend): revert non-blocking device transfer
In #6490 we enabled non-blocking torch device transfers throughout the model manager's memory management code. When using this torch feature, torch attempts to wait until the tensor transfer has completed before allowing any access to the tensor. Theoretically, that should make this a safe feature to use.

This provides a small performance improvement but causes race conditions in some situations. Specific platforms/systems are affected, and complicated data dependencies can make this unsafe.

- Intermittent black images on MPS devices - reported on discord and #6545, fixed with special handling in #6549.
- Intermittent OOMs and black images on a P4000 GPU on Windows - reported in #6613, fixed in this commit.

On my system, I haven't experience any issues with generation, but targeted testing of non-blocking ops did expose a race condition when moving tensors from CUDA to CPU.

One workaround is to use torch streams with manual sync points. Our application logic is complicated enough that this would be a lot of work and feels ripe for edge cases and missed spots.

Much safer is to fully revert non-locking - which is what this change does.
2024-07-16 08:59:42 +10:00
9f088d1bf5 Multiple small fixes 2024-07-16 00:51:25 +03:00
fd8d1c12d4 Remove 'del' operator overload 2024-07-16 00:43:32 +03:00
d623bd429b Fix condtionings logic 2024-07-16 00:31:56 +03:00
499e4d4fde Add preview extension to check logic 2024-07-13 00:45:04 +03:00
e961dd1dec Remove remains of priority logic 2024-07-13 00:44:21 +03:00
7e00526999 Remove overrides logic for now 2024-07-13 00:28:56 +03:00
3a9dda9177 Renames 2024-07-12 22:44:00 +03:00
bd8ae5d896 Simplify guidance modes 2024-07-12 22:01:37 +03:00
87e96e1be2 Rename modifiers to callbacks, convert order to int, a bit unify injection points 2024-07-12 22:01:05 +03:00
0bc60378d3 A bit rework conditioning convert to unet kwargs 2024-07-12 20:43:32 +03:00
9cc852cf7f Base code from draft PR 2024-07-12 20:31:26 +03:00
0428ce73a9 Add early cancellation to SpandrelImageToImageInvocation. 2024-07-11 15:42:33 -04:00
d0d2955992 Reduce peak VRAM utilization of SpandrelImageToImageInvocation. 2024-07-10 14:25:19 -04:00
d868d5d584 Make SpandrelImageToImage tiling much faster. 2024-07-10 14:25:19 -04:00
ab775726b7 Add tiling support to the SpoandrelImageToImage node. 2024-07-10 14:25:19 -04:00
650902dc29 Fix broken unit test caused by non-existent model path. 2024-07-10 13:59:17 -04:00
7b5d4935b4 Merge branch 'main' into ryan/spandrel-upscale 2024-07-09 13:47:11 -04:00
ecbff2aa44 Whoops... forgot to commit this file. 2024-07-05 14:57:05 -04:00
0ce6ec634d Do not assign the result of SpandrelImageToImageModel.load_from_file(...) during probe to ensure that the model is immediately gc'd. 2024-07-05 14:05:12 -04:00
d09999736c Rename spandrel models to 'Image-to-Image Model' throughout the UI. 2024-07-05 14:04:08 -04:00
a405f14ea2 Fix SpandrelImageToImageModel size calculation for the model cache. 2024-07-03 16:38:16 -04:00
9d3739244f Prettier formatting. 2024-07-03 16:28:21 -04:00
534528b85a Re-generate schema.ts 2024-07-03 16:28:21 -04:00
114320ee69 (minor) typo 2024-07-03 16:28:21 -04:00
6161aa73af Move pil_to_tensor() and tensor_to_pil() utilities to the SpandrelImageToImage class. 2024-07-03 16:28:21 -04:00
1ab20f43c8 Tidy spandrel model probe logic, and document the reasons behind the current implementation. 2024-07-03 16:28:21 -04:00
9328c17ded Add Spandrel models to the list of models in the Model Manager tab. 2024-07-03 16:28:21 -04:00
c1c8e55e8e Fix static check errors. 2024-07-03 16:28:21 -04:00
504a42fe61 typo: fix UIType on Spandrel Upscaling node. 2024-07-03 16:28:21 -04:00
29c8ddfb88 WIP - A bunch of boilerplate to support Spandrel Image-to-Image models throughout the model manager and the frontend. 2024-07-03 16:28:21 -04:00
95079dc7d4 Use a ModelIdentifierField to identify the spandrel model in the UpscaleSpandrelInvocation. 2024-07-03 16:28:21 -04:00
2a1514272f Set the dtype correctly for SpandrelImageToImageModels when they are loaded. 2024-07-03 16:28:21 -04:00
59ce9cf41c WIP - Begin to integrate SpandreImageToImageModel type into the model manager. 2024-07-03 16:28:21 -04:00
e6abea7bc5 (minor) Remove redundant else clause on a for-loop with no break statement. 2024-07-03 16:28:21 -04:00
c335f92345 (minor) simplify startswith(...) syntax. 2024-07-03 16:28:21 -04:00
c1afe35704 Add prototype invocation for running upscaling models with spandrel. 2024-07-03 16:28:21 -04:00
e4813f800a Update calc_model_size_by_data(...) to handle all expected model types, and to log an error if an unexpected model type is received. 2024-07-02 21:51:45 -04:00
255 changed files with 29374 additions and 22619 deletions

View File

@ -55,6 +55,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
FROM node:20-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
RUN corepack enable
WORKDIR /build

View File

@ -196,6 +196,22 @@ tips to reduce the problem:
=== "12GB VRAM GPU"
This should be sufficient to generate larger images up to about 1280x1280.
## Checkpoint Models Load Slowly or Use Too Much RAM
The difference between diffusers models (a folder containing multiple
subfolders) and checkpoint models (a file ending with .safetensors or
.ckpt) is that InvokeAI is able to load diffusers models into memory
incrementally, while checkpoint models must be loaded all at
once. With very large models, or systems with limited RAM, you may
experience slowdowns and other memory-related issues when loading
checkpoint models.
To solve this, go to the Model Manager tab (the cube), select the
checkpoint model that's giving you trouble, and press the "Convert"
button in the upper right of your browser window. This will conver the
checkpoint into a diffusers model, after which loading should be
faster and less memory-intensive.
## Memory Leak (Linux)

View File

@ -5,7 +5,7 @@ from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.board_records.board_records_common import BoardChanges, UncategorizedImageCounts
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
@ -146,14 +146,3 @@ async def list_all_board_image_names(
board_id,
)
return image_names
@boards_router.get(
"/uncategorized/counts",
operation_id="get_uncategorized_image_counts",
response_model=UncategorizedImageCounts,
)
async def get_uncategorized_image_counts() -> UncategorizedImageCounts:
"""Gets count of images and assets for uncategorized images (images with no board assocation)"""
return ApiDependencies.invoker.services.board_records.get_uncategorized_image_counts()

View File

@ -218,9 +218,8 @@ async def get_image_workflow(
raise HTTPException(status_code=404)
@images_router.api_route(
@images_router.get(
"/i/{image_name}/full",
methods=["GET", "HEAD"],
operation_id="get_image_full",
response_class=Response,
responses={
@ -231,6 +230,18 @@ async def get_image_workflow(
404: {"description": "Image not found"},
},
)
@images_router.head(
"/i/{image_name}/full",
operation_id="get_image_full_head",
response_class=Response,
responses={
200: {
"description": "Return the full-resolution image",
"content": {"image/png": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> Response:
@ -242,6 +253,7 @@ async def get_image_full(
content = f.read()
response = Response(content, media_type="image/png")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
response.headers["Content-Disposition"] = f'inline; filename="{image_name}"'
return response
except Exception:
raise HTTPException(status_code=404)

View File

@ -6,7 +6,7 @@ import pathlib
import traceback
from copy import deepcopy
from tempfile import TemporaryDirectory
from typing import Any, Dict, List, Optional, Type
from typing import List, Optional, Type
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse, HTMLResponse
@ -430,13 +430,11 @@ async def delete_model_image(
async def install_model(
source: str = Query(description="Model source to install, can be a local path, repo_id, or remote URL"),
inplace: Optional[bool] = Query(description="Whether or not to install a local model in place", default=False),
# TODO(MM2): Can we type this?
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
access_token: Optional[str] = Query(description="access token for the remote resource", default=None),
config: ModelRecordChanges = Body(
description="Object containing fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
example={"name": "string", "description": "string"},
),
access_token: Optional[str] = None,
) -> ModelInstallJob:
"""Install a model using a string identifier.
@ -451,8 +449,9 @@ async def install_model(
- model/name:fp16:path/to/model.safetensors
- model/name::path/to/model.safetensors
`config` is an optional dict containing model configuration values that will override
the ones that are probed automatically.
`config` is a ModelRecordChanges object. Fields in this object will override
the ones that are probed automatically. Pass an empty object to accept
all the defaults.
`access_token` is an optional access token for use with Urls that require
authentication.
@ -737,7 +736,7 @@ async def convert_model(
# write the converted file to the convert path
raw_model = converted_model.model
assert hasattr(raw_model, "save_pretrained")
raw_model.save_pretrained(convert_path)
raw_model.save_pretrained(convert_path) # type: ignore
assert convert_path.exists()
# temporarily rename the original safetensors file so that there is no naming conflict
@ -750,12 +749,12 @@ async def convert_model(
try:
new_key = installer.install_path(
convert_path,
config={
"name": original_name,
"description": model_config.description,
"hash": model_config.hash,
"source": model_config.source,
},
config=ModelRecordChanges(
name=original_name,
description=model_config.description,
hash=model_config.hash,
source=model_config.source,
),
)
except Exception as e:
logger.error(str(e))

View File

@ -80,12 +80,12 @@ class CompelInvocation(BaseInvocation):
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (model_state_dict, text_encoder),
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora_text_encoder(
text_encoder,
loras=_lora_loader(),
model_state_dict=model_state_dict,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
@ -175,13 +175,13 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (state_dict, text_encoder),
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora(
text_encoder,
loras=_lora_loader(),
prefix=lora_prefix,
model_state_dict=state_dict,
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),

View File

@ -21,6 +21,8 @@ from controlnet_aux import (
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@ -44,13 +46,12 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.util.devices import TorchDevice
class ControlField(BaseModel):
@ -592,7 +593,14 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
DEPTH_ANYTHING_MODELS = {
"large": "LiheYoung/depth-anything-large-hf",
"base": "LiheYoung/depth-anything-base-hf",
"small": "LiheYoung/depth-anything-small-hf",
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
}
@invocation(
@ -600,28 +608,33 @@ DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.1.2",
version="1.1.3",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small", description="The size of the depth model to use"
default="small_v2", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
def loader(model_path: Path):
return DepthAnythingDetector.load_model(
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
)
def load_depth_anything(model_path: Path):
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return DepthAnythingPipeline(depth_anything_pipeline)
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
) as model:
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
) as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
# Resizing to user target specified size
new_height = int(image.size[1] * (self.resolution / image.size[0]))
depth_map = depth_map.resize((self.resolution, new_height))
return depth_map
@invocation(

View File

@ -39,7 +39,7 @@ class GradientMaskOutput(BaseInvocationOutput):
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.1.0",
version="1.2.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
@ -93,6 +93,7 @@ class CreateGradientMaskInvocation(BaseInvocation):
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
blur_tensor[blur_tensor < 0] = 0.0
threshold = 1 - self.minimum_denoise

View File

@ -1,5 +1,6 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import inspect
import os
from contextlib import ExitStack
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
@ -36,9 +37,10 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion import PipelineIntermediateState
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
StableDiffusionGeneratorPipeline,
@ -53,6 +55,19 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningData,
TextConditioningRegions,
)
from invokeai.backend.stable_diffusion.diffusion.custom_atttention import CustomAttnProcessor2_0
from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionBackend
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetExt
from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt
from invokeai.backend.stable_diffusion.extensions.inpaint import InpaintExt
from invokeai.backend.stable_diffusion.extensions.inpaint_model import InpaintModelExt
from invokeai.backend.stable_diffusion.extensions.lora import LoRAExt
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.extensions.t2i_adapter import T2IAdapterExt
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
from invokeai.backend.util.devices import TorchDevice
@ -314,9 +329,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
context: InvocationContext,
positive_conditioning_field: Union[ConditioningField, list[ConditioningField]],
negative_conditioning_field: Union[ConditioningField, list[ConditioningField]],
unet: UNet2DConditionModel,
latent_height: int,
latent_width: int,
device: torch.device,
dtype: torch.dtype,
cfg_scale: float | list[float],
steps: int,
cfg_rescale_multiplier: float,
@ -330,10 +346,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
uncond_list = [uncond_list]
cond_text_embeddings, cond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
cond_list, context, unet.device, unet.dtype
cond_list, context, device, dtype
)
uncond_text_embeddings, uncond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
uncond_list, context, unet.device, unet.dtype
uncond_list, context, device, dtype
)
cond_text_embedding, cond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
@ -341,14 +357,14 @@ class DenoiseLatentsInvocation(BaseInvocation):
masks=cond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
dtype=dtype,
)
uncond_text_embedding, uncond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
text_conditionings=uncond_text_embeddings,
masks=uncond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
dtype=dtype,
)
if isinstance(cfg_scale, list):
@ -455,6 +471,65 @@ class DenoiseLatentsInvocation(BaseInvocation):
return controlnet_data
@staticmethod
def parse_controlnet_field(
exit_stack: ExitStack,
context: InvocationContext,
control_input: ControlField | list[ControlField] | None,
ext_manager: ExtensionsManager,
) -> None:
# Normalize control_input to a list.
control_list: list[ControlField]
if isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list):
control_list = control_input
elif control_input is None:
control_list = []
else:
raise ValueError(f"Unexpected control_input type: {type(control_input)}")
for control_info in control_list:
model = exit_stack.enter_context(context.models.load(control_info.control_model))
ext_manager.add_extension(
ControlNetExt(
model=model,
image=context.images.get_pil(control_info.image.image_name),
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
)
)
@staticmethod
def parse_t2i_adapter_field(
exit_stack: ExitStack,
context: InvocationContext,
t2i_adapters: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
ext_manager: ExtensionsManager,
) -> None:
if t2i_adapters is None:
return
# Handle the possibility that t2i_adapters could be a list or a single T2IAdapterField.
if isinstance(t2i_adapters, T2IAdapterField):
t2i_adapters = [t2i_adapters]
for t2i_adapter_field in t2i_adapters:
ext_manager.add_extension(
T2IAdapterExt(
node_context=context,
model_id=t2i_adapter_field.t2i_adapter_model,
image=context.images.get_pil(t2i_adapter_field.image.image_name),
weight=t2i_adapter_field.weight,
begin_step_percent=t2i_adapter_field.begin_step_percent,
end_step_percent=t2i_adapter_field.end_step_percent,
resize_mode=t2i_adapter_field.resize_mode,
)
)
def prep_ip_adapter_image_prompts(
self,
context: InvocationContext,
@ -664,7 +739,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
else:
masked_latents = torch.where(mask < 0.5, 0.0, latents)
return 1 - mask, masked_latents, self.denoise_mask.gradient
return mask, masked_latents, self.denoise_mask.gradient
@staticmethod
def prepare_noise_and_latents(
@ -707,12 +782,157 @@ class DenoiseLatentsInvocation(BaseInvocation):
return seed, noise, latents
def invoke(self, context: InvocationContext) -> LatentsOutput:
if os.environ.get("USE_MODULAR_DENOISE", False):
return self._new_invoke(context)
else:
return self._old_invoke(context)
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def invoke(self, context: InvocationContext) -> LatentsOutput:
def _new_invoke(self, context: InvocationContext) -> LatentsOutput:
ext_manager = ExtensionsManager(is_canceled=context.util.is_canceled)
device = TorchDevice.choose_torch_device()
dtype = TorchDevice.choose_torch_dtype()
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
cfg_scale=self.cfg_scale,
steps=self.steps,
latent_height=latent_height,
latent_width=latent_width,
device=device,
dtype=dtype,
# TODO: old backend, remove
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler,
seed=seed,
device=device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
)
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
### preview
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
ext_manager.add_extension(PreviewExt(step_callback))
### cfg rescale
if self.cfg_rescale_multiplier > 0:
ext_manager.add_extension(RescaleCFGExt(self.cfg_rescale_multiplier))
### freeu
if self.unet.freeu_config:
ext_manager.add_extension(FreeUExt(self.unet.freeu_config))
### lora
if self.unet.loras:
for lora_field in self.unet.loras:
ext_manager.add_extension(
LoRAExt(
node_context=context,
model_id=lora_field.lora,
weight=lora_field.weight,
)
)
### seamless
if self.unet.seamless_axes:
ext_manager.add_extension(SeamlessExt(self.unet.seamless_axes))
### inpaint
mask, masked_latents, is_gradient_mask = self.prep_inpaint_mask(context, latents)
# NOTE: We used to identify inpainting models by inpecting the shape of the loaded UNet model weights. Now we
# use the ModelVariantType config. During testing, there was a report of a user with models that had an
# incorrect ModelVariantType value. Re-installing the model fixed the issue. If this issue turns out to be
# prevalent, we will have to revisit how we initialize the inpainting extensions.
if unet_config.variant == ModelVariantType.Inpaint:
ext_manager.add_extension(InpaintModelExt(mask, masked_latents, is_gradient_mask))
elif mask is not None:
ext_manager.add_extension(InpaintExt(mask, is_gradient_mask))
# Initialize context for modular denoise
latents = latents.to(device=device, dtype=dtype)
if noise is not None:
noise = noise.to(device=device, dtype=dtype)
denoise_ctx = DenoiseContext(
inputs=DenoiseInputs(
orig_latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise,
seed=seed,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
attention_processor_cls=CustomAttnProcessor2_0,
),
unet=None,
scheduler=scheduler,
)
# context for loading additional models
with ExitStack() as exit_stack:
# later should be smth like:
# for extension_field in self.extensions:
# ext = extension_field.to_extension(exit_stack, context, ext_manager)
# ext_manager.add_extension(ext)
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager)
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
unet_info.model_on_device() as (cached_weights, unet),
ModelPatcher.patch_unet_attention_processor(unet, denoise_ctx.inputs.attention_processor_cls),
# ext: controlnet
ext_manager.patch_extensions(denoise_ctx),
# ext: freeu, seamless, ip adapter, lora
ext_manager.patch_unet(unet, cached_weights),
):
sd_backend = StableDiffusionBackend(unet, scheduler)
denoise_ctx.unet = unet
result_latents = sd_backend.latents_from_embeddings(denoise_ctx, ext_manager)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.detach().to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def _old_invoke(self, context: InvocationContext) -> LatentsOutput:
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# At this point, the mask ranges from 0 (leave unchanged) to 1 (inpaint).
# We invert the mask here for compatibility with the old backend implementation.
if mask is not None:
mask = 1 - mask
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
@ -755,14 +975,14 @@ class DenoiseLatentsInvocation(BaseInvocation):
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info.model_on_device() as (model_state_dict, unet),
unet_info.model_on_device() as (cached_weights, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
set_seamless(unet, self.unet.seamless_axes), # FIXME
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(
unet,
loras=_lora_loader(),
model_state_dict=model_state_dict,
cached_weights=cached_weights,
),
):
assert isinstance(unet, UNet2DConditionModel)
@ -788,7 +1008,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
device=unet.device,
dtype=unet.dtype,
latent_height=latent_height,
latent_width=latent_width,
cfg_scale=self.cfg_scale,

View File

@ -1,7 +1,7 @@
from enum import Enum
from typing import Any, Callable, Optional, Tuple
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, model_validator
from pydantic.fields import _Unset
from pydantic_core import PydanticUndefined
@ -48,6 +48,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
T2IAdapterModel = "T2IAdapterModelField"
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
# endregion
# region Misc Field Types
@ -134,6 +135,7 @@ class FieldDescriptions:
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
spandrel_image_to_image_model = "Image-to-Image model"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
@ -240,6 +242,31 @@ class ConditioningField(BaseModel):
)
class BoundingBoxField(BaseModel):
"""A bounding box primitive value."""
x_min: int = Field(ge=0, description="The minimum x-coordinate of the bounding box (inclusive).")
x_max: int = Field(ge=0, description="The maximum x-coordinate of the bounding box (exclusive).")
y_min: int = Field(ge=0, description="The minimum y-coordinate of the bounding box (inclusive).")
y_max: int = Field(ge=0, description="The maximum y-coordinate of the bounding box (exclusive).")
score: Optional[float] = Field(
default=None,
ge=0.0,
le=1.0,
description="The score associated with the bounding box. In the range [0, 1]. This value is typically set "
"when the bounding box was produced by a detector and has an associated confidence score.",
)
@model_validator(mode="after")
def check_coords(self):
if self.x_min > self.x_max:
raise ValueError(f"x_min ({self.x_min}) is greater than x_max ({self.x_max}).")
if self.y_min > self.y_max:
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
return self
class MetadataField(RootModel[dict[str, Any]]):
"""
Pydantic model for metadata with custom root of type dict[str, Any].

View File

@ -0,0 +1,100 @@
from pathlib import Path
from typing import Literal
import torch
from PIL import Image
from transformers import pipeline
from transformers.pipelines import ZeroShotObjectDetectionPipeline
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField
from invokeai.app.invocations.primitives import BoundingBoxCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.grounding_dino.detection_result import DetectionResult
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
GroundingDinoModelKey = Literal["grounding-dino-tiny", "grounding-dino-base"]
GROUNDING_DINO_MODEL_IDS: dict[GroundingDinoModelKey, str] = {
"grounding-dino-tiny": "IDEA-Research/grounding-dino-tiny",
"grounding-dino-base": "IDEA-Research/grounding-dino-base",
}
@invocation(
"grounding_dino",
title="Grounding DINO (Text Prompt Object Detection)",
tags=["prompt", "object detection"],
category="image",
version="1.0.0",
)
class GroundingDinoInvocation(BaseInvocation):
"""Runs a Grounding DINO model. Performs zero-shot bounding-box object detection from a text prompt."""
# Reference:
# - https://arxiv.org/pdf/2303.05499
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: GroundingDinoModelKey = InputField(description="The Grounding DINO model to use.")
prompt: str = InputField(description="The prompt describing the object to segment.")
image: ImageField = InputField(description="The image to segment.")
detection_threshold: float = InputField(
description="The detection threshold for the Grounding DINO model. All detected bounding boxes with scores above this threshold will be returned.",
ge=0.0,
le=1.0,
default=0.3,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> BoundingBoxCollectionOutput:
# The model expects a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
detections = self._detect(
context=context, image=image_pil, labels=[self.prompt], threshold=self.detection_threshold
)
# Convert detections to BoundingBoxCollectionOutput.
bounding_boxes: list[BoundingBoxField] = []
for detection in detections:
bounding_boxes.append(
BoundingBoxField(
x_min=detection.box.xmin,
x_max=detection.box.xmax,
y_min=detection.box.ymin,
y_max=detection.box.ymax,
score=detection.score,
)
)
return BoundingBoxCollectionOutput(collection=bounding_boxes)
@staticmethod
def _load_grounding_dino(model_path: Path):
grounding_dino_pipeline = pipeline(
model=str(model_path),
task="zero-shot-object-detection",
local_files_only=True,
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
# model, and figure out how to make it work in the pipeline.
# torch_dtype=TorchDevice.choose_torch_dtype(),
)
assert isinstance(grounding_dino_pipeline, ZeroShotObjectDetectionPipeline)
return GroundingDinoPipeline(grounding_dino_pipeline)
def _detect(
self,
context: InvocationContext,
image: Image.Image,
labels: list[str],
threshold: float = 0.3,
) -> list[DetectionResult]:
"""Use Grounding DINO to detect bounding boxes for a set of labels in an image."""
# TODO(ryand): I copied this "."-handling logic from the transformers example code. Test it and see if it
# actually makes a difference.
labels = [label if label.endswith(".") else label + "." for label in labels]
with context.models.load_remote_model(
source=GROUNDING_DINO_MODEL_IDS[self.model], loader=GroundingDinoInvocation._load_grounding_dino
) as detector:
assert isinstance(detector, GroundingDinoPipeline)
return detector.detect(image=image, candidate_labels=labels, threshold=threshold)

View File

@ -24,7 +24,7 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion import set_seamless
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
@ -59,7 +59,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
if self.fp32:

View File

@ -1,9 +1,10 @@
import numpy as np
import torch
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata
from invokeai.app.invocations.primitives import MaskOutput
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput, MaskOutput
@invocation(
@ -118,3 +119,27 @@ class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
height=mask.shape[1],
width=mask.shape[2],
)
@invocation(
"tensor_mask_to_image",
title="Tensor Mask to Image",
tags=["mask"],
category="mask",
version="1.0.0",
)
class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Convert a mask tensor to an image."""
mask: TensorField = InputField(description="The mask tensor to convert.")
def invoke(self, context: InvocationContext) -> ImageOutput:
mask = context.tensors.load(self.mask.tensor_name)
# Ensure that the mask is binary.
if mask.dtype != torch.bool:
mask = mask > 0.5
mask_np = (mask.float() * 255).byte().cpu().numpy()
mask_pil = Image.fromarray(mask_np, mode="L")
image_dto = context.images.save(image=mask_pil)
return ImageOutput.build(image_dto)

View File

@ -7,6 +7,7 @@ import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
BoundingBoxField,
ColorField,
ConditioningField,
DenoiseMaskField,
@ -469,3 +470,42 @@ class ConditioningCollectionInvocation(BaseInvocation):
# endregion
# region BoundingBox
@invocation_output("bounding_box_output")
class BoundingBoxOutput(BaseInvocationOutput):
"""Base class for nodes that output a single bounding box"""
bounding_box: BoundingBoxField = OutputField(description="The output bounding box.")
@invocation_output("bounding_box_collection_output")
class BoundingBoxCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of bounding boxes"""
collection: list[BoundingBoxField] = OutputField(description="The output bounding boxes.", title="Bounding Boxes")
@invocation(
"bounding_box",
title="Bounding Box",
tags=["primitives", "segmentation", "collection", "bounding box"],
category="primitives",
version="1.0.0",
)
class BoundingBoxInvocation(BaseInvocation):
"""Create a bounding box manually by supplying box coordinates"""
x_min: int = InputField(default=0, description="x-coordinate of the bounding box's top left vertex")
y_min: int = InputField(default=0, description="y-coordinate of the bounding box's top left vertex")
x_max: int = InputField(default=0, description="x-coordinate of the bounding box's bottom right vertex")
y_max: int = InputField(default=0, description="y-coordinate of the bounding box's bottom right vertex")
def invoke(self, context: InvocationContext) -> BoundingBoxOutput:
bounding_box = BoundingBoxField(x_min=self.x_min, y_min=self.y_min, x_max=self.x_max, y_max=self.y_max)
return BoundingBoxOutput(bounding_box=bounding_box)
# endregion

