Compare commits

...

195 Commits

Author SHA1 Message Date
b5e018972f Release/v3.4.0post2 (#5139)
## What type of PR is this? (check all applicable)

3.4.0post3

## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
N/A

## Description
3.4.0post2 release - mainly fixes duplicate LoRA patching
2023-11-21 10:01:15 +11:00
2af844385f Updated version to 3.4.0post2 2023-11-20 18:53:04 +11:00
540047e26e Updated JS files 2023-11-20 18:48:17 +11:00
4d8b8a2db8 fix(ui): add missing translations (#5096)
* first string only to test

* more strings changed

* almost half strings added in json file

* more strings added

* more changes

* few strings and t function changed

* resolved

* errors resolved

* chore(ui): fmt en.json

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-20 06:24:03 +00:00
d581a3289b Fix links to example workflows 2023-11-19 19:16:30 -08:00
d756c9b10a Fix double LoRA patching of the UNet. This was presumably added by accident due to a previous merge conflict. 2023-11-17 12:05:04 -08:00
63d3212bec translationBot(ui): update translation (German)
Currently translated at 64.4% (793 of 1231 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-11-18 05:31:37 +11:00
136ff011b2 3.4.0post1 (#5115)
## What type of PR is this? (check all applicable)

3.4.0post1


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:
2023-11-17 14:51:10 +11:00
3bc15a96d5 Update version to 3.4.0post1 2023-11-17 13:39:00 +11:00
43d5bb2038 Updated JS files 2023-11-17 13:36:50 +11:00
8d39eab3a9 fix(ui): metadata error on img2img 2023-11-17 12:31:34 +11:00
62da69b3e8 Release/3.4 (#5112)
## What type of PR is this? (check all applicable)

3.4 Release Updates

## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description


## Related Tickets & Documents


## [optional] Are there any post deployment tasks we need to perform?
2023-11-17 08:34:20 +11:00
d2852c767b Bump version to 3.4.0 2023-11-17 08:22:41 +11:00
47f33f1ed1 Update JS files for 3.4 release 2023-11-17 08:21:47 +11:00
1896c6fb44 Merge remote-tracking branch 'origin/main' into release/3.4 2023-11-17 08:09:13 +11:00
47f3515745 fix(nodes,ui): fix missed/canvas temp images in gallery (#5111)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

Resolves two bugs introduced in #5106:

1. Linear UI images sometimes didn't make it to the gallery.

This was a race condition. The VAE decode nodes were handled by the
socketInvocationComplete listener. At that moment, the image was marked
as intermediate. Immediately after this node was handled, a
LinearUIOutputInvocation, introduced in #5106, was handled by
socketInvocationComplete. This node internally sets changed the image to
not intermediate.

During the handling of that socketInvocationComplete, RTK Query would
sometimes use its cache instead of retrieving the image DTO again. The
result is that the UI never got the message that the image was not
intermediate, so it wasn't added to the gallery.

This is resolved by refactoring the socketInvocationComplete listener.
We now skip the gallery processing for linear UI events, except for the
LinearUIOutputInvocation. Images now always make it to the gallery, and
network requests to get image DTOs are substantially reduced.

2. Canvas temp images always went into the gallery

The LinearUIOutputInvocation was always setting its image's
is_intermediate to false. This included all canvas images and resulted
in all canvas temp images going to gallery.

This is resolved by making LinearUIOutputInvocation set is_intermediate
based on `self.is_intermediate`. The behaviour now more or less
mirroring the behaviour of is_intermediate on other image-outputting
nodes, except it doesn't save the image again - only changes it.

One extra minor change - LinearUIOutputInvocation only changes
is_intermediate if it differs from the image's current setting. Very
minor optimisation.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue
https://discord.com/channels/1020123559063990373/1149513625321603162/1174721072826945638

## QA Instructions, Screenshots, Recordings

Try to reproduce the issues described int he discord thread:
- Images should always go to the gallery from txt2img and img2img
- Canvas temp images should not go to the gallery unless auto-save is
enabled
<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->
2023-11-17 08:05:43 +11:00
950021a61e Merge branch 'main' into fix/missed-images-canvas-temp 2023-11-17 08:00:16 +11:00
5ee55cf46f Added unsharp mask node to communityNodes.md (#5110)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [X] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [X] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-17 07:51:09 +11:00
91ef24e15c fix(nodes,ui): fix missed/canvas temp images in gallery
Resolves two bugs introduced in #5106:

1. Linear UI images sometimes didn't make it to the gallery.

This was a race condition. The VAE decode nodes were handled by the socketInvocationComplete listener. At that moment, the image was marked as intermediate. Immediately after this node was handled, a LinearUIOutputInvocation, introduced in #5106, was handled by socketInvocationComplete. This node internally sets changed the image to not intermediate.

During the handling of that socketInvocationComplete, RTK Query would sometimes use its cache instead of retrieving the image DTO again. The result is that the UI never got the message that the image was not intermediate, so it wasn't added to the gallery.

This is resolved by refactoring the socketInvocationComplete listener. We now skip the gallery processing for linear UI events, except for the LinearUIOutputInvocation. Images now always make it to the gallery, and network requests to get image DTOs are substantially reduced.

2. Canvas temp images always went into the gallery

The LinearUIOutputInvocation was always setting its image's is_intermediate to false. This included all canvas images and resulted in all canvas temp images going to gallery.

This is resolved by making LinearUIOutputInvocation set is_intermediate based on `self.is_intermediate`. The behaviour now more or less mirroring the behaviour of is_intermediate on other image-outputting nodes, except it doesn't save the image again - only changes it.

One extra minor change - LinearUIOutputInvocation only changes is_intermediate if it differs from the image's current setting. Very minor optimisation.
2023-11-17 07:32:04 +11:00
230dfdb9ad Added unsharp mask node to communityNodes.md 2023-11-16 14:25:06 -06:00
6f719b2c7a feat: add private node for linear UI image outputting (#5106)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [ ] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

## Description

[feat: add private node for linear UI image
outputting](4599517c6c)

Add a LinearUIOutputInvocation node to be the new terminal node for
Linear UI graphs. This node is private and hidden from the Workflow
Editor, as it is an implementation detail.

The Linear UI was using the Save Image node for this purpose. It allowed
every linear graph to end a single node type, which handled saving
metadata and board. This substantially reduced the complexity of the
linear graphs.

This caused two related issues:
- Images were saved to disk twice
- Noticeable delay between when an image was decoded and showed up in
the UI

To resolve this, the new LinearUIOutputInvocation node will handle
adding an image to a board if one is provided.

Metadata is no longer provided in this unified node. Instead, the
metadata graph helpers now need to know the node to add metadata to and
provide it to the last node that actually outputs an image. This is a
`l2i` node for txt2img & img2img graphs, and a different
image-outputting node for canvas graphs.

HRF poses another complication, in that it changes the terminal node. To
handle this, a new metadata util is added called
`setMetadataReceivingNode()`. HRF calls this to change the node that
should receive the graph's metadata.

This resolves the duplicate images issue and improves perf without
otherwise changing the user experience.

---

Also fixed an issue with HRF metadata.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Closes #4688
- Closes #4645

## QA Instructions, Screenshots, Recordings

Generate some images with and without a board selected. Images should
end up in the right board per usual, but a bit quicker. Metadata should
still work.

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->
2023-11-16 20:08:55 +05:30
02ce3bd303 Merge branch 'main' into feat/linear-ui-output-node 2023-11-16 19:05:13 +11:00
4599517c6c feat: add private node for linear UI image outputting
Add a LinearUIOutputInvocation node to be the new terminal node for Linear UI graphs. This node is private and hidden from the Workflow Editor, as it is an implementation detail.

The Linear UI was using the Save Image node for this purpose. It allowed every linear graph to end a single node type, which handled saving metadata and board. This substantially reduced the complexity of the linear graphs.

This caused two related issues:
- Images were saved to disk twice
- Noticeable delay between when an image was decoded and showed up in the UI

To resolve this, the new LinearUIOutputInvocation node will handle adding an image to a board if one is provided.

Metadata is no longer provided in this unified node. Instead, the metadata graph helpers now need to know the node to add metadata to and provide it to the last node that actually outputs an image. This is a `l2i` node for txt2img & img2img graphs, and a different image-outputting node for canvas graphs.

HRF poses another complication, in that it changes the terminal node. To handle this, a new metadata util is added called `setMetadataReceivingNode()`. HRF calls this to change the node that should receive the graph's metadata.

This resolves the duplicate images issue and improves perf without otherwise changing the user experience.
2023-11-16 18:56:59 +11:00
cc747c066c fix(nodes): fix hrf_enabled metadata item
It was a float but should be a bool
2023-11-16 18:47:31 +11:00
3ba547a41a translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 100.0% (1229 of 1229 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-11-16 18:23:41 +11:00
1a37827bdf (fix) docs formatting 2023-11-16 18:22:21 +11:00
16e990b6e6 Docs/3.4 updates (#5104)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [X] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-16 17:52:06 +11:00
be4f3fa5c6 Added LCM-LoRA 2023-11-16 16:32:55 +11:00
d0375ec234 Added FAQ 2023-11-16 16:10:43 +11:00
1bf8625b10 Updates to invocations 2023-11-16 15:35:24 +11:00
5d6040b636 Updated invocations docs 2023-11-16 15:02:06 +11:00
ead1b14ee7 feat: updateable workflow nodes (#5102)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description

[fix(nodes): bump version of nodes post-pydantic
v2](5cb3fdb64c)

This was not done, despite new metadata fields being added to many
nodes.

[feat(ui): add update node
functionality](3f6e8e9d6b)

A workflow's nodes may update itself, if its major version matches the
template's major version.

If the major versions do not match, the user will need to delete and
re-add the node (current behaviour).

The update functionality is not automatic (for now). The logic to update
the node is pretty simple, but I want to ensure it works well first
before doing it automatically when a workflow is loaded.

- New `Details` tab on Workflow Inspector, displays node title, type,
version, and notes
- Button to update the node is displayed on the `Details` tab
- Add hook to determine if a node needs an update, may be updated (i.e.
major versions match), and the callback to update the node in state
- Remove the notes modal from the little info icon
- Modularize the node building logic

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

Probably exist but not sure where.

## QA Instructions, Screenshots, Recordings

Load an old workflow with nodes that need to be updated. Click on each
node that needs updating and click the update button. Workflow should
work.

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->
2023-11-16 12:57:01 +11:00
92a9355ddb chore(ui): lint 2023-11-16 12:46:56 +11:00
7fcf475aec feat(ui): add Update All Nodes button 2023-11-16 12:42:25 +11:00
3f6e8e9d6b feat(ui): add update node functionality
A workflow's nodes may update itself, if its major version matches the template's major version.

If the major versions do not match, the user will need to delete and re-add the node (current behaviour).

The update functionality is not automatic (for now). The logic to update the node is pretty simple, but I want to ensure it works well first before doing it automatically when a workflow is loaded.

- New `Details` tab on Workflow Inspector, displays node title, type, version, and notes
- Button to update the node is displayed on the `Details` tab
- Add hook to determine if a node needs an update, may be updated (i.e. major versions match), and the callback to update the node in state
- Remove the notes modal from the little info icon
- Modularize the node building logic
2023-11-16 11:36:20 +11:00
c9655236cc chore(ui): regen types 2023-11-16 11:21:39 +11:00
5cb3fdb64c fix(nodes): bump version of nodes post-pydantic v2 2023-11-16 11:14:26 +11:00
ae749ada6e pin torch==2.1.0, torchvision=0.16.0 (#5101)
## Description

pin torch==2.1.0, torchvision=0.16.0

Prevents accidental upgrade to unreleased torch 2.1.1, which breaks
stuff

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #5065
2023-11-16 09:38:04 +11:00
36b8549f3a pin torch==2.1.0, torchvision=0.16.0 2023-11-16 09:28:29 +11:00
b6f356f067 Change stylecheck name from "black" to "ruff" (#5090)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because: it is trivial

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No


## Description

After the switch to the "ruff" linter, I noticed that the stylecheck
workflow is still described as "black" in the action logs. This small PR
should fix the issue.
2023-11-15 08:29:41 +11:00
a4f1db7c02 change stylecheck name from "black" to "ruff" 2023-11-14 11:06:10 -05:00
21206bafcf chore: bump pydantic and fastapi
No breaking changes for us.

Pydantic is working on its own faster JSON parser, `jiter`, and 2.5.0 starts bringing this in. See https://github.com/pydantic/jiter

There are a number of other bugfixes and minor changes in this version of pydantic.

The FastAPI update is mostly internal but let's stay up to date.
2023-11-14 14:34:14 +11:00
a047bad391 Revert torch to use cu121 (#5091)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [X] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-14 13:47:51 +11:00
909afc266e Update 010_INSTALL_AUTOMATED.md 2023-11-13 20:28:00 -05:00
4039dd148d Update 030_INSTALL_CUDA_AND_ROCM.md 2023-11-13 20:28:00 -05:00
ea0f8b8791 Update 020_INSTALL_MANUAL.md 2023-11-13 20:28:00 -05:00
f412582d60 Update README.md to cu121 2023-11-13 20:28:00 -05:00
c5672adb6b Update 070_INSTALL_XFORMERS.md 2023-11-13 20:28:00 -05:00
0e5c3a641a Revert torch to use cu121 2023-11-13 20:28:00 -05:00
9015e72e1e Update README.md to include M3 (#5092)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [x] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because:

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-14 12:24:57 +11:00
6b05d27c7a Update 040_INSTALL_DOCKER.md 2023-11-14 12:22:46 +11:00
19d0673085 Update 010_INSTALL_AUTOMATED.md 2023-11-14 12:22:08 +11:00
048b4fe7e8 Update README.md to include M3 2023-11-13 19:11:31 -06:00
e8b83fecff fix(backend): apply clip skip after lora
This handles LoRAs that attempt to modify layers skipped by CLIP Skip.
2023-11-14 11:30:15 +11:00
8883ecb2bf Model Manager Refactor Phase 1 - SQL-based config storage (#5039)
## What type of PR is this? (check all applicable)

- [X] Refactor


## Have you discussed this change with the InvokeAI team?
- [X] Extensively
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

As discussed with @psychedelicious and @RyanJDick, this is the first
phase of the model manager refactor. In this phase, I've added support
for storing model configuration information the `invokeai.db` SQL3
database. All the code is separate from the original model manager, so
for the time being the frontend is still using the original YAML-based
configuration, so the web app still works.

To keep things clean, I've added a new FastAPI route called
`model_records` which can add, update, retrieve and delete model
records.

The architecture is described in the first section of
`docs/contributing/MODEL_MANAGER.md`.

## QA Instructions, Screenshots, Recordings

There is a pytest for the model sql storage backend in
`tests/backend/model_manager_2/test_model_storage_sql.py`.

To populate `invokeai.db` with models from your current `models.yaml`,
do the following:

1. Stop the running server
2. Back up `invokeai.db`
3. Run `pip install -e .` to install the command used in the next step.
4. Run `invokeai-migrate-models-to-db`

This will iterate through `models.yaml` and create equivalent database
entries in the `model_config` table of `invokeai.db`. Only the models
named in the yaml file will be migrated, so anything that is autoloaded
will be ignored.

Note that in order to get the `model_records` router to be recognized by
the swagger API, I had to rebuild the frontend. Not sure why this was
necessary and would appreciate a pointer on a less radical way to do
this.

## Added/updated tests?

- [X] Yes
- [ ] No
2023-11-13 18:59:25 -05:00
2f97f1d6d5 Merge branch 'main' into refactor/model-manager-2 2023-11-13 18:21:16 -05:00
73d6cc824b Update Pytorch to ~2.1.0 in the installer script (#5089)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [X] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because it's required

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No, not necessary


## Description

We use Pytorch ~2.1.0 as a dependency for InvokeAI, but the installer
still installs 2.0.1 first until Invoke AIs dependencies kick in which
causes it to get deleted anyway and replaced with 2.1.0. This is
unnecessary and probably not wanted.

Fixed the dependencies for the installation script to install Pytorch
~2.1.0 to begin with.

P.s. Is there any reason why "torchmetrics==0.11.4" is pinned? What is
the reason for that? Does that change with Pytorch 2.1? It seems to work
since we use it already. It would be nice to know the reason.

Greetings

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-13 18:20:36 -05:00
acc0a29dca fixed ruff formatting issues 2023-11-13 18:15:17 -05:00
38c1436f02 resolve conflicts; blackify 2023-11-13 18:12:45 -05:00
efbdb75568 implement psychedelicious recommendations as of 13 November 2023-11-13 17:05:01 -05:00
8929495aeb fix(test): remove unused assignment to value 2023-11-14 08:08:23 +11:00
428f0b265f feat(api): add log stmt to update_model_record route 2023-11-14 08:06:35 +11:00
7daee41ad2 fix(api): remove unused ModelsListValidator 2023-11-14 08:01:44 +11:00
7cdd7b6ad7 feat(api): simplifiy list_model_records handler 2023-11-14 08:00:21 +11:00
bc64cde6f9 chore: ruff lint 2023-11-14 07:57:07 +11:00
4465f97cdf Merge branch 'main' into refactor/model-manager-2 2023-11-14 07:51:57 +11:00
fface2cda7 Update torch to ~2.1.0 in the installer 2023-11-13 17:30:51 +01:00
7fcb8959fb chore(ui): cleanup (#5084)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

Bit of a cleanup. 

[chore(ui): delete unused
files](5eaea9dd64)

[feat(ui): add eslint rule
react/jsx-no-bind](3a0ec635c9)

This rule enforces no arrow functions in component props. In practice,
it means all functions passed as component props must be wrapped in
`useCallback()`.

This is a performance optimization to prevent unnecessary rerenders.

The rule is added and all violations have been fixed, whew!

[chore(ui): move useCopyImageToClipboard to
common/hooks/](f2d26a3a3c)

[chore(ui): move MM components & store to
features/](bb52861896)

Somehow they had ended up in `features/ui/tabs` which isn't right

## QA Instructions, Screenshots, Recordings

UI should still work.

It builds successfully, and I tested things out - looks good to me.
2023-11-13 13:22:41 +05:30
dcf0dc4274 Merge branch 'main' into chore/ui/cleanup 2023-11-13 16:33:08 +11:00
bb52861896 chore(ui): move MM components & store to features/
Somehow they had ended up in `features/ui/tabs` which isn't right
2023-11-13 16:32:03 +11:00
f2d26a3a3c chore(ui): move useCopyImageToClipboard to common/hooks/ 2023-11-13 16:23:46 +11:00
04d8f2dfea fix(backend): fix controlnet zip len
Do not use `strict=True` when scaling controlnet conditioning.

When using `guess_mode` (e.g. `more_control` or `more_prompt`), `down_block_res_samples` and `scales` are zipped.

These two objects are of different lengths, so using zip's strict mode raises an error.

In testing, `len(scales) === len(down_block_res_samples) + 1`.

It appears this behaviour is intentional, as the final "extra" item in `scales` is used immediately afterwards.
2023-11-13 15:45:03 +11:00
355d4cf4e2 Update Accelerate to 0.24.X (#5075)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [X] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because: This is just housekeeping

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No, not needed


## Description

Update Accelerate to the most recent version. No breaking changes.
Tested for 1 week in productive use now.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-13 14:20:05 +11:00
a3a828779a Merge branch 'main' into update-accelerate 2023-11-13 14:10:53 +11:00
8c71ff37ae Update config.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-12 19:03:39 -05:00
ddb65e6034 Merge branch 'main' into chore/ui/cleanup 2023-11-13 10:53:04 +11:00
8366cd2a00 feat: use ruff for lint & format (#5070)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [x] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

This PR introduces [`ruff`](https://github.com/astral-sh/ruff) as the
only linter and formatter needed for the project. It is really fast.
Like, alarmingly fast.

It is a drop-in replacement for flake8, isort, black, and much more.
I've configured it similarly to our existing config.

Note: we had enabled a number of flake8 plugins but didn't have the
packages themselves installed, so they did nothing. Ruff used the
existing config, and found a good number of changes needed to adhere to
those flake8 plugins. I've resolved all violations.

### Code changes

- many
[flake8-comprehensions](https://docs.astral.sh/ruff/rules/#flake8-comprehensions-c4)
violations, almost all auto-fixed
- a good handful of
[flake8-bugbear](https://docs.astral.sh/ruff/rules/#flake8-bugbear-b)
violations
- handful of
[pycodestyle](https://docs.astral.sh/ruff/rules/#pycodestyle-e-w)
violations
- some formatting

### Developer Experience

[Ruff integrates with most
editors](https://docs.astral.sh/ruff/integrations/):
- Official VSCode extension
- `ruff-lsp` python package allows it to integrate with any LSP-capable
editor (vim, emacs, etc)
- Can be configured as an external tool in PyCharm

### Github Actions

I've updated the `style-checks` action to use ruff, and deleted the
`pyflakes` action.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Closes #5066 

## QA Instructions, Screenshots, Recordings

Have a poke around, and run the app. There were some logic changes but
it was all pretty straightforward.

~~Not sure how to best test the changed github action.~~ Looks like it
just used the action from this PR, that's kinda unexpected but OK.

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-13 10:41:43 +11:00
ab1ec3720a Merge branch 'main' into feat/ruff 2023-11-13 10:32:23 +11:00
3a0ec635c9 feat(ui): add eslint rule react/jsx-no-bind
This rule enforces no arrow functions in component props. In practice, it means all functions passed as component props must be wrapped in `useCallback()`.

