Compare commits

..

403 Commits

Author SHA1 Message Date
edc8f5fb6f Refactor attention 2023-09-01 01:02:47 +03:00
6bb657b3f3 Remove requirements to diffusers pipeline, add support for torch-sdp, apply attention to controlnet models too 2023-09-01 00:18:31 +03:00
a74e2108bb Release/3.1.0 (#4397)
## What type of PR is this? (check all applicable)

This is the 3.1.0 release candidate. Minor bugfixes will be applied here
during testing and then merged into main upon release.
2023-08-31 13:34:53 -04:00
ca5689dc54 jigger model naming so that v1-5-inpaint is not the default on new installs 2023-08-31 10:56:25 -04:00
b567d65032 blackify and rerun frontend build 2023-08-31 10:35:17 -04:00
35ac8e78bd bump to release version 2023-08-31 10:33:02 -04:00
e90fd96eee fix(nodes): fix warning when using current image node 2023-08-31 13:40:38 +10:00
ed72d51969 fix(nodes): fix primitives defaults for collections 2023-08-31 13:22:31 +10:00
d5267357b1 Pad conditioning tensors from clip and clip2 in sdxl 2023-08-30 21:28:40 -04:00
e085eb63bd Check noise and latents shapes, more informative error 2023-08-30 21:28:40 -04:00
8e470f9b6f fix(ui): fix metadata retrieval when has controlnet 2023-08-31 11:20:18 +10:00
83163ddd9a fix migrate script to work when autoimport directories are None 2023-08-30 18:46:17 -04:00
715686477e fix unknown PagingArgumentParser import error in ti-training 2023-08-30 17:49:19 -04:00
05e203570d make image import script work with python3.9; cleanup wheel creator 2023-08-30 17:35:58 -04:00
2bd3cf28ea nodes phase 5: workflow saving and loading (#4353)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

- Workflows are saved to image files directly
- Image-outputting nodes have an `Embed Workflow` checkbox which, if
enabled, saves the workflow
- `BaseInvocation` now has an `workflow: Optional[str]` field, so all
nodes automatically have the field (but again only image-outputting
nodes display this in UI)
- If this field is enabled, when the graph is created, the workflow is
stringified and set in this field
- Nodes should add `workflow=self.workflow` when they save their output
image to have the workflow written to the image
- Uploads now have their metadata retained so that you can upload
somebody else's image and have access to that workflow
- Graphs are no longer saved to images, workflows replace them

### TODO
- Images created in the linear UI do not have a workflow saved yet. Need
to write a function to build a workflow around the linear UI graph when
using linear tabs. Unfortunately it will not have the nice positioning
and size data the node editor gives you when you save a workflow...
we'll have to figure out how to handle this.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->
2023-08-30 15:05:17 -04:00
3cd2d3b764 fix: SDXL T2I and L2I not respecting Scaled on Canvas 2023-08-31 06:45:21 +12:00
4bac36356a fix: Create SDXL Refiner Create Mask only in inpaint & outpaint 2023-08-31 06:33:09 +12:00
97763f778a fix: SDXL Refiner not working with Canvas Inpaint & Outpaint 2023-08-31 06:26:02 +12:00
754666ed09 fix: Missing SDXL Refiner Seamless VAE plug 2023-08-31 05:49:02 +12:00
4c407328f2 fix: SDXL Refiner Seamless Interaction 2023-08-31 05:14:19 +12:00
943bedadf2 ui: Rename ControlNet Collapse header to Control Adapters 2023-08-31 01:44:13 +12:00
667d4deeb7 feat(ui): improved model node ui 2023-08-30 22:36:40 +10:00
adfdb02c1b fix(ui): fix workflow edge validation for collapsed edges 2023-08-30 22:36:15 +10:00
24d44ca559 feat(nodes): add scheduler invocation 2023-08-30 22:35:47 +10:00
216dff143e feat(ui): swath of UI tweaks and improvements 2023-08-30 21:31:58 +10:00
f2334ec302 fix(ui): reset node execution states on cancel 2023-08-30 18:58:27 +10:00
044d4c107a feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.