View File

@ -0,0 +1,161 @@
from pathlib import Path
from typing import Literal
import numpy as np
import torch
from PIL import Image
from transformers import AutoModelForMaskGeneration, AutoProcessor
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField, TensorField
from invokeai.app.invocations.primitives import MaskOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.segment_anything.mask_refinement import mask_to_polygon, polygon_to_mask
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
SegmentAnythingModelKey = Literal["segment-anything-base", "segment-anything-large", "segment-anything-huge"]
SEGMENT_ANYTHING_MODEL_IDS: dict[SegmentAnythingModelKey, str] = {
"segment-anything-base": "facebook/sam-vit-base",
"segment-anything-large": "facebook/sam-vit-large",
"segment-anything-huge": "facebook/sam-vit-huge",
}
@invocation(
"segment_anything",
title="Segment Anything",
tags=["prompt", "segmentation"],
category="segmentation",
version="1.0.0",
)
class SegmentAnythingInvocation(BaseInvocation):
"""Runs a Segment Anything Model."""
# Reference:
# - https://arxiv.org/pdf/2304.02643
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use.")
image: ImageField = InputField(description="The image to segment.")
bounding_boxes: list[BoundingBoxField] = InputField(description="The bounding boxes to prompt the SAM model with.")
apply_polygon_refinement: bool = InputField(
description="Whether to apply polygon refinement to the masks. This will smooth the edges of the masks slightly and ensure that each mask consists of a single closed polygon (before merging).",
default=True,
)
mask_filter: Literal["all", "largest", "highest_box_score"] = InputField(
description="The filtering to apply to the detected masks before merging them into a final output.",
default="all",
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> MaskOutput:
# The models expect a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
if len(self.bounding_boxes) == 0:
combined_mask = torch.zeros(image_pil.size[::-1], dtype=torch.bool)
else:
masks = self._segment(context=context, image=image_pil)
masks = self._filter_masks(masks=masks, bounding_boxes=self.bounding_boxes)
# masks contains bool values, so we merge them via max-reduce.
combined_mask, _ = torch.stack(masks).max(dim=0)
mask_tensor_name = context.tensors.save(combined_mask)
height, width = combined_mask.shape
return MaskOutput(mask=TensorField(tensor_name=mask_tensor_name), width=width, height=height)
@staticmethod
def _load_sam_model(model_path: Path):
sam_model = AutoModelForMaskGeneration.from_pretrained(
model_path,
local_files_only=True,
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
# model, and figure out how to make it work in the pipeline.
# torch_dtype=TorchDevice.choose_torch_dtype(),
)
assert isinstance(sam_model, SamModel)
sam_processor = AutoProcessor.from_pretrained(model_path, local_files_only=True)
assert isinstance(sam_processor, SamProcessor)
return SegmentAnythingPipeline(sam_model=sam_model, sam_processor=sam_processor)
def _segment(
self,
context: InvocationContext,
image: Image.Image,
) -> list[torch.Tensor]:
"""Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes."""
# Convert the bounding boxes to the SAM input format.
sam_bounding_boxes = [[bb.x_min, bb.y_min, bb.x_max, bb.y_max] for bb in self.bounding_boxes]
with (
context.models.load_remote_model(
source=SEGMENT_ANYTHING_MODEL_IDS[self.model], loader=SegmentAnythingInvocation._load_sam_model
) as sam_pipeline,
):
assert isinstance(sam_pipeline, SegmentAnythingPipeline)
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes)
masks = self._process_masks(masks)
if self.apply_polygon_refinement:
masks = self._apply_polygon_refinement(masks)
return masks
def _process_masks(self, masks: torch.Tensor) -> list[torch.Tensor]:
"""Convert the tensor output from the Segment Anything model from a tensor of shape
[num_masks, channels, height, width] to a list of tensors of shape [height, width].
"""
assert masks.dtype == torch.bool
# [num_masks, channels, height, width] -> [num_masks, height, width]
masks, _ = masks.max(dim=1)
# Split the first dimension into a list of masks.
return list(masks.cpu().unbind(dim=0))
def _apply_polygon_refinement(self, masks: list[torch.Tensor]) -> list[torch.Tensor]:
"""Apply polygon refinement to the masks.
Convert each mask to a polygon, then back to a mask. This has the following effect:
- Smooth the edges of the mask slightly.
- Ensure that each mask consists of a single closed polygon
- Removes small mask pieces.
- Removes holes from the mask.
"""
# Convert tensor masks to np masks.
np_masks = [mask.cpu().numpy().astype(np.uint8) for mask in masks]
# Apply polygon refinement.
for idx, mask in enumerate(np_masks):
shape = mask.shape
assert len(shape) == 2 # Assert length to satisfy type checker.
polygon = mask_to_polygon(mask)
mask = polygon_to_mask(polygon, shape)
np_masks[idx] = mask
# Convert np masks back to tensor masks.
masks = [torch.tensor(mask, dtype=torch.bool) for mask in np_masks]
return masks
def _filter_masks(self, masks: list[torch.Tensor], bounding_boxes: list[BoundingBoxField]) -> list[torch.Tensor]:
"""Filter the detected masks based on the specified mask filter."""
assert len(masks) == len(bounding_boxes)
if self.mask_filter == "all":
return masks
elif self.mask_filter == "largest":
# Find the largest mask.
return [max(masks, key=lambda x: float(x.sum()))]
elif self.mask_filter == "highest_box_score":
# Find the index of the bounding box with the highest score.
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most
# cases the scores should all be non-None when using this filtering mode. That being said, -1.0 is a
# reasonable fallback since the expected score range is [0.0, 1.0].
max_score_idx = max(range(len(bounding_boxes)), key=lambda i: bounding_boxes[i].score or -1.0)
return [masks[max_score_idx]]
else:
raise ValueError(f"Invalid mask filter: {self.mask_filter}")

View File

@ -0,0 +1,253 @@
from typing import Callable
import numpy as np
import torch
from PIL import Image
from tqdm import tqdm
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.tiles.tiles import calc_tiles_min_overlap
from invokeai.backend.tiles.utils import TBLR, Tile
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.3.0")
class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Run any spandrel image-to-image model (https://github.com/chaiNNer-org/spandrel)."""
image: ImageField = InputField(description="The input image")
image_to_image_model: ModelIdentifierField = InputField(
title="Image-to-Image Model",
description=FieldDescriptions.spandrel_image_to_image_model,
ui_type=UIType.SpandrelImageToImageModel,
)
tile_size: int = InputField(
default=512, description="The tile size for tiled image-to-image. Set to 0 to disable tiling."
)
@classmethod
def scale_tile(cls, tile: Tile, scale: int) -> Tile:
return Tile(
coords=TBLR(
top=tile.coords.top * scale,
bottom=tile.coords.bottom * scale,
left=tile.coords.left * scale,
right=tile.coords.right * scale,
),
overlap=TBLR(
top=tile.overlap.top * scale,
bottom=tile.overlap.bottom * scale,
left=tile.overlap.left * scale,
right=tile.overlap.right * scale,
),
)
@classmethod
def upscale_image(
cls,
image: Image.Image,
tile_size: int,
spandrel_model: SpandrelImageToImageModel,
is_canceled: Callable[[], bool],
) -> Image.Image:
# Compute the image tiles.
if tile_size > 0:
min_overlap = 20
tiles = calc_tiles_min_overlap(
image_height=image.height,
image_width=image.width,
tile_height=tile_size,
tile_width=tile_size,
min_overlap=min_overlap,
)
else:
# No tiling. Generate a single tile that covers the entire image.
min_overlap = 0
tiles = [
Tile(
coords=TBLR(top=0, bottom=image.height, left=0, right=image.width),
overlap=TBLR(top=0, bottom=0, left=0, right=0),
)
]
# Sort tiles first by left x coordinate, then by top y coordinate. During tile processing, we want to iterate
# over tiles left-to-right, top-to-bottom.
tiles = sorted(tiles, key=lambda x: x.coords.left)
tiles = sorted(tiles, key=lambda x: x.coords.top)
# Prepare input image for inference.
image_tensor = SpandrelImageToImageModel.pil_to_tensor(image)
# Scale the tiles for re-assembling the final image.
scale = spandrel_model.scale
scaled_tiles = [cls.scale_tile(tile, scale=scale) for tile in tiles]
# Prepare the output tensor.
_, channels, height, width = image_tensor.shape
output_tensor = torch.zeros(
(height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu")
)
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
# Run the model on each tile.
for tile, scaled_tile in tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles"):
# Exit early if the invocation has been canceled.
if is_canceled():
raise CanceledException
# Extract the current tile from the input tensor.
input_tile = image_tensor[
:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right
].to(device=spandrel_model.device, dtype=spandrel_model.dtype)
# Run the model on the tile.
output_tile = spandrel_model.run(input_tile)
# Convert the output tile into the output tensor's format.
# (N, C, H, W) -> (C, H, W)
output_tile = output_tile.squeeze(0)
# (C, H, W) -> (H, W, C)
output_tile = output_tile.permute(1, 2, 0)
output_tile = output_tile.clamp(0, 1)
output_tile = (output_tile * 255).to(dtype=torch.uint8, device=torch.device("cpu"))
# Merge the output tile into the output tensor.
# We only keep half of the overlap on the top and left side of the tile. We do this in case there are
# edge artifacts. We don't bother with any 'blending' in the current implementation - for most upscalers
# it seems unnecessary, but we may find a need in the future.
top_overlap = scaled_tile.overlap.top // 2
left_overlap = scaled_tile.overlap.left // 2
output_tensor[
scaled_tile.coords.top + top_overlap : scaled_tile.coords.bottom,
scaled_tile.coords.left + left_overlap : scaled_tile.coords.right,
:,
] = output_tile[top_overlap:, left_overlap:, :]
# Convert the output tensor to a PIL image.
np_image = output_tensor.detach().numpy().astype(np.uint8)
pil_image = Image.fromarray(np_image)
return pil_image
@torch.inference_mode()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
# Do the upscaling.
with spandrel_model_info as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
# Upscale the image
pil_image = self.upscale_image(image, self.tile_size, spandrel_model, context.util.is_canceled)
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)
@invocation(
"spandrel_image_to_image_autoscale",
title="Image-to-Image (Autoscale)",
tags=["upscale"],
category="upscale",
version="1.0.0",
)
class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
"""Run any spandrel image-to-image model (https://github.com/chaiNNer-org/spandrel) until the target scale is reached."""
scale: float = InputField(
default=4.0,
gt=0.0,
le=16.0,
description="The final scale of the output image. If the model does not upscale the image, this will be ignored.",
)
fit_to_multiple_of_8: bool = InputField(
default=False,
description="If true, the output image will be resized to the nearest multiple of 8 in both dimensions.",
)
@torch.inference_mode()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
# revisit this.
image = context.images.get_pil(self.image.image_name, mode="RGB")
# Load the model.
spandrel_model_info = context.models.load(self.image_to_image_model)
# The target size of the image, determined by the provided scale. We'll run the upscaler until we hit this size.
# Later, we may mutate this value if the model doesn't upscale the image or if the user requested a multiple of 8.
target_width = int(image.width * self.scale)
target_height = int(image.height * self.scale)
# Do the upscaling.
with spandrel_model_info as spandrel_model:
assert isinstance(spandrel_model, SpandrelImageToImageModel)
# First pass of upscaling. Note: `pil_image` will be mutated.
pil_image = self.upscale_image(image, self.tile_size, spandrel_model, context.util.is_canceled)
# Some models don't upscale the image, but we have no way to know this in advance. We'll check if the model
# upscaled the image and run the loop below if it did. We'll require the model to upscale both dimensions
# to be considered an upscale model.
is_upscale_model = pil_image.width > image.width and pil_image.height > image.height
if is_upscale_model:
# This is an upscale model, so we should keep upscaling until we reach the target size.
iterations = 1
while pil_image.width < target_width or pil_image.height < target_height:
pil_image = self.upscale_image(pil_image, self.tile_size, spandrel_model, context.util.is_canceled)
iterations += 1
# Sanity check to prevent excessive or infinite loops. All known upscaling models are at least 2x.
# Our max scale is 16x, so with a 2x model, we should never exceed 16x == 2^4 -> 4 iterations.
# We'll allow one extra iteration "just in case" and bail at 5 upscaling iterations. In practice,
# we should never reach this limit.
if iterations >= 5:
context.logger.warning(
"Upscale loop reached maximum iteration count of 5, stopping upscaling early."
)
break
else:
# This model doesn't upscale the image. We should ignore the scale parameter, modifying the output size
# to be the same as the processed image size.
# The output size is now the size of the processed image.
target_width = pil_image.width
target_height = pil_image.height
# Warn the user if they requested a scale greater than 1.
if self.scale > 1:
context.logger.warning(
"Model does not increase the size of the image, but a greater scale than 1 was requested. Image will not be scaled."
)
# We may need to resize the image to a multiple of 8. Use floor division to ensure we don't scale the image up
# in the final resize
if self.fit_to_multiple_of_8:
target_width = int(target_width // 8 * 8)
target_height = int(target_height // 8 * 8)
# Final resize. Per PIL documentation, Lanczos provides the best quality for both upscale and downscale.
# See: https://pillow.readthedocs.io/en/stable/handbook/concepts.html#filters-comparison-table
pil_image = pil_image.resize((target_width, target_height), resample=Image.Resampling.LANCZOS)
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)

View File

@ -175,6 +175,10 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
_, _, latent_height, latent_width = latents.shape
# Calculate the tile locations to cover the latent-space image.
# TODO(ryand): In the future, we may want to revisit the tile overlap strategy. Things to consider:
# - How much overlap 'context' to provide for each denoising step.
# - How much overlap to use during merging/blending.
# - Should we 'jitter' the tile locations in each step so that the seams are in different places?
tiles = calc_tiles_min_overlap(
image_height=latent_height,
image_width=latent_width,
@ -218,7 +222,8 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
device=unet.device,
dtype=unet.dtype,
latent_height=latent_tile_height,
latent_width=latent_tile_width,
cfg_scale=self.cfg_scale,

View File

@ -1,6 +1,6 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord, UncategorizedImageCounts
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
@ -48,8 +48,3 @@ class BoardRecordStorageBase(ABC):
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
"""Gets all board records."""
pass
@abstractmethod
def get_uncategorized_image_counts(self) -> UncategorizedImageCounts:
"""Gets count of images and assets for uncategorized images (images with no board assocation)."""
pass

View File

@ -1,5 +1,5 @@
from datetime import datetime
from typing import Any, Optional, Union
from typing import Optional, Union
from pydantic import BaseModel, Field
@ -26,25 +26,21 @@ class BoardRecord(BaseModelExcludeNull):
"""Whether or not the board is archived."""
is_private: Optional[bool] = Field(default=None, description="Whether the board is private.")
"""Whether the board is private."""
image_count: int = Field(description="The number of images in the board.")
asset_count: int = Field(description="The number of assets in the board.")
def deserialize_board_record(board_dict: dict[str, Any]) -> BoardRecord:
def deserialize_board_record(board_dict: dict) -> BoardRecord:
"""Deserializes a board record."""
# Retrieve all the values, setting "reasonable" defaults if they are not present.
board_id = board_dict.get("board_id", "unknown")
board_name = board_dict.get("board_name", "unknown")
cover_image_name = board_dict.get("cover_image_name", None)
cover_image_name = board_dict.get("cover_image_name", "unknown")
created_at = board_dict.get("created_at", get_iso_timestamp())
updated_at = board_dict.get("updated_at", get_iso_timestamp())
deleted_at = board_dict.get("deleted_at", get_iso_timestamp())
archived = board_dict.get("archived", False)
is_private = board_dict.get("is_private", False)
image_count = board_dict.get("image_count", 0)
asset_count = board_dict.get("asset_count", 0)
return BoardRecord(
board_id=board_id,
@ -55,8 +51,6 @@ def deserialize_board_record(board_dict: dict[str, Any]) -> BoardRecord:
deleted_at=deleted_at,
archived=archived,
is_private=is_private,
image_count=image_count,
asset_count=asset_count,
)
@ -69,24 +63,19 @@ class BoardChanges(BaseModel, extra="forbid"):
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""
def __init__(self, message: str = "Board record not found"):
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message: str = "Board record not saved"):
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message: str = "Board record not deleted"):
def __init__(self, message="Board record not deleted"):
super().__init__(message)
class UncategorizedImageCounts(BaseModel):
image_count: int = Field(description="The number of uncategorized images.")
asset_count: int = Field(description="The number of uncategorized assets.")

View File

@ -1,6 +1,5 @@
import sqlite3
import threading
from dataclasses import dataclass
from typing import Union, cast
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
@ -10,108 +9,12 @@ from invokeai.app.services.board_records.board_records_common import (
BoardRecordDeleteException,
BoardRecordNotFoundException,
BoardRecordSaveException,
UncategorizedImageCounts,
deserialize_board_record,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.util.misc import uuid_string
# This query is missing a GROUP BY clause, which is required for the query to be valid.
BASE_UNTERMINATED_AND_MISSING_GROUP_BY_BOARD_RECORDS_QUERY = """
SELECT b.board_id,
b.board_name,
b.created_at,
b.updated_at,
b.archived,
-- Count the number of images in the board, alias image_count
COUNT(
CASE
WHEN i.image_category in ('general') -- Images (UI category) are in the 'general' category
AND i.is_intermediate = 0 THEN 1 -- Intermediates are not counted
END
) AS image_count,
-- Count the number of assets in the board, alias asset_count
COUNT(
CASE
WHEN i.image_category in ('control', 'mask', 'user', 'other') -- Assets (UI category) are in one of these categories
AND i.is_intermediate = 0 THEN 1 -- Intermediates are not counted
END
) AS asset_count,
-- Get the name of the the most recent image in the board, alias cover_image_name
(
SELECT bi.image_name
FROM board_images bi
JOIN images i ON bi.image_name = i.image_name
WHERE bi.board_id = b.board_id
AND i.is_intermediate = 0 -- Intermediates cannot be cover images
ORDER BY i.created_at DESC -- Sort by created_at to get the most recent image
LIMIT 1
) AS cover_image_name
FROM boards b
LEFT JOIN board_images bi ON b.board_id = bi.board_id
LEFT JOIN images i ON bi.image_name = i.image_name
-- This query is missing a GROUP BY clause! The utility functions using this query must add it
"""
@dataclass
class PaginatedBoardRecordsQueries:
main_query: str
total_count_query: str
def get_paginated_list_board_records_queries(include_archived: bool) -> PaginatedBoardRecordsQueries:
"""Gets a query to retrieve a paginated list of board records."""
archived_condition = "WHERE b.archived = 0" if not include_archived else ""
# The GROUP BY must be added _after_ the WHERE clause!
main_query = f"""
{BASE_UNTERMINATED_AND_MISSING_GROUP_BY_BOARD_RECORDS_QUERY}
{archived_condition}
GROUP BY b.board_id,
b.board_name,
b.created_at,
b.updated_at
ORDER BY b.created_at DESC
LIMIT ? OFFSET ?;
"""
total_count_query = f"""
SELECT COUNT(*)
FROM boards b
{archived_condition};
"""
return PaginatedBoardRecordsQueries(main_query=main_query, total_count_query=total_count_query)
def get_list_all_board_records_query(include_archived: bool) -> str:
"""Gets a query to retrieve all board records."""
archived_condition = "WHERE b.archived = 0" if not include_archived else ""
# The GROUP BY must be added _after_ the WHERE clause!
return f"""
{BASE_UNTERMINATED_AND_MISSING_GROUP_BY_BOARD_RECORDS_QUERY}
{archived_condition}
GROUP BY b.board_id,
b.board_name,
b.created_at,
b.updated_at
ORDER BY b.created_at DESC;
"""
def get_board_record_query() -> str:
"""Gets a query to retrieve a board record."""
return f"""
{BASE_UNTERMINATED_AND_MISSING_GROUP_BY_BOARD_RECORDS_QUERY}
WHERE b.board_id = ?;
"""
class SqliteBoardRecordStorage(BoardRecordStorageBase):
_conn: sqlite3.Connection
@ -173,7 +76,11 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
try:
self._lock.acquire()
self._cursor.execute(
get_board_record_query(),
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
@ -185,7 +92,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
self._lock.release()
if result is None:
raise BoardRecordNotFoundException
return deserialize_board_record(dict(result))
return BoardRecord(**dict(result))
def update(
self,
@ -242,17 +149,45 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
try:
self._lock.acquire()
queries = get_paginated_list_board_records_queries(include_archived=include_archived)
# Build base query
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
LIMIT ? OFFSET ?;
"""
self._cursor.execute(
queries.main_query,
(limit, offset),
)
# Determine archived filter condition
if include_archived:
archived_filter = ""
else:
archived_filter = "WHERE archived = 0"
final_query = base_query.format(archived_filter=archived_filter)
# Execute query to fetch boards
self._cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
self._cursor.execute(queries.total_count_query)
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
else:
count_query = """
SELECT COUNT(*)
FROM boards
WHERE archived = 0;
"""
# Execute count query
self._cursor.execute(count_query)
count = cast(int, self._cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
@ -266,9 +201,26 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
try:
self._lock.acquire()
self._cursor.execute(get_list_all_board_records_query(include_archived=include_archived))
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
"""
if include_archived:
archived_filter = ""
else:
archived_filter = "WHERE archived = 0"
final_query = base_query.format(archived_filter=archived_filter)
self._cursor.execute(final_query)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
return boards
except sqlite3.Error as e:
@ -276,27 +228,3 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
raise e
finally:
self._lock.release()
def get_uncategorized_image_counts(self) -> UncategorizedImageCounts:
try:
self._lock.acquire()
query = """
SELECT
CASE
WHEN i.image_category = 'general' THEN 'images' -- Images (UI category) includes images in the 'general' DB category
ELSE 'assets' -- Assets (UI category) includes all other DB categories: 'control', 'mask', 'user', 'other'
END AS category_type,
COUNT(*) AS unassigned_count
FROM images i
LEFT JOIN board_images bi ON i.image_name = bi.image_name
WHERE bi.board_id IS NULL -- Uncategorized images have no board
AND i.is_intermediate = 0 -- Omit intermediates from the counts
GROUP BY category_type; -- Group by category_type alias, as derived from the image_category column earlier
"""
self._cursor.execute(query)
results = self._cursor.fetchall()
image_count = dict(results)['images']
asset_count = dict(results)['assets']
return UncategorizedImageCounts(image_count=image_count, asset_count=asset_count)
finally:
self._lock.release()

View File

@ -1,8 +1,23 @@
from typing import Optional
from pydantic import Field
from invokeai.app.services.board_records.board_records_common import BoardRecord
# TODO(psyche): BoardDTO is now identical to BoardRecord. We should consider removing it.
class BoardDTO(BoardRecord):
"""Deserialized board record."""
"""Deserialized board record with cover image URL and image count."""
pass
cover_image_name: Optional[str] = Field(description="The name of the board's cover image.")
"""The URL of the thumbnail of the most recent image in the board."""
image_count: int = Field(description="The number of images in the board.")
"""The number of images in the board."""
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.model_dump(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@ -1,6 +1,6 @@
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_base import BoardServiceABC
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.boards.boards_common import BoardDTO, board_record_to_dto
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
@ -16,11 +16,17 @@ class BoardService(BoardServiceABC):
board_name: str,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.save(board_name)
return BoardDTO.model_validate(board_record.model_dump())
return board_record_to_dto(board_record, None, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self.__invoker.services.board_records.get(board_id)
return BoardDTO.model_validate(board_record.model_dump())
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def update(
self,
@ -28,7 +34,14 @@ class BoardService(BoardServiceABC):
changes: BoardChanges,
) -> BoardDTO:
board_record = self.__invoker.services.board_records.update(board_id, changes)
return BoardDTO.model_validate(board_record.model_dump())
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(board_record.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(board_id)
return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None:
self.__invoker.services.board_records.delete(board_id)
@ -37,10 +50,30 @@ class BoardService(BoardServiceABC):
self, offset: int = 0, limit: int = 10, include_archived: bool = False
) -> OffsetPaginatedResults[BoardDTO]:
board_records = self.__invoker.services.board_records.get_many(offset, limit, include_archived)
board_dtos = [BoardDTO.model_validate(r.model_dump()) for r in board_records.items]
board_dtos = []
for r in board_records.items:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
board_records = self.__invoker.services.board_records.get_all(include_archived)
board_dtos = [BoardDTO.model_validate(r.model_dump()) for r in board_records]
board_dtos = []
for r in board_records:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self.__invoker.services.board_image_records.get_image_count_for_board(r.board_id)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos

View File

@ -1,11 +1,10 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from pathlib import Path
from queue import Queue
from typing import Dict, Optional, Union
from typing import Optional, Union
from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_files.image_files_common import (
@ -20,18 +19,12 @@ from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""
__output_folder: Path
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[Path, PILImageType]
__max_cache_size: int
__invoker: Invoker
def __init__(self, output_folder: Union[str, Path]):
self.__cache = {}
self.__cache_ids = Queue()
self.__cache: dict[Path, PILImageType] = {}
self.__cache_ids = Queue[Path]()
self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
# Validate required output folders at launch
self.__validate_storage_folders()
@ -103,7 +96,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image_path = self.get_path(image_name)
if image_path.exists():
send2trash(image_path)
image_path.unlink()
if image_path in self.__cache:
del self.__cache[image_path]
@ -111,7 +104,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
thumbnail_path = self.get_path(thumbnail_name, True)
if thumbnail_path.exists():
send2trash(thumbnail_path)
thumbnail_path.unlink()
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
except Exception as e:

View File

@ -2,7 +2,6 @@ from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
@ -70,7 +69,7 @@ class ModelImageFileStorageDisk(ModelImageFileStorageBase):
if not self._validate_path(path):
raise ModelImageFileNotFoundException
send2trash(path)
path.unlink()
except Exception as e:
raise ModelImageFileDeleteException from e

View File

@ -3,7 +3,7 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from typing import List, Optional, Union
from pydantic.networks import AnyHttpUrl
@ -12,7 +12,7 @@ from invokeai.app.services.download import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.app.services.model_records import ModelRecordChanges, ModelRecordServiceBase
from invokeai.backend.model_manager import AnyModelConfig
@ -64,7 +64,7 @@ class ModelInstallServiceBase(ABC):
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> str:
"""
Probe and register the model at model_path.
@ -72,7 +72,7 @@ class ModelInstallServiceBase(ABC):
This keeps the model in its current location.
:param model_path: Filesystem Path to the model.
:param config: Dict of attributes that will override autoassigned values.
:param config: ModelRecordChanges object that will override autoassigned model record values.
:returns id: The string ID of the registered model.
"""
@ -92,7 +92,7 @@ class ModelInstallServiceBase(ABC):
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> str:
"""
Probe, register and install the model in the models directory.
@ -101,7 +101,7 @@ class ModelInstallServiceBase(ABC):
the models directory handled by InvokeAI.
:param model_path: Filesystem Path to the model.
:param config: Dict of attributes that will override autoassigned values.
:param config: ModelRecordChanges object that will override autoassigned model record values.
:returns id: The string ID of the registered model.
"""
@ -109,14 +109,14 @@ class ModelInstallServiceBase(ABC):
def heuristic_import(
self,
source: str,
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
r"""Install the indicated model using heuristics to interpret user intentions.
:param source: String source
:param config: Optional dict. Any fields in this dict
:param config: Optional ModelRecordChanges object. Any fields in this object
will override corresponding autoassigned probe fields in the
model's config record as described in `import_model()`.
:param access_token: Optional access token for remote sources.
@ -147,7 +147,7 @@ class ModelInstallServiceBase(ABC):
def import_model(
self,
source: ModelSource,
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> ModelInstallJob:
"""Install the indicated model.

View File

@ -2,13 +2,14 @@ import re
import traceback
from enum import Enum
from pathlib import Path
from typing import Any, Dict, Literal, Optional, Set, Union
from typing import Literal, Optional, Set, Union
from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic.networks import AnyHttpUrl
from typing_extensions import Annotated
from invokeai.app.services.download import DownloadJob, MultiFileDownloadJob
from invokeai.app.services.model_records import ModelRecordChanges
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
@ -133,8 +134,9 @@ class ModelInstallJob(BaseModel):
id: int = Field(description="Unique ID for this job")
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
error_reason: Optional[str] = Field(default=None, description="Information about why the job failed")
config_in: Dict[str, Any] = Field(
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
config_in: ModelRecordChanges = Field(
default_factory=ModelRecordChanges,
description="Configuration information (e.g. 'description') to apply to model.",
)
config_out: Optional[AnyModelConfig] = Field(
default=None, description="After successful installation, this will hold the configuration object."