This is a performance optimization to prevent unnecessary rerenders.

The rule is added and all violations have been fixed, whew!
2023-11-13 10:01:14 +11:00
8afe517204 add note about discriminated union and Body() issue; blackified 2023-11-12 16:50:05 -05:00
5eaea9dd64 chore(ui): delete unused files 2023-11-13 08:43:27 +11:00
71e298b722 Feat (ui): Add VAE Model to Recall Parameters (#5073)
* adding VAE recall when using all parameters

* adding VAE to the RecallParameters tab in ImageMetadataActions

* checking for nil vae and casting to null if undefined

* adding default VAE to recall actions list if VAE is nullish

* fix(ui): use `lodash-es` for tree-shakeable imports

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-12 21:19:12 +00:00
89a039460d feat(ui): add number inputs for canvas brush color picker (#5067)
* drop-down for the color picker

* fixed the bug in alpha value

* designing done

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-12 21:07:26 +00:00
a342e64772 Merge branch 'main' into feat/ruff 2023-11-13 07:54:06 +11:00
ef8dcf5fae blackify 2023-11-12 14:20:32 -05:00
90a038c685 translationBot(ui): update translation (Italian)
Currently translated at 97.7% (1200 of 1228 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-11-12 20:24:04 +11:00
024a156114 isort 2023-11-11 13:58:36 -05:00
7ea2a135f1 remove dangling import 2023-11-11 12:24:58 -05:00
af2264b6eb implement workaround for FastAPI and discriminated unions in Body parameter 2023-11-11 12:22:38 -05:00
41bf9ec4a3 Update Accelerate to 0.24.X 2023-11-11 09:46:23 +01:00
520ccdb0a9 Merge branch 'main' into feat/ruff 2023-11-11 15:07:35 +11:00
2b36565e9e awkward workaround for double-Annotated in model_record route 2023-11-10 21:32:44 -05:00
f2c3b7c317 Merge branch 'refactor/model-manager-2' of github.com:invoke-ai/InvokeAI into refactor/model-manager-2 2023-11-10 19:47:01 -05:00
67751a01ab remove unused import 2023-11-10 19:25:05 -05:00
cb8cdefd59 Merge branch 'main' into refactor/model-manager-2 2023-11-10 19:24:19 -05:00
f1c846ba5c blackify 2023-11-10 19:14:29 -05:00
3a6ba236f5 replace _class_map in ModelConfigFactory with a nested discriminated union 2023-11-10 19:14:15 -05:00
1c7ea57492 feat (ui, generation): High Resolution Fix- added automatic resolution toggle and replaced latent upscale with two improved methods (#4905)
* working

* added selector for method

* refactoring graph

* added ersgan method

* fixing yarn build

* add tooltips

* a conjuction

* rephrase

* removed manual sliders, set HRF to calculate dimensions automatically to match 512^2 pixels

* working

* working

* working

* fixed tooltip

* add hrf to use all parameters

* adding hrf method to parameters

* working on parameter recall

* working on parameter recall

* cleaning

* fix(ui): fix unnecessary casts in addHrfToGraph

* chore(ui): use camelCase in addHrfToGraph

* fix(ui): do not add HRF metadata unless HRF is added to graph

* fix(ui): remove unused imports in addHrfToGraph

* feat(ui): do not hide HRF params when disabled, only disable them

* fix(ui): remove unused vars in addHrfToGraph

* feat(ui): default HRF str to 0.35, method ESRGAN

* fix(ui): use isValidBoolean to check hrfEnabled param

* fix(nodes): update CoreMetadataInvocation fields for HRF

* feat(ui): set hrf strength default to 0.45

* fix(ui): set default hrf strength in configSlice

* feat(ui): use translations for HRF features

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-11 00:11:46 +00:00
6494e8e551 chore: ruff format 2023-11-11 10:55:40 +11:00
513fceac82 chore: ruff check - fix pycodestyle 2023-11-11 10:55:33 +11:00
99a8ebe3a0 chore: ruff check - fix flake8-bugbear 2023-11-11 10:55:28 +11:00
3a136420d5 chore: ruff check - fix flake8-comprensions 2023-11-11 10:55:23 +11:00
bd56e9bc81 remove cruft code from router 2023-11-10 18:49:25 -05:00
43f2398e14 feat: use ruff's github output format for action 2023-11-11 10:42:27 +11:00
d0cf98d7f6 feat: add ruff-lsp to support most editors 2023-11-11 10:42:27 +11:00
8111dd6cc5 feat: remove pyflakes gh action
ruff supersedes it
2023-11-11 10:42:27 +11:00
99e4b87fae feat: use ruff in GH style-checks action 2023-11-11 10:42:27 +11:00
884ec0b5df feat: replace isort, flake8 & black with ruff 2023-11-11 10:42:27 +11:00
9ccfa34e04 Update installer.py to use cu118 instead of 121 (#5069)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-11 10:40:47 +11:00
d5aa74623d Merge branch 'main' into Millu-patch-1 2023-11-11 10:39:06 +11:00
d63a614b8b Update Transformers to 4.35 and fix pad_to_multiple_of (#4817)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [X] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes, with @blessedcoolant 
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description

This PR updates Transformers to the most recent version and fixes the
value `pad_to_multiple_of` for `text_encoder.resize_token_embeddings`
which was introduced with
https://github.com/huggingface/transformers/pull/25088 in Transformers
4.32.0.

According to the [Nvidia
Documentation](https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc),
`Performance is better when equivalent matrix dimensions M, N, and K are
aligned to multiples of 8 bytes (or 64 bytes on A100) for FP16`
This fixes the following error that was popping up before every
invocation starting with Transformers 4.32.0
`You are resizing the embedding layer without providing a
pad_to_multiple_of parameter. This means that the new embedding
dimension will be None. This might induce some performance reduction as
Tensor Cores will not be available. For more details about this, or help
on choosing the correct value for resizing, refer to this guide:
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc`

This is my first "real" fix PR, so I hope this is fine. Please inform me
if there is anything wrong with this. I am glad to help.

Have a nice day and thank you!


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue:
https://github.com/huggingface/transformers/issues/26303
- Related Discord discussion:
https://discord.com/channels/1020123559063990373/1154152783579197571
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-11 10:38:33 +11:00
cbc905a4d6 Update installer.py to use cu118 instead of 121 2023-11-11 10:36:07 +11:00
b55fc2935e resolve conflicts with commits done on github 2023-11-10 18:26:48 -05:00
0544917161 multiple small fixes suggested in reviews from psychedelicious and ryan 2023-11-10 18:25:37 -05:00
1161dfe055 Update invokeai/app/api/routers/model_records.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-11-10 18:24:55 -05:00
433f347d7e Update invokeai/app/api/routers/model_records.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-11-10 18:22:54 -05:00
33a412a24f Update invokeai/backend/model_manager/config.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-10 18:21:38 -05:00
9316534d97 Update invokeai/app/services/model_records/model_records_sql.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-10 17:58:15 -05:00
fdaa661245 revert frontend dist files to main 2023-11-10 17:57:18 -05:00
f1c195afb7 Merge branch 'main' into refactor/model-manager-2 2023-11-10 17:54:28 -05:00
6001d3d71d Change pad_to_multiple_of to be 8 for all cases. Add comment about it's temporary status 2023-11-10 17:51:59 -05:00
b9f607be56 Update to 4.35.X 2023-11-10 17:51:59 -05:00
8831d1ee41 Update Documentation 2023-11-10 17:51:59 -05:00
a0be83e370 Update Transformers to 4.34 and fix pad_to_multiple_of 2023-11-10 17:51:59 -05:00
8702a63197 add support for downloading and installing LCM lora diffusers models 2023-11-10 17:51:30 -05:00
d7f0a7919f chore(ui): manually update vite to fix security issue in hoisted dep
`postcss` is a hoisted dependency of `vite`.
2023-11-10 06:58:22 -08:00
356b5a41a9 wip: Add LCMScheduler 2023-11-10 06:54:36 -08:00
e56a6d85a9 Update diffusers to ~=0.23 (#5063)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-10 12:44:28 +11:00
e22a091d76 Update diffusers to ~=0.23 2023-11-10 11:50:50 +11:00
141d02939a Upstream diffusers PR was merged, this no longer seems necessary (#5060)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-10 11:47:21 +11:00
5cb372e9d0 Merge branch 'main' into remove-deprecated-sdxl-t2i-hack 2023-11-10 11:33:32 +11:00
f95fe68753 chore(ui): manually bump deps with security issues 2023-11-10 09:50:00 +11:00
6d33893844 chore(ui): update all deps 2023-11-10 09:50:00 +11:00
fc53112d8e chore(ui): remove unused deps 2023-11-10 09:50:00 +11:00
41f7aa6ab4 Remove unused import: 2023-11-09 15:06:01 -05:00
9bec755198 Upstream diffusers PR was merged, this no longer seems necessary 2023-11-09 15:02:24 -05:00
2570497d83 fix(installer): fix import of ValidationError
It was being imported from a deprecated module
2023-11-10 06:11:15 +11:00
5d735a714d translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 100.0% (1219 of 1219 strings)

Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-11-09 10:54:56 -08:00
6aa87f973e fix(nodes): create app/shared/ module to prevent circular imports
We have a number of shared classes, objects, and functions that are used in multiple places. This causes circular import issues.

This commit creates a new `app/shared/` module to hold these shared classes, objects, and functions.

Initially, only `FreeUConfig` and `FieldDescriptions` are moved here. This resolves a circular import issue with custom nodes.

Other shared classes, objects, and functions will be moved here in future commits.
2023-11-09 16:41:55 +11:00
f793fdf3d4 fix(socketio): leave room on unsubscribe
https://discord.com/channels/1020123559063990373/1049495067846524939/1171976251704086559
2023-11-09 12:12:32 +11:00
3b363d0258 fix flake8 lint check failures 2023-11-08 16:52:46 -05:00
36e0faea6b blackify 2023-11-08 16:47:03 -05:00
927f8a66e6 Merge branch 'main' into refactor/model-manager-2 2023-11-08 16:46:08 -05:00
eebc0e7315 Merge branch 'refactor/model-manager-2' of github.com:invoke-ai/InvokeAI into refactor/model-manager-2 2023-11-08 16:45:29 -05:00
6b173cc66f multiple small stylistic changes requested by reviewers 2023-11-08 16:45:26 -05:00
b4732a7308 Update invokeai/app/services/model_records/model_records_base.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-11-08 13:50:40 -05:00
344a56327a Update invokeai/app/services/model_records/model_records_base.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-11-08 13:50:01 -05:00
2e404b7cca Fix updater option list numbering
Fix updater option list numbering in invokeai_update.py so that they don't go 1, 2, 2, 3.  The options themselves work fine.
2023-11-07 19:11:25 -08:00
a760bdae9f (fix) update freeU config to be compatible with custom nodes (#5050)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes: @psychedelicious told me to do this :) 
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-06 21:43:18 -08:00
4cfd55936c run black formatting 2023-11-07 16:06:18 +11:00
5c3a27aac6 fixed sorts 2023-11-07 16:03:06 +11:00
d573a23090 Moved FreeU Config Import 2023-11-07 15:48:53 +11:00
351abd2ca2 Merge branch 'invoke-ai:main' into main 2023-11-07 15:43:04 +11:00
9733cd4199 Update xformers to 0.0.22post7 2023-11-06 17:17:03 -08:00
9976bc6908 Update installer.py to cu121 2023-11-06 17:17:03 -08:00
c68db6e40f Update xformers to ~0.0.22 2023-11-06 17:17:03 -08:00
3a50798a52 Update xformers to 0.0.22post7 2023-11-07 12:00:39 +11:00
a98426d2c6 Update installer.py to cu121 2023-11-07 11:57:02 +11:00
504f426f0a Update xformers to ~0.0.22 2023-11-07 11:53:39 +11:00
840cbc1d39 xformers==0.0.20 (#4881)
I'm not sure if it's correct way of handling things, but correcting this
string to '==0.0.20' fixes xformers install for me - and maybe for
others it will too. Sorry for absolutely incorrect PR.

Please see [this
thread](https://github.com/facebookresearch/xformers/issues/740), this
is the issue I had (trying to install InvokeAI with
Automatic/Manual/StableMatrix way).

With ~=0.0.19 (0.0.22):
```
(InvokeAI) pip install torch torchvision xformers~=0.0.19
Collecting torch
  Obtaining dependency information for torch from edce54779f/torch-2.1.0-cp311-cp311-win_amd64.whl.metadata
  Using cached torch-2.1.0-cp311-cp311-win_amd64.whl.metadata (25 kB)
Collecting torchvision
  Obtaining dependency information for torchvision from ab6f42af83/torchvision-0.16.0-cp311-cp311-win_amd64.whl.metadata
  Using cached torchvision-0.16.0-cp311-cp311-win_amd64.whl.metadata (6.6 kB)
Collecting xformers
  Using cached xformers-0.0.22.post3.tar.gz (3.9 MB)
  Installing build dependencies ... done
  Getting requirements to build wheel ... error
  error: subprocess-exited-with-error

  × Getting requirements to build wheel did not run successfully.
  │ exit code: 1
  ╰─> [20 lines of output]
      Traceback (most recent call last):
        File "C:\Users\Drun\invokeai\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 353, in <module>
          main()
        File "C:\Users\Drun\invokeai\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 335, in main
          json_out['return_val'] = hook(**hook_input['kwargs'])
                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "C:\Users\Drun\invokeai\.venv\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 118, in get_requires_for_build_wheel
          return hook(config_settings)
                 ^^^^^^^^^^^^^^^^^^^^^
        File "C:\Users\Drun\AppData\Local\Temp\pip-build-env-rmhvraqj\overlay\Lib\site-packages\setuptools\build_meta.py", line 355, in get_requires_for_build_wheel
          return self._get_build_requires(config_settings, requirements=['wheel'])
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        File "C:\Users\Drun\AppData\Local\Temp\pip-build-env-rmhvraqj\overlay\Lib\site-packages\setuptools\build_meta.py", line 325, in _get_build_requires
          self.run_setup()
        File "C:\Users\Drun\AppData\Local\Temp\pip-build-env-rmhvraqj\overlay\Lib\site-packages\setuptools\build_meta.py", line 507, in run_setup
          super(_BuildMetaLegacyBackend, self).run_setup(setup_script=setup_script)
        File "C:\Users\Drun\AppData\Local\Temp\pip-build-env-rmhvraqj\overlay\Lib\site-packages\setuptools\build_meta.py", line 341, in run_setup
          exec(code, locals())
        File "<string>", line 23, in <module>
      ModuleNotFoundError: No module named 'torch'
```

With 0.0.20:

```
(InvokeAI) pip install torch torchvision xformers==0.0.20
Collecting torch
  Obtaining dependency information for torch from edce54779f/torch-2.1.0-cp311-cp311-win_amd64.whl.metadata
  Using cached torch-2.1.0-cp311-cp311-win_amd64.whl.metadata (25 kB)
Collecting torchvision
  Obtaining dependency information for torchvision from ab6f42af83/torchvision-0.16.0-cp311-cp311-win_amd64.whl.metadata
  Using cached torchvision-0.16.0-cp311-cp311-win_amd64.whl.metadata (6.6 kB)
Collecting xformers==0.0.20
  Obtaining dependency information for xformers==0.0.20 from d4a42f582a/xformers-0.0.20-cp311-cp311-win_amd64.whl.metadata
  Using cached xformers-0.0.20-cp311-cp311-win_amd64.whl.metadata (1.1 kB)
Collecting numpy (from xformers==0.0.20)
  Obtaining dependency information for numpy from 3f826c6d15/numpy-1.26.0-cp311-cp311-win_amd64.whl.metadata
  Using cached numpy-1.26.0-cp311-cp311-win_amd64.whl.metadata (61 kB)
Collecting pyre-extensions==0.0.29 (from xformers==0.0.20)
  Using cached pyre_extensions-0.0.29-py3-none-any.whl (12 kB)
Collecting torch
  Using cached torch-2.0.1-cp311-cp311-win_amd64.whl (172.3 MB)
Collecting filelock (from torch)
  Obtaining dependency information for filelock from 97afbafd9d/filelock-3.12.4-py3-none-any.whl.metadata
  Using cached filelock-3.12.4-py3-none-any.whl.metadata (2.8 kB)
Requirement already satisfied: typing-extensions in c:\users\drun\invokeai\.venv\lib\site-packages (from torch) (4.8.0)
Requirement already satisfied: sympy in c:\users\drun\invokeai\.venv\lib\site-packages (from torch) (1.12)
Collecting networkx (from torch)
  Using cached networkx-3.1-py3-none-any.whl (2.1 MB)
Collecting jinja2 (from torch)
  Using cached Jinja2-3.1.2-py3-none-any.whl (133 kB)
Collecting typing-inspect (from pyre-extensions==0.0.29->xformers==0.0.20)
  Obtaining dependency information for typing-inspect from 107a22063b/typing_inspect-0.9.0-py3-none-any.whl.metadata
  Using cached typing_inspect-0.9.0-py3-none-any.whl.metadata (1.5 kB)
Collecting requests (from torchvision)
  Obtaining dependency information for requests from 0e2d847013/requests-2.31.0-py3-none-any.whl.metadata
  Using cached requests-2.31.0-py3-none-any.whl.metadata (4.6 kB)
INFO: pip is looking at multiple versions of torchvision to determine which version is compatible with other requirements. This could take a while.
Collecting torchvision
  Using cached torchvision-0.15.2-cp311-cp311-win_amd64.whl (1.2 MB)
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision)
  Obtaining dependency information for pillow!=8.3.*,>=5.3.0 from debe992677/Pillow-10.0.1-cp311-cp311-win_amd64.whl.metadata
  Using cached Pillow-10.0.1-cp311-cp311-win_amd64.whl.metadata (9.6 kB)
Collecting MarkupSafe>=2.0 (from jinja2->torch)
  Obtaining dependency information for MarkupSafe>=2.0 from 08b85bc194/MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl.metadata
  Using cached MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl.metadata (3.1 kB)
Collecting charset-normalizer<4,>=2 (from requests->torchvision)
  Obtaining dependency information for charset-normalizer<4,>=2 from 50028bbb26/charset_normalizer-3.3.0-cp311-cp311-win_amd64.whl.metadata
  Using cached charset_normalizer-3.3.0-cp311-cp311-win_amd64.whl.metadata (33 kB)
Collecting idna<4,>=2.5 (from requests->torchvision)
  Using cached idna-3.4-py3-none-any.whl (61 kB)
Collecting urllib3<3,>=1.21.1 (from requests->torchvision)
  Obtaining dependency information for urllib3<3,>=1.21.1 from 9957270221/urllib3-2.0.6-py3-none-any.whl.metadata
  Using cached urllib3-2.0.6-py3-none-any.whl.metadata (6.6 kB)
Collecting certifi>=2017.4.17 (from requests->torchvision)
  Obtaining dependency information for certifi>=2017.4.17 from 2234eab223/certifi-2023.7.22-py3-none-any.whl.metadata
  Using cached certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB)
Requirement already satisfied: mpmath>=0.19 in c:\users\drun\invokeai\.venv\lib\site-packages (from sympy->torch) (1.3.0)
Collecting mypy-extensions>=0.3.0 (from typing-inspect->pyre-extensions==0.0.29->xformers==0.0.20)
  Using cached mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)
Using cached xformers-0.0.20-cp311-cp311-win_amd64.whl (97.6 MB)
Using cached Pillow-10.0.1-cp311-cp311-win_amd64.whl (2.5 MB)
Using cached filelock-3.12.4-py3-none-any.whl (11 kB)
Using cached numpy-1.26.0-cp311-cp311-win_amd64.whl (15.8 MB)
Using cached requests-2.31.0-py3-none-any.whl (62 kB)
Using cached certifi-2023.7.22-py3-none-any.whl (158 kB)
Using cached charset_normalizer-3.3.0-cp311-cp311-win_amd64.whl (97 kB)
Using cached MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl (17 kB)
Using cached urllib3-2.0.6-py3-none-any.whl (123 kB)
Using cached typing_inspect-0.9.0-py3-none-any.whl (8.8 kB)
Installing collected packages: urllib3, pillow, numpy, networkx, mypy-extensions, MarkupSafe, idna, filelock, charset-normalizer, certifi, typing-inspect, requests, jinja2, torch, pyre-extensions, xformers, torchvision
Successfully installed MarkupSafe-2.1.3 certifi-2023.7.22 charset-normalizer-3.3.0 filelock-3.12.4 idna-3.4 jinja2-3.1.2 mypy-extensions-1.0.0 networkx-3.1 numpy-1.26.0 pillow-10.0.1 pyre-extensions-0.0.29 requests-2.31.0 torch-2.0.1 torchvision-0.15.2 typing-inspect-0.9.0 urllib3-2.0.6 xformers-0.0.20
```

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: I'm no-brainer. It fixed issue for me, so I did PR.
Who knows?