The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.

Category is a new invocation metadata, but it is not used by the frontend just yet.

- `@invocation()` decorator for invocations

```py
@invocation(
    "sdxl_compel_prompt",
    title="SDXL Prompt",
    tags=["sdxl", "compel", "prompt"],
    category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
    ...
```

- `@invocation_output()` decorator for invocation outputs

```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
    ...
```

- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 18:35:12 +10:00
ae05d34584 fix(nodes): fix uploading image metadata retention
was causing failure to save images
2023-08-30 14:52:50 +10:00
94d0c18cbd feat(ui): remove highlighto n mouseover 2023-08-30 13:22:59 +10:00
7b49f96472 feat(ui): style input fields 2023-08-30 13:19:37 +10:00
9a2c0554de feat(ui): better workflow validation and parsing
Checks for the existence of nodes for each edge - does not yet check the types.
2023-08-30 13:02:49 +10:00
68fd07a606 Merge branch 'feat/nodes-phase-5' of https://github.com/invoke-ai/InvokeAI into feat/nodes-phase-5 2023-08-30 14:14:05 +12:00
71591d0bee Merge branch 'main' into feat/nodes-phase-5 2023-08-30 12:13:08 +10:00
8014fc2f4f Revert "fix(ui): fix control image save button logic"
This reverts commit d8ce20c06f.
2023-08-30 12:12:54 +10:00
29112f96d2 Merge branch 'main' into feat/nodes-phase-5 2023-08-30 14:11:49 +12:00
4405c39e48 [3.1] UI Fixes (#4376)
## What type of PR is this? (check all applicable)

- [x] Feature
- [x] Bug Fix


## Have you discussed this change with the InvokeAI team?
- [x] Yes

## Description
- Keep Boards Modal open by default.
- Combine Coherence and Mask settings under Compositing
- Auto Change Dimensions based on model type (option)
- Size resets are now model dependent
- Add Set Control Image Height & Width to Width and Height option.
- Fix numerous color & spacing issues (especially those pertaining to
sliders being too close to the bottom)
- Add Lock Ratio Option
2023-08-30 14:10:42 +12:00
1d6be7f7fd Merge branch 'ui-fixes' of https://github.com/blessedcoolant/InvokeAI into ui-fixes 2023-08-30 14:08:39 +12:00
64723f0628 fix: ControlNet DnD icons repeated twice 2023-08-30 14:07:24 +12:00
8982543312 fix(ui): fix control image save button logic 2023-08-30 11:58:15 +10:00
d8ce20c06f fix(ui): fix control image save button logic 2023-08-30 11:33:38 +10:00
0ed6a141f1 Merge branch 'main' into feat/nodes-phase-5 2023-08-30 11:15:34 +10:00
33cb6cb4d8 Merge branch 'main' into ui-fixes 2023-08-30 12:58:43 +12:00
600e9ecf8d Hotfix to make second order schedulers work with mask (#4378)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents


## QA Instructions, Screenshots, Recordings


## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_
2023-08-30 12:49:04 +12:00
ca15b8b33e Fix wrong timestep selection in some cases(dpmpp_sde) 2023-08-30 03:40:59 +03:00
8562dbaaa8 Hotfix to make second order schedulers work with mask 2023-08-30 02:18:08 +03:00
db4d35ed45 ui: update scaled width and height sliders to be model sensitive 2023-08-30 10:28:54 +12:00
65fb6af01f ui: Make aspect ratio logic more robust 2023-08-30 10:15:26 +12:00
c6bab14043 ui: actually resolve circulars + fix flip bounding boxes AR unset 2023-08-30 09:33:04 +12:00
55f19aff3a ui: encase Denoising Strength to make it more prominent 2023-08-30 09:32:41 +12:00
1b6586dd8c fix: cyclic redundancy 2023-08-30 09:12:07 +12:00
b5da7faafb ui: make bounding box swap also unlock Aspect Ratio 2023-08-30 09:06:38 +12:00
b13a06f650 ui: map aspect ratios instead of manually creating the array 2023-08-30 08:52:11 +12:00
8e4d288f02 ui: Make swap size unlock fixed ratio
Coz it is no longer relevant
2023-08-30 08:44:34 +12:00
8d4caaabb0 ui: Simply collapse spacing 2023-08-30 08:40:17 +12:00
171a0eaf51 feat: Add Lock Ratio Option 2023-08-30 07:04:08 +12:00
2469859c01 feat: Add Set Control Image Width / Height to User Settings 2023-08-30 06:23:02 +12:00
cff391aa1d feat: Update size resets to be model dependent 2023-08-30 05:58:07 +12:00
4fd4aee2ab feat: Auto Change Dimensions on Model Switch by Type 2023-08-30 05:49:57 +12:00
f5c5f59220 minor: tweak padding on ControlNet Collapse 2023-08-30 05:24:42 +12:00
9afc909ff0 ui: tweak parameter options spacing 2023-08-30 05:22:44 +12:00
176d41d624 ui: Add SubParametersWrapper 2023-08-30 05:05:54 +12:00
9eed8cdc27 ui: fix some minor spacing and color issues 2023-08-30 04:51:53 +12:00
98e905ee48 ui: Combine mask and coherence under Compositing 2023-08-30 04:51:32 +12:00
52c2397498 ui: Keep boards modal open by default 2023-08-30 04:17:30 +12:00
9f9807d7f7 fix: Controlnet Prepreocessed Image Save Icon Missing (#4375)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-30 04:06:04 +12:00
11fa87388b fix: Controlnet Prepreocessed Image Save Icon Missing 2023-08-30 04:05:36 +12:00
258b0814a8 Merge branch 'main' into feat/nodes-phase-5 2023-08-30 02:33:49 +12:00
dd2057322c enable .and() syntax and long prompts (#4112)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

In current main, long prompts and support for [Compel's `.and()`
syntax](https://github.com/damian0815/compel/blob/main/doc/syntax.md#conjunction)
is missing. This PR adds it back.

### needs Compel>=2.0.2.dev1
2023-08-30 02:30:22 +12:00
41c5963e41 Merge branch 'main' into pr/4112 2023-08-30 02:22:37 +12:00
ed1456e0cc feat: Send Canvas Image & Mask To ControlNet (#4374)
## What type of PR is this? (check all applicable)

- [x] Feature


## Have you discussed this change with the InvokeAI team?
- [x] Yes

      
## Description

Send stuff directly from canvas to ControlNet

## Usage

- Two new buttons available on canvas Controlnet to import image and
mask.
- Click them.
2023-08-30 02:21:57 +12:00
15a927b517 fix: Processing Control Image not saving properly 2023-08-30 02:09:13 +12:00
121396f844 Fix tokenization log for sd models 2023-08-29 17:07:33 +03:00
d251124196 feat: Add Save Preprocessed Image To Board 2023-08-30 01:14:41 +12:00
243e76dd80 feat: Send Canvas Image & Mask To ControlNet 2023-08-29 23:48:28 +12:00
cfee8d9804 chore: seamless print statement cleanup 2023-08-29 13:09:30 +12:00
68dc3c6cb4 feat: Upgrade compel to 2.0.2 2023-08-29 12:58:59 +12:00
4196c669a0 chore: black / flake lint errors 2023-08-29 12:57:26 +12:00
a1398dec91 Merge branch 'main' into pr/4112 2023-08-29 12:56:59 +12:00
c4bec0e81b Merge branch 'main' into feat/nodes-phase-5 2023-08-29 12:42:52 +12:00
a03233bd8a Add Next/Prev Buttons CurrentImageNode.tsx (#4352)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description
Adds Next and Prev Buttons to the current image node
As usual you don't have to use 😄 