View File

@ -163,26 +163,27 @@ class ModelInstallService(ModelInstallServiceBase):
def register_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
if not config.get("source"):
config["source"] = model_path.resolve().as_posix()
config["source_type"] = ModelSourceType.Path
config = config or ModelRecordChanges()
if not config.source:
config.source = model_path.resolve().as_posix()
config.source_type = ModelSourceType.Path
return self._register(model_path, config)
def install_path(
self,
model_path: Union[Path, str],
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> str: # noqa D102
model_path = Path(model_path)
config = config or {}
config = config or ModelRecordChanges()
info: AnyModelConfig = ModelProbe.probe(
Path(model_path), config.model_dump(), hash_algo=self._app_config.hashing_algorithm
) # type: ignore
info: AnyModelConfig = ModelProbe.probe(Path(model_path), config, hash_algo=self._app_config.hashing_algorithm)
if preferred_name := config.get("name"):
if preferred_name := config.name:
preferred_name = Path(preferred_name).with_suffix(model_path.suffix)
dest_path = (
@ -204,7 +205,7 @@ class ModelInstallService(ModelInstallServiceBase):
def heuristic_import(
self,
source: str,
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
@ -216,7 +217,7 @@ class ModelInstallService(ModelInstallServiceBase):
source_obj.access_token = access_token
return self.import_model(source_obj, config)
def import_model(self, source: ModelSource, config: Optional[Dict[str, Any]] = None) -> ModelInstallJob: # noqa D102
def import_model(self, source: ModelSource, config: Optional[ModelRecordChanges] = None) -> ModelInstallJob: # noqa D102
similar_jobs = [x for x in self.list_jobs() if x.source == source and not x.in_terminal_state]
if similar_jobs:
self._logger.warning(f"There is already an active install job for {source}. Not enqueuing.")
@ -318,16 +319,17 @@ class ModelInstallService(ModelInstallServiceBase):
model_path = self._app_config.models_path / model_path
model_path = model_path.resolve()
config: dict[str, Any] = {}
config["name"] = model_name
config["description"] = stanza.get("description")
config = ModelRecordChanges(
name=model_name,
description=stanza.get("description"),
)
legacy_config_path = stanza.get("config")
if legacy_config_path:
# In v3, these paths were relative to the root. Migrate them to be relative to the legacy_conf_dir.
legacy_config_path = self._app_config.root_path / legacy_config_path
if legacy_config_path.is_relative_to(self._app_config.legacy_conf_path):
legacy_config_path = legacy_config_path.relative_to(self._app_config.legacy_conf_path)
config["config_path"] = str(legacy_config_path)
config.config_path = str(legacy_config_path)
try:
id = self.register_path(model_path=model_path, config=config)
self._logger.info(f"Migrated {model_name} with id {id}")
@ -500,11 +502,11 @@ class ModelInstallService(ModelInstallServiceBase):
job.total_bytes = self._stat_size(job.local_path)
job.bytes = job.total_bytes
self._signal_job_running(job)
job.config_in["source"] = str(job.source)
job.config_in["source_type"] = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
job.config_in.source = str(job.source)
job.config_in.source_type = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
# enter the metadata, if there is any
if isinstance(job.source_metadata, (HuggingFaceMetadata)):
job.config_in["source_api_response"] = job.source_metadata.api_response
job.config_in.source_api_response = job.source_metadata.api_response
if job.inplace:
key = self.register_path(job.local_path, job.config_in)
@ -639,11 +641,11 @@ class ModelInstallService(ModelInstallServiceBase):
return new_path
def _register(
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
self, model_path: Path, config: Optional[ModelRecordChanges] = None, info: Optional[AnyModelConfig] = None
) -> str:
config = config or {}
config = config or ModelRecordChanges()
info = info or ModelProbe.probe(model_path, config, hash_algo=self._app_config.hashing_algorithm)
info = info or ModelProbe.probe(model_path, config.model_dump(), hash_algo=self._app_config.hashing_algorithm) # type: ignore
model_path = model_path.resolve()
@ -674,11 +676,13 @@ class ModelInstallService(ModelInstallServiceBase):
precision = TorchDevice.choose_torch_dtype()
return ModelRepoVariant.FP16 if precision == torch.float16 else None
def _import_local_model(self, source: LocalModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
def _import_local_model(
self, source: LocalModelSource, config: Optional[ModelRecordChanges] = None
) -> ModelInstallJob:
return ModelInstallJob(
id=self._next_id(),
source=source,
config_in=config or {},
config_in=config or ModelRecordChanges(),
local_path=Path(source.path),
inplace=source.inplace or False,
)
@ -686,7 +690,7 @@ class ModelInstallService(ModelInstallServiceBase):
def _import_from_hf(
self,
source: HFModelSource,
config: Optional[Dict[str, Any]] = None,
config: Optional[ModelRecordChanges] = None,
) -> ModelInstallJob:
# Add user's cached access token to HuggingFace requests
if source.access_token is None:
@ -702,7 +706,7 @@ class ModelInstallService(ModelInstallServiceBase):
def _import_from_url(
self,
source: URLModelSource,
config: Optional[Dict[str, Any]],
config: Optional[ModelRecordChanges] = None,
) -> ModelInstallJob:
remote_files, metadata = self._remote_files_from_source(source)
return self._import_remote_model(
@ -717,7 +721,7 @@ class ModelInstallService(ModelInstallServiceBase):
source: HFModelSource | URLModelSource,
remote_files: List[RemoteModelFile],
metadata: Optional[AnyModelRepoMetadata],
config: Optional[Dict[str, Any]],
config: Optional[ModelRecordChanges],
) -> ModelInstallJob:
if len(remote_files) == 0:
raise ValueError(f"{source}: No downloadable files found")
@ -730,7 +734,7 @@ class ModelInstallService(ModelInstallServiceBase):
install_job = ModelInstallJob(
id=self._next_id(),
source=source,
config_in=config or {},
config_in=config or ModelRecordChanges(),
source_metadata=metadata,
local_path=destdir, # local path may change once the download has started due to content-disposition handling
bytes=0,

View File

@ -18,6 +18,7 @@ from invokeai.backend.model_manager.config import (
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelFormat,
ModelSourceType,
ModelType,
ModelVariantType,
SchedulerPredictionType,
@ -66,10 +67,16 @@ class ModelRecordChanges(BaseModelExcludeNull):
"""A set of changes to apply to a model."""
# Changes applicable to all models
source: Optional[str] = Field(description="original source of the model", default=None)
source_type: Optional[ModelSourceType] = Field(description="type of model source", default=None)
source_api_response: Optional[str] = Field(description="metadata from remote source", default=None)
name: Optional[str] = Field(description="Name of the model.", default=None)
path: Optional[str] = Field(description="Path to the model.", default=None)
description: Optional[str] = Field(description="Model description", default=None)
base: Optional[BaseModelType] = Field(description="The base model.", default=None)
type: Optional[ModelType] = Field(description="Type of model", default=None)
key: Optional[str] = Field(description="Database ID for this model", default=None)
hash: Optional[str] = Field(description="hash of model file", default=None)
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
default_settings: Optional[MainModelDefaultSettings | ControlAdapterDefaultSettings] = Field(
description="Default settings for this model", default=None

View File

@ -81,7 +81,7 @@ def get_openapi_func(
# Add the output map to the schema
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": invocation_output_map_properties,
"properties": dict(sorted(invocation_output_map_properties.items())),
"required": invocation_output_map_required,
}

View File

@ -1,90 +0,0 @@
from pathlib import Path
from typing import Literal
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from einops import repeat
from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = {
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
}
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
class DepthAnythingDetector:
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
self.model = model
self.device = device
@staticmethod
def load_model(
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
) -> DPT_DINOv2:
match model_size:
case "small":
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
model.eval()
model.to(device)
return model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:
logger.warn("DepthAnything model was not loaded. Returning original image")
return image
np_image = np.array(image, dtype=np.uint8)
np_image = np_image[:, :, ::-1] / 255.0
image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
with torch.no_grad():
depth = self.model(tensor_image)
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = repeat(depth, "h w -> h w 3").cpu().numpy().astype(np.uint8)
depth_map = Image.fromarray(depth_map)
new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height))
return depth_map

View File

@ -0,0 +1,31 @@
from typing import Optional
import torch
from PIL import Image
from transformers.pipelines import DepthEstimationPipeline
from invokeai.backend.raw_model import RawModel
class DepthAnythingPipeline(RawModel):
"""Custom wrapper for the Depth Estimation pipeline from transformers adding compatibility
for Invoke's Model Management System"""
def __init__(self, pipeline: DepthEstimationPipeline) -> None:
self._pipeline = pipeline
def generate_depth(self, image: Image.Image) -> Image.Image:
depth_map = self._pipeline(image)["depth"]
assert isinstance(depth_map, Image.Image)
return depth_map
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)

View File

@ -1,145 +0,0 @@
import torch.nn as nn
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module."""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups = 1
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
if self.bn:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block."""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups = 1
self.expand = expand
out_features = features
if self.expand:
out_features = features // 2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size = size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output

View File

@ -1,183 +0,0 @@
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
torchhub_path = Path(__file__).parent.parent / "torchhub"
def _make_fusion_block(features, use_bn, size=None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class DPTHead(nn.Module):
def __init__(self, nclass, in_channels, features, out_channels, use_bn=False, use_clstoken=False):
super(DPTHead, self).__init__()
self.nclass = nclass
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList(
[
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
)
for out_channel in out_channels
]
)
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
if nclass > 1:
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
)
else:
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DPT_DINOv2(nn.Module):
def __init__(
self,
features,
out_channels,
encoder="vitl",
use_bn=False,
use_clstoken=False,
):
super(DPT_DINOv2, self).__init__()
assert encoder in ["vits", "vitb", "vitl"]
# # in case the Internet connection is not stable, please load the DINOv2 locally
# if use_local:
# self.pretrained = torch.hub.load(
# torchhub_path / "facebookresearch_dinov2_main",
# "dinov2_{:}14".format(encoder),
# source="local",
# pretrained=False,
# )
# else:
# self.pretrained = torch.hub.load(
# "facebookresearch/dinov2",
# "dinov2_{:}14".format(encoder),
# )
self.pretrained = torch.hub.load(
"facebookresearch/dinov2",
"dinov2_{:}14".format(encoder),
)
dim = self.pretrained.blocks[0].attn.qkv.in_features
self.depth_head = DPTHead(1, dim, features, out_channels=out_channels, use_bn=use_bn, use_clstoken=use_clstoken)
def forward(self, x):
h, w = x.shape[-2:]
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
patch_h, patch_w = h // 14, w // 14
depth = self.depth_head(features, patch_h, patch_w)
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
depth = F.relu(depth)
return depth.squeeze(1)

View File

@ -1,227 +0,0 @@
import math
import cv2
import numpy as np
import torch
import torch.nn.functional as F
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method)
sample["disparity"] = cv2.resize(sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height)."""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller
than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
if "semseg_mask" in sample:
# sample["semseg_mask"] = cv2.resize(
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
# )
sample["semseg_mask"] = F.interpolate(
torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode="nearest"
).numpy()[0, 0]
if "mask" in sample:
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
# sample["mask"] = sample["mask"].astype(bool)
# print(sample['image'].shape, sample['depth'].shape)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std."""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input."""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
if "semseg_mask" in sample:
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
return sample

View File

@ -0,0 +1,22 @@
from pydantic import BaseModel, ConfigDict
class BoundingBox(BaseModel):
"""Bounding box helper class."""
xmin: int
ymin: int
xmax: int
ymax: int
class DetectionResult(BaseModel):
"""Detection result from Grounding DINO."""
score: float
label: str
box: BoundingBox
model_config = ConfigDict(
# Allow arbitrary types for mask, since it will be a numpy array.
arbitrary_types_allowed=True
)

View File

@ -0,0 +1,37 @@
from typing import Optional
import torch
from PIL import Image
from transformers.pipelines import ZeroShotObjectDetectionPipeline
from invokeai.backend.image_util.grounding_dino.detection_result import DetectionResult
from invokeai.backend.raw_model import RawModel
class GroundingDinoPipeline(RawModel):
"""A wrapper class for a ZeroShotObjectDetectionPipeline that makes it compatible with the model manager's memory
management system.
"""
def __init__(self, pipeline: ZeroShotObjectDetectionPipeline):
self._pipeline = pipeline
def detect(self, image: Image.Image, candidate_labels: list[str], threshold: float = 0.1) -> list[DetectionResult]:
results = self._pipeline(image=image, candidate_labels=candidate_labels, threshold=threshold)
assert results is not None
results = [DetectionResult.model_validate(result) for result in results]
return results
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
# HACK(ryand): The GroundingDinoPipeline does not work on MPS devices. We only allow it to be moved to CPU or
# CUDA.
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
# HACK(ryand): Fix the circular import issue.
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)

View File

@ -0,0 +1,50 @@
# This file contains utilities for Grounded-SAM mask refinement based on:
# https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
import cv2
import numpy as np
import numpy.typing as npt
def mask_to_polygon(mask: npt.NDArray[np.uint8]) -> list[tuple[int, int]]:
"""Convert a binary mask to a polygon.
Returns:
list[list[int]]: List of (x, y) coordinates representing the vertices of the polygon.
"""
# Find contours in the binary mask.
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Find the contour with the largest area.
largest_contour = max(contours, key=cv2.contourArea)
# Extract the vertices of the contour.
polygon = largest_contour.reshape(-1, 2).tolist()
return polygon
def polygon_to_mask(
polygon: list[tuple[int, int]], image_shape: tuple[int, int], fill_value: int = 1
) -> npt.NDArray[np.uint8]:
"""Convert a polygon to a segmentation mask.
Args:
polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
image_shape (tuple): Shape of the image (height, width) for the mask.
fill_value (int): Value to fill the polygon with.
Returns:
np.ndarray: Segmentation mask with the polygon filled (with value 255).
"""
# Create an empty mask.
mask = np.zeros(image_shape, dtype=np.uint8)
# Convert polygon to an array of points.
pts = np.array(polygon, dtype=np.int32)
# Fill the polygon with white color (255).
cv2.fillPoly(mask, [pts], color=(fill_value,))
return mask

View File

@ -0,0 +1,53 @@
from typing import Optional
import torch
from PIL import Image
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
from invokeai.backend.raw_model import RawModel
class SegmentAnythingPipeline(RawModel):
"""A wrapper class for the transformers SAM model and processor that makes it compatible with the model manager."""
def __init__(self, sam_model: SamModel, sam_processor: SamProcessor):
self._sam_model = sam_model
self._sam_processor = sam_processor
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
# HACK(ryand): The SAM pipeline does not work on MPS devices. We only allow it to be moved to CPU or CUDA.
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._sam_model.to(device=device, dtype=dtype)
def calc_size(self) -> int:
# HACK(ryand): Fix the circular import issue.
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._sam_model)
def segment(self, image: Image.Image, bounding_boxes: list[list[int]]) -> torch.Tensor:
"""Run the SAM model.
Args:
image (Image.Image): The image to segment.
bounding_boxes (list[list[int]]): The bounding box prompts. Each bounding box is in the format
[xmin, ymin, xmax, ymax].
Returns:
torch.Tensor: The segmentation masks. dtype: torch.bool. shape: [num_masks, channels, height, width].
"""
# Add batch dimension of 1 to the bounding boxes.
boxes = [bounding_boxes]
inputs = self._sam_processor(images=image, input_boxes=boxes, return_tensors="pt").to(self._sam_model.device)
outputs = self._sam_model(**inputs)
masks = self._sam_processor.post_process_masks(
masks=outputs.pred_masks,
original_sizes=inputs.original_sizes,
reshaped_input_sizes=inputs.reshaped_input_sizes,
)
# There should be only one batch.
assert len(masks) == 1
return masks[0]

View File

@ -124,16 +124,14 @@ class IPAdapter(RawModel):
self.device, dtype=self.dtype
)
def to(
self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, non_blocking: bool = False
):
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None:
self.device = device
if dtype is not None:
self.dtype = dtype
self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self._image_proj_model.to(device=self.device, dtype=self.dtype)
self.attn_weights.to(device=self.device, dtype=self.dtype)
def calc_size(self) -> int:
# HACK(ryand): Fix this issue with circular imports.

View File

@ -3,15 +3,15 @@
import bisect
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
from typing import Dict, List, Optional, Set, Tuple, Union
import torch
from safetensors.torch import load_file
from typing_extensions import Self
import invokeai.backend.util.logging as logger
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
from invokeai.backend.util.devices import TorchDevice
class LoRALayerBase:
@ -47,9 +47,19 @@ class LoRALayerBase:
self.rank = None # set in layer implementation
self.layer_key = layer_key
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
raise NotImplementedError()
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
return self.bias
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
params = {"weight": self.get_weight(orig_module.weight)}
bias = self.get_bias(orig_module.bias)
if bias is not None:
params["bias"] = bias
return params
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
@ -57,14 +67,20 @@ class LoRALayerBase:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.bias = self.bias.to(device=device, dtype=dtype)
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
"""Log a warning if values contains unhandled keys."""
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
unknown_keys = set(values.keys()) - all_known_keys
if unknown_keys:
logger.warning(
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
)
# TODO: find and debug lora/locon with bias
@ -82,14 +98,19 @@ class LoRALayer(LoRALayerBase):
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid: Optional[torch.Tensor] = values["lora_mid.weight"]
else:
self.mid = None
self.mid = values.get("lora_mid.weight", None)
self.rank = self.down.shape[0]
self.check_keys(
values,
{
"lora_up.weight",
"lora_down.weight",
"lora_mid.weight",
},
)
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
@ -106,19 +127,14 @@ class LoRALayer(LoRALayerBase):
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype, non_blocking=non_blocking)
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.down = self.down.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
@ -136,20 +152,23 @@ class LoHALayer(LoRALayerBase):
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1: Optional[torch.Tensor] = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2: Optional[torch.Tensor] = values["hada_t2"]
else:
self.t2 = None
self.t1 = values.get("hada_t1", None)
self.t2 = values.get("hada_t2", None)
self.rank = self.w1_b.shape[0]
self.check_keys(
values,
{
"hada_w1_a",
"hada_w1_b",
"hada_w2_a",
"hada_w2_b",
"hada_t1",
"hada_t2",
},
)
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
if self.t1 is None:
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
@ -167,23 +186,18 @@ class LoHALayer(LoRALayerBase):
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
@ -202,37 +216,45 @@ class LoKRLayer(LoRALayerBase):
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1: Optional[torch.Tensor] = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1 = values.get("lokr_w1", None)
if self.w1 is None:
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2: Optional[torch.Tensor] = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w1_b = None
self.w1_a = None
self.w2 = values.get("lokr_w2", None)
if self.w2 is None:
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2: Optional[torch.Tensor] = values["lokr_t2"]
else:
self.t2 = None
self.w2_a = None
self.w2_b = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
self.t2 = values.get("lokr_t2", None)
if self.w1_b is not None:
self.rank = self.w1_b.shape[0]
elif self.w2_b is not None:
self.rank = self.w2_b.shape[0]
else:
self.rank = None # unscaled
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
self.check_keys(
values,
{
"lokr_w1",
"lokr_w1_a",
"lokr_w1_b",
"lokr_w2",
"lokr_w2_a",
"lokr_w2_b",
"lokr_t2",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
w1: Optional[torch.Tensor] = self.w1
if w1 is None:
assert self.w1_a is not None
@ -264,12 +286,7 @@ class LoKRLayer(LoRALayerBase):
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
if self.w1 is not None:
@ -277,23 +294,25 @@ class LoKRLayer(LoRALayerBase):
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t2 = self.t2.to(device=device, dtype=dtype)
class FullLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
@ -303,15 +322,12 @@ class FullLayer(LoRALayerBase):
super().__init__(layer_key, values)
self.weight = values["diff"]
if len(values.keys()) > 1:
_keys = list(values.keys())
_keys.remove("diff")
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
self.bias = values.get("diff_b", None)
self.rank = None # unscaled
self.check_keys(values, {"diff", "diff_b"})
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
@ -319,15 +335,10 @@ class FullLayer(LoRALayerBase):
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.weight = self.weight.to(device=device, dtype=dtype)
class IA3Layer(LoRALayerBase):
@ -345,8 +356,9 @@ class IA3Layer(LoRALayerBase):
self.on_input = values["on_input"]
self.rank = None # unscaled
self.check_keys(values, {"weight", "on_input"})
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
weight = self.weight
if not self.on_input:
weight = weight.reshape(-1, 1)
@ -359,19 +371,46 @@ class IA3Layer(LoRALayerBase):
model_size += self.on_input.nelement() * self.on_input.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
):
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.on_input = self.on_input.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
class NormLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["w_norm"]
self.bias = values.get("b_norm", None)
self.rank = None # unscaled
self.check_keys(values, {"w_norm", "b_norm"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
class LoRAModelRaw(RawModel): # (torch.nn.Module):
@ -390,15 +429,10 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
def name(self) -> str:
return self._name
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype, non_blocking=non_blocking)
layer.to(device=device, dtype=dtype)
def calc_size(self) -> int:
model_size = 0
@ -494,16 +528,19 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
for layer_key, values in state_dict.items():
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
# lora and locon
if "lora_down.weight" in values:
if "lora_up.weight" in values:
layer: AnyLoRALayer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
elif "hada_w1_a" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
elif "lokr_w1" in values or "lokr_w1_a" in values:
layer = LoKRLayer(layer_key, values)
# diff
@ -511,9 +548,13 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
layer = FullLayer(layer_key, values)
# ia3
elif "weight" in values and "on_input" in values:
elif "on_input" in values:
layer = IA3Layer(layer_key, values)
# norms
elif "w_norm" in values:
layer = NormLayer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")
@ -521,7 +562,7 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model

View File

@ -67,6 +67,7 @@ class ModelType(str, Enum):
IPAdapter = "ip_adapter"
CLIPVision = "clip_vision"
T2IAdapter = "t2i_adapter"
SpandrelImageToImage = "spandrel_image_to_image"
class SubModelType(str, Enum):
@ -353,7 +354,7 @@ class CLIPVisionDiffusersConfig(DiffusersConfigBase):
"""Model config for CLIPVision."""
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
format: Literal[ModelFormat.Diffusers]
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
@ -364,13 +365,24 @@ class T2IAdapterConfig(DiffusersConfigBase, ControlAdapterConfigBase):
"""Model config for T2I."""
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
format: Literal[ModelFormat.Diffusers]
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.T2IAdapter.value}.{ModelFormat.Diffusers.value}")
class SpandrelImageToImageConfig(ModelConfigBase):
"""Model config for Spandrel Image to Image models."""
type: Literal[ModelType.SpandrelImageToImage] = ModelType.SpandrelImageToImage
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
@staticmethod
def get_tag() -> Tag:
return Tag(f"{ModelType.SpandrelImageToImage.value}.{ModelFormat.Checkpoint.value}")
def get_model_discriminator_value(v: Any) -> str:
"""
Computes the discriminator value for a model config.
@ -407,6 +419,7 @@ AnyModelConfig = Annotated[
Annotated[IPAdapterInvokeAIConfig, IPAdapterInvokeAIConfig.get_tag()],
Annotated[IPAdapterCheckpointConfig, IPAdapterCheckpointConfig.get_tag()],
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
Annotated[SpandrelImageToImageConfig, SpandrelImageToImageConfig.get_tag()],
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
],
Discriminator(get_model_discriminator_value),

View File

@ -167,7 +167,8 @@ class ModelCache(ModelCacheBase[AnyModel]):
size = calc_model_size_by_data(self.logger, model)
self.make_room(size)
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) else None
running_on_cpu = self.execution_device == torch.device("cpu")
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) and not running_on_cpu else None
cache_record = CacheRecord(key=key, model=model, device=self.storage_device, state_dict=state_dict, size=size)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
@ -289,11 +290,9 @@ class ModelCache(ModelCacheBase[AnyModel]):
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(
target_device, copy=True, non_blocking=TorchDevice.get_non_blocking(target_device)
)
new_dict[k] = v.to(target_device, copy=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device, non_blocking=TorchDevice.get_non_blocking(target_device))
cache_entry.model.to(target_device)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)

View File

@ -0,0 +1,45 @@
from pathlib import Path
from typing import Optional
import torch
from invokeai.backend.model_manager.config import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
@ModelLoaderRegistry.register(
base=BaseModelType.Any, type=ModelType.SpandrelImageToImage, format=ModelFormat.Checkpoint
)
class SpandrelImageToImageModelLoader(ModelLoader):
"""Class for loading Spandrel Image-to-Image models (i.e. models wrapped by spandrel.ImageModelDescriptor)."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if submodel_type is not None:
raise ValueError("Unexpected submodel requested for Spandrel model.")
model_path = Path(config.path)
model = SpandrelImageToImageModel.load_from_file(model_path)
torch_dtype = self._torch_dtype
if not model.supports_dtype(torch_dtype):
self._logger.warning(
f"The configured dtype ('{self._torch_dtype}') is not supported by the {model.get_model_type_name()} "
"model. Falling back to 'float32'."
)
torch_dtype = torch.float32
model.to(dtype=torch_dtype)
return model

View File

@ -98,6 +98,9 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
ModelVariantType.Normal: StableDiffusionXLPipeline,
ModelVariantType.Inpaint: StableDiffusionXLInpaintPipeline,
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: StableDiffusionXLPipeline,
},
}
assert isinstance(config, MainCheckpointConfig)
try:

View File

@ -11,10 +11,14 @@ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from transformers import CLIPTokenizer
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.textual_inversion import TextualInversionModelRaw
@ -33,7 +37,18 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
elif isinstance(model, CLIPTokenizer):
# TODO(ryand): Accurately calculate the tokenizer's size. It's small enough that it shouldn't matter for now.
return 0
elif isinstance(model, (TextualInversionModelRaw, IPAdapter, LoRAModelRaw)):
elif isinstance(
model,
(
TextualInversionModelRaw,
IPAdapter,
LoRAModelRaw,
SpandrelImageToImageModel,
GroundingDinoPipeline,
SegmentAnythingPipeline,
DepthAnythingPipeline,
),
):
return model.calc_size()
else:
# TODO(ryand): Promote this from a log to an exception once we are confident that we are handling all of the

View File

@ -4,6 +4,7 @@ from pathlib import Path
from typing import Any, Dict, Literal, Optional, Union
import safetensors.torch
import spandrel
import torch
from picklescan.scanner import scan_file_path
@ -25,6 +26,7 @@ from invokeai.backend.model_manager.config import (
SchedulerPredictionType,
)
from invokeai.backend.model_manager.util.model_util import lora_token_vector_length, read_checkpoint_meta
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
from invokeai.backend.util.silence_warnings import SilenceWarnings
CkptType = Dict[str | int, Any]
@ -220,24 +222,46 @@ class ModelProbe(object):
ckpt = ckpt.get("state_dict", ckpt)
for key in [str(k) for k in ckpt.keys()]:
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
if key.startswith(("cond_stage_model.", "first_stage_model.", "model.diffusion_model.")):
return ModelType.Main
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
elif key.startswith(("encoder.conv_in", "decoder.conv_in")):
return ModelType.VAE
elif any(key.startswith(v) for v in {"lora_te_", "lora_unet_"}):
elif key.startswith(("lora_te_", "lora_unet_")):
return ModelType.LoRA
elif any(key.endswith(v) for v in {"to_k_lora.up.weight", "to_q_lora.down.weight"}):
elif key.endswith(("to_k_lora.up.weight", "to_q_lora.down.weight")):
return ModelType.LoRA
elif any(key.startswith(v) for v in {"controlnet", "control_model", "input_blocks"}):
elif key.startswith(("controlnet", "control_model", "input_blocks")):
return ModelType.ControlNet
elif any(key.startswith(v) for v in {"image_proj.", "ip_adapter."}):
elif key.startswith(("image_proj.", "ip_adapter.")):
return ModelType.IPAdapter
elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion
else:
# diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
return ModelType.TextualInversion
# diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
return ModelType.TextualInversion
# Check if the model can be loaded as a SpandrelImageToImageModel.
# This check is intentionally performed last, as it can be expensive (it requires loading the model from disk).
try:
# It would be nice to avoid having to load the Spandrel model from disk here. A couple of options were
# explored to avoid this:
# 1. Call `SpandrelImageToImageModel.load_from_state_dict(ckpt)`, where `ckpt` is a state_dict on the meta
# device. Unfortunately, some Spandrel models perform operations during initialization that are not
# supported on meta tensors.
# 2. Spandrel has internal logic to determine a model's type from its state_dict before loading the model.
# This logic is not exposed in spandrel's public API. We could copy the logic here, but then we have to
# maintain it, and the risk of false positive detections is higher.
SpandrelImageToImageModel.load_from_file(model_path)
return ModelType.SpandrelImageToImage
except spandrel.UnsupportedModelError:
pass
except RuntimeError as e:
if "No such file or directory" in str(e):
# This error is expected if the model_path does not exist (which is the case in some unit tests).
pass
else:
raise e
raise InvalidModelConfigException(f"Unable to determine model type for {model_path}")
@ -569,6 +593,11 @@ class T2IAdapterCheckpointProbe(CheckpointProbeBase):
raise NotImplementedError()
class SpandrelImageToImageCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
return BaseModelType.Any
########################################################
# classes for probing folders
#######################################################
@ -776,6 +805,11 @@ class CLIPVisionFolderProbe(FolderProbeBase):
return BaseModelType.Any
class SpandrelImageToImageFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
class T2IAdapterFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.model_path / "config.json"
@ -805,6 +839,7 @@ ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderPro
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.T2IAdapter, T2IAdapterFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.SpandrelImageToImage, SpandrelImageToImageFolderProbe)
ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.VAE, VaeCheckpointProbe)
@ -814,5 +849,6 @@ ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpoi
ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.CLIPVision, CLIPVisionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.T2IAdapter, T2IAdapterCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.SpandrelImageToImage, SpandrelImageToImageCheckpointProbe)
ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)