## Technical details:
Windows 11, Standalone clean and freshly-installed Python 3.11
2023-11-06 16:07:03 -08:00
014d6187ab Update pyproject.toml 2023-11-07 10:22:20 +11:00
9fb15fae87 Update pyproject.toml 2023-11-07 10:20:16 +11:00
a07336a020 Merge branch 'main' into patch-1 2023-11-07 10:17:46 +11:00
0718cc2392 Update xformers to 0.0.21 2023-11-07 10:16:44 +11:00
ce22c0fbaa sync pydantic and sql field names; merge routes 2023-11-06 18:08:57 -05:00
935e4632c2 feat(nodes): add freeu support (#4846)
### What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description

**Note: FreeU is not in the current release of diffusers. Looks like it
will be in release 0.22. This PR needs to wait until that is released.**

[feat(nodes): add freeu
support](15b33ad501)

Add support for FreeU. See:
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
- https://github.com/ChenyangSi/FreeU

Implementation:
- `ModelPatcher.apply_freeu()` handles the enabling freeu (which is very
simple with diffusers).
- `FreeUConfig` model added to hold the hyperparameters.
- `freeu_config` added as optional sub-field on `UNetField`.
- `FreeUInvocation` added, works like LoRA - chain it to add the FreeU
config to the UNet
- No support for model-dependent presets, this will be a future workflow
editor enhancement

Closes https://github.com/invoke-ai/InvokeAI/issues/4845

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Closes #4845 

## QA Instructions, Screenshots, Recordings

You'll need to install diffusers from their github repo before testing
this:
`pip install git+https://github.com/huggingface/diffusers`

1. Create a graph like this:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/af17719b-b001-4534-8c4e-883484fd7465)
2. Get a free lunch!

No FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/279d1a69-1577-4c31-ab82-ebf67f65920d)
With FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/c332c778-0b87-4215-8a36-d4822e06f4de)

No FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/ebec097b-ad54-4295-b734-33656738a2cf)
With FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/3423140d-c9ce-4697-9993-d2bb0d0f5634)

No FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/7cb0e39d-aa87-4a48-a3af-b9f47a866814)
With FreeU:

![image](https://github.com/invoke-ai/InvokeAI/assets/4822129/9113d2fe-5bd3-474f-8f33-82cdeb7abf82)
2023-11-06 13:58:32 -08:00
a83d8810c4 Merge branch 'main' into feat/nodes/freeu 2023-11-06 13:47:56 -08:00
76b3f8956b Fix ROCm support in Docker container 2023-11-06 13:47:08 -08:00
ff8a8a1963 Merge branch 'main' into feat/nodes/freeu 2023-11-06 09:04:54 -08:00
cb6d0c8851 Re-add feat/mix cnet t2iadapter (#4929)
Reverts invoke-ai/InvokeAI#4923, which was a revert on the premature
merge.

slide to the left. revert, revert.
2023-11-06 22:29:13 +05:30
67f2616d5a Merge branch 'main' into revert-4923-revert-4914-feat/mix-cnet-t2iadapter 2023-11-06 07:34:51 -08:00
f8f1740668 Set Defaults to 1 2023-11-06 07:11:16 -08:00
e66d0f7372 Merge branch 'main' into feat/nodes/freeu 2023-11-06 05:39:58 -08:00
546aaedbe4 Update pyproject.toml 2023-11-06 05:29:17 -08:00
55f8865524 Merge branch 'main' into refactor/model-manager-2 2023-11-05 21:45:26 -05:00
2d051559d1 fix flake8 complaints 2023-11-05 21:45:08 -05:00
7f650d00de translationBot(ui): update translation (Italian)
Currently translated at 97.7% (1191 of 1219 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-11-05 11:12:33 -08:00
db9cef0092 re-run isort 2023-11-04 23:50:07 -04:00
72c34aea75 added add_model_record and get_model_record to router api 2023-11-04 23:42:44 -04:00
edeea5237b add sql-based model config store and api 2023-11-04 23:03:26 -04:00
4e6b579526 translationBot(ui): update translation (Italian)
Currently translated at 97.6% (1190 of 1219 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-11-05 12:09:20 +11:00
6334c4adf5 translationBot(ui): update translation (German)
Currently translated at 53.8% (657 of 1219 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-11-05 12:09:20 +11:00
66b2366efc Remove LowRA from Initial Models (#5016)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] No


## Description
Removing LowRA from the initial models as it's been deleted from
CivitAI.

## Related Tickets & Documents

https://discord.com/channels/1020123559063990373/1168415065205112872


- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-11-04 17:14:24 -04:00
e147379aa7 Merge branch 'main' into main 2023-11-04 17:05:01 -04:00
5a821384d3 fix model-not-found error 2023-11-04 08:24:01 -07:00
584b513038 Remove LowRA from Initial Models 2023-11-01 08:55:06 +11:00
55ad4feb5c Revert "Revert "feat(ui): remove special handling for t2i vs controlnet""
This reverts commit bdf4c4944c.
2023-10-17 11:59:19 -04:00
b7555ddae8 Revert "Revert "chore: lint""
This reverts commit 38e7eb8878.
2023-10-17 11:59:19 -04:00
8afc47018b Revert "Revert "Cleaning up (removing diagnostic prints)""
This reverts commit 6e697b7b6f.
2023-10-17 11:59:19 -04:00
a97ec88e06 Revert "Revert "Changes to _apply_standard_conditioning_sequentially() and _apply_cross_attention_controlled_conditioning() to reflect changes to T2I-Adapter implementation to allow usage of T2I-Adapter and ControlNet at the same time.""
This reverts commit c04fb451ee.
2023-10-17 11:59:19 -04:00
282d36b640 Revert "Revert "Fixing some var and arg names.""
This reverts commit 58a0709c1e.
2023-10-17 11:59:19 -04:00
14e25bf277 Merge branch 'main' into feat/nodes/freeu 2023-10-17 16:42:59 +11:00
001bba1719 Merge branch 'main' into feat/nodes/freeu 2023-10-17 15:58:00 +11:00
9db152bf75 xformers==0.0.20
I'm not sure if it's correct way of handling things, but correcting this string to '==0.0.20' fixes xformers install for me - and maybe for others too. 

Please see this thread, this is the issue I had (trying to install InvokeAI):
https://github.com/facebookresearch/xformers/issues/740
2023-10-14 14:59:55 +04:00
15b33ad501 feat(nodes): add freeu support
Add support for FreeU. See:
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
- https://github.com/ChenyangSi/FreeU

Implementation:
- `ModelPatcher.apply_freeu()` handles the enabling freeu (which is very simple with diffusers).
- `FreeUConfig` model added to hold the hyperparameters.
- `freeu_config` added as optional sub-field on `UNetField`.
- `FreeUInvocation` added, works like LoRA - chain it to add the FreeU config to the UNet
- No support for model-dependent presets, this will be a future workflow editor enhancement

Closes #4845
2023-10-11 13:49:28 +11:00
399 changed files with 10916 additions and 6923 deletions

View File

@ -1,20 +0,0 @@
on:
pull_request:
push:
branches:
- main
- development
- 'release-candidate-*'
jobs:
pyflakes:
name: runner / pyflakes
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: pyflakes
uses: reviewdog/action-pyflakes@v1
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
reporter: github-pr-review

View File

@ -6,7 +6,7 @@ on:
branches: main
jobs:
black:
ruff:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
@ -18,8 +18,7 @@ jobs:
- name: Install dependencies with pip
run: |
pip install black flake8 Flake8-pyproject isort
pip install ruff
- run: isort --check-only .
- run: black --check .
- run: flake8
- run: ruff check --output-format=github .
- run: ruff format --check .

View File

@ -161,7 +161,7 @@ the command `npm install -g yarn` if needed)
_For Windows/Linux with an NVIDIA GPU:_
```terminal
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
_For Linux with an AMD GPU:_
@ -175,7 +175,7 @@ the command `npm install -g yarn` if needed)
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2:_
_For Macintoshes, either Intel or M1/M2/M3:_
```sh
pip install InvokeAI --use-pep517

View File

@ -11,5 +11,5 @@ INVOKEAI_ROOT=
# HUGGING_FACE_HUB_TOKEN=
## optional variables specific to the docker setup.
# GPU_DRIVER=cuda
# CONTAINER_UID=1000
# GPU_DRIVER=cuda # or rocm
# CONTAINER_UID=1000

View File

@ -18,8 +18,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG TORCH_VERSION=2.0.1
ARG TORCHVISION_VERSION=0.15.2
ARG TORCH_VERSION=2.1.0
ARG TORCHVISION_VERSION=0.16
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
@ -35,7 +35,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
extra_index_url_arg="--index-url https://download.pytorch.org/whl/rocm5.6"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
fi &&\

View File

@ -15,6 +15,10 @@ services:
- driver: nvidia
count: 1
capabilities: [gpu]
# For AMD support, comment out the deploy section above and uncomment the devices section below:
#devices:
# - /dev/kfd:/dev/kfd
# - /dev/dri:/dev/dri
build:
context: ..
dockerfile: docker/Dockerfile

View File

@ -7,5 +7,5 @@ set -e
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1
docker compose up --build -d
docker compose up -d
docker compose logs -f

View File

@ -1,6 +1,6 @@
# Invocations
# Nodes
Features in InvokeAI are added in the form of modular node-like systems called
Features in InvokeAI are added in the form of modular nodes systems called
**Invocations**.
An Invocation is simply a single operation that takes in some inputs and gives
@ -9,13 +9,34 @@ complex functionality.
## Invocations Directory
InvokeAI Invocations can be found in the `invokeai/app/invocations` directory.
InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These can be used as examples to create your own nodes.
You can add your new functionality to one of the existing Invocations in this
directory or create a new file in this directory as per your needs.
New nodes should be added to a subfolder in `nodes` direction found at the root level of the InvokeAI installation location. Nodes added to this folder will be able to be used upon application startup.
Example `nodes` subfolder structure:
```py
├── __init__.py # Invoke-managed custom node loader
├── cool_node
├── __init__.py # see example below
└── cool_node.py
└── my_node_pack
├── __init__.py # see example below
├── tasty_node.py
├── bodacious_node.py
├── utils.py
└── extra_nodes
└── fancy_node.py
```
Each node folder must have an `__init__.py` file that imports its nodes. Only nodes imported in the `__init__.py` file are loaded.
See the README in the nodes folder for more examples:
```py
from .cool_node import CoolInvocation
```
**Note:** _All Invocations must be inside this directory for InvokeAI to
recognize them as valid Invocations._
## Creating A New Invocation

File diff suppressed because it is too large Load Diff

53
docs/features/LORAS.md Normal file
View File

@ -0,0 +1,53 @@
---
title: LoRAs & LCM-LoRAs
---
# :material-library-shelves: LoRAs & LCM-LoRAs
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
## LoRAs
Low-Rank Adaptation (LoRA) files are models that customize the output of Stable Diffusion
image generation. Larger than embeddings, but much smaller than full
models, they augment SD with improved understanding of subjects and
artistic styles.
Unlike TI files, LoRAs do not introduce novel vocabulary into the
model's known tokens. Instead, LoRAs augment the model's weights that
are applied to generate imagery. LoRAs may be supplied with a
"trigger" word that they have been explicitly trained on, or may
simply apply their effect without being triggered.
LoRAs are typically stored in .safetensors files, which are the most
secure way to store and transmit these types of weights. You may
install any number of `.safetensors` LoRA files simply by copying them
into the `autoimport/lora` directory of the corresponding InvokeAI models
directory (usually `invokeai` in your home directory).
To use these when generating, open the LoRA menu item in the options
panel, select the LoRAs you want to apply and ensure that they have
the appropriate weight recommended by the model provider. Typically,
most LoRAs perform best at a weight of .75-1.
## LCM-LoRAs
Latent Consistency Models (LCMs) allowed a reduced number of steps to be used to generate images with Stable Diffusion. These are created by distilling base models, creating models that only require a small number of steps to generate images. However, LCMs require that any fine-tune of a base model be distilled to be used as an LCM.
LCM-LoRAs are models that provide the benefit of LCMs but are able to be used as LoRAs and applied to any fine tune of a base model. LCM-LoRAs are created by training a small number of adapters, rather than distilling the entire fine-tuned base model. The resulting LoRA can be used the same way as a standard LoRA, but with a greatly reduced step count. This enables SDXL images to be generated up to 10x faster than without the use of LCM-LoRAs.
**Using LCM-LoRAs**
LCM-LoRAs are natively supported in InvokeAI throughout the application. To get started, install any diffusers format LCM-LoRAs using the model manager and select it in the LoRA field.
There are a number parameter differences when using LCM-LoRAs and standard generation:
- When using LCM-LoRAs, the LoRA strength should be lower than if using a standard LoRA, with 0.35 recommended as a starting point.
- The LCM scheduler should be used for generation
- CFG-Scale should be reduced to ~1
- Steps should be reduced in the range of 4-8
Standard LoRAs can also be used alongside LCM-LoRAs, but will also require a lower strength, with 0.45 being recommended as a starting point.
More information can be found here: https://huggingface.co/blog/lcm_lora#fast-inference-with-sdxl-lcm-loras

View File

@ -1,12 +1,3 @@
---
title: Textual Inversion Embeddings and LoRAs
---
# :material-library-shelves: Textual Inversions and LoRAs
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
## Using Textual Inversion Files
Textual inversion (TI) files are small models that customize the output of
@ -61,29 +52,4 @@ files it finds there for compatible models. At startup you will see a message si
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
```
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.
## Using LoRAs
LoRA files are models that customize the output of Stable Diffusion
image generation. Larger than embeddings, but much smaller than full
models, they augment SD with improved understanding of subjects and
artistic styles.
Unlike TI files, LoRAs do not introduce novel vocabulary into the
model's known tokens. Instead, LoRAs augment the model's weights that
are applied to generate imagery. LoRAs may be supplied with a
"trigger" word that they have been explicitly trained on, or may
simply apply their effect without being triggered.
LoRAs are typically stored in .safetensors files, which are the most
secure way to store and transmit these types of weights. You may
install any number of `.safetensors` LoRA files simply by copying them
into the `autoimport/lora` directory of the corresponding InvokeAI models
directory (usually `invokeai` in your home directory).
To use these when generating, open the LoRA menu item in the options
panel, select the LoRAs you want to apply and ensure that they have
the appropriate weight recommended by the model provider. Typically,
most LoRAs perform best at a weight of .75-1.
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.

View File

@ -20,7 +20,7 @@ a single convenient digital artist-optimized user interface.
### * [Prompt Engineering](PROMPTS.md)
Get the images you want with the InvokeAI prompt engineering language.
### * The [LoRA, LyCORIS and Textual Inversion Models](CONCEPTS.md)
### * The [LoRA, LyCORIS, LCM-LoRA Models](CONCEPTS.md)
Add custom subjects and styles using a variety of fine-tuned models.
### * [ControlNet](CONTROLNET.md)
@ -40,7 +40,7 @@ guide also covers optimizing models to load quickly.
Teach an old model new tricks. Merge 2-3 models together to create a
new model that combines characteristics of the originals.
### * [Textual Inversion](TRAINING.md)
### * [Textual Inversion](TEXTUAL_INVERSIONS.md)
Personalize models by adding your own style or subjects.
## Other Features

43
docs/help/FAQ.md Normal file
View File

@ -0,0 +1,43 @@
# FAQs
**Where do I get started? How can I install Invoke?**
- You can download the latest installers [here](https://github.com/invoke-ai/InvokeAI/releases) - Note that any releases marked as *pre-release* are in a beta state. You may experience some issues, but we appreciate your help testing those! For stable/reliable installations, please install the **[Latest Release](https://github.com/invoke-ai/InvokeAI/releases/latest)**
**How can I download models? Can I use models I already have downloaded?**
- Models can be downloaded through the model manager, or through option [4] in the invoke.bat/invoke.sh launcher script. To download a model through the Model Manager, use the HuggingFace Repo ID by pressing the “Copy” button next to the repository name. Alternatively, to download a model from CivitAi, use the download link in the Model Manager.
- Models that are already downloaded can be used by creating a symlink to the model location in the `autoimport` folder or by using the Model Mangers “Scan for Models” function.
**My images are taking a long time to generate. How can I speed up generation?**
- A common solution is to reduce the size of your RAM & VRAM cache to 0.25. This ensures your system has enough memory to generate images.
- Additionally, check the [hardware requirements](https://invoke-ai.github.io/InvokeAI/#hardware-requirements) to ensure that your system is capable of generating images.
- Lastly, double check your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup.
**Ive installed Python on Windows but the installer says it cant find it?**
- Then ensure that you checked **'Add python.exe to PATH'** when installing Python. This can be found at the bottom of the Python Installer window. If you already have Python installed, this can be done with the modify / repair feature of the installer.
**Ive installed everything successfully but I still get an error about Triton when starting Invoke?**
- This can be safely ignored. InvokeAI doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
**I updated to 3.4.0 and now xFormers cant load C++/CUDA?**
- An issue occurred with your PyTorch update. Follow these steps to fix :
1. Launch your invoke.bat / invoke.sh and select the option to open the developer console
2. Run:`pip install ".[xformers]" --upgrade --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121`
- If you run into an error with `typing_extensions`, re-open the developer console and run: `pip install -U typing-extensions`
**It says my pip is out of date - is that why my install isn't working?**
- An out of date won't cause an installation to fail. The cause of the error can likely be found above the message that says pip is out of date.
- If you saw that warning but the install went well, don't worry about it (but you can update pip afterwards if you'd like).
**How can I generate the exact same that I found on the internet?**
Most example images with prompts that you'll find on the internet have been generated using different software, so you can't expect to get identical results. In order to reproduce an image, you need to replicate the exact settings and processing steps, including (but not limited to) the model, the positive and negative prompts, the seed, the sampler, the exact image size, any upscaling steps, etc.
**Where can I get more help?**
- Create an issue on [GitHub](https://github.com/invoke-ai/InvokeAI/issues) or post in the [#help channel](https://discord.com/channels/1020123559063990373/1149510134058471514) of the InvokeAI Discord

View File

@ -101,16 +101,13 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
<div align="center"><img src="assets/invoke-web-server-1.png" width=640></div>
!!! Note
This project is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates as it will help aid response time.
## :octicons-link-24: Quick Links
<div class="button-container">
<a href="installation/INSTALLATION"> <button class="button">Installation</button> </a>
<a href="features/"> <button class="button">Features</button> </a>
<a href="help/gettingStartedWithAI/"> <button class="button">Getting Started</button> </a>
<a href="help/FAQ/"> <button class="button">FAQ</button> </a>
<a href="contributing/CONTRIBUTING/"> <button class="button">Contributing</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/"> <button class="button">Code and Downloads</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/issues"> <button class="button">Bug Reports </button> </a>
@ -198,6 +195,7 @@ The list of schedulers has been completely revamped and brought up to date:
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
| **lcm** | LCMScheduler | |
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.

View File

@ -179,7 +179,7 @@ experimental versions later.
you will have the choice of CUDA (NVidia cards), ROCm (AMD cards),
or CPU (no graphics acceleration). On Windows, you'll have the
choice of CUDA vs CPU, and on Macs you'll be offered CPU only. When
you select CPU on M1 or M2 Macintoshes, you will get MPS-based
you select CPU on M1/M2/M3 Macintoshes, you will get MPS-based
graphics acceleration without installing additional drivers. If you
are unsure what GPU you are using, you can ask the installer to
guess.
@ -471,7 +471,7 @@ Then type the following commands:
=== "NVIDIA System"
```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu118
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121
pip install xformers
```

View File

@ -148,7 +148,7 @@ manager, please follow these steps:
=== "CUDA (NVidia)"
```bash
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
=== "ROCm (AMD)"
@ -327,7 +327,7 @@ installation protocol (important!)
=== "CUDA (NVidia)"
```bash
pip install -e .[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
pip install -e .[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
=== "ROCm (AMD)"
@ -375,7 +375,7 @@ you can do so using this unsupported recipe:
mkdir ~/invokeai
conda create -n invokeai python=3.10
conda activate invokeai
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
invokeai-configure --root ~/invokeai
invokeai --root ~/invokeai --web
```

View File

@ -85,7 +85,7 @@ You can find which version you should download from [this link](https://docs.nvi
When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url
https://download.pytorch.org/whl/cu118` as described in the [Manual
https://download.pytorch.org/whl/cu121` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md).
## :simple-amd: ROCm

View File

@ -30,7 +30,7 @@ methodology for details on why running applications in such a stateless fashion
The container is configured for CUDA by default, but can be built to support AMD GPUs
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
Developers on Apple silicon (M1/M2): You
Developers on Apple silicon (M1/M2/M3): You
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
and performance is reduced compared with running it directly on macOS but for
development purposes it's fine. Once you're done with development tasks on your