View File

@ -187,157 +187,171 @@ STARTER_MODELS: list[StarterModel] = [
# endregion
# region ControlNet
StarterModel(
name="QRCode Monster",
name="QRCode Monster v2 (SD1.5)",
base=BaseModelType.StableDiffusion1,
source="monster-labs/control_v1p_sd15_qrcode_monster",
description="Controlnet model that generates scannable creative QR codes",
source="monster-labs/control_v1p_sd15_qrcode_monster::v2",
description="ControlNet model that generates scannable creative QR codes",
type=ModelType.ControlNet,
),
StarterModel(
name="QRCode Monster (SDXL)",
base=BaseModelType.StableDiffusionXL,
source="monster-labs/control_v1p_sdxl_qrcode_monster",
description="ControlNet model that generates scannable creative QR codes",
type=ModelType.ControlNet,
),
StarterModel(
name="canny",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_canny",
description="Controlnet weights trained on sd-1.5 with canny conditioning.",
description="ControlNet weights trained on sd-1.5 with canny conditioning.",
type=ModelType.ControlNet,
),
StarterModel(
name="inpaint",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_inpaint",
description="Controlnet weights trained on sd-1.5 with canny conditioning, inpaint version",
description="ControlNet weights trained on sd-1.5 with canny conditioning, inpaint version",
type=ModelType.ControlNet,
),
StarterModel(
name="mlsd",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_mlsd",
description="Controlnet weights trained on sd-1.5 with canny conditioning, MLSD version",
description="ControlNet weights trained on sd-1.5 with canny conditioning, MLSD version",
type=ModelType.ControlNet,
),
StarterModel(
name="depth",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11f1p_sd15_depth",
description="Controlnet weights trained on sd-1.5 with depth conditioning",
description="ControlNet weights trained on sd-1.5 with depth conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="normal_bae",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_normalbae",
description="Controlnet weights trained on sd-1.5 with normalbae image conditioning",
description="ControlNet weights trained on sd-1.5 with normalbae image conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="seg",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_seg",
description="Controlnet weights trained on sd-1.5 with seg image conditioning",
description="ControlNet weights trained on sd-1.5 with seg image conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="lineart",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_lineart",
description="Controlnet weights trained on sd-1.5 with lineart image conditioning",
description="ControlNet weights trained on sd-1.5 with lineart image conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="lineart_anime",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15s2_lineart_anime",
description="Controlnet weights trained on sd-1.5 with anime image conditioning",
description="ControlNet weights trained on sd-1.5 with anime image conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="openpose",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_openpose",
description="Controlnet weights trained on sd-1.5 with openpose image conditioning",
description="ControlNet weights trained on sd-1.5 with openpose image conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="scribble",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_scribble",
description="Controlnet weights trained on sd-1.5 with scribble image conditioning",
description="ControlNet weights trained on sd-1.5 with scribble image conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="softedge",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11p_sd15_softedge",
description="Controlnet weights trained on sd-1.5 with soft edge conditioning",
description="ControlNet weights trained on sd-1.5 with soft edge conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="shuffle",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11e_sd15_shuffle",
description="Controlnet weights trained on sd-1.5 with shuffle image conditioning",
description="ControlNet weights trained on sd-1.5 with shuffle image conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="tile",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11f1e_sd15_tile",
description="Controlnet weights trained on sd-1.5 with tiled image conditioning",
description="ControlNet weights trained on sd-1.5 with tiled image conditioning",
type=ModelType.ControlNet,
),
StarterModel(
name="ip2p",
base=BaseModelType.StableDiffusion1,
source="lllyasviel/control_v11e_sd15_ip2p",
description="Controlnet weights trained on sd-1.5 with ip2p conditioning.",
description="ControlNet weights trained on sd-1.5 with ip2p conditioning.",
type=ModelType.ControlNet,
),
StarterModel(
name="canny-sdxl",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlnet-canny-sdxl-1.0",
description="Controlnet weights trained on sdxl-1.0 with canny conditioning, by Xinsir.",
source="xinsir/controlNet-canny-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 with canny conditioning, by Xinsir.",
type=ModelType.ControlNet,
),
StarterModel(
name="depth-sdxl",
base=BaseModelType.StableDiffusionXL,
source="diffusers/controlnet-depth-sdxl-1.0",
description="Controlnet weights trained on sdxl-1.0 with depth conditioning.",
source="diffusers/controlNet-depth-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 with depth conditioning.",
type=ModelType.ControlNet,
),
StarterModel(
name="softedge-dexined-sdxl",
base=BaseModelType.StableDiffusionXL,
source="SargeZT/controlnet-sd-xl-1.0-softedge-dexined",
description="Controlnet weights trained on sdxl-1.0 with dexined soft edge preprocessing.",
source="SargeZT/controlNet-sd-xl-1.0-softedge-dexined",
description="ControlNet weights trained on sdxl-1.0 with dexined soft edge preprocessing.",
type=ModelType.ControlNet,
),
StarterModel(
name="depth-16bit-zoe-sdxl",
base=BaseModelType.StableDiffusionXL,
source="SargeZT/controlnet-sd-xl-1.0-depth-16bit-zoe",
description="Controlnet weights trained on sdxl-1.0 with Zoe's preprocessor (16 bits).",
source="SargeZT/controlNet-sd-xl-1.0-depth-16bit-zoe",
description="ControlNet weights trained on sdxl-1.0 with Zoe's preprocessor (16 bits).",
type=ModelType.ControlNet,
),
StarterModel(
name="depth-zoe-sdxl",
base=BaseModelType.StableDiffusionXL,
source="diffusers/controlnet-zoe-depth-sdxl-1.0",
description="Controlnet weights trained on sdxl-1.0 with Zoe's preprocessor (32 bits).",
source="diffusers/controlNet-zoe-depth-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 with Zoe's preprocessor (32 bits).",
type=ModelType.ControlNet,
),
StarterModel(
name="openpose-sdxl",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlnet-openpose-sdxl-1.0",
description="Controlnet weights trained on sdxl-1.0 compatible with the DWPose processor by Xinsir.",
source="xinsir/controlNet-openpose-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 compatible with the DWPose processor by Xinsir.",
type=ModelType.ControlNet,
),
StarterModel(
name="scribble-sdxl",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlnet-scribble-sdxl-1.0",
description="Controlnet weights trained on sdxl-1.0 compatible with various lineart processors and black/white sketches by Xinsir.",
source="xinsir/controlNet-scribble-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 compatible with various lineart processors and black/white sketches by Xinsir.",
type=ModelType.ControlNet,
),
StarterModel(
name="tile-sdxl",
base=BaseModelType.StableDiffusionXL,
source="xinsir/controlNet-tile-sdxl-1.0",
description="ControlNet weights trained on sdxl-1.0 with tiled image conditioning",
type=ModelType.ControlNet,
),
# endregion
@ -399,6 +413,43 @@ STARTER_MODELS: list[StarterModel] = [
type=ModelType.T2IAdapter,
),
# endregion
# region SpandrelImageToImage
StarterModel(
name="RealESRGAN_x4plus_anime_6B",
base=BaseModelType.Any,
source="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
description="A Real-ESRGAN 4x upscaling model (optimized for anime images).",
type=ModelType.SpandrelImageToImage,
),
StarterModel(
name="RealESRGAN_x4plus",
base=BaseModelType.Any,
source="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
description="A Real-ESRGAN 4x upscaling model (general-purpose).",
type=ModelType.SpandrelImageToImage,
),
StarterModel(
name="ESRGAN_SRx4_DF2KOST_official",
base=BaseModelType.Any,
source="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
description="The official ESRGAN 4x upscaling model.",
type=ModelType.SpandrelImageToImage,
),
StarterModel(
name="RealESRGAN_x2plus",
base=BaseModelType.Any,
source="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
description="A Real-ESRGAN 2x upscaling model (general-purpose).",
type=ModelType.SpandrelImageToImage,
),
StarterModel(
name="SwinIR - realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN",
base=BaseModelType.Any,
source="https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN-with-dict-keys-params-and-params_ema.pth",
description="A SwinIR 4x upscaling model.",
type=ModelType.SpandrelImageToImage,
),
# endregion
]
assert len(STARTER_MODELS) == len({m.source for m in STARTER_MODELS}), "Duplicate starter models"

View File

@ -5,7 +5,7 @@ from __future__ import annotations
import pickle
from contextlib import contextmanager
from typing import Any, Dict, Generator, Iterator, List, Optional, Tuple, Union
from typing import Any, Dict, Generator, Iterator, List, Optional, Tuple, Type, Union
import numpy as np
import torch
@ -17,8 +17,9 @@ from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import AnyModel
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from invokeai.backend.stable_diffusion.extensions.lora import LoRAExt
from invokeai.backend.textual_inversion import TextualInversionManager, TextualInversionModelRaw
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
"""
loras = [
@ -32,8 +33,27 @@ with LoRAHelper.apply_lora_unet(unet, loras):
"""
# TODO: rename smth like ModelPatcher and add TI method?
class ModelPatcher:
@staticmethod
@contextmanager
def patch_unet_attention_processor(unet: UNet2DConditionModel, processor_cls: Type[Any]):
"""A context manager that patches `unet` with the provided attention processor.
Args:
unet (UNet2DConditionModel): The UNet model to patch.
processor (Type[Any]): Class which will be initialized for each key and passed to set_attn_processor(...).
"""
unet_orig_processors = unet.attn_processors
# create separate instance for each attention, to be able modify each attention separately
unet_new_processors = {key: processor_cls() for key in unet_orig_processors.keys()}
try:
unet.set_attn_processor(unet_new_processors)
yield None
finally:
unet.set_attn_processor(unet_orig_processors)
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
@ -66,13 +86,13 @@ class ModelPatcher:
cls,
unet: UNet2DConditionModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(
unet,
loras=loras,
prefix="lora_unet_",
model_state_dict=model_state_dict,
cached_weights=cached_weights,
):
yield
@ -82,9 +102,9 @@ class ModelPatcher:
cls,
text_encoder: CLIPTextModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", model_state_dict=model_state_dict):
with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", cached_weights=cached_weights):
yield
@classmethod
@ -94,7 +114,7 @@ class ModelPatcher:
model: AnyModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
prefix: str,
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
"""
Apply one or more LoRAs to a model.
@ -102,71 +122,26 @@ class ModelPatcher:
:param model: The model to patch.
:param loras: An iterator that returns the LoRA to patch in and its patch weight.
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
:model_state_dict: Read-only copy of the model's state dict in CPU, for unpatching purposes.
:cached_weights: Read-only copy of the model's state dict in CPU, for unpatching purposes.
"""
original_weights = {}
original_weights = OriginalWeightsStorage(cached_weights)
try:
with torch.no_grad():
for lora, lora_weight in loras:
# assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
for lora_model, lora_weight in loras:
LoRAExt.patch_model(
model=model,
prefix=prefix,
lora=lora_model,
lora_weight=lora_weight,
original_weights=original_weights,
)
del lora_model
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
# should be improved in the following ways:
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
# LoRA model is applied.
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
# weights to have valid keys.
assert isinstance(model, torch.nn.Module)
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
# All of the LoRA weight calculations will be done on the same device as the module weight.
# (Performance will be best if this is a CUDA device.)
device = module.weight.device
dtype = module.weight.dtype
if module_key not in original_weights:
if model_state_dict is not None: # we were provided with the CPU copy of the state dict
original_weights[module_key] = model_state_dict[module_key + ".weight"]
else:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(dtype=torch.float32, non_blocking=TorchDevice.get_non_blocking(device))
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(
device=TorchDevice.CPU_DEVICE,
non_blocking=TorchDevice.get_non_blocking(TorchDevice.CPU_DEVICE),
)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
if module.weight.shape != layer_weight.shape:
# TODO: debug on lycoris
assert hasattr(layer_weight, "reshape")
layer_weight = layer_weight.reshape(module.weight.shape)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
module.weight += layer_weight.to(dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
yield # wait for context manager exit
yield
finally:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(
weight, non_blocking=TorchDevice.get_non_blocking(weight.device)
)
for param_key, weight in original_weights.get_changed_weights():
model.get_parameter(param_key).copy_(weight)
@classmethod
@contextmanager

View File

@ -190,12 +190,7 @@ class IAIOnnxRuntimeModel(RawModel):
return self.session.run(None, inputs)
# compatability with RawModel ABC
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
pass
# compatability with diffusers load code

View File

@ -1,15 +1,3 @@
"""Base class for 'Raw' models.
The RawModel class is the base class of LoRAModelRaw and TextualInversionModelRaw,
and is used for type checking of calls to the model patcher. Its main purpose
is to avoid a circular import issues when lora.py tries to import BaseModelType
from invokeai.backend.model_manager.config, and the latter tries to import LoRAModelRaw
from lora.py.
The term 'raw' was introduced to describe a wrapper around a torch.nn.Module
that adds additional methods and attributes.
"""
from abc import ABC, abstractmethod
from typing import Optional
@ -17,13 +5,18 @@ import torch
class RawModel(ABC):
"""Abstract base class for 'Raw' model wrappers."""
"""Base class for 'Raw' models.
The RawModel class is the base class of LoRAModelRaw, TextualInversionModelRaw, etc.
and is used for type checking of calls to the model patcher. Its main purpose
is to avoid a circular import issues when lora.py tries to import BaseModelType
from invokeai.backend.model_manager.config, and the latter tries to import LoRAModelRaw
from lora.py.
The term 'raw' was introduced to describe a wrapper around a torch.nn.Module
that adds additional methods and attributes.
"""
@abstractmethod
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
pass

View File

@ -0,0 +1,139 @@
from pathlib import Path
from typing import Any, Optional
import numpy as np
import torch
from PIL import Image
from spandrel import ImageModelDescriptor, ModelLoader
from invokeai.backend.raw_model import RawModel
class SpandrelImageToImageModel(RawModel):
"""A wrapper for a Spandrel Image-to-Image model.
The main reason for having a wrapper class is to integrate with the type handling of RawModel.
"""
def __init__(self, spandrel_model: ImageModelDescriptor[Any]):
self._spandrel_model = spandrel_model
@staticmethod
def pil_to_tensor(image: Image.Image) -> torch.Tensor:
"""Convert PIL Image to the torch.Tensor format expected by SpandrelImageToImageModel.run().
Args:
image (Image.Image): A PIL Image with shape (H, W, C) and values in the range [0, 255].
Returns:
torch.Tensor: A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
"""
image_np = np.array(image)
# (H, W, C) -> (C, H, W)
image_np = np.transpose(image_np, (2, 0, 1))
image_np = image_np / 255
image_tensor = torch.from_numpy(image_np).float()
# (C, H, W) -> (N, C, H, W)
image_tensor = image_tensor.unsqueeze(0)
return image_tensor
@staticmethod
def tensor_to_pil(tensor: torch.Tensor) -> Image.Image:
"""Convert a torch.Tensor produced by SpandrelImageToImageModel.run() to a PIL Image.
Args:
tensor (torch.Tensor): A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
Returns:
Image.Image: A PIL Image with shape (H, W, C) and values in the range [0, 255].
"""
# (N, C, H, W) -> (C, H, W)
tensor = tensor.squeeze(0)
# (C, H, W) -> (H, W, C)
tensor = tensor.permute(1, 2, 0)
tensor = tensor.clamp(0, 1)
tensor = (tensor * 255).cpu().detach().numpy().astype(np.uint8)
image = Image.fromarray(tensor)
return image
def run(self, image_tensor: torch.Tensor) -> torch.Tensor:
"""Run the image-to-image model.
Args:
image_tensor (torch.Tensor): A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
"""
return self._spandrel_model(image_tensor)
@classmethod
def load_from_file(cls, file_path: str | Path):
model = ModelLoader().load_from_file(file_path)
if not isinstance(model, ImageModelDescriptor):
raise ValueError(
f"Loaded a spandrel model of type '{type(model)}'. Only image-to-image models are supported "
"('ImageModelDescriptor')."
)
return cls(spandrel_model=model)
@classmethod
def load_from_state_dict(cls, state_dict: dict[str, torch.Tensor]):
model = ModelLoader().load_from_state_dict(state_dict)
if not isinstance(model, ImageModelDescriptor):
raise ValueError(
f"Loaded a spandrel model of type '{type(model)}'. Only image-to-image models are supported "
"('ImageModelDescriptor')."
)
return cls(spandrel_model=model)
def supports_dtype(self, dtype: torch.dtype) -> bool:
"""Check if the model supports the given dtype."""
if dtype == torch.float16:
return self._spandrel_model.supports_half
elif dtype == torch.bfloat16:
return self._spandrel_model.supports_bfloat16
elif dtype == torch.float32:
# All models support float32.
return True
else:
raise ValueError(f"Unexpected dtype '{dtype}'.")
def get_model_type_name(self) -> str:
"""The model type name. Intended for logging / debugging purposes. Do not rely on this field remaining
consistent over time.
"""
return str(type(self._spandrel_model.model))
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
"""Note: Some models have limited dtype support. Call supports_dtype(...) to check if the dtype is supported.
Note: The non_blocking parameter is currently ignored."""
# TODO(ryand): spandrel.ImageModelDescriptor.to(...) does not support non_blocking. We will have to access the
# model directly if we want to apply this optimization.
self._spandrel_model.to(device=device, dtype=dtype)
@property
def device(self) -> torch.device:
"""The device of the underlying model."""
return self._spandrel_model.device
@property
def dtype(self) -> torch.dtype:
"""The dtype of the underlying model."""
return self._spandrel_model.dtype
@property
def scale(self) -> int:
"""The scale of the model (e.g. 1x, 2x, 4x, etc.)."""
return self._spandrel_model.scale
def calc_size(self) -> int:
"""Get size of the model in memory in bytes."""
# HACK(ryand): Fix this issue with circular imports.
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._spandrel_model.model)

View File

@ -7,11 +7,9 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import ( # noqa: F401
StableDiffusionGeneratorPipeline,
)
from invokeai.backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent # noqa: F401
from invokeai.backend.stable_diffusion.seamless import set_seamless # noqa: F401
__all__ = [
"PipelineIntermediateState",
"StableDiffusionGeneratorPipeline",
"InvokeAIDiffuserComponent",
"set_seamless",
]

View File

@ -0,0 +1,131 @@
from __future__ import annotations
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Type, Union
import torch
from diffusers import UNet2DConditionModel
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode, TextConditioningData
@dataclass
class UNetKwargs:
sample: torch.Tensor
timestep: Union[torch.Tensor, float, int]
encoder_hidden_states: torch.Tensor
class_labels: Optional[torch.Tensor] = None
timestep_cond: Optional[torch.Tensor] = None
attention_mask: Optional[torch.Tensor] = None
cross_attention_kwargs: Optional[Dict[str, Any]] = None
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None
mid_block_additional_residual: Optional[torch.Tensor] = None
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None
encoder_attention_mask: Optional[torch.Tensor] = None
# return_dict: bool = True
@dataclass
class DenoiseInputs:
"""Initial variables passed to denoise. Supposed to be unchanged."""
# The latent-space image to denoise.
# Shape: [batch, channels, latent_height, latent_width]
# - If we are inpainting, this is the initial latent image before noise has been added.
# - If we are generating a new image, this should be initialized to zeros.
# - In some cases, this may be a partially-noised latent image (e.g. when running the SDXL refiner).
orig_latents: torch.Tensor
# kwargs forwarded to the scheduler.step() method.
scheduler_step_kwargs: dict[str, Any]
# Text conditionging data.
conditioning_data: TextConditioningData
# Noise used for two purposes:
# 1. Used by the scheduler to noise the initial `latents` before denoising.
# 2. Used to noise the `masked_latents` when inpainting.
# `noise` should be None if the `latents` tensor has already been noised.
# Shape: [1 or batch, channels, latent_height, latent_width]
noise: Optional[torch.Tensor]
# The seed used to generate the noise for the denoising process.
# HACK(ryand): seed is only used in a particular case when `noise` is None, but we need to re-generate the
# same noise used earlier in the pipeline. This should really be handled in a clearer way.
seed: int
# The timestep schedule for the denoising process.
timesteps: torch.Tensor
# The first timestep in the schedule. This is used to determine the initial noise level, so
# should be populated if you want noise applied *even* if timesteps is empty.
init_timestep: torch.Tensor
# Class of attention processor that is used.
attention_processor_cls: Type[Any]
@dataclass
class DenoiseContext:
"""Context with all variables in denoise"""
# Initial variables passed to denoise. Supposed to be unchanged.
inputs: DenoiseInputs
# Scheduler which used to apply noise predictions.
scheduler: SchedulerMixin
# UNet model.
unet: Optional[UNet2DConditionModel] = None
# Current state of latent-space image in denoising process.
# None until `PRE_DENOISE_LOOP` callback.
# Shape: [batch, channels, latent_height, latent_width]
latents: Optional[torch.Tensor] = None
# Current denoising step index.
# None until `PRE_STEP` callback.
step_index: Optional[int] = None
# Current denoising step timestep.
# None until `PRE_STEP` callback.
timestep: Optional[torch.Tensor] = None
# Arguments which will be passed to UNet model.
# Available in `PRE_UNET`/`POST_UNET` callbacks, otherwise will be None.
unet_kwargs: Optional[UNetKwargs] = None
# SchedulerOutput class returned from step function(normally, generated by scheduler).
# Supposed to be used only in `POST_STEP` callback, otherwise can be None.
step_output: Optional[SchedulerOutput] = None
# Scaled version of `latents`, which will be passed to unet_kwargs initialization.
# Available in events inside step(between `PRE_STEP` and `POST_STEP`).
# Shape: [batch, channels, latent_height, latent_width]
latent_model_input: Optional[torch.Tensor] = None
# [TMP] Defines on which conditionings current unet call will be runned.
# Available in `PRE_UNET`/`POST_UNET` callbacks, otherwise will be None.
conditioning_mode: Optional[ConditioningMode] = None
# [TMP] Noise predictions from negative conditioning.
# Available in `POST_COMBINE_NOISE_PREDS` callback, otherwise will be None.
# Shape: [batch, channels, latent_height, latent_width]
negative_noise_pred: Optional[torch.Tensor] = None
# [TMP] Noise predictions from positive conditioning.
# Available in `POST_COMBINE_NOISE_PREDS` callback, otherwise will be None.
# Shape: [batch, channels, latent_height, latent_width]
positive_noise_pred: Optional[torch.Tensor] = None
# Combined noise prediction from passed conditionings.
# Available in `POST_COMBINE_NOISE_PREDS` callback, otherwise will be None.
# Shape: [batch, channels, latent_height, latent_width]
noise_pred: Optional[torch.Tensor] = None
# Dictionary for extensions to pass extra info about denoise process to other extensions.
extra: dict = field(default_factory=dict)

View File

@ -23,21 +23,12 @@ from invokeai.app.services.config.config_default import get_config
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
from invokeai.backend.stable_diffusion.extensions.preview import PipelineIntermediateState
from invokeai.backend.util.attention import auto_detect_slice_size
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
@dataclass
class PipelineIntermediateState:
step: int
order: int
total_steps: int
timestep: int
latents: torch.Tensor
predicted_original: Optional[torch.Tensor] = None
@dataclass
class AddsMaskGuidance:
mask: torch.Tensor

View File

@ -1,10 +1,17 @@
from __future__ import annotations
import math
from dataclasses import dataclass
from typing import List, Optional, Union
from enum import Enum
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import torch
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData
if TYPE_CHECKING:
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.stable_diffusion.denoise_context import UNetKwargs
@dataclass
@ -95,6 +102,12 @@ class TextConditioningRegions:
assert self.masks.shape[1] == len(self.ranges)
class ConditioningMode(Enum):
Both = "both"
Negative = "negative"
Positive = "positive"
class TextConditioningData:
def __init__(
self,
@ -103,7 +116,7 @@ class TextConditioningData:
uncond_regions: Optional[TextConditioningRegions],
cond_regions: Optional[TextConditioningRegions],
guidance_scale: Union[float, List[float]],
guidance_rescale_multiplier: float = 0,
guidance_rescale_multiplier: float = 0, # TODO: old backend, remove
):
self.uncond_text = uncond_text
self.cond_text = cond_text
@ -114,6 +127,7 @@ class TextConditioningData:
# Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
# images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
self.guidance_scale = guidance_scale
# TODO: old backend, remove
# For models trained using zero-terminal SNR ("ztsnr"), it's suggested to use guidance_rescale_multiplier of 0.7.
# See [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
self.guidance_rescale_multiplier = guidance_rescale_multiplier
@ -121,3 +135,114 @@ class TextConditioningData:
def is_sdxl(self):
assert isinstance(self.uncond_text, SDXLConditioningInfo) == isinstance(self.cond_text, SDXLConditioningInfo)
return isinstance(self.cond_text, SDXLConditioningInfo)
def to_unet_kwargs(self, unet_kwargs: UNetKwargs, conditioning_mode: ConditioningMode):
"""Fills unet arguments with data from provided conditionings.
Args:
unet_kwargs (UNetKwargs): Object which stores UNet model arguments.
conditioning_mode (ConditioningMode): Describes which conditionings should be used.
"""
_, _, h, w = unet_kwargs.sample.shape
device = unet_kwargs.sample.device
dtype = unet_kwargs.sample.dtype
# TODO: combine regions with conditionings
if conditioning_mode == ConditioningMode.Both:
conditionings = [self.uncond_text, self.cond_text]
c_regions = [self.uncond_regions, self.cond_regions]
elif conditioning_mode == ConditioningMode.Positive:
conditionings = [self.cond_text]
c_regions = [self.cond_regions]
elif conditioning_mode == ConditioningMode.Negative:
conditionings = [self.uncond_text]
c_regions = [self.uncond_regions]
else:
raise ValueError(f"Unexpected conditioning mode: {conditioning_mode}")
encoder_hidden_states, encoder_attention_mask = self._concat_conditionings_for_batch(
[c.embeds for c in conditionings]
)
unet_kwargs.encoder_hidden_states = encoder_hidden_states
unet_kwargs.encoder_attention_mask = encoder_attention_mask
if self.is_sdxl():
added_cond_kwargs = dict( # noqa: C408
text_embeds=torch.cat([c.pooled_embeds for c in conditionings]),
time_ids=torch.cat([c.add_time_ids for c in conditionings]),
)
unet_kwargs.added_cond_kwargs = added_cond_kwargs
if any(r is not None for r in c_regions):
tmp_regions = []
for c, r in zip(conditionings, c_regions, strict=True):
if r is None:
r = TextConditioningRegions(
masks=torch.ones((1, 1, h, w), dtype=dtype),
ranges=[Range(start=0, end=c.embeds.shape[1])],
)
tmp_regions.append(r)
if unet_kwargs.cross_attention_kwargs is None:
unet_kwargs.cross_attention_kwargs = {}
unet_kwargs.cross_attention_kwargs.update(
regional_prompt_data=RegionalPromptData(regions=tmp_regions, device=device, dtype=dtype),
)
@staticmethod
def _pad_zeros(t: torch.Tensor, pad_shape: tuple, dim: int) -> torch.Tensor:
return torch.cat([t, torch.zeros(pad_shape, device=t.device, dtype=t.dtype)], dim=dim)
@classmethod
def _pad_conditioning(
cls,
cond: torch.Tensor,
target_len: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Pad provided conditioning tensor to target_len by zeros and returns mask of unpadded bytes.
Args:
cond (torch.Tensor): Conditioning tensor which to pads by zeros.
target_len (int): To which length(tokens count) pad tensor.
"""
conditioning_attention_mask = torch.ones((cond.shape[0], cond.shape[1]), device=cond.device, dtype=cond.dtype)
if cond.shape[1] < target_len:
conditioning_attention_mask = cls._pad_zeros(
conditioning_attention_mask,
pad_shape=(cond.shape[0], target_len - cond.shape[1]),
dim=1,
)
cond = cls._pad_zeros(
cond,
pad_shape=(cond.shape[0], target_len - cond.shape[1], cond.shape[2]),
dim=1,
)
return cond, conditioning_attention_mask
@classmethod
def _concat_conditionings_for_batch(
cls,
conditionings: List[torch.Tensor],
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Concatenate provided conditioning tensors to one batched tensor.
If tensors have different sizes then pad them by zeros and creates
encoder_attention_mask to exclude padding from attention.
Args:
conditionings (List[torch.Tensor]): List of conditioning tensors to concatenate.
"""
encoder_attention_mask = None
max_len = max([c.shape[1] for c in conditionings])
if any(c.shape[1] != max_len for c in conditionings):
encoder_attention_masks = [None] * len(conditionings)
for i in range(len(conditionings)):
conditionings[i], encoder_attention_masks[i] = cls._pad_conditioning(conditionings[i], max_len)
encoder_attention_mask = torch.cat(encoder_attention_masks)
return torch.cat(conditionings), encoder_attention_mask

View File

@ -1,9 +1,14 @@
from __future__ import annotations
from typing import TYPE_CHECKING
import torch
import torch.nn.functional as F
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningRegions,
)
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
TextConditioningRegions,
)
class RegionalPromptData:

View File

@ -0,0 +1,142 @@
from __future__ import annotations
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
from tqdm.auto import tqdm
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, UNetKwargs
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
class StableDiffusionBackend:
def __init__(
self,
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
):
self.unet = unet
self.scheduler = scheduler
config = get_config()
self._sequential_guidance = config.sequential_guidance
def latents_from_embeddings(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
if ctx.inputs.init_timestep.shape[0] == 0:
return ctx.inputs.orig_latents
ctx.latents = ctx.inputs.orig_latents.clone()
if ctx.inputs.noise is not None:
batch_size = ctx.latents.shape[0]
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
ctx.latents = ctx.scheduler.add_noise(
ctx.latents, ctx.inputs.noise, ctx.inputs.init_timestep.expand(batch_size)
)
# if no work to do, return latents
if ctx.inputs.timesteps.shape[0] == 0:
return ctx.latents
# ext: inpaint[pre_denoise_loop, priority=normal] (maybe init, but not sure if it needed)
# ext: preview[pre_denoise_loop, priority=low]
ext_manager.run_callback(ExtensionCallbackType.PRE_DENOISE_LOOP, ctx)
for ctx.step_index, ctx.timestep in enumerate(tqdm(ctx.inputs.timesteps)): # noqa: B020
# ext: inpaint (apply mask to latents on non-inpaint models)
ext_manager.run_callback(ExtensionCallbackType.PRE_STEP, ctx)
# ext: tiles? [override: step]
ctx.step_output = self.step(ctx, ext_manager)
# ext: inpaint[post_step, priority=high] (apply mask to preview on non-inpaint models)
# ext: preview[post_step, priority=low]
ext_manager.run_callback(ExtensionCallbackType.POST_STEP, ctx)
ctx.latents = ctx.step_output.prev_sample
# ext: inpaint[post_denoise_loop] (restore unmasked part)
ext_manager.run_callback(ExtensionCallbackType.POST_DENOISE_LOOP, ctx)
return ctx.latents
@torch.inference_mode()
def step(self, ctx: DenoiseContext, ext_manager: ExtensionsManager) -> SchedulerOutput:
ctx.latent_model_input = ctx.scheduler.scale_model_input(ctx.latents, ctx.timestep)
# TODO: conditionings as list(conditioning_data.to_unet_kwargs - ready)
# Note: The current handling of conditioning doesn't feel very future-proof.
# This might change in the future as new requirements come up, but for now,
# this is the rough plan.
if self._sequential_guidance:
ctx.negative_noise_pred = self.run_unet(ctx, ext_manager, ConditioningMode.Negative)
ctx.positive_noise_pred = self.run_unet(ctx, ext_manager, ConditioningMode.Positive)
else:
both_noise_pred = self.run_unet(ctx, ext_manager, ConditioningMode.Both)
ctx.negative_noise_pred, ctx.positive_noise_pred = both_noise_pred.chunk(2)
# ext: override combine_noise_preds
ctx.noise_pred = self.combine_noise_preds(ctx)
# ext: cfg_rescale [modify_noise_prediction]
# TODO: rename
ext_manager.run_callback(ExtensionCallbackType.POST_COMBINE_NOISE_PREDS, ctx)
# compute the previous noisy sample x_t -> x_t-1
step_output = ctx.scheduler.step(ctx.noise_pred, ctx.timestep, ctx.latents, **ctx.inputs.scheduler_step_kwargs)
# clean up locals
ctx.latent_model_input = None
ctx.negative_noise_pred = None
ctx.positive_noise_pred = None
ctx.noise_pred = None
return step_output
@staticmethod
def combine_noise_preds(ctx: DenoiseContext) -> torch.Tensor:
guidance_scale = ctx.inputs.conditioning_data.guidance_scale
if isinstance(guidance_scale, list):
guidance_scale = guidance_scale[ctx.step_index]
# Note: Although this `torch.lerp(...)` line is logically equivalent to the current CFG line, it seems to result
# in slightly different outputs. It is suspected that this is caused by small precision differences.
# return torch.lerp(ctx.negative_noise_pred, ctx.positive_noise_pred, guidance_scale)
return ctx.negative_noise_pred + guidance_scale * (ctx.positive_noise_pred - ctx.negative_noise_pred)
def run_unet(self, ctx: DenoiseContext, ext_manager: ExtensionsManager, conditioning_mode: ConditioningMode):
sample = ctx.latent_model_input
if conditioning_mode == ConditioningMode.Both:
sample = torch.cat([sample] * 2)
ctx.unet_kwargs = UNetKwargs(
sample=sample,
timestep=ctx.timestep,
encoder_hidden_states=None, # set later by conditoning
cross_attention_kwargs=dict( # noqa: C408
percent_through=ctx.step_index / len(ctx.inputs.timesteps),
),
)
ctx.conditioning_mode = conditioning_mode
ctx.inputs.conditioning_data.to_unet_kwargs(ctx.unet_kwargs, ctx.conditioning_mode)
# ext: controlnet/ip/t2i [pre_unet]
ext_manager.run_callback(ExtensionCallbackType.PRE_UNET, ctx)
# ext: inpaint [pre_unet, priority=low]
# or
# ext: inpaint [override: unet_forward]
noise_pred = self._unet_forward(**vars(ctx.unet_kwargs))
ext_manager.run_callback(ExtensionCallbackType.POST_UNET, ctx)
# clean up locals
ctx.unet_kwargs = None
ctx.conditioning_mode = None
return noise_pred
def _unet_forward(self, **kwargs) -> torch.Tensor:
return self.unet(**kwargs).sample

View File

@ -0,0 +1,12 @@
from enum import Enum
class ExtensionCallbackType(Enum):
SETUP = "setup"
PRE_DENOISE_LOOP = "pre_denoise_loop"
POST_DENOISE_LOOP = "post_denoise_loop"
PRE_STEP = "pre_step"
POST_STEP = "post_step"
PRE_UNET = "pre_unet"
POST_UNET = "post_unet"
POST_COMBINE_NOISE_PREDS = "post_combine_noise_preds"

View File

@ -0,0 +1,72 @@
from __future__ import annotations
from contextlib import contextmanager
from dataclasses import dataclass
from typing import TYPE_CHECKING, Callable, Dict, List
from diffusers import UNet2DConditionModel
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
@dataclass
class CallbackMetadata:
callback_type: ExtensionCallbackType
order: int
@dataclass
class CallbackFunctionWithMetadata:
metadata: CallbackMetadata
function: Callable[[DenoiseContext], None]
def callback(callback_type: ExtensionCallbackType, order: int = 0):
def _decorator(function):
function._ext_metadata = CallbackMetadata(
callback_type=callback_type,
order=order,
)
return function
return _decorator
class ExtensionBase:
def __init__(self):
self._callbacks: Dict[ExtensionCallbackType, List[CallbackFunctionWithMetadata]] = {}
# Register all of the callback methods for this instance.
for func_name in dir(self):
func = getattr(self, func_name)
metadata = getattr(func, "_ext_metadata", None)
if metadata is not None and isinstance(metadata, CallbackMetadata):
if metadata.callback_type not in self._callbacks:
self._callbacks[metadata.callback_type] = []
self._callbacks[metadata.callback_type].append(CallbackFunctionWithMetadata(metadata, func))
def get_callbacks(self):
return self._callbacks
@contextmanager
def patch_extension(self, ctx: DenoiseContext):
yield None
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, original_weights: OriginalWeightsStorage):
"""A context manager for applying patches to the UNet model. The context manager's lifetime spans the entire
diffusion process. Weight unpatching is handled upstream, and is achieved by saving unchanged weights by
`original_weights.save` function. Note that this enables some performance optimization by avoiding redundant
operations. All other patches (e.g. changes to tensor shapes, function monkey-patches, etc.) should be unpatched
by this context manager.
Args:
unet (UNet2DConditionModel): The UNet model on execution device to patch.
original_weights (OriginalWeightsStorage): A storage with copy of the model's original weights in CPU, for
unpatching purposes. Extension should save tensor which being modified in this storage, also extensions
can access original weights values.
"""
yield

View File

@ -0,0 +1,158 @@
from __future__ import annotations
import math
from contextlib import contextmanager
from typing import TYPE_CHECKING, List, Optional, Union
import torch
from PIL.Image import Image
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, prepare_control_image
from invokeai.backend.stable_diffusion.denoise_context import UNetKwargs
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
from invokeai.backend.util.hotfixes import ControlNetModel
class ControlNetExt(ExtensionBase):
def __init__(
self,
model: ControlNetModel,
image: Image,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
control_mode: CONTROLNET_MODE_VALUES,
resize_mode: CONTROLNET_RESIZE_VALUES,
):
super().__init__()
self._model = model
self._image = image
self._weight = weight
self._begin_step_percent = begin_step_percent
self._end_step_percent = end_step_percent
self._control_mode = control_mode
self._resize_mode = resize_mode
self._image_tensor: Optional[torch.Tensor] = None
@contextmanager
def patch_extension(self, ctx: DenoiseContext):
original_processors = self._model.attn_processors
try:
self._model.set_attn_processor(ctx.inputs.attention_processor_cls())
yield None
finally:
self._model.set_attn_processor(original_processors)
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def resize_image(self, ctx: DenoiseContext):
_, _, latent_height, latent_width = ctx.latents.shape
image_height = latent_height * LATENT_SCALE_FACTOR
image_width = latent_width * LATENT_SCALE_FACTOR
self._image_tensor = prepare_control_image(
image=self._image,
do_classifier_free_guidance=False,
width=image_width,
height=image_height,
device=ctx.latents.device,
dtype=ctx.latents.dtype,
control_mode=self._control_mode,
resize_mode=self._resize_mode,
)
@callback(ExtensionCallbackType.PRE_UNET)
def pre_unet_step(self, ctx: DenoiseContext):
# skip if model not active in current step
total_steps = len(ctx.inputs.timesteps)
first_step = math.floor(self._begin_step_percent * total_steps)
last_step = math.ceil(self._end_step_percent * total_steps)
if ctx.step_index < first_step or ctx.step_index > last_step:
return
# convert mode to internal flags
soft_injection = self._control_mode in ["more_prompt", "more_control"]
cfg_injection = self._control_mode in ["more_control", "unbalanced"]
# no negative conditioning in cfg_injection mode
if cfg_injection:
if ctx.conditioning_mode == ConditioningMode.Negative:
return
down_samples, mid_sample = self._run(ctx, soft_injection, ConditioningMode.Positive)
if ctx.conditioning_mode == ConditioningMode.Both:
# add zeros as samples for negative conditioning
down_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_samples]
mid_sample = torch.cat([torch.zeros_like(mid_sample), mid_sample])
else:
down_samples, mid_sample = self._run(ctx, soft_injection, ctx.conditioning_mode)
if (
ctx.unet_kwargs.down_block_additional_residuals is None
and ctx.unet_kwargs.mid_block_additional_residual is None
):
ctx.unet_kwargs.down_block_additional_residuals = down_samples
ctx.unet_kwargs.mid_block_additional_residual = mid_sample
else:
# add controlnet outputs together if have multiple controlnets
ctx.unet_kwargs.down_block_additional_residuals = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(
ctx.unet_kwargs.down_block_additional_residuals, down_samples, strict=True
)
]
ctx.unet_kwargs.mid_block_additional_residual += mid_sample
def _run(self, ctx: DenoiseContext, soft_injection: bool, conditioning_mode: ConditioningMode):
total_steps = len(ctx.inputs.timesteps)
model_input = ctx.latent_model_input
image_tensor = self._image_tensor
if conditioning_mode == ConditioningMode.Both:
model_input = torch.cat([model_input] * 2)
image_tensor = torch.cat([image_tensor] * 2)
cn_unet_kwargs = UNetKwargs(
sample=model_input,
timestep=ctx.timestep,
encoder_hidden_states=None, # set later by conditioning
cross_attention_kwargs=dict( # noqa: C408
percent_through=ctx.step_index / total_steps,
),
)
ctx.inputs.conditioning_data.to_unet_kwargs(cn_unet_kwargs, conditioning_mode=conditioning_mode)
# get static weight, or weight corresponding to current step
weight = self._weight
if isinstance(weight, list):
weight = weight[ctx.step_index]
tmp_kwargs = vars(cn_unet_kwargs)
# Remove kwargs not related to ControlNet unet
# ControlNet guidance fields
del tmp_kwargs["down_block_additional_residuals"]
del tmp_kwargs["mid_block_additional_residual"]
# T2i Adapter guidance fields
del tmp_kwargs["down_intrablock_additional_residuals"]
# controlnet(s) inference
down_samples, mid_sample = self._model(
controlnet_cond=image_tensor,
conditioning_scale=weight, # controlnet specific, NOT the guidance scale
guess_mode=soft_injection, # this is still called guess_mode in diffusers ControlNetModel
return_dict=False,
**vars(cn_unet_kwargs),
)
return down_samples, mid_sample

View File

@ -0,0 +1,35 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import TYPE_CHECKING
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
if TYPE_CHECKING:
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
class FreeUExt(ExtensionBase):
def __init__(
self,
freeu_config: FreeUConfig,
):
super().__init__()
self._freeu_config = freeu_config
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, original_weights: OriginalWeightsStorage):
unet.enable_freeu(
b1=self._freeu_config.b1,
b2=self._freeu_config.b2,
s1=self._freeu_config.s1,
s2=self._freeu_config.s2,
)
try:
yield
finally:
unet.disable_freeu()

View File

@ -0,0 +1,120 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Optional
import einops
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class InpaintExt(ExtensionBase):
"""An extension for inpainting with non-inpainting models. See `InpaintModelExt` for inpainting with inpainting
models.
"""
def __init__(
self,
mask: torch.Tensor,
is_gradient_mask: bool,
):
"""Initialize InpaintExt.
Args:
mask (torch.Tensor): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are
expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be
inpainted.
is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range
from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or
1.
"""
super().__init__()
self._mask = mask
self._is_gradient_mask = is_gradient_mask
# Noise, which used to noisify unmasked part of image
# if noise provided to context, then it will be used
# if no noise provided, then noise will be generated based on seed
self._noise: Optional[torch.Tensor] = None
@staticmethod
def _is_normal_model(unet: UNet2DConditionModel):
"""Checks if the provided UNet belongs to a regular model.
The `in_channels` of a UNet vary depending on model type:
- normal - 4
- depth - 5
- inpaint - 9
"""
return unet.conv_in.in_channels == 4
def _apply_mask(self, ctx: DenoiseContext, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
batch_size = latents.size(0)
mask = einops.repeat(self._mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
if t.dim() == 0:
# some schedulers expect t to be one-dimensional.
# TODO: file diffusers bug about inconsistency?
t = einops.repeat(t, "-> batch", batch=batch_size)
# Noise shouldn't be re-randomized between steps here. The multistep schedulers
# get very confused about what is happening from step to step when we do that.
mask_latents = ctx.scheduler.add_noise(ctx.inputs.orig_latents, self._noise, t)
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
if self._is_gradient_mask:
threshold = (t.item()) / ctx.scheduler.config.num_train_timesteps
mask_bool = mask < 1 - threshold
masked_input = torch.where(mask_bool, latents, mask_latents)
else:
masked_input = torch.lerp(latents, mask_latents.to(dtype=latents.dtype), mask.to(dtype=latents.dtype))
return masked_input
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def init_tensors(self, ctx: DenoiseContext):
if not self._is_normal_model(ctx.unet):
raise ValueError(
"InpaintExt should be used only on normal (non-inpainting) models. This could be caused by an "
"inpainting model that was incorrectly marked as a non-inpainting model. In some cases, this can be "
"fixed by removing and re-adding the model (so that it gets re-probed)."
)
self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
self._noise = ctx.inputs.noise
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
# We still need noise for inpainting, so we generate it from the seed here.
if self._noise is None:
self._noise = torch.randn(
ctx.latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(ctx.seed),
).to(device=ctx.latents.device, dtype=ctx.latents.dtype)
# Use negative order to make extensions with default order work with patched latents
@callback(ExtensionCallbackType.PRE_STEP, order=-100)
def apply_mask_to_initial_latents(self, ctx: DenoiseContext):
ctx.latents = self._apply_mask(ctx, ctx.latents, ctx.timestep)
# TODO: redo this with preview events rewrite
# Use negative order to make extensions with default order work with patched latents
@callback(ExtensionCallbackType.POST_STEP, order=-100)
def apply_mask_to_step_output(self, ctx: DenoiseContext):
timestep = ctx.scheduler.timesteps[-1]
if hasattr(ctx.step_output, "denoised"):
ctx.step_output.denoised = self._apply_mask(ctx, ctx.step_output.denoised, timestep)
elif hasattr(ctx.step_output, "pred_original_sample"):
ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.pred_original_sample, timestep)
else:
ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.prev_sample, timestep)
# Restore unmasked part after the last step is completed
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext):
if self._is_gradient_mask:
ctx.latents = torch.where(self._mask < 1, ctx.latents, ctx.inputs.orig_latents)
else:
ctx.latents = torch.lerp(ctx.latents, ctx.inputs.orig_latents, self._mask)

View File

@ -0,0 +1,88 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Optional
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class InpaintModelExt(ExtensionBase):
"""An extension for inpainting with inpainting models. See `InpaintExt` for inpainting with non-inpainting
models.
"""
def __init__(
self,
mask: Optional[torch.Tensor],
masked_latents: Optional[torch.Tensor],
is_gradient_mask: bool,
):
"""Initialize InpaintModelExt.
Args:
mask (Optional[torch.Tensor]): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are
expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be
inpainted.
masked_latents (Optional[torch.Tensor]): Latents of initial image, with masked out by black color inpainted area.
If mask provided, then too should be provided. Shape: (1, 1, latent_height, latent_width)
is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range
from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or
1.
"""
super().__init__()
if mask is not None and masked_latents is None:
raise ValueError("Source image required for inpaint mask when inpaint model used!")
# Inverse mask, because inpaint models treat mask as: 0 - remain same, 1 - inpaint
self._mask = None
if mask is not None:
self._mask = 1 - mask
self._masked_latents = masked_latents
self._is_gradient_mask = is_gradient_mask
@staticmethod
def _is_inpaint_model(unet: UNet2DConditionModel):
"""Checks if the provided UNet belongs to a regular model.
The `in_channels` of a UNet vary depending on model type:
- normal - 4
- depth - 5
- inpaint - 9
"""
return unet.conv_in.in_channels == 9
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def init_tensors(self, ctx: DenoiseContext):
if not self._is_inpaint_model(ctx.unet):
raise ValueError("InpaintModelExt should be used only on inpaint models!")
if self._mask is None:
self._mask = torch.ones_like(ctx.latents[:1, :1])
self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
if self._masked_latents is None:
self._masked_latents = torch.zeros_like(ctx.latents[:1])
self._masked_latents = self._masked_latents.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
# Do last so that other extensions works with normal latents
@callback(ExtensionCallbackType.PRE_UNET, order=1000)
def append_inpaint_layers(self, ctx: DenoiseContext):
batch_size = ctx.unet_kwargs.sample.shape[0]
b_mask = torch.cat([self._mask] * batch_size)
b_masked_latents = torch.cat([self._masked_latents] * batch_size)
ctx.unet_kwargs.sample = torch.cat(
[ctx.unet_kwargs.sample, b_mask, b_masked_latents],
dim=1,
)
# Restore unmasked part as inpaint model can change unmasked part slightly
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext):
if self._is_gradient_mask:
ctx.latents = torch.where(self._mask > 0, ctx.latents, ctx.inputs.orig_latents)
else:
ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self._mask)

View File

@ -0,0 +1,137 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import TYPE_CHECKING, Tuple
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
from invokeai.backend.util.devices import TorchDevice
if TYPE_CHECKING:
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
class LoRAExt(ExtensionBase):
def __init__(
self,
node_context: InvocationContext,
model_id: ModelIdentifierField,
weight: float,
):
super().__init__()
self._node_context = node_context
self._model_id = model_id
self._weight = weight
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, original_weights: OriginalWeightsStorage):
lora_model = self._node_context.models.load(self._model_id).model
self.patch_model(
model=unet,
prefix="lora_unet_",
lora=lora_model,
lora_weight=self._weight,
original_weights=original_weights,
)
del lora_model
yield
@classmethod
@torch.no_grad()
def patch_model(
cls,
model: torch.nn.Module,
prefix: str,
lora: LoRAModelRaw,
lora_weight: float,
original_weights: OriginalWeightsStorage,
):
"""
Apply one or more LoRAs to a model.
:param model: The model to patch.
:param lora: LoRA model to patch in.
:param lora_weight: LoRA patch weight.
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
:param original_weights: Storage with original weights, filled by weights which lora patches, used for unpatching.
"""
if lora_weight == 0:
return
# assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
# should be improved in the following ways:
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
# LoRA model is applied.
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
# weights to have valid keys.
assert isinstance(model, torch.nn.Module)
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
# All of the LoRA weight calculations will be done on the same device as the module weight.
# (Performance will be best if this is a CUDA device.)
device = module.weight.device
dtype = module.weight.dtype
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
for param_name, lora_param_weight in layer.get_parameters(module).items():
param_key = module_key + "." + param_name
module_param = module.get_parameter(param_name)
# save original weight
original_weights.save(param_key, module_param)
if module_param.shape != lora_param_weight.shape:
# TODO: debug on lycoris
lora_param_weight = lora_param_weight.reshape(module_param.shape)
lora_param_weight *= lora_weight * layer_scale
module_param += lora_param_weight.to(dtype=dtype)
layer.to(device=TorchDevice.CPU_DEVICE)
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
if not lora_key.startswith(prefix):
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
module = model
module_key = ""
key_parts = lora_key[len(prefix) :].split("_")
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except Exception:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
return (module_key, module)

View File

@ -0,0 +1,63 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import TYPE_CHECKING, Callable, Optional
import torch
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
# TODO: change event to accept image instead of latents
@dataclass
class PipelineIntermediateState:
step: int
order: int
total_steps: int
timestep: int
latents: torch.Tensor
predicted_original: Optional[torch.Tensor] = None
class PreviewExt(ExtensionBase):
def __init__(self, callback: Callable[[PipelineIntermediateState], None]):
super().__init__()
self.callback = callback
# do last so that all other changes shown
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP, order=1000)
def initial_preview(self, ctx: DenoiseContext):
self.callback(
PipelineIntermediateState(
step=-1,
order=ctx.scheduler.order,
total_steps=len(ctx.inputs.timesteps),
timestep=int(ctx.scheduler.config.num_train_timesteps), # TODO: is there any code which uses it?
latents=ctx.latents,
)
)
# do last so that all other changes shown
@callback(ExtensionCallbackType.POST_STEP, order=1000)
def step_preview(self, ctx: DenoiseContext):
if hasattr(ctx.step_output, "denoised"):
predicted_original = ctx.step_output.denoised
elif hasattr(ctx.step_output, "pred_original_sample"):
predicted_original = ctx.step_output.pred_original_sample
else:
predicted_original = ctx.step_output.prev_sample
self.callback(
PipelineIntermediateState(
step=ctx.step_index,
order=ctx.scheduler.order,
total_steps=len(ctx.inputs.timesteps),
timestep=int(ctx.timestep), # TODO: is there any code which uses it?
latents=ctx.step_output.prev_sample,
predicted_original=predicted_original, # TODO: is there any reason for additional field?
)
)

View File

@ -0,0 +1,36 @@
from __future__ import annotations
from typing import TYPE_CHECKING
import torch
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class RescaleCFGExt(ExtensionBase):
def __init__(self, rescale_multiplier: float):
super().__init__()
self._rescale_multiplier = rescale_multiplier
@staticmethod
def _rescale_cfg(total_noise_pred: torch.Tensor, pos_noise_pred: torch.Tensor, multiplier: float = 0.7):
"""Implementation of Algorithm 2 from https://arxiv.org/pdf/2305.08891.pdf."""
ro_pos = torch.std(pos_noise_pred, dim=(1, 2, 3), keepdim=True)
ro_cfg = torch.std(total_noise_pred, dim=(1, 2, 3), keepdim=True)
x_rescaled = total_noise_pred * (ro_pos / ro_cfg)
x_final = multiplier * x_rescaled + (1.0 - multiplier) * total_noise_pred
return x_final
@callback(ExtensionCallbackType.POST_COMBINE_NOISE_PREDS)
def rescale_noise_pred(self, ctx: DenoiseContext):
if self._rescale_multiplier > 0:
ctx.noise_pred = self._rescale_cfg(
ctx.noise_pred,
ctx.positive_noise_pred,
self._rescale_multiplier,
)

View File

@ -0,0 +1,71 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import Callable, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from diffusers import UNet2DConditionModel
from diffusers.models.lora import LoRACompatibleConv
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
class SeamlessExt(ExtensionBase):
def __init__(
self,
seamless_axes: List[str],
):
super().__init__()
self._seamless_axes = seamless_axes
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
with self.static_patch_model(
model=unet,
seamless_axes=self._seamless_axes,
):
yield
@staticmethod
@contextmanager
def static_patch_model(
model: torch.nn.Module,
seamless_axes: List[str],
):
if not seamless_axes:
yield
return
x_mode = "circular" if "x" in seamless_axes else "constant"
y_mode = "circular" if "y" in seamless_axes else "constant"
# override conv_forward
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
def _conv_forward_asymmetric(
self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None
):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
)
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
try:
for layer in model.modules():
if not isinstance(layer, torch.nn.Conv2d):
continue
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda *x: 0
original_layers.append((layer, layer._conv_forward))
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
yield
finally:
for layer, orig_conv_forward in original_layers:
layer._conv_forward = orig_conv_forward

View File

@ -0,0 +1,120 @@
from __future__ import annotations
import math
from typing import TYPE_CHECKING, List, Optional, Union
import torch
from diffusers import T2IAdapter
from PIL.Image import Image
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class T2IAdapterExt(ExtensionBase):
def __init__(
self,
node_context: InvocationContext,
model_id: ModelIdentifierField,
image: Image,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
resize_mode: CONTROLNET_RESIZE_VALUES,
):
super().__init__()
self._node_context = node_context
self._model_id = model_id
self._image = image
self._weight = weight
self._resize_mode = resize_mode
self._begin_step_percent = begin_step_percent
self._end_step_percent = end_step_percent
self._adapter_state: Optional[List[torch.Tensor]] = None
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
model_config = self._node_context.models.get_config(self._model_id.key)
if model_config.base == BaseModelType.StableDiffusion1:
self._max_unet_downscale = 8
elif model_config.base == BaseModelType.StableDiffusionXL:
self._max_unet_downscale = 4
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{model_config.base}'.")
@callback(ExtensionCallbackType.SETUP)
def setup(self, ctx: DenoiseContext):
t2i_model: T2IAdapter
with self._node_context.models.load(self._model_id) as t2i_model:
_, _, latents_height, latents_width = ctx.inputs.orig_latents.shape
self._adapter_state = self._run_model(
model=t2i_model,
image=self._image,
latents_height=latents_height,
latents_width=latents_width,
)
def _run_model(
self,
model: T2IAdapter,
image: Image,
latents_height: int,
latents_width: int,
):
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
input_height = latents_height // self._max_unet_downscale * model.total_downscale_factor
input_width = latents_width // self._max_unet_downscale * model.total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=input_width,
height=input_height,
num_channels=model.config["in_channels"],
device=model.device,
dtype=model.dtype,
resize_mode=self._resize_mode,
)
return model(t2i_image)
@callback(ExtensionCallbackType.PRE_UNET)
def pre_unet_step(self, ctx: DenoiseContext):
# skip if model not active in current step
total_steps = len(ctx.inputs.timesteps)
first_step = math.floor(self._begin_step_percent * total_steps)
last_step = math.ceil(self._end_step_percent * total_steps)
if ctx.step_index < first_step or ctx.step_index > last_step:
return
weight = self._weight
if isinstance(weight, list):
weight = weight[ctx.step_index]
adapter_state = self._adapter_state
if ctx.conditioning_mode == ConditioningMode.Both:
adapter_state = [torch.cat([v] * 2) for v in adapter_state]
if ctx.unet_kwargs.down_intrablock_additional_residuals is None:
ctx.unet_kwargs.down_intrablock_additional_residuals = [v * weight for v in adapter_state]
else:
for i, value in enumerate(adapter_state):
ctx.unet_kwargs.down_intrablock_additional_residuals[i] += value * weight

View File

@ -0,0 +1,82 @@
from __future__ import annotations
from contextlib import ExitStack, contextmanager
from typing import TYPE_CHECKING, Callable, Dict, List, Optional
import torch
from diffusers import UNet2DConditionModel
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import CallbackFunctionWithMetadata, ExtensionBase
class ExtensionsManager:
def __init__(self, is_canceled: Optional[Callable[[], bool]] = None):
self._is_canceled = is_canceled
# A list of extensions in the order that they were added to the ExtensionsManager.
self._extensions: List[ExtensionBase] = []
self._ordered_callbacks: Dict[ExtensionCallbackType, List[CallbackFunctionWithMetadata]] = {}
def add_extension(self, extension: ExtensionBase):
self._extensions.append(extension)
self._regenerate_ordered_callbacks()
def _regenerate_ordered_callbacks(self):
"""Regenerates self._ordered_callbacks. Intended to be called each time a new extension is added."""
self._ordered_callbacks = {}
# Fill the ordered callbacks dictionary.
for extension in self._extensions:
for callback_type, callbacks in extension.get_callbacks().items():
if callback_type not in self._ordered_callbacks:
self._ordered_callbacks[callback_type] = []
self._ordered_callbacks[callback_type].extend(callbacks)
# Sort each callback list.
for callback_type, callbacks in self._ordered_callbacks.items():
# Note that sorted() is stable, so if two callbacks have the same order, the order that they extensions were
# added will be preserved.
self._ordered_callbacks[callback_type] = sorted(callbacks, key=lambda x: x.metadata.order)
def run_callback(self, callback_type: ExtensionCallbackType, ctx: DenoiseContext):
if self._is_canceled and self._is_canceled():
raise CanceledException
callbacks = self._ordered_callbacks.get(callback_type, [])
for cb in callbacks:
cb.function(ctx)
@contextmanager
def patch_extensions(self, ctx: DenoiseContext):
if self._is_canceled and self._is_canceled():
raise CanceledException
with ExitStack() as exit_stack:
for ext in self._extensions:
exit_stack.enter_context(ext.patch_extension(ctx))
yield None
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
if self._is_canceled and self._is_canceled():
raise CanceledException
original_weights = OriginalWeightsStorage(cached_weights)
try:
with ExitStack() as exit_stack:
for ext in self._extensions:
exit_stack.enter_context(ext.patch_unet(unet, original_weights))
yield None
finally:
with torch.no_grad():
for param_key, weight in original_weights.get_changed_weights():
unet.get_parameter(param_key).copy_(weight)