View File

@ -28,7 +28,7 @@ command line, then just be sure to activate it's virtual environment.
Then run the following three commands:
```sh
pip install xformers~=0.0.19
pip install xformers~=0.0.22
pip install triton # WON'T WORK ON WINDOWS
python -m xformers.info output
```
@ -42,7 +42,7 @@ If all goes well, you'll see a report like the
following:
```sh
xFormers 0.0.20
xFormers 0.0.22
memory_efficient_attention.cutlassF: available
memory_efficient_attention.cutlassB: available
memory_efficient_attention.flshattF: available
@ -59,14 +59,14 @@ swiglu.gemm_fused_operand_sum: available
swiglu.fused.p.cpp: available
is_triton_available: True
is_functorch_available: False
pytorch.version: 2.0.1+cu118
pytorch.version: 2.1.0+cu121
pytorch.cuda: available
gpu.compute_capability: 8.9
gpu.name: NVIDIA GeForce RTX 4070
build.info: available
build.cuda_version: 1108
build.python_version: 3.10.11
build.torch_version: 2.0.1+cu118
build.torch_version: 2.1.0+cu121
build.env.TORCH_CUDA_ARCH_LIST: 5.0+PTX 6.0 6.1 7.0 7.5 8.0 8.6
build.env.XFORMERS_BUILD_TYPE: Release
build.env.XFORMERS_ENABLE_DEBUG_ASSERTIONS: None
@ -92,33 +92,22 @@ installed from source. These instructions were written for a system
running Ubuntu 22.04, but other Linux distributions should be able to
adapt this recipe.
#### 1. Install CUDA Toolkit 11.8
#### 1. Install CUDA Toolkit 12.1
You will need the CUDA developer's toolkit in order to compile and
install xFormers. **Do not try to install Ubuntu's nvidia-cuda-toolkit
package.** It is out of date and will cause conflicts among the NVIDIA
driver and binaries. Instead install the CUDA Toolkit package provided
by NVIDIA itself. Go to [CUDA Toolkit 11.8
Downloads](https://developer.nvidia.com/cuda-11-8-0-download-archive)
by NVIDIA itself. Go to [CUDA Toolkit 12.1
Downloads](https://developer.nvidia.com/cuda-12-1-0-download-archive)
and use the target selection wizard to choose your platform and Linux
distribution. Select an installer type of "runfile (local)" at the
last step.
This will provide you with a recipe for downloading and running a
install shell script that will install the toolkit and drivers. For
example, the install script recipe for Ubuntu 22.04 running on a
x86_64 system is:
install shell script that will install the toolkit and drivers.
```
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
```
Rather than cut-and-paste this example, We recommend that you walk
through the toolkit wizard in order to get the most up to date
installer for your system.
#### 2. Confirm/Install pyTorch 2.01 with CUDA 11.8 support
#### 2. Confirm/Install pyTorch 2.1.0 with CUDA 12.1 support
If you are using InvokeAI 3.0.2 or higher, these will already be
installed. If not, you can check whether you have the needed libraries
@ -133,7 +122,7 @@ Then run the command:
python -c 'exec("import torch\nprint(torch.__version__)")'
```
If it prints __1.13.1+cu118__ you're good. If not, you can install the
If it prints __2.1.0+cu121__ you're good. If not, you can install the
most up to date libraries with this command:
```sh

View File

@ -32,6 +32,7 @@ To use a community workflow, download the the `.json` node graph file and load i
+ [Size Stepper Nodes](#size-stepper-nodes)
+ [Text font to Image](#text-font-to-image)
+ [Thresholding](#thresholding)
+ [Unsharp Mask](#unsharp-mask)
+ [XY Image to Grid and Images to Grids nodes](#xy-image-to-grid-and-images-to-grids-nodes)
- [Example Node Template](#example-node-template)
- [Disclaimer](#disclaimer)
@ -316,6 +317,13 @@ Highlights/Midtones/Shadows (with LUT blur enabled):
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0a440e43-697f-4d17-82ee-f287467df0a5" width="300" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0701fd0f-2ca7-4fe2-8613-2b52547bafce" width="300" />
--------------------------------
### Unsharp Mask
**Description:** Applies an unsharp mask filter to an image, preserving its alpha channel in the process.
**Node Link:** https://github.com/JPPhoto/unsharp-mask-node
--------------------------------
### XY Image to Grid and Images to Grids nodes

View File

@ -7,12 +7,12 @@ To use them, right click on your desired workflow, follow the link to GitHub and
If you're interested in finding more workflows, checkout the [#share-your-workflows](https://discord.com/channels/1020123559063990373/1130291608097661000) channel in the InvokeAI Discord.
* [SD1.5 / SD2 Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Text_to_Image.json)
* [SDXL Text to Image](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/SDXL_Text_to_Image.json)
* [SDXL Text to Image with Refiner](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/SDXL_w_Refiner_Text_to_Image.json)
* [Multi ControlNet (Canny & Depth)](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Multi_ControlNet_Canny_and_Depth.json)
* [SDXL Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/SDXL_Text_to_Image.json)
* [SDXL Text to Image with Refiner](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/SDXL_w_Refiner_Text_to_Image.json)
* [Multi ControlNet (Canny & Depth)](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Multi_ControlNet_Canny_and_Depth.json)
* [Tiled Upscaling with ControlNet](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/ESRGAN_img2img_upscale_w_Canny_ControlNet.json)
* [Prompt From File](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Prompt_from_File.json)
* [Face Detailer with IP-Adapter & ControlNet](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Face_Detailer_with_IP-Adapter_and_Canny.json.json)
* [Prompt From File](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Prompt_from_File.json)
* [Face Detailer with IP-Adapter & ControlNet](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Face_Detailer_with_IP-Adapter_and_Canny.json)
* [FaceMask](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceMask.json)
* [FaceOff with 2x Face Scaling](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceOff_FaceScale2x.json)
* [QR Code Monster](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/QR_Code_Monster.json)
* [QR Code Monster](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/QR_Code_Monster.json)

View File

@ -244,7 +244,7 @@ class InvokeAiInstance:
"numpy~=1.24.0", # choose versions that won't be uninstalled during phase 2
"urllib3~=1.26.0",
"requests~=2.28.0",
"torch~=2.0.0",
"torch==2.1.0",
"torchmetrics==0.11.4",
"torchvision>=0.14.1",
"--force-reinstall",
@ -460,10 +460,10 @@ def get_torch_source() -> (Union[str, None], str):
url = "https://download.pytorch.org/whl/cpu"
if device == "cuda":
url = "https://download.pytorch.org/whl/cu118"
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-cuda]"
if device == "cuda_and_dml":
url = "https://download.pytorch.org/whl/cu118"
url = "https://download.pytorch.org/whl/cu121"
optional_modules = "[xformers,onnx-directml]"
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@ -137,7 +137,7 @@ def dest_path(dest=None) -> Path:
path_completer = PathCompleter(
only_directories=True,
expanduser=True,
get_paths=lambda: [browse_start],
get_paths=lambda: [browse_start], # noqa: B023
# get_paths=lambda: [".."].extend(list(browse_start.iterdir()))
)
@ -149,7 +149,7 @@ def dest_path(dest=None) -> Path:
completer=path_completer,
default=str(browse_start) + os.sep,
vi_mode=True,
complete_while_typing=True
complete_while_typing=True,
# Test that this is not needed on Windows
# complete_style=CompleteStyle.READLINE_LIKE,
)

View File

@ -24,6 +24,7 @@ from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
@ -85,6 +86,7 @@ class ApiDependencies:
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
model_manager = ModelManagerService(config, logger)
model_record_service = ModelRecordServiceSQL(db=db)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
processor = DefaultInvocationProcessor()
@ -111,6 +113,7 @@ class ApiDependencies:
latents=latents,
logger=logger,
model_manager=model_manager,
model_records=model_record_service,
names=names,
performance_statistics=performance_statistics,
processor=processor,

View File

@ -28,7 +28,7 @@ class FastAPIEventService(EventServiceBase):
self.__queue.put(None)
def dispatch(self, event_name: str, payload: Any) -> None:
self.__queue.put(dict(event_name=event_name, payload=payload))
self.__queue.put({"event_name": event_name, "payload": payload})
async def __dispatch_from_queue(self, stop_event: threading.Event):
"""Get events on from the queue and dispatch them, from the correct thread"""

View File

@ -0,0 +1,164 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
from hashlib import sha1
from random import randbytes
from typing import List, Optional
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, ConfigDict
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
UnknownModelException,
)
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelType,
)
from ..dependencies import ApiDependencies
model_records_router = APIRouter(prefix="/v1/model/record", tags=["models"])
class ModelsList(BaseModel):
"""Return list of configs."""
models: list[AnyModelConfig]
model_config = ConfigDict(use_enum_values=True)
@model_records_router.get(
"/",
operation_id="list_model_records",
)
async def list_model_records(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_records
found_models: list[AnyModelConfig] = []
if base_models:
for base_model in base_models:
found_models.extend(record_store.search_by_attr(base_model=base_model, model_type=model_type))
else:
found_models.extend(record_store.search_by_attr(model_type=model_type))
return ModelsList(models=found_models)
@model_records_router.get(
"/i/{key}",
operation_id="get_model_record",
responses={
200: {"description": "Success"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
},
)
async def get_model_record(
key: str = Path(description="Key of the model record to fetch."),
) -> AnyModelConfig:
"""Get a model record"""
record_store = ApiDependencies.invoker.services.model_records
try:
return record_store.get_model(key)
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@model_records_router.patch(
"/i/{key}",
operation_id="update_model_record",
responses={
200: {"description": "The model was updated successfully"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
409: {"description": "There is already a model corresponding to the new name"},
},
status_code=200,
response_model=AnyModelConfig,
)
async def update_model_record(
key: Annotated[str, Path(description="Unique key of model")],
info: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
) -> AnyModelConfig:
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_records
try:
model_response = record_store.update_model(key, config=info)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return model_response
@model_records_router.delete(
"/i/{key}",
operation_id="del_model_record",
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
)
async def del_model_record(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""Delete Model"""
logger = ApiDependencies.invoker.services.logger
try:
record_store = ApiDependencies.invoker.services.model_records
record_store.del_model(key)
logger.info(f"Deleted model: {key}")
return Response(status_code=204)
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@model_records_router.post(
"/i/",
operation_id="add_model_record",
responses={
201: {"description": "The model added successfully"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
415: {"description": "Unrecognized file/folder format"},
},
status_code=201,
)
async def add_model_record(
config: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")]
) -> AnyModelConfig:
"""
Add a model using the configuration information appropriate for its type.
"""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_records
if config.key == "<NOKEY>":
config.key = sha1(randbytes(100)).hexdigest()
logger.info(f"Created model {config.key} for {config.name}")
try:
record_store.add_model(config.key, config)
except DuplicateModelException as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
# now fetch it out
return record_store.get_model(config.key)

View File

@ -1,6 +1,5 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein
import pathlib
from typing import Annotated, List, Literal, Optional, Union
@ -55,7 +54,7 @@ async def list_models(
) -> ModelsList:
"""Gets a list of models"""
if base_models and len(base_models) > 0:
models_raw = list()
models_raw = []
for base_model in base_models:
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
else:

View File

@ -34,4 +34,4 @@ class SocketIO:
async def _handle_unsub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data:
await self.__sio.enter_room(sid, data["queue_id"])
await self.__sio.leave_room(sid, data["queue_id"])

View File

@ -43,6 +43,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
board_images,
boards,
images,
model_records,
models,
session_queue,
sessions,
@ -106,6 +107,7 @@ app.include_router(sessions.session_router, prefix="/api")
app.include_router(utilities.utilities_router, prefix="/api")
app.include_router(models.models_router, prefix="/api")
app.include_router(model_records.model_records_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
@ -130,7 +132,7 @@ def custom_openapi() -> dict[str, Any]:
# Add all outputs
all_invocations = BaseInvocation.get_invocations()
output_types = set()
output_type_titles = dict()
output_type_titles = {}
for invoker in all_invocations:
output_type = signature(invoker.invoke).return_annotation
output_types.add(output_type)
@ -171,12 +173,12 @@ def custom_openapi() -> dict[str, Any]:
# print(f"Config with name {name} already defined")
continue
openapi_schema["components"]["schemas"][name] = dict(
title=name,
description="An enumeration.",
type="string",
enum=list(v.value for v in model_config_format_enum),
)
openapi_schema["components"]["schemas"][name] = {
"title": name,
"description": "An enumeration.",
"type": "string",
"enum": [v.value for v in model_config_format_enum],
}
app.openapi_schema = openapi_schema
return app.openapi_schema

View File

@ -25,4 +25,4 @@ spec.loader.exec_module(module)
# add core nodes to __all__
python_files = filter(lambda f: not f.name.startswith("_"), Path(__file__).parent.glob("*.py"))
__all__ = list(f.stem for f in python_files) # type: ignore
__all__ = [f.stem for f in python_files] # type: ignore

View File

@ -16,6 +16,7 @@ from pydantic.fields import FieldInfo, _Unset
from pydantic_core import PydanticUndefined
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.misc import uuid_string
if TYPE_CHECKING:
@ -30,70 +31,6 @@ class InvalidFieldError(TypeError):
pass
class FieldDescriptions:
denoising_start = "When to start denoising, expressed a percentage of total steps"
denoising_end = "When to stop denoising, expressed a percentage of total steps"
cfg_scale = "Classifier-Free Guidance scale"
scheduler = "Scheduler to use during inference"
positive_cond = "Positive conditioning tensor"
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
unet = "UNet (scheduler, LoRAs)"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
skipped_layers = "Number of layers to skip in text encoder"
seed = "Seed for random number generation"
steps = "Number of steps to run"
width = "Width of output (px)"
height = "Height of output (px)"
control = "ControlNet(s) to apply"
ip_adapter = "IP-Adapter to apply"
t2i_adapter = "T2I-Adapter(s) to apply"
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
metadata = "Optional metadata to be saved with the image"
metadata_collection = "Collection of Metadata"
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
metadata_item_label = "Label for this metadata item"
metadata_item_value = "The value for this metadata item (may be any type)"
workflow = "Optional workflow to be saved with the image"
interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"
scribble_mode = "Whether or not to use scribble mode"
scale_factor = "The factor by which to scale"
blend_alpha = (
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"
inclusive_low = "The inclusive low value"
exclusive_high = "The exclusive high value"
decimal_places = "The number of decimal places to round to"
class Input(str, Enum):
"""
The type of input a field accepts.
@ -299,35 +236,35 @@ def InputField(
Ignored for non-collection fields.
"""
json_schema_extra_: dict[str, Any] = dict(
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
item_default=item_default,
ui_choice_labels=ui_choice_labels,
_field_kind="input",
)
json_schema_extra_: dict[str, Any] = {
"input": input,
"ui_type": ui_type,
"ui_component": ui_component,
"ui_hidden": ui_hidden,
"ui_order": ui_order,
"item_default": item_default,
"ui_choice_labels": ui_choice_labels,
"_field_kind": "input",
}
field_args = dict(
default=default,
default_factory=default_factory,
title=title,
description=description,
pattern=pattern,
strict=strict,
gt=gt,
ge=ge,
lt=lt,
le=le,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
min_length=min_length,
max_length=max_length,
)
field_args = {
"default": default,
"default_factory": default_factory,
"title": title,
"description": description,
"pattern": pattern,
"strict": strict,
"gt": gt,
"ge": ge,
"lt": lt,
"le": le,
"multiple_of": multiple_of,
"allow_inf_nan": allow_inf_nan,
"max_digits": max_digits,
"decimal_places": decimal_places,
"min_length": min_length,
"max_length": max_length,
}
"""
Invocation definitions have their fields typed correctly for their `invoke()` functions.
@ -362,24 +299,24 @@ def InputField(
# because we are manually making fields optional, we need to store the original required bool for reference later
if default is PydanticUndefined and default_factory is PydanticUndefined:
json_schema_extra_.update(dict(orig_required=True))
json_schema_extra_.update({"orig_required": True})
else:
json_schema_extra_.update(dict(orig_required=False))
json_schema_extra_.update({"orig_required": False})
# make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
if (input is Input.Any or input is Input.Connection) and default_factory is PydanticUndefined:
default_ = None if default is PydanticUndefined else default
provided_args.update(dict(default=default_))
provided_args.update({"default": default_})
if default is not PydanticUndefined:
# before invoking, we'll grab the original default value and set it on the field if the field wasn't provided a value
json_schema_extra_.update(dict(default=default))
json_schema_extra_.update(dict(orig_default=default))
json_schema_extra_.update({"default": default})
json_schema_extra_.update({"orig_default": default})
elif default is not PydanticUndefined and default_factory is PydanticUndefined:
default_ = default
provided_args.update(dict(default=default_))
json_schema_extra_.update(dict(orig_default=default_))
provided_args.update({"default": default_})
json_schema_extra_.update({"orig_default": default_})
elif default_factory is not PydanticUndefined:
provided_args.update(dict(default_factory=default_factory))
provided_args.update({"default_factory": default_factory})
# TODO: cannot serialize default_factory...
# json_schema_extra_.update(dict(orig_default_factory=default_factory))
@ -446,12 +383,12 @@ def OutputField(
decimal_places=decimal_places,
min_length=min_length,
max_length=max_length,
json_schema_extra=dict(
ui_type=ui_type,
ui_hidden=ui_hidden,
ui_order=ui_order,
_field_kind="output",
),
json_schema_extra={
"ui_type": ui_type,
"ui_hidden": ui_hidden,
"ui_order": ui_order,
"_field_kind": "output",
},
)
@ -523,14 +460,14 @@ class BaseInvocationOutput(BaseModel):
@classmethod
def get_output_types(cls) -> Iterable[str]:
return map(lambda i: get_type(i), BaseInvocationOutput.get_outputs())
return (get_type(i) for i in BaseInvocationOutput.get_outputs())
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
# Because we use a pydantic Literal field with default value for the invocation type,
# it will be typed as optional in the OpenAPI schema. Make it required manually.
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"] = []
schema["required"].extend(["type"])
model_config = ConfigDict(
@ -590,16 +527,11 @@ class BaseInvocation(ABC, BaseModel):
@classmethod
def get_invocations_map(cls) -> dict[str, BaseInvocation]:
# Get the type strings out of the literals and into a dictionary
return dict(
map(
lambda i: (get_type(i), i),
BaseInvocation.get_invocations(),
)
)
return {get_type(i): i for i in BaseInvocation.get_invocations()}
@classmethod
def get_invocation_types(cls) -> Iterable[str]:
return map(lambda i: get_type(i), BaseInvocation.get_invocations())
return (get_type(i) for i in BaseInvocation.get_invocations())
@classmethod
def get_output_type(cls) -> BaseInvocationOutput:
@ -618,7 +550,7 @@ class BaseInvocation(ABC, BaseModel):
if uiconfig and hasattr(uiconfig, "version"):
schema["version"] = uiconfig.version
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"] = []
schema["required"].extend(["type", "id"])
@abstractmethod
@ -672,15 +604,15 @@ class BaseInvocation(ABC, BaseModel):
id: str = Field(
default_factory=uuid_string,
description="The id of this instance of an invocation. Must be unique among all instances of invocations.",
json_schema_extra=dict(_field_kind="internal"),
json_schema_extra={"_field_kind": "internal"},
)
is_intermediate: bool = Field(
default=False,
description="Whether or not this is an intermediate invocation.",
json_schema_extra=dict(ui_type=UIType.IsIntermediate, _field_kind="internal"),
json_schema_extra={"ui_type": UIType.IsIntermediate, "_field_kind": "internal"},
)
use_cache: bool = Field(
default=True, description="Whether or not to use the cache", json_schema_extra=dict(_field_kind="internal")
default=True, description="Whether or not to use the cache", json_schema_extra={"_field_kind": "internal"}
)
UIConfig: ClassVar[Type[UIConfigBase]]
@ -714,7 +646,7 @@ class _Model(BaseModel):
# Get all pydantic model attrs, methods, etc
RESERVED_PYDANTIC_FIELD_NAMES = set(map(lambda m: m[0], inspect.getmembers(_Model())))
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None:
@ -729,9 +661,7 @@ def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None
field_kind = (
# _field_kind is defined via InputField(), OutputField() or by one of the internal fields defined in this file
field.json_schema_extra.get("_field_kind", None)
if field.json_schema_extra
else None
field.json_schema_extra.get("_field_kind", None) if field.json_schema_extra else None
)
# must have a field_kind
@ -792,7 +722,7 @@ def invocation(
# Add OpenAPI schema extras
uiconf_name = cls.__qualname__ + ".UIConfig"
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
cls.UIConfig = type(uiconf_name, (UIConfigBase,), dict())
cls.UIConfig = type(uiconf_name, (UIConfigBase,), {})
if title is not None:
cls.UIConfig.title = title
if tags is not None:
@ -819,7 +749,7 @@ def invocation(
invocation_type_annotation = Literal[invocation_type] # type: ignore
invocation_type_field = Field(
title="type", default=invocation_type, json_schema_extra=dict(_field_kind="internal")
title="type", default=invocation_type, json_schema_extra={"_field_kind": "internal"}
)
docstring = cls.__doc__
@ -865,7 +795,7 @@ def invocation_output(
# Add the output type to the model.
output_type_annotation = Literal[output_type] # type: ignore
output_type_field = Field(title="type", default=output_type, json_schema_extra=dict(_field_kind="internal"))
output_type_field = Field(title="type", default=output_type, json_schema_extra={"_field_kind": "internal"})
docstring = cls.__doc__
cls = create_model(
@ -897,7 +827,7 @@ WorkflowFieldValidator = TypeAdapter(WorkflowField)
class WithWorkflow(BaseModel):
workflow: Optional[WorkflowField] = Field(
default=None, description=FieldDescriptions.workflow, json_schema_extra=dict(_field_kind="internal")
default=None, description=FieldDescriptions.workflow, json_schema_extra={"_field_kind": "internal"}
)
@ -915,5 +845,5 @@ MetadataFieldValidator = TypeAdapter(MetadataField)