View File

@ -61,6 +61,7 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
# full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
assert isinstance(latents, torch.Tensor) # For static type checking.
# TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after
# cropping into regions.
@ -122,19 +123,42 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
control_data=region_conditioning.control_data,
)
# Store the results from the region.
# If two tiles overlap by more than the target overlap amount, crop the left and top edges of the
# affected tiles to achieve the target overlap.
# Build a region_weight matrix that applies gradient blending to the edges of the region.
region = region_conditioning.region
top_adjustment = max(0, region.overlap.top - target_overlap)
left_adjustment = max(0, region.overlap.left - target_overlap)
region_height_slice = slice(region.coords.top + top_adjustment, region.coords.bottom)
region_width_slice = slice(region.coords.left + left_adjustment, region.coords.right)
merged_latents[:, :, region_height_slice, region_width_slice] += step_output.prev_sample[
:, :, top_adjustment:, left_adjustment:
]
# For now, we treat every region as having the same weight.
merged_latents_weights[:, :, region_height_slice, region_width_slice] += 1.0
_, _, region_height, region_width = step_output.prev_sample.shape
region_weight = torch.ones(
(1, 1, region_height, region_width),
dtype=latents.dtype,
device=latents.device,
)
if region.overlap.left > 0:
left_grad = torch.linspace(
0, 1, region.overlap.left, device=latents.device, dtype=latents.dtype
).view((1, 1, 1, -1))
region_weight[:, :, :, : region.overlap.left] *= left_grad
if region.overlap.top > 0:
top_grad = torch.linspace(
0, 1, region.overlap.top, device=latents.device, dtype=latents.dtype
).view((1, 1, -1, 1))
region_weight[:, :, : region.overlap.top, :] *= top_grad
if region.overlap.right > 0:
right_grad = torch.linspace(
1, 0, region.overlap.right, device=latents.device, dtype=latents.dtype
).view((1, 1, 1, -1))
region_weight[:, :, :, -region.overlap.right :] *= right_grad
if region.overlap.bottom > 0:
bottom_grad = torch.linspace(
1, 0, region.overlap.bottom, device=latents.device, dtype=latents.dtype
).view((1, 1, -1, 1))
region_weight[:, :, -region.overlap.bottom :, :] *= bottom_grad
# Update the merged results with the region results.
merged_latents[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += step_output.prev_sample * region_weight
merged_latents_weights[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += region_weight
pred_orig_sample = getattr(step_output, "pred_original_sample", None)
if pred_orig_sample is not None:
@ -142,9 +166,9 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
# they all use the same scheduler.
if merged_pred_original is None:
merged_pred_original = torch.zeros_like(latents)
merged_pred_original[:, :, region_height_slice, region_width_slice] += pred_orig_sample[
:, :, top_adjustment:, left_adjustment:
]
merged_pred_original[
:, :, region.coords.top : region.coords.bottom, region.coords.left : region.coords.right
] += pred_orig_sample
# Normalize the merged results.
latents = torch.where(merged_latents_weights > 0, merged_latents / merged_latents_weights, merged_latents)

View File

@ -20,10 +20,14 @@ from diffusers import (
)
from diffusers.schedulers.scheduling_utils import SchedulerMixin
# TODO: add dpmpp_3s/dpmpp_3s_k when fix released
# https://github.com/huggingface/diffusers/issues/9007
SCHEDULER_NAME_VALUES = Literal[
"ddim",
"ddpm",
"deis",
"deis_k",
"lms",
"lms_k",
"pndm",
@ -33,16 +37,21 @@ SCHEDULER_NAME_VALUES = Literal[
"euler_k",
"euler_a",
"kdpm_2",
"kdpm_2_k",
"kdpm_2_a",
"kdpm_2_a_k",
"dpmpp_2s",
"dpmpp_2s_k",
"dpmpp_2m",
"dpmpp_2m_k",
"dpmpp_2m_sde",
"dpmpp_2m_sde_k",
"dpmpp_3m",
"dpmpp_3m_k",
"dpmpp_sde",
"dpmpp_sde_k",
"unipc",
"unipc_k",
"lcm",
"tcd",
]
@ -50,7 +59,8 @@ SCHEDULER_NAME_VALUES = Literal[
SCHEDULER_MAP: dict[SCHEDULER_NAME_VALUES, tuple[Type[SchedulerMixin], dict[str, Any]]] = {
"ddim": (DDIMScheduler, {}),
"ddpm": (DDPMScheduler, {}),
"deis": (DEISMultistepScheduler, {}),
"deis": (DEISMultistepScheduler, {"use_karras_sigmas": False}),
"deis_k": (DEISMultistepScheduler, {"use_karras_sigmas": True}),
"lms": (LMSDiscreteScheduler, {"use_karras_sigmas": False}),
"lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
"pndm": (PNDMScheduler, {}),
@ -59,17 +69,28 @@ SCHEDULER_MAP: dict[SCHEDULER_NAME_VALUES, tuple[Type[SchedulerMixin], dict[str,
"euler": (EulerDiscreteScheduler, {"use_karras_sigmas": False}),
"euler_k": (EulerDiscreteScheduler, {"use_karras_sigmas": True}),
"euler_a": (EulerAncestralDiscreteScheduler, {}),
"kdpm_2": (KDPM2DiscreteScheduler, {}),
"kdpm_2_a": (KDPM2AncestralDiscreteScheduler, {}),
"dpmpp_2s": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
"dpmpp_2s_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
"dpmpp_2m": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
"dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
"dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
"dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
"kdpm_2": (KDPM2DiscreteScheduler, {"use_karras_sigmas": False}),
"kdpm_2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
"kdpm_2_a": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": False}),
"kdpm_2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
"dpmpp_2s": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False, "solver_order": 2}),
"dpmpp_2s_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True, "solver_order": 2}),
"dpmpp_2m": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "solver_order": 2}),
"dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2}),
"dpmpp_2m_sde": (
DPMSolverMultistepScheduler,
{"use_karras_sigmas": False, "solver_order": 2, "algorithm_type": "sde-dpmsolver++"},
),
"dpmpp_2m_sde_k": (
DPMSolverMultistepScheduler,
{"use_karras_sigmas": True, "solver_order": 2, "algorithm_type": "sde-dpmsolver++"},
),
"dpmpp_3m": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "solver_order": 3}),
"dpmpp_3m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 3}),
"dpmpp_sde": (DPMSolverSDEScheduler, {"use_karras_sigmas": False, "noise_sampler_seed": 0}),
"dpmpp_sde_k": (DPMSolverSDEScheduler, {"use_karras_sigmas": True, "noise_sampler_seed": 0}),
"unipc": (UniPCMultistepScheduler, {"cpu_only": True}),
"unipc": (UniPCMultistepScheduler, {"use_karras_sigmas": False, "cpu_only": True}),
"unipc_k": (UniPCMultistepScheduler, {"use_karras_sigmas": True, "cpu_only": True}),
"lcm": (LCMScheduler, {}),
"tcd": (TCDScheduler, {}),
}

View File

@ -1,51 +0,0 @@
from contextlib import contextmanager
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
@contextmanager
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]):
if not seamless_axes:
yield
return
# override conv_forward
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
def _conv_forward_asymmetric(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
)
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
try:
x_mode = "circular" if "x" in seamless_axes else "constant"
y_mode = "circular" if "y" in seamless_axes else "constant"
conv_layers: List[torch.nn.Conv2d] = []
for module in model.modules():
if isinstance(module, torch.nn.Conv2d):
conv_layers.append(module)
for layer in conv_layers:
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda *x: 0
original_layers.append((layer, layer._conv_forward))
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
yield
finally:
for layer, orig_conv_forward in original_layers:
layer._conv_forward = orig_conv_forward

View File

@ -65,17 +65,12 @@ class TextualInversionModelRaw(RawModel):
return result
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if not torch.cuda.is_available():
return
for emb in [self.embedding, self.embedding_2]:
if emb is not None:
emb.to(device=device, dtype=dtype, non_blocking=non_blocking)
emb.to(device=device, dtype=dtype)
def calc_size(self) -> int:
"""Get the size of this model in bytes."""

View File

@ -112,15 +112,3 @@ class TorchDevice:
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]
@staticmethod
def get_non_blocking(to_device: torch.device) -> bool:
"""Return the non_blocking flag to be used when moving a tensor to a given device.
MPS may have unexpected errors with non-blocking operations - we should not use non-blocking when moving _to_ MPS.
When moving _from_ MPS, we can use non-blocking operations.
See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28
"""
return False if to_device.type == "mps" else True

View File

@ -0,0 +1,39 @@
from __future__ import annotations
from typing import Dict, Iterator, Optional, Tuple
import torch
from invokeai.backend.util.devices import TorchDevice
class OriginalWeightsStorage:
"""A class for tracking the original weights of a model for patch/unpatch operations."""
def __init__(self, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
# The original weights of the model.
self._weights: dict[str, torch.Tensor] = {}
# The keys of the weights that have been changed (via `save()`) during the lifetime of this instance.
self._changed_weights: set[str] = set()
if cached_weights:
self._weights.update(cached_weights)
def save(self, key: str, weight: torch.Tensor, copy: bool = True):
self._changed_weights.add(key)
if key in self._weights:
return
self._weights[key] = weight.detach().to(device=TorchDevice.CPU_DEVICE, copy=copy)
def get(self, key: str, copy: bool = False) -> Optional[torch.Tensor]:
weight = self._weights.get(key, None)
if weight is not None and copy:
weight = weight.clone()
return weight
def contains(self, key: str) -> bool:
return key in self._weights
def get_changed_weights(self) -> Iterator[Tuple[str, torch.Tensor]]:
for key in self._changed_weights:
yield key, self._weights[key]

View File

@ -53,61 +53,61 @@
},
"dependencies": {
"@chakra-ui/react-use-size": "^2.1.0",
"@dagrejs/dagre": "^1.1.2",
"@dagrejs/graphlib": "^2.2.2",
"@dagrejs/dagre": "^1.1.3",
"@dagrejs/graphlib": "^2.2.3",
"@dnd-kit/core": "^6.1.0",
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.0.18",
"@fontsource-variable/inter": "^5.0.20",
"@invoke-ai/ui-library": "^0.0.25",
"@nanostores/react": "^0.7.2",
"@nanostores/react": "^0.7.3",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",
"chakra-react-select": "^4.7.6",
"compare-versions": "^6.1.0",
"chakra-react-select": "^4.9.1",
"compare-versions": "^6.1.1",
"dateformat": "^5.0.3",
"fracturedjsonjs": "^4.0.1",
"framer-motion": "^11.1.8",
"i18next": "^23.11.3",
"i18next-http-backend": "^2.5.1",
"fracturedjsonjs": "^4.0.2",
"framer-motion": "^11.3.24",
"i18next": "^23.12.2",
"i18next-http-backend": "^2.5.2",
"idb-keyval": "^6.2.1",
"jsondiffpatch": "^0.6.0",
"konva": "^9.3.6",
"konva": "^9.3.14",
"lodash-es": "^4.17.21",
"nanostores": "^0.10.3",
"nanostores": "^0.11.2",
"new-github-issue-url": "^1.0.0",
"overlayscrollbars": "^2.7.3",
"overlayscrollbars": "^2.10.0",
"overlayscrollbars-react": "^0.5.6",
"query-string": "^9.0.0",
"query-string": "^9.1.0",
"react": "^18.3.1",
"react-colorful": "^5.6.1",
"react-dom": "^18.3.1",
"react-dropzone": "^14.2.3",
"react-error-boundary": "^4.0.13",
"react-hook-form": "^7.51.4",
"react-hook-form": "^7.52.2",
"react-hotkeys-hook": "4.5.0",
"react-i18next": "^14.1.1",
"react-icons": "^5.2.0",
"react-i18next": "^14.1.3",
"react-icons": "^5.2.1",
"react-konva": "^18.2.10",
"react-redux": "9.1.2",
"react-resizable-panels": "^2.0.19",
"react-resizable-panels": "^2.0.23",
"react-select": "5.8.0",
"react-use": "^17.5.0",
"react-virtuoso": "^4.7.10",
"reactflow": "^11.11.3",
"react-use": "^17.5.1",
"react-virtuoso": "^4.9.0",
"reactflow": "^11.11.4",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.1.0",
"redux-undo": "^1.1.0",
"rfdc": "^1.3.1",
"rfdc": "^1.4.1",
"roarr": "^7.21.1",
"serialize-error": "^11.0.3",
"socket.io-client": "^4.7.5",
"use-debounce": "^10.0.0",
"use-debounce": "^10.0.2",
"use-device-pixel-ratio": "^1.1.2",
"use-image": "^1.1.1",
"uuid": "^9.0.1",
"zod": "^3.23.6",
"zod-validation-error": "^3.2.0"
"uuid": "^10.0.0",
"zod": "^3.23.8",
"zod-validation-error": "^3.3.1"
},
"peerDependencies": {
"@chakra-ui/react": "^2.8.2",
@ -118,42 +118,45 @@
"devDependencies": {
"@invoke-ai/eslint-config-react": "^0.0.14",
"@invoke-ai/prettier-config-react": "^0.0.7",
"@storybook/addon-essentials": "^8.0.10",
"@storybook/addon-interactions": "^8.0.10",
"@storybook/addon-links": "^8.0.10",
"@storybook/addon-storysource": "^8.0.10",
"@storybook/manager-api": "^8.0.10",
"@storybook/react": "^8.0.10",
"@storybook/react-vite": "^8.0.10",
"@storybook/theming": "^8.0.10",
"@storybook/addon-essentials": "^8.2.8",
"@storybook/addon-interactions": "^8.2.8",
"@storybook/addon-links": "^8.2.8",
"@storybook/addon-storysource": "^8.2.8",
"@storybook/manager-api": "^8.2.8",
"@storybook/react": "^8.2.8",
"@storybook/react-vite": "^8.2.8",
"@storybook/theming": "^8.2.8",
"@types/dateformat": "^5.0.2",
"@types/lodash-es": "^4.17.12",
"@types/node": "^20.12.10",
"@types/react": "^18.3.1",
"@types/node": "^20.14.15",
"@types/react": "^18.3.3",
"@types/react-dom": "^18.3.0",
"@types/uuid": "^9.0.8",
"@vitejs/plugin-react-swc": "^3.6.0",
"@types/uuid": "^10.0.0",
"@vitejs/plugin-react-swc": "^3.7.0",
"@vitest/coverage-v8": "^1.5.0",
"@vitest/ui": "^1.5.0",
"concurrently": "^8.2.2",
"dpdm": "^3.14.0",
"eslint": "^8.57.0",
"eslint-plugin-i18next": "^6.0.3",
"eslint-plugin-i18next": "^6.0.9",
"eslint-plugin-path": "^1.3.0",
"knip": "^5.12.3",
"knip": "^5.27.2",
"openapi-types": "^12.1.3",
"openapi-typescript": "^6.7.5",
"prettier": "^3.2.5",
"openapi-typescript": "^7.3.0",
"prettier": "^3.3.3",
"rollup-plugin-visualizer": "^5.12.0",
"storybook": "^8.0.10",
"storybook": "^8.2.8",
"ts-toolbelt": "^9.6.0",
"tsafe": "^1.6.6",
"typescript": "^5.4.5",
"vite": "^5.2.11",
"tsafe": "^1.7.2",
"typescript": "^5.5.4",
"vite": "^5.4.0",
"vite-plugin-css-injected-by-js": "^3.5.1",
"vite-plugin-dts": "^3.9.1",
"vite-plugin-eslint": "^1.8.1",
"vite-tsconfig-paths": "^4.3.2",
"vitest": "^1.6.0"
},
"engines": {
"pnpm": "8"
}
}

File diff suppressed because it is too large Load Diff

View File

@ -77,10 +77,6 @@
"title": "استعادة الوجوه",
"desc": "استعادة الصورة الحالية"
},
"upscale": {
"title": "تحسين الحجم",
"desc": "تحسين حجم الصورة الحالية"
},
"showInfo": {
"title": "عرض المعلومات",
"desc": "عرض معلومات البيانات الخاصة بالصورة الحالية"
@ -255,8 +251,6 @@
"type": "نوع",
"strength": "قوة",
"upscaling": "تصغير",
"upscale": "تصغير",
"upscaleImage": "تصغير الصورة",
"scale": "مقياس",
"imageFit": "ملائمة الصورة الأولية لحجم الخرج",
"scaleBeforeProcessing": "تحجيم قبل المعالجة",

View File

@ -91,7 +91,8 @@
"viewingDesc": "Bilder in großer Galerie ansehen",
"tab": "Tabulator",
"enabled": "Aktiviert",
"disabled": "Ausgeschaltet"
"disabled": "Ausgeschaltet",
"dontShowMeThese": "Zeig mir diese nicht"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@ -106,7 +107,6 @@
"download": "Runterladen",
"setCurrentImage": "Setze aktuelle Bild",
"featuresWillReset": "Wenn Sie dieses Bild löschen, werden diese Funktionen sofort zurückgesetzt.",
"deleteImageBin": "Gelöschte Bilder werden an den Papierkorb Ihres Betriebssystems gesendet.",
"unableToLoad": "Galerie kann nicht geladen werden",
"downloadSelection": "Auswahl herunterladen",
"currentlyInUse": "Dieses Bild wird derzeit in den folgenden Funktionen verwendet:",
@ -187,10 +187,6 @@
"title": "Gesicht restaurieren",
"desc": "Das aktuelle Bild restaurieren"
},
"upscale": {
"title": "Hochskalieren",
"desc": "Das aktuelle Bild hochskalieren"
},
"showInfo": {
"title": "Info anzeigen",
"desc": "Metadaten des aktuellen Bildes anzeigen"
@ -433,8 +429,6 @@
"type": "Art",
"strength": "Stärke",
"upscaling": "Hochskalierung",
"upscale": "Hochskalieren (Shift + U)",
"upscaleImage": "Bild hochskalieren",
"scale": "Maßstab",
"imageFit": "Ausgangsbild an Ausgabegröße anpassen",
"scaleBeforeProcessing": "Skalieren vor der Verarbeitung",
@ -634,7 +628,10 @@
"private": "Private Ordner",
"shared": "Geteilte Ordner",
"archiveBoard": "Ordner archivieren",
"archived": "Archiviert"
"archived": "Archiviert",
"noBoards": "Kein {boardType}} Ordner",
"hideBoards": "Ordner verstecken",
"viewBoards": "Ordner ansehen"
},
"controlnet": {
"showAdvanced": "Zeige Erweitert",
@ -949,6 +946,21 @@
"paragraphs": [
"Reduziert das Ausgangsbild auf die Breite und Höhe des Ausgangsbildes. Empfohlen zu aktivieren."
]
},
"structure": {
"paragraphs": [
"Die Struktur steuert, wie genau sich das Ausgabebild an das Layout des Originals hält. Eine niedrige Struktur erlaubt größere Änderungen, während eine hohe Struktur die ursprüngliche Komposition und das Layout strikter beibehält."
]
},
"creativity": {
"paragraphs": [
"Die Kreativität bestimmt den Grad der Freiheit, die dem Modell beim Hinzufügen von Details gewährt wird. Eine niedrige Kreativität hält sich eng an das Originalbild, während eine hohe Kreativität mehr Veränderungen zulässt. Bei der Verwendung eines Prompts erhöht eine hohe Kreativität den Einfluss des Prompts."
]
},
"scale": {
"paragraphs": [
"Die Skalierung steuert die Größe des Ausgabebildes und basiert auf einem Vielfachen der Auflösung des Originalbildes. So würde z. B. eine 2-fache Hochskalierung eines 1024x1024px Bildes eine 2048x2048px große Ausgabe erzeugen."
]
}
},
"invocationCache": {

View File

@ -31,13 +31,16 @@
"deleteBoard": "Delete Board",
"deleteBoardAndImages": "Delete Board and Images",
"deleteBoardOnly": "Delete Board Only",
"deletedBoardsCannotbeRestored": "Deleted boards cannot be restored",
"deletedBoardsCannotbeRestored": "Deleted boards cannot be restored. Selecting 'Delete Board Only' will move images to an uncategorized state.",
"deletedPrivateBoardsCannotbeRestored": "Deleted boards cannot be restored. Selecting 'Delete Board Only' will move images to a private uncategorized state for the image's creator.",
"hideBoards": "Hide Boards",
"loading": "Loading...",
"menuItemAutoAdd": "Auto-add to this Board",
"move": "Move",
"movingImagesToBoard_one": "Moving {{count}} image to board:",
"movingImagesToBoard_other": "Moving {{count}} images to board:",
"myBoard": "My Board",
"noBoards": "No {{boardType}} Boards",
"noMatching": "No matching Boards",
"private": "Private Boards",
"searchBoard": "Search Boards...",
@ -46,6 +49,7 @@
"topMessage": "This board contains images used in the following features:",
"unarchiveBoard": "Unarchive Board",
"uncategorized": "Uncategorized",
"viewBoards": "View Boards",
"downloadBoard": "Download Board",
"imagesWithCount_one": "{{count}} image",
"imagesWithCount_other": "{{count}} images",
@ -102,6 +106,7 @@
"negativePrompt": "Negative Prompt",
"discordLabel": "Discord",
"dontAskMeAgain": "Don't ask me again",
"dontShowMeThese": "Don't show me these",
"editor": "Editor",
"error": "Error",
"file": "File",
@ -195,6 +200,7 @@
"delete": "Delete",
"depthAnything": "Depth Anything",
"depthAnythingDescription": "Depth map generation using the Depth Anything technique",
"depthAnythingSmallV2": "Small V2",
"depthMidas": "Depth (Midas)",
"depthMidasDescription": "Depth map generation using Midas",
"depthZoe": "Depth (Zoe)",
@ -368,15 +374,18 @@
"dropToUpload": "$t(gallery.drop) to Upload",
"deleteImage_one": "Delete Image",
"deleteImage_other": "Delete {{count}} Images",
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored.",
"displayBoardSearch": "Display Board Search",
"displaySearch": "Display Search",
"download": "Download",
"exitBoardSearch": "Exit Board Search",
"exitSearch": "Exit Search",
"featuresWillReset": "If you delete this image, those features will immediately be reset.",
"galleryImageSize": "Image Size",
"gallerySettings": "Gallery Settings",
"go": "Go",
"image": "image",
"jump": "Jump",
"loading": "Loading",
"loadMore": "Load More",
"newestFirst": "Newest First",
@ -636,9 +645,9 @@
"title": "Undo Stroke"
},
"unifiedCanvasHotkeys": "Unified Canvas",
"upscale": {
"desc": "Upscale the current image",
"title": "Upscale"
"postProcess": {
"desc": "Process the current image using the selected post-processing model",
"title": "Process Image"
},
"toggleViewer": {
"desc": "Switches between the Image Viewer and workspace for the current tab.",
@ -1027,6 +1036,7 @@
"imageActions": "Image Actions",
"sendToImg2Img": "Send to Image to Image",
"sendToUnifiedCanvas": "Send To Unified Canvas",
"sendToUpscale": "Send To Upscale",
"showOptionsPanel": "Show Side Panel (O or T)",
"shuffle": "Shuffle Seed",
"steps": "Steps",
@ -1034,8 +1044,8 @@
"symmetry": "Symmetry",
"tileSize": "Tile Size",
"type": "Type",
"upscale": "Upscale (Shift + U)",
"upscaleImage": "Upscale Image",
"postProcessing": "Post-Processing (Shift + U)",
"processImage": "Process Image",
"upscaling": "Upscaling",
"useAll": "Use All",
"useSize": "Use Size",
@ -1043,11 +1053,7 @@
"remixImage": "Remix Image",
"usePrompt": "Use Prompt",
"useSeed": "Use Seed",
"width": "Width",
"isAllowedToUpscale": {
"useX2Model": "Image is too large to upscale with x4 model, use x2 model",
"tooLarge": "Image is too large to upscale, select smaller image"
}
"width": "Width"
},
"dynamicPrompts": {
"showDynamicPrompts": "Show Dynamic Prompts",
@ -1091,6 +1097,8 @@
"displayInProgress": "Display Progress Images",
"enableImageDebugging": "Enable Image Debugging",
"enableInformationalPopovers": "Enable Informational Popovers",
"informationalPopoversDisabled": "Informational Popovers Disabled",
"informationalPopoversDisabledDesc": "Informational popovers have been disabled. Enable them in Settings.",
"enableInvisibleWatermark": "Enable Invisible Watermark",
"enableNSFWChecker": "Enable NSFW Checker",
"general": "General",
@ -1498,6 +1506,30 @@
"seamlessTilingYAxis": {
"heading": "Seamless Tiling Y Axis",
"paragraphs": ["Seamlessly tile an image along the vertical axis."]
},
"upscaleModel": {
"heading": "Upscale Model",
"paragraphs": [
"The upscale model scales the image to the output size before details are added. Any supported upscale model may be used, but some are specialized for different kinds of images, like photos or line drawings."
]
},
"scale": {
"heading": "Scale",
"paragraphs": [
"Scale controls the output image size, and is based on a multiple of the input image resolution. For example a 2x upscale on a 1024x1024 image would produce a 2048 x 2048 output."
]
},
"creativity": {
"heading": "Creativity",
"paragraphs": [
"Creativity controls the amount of freedom granted to the model when adding details. Low creativity stays close to the original image, while high creativity allows for more change. When using a prompt, high creativity increases the influence of the prompt."
]
},
"structure": {
"heading": "Structure",
"paragraphs": [
"Structure controls how closely the output image will keep to the layout of the original. Low structure allows major changes, while high structure strictly maintains the original composition and layout."
]
}
},
"unifiedCanvas": {
@ -1640,6 +1672,29 @@
"layers_one": "Layer",
"layers_other": "Layers"
},
"upscaling": {
"creativity": "Creativity",
"exceedsMaxSize": "Upscale settings exceed max size limit",
"exceedsMaxSizeDetails": "Max upscale limit is {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixels. Please try a smaller image or decrease your scale selection.",
"structure": "Structure",
"upscaleModel": "Upscale Model",
"postProcessingModel": "Post-Processing Model",
"scale": "Scale",
"postProcessingMissingModelWarning": "Visit the <LinkComponent>Model Manager</LinkComponent> to install a post-processing (image to image) model.",
"missingModelsWarning": "Visit the <LinkComponent>Model Manager</LinkComponent> to install the required models:",
"mainModelDesc": "Main model (SD1.5 or SDXL architecture)",
"tileControlNetModelDesc": "Tile ControlNet model for the chosen main model architecture",
"upscaleModelDesc": "Upscale (image to image) model",
"missingUpscaleInitialImage": "Missing initial image for upscaling",
"missingUpscaleModel": "Missing upscale model",
"missingTileControlNetModel": "No valid tile ControlNet models installed"
},
"upsell": {
"inviteTeammates": "Invite Teammates",
"professional": "Professional",
"professionalUpsell": "Available in Invokes Professional Edition. Click here or visit invoke.com/pricing for more details.",
"shareAccess": "Share Access"
},
"ui": {
"tabs": {
"generation": "Generation",
@ -1651,7 +1706,9 @@
"models": "Models",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"queue": "Queue",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)"
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
"upscaling": "Upscaling",
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)"
}
}
}

View File

@ -88,7 +88,6 @@
"deleteImage_one": "Eliminar Imagen",
"deleteImage_many": "",
"deleteImage_other": "",
"deleteImageBin": "Las imágenes eliminadas se enviarán a la papelera de tu sistema operativo.",
"deleteImagePermanent": "Las imágenes eliminadas no se pueden restaurar.",
"assets": "Activos",
"autoAssignBoardOnClick": "Asignación automática de tableros al hacer clic"
@ -151,10 +150,6 @@
"title": "Restaurar rostros",
"desc": "Restaurar rostros en la imagen actual"
},
"upscale": {
"title": "Aumentar resolución",
"desc": "Aumentar la resolución de la imagen actual"
},
"showInfo": {
"title": "Mostrar información",
"desc": "Mostar metadatos de la imagen actual"
@ -360,8 +355,6 @@
"type": "Tipo",
"strength": "Fuerza",
"upscaling": "Aumento de resolución",
"upscale": "Aumentar resolución",
"upscaleImage": "Aumentar la resolución de la imagen",
"scale": "Escala",
"imageFit": "Ajuste tamaño de imagen inicial al tamaño objetivo",
"scaleBeforeProcessing": "Redimensionar antes de procesar",
@ -408,7 +401,12 @@
"showProgressInViewer": "Mostrar las imágenes del progreso en el visor",
"ui": "Interfaz del usuario",
"generation": "Generación",
"beta": "Beta"
"beta": "Beta",
"reloadingIn": "Recargando en",
"intermediatesClearedFailed": "Error limpiando los intermediarios",
"intermediatesCleared_one": "Borrado {{count}} intermediario",
"intermediatesCleared_many": "Borrados {{count}} intermediarios",
"intermediatesCleared_other": "Borrados {{count}} intermediarios"
},
"toast": {
"uploadFailed": "Error al subir archivo",
@ -426,7 +424,12 @@
"parameterSet": "Conjunto de parámetros",
"parameterNotSet": "Parámetro no configurado",
"problemCopyingImage": "No se puede copiar la imagen",
"errorCopied": "Error al copiar"
"errorCopied": "Error al copiar",
"baseModelChanged": "Modelo base cambiado",
"addedToBoard": "Añadido al tablero",
"baseModelChangedCleared_one": "Borrado o desactivado {{count}} submodelo incompatible",
"baseModelChangedCleared_many": "Borrados o desactivados {{count}} submodelos incompatibles",
"baseModelChangedCleared_other": "Borrados o desactivados {{count}} submodelos incompatibles"
},
"tooltip": {
"feature": {
@ -540,7 +543,13 @@
"downloadBoard": "Descargar panel",
"deleteBoardOnly": "Borrar solo el panel",
"myBoard": "Mi panel",
"noMatching": "No hay paneles que coincidan"
"noMatching": "No hay paneles que coincidan",
"imagesWithCount_one": "{{count}} imagen",
"imagesWithCount_many": "{{count}} imágenes",
"imagesWithCount_other": "{{count}} imágenes",
"assetsWithCount_one": "{{count}} activo",
"assetsWithCount_many": "{{count}} activos",
"assetsWithCount_other": "{{count}} activos"
},
"accordions": {
"compositing": {
@ -590,6 +599,27 @@
"balanced": "Equilibrado",
"beginEndStepPercent": "Inicio / Final Porcentaje de pasos",
"detectResolution": "Detectar resolución",
"beginEndStepPercentShort": "Inicio / Final %"
"beginEndStepPercentShort": "Inicio / Final %",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"controlnet": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.controlNet))",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"addControlNet": "Añadir $t(common.controlNet)",
"addIPAdapter": "Añadir $t(common.ipAdapter)",
"controlAdapter_one": "Adaptador de control",
"controlAdapter_many": "Adaptadores de control",
"controlAdapter_other": "Adaptadores de control",
"addT2IAdapter": "Añadir $t(common.t2iAdapter)"
},
"queue": {
"back": "Atrás",
"front": "Delante",
"batchQueuedDesc_one": "Se agregó {{count}} sesión a {{direction}} la cola",
"batchQueuedDesc_many": "Se agregaron {{count}} sesiones a {{direction}} la cola",
"batchQueuedDesc_other": "Se agregaron {{count}} sesiones a {{direction}} la cola"
},
"upsell": {
"inviteTeammates": "Invitar compañeros de equipo",
"shareAccess": "Compartir acceso",
"professionalUpsell": "Disponible en la edición profesional de Invoke. Haz clic aquí o visita invoke.com/pricing para obtener más detalles."
}
}

View File

@ -130,10 +130,6 @@
"title": "Restaurer les visages",
"desc": "Restaurer l'image actuelle"
},
"upscale": {
"title": "Agrandir",
"desc": "Agrandir l'image actuelle"
},
"showInfo": {
"title": "Afficher les informations",
"desc": "Afficher les informations de métadonnées de l'image actuelle"
@ -308,8 +304,6 @@
"type": "Type",
"strength": "Force",
"upscaling": "Agrandissement",
"upscale": "Agrandir",
"upscaleImage": "Image en Agrandissement",
"scale": "Echelle",
"imageFit": "Ajuster Image Initiale à la Taille de Sortie",
"scaleBeforeProcessing": "Echelle Avant Traitement",

View File

@ -90,10 +90,6 @@
"desc": "שחזור התמונה הנוכחית",
"title": "שחזור פרצופים"
},
"upscale": {
"title": "הגדלת קנה מידה",
"desc": "הגדל את התמונה הנוכחית"
},
"showInfo": {
"title": "הצג מידע",
"desc": "הצגת פרטי מטא-נתונים של התמונה הנוכחית"
@ -263,8 +259,6 @@
"seed": "זרע",
"type": "סוג",
"strength": "חוזק",
"upscale": "הגדלת קנה מידה",
"upscaleImage": "הגדלת קנה מידת התמונה",
"denoisingStrength": "חוזק מנטרל הרעש",
"scaleBeforeProcessing": "שנה קנה מידה לפני עיבוד",
"scaledWidth": "קנה מידה לאחר שינוי W",

View File

@ -89,7 +89,8 @@
"enabled": "Abilitato",
"disabled": "Disabilitato",
"comparingDesc": "Confronta due immagini",
"comparing": "Confronta"
"comparing": "Confronta",
"dontShowMeThese": "Non mostrarmi questi"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@ -101,7 +102,6 @@
"deleteImage_many": "Elimina {{count}} immagini",
"deleteImage_other": "Elimina {{count}} immagini",
"deleteImagePermanent": "Le immagini eliminate non possono essere ripristinate.",
"deleteImageBin": "Le immagini eliminate verranno spostate nel cestino del tuo sistema operativo.",
"assets": "Risorse",
"autoAssignBoardOnClick": "Assegna automaticamente la bacheca al clic",
"featuresWillReset": "Se elimini questa immagine, quelle funzionalità verranno immediatamente ripristinate.",
@ -150,7 +150,13 @@
"showArchivedBoards": "Mostra le bacheche archiviate",
"searchImages": "Ricerca per metadati",
"displayBoardSearch": "Mostra la ricerca nelle Bacheche",
"displaySearch": "Mostra la ricerca"
"displaySearch": "Mostra la ricerca",
"selectAllOnPage": "Seleziona tutto nella pagina",
"selectAllOnBoard": "Seleziona tutto nella bacheca",
"exitBoardSearch": "Esci da Ricerca bacheca",
"exitSearch": "Esci dalla ricerca",
"go": "Vai",
"jump": "Salta"
},
"hotkeys": {
"keyboardShortcuts": "Tasti di scelta rapida",
@ -210,10 +216,6 @@
"title": "Restaura volti",
"desc": "Restaura l'immagine corrente"
},
"upscale": {
"title": "Amplia",
"desc": "Amplia l'immagine corrente"
},
"showInfo": {
"title": "Mostra informazioni",
"desc": "Mostra le informazioni sui metadati dell'immagine corrente"
@ -377,6 +379,10 @@
"toggleViewer": {
"title": "Attiva/disattiva il visualizzatore di immagini",
"desc": "Passa dal visualizzatore immagini all'area di lavoro per la scheda corrente."
},
"postProcess": {
"desc": "Elabora l'immagine corrente utilizzando il modello di post-elaborazione selezionato",
"title": "Elabora immagine"
}
},
"modelManager": {
@ -505,8 +511,6 @@
"type": "Tipo",
"strength": "Forza",
"upscaling": "Ampliamento",
"upscale": "Amplia (Shift + U)",
"upscaleImage": "Amplia Immagine",
"scale": "Scala",
"imageFit": "Adatta l'immagine iniziale alle dimensioni di output",
"scaleBeforeProcessing": "Scala prima dell'elaborazione",
@ -569,10 +573,6 @@
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
"isAllowedToUpscale": {
"useX2Model": "L'immagine è troppo grande per l'ampliamento con il modello x4, utilizza il modello x2",
"tooLarge": "L'immagine è troppo grande per l'ampliamento, seleziona un'immagine più piccola"
},
"imageActions": "Azioni Immagine",
"cfgRescaleMultiplier": "Moltiplicatore riscala CFG",
"useSize": "Usa Dimensioni",
@ -591,7 +591,10 @@
"infillColorValue": "Colore di riempimento",
"globalSettings": "Impostazioni globali",
"globalPositivePromptPlaceholder": "Prompt positivo globale",
"globalNegativePromptPlaceholder": "Prompt negativo globale"
"globalNegativePromptPlaceholder": "Prompt negativo globale",
"processImage": "Elabora Immagine",
"sendToUpscale": "Invia a Ampliare",
"postProcessing": "Post-elaborazione (Shift + U)"
},
"settings": {
"models": "Modelli",
@ -625,7 +628,9 @@
"enableNSFWChecker": "Abilita controllo NSFW",
"enableInvisibleWatermark": "Abilita filigrana invisibile",
"enableInformationalPopovers": "Abilita testo informativo a comparsa",
"reloadingIn": "Ricaricando in"
"reloadingIn": "Ricaricando in",
"informationalPopoversDisabled": "Testo informativo a comparsa disabilitato",
"informationalPopoversDisabledDesc": "I testi informativi a comparsa sono disabilitati. Attivali nelle impostazioni."
},
"toast": {
"uploadFailed": "Caricamento fallito",
@ -946,7 +951,7 @@
"deleteBoardOnly": "solo la Bacheca",
"deleteBoard": "Elimina Bacheca",
"deleteBoardAndImages": "Bacheca e Immagini",
"deletedBoardsCannotbeRestored": "Le bacheche eliminate non possono essere ripristinate",
"deletedBoardsCannotbeRestored": "Le bacheche eliminate non possono essere ripristinate. Selezionando \"Elimina solo bacheca\" le immagini verranno spostate nella bacheca \"Non categorizzato\".",
"movingImagesToBoard_one": "Spostare {{count}} immagine nella bacheca:",
"movingImagesToBoard_many": "Spostare {{count}} immagini nella bacheca:",
"movingImagesToBoard_other": "Spostare {{count}} immagini nella bacheca:",
@ -964,7 +969,11 @@
"boards": "Bacheche",
"private": "Bacheche private",
"shared": "Bacheche condivise",
"addPrivateBoard": "Aggiungi una Bacheca Privata"
"addPrivateBoard": "Aggiungi una Bacheca Privata",
"noBoards": "Nessuna bacheca {{boardType}}",
"hideBoards": "Nascondi bacheche",
"viewBoards": "Visualizza bacheche",
"deletedPrivateBoardsCannotbeRestored": "Le bacheche cancellate non possono essere ripristinate. Selezionando 'Cancella solo bacheca', le immagini verranno spostate nella bacheca \"Non categorizzato\" privata dell'autore dell'immagine."
},
"controlnet": {
"contentShuffleDescription": "Rimescola il contenuto di un'immagine",
@ -1508,6 +1517,30 @@
"paragraphs": [
"Metodo con cui applicare l'adattatore IP corrente."
]
},
"scale": {
"heading": "Scala",
"paragraphs": [
"La scala controlla la dimensione dell'immagine di uscita e si basa su un multiplo della risoluzione dell'immagine di ingresso. Ad esempio, un ampliamento 2x su un'immagine 1024x1024 produrrebbe in uscita a 2048x2048."
]
},
"upscaleModel": {
"paragraphs": [
"Il modello di ampliamento ridimensiona l'immagine alle dimensioni di uscita prima che vengano aggiunti i dettagli. È possibile utilizzare qualsiasi modello di ampliamento supportato, ma alcuni sono specializzati per diversi tipi di immagini, come foto o disegni al tratto."
],
"heading": "Modello di ampliamento"
},
"creativity": {
"heading": "Creatività",
"paragraphs": [
"La creatività controlla quanta libertà è concessa al modello quando si aggiungono dettagli. Una creatività bassa rimane vicina all'immagine originale, mentre una creatività alta consente più cambiamenti. Quando si usa un prompt, una creatività alta aumenta l'influenza del prompt."
]
},
"structure": {
"heading": "Struttura",
"paragraphs": [
"La struttura determina quanto l'immagine finale rispecchierà il layout dell'originale. Una struttura bassa permette cambiamenti significativi, mentre una struttura alta conserva la composizione e il layout originali."
]
}
},
"sdxl": {
@ -1684,7 +1717,30 @@
"models": "Modelli",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"queue": "Coda",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)"
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
"upscaling": "Ampliamento",
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)"
}
},
"upscaling": {
"creativity": "Creatività",
"structure": "Struttura",
"upscaleModel": "Modello di Ampliamento",
"scale": "Scala",
"missingModelsWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare i modelli richiesti:",
"mainModelDesc": "Modello principale (architettura SD1.5 o SDXL)",
"tileControlNetModelDesc": "Modello Tile ControlNet per l'architettura del modello principale scelto",
"upscaleModelDesc": "Modello per l'ampliamento (da immagine a immagine)",
"missingUpscaleInitialImage": "Immagine iniziale mancante per l'ampliamento",
"missingUpscaleModel": "Modello per lampliamento mancante",
"missingTileControlNetModel": "Nessun modello ControlNet Tile valido installato",
"postProcessingModel": "Modello di post-elaborazione",
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine)."
},
"upsell": {
"inviteTeammates": "Invita collaboratori",
"shareAccess": "Condividi l'accesso",
"professional": "Professionale",
"professionalUpsell": "Disponibile nell'edizione Professional di Invoke. Fai clic qui o visita invoke.com/pricing per ulteriori dettagli."
}
}

View File

@ -109,7 +109,6 @@
"drop": "ドロップ",
"dropOrUpload": "$t(gallery.drop) またはアップロード",
"deleteImage_other": "画像を削除",
"deleteImageBin": "削除された画像はOSのゴミ箱に送られます。",
"deleteImagePermanent": "削除された画像は復元できません。",
"download": "ダウンロード",
"unableToLoad": "ギャラリーをロードできません",
@ -199,10 +198,6 @@
"title": "顔の修復",
"desc": "現在の画像を修復"
},
"upscale": {
"title": "アップスケール",
"desc": "現在の画像をアップスケール"
},
"showInfo": {
"title": "情報を見る",
"desc": "現在の画像のメタデータ情報を表示"
@ -427,8 +422,6 @@
"shuffle": "シャッフル",
"strength": "強度",
"upscaling": "アップスケーリング",
"upscale": "アップスケール",
"upscaleImage": "画像をアップスケール",
"scale": "Scale",
"scaleBeforeProcessing": "処理前のスケール",
"scaledWidth": "幅のスケール",

View File

@ -70,7 +70,6 @@
"gallerySettings": "갤러리 설정",
"deleteSelection": "선택 항목 삭제",
"featuresWillReset": "이 이미지를 삭제하면 해당 기능이 즉시 재설정됩니다.",
"deleteImageBin": "삭제된 이미지는 운영 체제의 Bin으로 전송됩니다.",
"assets": "자산",
"problemDeletingImagesDesc": "하나 이상의 이미지를 삭제할 수 없습니다",
"noImagesInGallery": "보여줄 이미지가 없음",
@ -258,10 +257,6 @@
"desc": "캔버스 브러시를 선택",
"title": "브러시 선택"
},
"upscale": {
"desc": "현재 이미지를 업스케일",
"title": "업스케일"
},
"previousImage": {
"title": "이전 이미지",
"desc": "갤러리에 이전 이미지 표시"

View File

@ -97,7 +97,6 @@
"noImagesInGallery": "Geen afbeeldingen om te tonen",
"deleteImage_one": "Verwijder afbeelding",
"deleteImage_other": "",
"deleteImageBin": "Verwijderde afbeeldingen worden naar de prullenbak van je besturingssysteem gestuurd.",
"deleteImagePermanent": "Verwijderde afbeeldingen kunnen niet worden hersteld.",
"assets": "Eigen onderdelen",
"autoAssignBoardOnClick": "Ken automatisch bord toe bij klikken",
@ -168,10 +167,6 @@
"title": "Herstel gezichten",
"desc": "Herstelt de huidige afbeelding"
},
"upscale": {
"title": "Schaal op",
"desc": "Schaalt de huidige afbeelding op"
},
"showInfo": {
"title": "Toon info",
"desc": "Toont de metagegevens van de huidige afbeelding"
@ -412,8 +407,6 @@
"type": "Soort",
"strength": "Sterkte",
"upscaling": "Opschalen",
"upscale": "Vergroot (Shift + U)",
"upscaleImage": "Schaal afbeelding op",
"scale": "Schaal",
"imageFit": "Pas initiële afbeelding in uitvoergrootte",
"scaleBeforeProcessing": "Schalen voor verwerking",
@ -473,10 +466,6 @@
},
"imageNotProcessedForControlAdapter": "De afbeelding van controle-adapter #{{number}} is niet verwerkt"
},
"isAllowedToUpscale": {
"useX2Model": "Afbeelding is te groot om te vergroten met het x4-model. Gebruik hiervoor het x2-model",
"tooLarge": "Afbeelding is te groot om te vergoten. Kies een kleinere afbeelding"
},
"patchmatchDownScaleSize": "Verklein",
"useCpuNoise": "Gebruik CPU-ruis",
"imageActions": "Afbeeldingshandeling",

View File

@ -78,10 +78,6 @@
"title": "Popraw twarze",
"desc": "Uruchamia proces poprawiania twarzy dla aktywnego obrazu"
},
"upscale": {
"title": "Powiększ",
"desc": "Uruchamia proces powiększania aktywnego obrazu"
},
"showInfo": {
"title": "Pokaż informacje",
"desc": "Pokazuje metadane zapisane w aktywnym obrazie"
@ -232,8 +228,6 @@
"type": "Metoda",
"strength": "Siła",
"upscaling": "Powiększanie",
"upscale": "Powiększ",
"upscaleImage": "Powiększ obraz",
"scale": "Skala",
"imageFit": "Przeskaluj oryginalny obraz",
"scaleBeforeProcessing": "Tryb skalowania",

View File

@ -160,10 +160,6 @@
"title": "Restaurar Rostos",
"desc": "Restaurar a imagem atual"
},
"upscale": {
"title": "Redimensionar",
"desc": "Redimensionar a imagem atual"
},
"showInfo": {
"title": "Mostrar Informações",
"desc": "Mostrar metadados de informações da imagem atual"
@ -275,8 +271,6 @@
"showOptionsPanel": "Mostrar Painel de Opções",
"strength": "Força",
"upscaling": "Redimensionando",
"upscale": "Redimensionar",
"upscaleImage": "Redimensionar Imagem",
"scaleBeforeProcessing": "Escala Antes do Processamento",
"images": "Imagems",
"steps": "Passos",

View File

@ -80,10 +80,6 @@
"title": "Restaurar Rostos",
"desc": "Restaurar a imagem atual"
},
"upscale": {
"title": "Redimensionar",
"desc": "Redimensionar a imagem atual"
},
"showInfo": {
"title": "Mostrar Informações",
"desc": "Mostrar metadados de informações da imagem atual"
@ -268,8 +264,6 @@
"type": "Tipo",
"strength": "Força",
"upscaling": "Redimensionando",
"upscale": "Redimensionar",
"upscaleImage": "Redimensionar Imagem",
"scale": "Escala",
"imageFit": "Caber Imagem Inicial No Tamanho de Saída",
"scaleBeforeProcessing": "Escala Antes do Processamento",

View File

@ -100,7 +100,6 @@
"loadMore": "Показать больше",
"noImagesInGallery": "Изображений нет",
"deleteImagePermanent": "Удаленные изображения невозможно восстановить.",
"deleteImageBin": "Удаленные изображения будут отправлены в корзину вашей операционной системы.",
"deleteImage_one": "Удалить изображение",
"deleteImage_few": "Удалить {{count}} изображения",
"deleteImage_many": "Удалить {{count}} изображений",
@ -214,10 +213,6 @@
"title": "Восстановить лица",
"desc": "Восстановить лица на текущем изображении"
},
"upscale": {
"title": "Увеличение",
"desc": "Увеличить текущеее изображение"
},
"showInfo": {
"title": "Показать метаданные",
"desc": "Показать метаданные из текущего изображения"
@ -512,8 +507,6 @@
"type": "Тип",
"strength": "Сила",
"upscaling": "Увеличение",
"upscale": "Увеличить",
"upscaleImage": "Увеличить изображение",
"scale": "Масштаб",
"imageFit": "Уместить изображение",
"scaleBeforeProcessing": "Масштабировать",
@ -573,10 +566,6 @@
"ipAdapterNoImageSelected": "изображение IP-адаптера не выбрано"
}
},
"isAllowedToUpscale": {
"useX2Model": "Изображение слишком велико для увеличения с помощью модели x4. Используйте модель x2",
"tooLarge": "Изображение слишком велико для увеличения. Выберите изображение меньшего размера"
},
"cfgRescaleMultiplier": "Множитель масштабирования CFG",
"patchmatchDownScaleSize": "уменьшить",
"useCpuNoise": "Использовать шум CPU",

View File

@ -90,10 +90,6 @@
"title": "Återskapa ansikten",
"desc": "Återskapa nuvarande bild"
},
"upscale": {
"title": "Skala upp",
"desc": "Skala upp nuvarande bild"
},
"showInfo": {
"title": "Visa info",
"desc": "Visa metadata för nuvarande bild"

View File

@ -278,7 +278,6 @@
"enable": "Aç"
},
"gallery": {
"deleteImageBin": "Silinen görseller işletim sisteminin çöp kutusuna gönderilir.",
"deleteImagePermanent": "Silinen görseller geri getirilemez.",
"assets": "Özkaynaklar",
"autoAssignBoardOnClick": "Tıklanan Panoya Otomatik Atama",
@ -416,10 +415,6 @@
"desc": "Maske/Taban katmanları arasında geçiş yapar",
"title": "Katmanı Gizle-Göster"
},
"upscale": {
"title": "Büyüt",
"desc": "Seçili görseli büyüt"
},
"setSeed": {
"title": "Tohumu Kullan",
"desc": "Seçili görselin tohumunu kullan"
@ -626,10 +621,6 @@
"controlNetControlMode": "Yönetim Kipi",
"general": "Genel",
"seamlessYAxis": "Dikişsiz Döşeme Y Ekseni",
"isAllowedToUpscale": {
"tooLarge": "Görsel, büyütme işlemi için çok büyük, daha küçük bir boyut seçin",
"useX2Model": "Görsel 4 kat büyütme işlemi için çok geniş, 2 kat büyütmeyi kullanın"
},
"maskBlur": "Bulandırma",
"images": "Görseller",
"info": "Bilgi",
@ -641,7 +632,6 @@
"copyImage": "Görseli Kopyala",
"height": "Boy",
"width": "En",
"upscale": "Büyüt (Shift + U)",
"useSize": "Boyutu Kullan",
"symmetry": "Bakışım",
"tileSize": "Döşeme Boyutu",
@ -657,7 +647,6 @@
"showOptionsPanel": "Yan Paneli Göster (O ya da T)",
"shuffle": "Kar",
"usePrompt": "İstemi Kullan",
"upscaleImage": "Görseli Büyüt",
"setToOptimalSizeTooSmall": "$t(parameters.setToOptimalSize) (çok küçük olabilir)",
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (çok büyük olabilir)",
"cfgRescaleMultiplier": "CFG Rescale Çarpanı",

View File

@ -85,10 +85,6 @@
"title": "Відновити обличчя",
"desc": "Відновити обличчя на поточному зображенні"
},
"upscale": {
"title": "Збільшення",
"desc": "Збільшити поточне зображення"
},
"showInfo": {
"title": "Показати метадані",
"desc": "Показати метадані з поточного зображення"
@ -276,8 +272,6 @@
"type": "Тип",
"strength": "Сила",
"upscaling": "Збільшення",
"upscale": "Збільшити",
"upscaleImage": "Збільшити зображення",
"scale": "Масштаб",
"imageFit": "Вмістити зображення",
"scaleBeforeProcessing": "Масштабувати",