class WithMetadata(BaseModel):
metadata: Optional[MetadataField] = Field(
default=None, description=FieldDescriptions.metadata, json_schema_extra=dict(_field_kind="internal")
default=None, description=FieldDescriptions.metadata, json_schema_extra={"_field_kind": "internal"}
)

View File

@ -7,6 +7,7 @@ from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ExtraConditioningInfo,
@ -19,7 +20,6 @@ from ...backend.util.devices import torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@ -112,10 +112,11 @@ class CompelInvocation(BaseInvocation):
tokenizer,
ti_manager,
),
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
):
compel = Compel(
tokenizer=tokenizer,
@ -234,10 +235,11 @@ class SDXLPromptInvocationBase:
tokenizer,
ti_manager,
),
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
):
compel = Compel(
tokenizer=tokenizer,

View File

@ -28,12 +28,12 @@ from pydantic import BaseModel, ConfigDict, Field, field_validator
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from ...backend.model_management import BaseModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@ -96,7 +96,7 @@ class ControlOutput(BaseInvocationOutput):
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.0.0")
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.0")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
@ -173,7 +173,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithWorkflow):
title="Canny Processor",
tags=["controlnet", "canny"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class CannyImageProcessorInvocation(ImageProcessorInvocation):
"""Canny edge detection for ControlNet"""
@ -196,7 +196,7 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
title="HED (softedge) Processor",
tags=["controlnet", "hed", "softedge"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class HedImageProcessorInvocation(ImageProcessorInvocation):
"""Applies HED edge detection to image"""
@ -225,7 +225,7 @@ class HedImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Processor",
tags=["controlnet", "lineart"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class LineartImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art processing to image"""
@ -247,7 +247,7 @@ class LineartImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Anime Processor",
tags=["controlnet", "lineart", "anime"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art anime processing to image"""
@ -270,7 +270,7 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
title="Openpose Processor",
tags=["controlnet", "openpose", "pose"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Openpose processing to image"""
@ -295,7 +295,7 @@ class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
title="Midas Depth Processor",
tags=["controlnet", "midas"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Midas depth processing to image"""
@ -322,7 +322,7 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Normal BAE Processor",
tags=["controlnet"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies NormalBae processing to image"""
@ -339,7 +339,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
@invocation(
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.0.0"
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.1.0"
)
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
"""Applies MLSD processing to image"""
@ -362,7 +362,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
@invocation(
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.0.0"
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.1.0"
)
class PidiImageProcessorInvocation(ImageProcessorInvocation):
"""Applies PIDI processing to image"""
@ -389,7 +389,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
title="Content Shuffle Processor",
tags=["controlnet", "contentshuffle"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
"""Applies content shuffle processing to image"""
@ -419,7 +419,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
title="Zoe (Depth) Processor",
tags=["controlnet", "zoe", "depth"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
@ -435,7 +435,7 @@ class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Mediapipe Face Processor",
tags=["controlnet", "mediapipe", "face"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
"""Applies mediapipe face processing to image"""
@ -458,7 +458,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
title="Leres (Depth) Processor",
tags=["controlnet", "leres", "depth"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class LeresImageProcessorInvocation(ImageProcessorInvocation):
"""Applies leres processing to image"""
@ -487,7 +487,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
title="Tile Resample Processor",
tags=["controlnet", "tile"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
"""Tile resampler processor"""
@ -527,7 +527,7 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
title="Segment Anything Processor",
tags=["controlnet", "segmentanything"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"""Applies segment anything processing to image"""
@ -569,7 +569,7 @@ class SamDetectorReproducibleColors(SamDetector):
title="Color Map Processor",
tags=["controlnet"],
category="controlnet",
version="1.0.0",
version="1.1.0",
)
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a color map from the provided image"""

View File

@ -11,7 +11,7 @@ from invokeai.app.services.image_records.image_records_common import ImageCatego
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.0.0")
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.1.0")
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Simple inpaint using opencv."""

View File

@ -131,7 +131,7 @@ def prepare_faces_list(
deduped_faces: list[FaceResultData] = []
if len(face_result_list) == 0:
return list()
return []
for candidate in face_result_list:
should_add = True
@ -210,7 +210,7 @@ def generate_face_box_mask(
# Check if any face is detected.
if results.multi_face_landmarks: # type: ignore # this are via protobuf and not typed
# Search for the face_id in the detected faces.
for face_id, face_landmarks in enumerate(results.multi_face_landmarks): # type: ignore #this are via protobuf and not typed
for _face_id, face_landmarks in enumerate(results.multi_face_landmarks): # type: ignore #this are via protobuf and not typed
# Get the bounding box of the face mesh.
x_coordinates = [landmark.x for landmark in face_landmarks.landmark]
y_coordinates = [landmark.y for landmark in face_landmarks.landmark]
@ -438,7 +438,7 @@ def get_faces_list(
return all_faces
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.0.2")
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.1.0")
class FaceOffInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Bound, extract, and mask a face from an image using MediaPipe detection"""
@ -532,7 +532,7 @@ class FaceOffInvocation(BaseInvocation, WithWorkflow, WithMetadata):
return output
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.0.2")
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.1.0")
class FaceMaskInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Face mask creation using mediapipe face detection"""
@ -650,7 +650,7 @@ class FaceMaskInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation(
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.0.2"
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.1.0"
)
class FaceIdentifierInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""

View File

@ -8,20 +8,12 @@ import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from .baseinvocation import (
BaseInvocation,
FieldDescriptions,
Input,
InputField,
InvocationContext,
WithMetadata,
WithWorkflow,
invocation,
)
from .baseinvocation import BaseInvocation, Input, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0")
@ -44,7 +36,7 @@ class ShowImageInvocation(BaseInvocation):
)
@invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.0.0")
@invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.1.0")
class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Creates a blank image and forwards it to the pipeline"""
@ -74,7 +66,7 @@ class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
)
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.0.0")
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.1.0")
class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Crops an image to a specified box. The box can be outside of the image."""
@ -108,7 +100,7 @@ class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.0.1")
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.1.0")
class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Pastes an image into another image."""
@ -162,7 +154,7 @@ class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.0.0")
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.1.0")
class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Extracts the alpha channel of an image as a mask."""
@ -194,7 +186,7 @@ class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.0.0")
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.1.0")
class ImageMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
@ -228,7 +220,7 @@ class ImageMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.0.0")
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.1.0")
class ImageChannelInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Gets a channel from an image."""
@ -261,7 +253,7 @@ class ImageChannelInvocation(BaseInvocation, WithWorkflow, WithMetadata):
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.0.0")
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.1.0")
class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Converts an image to a different mode."""
@ -291,7 +283,7 @@ class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.0.0")
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.1.0")
class ImageBlurInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Blurs an image"""
@ -346,7 +338,7 @@ PIL_RESAMPLING_MAP = {
}
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.0.0")
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.1.0")
class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Resizes an image to specific dimensions"""
@ -383,7 +375,7 @@ class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow):
)
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.0.0")
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.1.0")
class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Scales an image by a factor"""
@ -425,7 +417,7 @@ class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow):
)
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.0.0")
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.1.0")
class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Linear interpolation of all pixels of an image"""
@ -459,7 +451,7 @@ class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.0.0")
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.1.0")
class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Inverse linear interpolation of all pixels of an image"""
@ -493,7 +485,7 @@ class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.0.0")
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.1.0")
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Add blur to NSFW-flagged images"""
@ -540,7 +532,7 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
title="Add Invisible Watermark",
tags=["image", "watermark"],
category="image",
version="1.0.0",
version="1.1.0",
)
class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Add an invisible watermark to an image"""
@ -569,7 +561,7 @@ class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow):
)
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.0.0")
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.1.0")
class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Applies an edge mask to an image"""
@ -620,7 +612,7 @@ class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata):
title="Combine Masks",
tags=["image", "mask", "multiply"],
category="image",
version="1.0.0",
version="1.1.0",
)
class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
@ -652,7 +644,7 @@ class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.0.0")
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.1.0")
class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""
Shifts the colors of a target image to match the reference image, optionally
@ -763,7 +755,7 @@ class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.0.0")
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.1.0")
class ImageHueAdjustmentInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Adjusts the Hue of an image."""
@ -866,7 +858,7 @@ CHANNEL_FORMATS = {
"value",
],
category="image",
version="1.0.0",
version="1.1.0",
)
class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Add or subtract a value from a specific color channel of an image."""
@ -937,7 +929,7 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"value",
],
category="image",
version="1.0.0",
version="1.1.0",
)
class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Scale a specific color channel of an image."""
@ -996,7 +988,7 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata)
title="Save Image",
tags=["primitives", "image"],
category="primitives",
version="1.0.1",
version="1.1.0",
use_cache=False,
)
class SaveImageInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@ -1025,3 +1017,35 @@ class SaveImageInvocation(BaseInvocation, WithWorkflow, WithMetadata):
width=image_dto.width,
height=image_dto.height,
)
@invocation(
"linear_ui_output",
title="Linear UI Image Output",
tags=["primitives", "image"],
category="primitives",
version="1.0.1",
use_cache=False,
)
class LinearUIOutputInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Handles Linear UI Image Outputting tasks."""
image: ImageField = InputField(description=FieldDescriptions.image)
board: Optional[BoardField] = InputField(default=None, description=FieldDescriptions.board, input=Input.Direct)
def invoke(self, context: InvocationContext) -> ImageOutput:
image_dto = context.services.images.get_dto(self.image.image_name)
if self.board:
context.services.board_images.add_image_to_board(self.board.board_id, self.image.image_name)
if image_dto.is_intermediate != self.is_intermediate:
context.services.images.update(
self.image.image_name, changes=ImageRecordChanges(is_intermediate=self.is_intermediate)
)
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -118,7 +118,7 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
return si
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.0")
class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image with a solid color"""
@ -154,7 +154,7 @@ class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.0")
class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image with tiles of the image"""
@ -192,7 +192,7 @@ class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation(
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0"
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.0"
)
class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
@ -245,7 +245,7 @@ class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.0")
class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image using the LaMa model"""
@ -274,7 +274,7 @@ class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint")
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.1.0")
class CV2InfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Infills transparent areas of an image using OpenCV Inpainting"""

View File

@ -7,7 +7,6 @@ from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@ -17,6 +16,7 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id

View File

@ -10,7 +10,7 @@ import torch
import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.adapter import FullAdapterXL, T2IAdapter
from diffusers.models.adapter import T2IAdapter
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
@ -34,6 +34,7 @@ from invokeai.app.invocations.primitives import (
)
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
@ -57,7 +58,6 @@ from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@ -77,7 +77,7 @@ if choose_torch_device() == torch.device("mps"):
DEFAULT_PRECISION = choose_precision(choose_torch_device())
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
SAMPLER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
@invocation_output("scheduler_output")
@ -562,10 +562,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_model: T2IAdapter
with t2i_adapter_model_info as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
if isinstance(t2i_adapter_model.adapter, FullAdapterXL):
# HACK(ryand): Work around a bug in FullAdapterXL. This is being addressed upstream in diffusers by
# this PR: https://github.com/huggingface/diffusers/pull/5134.
total_downscale_factor = total_downscale_factor // 2
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
@ -710,6 +706,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
with (
ExitStack() as exit_stack,
ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config),
set_seamless(unet_info.context.model, self.unet.seamless_axes),
unet_info as unet,
# Apply the LoRA after unet has been moved to its target device for faster patching.
@ -792,7 +789,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.0.0",
version="1.1.0",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Generates an image from latents."""
@ -1107,7 +1104,7 @@ class BlendLatentsInvocation(BaseInvocation):
latents_b = context.services.latents.get(self.latents_b.latents_name)
if latents_a.shape != latents_b.shape:
raise "Latents to blend must be the same size."
raise Exception("Latents to blend must be the same size.")
# TODO:
device = choose_torch_device()

View File

@ -6,8 +6,9 @@ import numpy as np
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
from invokeai.app.shared.fields import FieldDescriptions
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.0")
@ -144,17 +145,17 @@ INTEGER_OPERATIONS = Literal[
]
INTEGER_OPERATIONS_LABELS = dict(
ADD="Add A+B",
SUB="Subtract A-B",
MUL="Multiply A*B",
DIV="Divide A/B",
EXP="Exponentiate A^B",
MOD="Modulus A%B",
ABS="Absolute Value of A",
MIN="Minimum(A,B)",
MAX="Maximum(A,B)",
)
INTEGER_OPERATIONS_LABELS = {
"ADD": "Add A+B",
"SUB": "Subtract A-B",
"MUL": "Multiply A*B",
"DIV": "Divide A/B",
"EXP": "Exponentiate A^B",
"MOD": "Modulus A%B",
"ABS": "Absolute Value of A",
"MIN": "Minimum(A,B)",
"MAX": "Maximum(A,B)",
}
@invocation(
@ -182,8 +183,8 @@ class IntegerMathInvocation(BaseInvocation):
operation: INTEGER_OPERATIONS = InputField(
default="ADD", description="The operation to perform", ui_choice_labels=INTEGER_OPERATIONS_LABELS
)
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
a: int = InputField(default=1, description=FieldDescriptions.num_1)
b: int = InputField(default=1, description=FieldDescriptions.num_2)
@field_validator("b")
def no_unrepresentable_results(cls, v: int, info: ValidationInfo):
@ -230,17 +231,17 @@ FLOAT_OPERATIONS = Literal[
]
FLOAT_OPERATIONS_LABELS = dict(
ADD="Add A+B",
SUB="Subtract A-B",
MUL="Multiply A*B",
DIV="Divide A/B",
EXP="Exponentiate A^B",
ABS="Absolute Value of A",
SQRT="Square Root of A",
MIN="Minimum(A,B)",
MAX="Maximum(A,B)",
)
FLOAT_OPERATIONS_LABELS = {
"ADD": "Add A+B",
"SUB": "Subtract A-B",
"MUL": "Multiply A*B",
"DIV": "Divide A/B",
"EXP": "Exponentiate A^B",
"ABS": "Absolute Value of A",
"SQRT": "Square Root of A",
"MIN": "Minimum(A,B)",
"MAX": "Maximum(A,B)",
}
@invocation(
@ -256,8 +257,8 @@ class FloatMathInvocation(BaseInvocation):
operation: FLOAT_OPERATIONS = InputField(
default="ADD", description="The operation to perform", ui_choice_labels=FLOAT_OPERATIONS_LABELS
)
a: float = InputField(default=0, description=FieldDescriptions.num_1)
b: float = InputField(default=0, description=FieldDescriptions.num_2)
a: float = InputField(default=1, description=FieldDescriptions.num_1)
b: float = InputField(default=1, description=FieldDescriptions.num_2)
@field_validator("b")
def no_unrepresentable_results(cls, v: float, info: ValidationInfo):
@ -265,7 +266,7 @@ class FloatMathInvocation(BaseInvocation):
raise ValueError("Cannot divide by zero")
elif info.data["operation"] == "EXP" and info.data["a"] == 0 and v < 0:
raise ValueError("Cannot raise zero to a negative power")
elif info.data["operation"] == "EXP" and type(info.data["a"] ** v) is complex:
elif info.data["operation"] == "EXP" and isinstance(info.data["a"] ** v, complex):
raise ValueError("Root operation resulted in a complex number")
return v

View File

@ -5,7 +5,6 @@ from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
InputField,
InvocationContext,
MetadataField,
@ -19,6 +18,7 @@ from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.shared.fields import FieldDescriptions
from ...version import __version__
@ -112,7 +112,7 @@ GENERATION_MODES = Literal[
]
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.0.0")
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.0.1")
class CoreMetadataInvocation(BaseInvocation):
"""Collects core generation metadata into a MetadataField"""
@ -160,13 +160,14 @@ class CoreMetadataInvocation(BaseInvocation):
)
# High resolution fix metadata.
hrf_width: Optional[int] = InputField(
hrf_enabled: Optional[bool] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
description="Whether or not high resolution fix was enabled.",
)
hrf_height: Optional[int] = InputField(
# TODO: should this be stricter or do we just let the UI handle it?
hrf_method: Optional[str] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
description="The high resolution fix upscale method.",
)
hrf_strength: Optional[float] = InputField(
default=None,

View File

@ -3,11 +3,13 @@ from typing import List, Optional
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.shared.models import FreeUConfig
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@ -36,6 +38,7 @@ class UNetField(BaseModel):
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
class ClipField(BaseModel):
@ -51,15 +54,34 @@ class VaeField(BaseModel):
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@invocation_output("model_loader_output")
class ModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
@invocation_output("unet_output")
class UNetOutput(BaseInvocationOutput):
"""Base class for invocations that output a UNet field"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
@invocation_output("vae_output")
class VAEOutput(BaseInvocationOutput):
"""Base class for invocations that output a VAE field"""
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("clip_output")
class CLIPOutput(BaseInvocationOutput):
"""Base class for invocations that output a CLIP field"""
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
@invocation_output("model_loader_output")
class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
"""Model loader output"""
pass
class MainModelField(BaseModel):
"""Main model field"""
@ -366,13 +388,6 @@ class VAEModelField(BaseModel):
model_config = ConfigDict(protected_namespaces=())
@invocation_output("vae_loader_output")
class VaeLoaderOutput(BaseInvocationOutput):
"""VAE output"""
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0")
class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
@ -384,7 +399,7 @@ class VaeLoaderInvocation(BaseInvocation):
title="VAE",
)
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
def invoke(self, context: InvocationContext) -> VAEOutput:
base_model = self.vae_model.base_model
model_name = self.vae_model.model_name
model_type = ModelType.Vae
@ -395,7 +410,7 @@ class VaeLoaderInvocation(BaseInvocation):
model_type=model_type,
):
raise Exception(f"Unkown vae name: {model_name}!")
return VaeLoaderOutput(
return VAEOutput(
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
@ -457,3 +472,24 @@ class SeamlessModeInvocation(BaseInvocation):
vae.seamless_axes = seamless_axes_list
return SeamlessModeOutput(unet=unet, vae=vae)
@invocation("freeu", title="FreeU", tags=["freeu"], category="unet", version="1.0.0")
class FreeUInvocation(BaseInvocation):
"""
Applies FreeU to the UNet. Suggested values (b1/b2/s1/s2):
SD1.5: 1.2/1.4/0.9/0.2,
SD2: 1.1/1.2/0.9/0.2,
SDXL: 1.1/1.2/0.6/0.4,
"""
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet")
b1: float = InputField(default=1.2, ge=-1, le=3, description=FieldDescriptions.freeu_b1)
b2: float = InputField(default=1.4, ge=-1, le=3, description=FieldDescriptions.freeu_b2)
s1: float = InputField(default=0.9, ge=-1, le=3, description=FieldDescriptions.freeu_s1)
s2: float = InputField(default=0.2, ge=-1, le=3, description=FieldDescriptions.freeu_s2)
def invoke(self, context: InvocationContext) -> UNetOutput:
self.unet.freeu_config = FreeUConfig(s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2)
return UNetOutput(unet=self.unet)

View File

@ -5,13 +5,13 @@ import torch
from pydantic import field_validator
from invokeai.app.invocations.latent import LatentsField
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
InputField,
InvocationContext,
OutputField,

View File

@ -14,6 +14,7 @@ from tqdm import tqdm
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend import BaseModelType, ModelType, SubModelType
@ -23,7 +24,6 @@ from ...backend.util import choose_torch_device
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@ -54,7 +54,7 @@ ORT_TO_NP_TYPE = {
"tensor(double)": np.float64,
}
PRECISION_VALUES = Literal[tuple(list(ORT_TO_NP_TYPE.keys()))]
PRECISION_VALUES = Literal[tuple(ORT_TO_NP_TYPE.keys())]
@invocation("prompt_onnx", title="ONNX Prompt (Raw)", tags=["prompt", "onnx"], category="conditioning", version="1.0.0")
@ -252,7 +252,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
scheduler.set_timesteps(self.steps)
latents = latents * np.float64(scheduler.init_noise_sigma)
extra_step_kwargs = dict()
extra_step_kwargs = {}
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
extra_step_kwargs.update(
eta=0.0,
@ -326,7 +326,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
title="ONNX Latents to Image",
tags=["latents", "image", "vae", "onnx"],
category="image",
version="1.0.0",
version="1.1.0",
)
class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
"""Generates an image from latents."""

View File

@ -100,7 +100,7 @@ EASING_FUNCTIONS_MAP = {
"BounceInOut": BounceEaseInOut,
}
EASING_FUNCTION_KEYS = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
EASING_FUNCTION_KEYS = Literal[tuple(EASING_FUNCTIONS_MAP.keys())]
# actually I think for now could just use CollectionOutput (which is list[Any]
@ -161,7 +161,7 @@ class StepParamEasingInvocation(BaseInvocation):
easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics:
context.services.logger.debug("easing class: " + str(easing_class))
easing_list = list()
easing_list = []
if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2
# and create reverse copy of list to append
@ -178,7 +178,7 @@ class StepParamEasingInvocation(BaseInvocation):
end=self.end_value,
duration=base_easing_duration - 1,
)
base_easing_vals = list()
base_easing_vals = []
for step_index in range(base_easing_duration):
easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val)

View File

@ -5,10 +5,11 @@ from typing import Optional, Tuple
import torch
from pydantic import BaseModel, Field
from invokeai.app.shared.fields import FieldDescriptions
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,

View File

@ -1,8 +1,9 @@
from invokeai.app.shared.fields import FieldDescriptions
from ...backend.model_management import ModelType, SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,

View File

@ -5,7 +5,6 @@ from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
@ -16,6 +15,7 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.backend.model_management.models.base import BaseModelType

View File

@ -29,7 +29,7 @@ if choose_torch_device() == torch.device("mps"):
from torch import mps
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.1.0")
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.2.0")
class ESRGANInvocation(BaseInvocation, WithWorkflow, WithMetadata):
"""Upscales an image using RealESRGAN."""

View File

@ -139,7 +139,7 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = list(map(lambda r: deserialize_image_record(dict(r)), result))
images = [deserialize_image_record(dict(r)) for r in result]
self._cursor.execute(
"""--sql
@ -167,7 +167,7 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
image_names = list(map(lambda r: r[0], result))
image_names = [r[0] for r in result]
return image_names
except sqlite3.Error as e:
self._conn.rollback()

View File

@ -199,7 +199,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = list(map(lambda r: deserialize_board_record(dict(r)), result))
boards = [deserialize_board_record(dict(r)) for r in result]
# Get the total number of boards
self._cursor.execute(
@ -236,7 +236,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = list(map(lambda r: deserialize_board_record(dict(r)), result))
boards = [deserialize_board_record(dict(r)) for r in result]
return boards

View File

@ -55,7 +55,7 @@ class InvokeAISettings(BaseSettings):
"""
cls = self.__class__
type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type: dict()})
field_dict = {type: {}}
for name, field in self.model_fields.items():
if name in cls._excluded_from_yaml():
continue
@ -64,7 +64,7 @@ class InvokeAISettings(BaseSettings):
)
value = getattr(self, name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
field_dict[type][category] = {}
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict)
@ -89,7 +89,7 @@ class InvokeAISettings(BaseSettings):
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
upcase_environ = {}
for key, value in os.environ.items():
upcase_environ[key.upper()] = value

View File

@ -188,18 +188,18 @@ DEFAULT_MAX_VRAM = 0.5
class Categories(object):
WebServer = dict(category="Web Server")
Features = dict(category="Features")
Paths = dict(category="Paths")
Logging = dict(category="Logging")
Development = dict(category="Development")
Other = dict(category="Other")
ModelCache = dict(category="Model Cache")
Device = dict(category="Device")
Generation = dict(category="Generation")
Queue = dict(category="Queue")
Nodes = dict(category="Nodes")
MemoryPerformance = dict(category="Memory/Performance")
WebServer = {"category": "Web Server"}
Features = {"category": "Features"}
Paths = {"category": "Paths"}
Logging = {"category": "Logging"}
Development = {"category": "Development"}
Other = {"category": "Other"}
ModelCache = {"category": "Model Cache"}
Device = {"category": "Device"}
Generation = {"category": "Generation"}
Queue = {"category": "Queue"}
Nodes = {"category": "Nodes"}
MemoryPerformance = {"category": "Memory/Performance"}
class InvokeAIAppConfig(InvokeAISettings):
@ -482,7 +482,7 @@ def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ["INVOKEAI_ROOT"])
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]):
elif any((venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]):
root = (venv.parent).resolve()
else:
root = Path("~/invokeai").expanduser().resolve()

View File

@ -27,7 +27,7 @@ class EventServiceBase:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.queue_event,
payload=dict(event=event_name, data=payload),
payload={"event": event_name, "data": payload},
)
# Define events here for every event in the system.
@ -48,18 +48,18 @@ class EventServiceBase:
"""Emitted when there is generation progress"""
self.__emit_queue_event(
event_name="generator_progress",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
node_id=node.get("id"),
source_node_id=source_node_id,
progress_image=progress_image.model_dump() if progress_image is not None else None,
step=step,
order=order,
total_steps=total_steps,
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node_id": node.get("id"),
"source_node_id": source_node_id,
"progress_image": progress_image.model_dump() if progress_image is not None else None,
"step": step,
"order": order,
"total_steps": total_steps,
},
)
def emit_invocation_complete(
@ -75,15 +75,15 @@ class EventServiceBase:
"""Emitted when an invocation has completed"""
self.__emit_queue_event(
event_name="invocation_complete",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
result=result,
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node": node,
"source_node_id": source_node_id,
"result": result,
},
)
def emit_invocation_error(
@ -100,16 +100,16 @@ class EventServiceBase:
"""Emitted when an invocation has completed"""
self.__emit_queue_event(
event_name="invocation_error",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
error_type=error_type,
error=error,
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node": node,
"source_node_id": source_node_id,
"error_type": error_type,
"error": error,
},
)
def emit_invocation_started(
@ -124,14 +124,14 @@ class EventServiceBase:
"""Emitted when an invocation has started"""
self.__emit_queue_event(
event_name="invocation_started",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node": node,
"source_node_id": source_node_id,
},
)
def emit_graph_execution_complete(
@ -140,12 +140,12 @@ class EventServiceBase:
"""Emitted when a session has completed all invocations"""
self.__emit_queue_event(
event_name="graph_execution_state_complete",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
},
)
def emit_model_load_started(
@ -162,16 +162,16 @@ class EventServiceBase:
"""Emitted when a model is requested"""
self.__emit_queue_event(
event_name="model_load_started",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"model_name": model_name,
"base_model": base_model,
"model_type": model_type,
"submodel": submodel,
},
)
def emit_model_load_completed(
@ -189,19 +189,19 @@ class EventServiceBase:
"""Emitted when a model is correctly loaded (returns model info)"""
self.__emit_queue_event(
event_name="model_load_completed",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
hash=model_info.hash,
location=str(model_info.location),
precision=str(model_info.precision),
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"model_name": model_name,
"base_model": base_model,
"model_type": model_type,
"submodel": submodel,
"hash": model_info.hash,
"location": str(model_info.location),
"precision": str(model_info.precision),
},
)
def emit_session_retrieval_error(
@ -216,14 +216,14 @@ class EventServiceBase:
"""Emitted when session retrieval fails"""
self.__emit_queue_event(
event_name="session_retrieval_error",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
error_type=error_type,
error=error,
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"error_type": error_type,
"error": error,
},
)
def emit_invocation_retrieval_error(
@ -239,15 +239,15 @@ class EventServiceBase:
"""Emitted when invocation retrieval fails"""
self.__emit_queue_event(
event_name="invocation_retrieval_error",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
node_id=node_id,
error_type=error_type,
error=error,
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
"node_id": node_id,
"error_type": error_type,
"error": error,
},
)
def emit_session_canceled(
@ -260,12 +260,12 @@ class EventServiceBase:
"""Emitted when a session is canceled"""
self.__emit_queue_event(
event_name="session_canceled",
payload=dict(
queue_id=queue_id,
queue_item_id=queue_item_id,
queue_batch_id=queue_batch_id,
graph_execution_state_id=graph_execution_state_id,
),
payload={
"queue_id": queue_id,
"queue_item_id": queue_item_id,
"queue_batch_id": queue_batch_id,
"graph_execution_state_id": graph_execution_state_id,
},
)
def emit_queue_item_status_changed(
@ -277,39 +277,39 @@ class EventServiceBase:
"""Emitted when a queue item's status changes"""
self.__emit_queue_event(
event_name="queue_item_status_changed",
payload=dict(
queue_id=queue_status.queue_id,
queue_item=dict(
queue_id=session_queue_item.queue_id,
item_id=session_queue_item.item_id,
status=session_queue_item.status,
batch_id=session_queue_item.batch_id,
session_id=session_queue_item.session_id,
error=session_queue_item.error,
created_at=str(session_queue_item.created_at) if session_queue_item.created_at else None,
updated_at=str(session_queue_item.updated_at) if session_queue_item.updated_at else None,
started_at=str(session_queue_item.started_at) if session_queue_item.started_at else None,
completed_at=str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
),
batch_status=batch_status.model_dump(),
queue_status=queue_status.model_dump(),
),
payload={
"queue_id": queue_status.queue_id,
"queue_item": {
"queue_id": session_queue_item.queue_id,
"item_id": session_queue_item.item_id,
"status": session_queue_item.status,
"batch_id": session_queue_item.batch_id,
"session_id": session_queue_item.session_id,
"error": session_queue_item.error,
"created_at": str(session_queue_item.created_at) if session_queue_item.created_at else None,
"updated_at": str(session_queue_item.updated_at) if session_queue_item.updated_at else None,
"started_at": str(session_queue_item.started_at) if session_queue_item.started_at else None,
"completed_at": str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
},
"batch_status": batch_status.model_dump(),
"queue_status": queue_status.model_dump(),
},
)
def emit_batch_enqueued(self, enqueue_result: EnqueueBatchResult) -> None:
"""Emitted when a batch is enqueued"""
self.__emit_queue_event(
event_name="batch_enqueued",
payload=dict(
queue_id=enqueue_result.queue_id,
batch_id=enqueue_result.batch.batch_id,
enqueued=enqueue_result.enqueued,
),
payload={
"queue_id": enqueue_result.queue_id,
"batch_id": enqueue_result.batch.batch_id,
"enqueued": enqueue_result.enqueued,
},
)
def emit_queue_cleared(self, queue_id: str) -> None:
"""Emitted when the queue is cleared"""
self.__emit_queue_event(
event_name="queue_cleared",
payload=dict(queue_id=queue_id),
payload={"queue_id": queue_id},
)

View File

@ -25,7 +25,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
__invoker: Invoker
def __init__(self, output_folder: Union[str, Path]):
self.__cache = dict()
self.__cache = {}
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config

View File

@ -90,25 +90,23 @@ class ImageRecordDeleteException(Exception):
IMAGE_DTO_COLS = ", ".join(
list(
map(
lambda c: "images." + c,
[
"image_name",
"image_origin",
"image_category",
"width",
"height",
"session_id",
"node_id",
"is_intermediate",
"created_at",
"updated_at",
"deleted_at",
"starred",
],
)
)
[
"images." + c
for c in [
"image_name",
"image_origin",
"image_category",
"width",
"height",
"session_id",
"node_id",
"is_intermediate",
"created_at",
"updated_at",
"deleted_at",
"starred",
]
]
)

View File

@ -263,7 +263,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = list(map(lambda c: c.value, set(categories)))
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
@ -307,7 +307,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
# Build the list of images, deserializing each row
self._cursor.execute(images_query, images_params)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = list(map(lambda r: deserialize_image_record(dict(r)), result))
images = [deserialize_image_record(dict(r)) for r in result]
# Set up and execute the count query, without pagination
count_query += query_conditions + ";"
@ -386,7 +386,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
"""
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
image_names = list(map(lambda r: r[0], result))
image_names = [r[0] for r in result]
self._cursor.execute(
"""--sql
DELETE FROM images

View File

@ -21,8 +21,8 @@ class ImageServiceABC(ABC):
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
self._on_changed_callbacks = []
self._on_deleted_callbacks = []
def on_changed(self, on_changed: Callable[[ImageDTO], None]) -> None:
"""Register a callback for when an image is changed"""

View File

@ -217,18 +217,16 @@ class ImageService(ImageServiceABC):
board_id,
)
image_dtos = list(
map(
lambda r: image_record_to_dto(
image_record=r,
image_url=self.__invoker.services.urls.get_image_url(r.image_name),
thumbnail_url=self.__invoker.services.urls.get_image_url(r.image_name, True),
board_id=self.__invoker.services.board_image_records.get_board_for_image(r.image_name),
workflow_id=self.__invoker.services.workflow_image_records.get_workflow_for_image(r.image_name),
),
results.items,
image_dtos = [
image_record_to_dto(
image_record=r,
image_url=self.__invoker.services.urls.get_image_url(r.image_name),
thumbnail_url=self.__invoker.services.urls.get_image_url(r.image_name, True),
board_id=self.__invoker.services.board_image_records.get_board_for_image(r.image_name),
workflow_id=self.__invoker.services.workflow_image_records.get_workflow_for_image(r.image_name),
)
)
for r in results.items
]
return OffsetPaginatedResults[ImageDTO](
items=image_dtos,

View File

@ -1,5 +1,5 @@
from abc import ABC
class InvocationProcessorABC(ABC):
class InvocationProcessorABC(ABC): # noqa: B024
pass

View File

@ -26,7 +26,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
self.__invoker_thread = Thread(
name="invoker_processor",
target=self.__process,
kwargs=dict(stop_event=self.__stop_event),
kwargs={"stop_event": self.__stop_event},
)
self.__invoker_thread.daemon = True # TODO: make async and do not use threads
self.__invoker_thread.start()

View File

@ -14,7 +14,7 @@ class MemoryInvocationQueue(InvocationQueueABC):
def __init__(self):
self.__queue = Queue()
self.__cancellations = dict()
self.__cancellations = {}
def get(self) -> InvocationQueueItem:
item = self.__queue.get()

View File

@ -22,6 +22,7 @@ if TYPE_CHECKING:
from .item_storage.item_storage_base import ItemStorageABC
from .latents_storage.latents_storage_base import LatentsStorageBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .model_records import ModelRecordServiceBase
from .names.names_base import NameServiceBase
from .session_processor.session_processor_base import SessionProcessorBase
from .session_queue.session_queue_base import SessionQueueBase
@ -49,6 +50,7 @@ class InvocationServices:
latents: "LatentsStorageBase"
logger: "Logger"
model_manager: "ModelManagerServiceBase"
model_records: "ModelRecordServiceBase"
processor: "InvocationProcessorABC"
performance_statistics: "InvocationStatsServiceBase"
queue: "InvocationQueueABC"
@ -76,6 +78,7 @@ class InvocationServices:
latents: "LatentsStorageBase",
logger: "Logger",
model_manager: "ModelManagerServiceBase",
model_records: "ModelRecordServiceBase",
processor: "InvocationProcessorABC",
performance_statistics: "InvocationStatsServiceBase",
queue: "InvocationQueueABC",
@ -101,6 +104,7 @@ class InvocationServices:
self.latents = latents
self.logger = logger
self.model_manager = model_manager
self.model_records = model_records
self.processor = processor
self.performance_statistics = performance_statistics
self.queue = queue

View File

@ -122,7 +122,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
def log_stats(self):
completed = set()
errored = set()
for graph_id, node_log in self._stats.items():
for graph_id, _node_log in self._stats.items():
try:
current_graph_state = self._invoker.services.graph_execution_manager.get(graph_id)
except Exception:
@ -142,7 +142,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
cache_stats = self._cache_stats[graph_id]
hwm = cache_stats.high_watermark / GIG
tot = cache_stats.cache_size / GIG
loaded = sum([v for v in cache_stats.loaded_model_sizes.values()]) / GIG
loaded = sum(list(cache_stats.loaded_model_sizes.values())) / GIG
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
logger.info("RAM used by InvokeAI process: " + "%4.2fG" % self.ram_used + f" ({self.ram_changed:+5.3f}G)")

View File

@ -15,8 +15,8 @@ class ItemStorageABC(ABC, Generic[T]):
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
self._on_changed_callbacks = []
self._on_deleted_callbacks = []
"""Base item storage class"""

View File

@ -112,7 +112,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
)
result = self._cursor.fetchall()
items = list(map(lambda r: self._parse_item(r[0]), result))
items = [self._parse_item(r[0]) for r in result]
self._cursor.execute(f"""SELECT count(*) FROM {self._table_name};""")
count = self._cursor.fetchone()[0]
@ -132,7 +132,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
)
result = self._cursor.fetchall()
items = list(map(lambda r: self._parse_item(r[0]), result))
items = [self._parse_item(r[0]) for r in result]
self._cursor.execute(
f"""SELECT count(*) FROM {self._table_name} WHERE item LIKE ?;""",

View File

@ -13,8 +13,8 @@ class LatentsStorageBase(ABC):
_on_deleted_callbacks: list[Callable[[str], None]]
def __init__(self) -> None:
self._on_changed_callbacks = list()
self._on_deleted_callbacks = list()
self._on_changed_callbacks = []
self._on_deleted_callbacks = []
@abstractmethod
def get(self, name: str) -> torch.Tensor:

View File

@ -19,7 +19,7 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
super().__init__()
self.__underlying_storage = underlying_storage
self.__cache = dict()
self.__cache = {}
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size

View File

@ -0,0 +1,8 @@
"""Init file for model record services."""
from .model_records_base import ( # noqa F401
DuplicateModelException,
InvalidModelException,
ModelRecordServiceBase,
UnknownModelException,
)
from .model_records_sql import ModelRecordServiceSQL # noqa F401

View File

@ -0,0 +1,169 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Abstract base class for storing and retrieving model configuration records.
"""
from abc import ABC, abstractmethod
from pathlib import Path
from typing import List, Optional, Union
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType
# should match the InvokeAI version when this is first released.
CONFIG_FILE_VERSION = "3.2.0"
class DuplicateModelException(Exception):
"""Raised on an attempt to add a model with the same key twice."""
class InvalidModelException(Exception):
"""Raised when an invalid model is detected."""
class UnknownModelException(Exception):
"""Raised on an attempt to fetch or delete a model with a nonexistent key."""
class ConfigFileVersionMismatchException(Exception):
"""Raised on an attempt to open a config with an incompatible version."""
class ModelRecordServiceBase(ABC):
"""Abstract base class for storage and retrieval of model configs."""
@property
@abstractmethod
def version(self) -> str:
"""Return the config file/database schema version."""
pass
@abstractmethod
def add_model(self, key: str, config: Union[dict, AnyModelConfig]) -> AnyModelConfig:
"""
Add a model to the database.
:param key: Unique key for the model
:param config: Model configuration record, either a dict with the
required fields or a ModelConfigBase instance.
Can raise DuplicateModelException and InvalidModelConfigException exceptions.
"""
pass
@abstractmethod
def del_model(self, key: str) -> None:
"""
Delete a model.
:param key: Unique key for the model to be deleted
Can raise an UnknownModelException
"""
pass
@abstractmethod
def update_model(self, key: str, config: Union[dict, AnyModelConfig]) -> AnyModelConfig:
"""
Update the model, returning the updated version.
:param key: Unique key for the model to be updated
:param config: Model configuration record. Either a dict with the
required fields, or a ModelConfigBase instance.
"""
pass
@abstractmethod
def get_model(self, key: str) -> AnyModelConfig:
"""
Retrieve the configuration for the indicated model.
:param key: Key of model config to be fetched.
Exceptions: UnknownModelException
"""
pass
@abstractmethod
def exists(self, key: str) -> bool:
"""
Return True if a model with the indicated key exists in the databse.
:param key: Unique key for the model to be deleted
"""
pass
@abstractmethod
def search_by_path(
self,
path: Union[str, Path],
) -> List[AnyModelConfig]:
"""Return the model(s) having the indicated path."""
pass
@abstractmethod
def search_by_hash(
self,
hash: str,
) -> List[AnyModelConfig]:
"""Return the model(s) having the indicated original hash."""
pass
@abstractmethod
def search_by_attr(
self,
model_name: Optional[str] = None,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None,
) -> List[AnyModelConfig]:
"""
Return models matching name, base and/or type.
:param model_name: Filter by name of model (optional)
:param base_model: Filter by base model (optional)
:param model_type: Filter by type of model (optional)
If none of the optional filters are passed, will return all
models in the database.
"""
pass
def all_models(self) -> List[AnyModelConfig]:
"""Return all the model configs in the database."""
return self.search_by_attr()
def model_info_by_name(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> AnyModelConfig:
"""
Return information about a single model using its name, base type and model type.
If there are more than one model that match, raises a DuplicateModelException.
If no model matches, raises an UnknownModelException
"""
model_configs = self.search_by_attr(model_name=model_name, base_model=base_model, model_type=model_type)
if len(model_configs) > 1:
raise DuplicateModelException(
f"More than one model matched the search criteria: base_model='{base_model}', model_type='{model_type}', model_name='{model_name}'."
)
if len(model_configs) == 0:
raise UnknownModelException(
f"More than one model matched the search criteria: base_model='{base_model}', model_type='{model_type}', model_name='{model_name}'."
)
return model_configs[0]
def rename_model(
self,
key: str,
new_name: str,
) -> AnyModelConfig:
"""
Rename the indicated model. Just a special case of update_model().
In some implementations, renaming the model may involve changing where
it is stored on the filesystem. So this is broken out.
:param key: Model key
:param new_name: New name for model
"""
config = self.get_model(key)
config.name = new_name
return self.update_model(key, config)

View File

@ -0,0 +1,397 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
SQL Implementation of the ModelRecordServiceBase API
Typical usage:
from invokeai.backend.model_manager import ModelConfigStoreSQL
store = ModelConfigStoreSQL(sqlite_db)
config = dict(
path='/tmp/pokemon.bin',
name='old name',
base_model='sd-1',
type='embedding',
format='embedding_file',
)
# adding - the key becomes the model's "key" field
store.add_model('key1', config)
# updating
config.name='new name'
store.update_model('key1', config)
# checking for existence
if store.exists('key1'):
print("yes")
# fetching config
new_config = store.get_model('key1')
print(new_config.name, new_config.base)
assert new_config.key == 'key1'
# deleting
store.del_model('key1')
# searching
configs = store.search_by_path(path='/tmp/pokemon.bin')
configs = store.search_by_hash('750a499f35e43b7e1b4d15c207aa2f01')
configs = store.search_by_attr(base_model='sd-2', model_type='main')
"""
import json
import sqlite3
from pathlib import Path
from typing import List, Optional, Union
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelConfigBase,
ModelConfigFactory,
ModelType,
)
from ..shared.sqlite import SqliteDatabase
from .model_records_base import (
CONFIG_FILE_VERSION,
DuplicateModelException,
ModelRecordServiceBase,
UnknownModelException,
)
class ModelRecordServiceSQL(ModelRecordServiceBase):
"""Implementation of the ModelConfigStore ABC using a SQL database."""
_db: SqliteDatabase
_cursor: sqlite3.Cursor
def __init__(self, db: SqliteDatabase):
"""
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
:param conn: sqlite3 connection object
:param lock: threading Lock object
"""
super().__init__()
self._db = db
self._cursor = self._db.conn.cursor()
with self._db.lock:
# Enable foreign keys
self._db.conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._db.conn.commit()
assert (
str(self.version) == CONFIG_FILE_VERSION
), f"Model config version {self.version} does not match expected version {CONFIG_FILE_VERSION}"
def _create_tables(self) -> None:
"""Create sqlite3 tables."""
# model_config table breaks out the fields that are common to all config objects
# and puts class-specific ones in a serialized json object
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS model_config (
id TEXT NOT NULL PRIMARY KEY,
-- The next 3 fields are enums in python, unrestricted string here
base TEXT NOT NULL,
type TEXT NOT NULL,
name TEXT NOT NULL,
path TEXT NOT NULL,
original_hash TEXT, -- could be null
-- Serialized JSON representation of the whole config object,
-- which will contain additional fields from subclasses
config TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- unique constraint on combo of name, base and type
UNIQUE(name, base, type)
);
"""
)
# metadata table
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS model_manager_metadata (
metadata_key TEXT NOT NULL PRIMARY KEY,
metadata_value TEXT NOT NULL
);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS model_config_updated_at
AFTER UPDATE
ON model_config FOR EACH ROW
BEGIN
UPDATE model_config SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
)
# Add indexes for searchable fields
for stmt in [
"CREATE INDEX IF NOT EXISTS base_index ON model_config(base);",
"CREATE INDEX IF NOT EXISTS type_index ON model_config(type);",
"CREATE INDEX IF NOT EXISTS name_index ON model_config(name);",
"CREATE UNIQUE INDEX IF NOT EXISTS path_index ON model_config(path);",
]:
self._cursor.execute(stmt)
# Add our version to the metadata table
self._cursor.execute(
"""--sql
INSERT OR IGNORE into model_manager_metadata (
metadata_key,
metadata_value
)
VALUES (?,?);
""",
("version", CONFIG_FILE_VERSION),
)
def add_model(self, key: str, config: Union[dict, ModelConfigBase]) -> AnyModelConfig:
"""
Add a model to the database.
:param key: Unique key for the model
:param config: Model configuration record, either a dict with the
required fields or a ModelConfigBase instance.
Can raise DuplicateModelException and InvalidModelConfigException exceptions.
"""
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect.
json_serialized = record.model_dump_json() # and turn it into a json string.
with self._db.lock:
try:
self._cursor.execute(
"""--sql
INSERT INTO model_config (
id,
base,
type,
name,
path,
original_hash,
config
)
VALUES (?,?,?,?,?,?,?);
""",
(
key,
record.base,
record.type,
record.name,
record.path,
record.original_hash,
json_serialized,
),
)
self._db.conn.commit()
except sqlite3.IntegrityError as e:
self._db.conn.rollback()
if "UNIQUE constraint failed" in str(e):
if "model_config.path" in str(e):
msg = f"A model with path '{record.path}' is already installed"
elif "model_config.name" in str(e):
msg = f"A model with name='{record.name}', type='{record.type}', base='{record.base}' is already installed"
else:
msg = f"A model with key '{key}' is already installed"
raise DuplicateModelException(msg) from e
else:
raise e
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
return self.get_model(key)
@property
def version(self) -> str:
"""Return the version of the database schema."""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT metadata_value FROM model_manager_metadata
WHERE metadata_key=?;
""",
("version",),
)
rows = self._cursor.fetchone()
if not rows:
raise KeyError("Models database does not have metadata key 'version'")
return rows[0]
def del_model(self, key: str) -> None:
"""
Delete a model.
:param key: Unique key for the model to be deleted
Can raise an UnknownModelException
"""
with self._db.lock:
try:
self._cursor.execute(
"""--sql
DELETE FROM model_config
WHERE id=?;
""",
(key,),
)
if self._cursor.rowcount == 0:
raise UnknownModelException("model not found")
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
def update_model(self, key: str, config: ModelConfigBase) -> AnyModelConfig:
"""
Update the model, returning the updated version.
:param key: Unique key for the model to be updated
:param config: Model configuration record. Either a dict with the
required fields, or a ModelConfigBase instance.
"""
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect
json_serialized = record.model_dump_json() # and turn it into a json string.
with self._db.lock:
try:
self._cursor.execute(
"""--sql
UPDATE model_config
SET base=?,
type=?,
name=?,
path=?,
config=?
WHERE id=?;
""",
(record.base, record.type, record.name, record.path, json_serialized, key),
)
if self._cursor.rowcount == 0:
raise UnknownModelException("model not found")
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
return self.get_model(key)
def get_model(self, key: str) -> AnyModelConfig:
"""
Retrieve the ModelConfigBase instance for the indicated model.
:param key: Key of model config to be fetched.
Exceptions: UnknownModelException
"""
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config FROM model_config
WHERE id=?;
""",
(key,),
)
rows = self._cursor.fetchone()
if not rows:
raise UnknownModelException("model not found")
model = ModelConfigFactory.make_config(json.loads(rows[0]))
return model
def exists(self, key: str) -> bool:
"""
Return True if a model with the indicated key exists in the databse.
:param key: Unique key for the model to be deleted
"""
count = 0
with self._db.lock:
self._cursor.execute(
"""--sql
select count(*) FROM model_config
WHERE id=?;
""",
(key,),
)
count = self._cursor.fetchone()[0]
return count > 0
def search_by_attr(
self,
model_name: Optional[str] = None,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None,
) -> List[AnyModelConfig]:
"""
Return models matching name, base and/or type.
:param model_name: Filter by name of model (optional)
:param base_model: Filter by base model (optional)
:param model_type: Filter by type of model (optional)
If none of the optional filters are passed, will return all
models in the database.
"""
results = []
where_clause = []
bindings = []
if model_name:
where_clause.append("name=?")
bindings.append(model_name)
if base_model:
where_clause.append("base=?")
bindings.append(base_model)
if model_type:
where_clause.append("type=?")
bindings.append(model_type)
where = f"WHERE {' AND '.join(where_clause)}" if where_clause else ""
with self._db.lock:
self._cursor.execute(
f"""--sql
select config FROM model_config
{where};
""",
tuple(bindings),
)
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self._cursor.fetchall()]
return results
def search_by_path(self, path: Union[str, Path]) -> List[ModelConfigBase]:
"""Return models with the indicated path."""
results = []
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config FROM model_config
WHERE model_path=?;
""",
(str(path),),
)
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self._cursor.fetchall()]
return results
def search_by_hash(self, hash: str) -> List[ModelConfigBase]:
"""Return models with the indicated original_hash."""
results = []
with self._db.lock:
self._cursor.execute(
"""--sql
SELECT config FROM model_config
WHERE original_hash=?;
""",
(hash,),
)
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self._cursor.fetchall()]
return results

View File

@ -33,9 +33,11 @@ class DefaultSessionProcessor(SessionProcessorBase):
self.__thread = Thread(
name="session_processor",
target=self.__process,
kwargs=dict(
stop_event=self.__stop_event, poll_now_event=self.__poll_now_event, resume_event=self.__resume_event
),
kwargs={
"stop_event": self.__stop_event,
"poll_now_event": self.__poll_now_event,
"resume_event": self.__resume_event,
},
)
self.__thread.start()

View File

@ -129,12 +129,12 @@ class Batch(BaseModel):
return v
model_config = ConfigDict(
json_schema_extra=dict(
required=[
json_schema_extra={
"required": [
"graph",
"runs",
]
)
}
)
@ -191,8 +191,8 @@ class SessionQueueItemWithoutGraph(BaseModel):
return SessionQueueItemDTO(**queue_item_dict)
model_config = ConfigDict(
json_schema_extra=dict(
required=[
json_schema_extra={
"required": [
"item_id",
"status",
"batch_id",
@ -203,7 +203,7 @@ class SessionQueueItemWithoutGraph(BaseModel):
"created_at",
"updated_at",
]
)
}
)
@ -222,8 +222,8 @@ class SessionQueueItem(SessionQueueItemWithoutGraph):
return SessionQueueItem(**queue_item_dict)
model_config = ConfigDict(
json_schema_extra=dict(
required=[
json_schema_extra={
"required": [
"item_id",
"status",
"batch_id",
@ -235,7 +235,7 @@ class SessionQueueItem(SessionQueueItemWithoutGraph):
"created_at",
"updated_at",
]
)
}
)
@ -355,7 +355,7 @@ def create_session_nfv_tuples(
for item in batch_datum.items
]
node_field_values_to_zip.append(node_field_values)
data.append(list(zip(*node_field_values_to_zip))) # type: ignore [arg-type]
data.append(list(zip(*node_field_values_to_zip, strict=True))) # type: ignore [arg-type]
# create generator to yield session,nfv tuples
count = 0
@ -383,7 +383,7 @@ def calc_session_count(batch: Batch) -> int:
for batch_datum in batch_datum_list:
batch_data_items = range(len(batch_datum.items))
to_zip.append(batch_data_items)
data.append(list(zip(*to_zip)))
data.append(list(zip(*to_zip, strict=True)))
data_product = list(product(*data))
return len(data_product) * batch.runs

View File

@ -78,7 +78,7 @@ def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[Li
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
# TODO: Uncomment this when we are ready to fix this up to prevent breaking changes
graphs: list[LibraryGraph] = list()
graphs: list[LibraryGraph] = []
text_to_image = graph_library.get(default_text_to_image_graph_id)

View File

@ -352,7 +352,7 @@ class Graph(BaseModel):
# Validate that all node ids are unique
node_ids = [n.id for n in self.nodes.values()]
duplicate_node_ids = set([node_id for node_id in node_ids if node_ids.count(node_id) >= 2])
duplicate_node_ids = {node_id for node_id in node_ids if node_ids.count(node_id) >= 2}
if duplicate_node_ids:
raise DuplicateNodeIdError(f"Node ids must be unique, found duplicates {duplicate_node_ids}")
@ -616,7 +616,7 @@ class Graph(BaseModel):
self, node_path: str, prefix: Optional[str] = None
) -> list[tuple["Graph", Union[str, None], Edge]]:
"""Gets all input edges for a node along with the graph they are in and the graph's path"""
edges = list()
edges = []
# Return any input edges that appear in this graph
edges.extend([(self, prefix, e) for e in self.edges if e.destination.node_id == node_path])
@ -658,7 +658,7 @@ class Graph(BaseModel):
self, node_path: str, prefix: Optional[str] = None
) -> list[tuple["Graph", Union[str, None], Edge]]:
"""Gets all output edges for a node along with the graph they are in and the graph's path"""
edges = list()
edges = []
# Return any input edges that appear in this graph
edges.extend([(self, prefix, e) for e in self.edges if e.source.node_id == node_path])
@ -680,8 +680,8 @@ class Graph(BaseModel):
new_input: Optional[EdgeConnection] = None,
new_output: Optional[EdgeConnection] = None,
) -> bool:
inputs = list([e.source for e in self._get_input_edges(node_path, "collection")])
outputs = list([e.destination for e in self._get_output_edges(node_path, "item")])
inputs = [e.source for e in self._get_input_edges(node_path, "collection")]
outputs = [e.destination for e in self._get_output_edges(node_path, "item")]
if new_input is not None:
inputs.append(new_input)
@ -694,7 +694,7 @@ class Graph(BaseModel):
# Get input and output fields (the fields linked to the iterator's input/output)
input_field = get_output_field(self.get_node(inputs[0].node_id), inputs[0].field)
output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs])
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
# Input type must be a list
if get_origin(input_field) != list:
@ -713,8 +713,8 @@ class Graph(BaseModel):
new_input: Optional[EdgeConnection] = None,
new_output: Optional[EdgeConnection] = None,
) -> bool:
inputs = list([e.source for e in self._get_input_edges(node_path, "item")])
outputs = list([e.destination for e in self._get_output_edges(node_path, "collection")])
inputs = [e.source for e in self._get_input_edges(node_path, "item")]
outputs = [e.destination for e in self._get_output_edges(node_path, "collection")]
if new_input is not None:
inputs.append(new_input)
@ -722,18 +722,16 @@ class Graph(BaseModel):
outputs.append(new_output)
# Get input and output fields (the fields linked to the iterator's input/output)
input_fields = list([get_output_field(self.get_node(e.node_id), e.field) for e in inputs])
output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs])
input_fields = [get_output_field(self.get_node(e.node_id), e.field) for e in inputs]
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
# Validate that all inputs are derived from or match a single type
input_field_types = set(
[
t
for input_field in input_fields
for t in ([input_field] if get_origin(input_field) is None else get_args(input_field))
if t != NoneType
]
) # Get unique types
input_field_types = {
t
for input_field in input_fields
for t in ([input_field] if get_origin(input_field) is None else get_args(input_field))
if t != NoneType
} # Get unique types
type_tree = nx.DiGraph()
type_tree.add_nodes_from(input_field_types)
type_tree.add_edges_from([e for e in itertools.permutations(input_field_types, 2) if issubclass(e[1], e[0])])
@ -761,15 +759,15 @@ class Graph(BaseModel):
"""Returns a NetworkX DiGraph representing the layout of this graph"""
# TODO: Cache this?
g = nx.DiGraph()
g.add_nodes_from([n for n in self.nodes.keys()])
g.add_edges_from(set([(e.source.node_id, e.destination.node_id) for e in self.edges]))
g.add_nodes_from(list(self.nodes.keys()))
g.add_edges_from({(e.source.node_id, e.destination.node_id) for e in self.edges})
return g
def nx_graph_with_data(self) -> nx.DiGraph:
"""Returns a NetworkX DiGraph representing the data and layout of this graph"""
g = nx.DiGraph()
g.add_nodes_from([n for n in self.nodes.items()])
g.add_edges_from(set([(e.source.node_id, e.destination.node_id) for e in self.edges]))
g.add_nodes_from(list(self.nodes.items()))
g.add_edges_from({(e.source.node_id, e.destination.node_id) for e in self.edges})
return g
def nx_graph_flat(self, nx_graph: Optional[nx.DiGraph] = None, prefix: Optional[str] = None) -> nx.DiGraph:
@ -791,7 +789,7 @@ class Graph(BaseModel):
# TODO: figure out if iteration nodes need to be expanded
unique_edges = set([(e.source.node_id, e.destination.node_id) for e in self.edges])
unique_edges = {(e.source.node_id, e.destination.node_id) for e in self.edges}
g.add_edges_from([(self._get_node_path(e[0], prefix), self._get_node_path(e[1], prefix)) for e in unique_edges])
return g
@ -843,8 +841,8 @@ class GraphExecutionState(BaseModel):
return v
model_config = ConfigDict(
json_schema_extra=dict(
required=[
json_schema_extra={
"required": [
"id",
"graph",
"execution_graph",
@ -855,7 +853,7 @@ class GraphExecutionState(BaseModel):
"prepared_source_mapping",
"source_prepared_mapping",
]
)
}
)
def next(self) -> Optional[BaseInvocation]:
@ -895,7 +893,7 @@ class GraphExecutionState(BaseModel):
source_node = self.prepared_source_mapping[node_id]
prepared_nodes = self.source_prepared_mapping[source_node]
if all([n in self.executed for n in prepared_nodes]):
if all(n in self.executed for n in prepared_nodes):
self.executed.add(source_node)
self.executed_history.append(source_node)
@ -930,7 +928,7 @@ class GraphExecutionState(BaseModel):
input_collection = getattr(input_collection_prepared_node_output, input_collection_edge.source.field)
self_iteration_count = len(input_collection)
new_nodes: list[str] = list()
new_nodes: list[str] = []
if self_iteration_count == 0:
# TODO: should this raise a warning? It might just happen if an empty collection is input, and should be valid.
return new_nodes
@ -940,7 +938,7 @@ class GraphExecutionState(BaseModel):
# Create new edges for this iteration
# For collect nodes, this may contain multiple inputs to the same field
new_edges: list[Edge] = list()
new_edges: list[Edge] = []
for edge in input_edges:
for input_node_id in (n[1] for n in iteration_node_map if n[0] == edge.source.node_id):
new_edge = Edge(
@ -1034,7 +1032,7 @@ class GraphExecutionState(BaseModel):
# Create execution nodes
next_node = self.graph.get_node(next_node_id)
new_node_ids = list()
new_node_ids = []
if isinstance(next_node, CollectInvocation):
# Collapse all iterator input mappings and create a single execution node for the collect invocation
all_iteration_mappings = list(
@ -1055,7 +1053,10 @@ class GraphExecutionState(BaseModel):
# For every iterator, the parent must either not be a child of that iterator, or must match the prepared iteration for that iterator
# TODO: Handle a node mapping to none
eg = self.execution_graph.nx_graph_flat()
prepared_parent_mappings = [[(n, self._get_iteration_node(n, g, eg, it)) for n in next_node_parents] for it in iterator_node_prepared_combinations] # type: ignore
prepared_parent_mappings = [
[(n, self._get_iteration_node(n, g, eg, it)) for n in next_node_parents]
for it in iterator_node_prepared_combinations
] # type: ignore
# Create execution node for each iteration
for iteration_mappings in prepared_parent_mappings:
@ -1121,7 +1122,7 @@ class GraphExecutionState(BaseModel):
for edge in input_edges
if edge.destination.field == "item"
]
setattr(node, "collection", output_collection)
node.collection = output_collection
else:
for edge in input_edges:
output_value = getattr(self.results[edge.source.node_id], edge.source.field)
@ -1201,7 +1202,7 @@ class LibraryGraph(BaseModel):
@field_validator("exposed_inputs", "exposed_outputs")
def validate_exposed_aliases(cls, v: list[Union[ExposedNodeInput, ExposedNodeOutput]]):
if len(v) != len(set(i.alias for i in v)):
if len(v) != len({i.alias for i in v}):
raise ValueError("Duplicate exposed alias")
return v

View File

@ -0,0 +1,5 @@
"""
This module contains various classes, functions and models which are shared across the app, particularly by invocations.
Lifting these classes, functions and models into this shared module helps to reduce circular imports.
"""

View File

@ -0,0 +1,66 @@
class FieldDescriptions:
denoising_start = "When to start denoising, expressed a percentage of total steps"
denoising_end = "When to stop denoising, expressed a percentage of total steps"
cfg_scale = "Classifier-Free Guidance scale"
scheduler = "Scheduler to use during inference"
positive_cond = "Positive conditioning tensor"
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
unet = "UNet (scheduler, LoRAs)"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
skipped_layers = "Number of layers to skip in text encoder"
seed = "Seed for random number generation"
steps = "Number of steps to run"
width = "Width of output (px)"
height = "Height of output (px)"
control = "ControlNet(s) to apply"
ip_adapter = "IP-Adapter to apply"
t2i_adapter = "T2I-Adapter(s) to apply"
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
metadata = "Optional metadata to be saved with the image"
metadata_collection = "Collection of Metadata"
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
metadata_item_label = "Label for this metadata item"
metadata_item_value = "The value for this metadata item (may be any type)"
workflow = "Optional workflow to be saved with the image"
interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"
scribble_mode = "Whether or not to use scribble mode"
scale_factor = "The factor by which to scale"
blend_alpha = (
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"
inclusive_low = "The inclusive low value"
exclusive_high = "The exclusive high value"
decimal_places = "The number of decimal places to round to"
freeu_s1 = 'Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
freeu_s2 = 'Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
freeu_b1 = "Scaling factor for stage 1 to amplify the contributions of backbone features."
freeu_b2 = "Scaling factor for stage 2 to amplify the contributions of backbone features."

View File

@ -0,0 +1,16 @@
from pydantic import BaseModel, Field
from invokeai.app.shared.fields import FieldDescriptions