View File

@ -6,7 +6,7 @@
"settingsLabel": "设置",
"img2img": "图生图",
"unifiedCanvas": "统一画布",
"nodes": "工作流编辑器",
"nodes": "工作流",
"upload": "上传",
"load": "加载",
"statusDisconnected": "未连接",
@ -86,7 +86,12 @@
"editing": "编辑中",
"green": "绿",
"blue": "蓝",
"editingDesc": "在控制图层画布上编辑"
"editingDesc": "在控制图层画布上编辑",
"goTo": "前往",
"dontShowMeThese": "请勿显示这些内容",
"beta": "测试版",
"toResolve": "解决",
"tab": "标签页"
},
"gallery": {
"galleryImageSize": "预览大小",
@ -94,8 +99,7 @@
"autoSwitchNewImages": "自动切换到新图像",
"loadMore": "加载更多",
"noImagesInGallery": "无图像可用于显示",
"deleteImage_other": "删除图片",
"deleteImageBin": "被删除的图片会发送到你操作系统的回收站。",
"deleteImage_other": "删除{{count}}张图片",
"deleteImagePermanent": "删除的图片无法被恢复。",
"assets": "素材",
"autoAssignBoardOnClick": "点击后自动分配面板",
@ -133,7 +137,24 @@
"hover": "悬停",
"selectAllOnPage": "选择本页全部",
"swapImages": "交换图像",
"compareOptions": "比较选项"
"compareOptions": "比较选项",
"exitBoardSearch": "退出面板搜索",
"exitSearch": "退出搜索",
"oldestFirst": "最旧在前",
"sortDirection": "排序方向",
"showStarredImagesFirst": "优先显示收藏的图片",
"compareHelp3": "按 <Kbd>C</Kbd> 键对调正在比较的图片。",
"showArchivedBoards": "显示已归档的面板",
"newestFirst": "最新在前",
"compareHelp4": "按 <Kbd>Z</Kbd>或 <Kbd>Esc</Kbd> 键退出。",
"searchImages": "按元数据搜索",
"jump": "跳过",
"compareHelp2": "按 <Kbd>M</Kbd> 键切换不同的比较模式。",
"displayBoardSearch": "显示面板搜索",
"displaySearch": "显示搜索",
"stretchToFit": "拉伸以适应",
"exitCompare": "退出对比",
"compareHelp1": "在点击图库中的图片或使用箭头键切换比较图片时,请按住<Kbd>Alt</Kbd> 键。"
},
"hotkeys": {
"keyboardShortcuts": "快捷键",
@ -193,10 +214,6 @@
"title": "面部修复",
"desc": "对当前图像进行面部修复"
},
"upscale": {
"title": "放大",
"desc": "对当前图像进行放大"
},
"showInfo": {
"title": "显示信息",
"desc": "显示当前图像的元数据"
@ -352,7 +369,19 @@
"desc": "打开和关闭选项和图库面板",
"title": "开关选项和图库"
},
"clearSearch": "清除检索项"
"clearSearch": "清除检索项",
"toggleViewer": {
"desc": "在当前标签页的图片查看模式和编辑工作区之间切换.",
"title": "切换图片查看器"
},
"postProcess": {
"desc": "使用选定的后期处理模型对当前图像进行处理",
"title": "处理图像"
},
"remixImage": {
"title": "重新混合图像",
"desc": "使用当前图像的所有参数,但不包括随机种子"
}
},
"modelManager": {
"modelManager": "模型管理器",
@ -400,14 +429,71 @@
"modelConversionFailed": "模型转换失败",
"baseModel": "基底模型",
"convertingModelBegin": "模型转换中. 请稍候.",
"predictionType": "预测类型(适用于 Stable Diffusion 2.x 模型和部分 Stable Diffusion 1.x 模型)",
"predictionType": "预测类型",
"advanced": "高级",
"modelType": "模型类别",
"variant": "变体",
"vae": "VAE",
"alpha": "Alpha",
"vaePrecision": "VAE 精度",
"noModelSelected": "无选中的模型"
"noModelSelected": "无选中的模型",
"modelImageUpdateFailed": "模型图像更新失败",
"scanFolder": "扫描文件夹",
"path": "路径",
"pathToConfig": "配置路径",
"cancel": "取消",
"hfTokenUnableToVerify": "无法验证HuggingFace token",
"install": "安装",
"simpleModelPlaceholder": "本地文件或diffusers文件夹的URL或路径",
"hfTokenInvalidErrorMessage": "无效或缺失的HuggingFace token.",
"noModelsInstalledDesc1": "安装模型时使用",
"inplaceInstallDesc": "安装模型时不复制文件直接从原位置加载。如果关闭此选项模型文件将在安装过程中被复制到Invoke管理的模型文件夹中.",
"installAll": "安装全部",
"noModelsInstalled": "无已安装的模型",
"urlOrLocalPathHelper": "链接应该指向单个文件.本地路径可以指向单个文件,或者对于单个扩散模型(diffusers model),可以指向一个文件夹.",
"modelSettings": "模型设置",
"useDefaultSettings": "使用默认设置",
"scanPlaceholder": "本地文件夹路径",
"installRepo": "安装仓库",
"modelImageDeleted": "模型图像已删除",
"modelImageDeleteFailed": "模型图像删除失败",
"scanFolderHelper": "此文件夹将进行递归扫描以寻找模型.对于大型文件夹,这可能需要一些时间.",
"scanResults": "扫描结果",
"noMatchingModels": "无匹配的模型",
"pruneTooltip": "清理队列中已完成的导入任务",
"urlOrLocalPath": "链接或本地路径",
"localOnly": "仅本地",
"hfTokenHelperText": "需要HuggingFace token才能使用Checkpoint模型。点击此处创建或获取您的token.",
"huggingFaceHelper": "如果在此代码库中检测到多个模型,系统将提示您选择其中一个进行安装.",
"hfTokenUnableToVerifyErrorMessage": "无法验证HuggingFace token.可能是网络问题所致.请稍后再试.",
"hfTokenSaved": "HuggingFace token已保存",
"imageEncoderModelId": "图像编码器模型ID",
"modelImageUpdated": "模型图像已更新",
"modelName": "模型名称",
"prune": "清理",
"repoVariant": "代码库版本",
"defaultSettings": "默认设置",
"inplaceInstall": "就地安装",
"main": "主界面",
"starterModels": "初始模型",
"installQueue": "安装队列",
"hfTokenInvalidErrorMessage2": "更新于其中 ",
"hfTokenInvalid": "无效或缺失的HuggingFace token",
"mainModelTriggerPhrases": "主模型触发词",
"typePhraseHere": "在此输入触发词",
"triggerPhrases": "触发词",
"metadata": "元数据",
"deleteModelImage": "删除模型图片",
"edit": "编辑",
"source": "来源",
"uploadImage": "上传图像",
"addModels": "添加模型",
"textualInversions": "文本逆向生成",
"upcastAttention": "是否为高精度权重",
"defaultSettingsSaved": "默认设置已保存",
"huggingFacePlaceholder": "所有者或模型名称",
"huggingFaceRepoID": "HuggingFace仓库ID",
"loraTriggerPhrases": "LoRA 触发词"
},
"parameters": {
"images": "图像",
@ -422,8 +508,6 @@
"type": "种类",
"strength": "强度",
"upscaling": "放大",
"upscale": "放大 (Shift + U)",
"upscaleImage": "放大图像",
"scale": "等级",
"imageFit": "使生成图像长宽适配初始图像",
"scaleBeforeProcessing": "处理前缩放",
@ -452,7 +536,7 @@
"scheduler": "调度器",
"general": "通用",
"controlNetControlMode": "控制模式",
"maskBlur": "模糊",
"maskBlur": "遮罩模糊",
"invoke": {
"noNodesInGraph": "节点图中无节点",
"noModelSelected": "无已选中的模型",
@ -466,7 +550,21 @@
"noPrompts": "没有已生成的提示词",
"noControlImageForControlAdapter": "有 #{{number}} 个 Control Adapter 缺失控制图像",
"noModelForControlAdapter": "有 #{{number}} 个 Control Adapter 没有选择模型。",
"incompatibleBaseModelForControlAdapter": "有 #{{number}} 个 Control Adapter 模型与主模型不兼容。"
"incompatibleBaseModelForControlAdapter": "有 #{{number}} 个 Control Adapter 模型与主模型不兼容。",
"layer": {
"initialImageNoImageSelected": "未选择初始图像",
"controlAdapterImageNotProcessed": "Control Adapter图像尚未处理",
"ipAdapterNoModelSelected": "未选择IP adapter",
"controlAdapterNoModelSelected": "未选择Control Adapter模型",
"controlAdapterNoImageSelected": "未选择Control Adapter图像",
"rgNoPromptsOrIPAdapters": "无文本提示或IP Adapters",
"controlAdapterIncompatibleBaseModel": "Control Adapter的基础模型不兼容",
"ipAdapterIncompatibleBaseModel": "IP Adapter的基础模型不兼容",
"t2iAdapterIncompatibleDimensions": "T2I Adapter需要图像尺寸为{{multiple}}的倍数",
"ipAdapterNoImageSelected": "未选择IP Adapter图像",
"rgNoRegion": "未选择区域"
},
"imageNotProcessedForControlAdapter": "Control Adapter #{{number}} 的图像未处理"
},
"patchmatchDownScaleSize": "缩小",
"clipSkip": "CLIP 跳过层",
@ -474,10 +572,6 @@
"coherenceMode": "模式",
"imageActions": "图像操作",
"iterations": "迭代数",
"isAllowedToUpscale": {
"useX2Model": "图像太大,无法使用 x4 模型,使用 x2 模型作为替代",
"tooLarge": "图像太大无法进行放大,请选择更小的图像"
},
"cfgRescaleMultiplier": "CFG 重缩放倍数",
"useSize": "使用尺寸",
"setToOptimalSize": "优化模型大小",
@ -485,7 +579,21 @@
"lockAspectRatio": "锁定纵横比",
"swapDimensions": "交换尺寸",
"aspect": "纵横",
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (可能过大)"
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (可能过大)",
"globalNegativePromptPlaceholder": "全局反向提示词",
"remixImage": "重新混合图像",
"coherenceEdgeSize": "边缘尺寸",
"postProcessing": "后处理Shift + U",
"infillMosaicTileWidth": "瓦片宽度",
"sendToUpscale": "发送到放大",
"processImage": "处理图像",
"globalPositivePromptPlaceholder": "全局正向提示词",
"globalSettings": "全局设置",
"infillMosaicTileHeight": "瓦片高度",
"infillMosaicMinColor": "最小颜色",
"infillMosaicMaxColor": "最大颜色",
"infillColorValue": "填充颜色",
"coherenceMinDenoise": "最小去噪"
},
"settings": {
"models": "模型",
@ -515,7 +623,9 @@
"enableNSFWChecker": "启用成人内容检测器",
"enableInvisibleWatermark": "启用不可见水印",
"enableInformationalPopovers": "启用信息弹窗",
"reloadingIn": "重新加载中"
"reloadingIn": "重新加载中",
"informationalPopoversDisabled": "信息提示框已禁用",
"informationalPopoversDisabledDesc": "信息提示框已被禁用.请在设置中重新启用."
},
"toast": {
"uploadFailed": "上传失败",
@ -524,16 +634,16 @@
"canvasMerged": "画布已合并",
"sentToImageToImage": "已发送到图生图",
"sentToUnifiedCanvas": "已发送到统一画布",
"parametersNotSet": "参数未设定",
"parametersNotSet": "参数未恢复",
"metadataLoadFailed": "加载元数据失败",
"uploadFailedInvalidUploadDesc": "必须是单张的 PNG 或 JPEG 图片",
"connected": "服务器连接",
"parameterSet": "参数已设定",
"parameterNotSet": "参数未设定",
"parameterSet": "参数已恢复",
"parameterNotSet": "参数未恢复",
"serverError": "服务器错误",
"canceled": "处理取消",
"problemCopyingImage": "无法复制图像",
"modelAddedSimple": "已添加模型",
"modelAddedSimple": "模型已加入队列",
"imageSavingFailed": "图像保存失败",
"canvasSentControlnetAssets": "画布已发送到 ControlNet & 素材",
"problemCopyingCanvasDesc": "无法导出基础层",
@ -563,12 +673,28 @@
"canvasSavedGallery": "画布已保存到图库",
"imageUploadFailed": "图像上传失败",
"problemImportingMask": "导入遮罩时出现问题",
"baseModelChangedCleared_other": "基础模型已更改, 已清除或禁用 {{count}} 个不兼容的子模型",
"baseModelChangedCleared_other": "已清除或禁用{{count}}个不兼容的子模型",
"setAsCanvasInitialImage": "设为画布初始图像",
"invalidUpload": "无效的上传",
"problemDeletingWorkflow": "删除工作流时出现问题",
"workflowDeleted": "已删除工作流",
"problemRetrievingWorkflow": "检索工作流时发生问题"
"problemRetrievingWorkflow": "检索工作流时发生问题",
"baseModelChanged": "基础模型已更改",
"problemDownloadingImage": "无法下载图像",
"outOfMemoryError": "内存不足错误",
"parameters": "参数",
"resetInitialImage": "重置初始图像",
"parameterNotSetDescWithMessage": "无法恢复 {{parameter}}: {{message}}",
"parameterSetDesc": "已恢复 {{parameter}}",
"parameterNotSetDesc": "无法恢复{{parameter}}",
"sessionRef": "会话: {{sessionId}}",
"somethingWentWrong": "出现错误",
"prunedQueue": "已清理队列",
"uploadInitialImage": "上传初始图像",
"outOfMemoryErrorDesc": "您当前的生成设置已超出系统处理能力.请调整设置后再次尝试.",
"parametersSet": "参数已恢复",
"errorCopied": "错误信息已复制",
"modelImportCanceled": "模型导入已取消"
},
"unifiedCanvas": {
"layer": "图层",
@ -622,7 +748,15 @@
"antialiasing": "抗锯齿",
"showResultsOn": "显示结果 (开)",
"showResultsOff": "显示结果 (关)",
"saveMask": "保存 $t(unifiedCanvas.mask)"
"saveMask": "保存 $t(unifiedCanvas.mask)",
"coherenceModeBoxBlur": "盒子模糊",
"showBoundingBox": "显示边界框",
"coherenceModeGaussianBlur": "高斯模糊",
"coherenceModeStaged": "分阶段",
"hideBoundingBox": "隐藏边界框",
"initialFitImageSize": "在拖放时调整图像大小以适配",
"invertBrushSizeScrollDirection": "反转滚动操作以调整画笔大小",
"discardCurrent": "放弃当前设置"
},
"accessibility": {
"invokeProgressBar": "Invoke 进度条",
@ -752,11 +886,11 @@
"unableToExtractSchemaNameFromRef": "无法从参考中提取架构名",
"unknownOutput": "未知输出:{{name}}",
"unknownErrorValidatingWorkflow": "验证工作流时出现未知错误",
"collectionFieldType": "{{name}} 合集",
"collectionFieldType": "{{name}}(合集)",
"unknownNodeType": "未知节点类型",
"targetNodeDoesNotExist": "无效的边缘:{{node}} 的目标/输入节点不存在",
"unknownFieldType": "$t(nodes.unknownField) 类型:{{type}}",
"collectionOrScalarFieldType": "{{name}} 合集 | 标量",
"collectionOrScalarFieldType": "{{name}} (单一项目或项目集合)",
"nodeVersion": "节点版本",
"deletedInvalidEdge": "已删除无效的边缘 {{source}} -> {{target}}",
"unknownInput": "未知输入:{{name}}",
@ -765,7 +899,27 @@
"newWorkflow": "新建工作流",
"newWorkflowDesc": "是否创建一个新的工作流?",
"newWorkflowDesc2": "当前工作流有未保存的更改。",
"unsupportedAnyOfLength": "联合union数据类型数目过多 ({{count}})"
"unsupportedAnyOfLength": "联合union数据类型数目过多 ({{count}})",
"resetToDefaultValue": "重置为默认值",
"clearWorkflowDesc2": "您当前的工作流有未保存的更改.",
"missingNode": "缺少调用节点",
"missingInvocationTemplate": "缺少调用模版",
"noFieldsViewMode": "此工作流程未选择任何要显示的字段.请查看完整工作流程以进行配置.",
"reorderLinearView": "调整线性视图顺序",
"viewMode": "在线性视图中使用",
"showEdgeLabelsHelp": "在边缘上显示标签,指示连接的节点",
"cannotMixAndMatchCollectionItemTypes": "集合项目类型不能混用",
"missingFieldTemplate": "缺少字段模板",
"editMode": "在工作流编辑器中编辑",
"showEdgeLabels": "显示边缘标签",
"clearWorkflowDesc": "是否清除当前工作流并创建新的?",
"graph": "图表",
"noGraph": "无图表",
"edit": "编辑",
"clearWorkflow": "清除工作流",
"imageAccessError": "无法找到图像 {{image_name}},正在恢复默认设置",
"boardAccessError": "无法找到面板 {{board_id}},正在恢复默认设置",
"modelAccessError": "无法找到模型 {{key}},正在恢复默认设置"
},
"controlnet": {
"resize": "直接缩放",
@ -805,7 +959,7 @@
"mediapipeFaceDescription": "使用 Mediapipe 检测面部",
"depthZoeDescription": "使用 Zoe 生成深度图",
"hedDescription": "整体嵌套边缘检测",
"setControlImageDimensions": "设定控制图像尺寸宽/高为",
"setControlImageDimensions": "复制尺寸到宽度/高度(为模型优化)",
"amult": "角度倍率 (a_mult)",
"bgth": "背景移除阈值 (bg_th)",
"lineartAnimeDescription": "动漫风格线稿处理",
@ -816,7 +970,7 @@
"addControlNet": "添加 $t(common.controlNet)",
"addIPAdapter": "添加 $t(common.ipAdapter)",
"safe": "保守模式",
"scribble": "草绘 (scribble)",
"scribble": "草绘",
"maxFaces": "最大面部数",
"pidi": "PIDI",
"normalBae": "Normal BAE",
@ -931,7 +1085,8 @@
"steps": "步数",
"posStylePrompt": "正向样式提示词",
"refiner": "Refiner",
"freePromptStyle": "手动输入样式提示词"
"freePromptStyle": "手动输入样式提示词",
"refinerSteps": "精炼步数"
},
"metadata": {
"positivePrompt": "正向提示词",
@ -958,7 +1113,12 @@
"recallParameters": "召回参数",
"noRecallParameters": "未找到要召回的参数",
"vae": "VAE",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)"
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"allPrompts": "所有提示",
"parsingFailed": "解析失败",
"recallParameter": "调用{{label}}",
"imageDimensions": "图像尺寸",
"parameterSet": "已设置参数{{parameter}}"
},
"models": {
"noMatchingModels": "无相匹配的模型",
@ -971,7 +1131,8 @@
"esrganModel": "ESRGAN 模型",
"addLora": "添加 LoRA",
"lora": "LoRA",
"defaultVAE": "默认 VAE"
"defaultVAE": "默认 VAE",
"concepts": "概念"
},
"boards": {
"autoAddBoard": "自动添加面板",
@ -993,8 +1154,23 @@
"deleteBoardOnly": "仅删除面板",
"deleteBoard": "删除面板",
"deleteBoardAndImages": "删除面板和图像",
"deletedBoardsCannotbeRestored": "删除的面板无法恢复",
"movingImagesToBoard_other": "移动 {{count}} 张图像到面板:"
"deletedBoardsCannotbeRestored": "删除的面板无法恢复。选择“仅删除面板”选项后,相关图片将会被移至未分类区域。",
"movingImagesToBoard_other": "移动 {{count}} 张图像到面板:",
"selectedForAutoAdd": "已选中自动添加",
"hideBoards": "隐藏面板",
"noBoards": "没有{{boardType}}类型的面板",
"unarchiveBoard": "恢复面板",
"viewBoards": "查看面板",
"addPrivateBoard": "创建私密面板",
"addSharedBoard": "创建共享面板",
"boards": "面板",
"imagesWithCount_other": "{{count}}张图片",
"deletedPrivateBoardsCannotbeRestored": "删除的面板无法恢复。选择“仅删除面板”后,相关图片将会被移至图片创建者的私密未分类区域。",
"private": "私密面板",
"shared": "共享面板",
"archiveBoard": "归档面板",
"archived": "已归档",
"assetsWithCount_other": "{{count}}项资源"
},
"dynamicPrompts": {
"seedBehaviour": {
@ -1036,32 +1212,33 @@
"paramVAEPrecision": {
"heading": "VAE 精度",
"paragraphs": [
"VAE 编解码过程使用的精度。FP16/半精度以微小的图像变化为代价提高效率。"
"VAE编码和解码过程使用的精度.",
"Fp16/半精度更高效,但可能会造成图像的一些微小差异."
]
},
"compositingCoherenceMode": {
"heading": "模式",
"paragraphs": [
"一致性层模式。"
"用于将新生成的遮罩区域与原图像融合的方法."
]
},
"controlNetResizeMode": {
"heading": "缩放模式",
"paragraphs": [
"ControlNet 输入图像适应输出图像大小的方法"
"调整Control Adapter输入图像大小以适应输出图像尺寸的方法."
]
},
"clipSkip": {
"paragraphs": [
"选择要跳过 CLIP 模型多少层。",
"部分模型跳过特定数值的层时效果会更好。"
"跳过CLIP模型的层数.",
"某些模型更适合结合CLIP Skip功能使用."
],
"heading": "CLIP 跳过层"
},
"paramModel": {
"heading": "模型",
"paragraphs": [
"用于去噪过程的模型。"
"用于图像生成的模型.不同的模型经过训练,专门用于产生不同的美学效果和内容."
]
},
"paramIterations": {
@ -1093,19 +1270,21 @@
"paramScheduler": {
"heading": "调度器",
"paragraphs": [
"调度器 (采样器) 定义如何在图像迭代过程中添加噪声,或者定义如何根据一个模型的输出来更新采样。"
"生成过程中所使用的调度器.",
"每个调度器决定了在生成过程中如何逐步向图像添加噪声,或者如何根据模型的输出更新样本."
]
},
"controlNetWeight": {
"heading": "权重",
"paragraphs": [
"ControlNet 对生成图像的影响强度。"
"Control Adapter的权重.权重越高,对最终图像的影响越大."
]
},
"paramCFGScale": {
"heading": "CFG 等级",
"paragraphs": [
"控制提示对生成过程的影响程度"
"控制提示对生成过程的影响程度.",
"较高的CFG比例值可能会导致生成结果过度饱和和扭曲. "
]
},
"paramSteps": {
@ -1123,28 +1302,29 @@
]
},
"lora": {
"heading": "LoRA 权重",
"heading": "LoRA",
"paragraphs": [
"更高的 LoRA 权重会对最终图像产生更大的影响。"
"与基础模型结合使用的轻量级模型."
]
},
"infillMethod": {
"heading": "填充方法",
"paragraphs": [
"填充选定区域的方式。"
"在重绘过程中使用的填充方法."
]
},
"controlNetBeginEnd": {
"heading": "开始 / 结束步数百分比",
"paragraphs": [
"去噪过程中在哪部分步数应用 ControlNet。",
"在组合处理开始阶段应用 ControlNet且在引导细节生成的结束阶段应用 ControlNet。"
"去噪过程中应用Control Adapter 的部分.",
"通常,在去噪过程初期应用Control Adapters用于指导整体构图而在后期应用Control Adapters则用于调整细节。"
]
},
"scaleBeforeProcessing": {
"heading": "处理前缩放",
"paragraphs": [
"生成图像前将所选区域缩放为最适合模型的大小"
"\"自动\"选项会在图像生成之前将所选区域调整到最适合模型的大小.",
"\"手动\"选项允许您在图像生成之前自行选择所选区域的宽度和高度."
]
},
"paramDenoisingStrength": {
@ -1158,13 +1338,13 @@
"heading": "种子",
"paragraphs": [
"控制用于生成的起始噪声。",
"禁用 “随机种子” 来以相同设置生成相同的结果"
"禁用\"随机\"选项,以使用相同的生成设置产生一致的结果."
]
},
"controlNetControlMode": {
"heading": "控制模式",
"paragraphs": [
"提示词ControlNet 增加更大的权重"
"提示词ControlNet之间分配更多的权重."
]
},
"dynamicPrompts": {
@ -1205,7 +1385,171 @@
"paramCFGRescaleMultiplier": {
"heading": "CFG 重缩放倍数",
"paragraphs": [
"CFG导的重缩放倍率,用于通过 zero-terminal SNR (ztsnr) 训练的模型。推荐设为 0.7。"
"CFG导的重缩放乘数,适用于使用零终端信噪比(ztsnr训练的模型.",
"对于这些模型,建议的数值为0.7."
]
},
"imageFit": {
"paragraphs": [
"将初始图像调整到与输出图像相同的宽度和高度.建议启用此功能."
],
"heading": "将初始图像适配到输出大小"
},
"paramAspect": {
"paragraphs": [
"生成图像的宽高比.调整宽高比会相应地更新图像的宽度和高度.",
"选择\"优化\"将把图像的宽度和高度设置为所选模型的最优尺寸."
],
"heading": "宽高比"
},
"refinerSteps": {
"paragraphs": [
"在图像生成过程中的细化阶段将执行的步骤数.",
"与生成步骤相似."
],
"heading": "步数"
},
"compositingMaskBlur": {
"heading": "遮罩模糊",
"paragraphs": [
"遮罩的模糊范围."
]
},
"compositingCoherenceMinDenoise": {
"paragraphs": [
"连贯模式下的最小去噪力度",
"在图像修复或重绘过程中,连贯区域的最小去噪力度"
],
"heading": "最小去噪"
},
"loraWeight": {
"paragraphs": [
"LoRA的权重,权重越高对最终图像的影响越大."
],
"heading": "权重"
},
"paramHrf": {
"heading": "启用高分辨率修复",
"paragraphs": [
"以高于模型最优分辨率的大分辨率生成高质量图像.这通常用于防止生成图像中出现重复内容."
]
},
"compositingCoherenceEdgeSize": {
"paragraphs": [
"连贯处理的边缘尺寸."
],
"heading": "边缘尺寸"
},
"paramWidth": {
"paragraphs": [
"生成图像的宽度.必须是8的倍数."
],
"heading": "宽度"
},
"refinerScheduler": {
"paragraphs": [
"在图像生成过程中的细化阶段所使用的调度程序.",
"与生成调度程序相似."
],
"heading": "调度器"
},
"seamlessTilingXAxis": {
"paragraphs": [
"沿水平轴将图像进行无缝平铺."
],
"heading": "无缝平铺X轴"
},
"paramUpscaleMethod": {
"heading": "放大方法",
"paragraphs": [
"用于高分辨率修复的图像放大方法."
]
},
"refinerModel": {
"paragraphs": [
"在图像生成过程中的细化阶段所使用的模型.",
"与生成模型相似."
],
"heading": "精炼模型"
},
"paramHeight": {
"paragraphs": [
"生成图像的高度.必须是8的倍数."
],
"heading": "高"
},
"patchmatchDownScaleSize": {
"heading": "缩小",
"paragraphs": [
"在填充之前图像缩小的程度.",
"较高的缩小比例会提升处理速度,但可能会降低图像质量."
]
},
"seamlessTilingYAxis": {
"heading": "Y轴上的无缝平铺",
"paragraphs": [
"沿垂直轴将图像进行无缝平铺."
]
},
"ipAdapterMethod": {
"paragraphs": [
"当前IP Adapter的应用方法."
],
"heading": "方法"
},
"controlNetProcessor": {
"paragraphs": [
"处理输入图像以引导生成过程的方法.不同的处理器会在生成图像中产生不同的效果或风格."
],
"heading": "处理器"
},
"refinerPositiveAestheticScore": {
"paragraphs": [
"根据训练数据,对生成结果进行加权,使其更接近于具有高美学评分的图像."
],
"heading": "正面美学评分"
},
"refinerStart": {
"paragraphs": [
"在图像生成过程中精炼阶段开始被使用的时刻.",
"0表示精炼器将全程参与图像生成,0.8表示细化器仅在生成过程的最后20%阶段被使用."
],
"heading": "精炼开始"
},
"refinerCfgScale": {
"paragraphs": [
"控制提示对生成过程的影响程度.",
"与生成CFG Scale相似."
]
},
"structure": {
"heading": "结构",
"paragraphs": [
"结构决定了输出图像在多大程度上保持原始图像的布局.较低的结构设置允许进行较大的变化,而较高的结构设置则会严格保持原始图像的构图和布局."
]
},
"creativity": {
"paragraphs": [
"创造力决定了模型在添加细节时的自由度.较低的创造力会使生成结果更接近原始图像,而较高的创造力则允许更多的变化.在使用提示时,较高的创造力会增加提示对生成结果的影响."
],
"heading": "创造力"
},
"refinerNegativeAestheticScore": {
"paragraphs": [
"根据训练数据,对生成结果进行加权,使其更接近于具有低美学评分的图像."
],
"heading": "负面美学评分"
},
"upscaleModel": {
"heading": "放大模型",
"paragraphs": [
"上采样模型在添加细节之前将图像放大到输出尺寸.虽然可以使用任何支持的上采样模型,但有些模型更适合处理特定类型的图像,例如照片或线条画."
]
},
"scale": {
"heading": "缩放",
"paragraphs": [
"比例控制决定了输出图像的大小,它是基于输入图像分辨率的倍数来计算的.例如对一张1024x1024的图像进行2倍上采样将会得到一张2048x2048的输出图像."
]
}
},
@ -1265,7 +1609,16 @@
"updated": "已更新",
"userWorkflows": "我的工作流",
"projectWorkflows": "项目工作流",
"opened": "已打开"
"opened": "已打开",
"noRecentWorkflows": "没有最近的工作流",
"workflowCleared": "工作流已清除",
"saveWorkflowToProject": "保存工作流到项目",
"noWorkflows": "无工作流",
"convertGraph": "转换图表",
"loadWorkflow": "$t(common.load) 工作流",
"noUserWorkflows": "没有用户工作流",
"loadFromGraph": "从图表加载工作流",
"autoLayout": "自动布局"
},
"app": {
"storeNotInitialized": "商店尚未初始化"
@ -1293,5 +1646,68 @@
"prompt": {
"addPromptTrigger": "添加提示词触发器",
"noMatchingTriggers": "没有匹配的触发器"
},
"controlLayers": {
"autoNegative": "自动反向",
"opacityFilter": "透明度滤镜",
"deleteAll": "删除所有",
"moveForward": "向前移动",
"layers_other": "层",
"globalControlAdapterLayer": "全局 $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
"moveBackward": "向后移动",
"regionalGuidance": "区域导向",
"controlLayers": "控制层",
"moveToBack": "移动到后面",
"brushSize": "笔刷尺寸",
"moveToFront": "移动到前面",
"addLayer": "添加层",
"deletePrompt": "删除提示词",
"resetRegion": "重置区域",
"debugLayers": "调试图层",
"maskPreviewColor": "遮罩预览颜色",
"addPositivePrompt": "添加 $t(common.positivePrompt)",
"addNegativePrompt": "添加 $t(common.negativePrompt)",
"addIPAdapter": "添加 $t(common.ipAdapter)",
"globalIPAdapterLayer": "全局 $t(common.ipAdapter) $t(unifiedCanvas.layer)",
"globalInitialImage": "全局初始图像",
"noLayersAdded": "没有层被添加",
"globalIPAdapter": "全局 $t(common.ipAdapter)",
"resetProcessor": "重置处理器至默认值",
"globalMaskOpacity": "全局遮罩透明度",
"rectangle": "矩形",
"opacity": "透明度",
"clearProcessor": "清除处理器",
"globalControlAdapter": "全局 $t(controlnet.controlAdapter_one)"
},
"ui": {
"tabs": {
"generation": "生成",
"queue": "队列",
"canvas": "画布",
"upscaling": "放大中",
"workflows": "工作流",
"models": "模型"
}
},
"upscaling": {
"structure": "结构",
"upscaleModel": "放大模型",
"missingUpscaleModel": "缺少放大模型",
"missingTileControlNetModel": "没有安装有效的tile ControlNet 模型",
"missingUpscaleInitialImage": "缺少用于放大的原始图像",
"creativity": "创造力",
"postProcessingModel": "后处理模型",
"scale": "缩放",
"tileControlNetModelDesc": "根据所选的主模型架构选择相应的Tile ControlNet模型",
"upscaleModelDesc": "图像放大(图像到图像转换)模型",
"postProcessingMissingModelWarning": "请访问 <LinkComponent>模型管理器</LinkComponent>来安装一个后处理(图像到图像转换)模型.",
"missingModelsWarning": "请访问<LinkComponent>模型管理器</LinkComponent> 安装所需的模型:",
"mainModelDesc": "主模型SD1.5或SDXL架构"
},
"upsell": {
"inviteTeammates": "邀请团队成员",
"professional": "专业",
"professionalUpsell": "可在 Invoke 的专业版中使用.点击此处或访问 invoke.com/pricing 了解更多详情.",
"shareAccess": "共享访问权限"
}
}

View File

@ -1,26 +1,40 @@
/* eslint-disable no-console */
import fs from 'node:fs';
import openapiTS from 'openapi-typescript';
import openapiTS, { astToString } from 'openapi-typescript';
import ts from 'typescript';
const OPENAPI_URL = 'http://127.0.0.1:9090/openapi.json';
const OUTPUT_FILE = 'src/services/api/schema.ts';
async function generateTypes(schema) {
process.stdout.write(`Generating types ${OUTPUT_FILE}...`);
// Use https://ts-ast-viewer.com to figure out how to create these AST nodes - define a type and use the bottom-left pane's output
// `Blob` type
const BLOB = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Blob'));
// `null` type
const NULL = ts.factory.createLiteralTypeNode(ts.factory.createNull());
// `Record<string, unknown>` type
const RECORD_STRING_UNKNOWN = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Record'), [
ts.factory.createKeywordTypeNode(ts.SyntaxKind.StringKeyword),
ts.factory.createKeywordTypeNode(ts.SyntaxKind.UnknownKeyword),
]);
const types = await openapiTS(schema, {
exportType: true,
transform: (schemaObject) => {
if ('format' in schemaObject && schemaObject.format === 'binary') {
return schemaObject.nullable ? 'Blob | null' : 'Blob';
return schemaObject.nullable ? ts.factory.createUnionTypeNode([BLOB, NULL]) : BLOB;
}
if (schemaObject.title === 'MetadataField') {
// This is `Record<string, never>` by default, but it actually accepts any a dict of any valid JSON value.
return 'Record<string, unknown>';
return RECORD_STRING_UNKNOWN;
}
},
defaultNonNullable: false,
});
fs.writeFileSync(OUTPUT_FILE, types);
fs.writeFileSync(OUTPUT_FILE, astToString(types));
process.stdout.write(`\nOK!\r\n`);
}

Some files were not shown because too many files have changed in this diff Show More