class FreeUConfig(BaseModel):
"""
Configuration for the FreeU hyperparameters.
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
- https://github.com/ChenyangSi/FreeU
"""
s1: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_s1)
s2: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_s2)
b1: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_b1)
b2: float = Field(ge=-1, le=3, description=FieldDescriptions.freeu_b2)

View File

@ -59,7 +59,7 @@ def thin_one_time(x, kernels):
def lvmin_thin(x, prunings=True):
y = x
for i in range(32):
for _i in range(32):
y, is_done = thin_one_time(y, lvmin_kernels)
if is_done:
break

View File

@ -21,11 +21,11 @@ def get_metadata_graph_from_raw_session(session_raw: str) -> Optional[dict]:
# sanity check make sure the graph is at least reasonably shaped
if (
type(graph) is not dict
not isinstance(graph, dict)
or "nodes" not in graph
or type(graph["nodes"]) is not dict
or not isinstance(graph["nodes"], dict)
or "edges" not in graph
or type(graph["edges"]) is not list
or not isinstance(graph["edges"], list)
):
# something has gone terribly awry, return an empty dict
return None

View File

@ -88,7 +88,7 @@ class PromptFormatter:
t2i = self.t2i
opt = self.opt
switches = list()
switches = []
switches.append(f'"{opt.prompt}"')
switches.append(f"-s{opt.steps or t2i.steps}")
switches.append(f"-W{opt.width or t2i.width}")

View File

@ -88,7 +88,7 @@ class Txt2Mask(object):
provided image and returns a SegmentedGrayscale object in which the brighter
pixels indicate where the object is inferred to be.
"""
if type(image) is str:
if isinstance(image, str):
image = Image.open(image).convert("RGB")
image = ImageOps.exif_transpose(image)

View File

@ -40,7 +40,7 @@ class InitImageResizer:
(rw, rh) = (int(scale * im.width), int(scale * im.height))
# round everything to multiples of 64
width, height, rw, rh = map(lambda x: x - x % 64, (width, height, rw, rh))
width, height, rw, rh = (x - x % 64 for x in (width, height, rw, rh))
# no resize necessary, but return a copy
if im.width == width and im.height == height:

View File

@ -32,7 +32,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionS
from huggingface_hub import HfFolder
from huggingface_hub import login as hf_hub_login
from omegaconf import OmegaConf
from pydantic.error_wrappers import ValidationError
from pydantic import ValidationError
from tqdm import tqdm
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
@ -197,7 +197,7 @@ def download_with_progress_bar(model_url: str, model_dest: str, label: str = "th
def download_conversion_models():
target_dir = config.models_path / "core/convert"
kwargs = dict() # for future use
kwargs = {} # for future use
try:
logger.info("Downloading core tokenizers and text encoders")
@ -252,26 +252,26 @@ def download_conversion_models():
def download_realesrgan():
logger.info("Installing ESRGAN Upscaling models...")
URLs = [
dict(
url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
dest="core/upscaling/realesrgan/RealESRGAN_x4plus.pth",
description="RealESRGAN_x4plus.pth",
),
dict(
url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
dest="core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth",
description="RealESRGAN_x4plus_anime_6B.pth",
),
dict(
url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
dest="core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
description="ESRGAN_SRx4_DF2KOST_official.pth",
),
dict(
url="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
dest="core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
description="RealESRGAN_x2plus.pth",
),
{
"url": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
"dest": "core/upscaling/realesrgan/RealESRGAN_x4plus.pth",
"description": "RealESRGAN_x4plus.pth",
},
{
"url": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
"dest": "core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth",
"description": "RealESRGAN_x4plus_anime_6B.pth",
},
{
"url": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
"dest": "core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
"description": "ESRGAN_SRx4_DF2KOST_official.pth",
},
{
"url": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
"dest": "core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
"description": "RealESRGAN_x2plus.pth",
},
]
for model in URLs:
download_with_progress_bar(model["url"], config.models_path / model["dest"], model["description"])
@ -680,7 +680,7 @@ def default_user_selections(program_opts: Namespace) -> InstallSelections:
if program_opts.default_only
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
if program_opts.yes_to_all
else list(),
else [],
)

View File

@ -38,6 +38,7 @@ SAMPLER_CHOICES = [
"k_heun",
"k_lms",
"plms",
"lcm",
]
PRECISION_CHOICES = [

View File

@ -123,8 +123,6 @@ class MigrateTo3(object):
logger.error(str(e))
except KeyboardInterrupt:
raise
except Exception as e:
logger.error(str(e))
for f in files:
# don't copy raw learned_embeds.bin or pytorch_lora_weights.bin
# let them be copied as part of a tree copy operation
@ -143,8 +141,6 @@ class MigrateTo3(object):
logger.error(str(e))
except KeyboardInterrupt:
raise
except Exception as e:
logger.error(str(e))
def migrate_support_models(self):
"""
@ -182,10 +178,10 @@ class MigrateTo3(object):
"""
dest_directory = self.dest_models
kwargs = dict(
cache_dir=self.root_directory / "models/hub",
kwargs = {
"cache_dir": self.root_directory / "models/hub",
# local_files_only = True
)
}
try:
logger.info("Migrating core tokenizers and text encoders")
target_dir = dest_directory / "core" / "convert"
@ -316,11 +312,11 @@ class MigrateTo3(object):
dest_dir = self.dest_models
cache = self.root_directory / "models/hub"
kwargs = dict(
cache_dir=cache,
safety_checker=None,
kwargs = {
"cache_dir": cache,
"safety_checker": None,
# local_files_only = True,
)
}
owner, repo_name = repo_id.split("/")
model_name = model_name or repo_name

View File

@ -120,7 +120,7 @@ class ModelInstall(object):
be treated uniformly. It also sorts the models alphabetically
by their name, to improve the display somewhat.
"""
model_dict = dict()
model_dict = {}
# first populate with the entries in INITIAL_MODELS.yaml
for key, value in self.datasets.items():
@ -134,7 +134,7 @@ class ModelInstall(object):
model_dict[key] = model_info
# supplement with entries in models.yaml
installed_models = [x for x in self.mgr.list_models()]
installed_models = list(self.mgr.list_models())
for md in installed_models:
base = md["base_model"]
@ -176,7 +176,7 @@ class ModelInstall(object):
# logic here a little reversed to maintain backward compatibility
def starter_models(self, all_models: bool = False) -> Set[str]:
models = set()
for key, value in self.datasets.items():
for key, _value in self.datasets.items():
name, base, model_type = ModelManager.parse_key(key)
if all_models or model_type in [ModelType.Main, ModelType.Vae]:
models.add(key)
@ -184,7 +184,7 @@ class ModelInstall(object):
def recommended_models(self) -> Set[str]:
starters = self.starter_models(all_models=True)
return set([x for x in starters if self.datasets[x].get("recommended", False)])
return {x for x in starters if self.datasets[x].get("recommended", False)}
def default_model(self) -> str:
starters = self.starter_models()
@ -234,7 +234,7 @@ class ModelInstall(object):
"""
if not models_installed:
models_installed = dict()
models_installed = {}
model_path_id_or_url = str(model_path_id_or_url).strip("\"' ")
@ -252,10 +252,14 @@ class ModelInstall(object):
# folders style or similar
elif path.is_dir() and any(
[
(path / x).exists()
for x in {"config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin"}
]
(path / x).exists()
for x in {
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"pytorch_lora_weights.safetensors",
}
):
models_installed.update({str(model_path_id_or_url): self._install_path(path)})
@ -357,7 +361,7 @@ class ModelInstall(object):
for suffix in ["safetensors", "bin"]:
if f"{prefix}pytorch_lora_weights.{suffix}" in files:
location = self._download_hf_model(
repo_id, ["pytorch_lora_weights.bin"], staging, subfolder=subfolder
repo_id, [f"pytorch_lora_weights.{suffix}"], staging, subfolder=subfolder
) # LoRA
break
elif (
@ -427,17 +431,17 @@ class ModelInstall(object):
rel_path = self.relative_to_root(path, self.config.models_path)
attributes = dict(
path=str(rel_path),
description=str(description),
model_format=info.format,
)
attributes = {
"path": str(rel_path),
"description": str(description),
"model_format": info.format,
}
legacy_conf = None
if info.model_type == ModelType.Main or info.model_type == ModelType.ONNX:
attributes.update(
dict(
variant=info.variant_type,
)
{
"variant": info.variant_type,
}
)
if info.format == "checkpoint":
try:
@ -468,7 +472,7 @@ class ModelInstall(object):
)
if legacy_conf:
attributes.update(dict(config=str(legacy_conf)))
attributes.update({"config": str(legacy_conf)})
return attributes
def relative_to_root(self, path: Path, root: Optional[Path] = None) -> Path:
@ -513,7 +517,7 @@ class ModelInstall(object):
def _download_hf_model(self, repo_id: str, files: List[str], staging: Path, subfolder: None) -> Path:
_, name = repo_id.split("/")
location = staging / name
paths = list()
paths = []
for filename in files:
filePath = Path(filename)
p = hf_download_with_resume(

View File

@ -130,7 +130,9 @@ class IPAttnProcessor2_0(torch.nn.Module):
assert ip_adapter_image_prompt_embeds is not None
assert len(ip_adapter_image_prompt_embeds) == len(self._weights)
for ipa_embed, ipa_weights, scale in zip(ip_adapter_image_prompt_embeds, self._weights, self._scales):
for ipa_embed, ipa_weights, scale in zip(
ip_adapter_image_prompt_embeds, self._weights, self._scales, strict=True
):
# The batch dimensions should match.
assert ipa_embed.shape[0] == encoder_hidden_states.shape[0]
# The token_len dimensions should match.

View File

@ -56,7 +56,7 @@ class PerceiverAttention(nn.Module):
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
b, L, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
@ -72,7 +72,7 @@ class PerceiverAttention(nn.Module):
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
out = out.permute(0, 2, 1, 3).reshape(b, L, -1)
return self.to_out(out)

View File

@ -269,7 +269,7 @@ def create_unet_diffusers_config(original_config, image_size: int, controlnet=Fa
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
for _i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
@ -1223,7 +1223,7 @@ def download_from_original_stable_diffusion_ckpt(
# scan model
scan_result = scan_file_path(checkpoint_path)
if scan_result.infected_files != 0:
raise "The model {checkpoint_path} is potentially infected by malware. Aborting import."
raise Exception("The model {checkpoint_path} is potentially infected by malware. Aborting import.")
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(checkpoint_path, map_location=device)
@ -1664,7 +1664,7 @@ def download_controlnet_from_original_ckpt(
# scan model
scan_result = scan_file_path(checkpoint_path)
if scan_result.infected_files != 0:
raise "The model {checkpoint_path} is potentially infected by malware. Aborting import."
raise Exception("The model {checkpoint_path} is potentially infected by malware. Aborting import.")
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(checkpoint_path, map_location=device)

View File

@ -12,6 +12,8 @@ from diffusers.models import UNet2DConditionModel
from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer
from invokeai.app.shared.models import FreeUConfig
from .models.lora import LoRAModel
"""
@ -102,7 +104,7 @@ class ModelPatcher:
loras: List[Tuple[LoRAModel, float]],
prefix: str,
):
original_weights = dict()
original_weights = {}
try:
with torch.no_grad():
for lora, lora_weight in loras:
@ -164,6 +166,15 @@ class ModelPatcher:
init_tokens_count = None
new_tokens_added = None
# TODO: This is required since Transformers 4.32 see
# https://github.com/huggingface/transformers/pull/25088
# More information by NVIDIA:
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
# This value might need to be changed in the future and take the GPUs model into account as there seem
# to be ideal values for different GPUS. This value is temporary!
# For references to the current discussion please see https://github.com/invoke-ai/InvokeAI/pull/4817
pad_to_multiple_of = 8
try:
# HACK: The CLIPTokenizer API does not include a way to remove tokens after calling add_tokens(...). As a
# workaround, we create a full copy of `tokenizer` so that its original behavior can be restored after
@ -173,7 +184,7 @@ class ModelPatcher:
# but a pickle roundtrip was found to be much faster (1 sec vs. 0.05 secs).
ti_tokenizer = pickle.loads(pickle.dumps(tokenizer))
ti_manager = TextualInversionManager(ti_tokenizer)
init_tokens_count = text_encoder.resize_token_embeddings(None).num_embeddings
init_tokens_count = text_encoder.resize_token_embeddings(None, pad_to_multiple_of).num_embeddings
def _get_trigger(ti_name, index):
trigger = ti_name
@ -188,7 +199,7 @@ class ModelPatcher:
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
# modify text_encoder
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added)
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added, pad_to_multiple_of)
model_embeddings = text_encoder.get_input_embeddings()
for ti_name, ti in ti_list:
@ -220,7 +231,7 @@ class ModelPatcher:
finally:
if init_tokens_count and new_tokens_added:
text_encoder.resize_token_embeddings(init_tokens_count)
text_encoder.resize_token_embeddings(init_tokens_count, pad_to_multiple_of)
@classmethod
@contextmanager
@ -231,7 +242,7 @@ class ModelPatcher:
):
skipped_layers = []
try:
for i in range(clip_skip):
for _i in range(clip_skip):
skipped_layers.append(text_encoder.text_model.encoder.layers.pop(-1))
yield
@ -240,6 +251,25 @@ class ModelPatcher:
while len(skipped_layers) > 0:
text_encoder.text_model.encoder.layers.append(skipped_layers.pop())
@classmethod
@contextmanager
def apply_freeu(
cls,
unet: UNet2DConditionModel,
freeu_config: Optional[FreeUConfig] = None,
):
did_apply_freeu = False
try:
if freeu_config is not None:
unet.enable_freeu(b1=freeu_config.b1, b2=freeu_config.b2, s1=freeu_config.s1, s2=freeu_config.s2)
did_apply_freeu = True
yield
finally:
if did_apply_freeu:
unet.disable_freeu()
class TextualInversionModel:
embedding: torch.Tensor # [n, 768]|[n, 1280]
@ -294,7 +324,7 @@ class TextualInversionManager(BaseTextualInversionManager):
tokenizer: CLIPTokenizer
def __init__(self, tokenizer: CLIPTokenizer):
self.pad_tokens = dict()
self.pad_tokens = {}
self.tokenizer = tokenizer
def expand_textual_inversion_token_ids_if_necessary(self, token_ids: list[int]) -> list[int]:
@ -355,10 +385,10 @@ class ONNXModelPatcher:
if not isinstance(model, IAIOnnxRuntimeModel):
raise Exception("Only IAIOnnxRuntimeModel models supported")
orig_weights = dict()
orig_weights = {}
try:
blended_loras = dict()
blended_loras = {}
for lora, lora_weight in loras:
for layer_key, layer in lora.layers.items():
@ -374,7 +404,7 @@ class ONNXModelPatcher:
else:
blended_loras[layer_key] = layer_weight
node_names = dict()
node_names = {}
for node in model.nodes.values():
node_names[node.name.replace("/", "_").replace(".", "_").lstrip("_")] = node.name

View File

@ -66,11 +66,13 @@ class CacheStats(object):
class ModelLocker(object):
"Forward declaration"
pass
class ModelCache(object):
"Forward declaration"
pass
@ -132,7 +134,7 @@ class ModelCache(object):
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
"""
self.model_infos: Dict[str, ModelBase] = dict()
self.model_infos: Dict[str, ModelBase] = {}
# allow lazy offloading only when vram cache enabled
self.lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self.precision: torch.dtype = precision
@ -147,8 +149,8 @@ class ModelCache(object):
# used for stats collection
self.stats = None
self._cached_models = dict()
self._cache_stack = list()
self._cached_models = {}
self._cache_stack = []
def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]:
if self._log_memory_usage:

View File

@ -26,5 +26,5 @@ def skip_torch_weight_init():
yield None
finally:
for torch_module, saved_function in zip(torch_modules, saved_functions):
for torch_module, saved_function in zip(torch_modules, saved_functions, strict=True):
torch_module.reset_parameters = saved_function

View File

@ -363,7 +363,7 @@ class ModelManager(object):
else:
return
self.models = dict()
self.models = {}
for model_key, model_config in config.items():
if model_key.startswith("_"):
continue
@ -374,7 +374,7 @@ class ModelManager(object):
self.models[model_key] = model_class.create_config(**model_config)
# check config version number and update on disk/RAM if necessary
self.cache_keys = dict()
self.cache_keys = {}
# add controlnet, lora and textual_inversion models from disk
self.scan_models_directory()
@ -655,7 +655,7 @@ class ModelManager(object):
"""
# TODO: redo
for model_dict in self.list_models():
for model_name, model_info in model_dict.items():
for _model_name, model_info in model_dict.items():
line = f'{model_info["name"]:25s} {model_info["type"]:10s} {model_info["description"]}'
print(line)
@ -902,7 +902,7 @@ class ModelManager(object):
"""
Write current configuration out to the indicated file.
"""
data_to_save = dict()
data_to_save = {}
data_to_save["__metadata__"] = self.config_meta.model_dump()
for model_key, model_config in self.models.items():
@ -1034,7 +1034,7 @@ class ModelManager(object):
self.ignore = ignore
def on_search_started(self):
self.new_models_found = dict()
self.new_models_found = {}
def on_model_found(self, model: Path):
if model not in self.ignore:
@ -1106,7 +1106,7 @@ class ModelManager(object):
# avoid circular import here
from invokeai.backend.install.model_install_backend import ModelInstall
successfully_installed = dict()
successfully_installed = {}
installer = ModelInstall(
config=self.app_config, prediction_type_helper=prediction_type_helper, model_manager=self

View File

@ -92,7 +92,7 @@ class ModelMerger(object):
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
model_paths = list()
model_paths = []
config = self.manager.app_config
base_model = BaseModelType(base_model)
vae = None
@ -124,13 +124,13 @@ class ModelMerger(object):
dump_path = (dump_path / merged_model_name).as_posix()
merged_pipe.save_pretrained(dump_path, safe_serialization=True)
attributes = dict(
path=dump_path,
description=f"Merge of models {', '.join(model_names)}",
model_format="diffusers",
variant=ModelVariantType.Normal.value,
vae=vae,
)
attributes = {
"path": dump_path,
"description": f"Merge of models {', '.join(model_names)}",
"model_format": "diffusers",
"variant": ModelVariantType.Normal.value,
"vae": vae,
}
return self.manager.add_model(
merged_model_name,
base_model=base_model,

View File

@ -183,12 +183,13 @@ class ModelProbe(object):
if model:
class_name = model.__class__.__name__
else:
for suffix in ["bin", "safetensors"]:
if (folder_path / f"learned_embeds.{suffix}").exists():
return ModelType.TextualInversion
if (folder_path / f"pytorch_lora_weights.{suffix}").exists():
return ModelType.Lora
if (folder_path / "unet/model.onnx").exists():
return ModelType.ONNX
if (folder_path / "learned_embeds.bin").exists():
return ModelType.TextualInversion
if (folder_path / "pytorch_lora_weights.bin").exists():
return ModelType.Lora
if (folder_path / "image_encoder.txt").exists():
return ModelType.IPAdapter
@ -236,7 +237,7 @@ class ModelProbe(object):
# scan model
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise "The model {model_name} is potentially infected by malware. Aborting import."
raise Exception("The model {model_name} is potentially infected by malware. Aborting import.")
# ##################################################3

View File

@ -59,7 +59,7 @@ class ModelSearch(ABC):
for root, dirs, files in os.walk(path, followlinks=True):
if str(Path(root).name).startswith("."):
self._pruned_paths.add(root)
if any([Path(root).is_relative_to(x) for x in self._pruned_paths]):
if any(Path(root).is_relative_to(x) for x in self._pruned_paths):
continue
self._items_scanned += len(dirs) + len(files)
@ -69,16 +69,14 @@ class ModelSearch(ABC):
self._scanned_dirs.add(path)
continue
if any(
[
(path / x).exists()
for x in {
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
}
]
(path / x).exists()
for x in {
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
}
):
try:
self.on_model_found(path)

View File

@ -97,8 +97,8 @@ MODEL_CLASSES = {
# },
}
MODEL_CONFIGS = list()
OPENAPI_MODEL_CONFIGS = list()
MODEL_CONFIGS = []
OPENAPI_MODEL_CONFIGS = []
class OpenAPIModelInfoBase(BaseModel):
@ -109,7 +109,7 @@ class OpenAPIModelInfoBase(BaseModel):
model_config = ConfigDict(protected_namespaces=())
for base_model, models in MODEL_CLASSES.items():
for _base_model, models in MODEL_CLASSES.items():
for model_type, model_class in models.items():
model_configs = set(model_class._get_configs().values())
model_configs.discard(None)
@ -133,7 +133,7 @@ for base_model, models in MODEL_CLASSES.items():
def get_model_config_enums():
enums = list()
enums = []
for model_config in MODEL_CONFIGS:
if hasattr(inspect, "get_annotations"):

View File

@ -153,7 +153,7 @@ class ModelBase(metaclass=ABCMeta):
else:
res_type = sys.modules["diffusers"]
res_type = getattr(res_type, "pipelines")
res_type = res_type.pipelines
for subtype in subtypes:
res_type = getattr(res_type, subtype)
@ -164,7 +164,7 @@ class ModelBase(metaclass=ABCMeta):
with suppress(Exception):
return cls.__configs
configs = dict()
configs = {}
for name in dir(cls):
if name.startswith("__"):
continue
@ -246,8 +246,8 @@ class DiffusersModel(ModelBase):
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
super().__init__(model_path, base_model, model_type)
self.child_types: Dict[str, Type] = dict()
self.child_sizes: Dict[str, int] = dict()
self.child_types: Dict[str, Type] = {}
self.child_sizes: Dict[str, int] = {}
try:
config_data = DiffusionPipeline.load_config(self.model_path)
@ -326,8 +326,8 @@ def calc_model_size_by_fs(model_path: str, subfolder: Optional[str] = None, vari
all_files = os.listdir(model_path)
all_files = [f for f in all_files if os.path.isfile(os.path.join(model_path, f))]
fp16_files = set([f for f in all_files if ".fp16." in f or ".fp16-" in f])
bit8_files = set([f for f in all_files if ".8bit." in f or ".8bit-" in f])
fp16_files = {f for f in all_files if ".fp16." in f or ".fp16-" in f}
bit8_files = {f for f in all_files if ".8bit." in f or ".8bit-" in f}
other_files = set(all_files) - fp16_files - bit8_files
if variant is None:
@ -413,7 +413,7 @@ def _calc_onnx_model_by_data(model) -> int:
def _fast_safetensors_reader(path: str):
checkpoint = dict()
checkpoint = {}
device = torch.device("meta")
with open(path, "rb") as f:
definition_len = int.from_bytes(f.read(8), "little")
@ -483,7 +483,7 @@ class IAIOnnxRuntimeModel:
class _tensor_access:
def __init__(self, model):
self.model = model
self.indexes = dict()
self.indexes = {}
for idx, obj in enumerate(self.model.proto.graph.initializer):
self.indexes[obj.name] = idx
@ -524,7 +524,7 @@ class IAIOnnxRuntimeModel:
class _access_helper:
def __init__(self, raw_proto):
self.indexes = dict()
self.indexes = {}
self.raw_proto = raw_proto
for idx, obj in enumerate(raw_proto):
self.indexes[obj.name] = idx
@ -549,7 +549,7 @@ class IAIOnnxRuntimeModel:
return self.indexes.keys()
def values(self):
return [obj for obj in self.raw_proto]
return list(self.raw_proto)
def __init__(self, model_path: str, provider: Optional[str]):
self.path = model_path

View File

@ -104,7 +104,7 @@ class ControlNetModel(ModelBase):
return ControlNetModelFormat.Diffusers
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "pth"]]):
if any(path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "pth"]):
return ControlNetModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {path}")

Some files were not shown because too many files have changed in this diff Show More