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-29 12:42:16 +12:00
6fdeeb8ce8 Merge branch 'main' into pr/4352 2023-08-29 12:40:01 +12:00
9993e4b02e fix: lint errors 2023-08-29 12:37:09 +12:00
e6b677873a chore: Regen schema 2023-08-29 12:20:55 +12:00
44e77589b7 cleanup: Print statement in seamless hotfix 2023-08-29 12:18:26 +12:00
d0c74822eb resolve: Merge conflicts 2023-08-29 12:08:00 +12:00
383d008529 Merge branch 'main' into feat/nodes-phase-5 2023-08-29 12:05:28 +12:00
59511783fc Seamless Patch from Stalker (#4372)
Last commit that didn't get merged in with #4370
2023-08-29 08:57:06 +12:00
605e13eac0 chore: black fix 2023-08-29 07:50:17 +12:00
2a1d7342a7 Seamless Patch from Stalker 2023-08-28 15:48:05 -04:00
d1efabaf2f Seamless Implementation (#4370)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ X ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ X ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ X ] No


## Description
Adds Seamless back into the options for Denoising.

## Related Tickets & Documents

- Related Issue #3975 

## QA Instructions, Screenshots, Recordings

- Should test X, Y, and XY seamless tiling for all model architectures.

## Added/updated tests?

- [ ] Yes
- [ X ] No : Will need some guidance on automating this.
2023-08-28 15:18:04 -04:00
577464091c fix: SDXL LoRA's not working with seamless 2023-08-29 06:44:18 +12:00
aaae471910 fix: SDXL Canvas Inpaint & Outpaint being broken 2023-08-29 05:42:00 +12:00
56ed76fd95 fix: useMultiSelect file named incorrectly 2023-08-29 05:19:51 +12:00
5133825efb fix: Incorrect plug in Dynamic Prompt Graph 2023-08-29 05:17:46 +12:00
99475ab800 chore: pyflake lint fixes 2023-08-29 05:16:23 +12:00
50a266e064 feat: Add Seamless to Inpaint & Outpaint 2023-08-29 05:11:22 +12:00
87bb4d8f6e fix: Seamless not working with SDXL on Canvas 2023-08-29 04:52:41 +12:00
fcb60a7a59 chore: Update var names that were not updated 2023-08-29 04:33:22 +12:00
b5dac99411 feat: Add Seamless To Canvas Text To Image / Image To Image + SDXL + Refiner 2023-08-29 04:26:11 +12:00
a08d22587b fix: Incorrect node ID's for Seamless plugging 2023-08-29 04:21:11 +12:00
0ea67050f1 fix: Seamless not correctly plugged to SDXL Denoise Latents 2023-08-29 04:18:45 +12:00
6db19a8dee fix: Connection type on Seamless Node VAE Input 2023-08-29 04:15:15 +12:00
ef58635a76 chore: black lint 2023-08-29 04:04:03 +12:00
594e547c3b feat: Add Seamless to T2I / I2I / SDXL T2I / I2I + Refiner 2023-08-29 04:01:04 +12:00
2bf747caf6 Blackify 2023-08-28 18:36:27 +03:00
cd548f73fd Merge branch 'main' into feat_compel_and 2023-08-28 18:31:41 +03:00
bb085c5fba Move monkeypatch for diffusers/torch bug to hotfixes.py 2023-08-28 18:29:49 +03:00
3efb1f6f17 Merge branch 'Seamless' of https://github.com/invoke-ai/InvokeAI into Seamless 2023-08-28 10:30:43 -04:00
1ed0d7bf3c Merge branch 'main' into Seamless 2023-08-29 01:21:01 +12:00
a5fe6c8af6 enable preselected image actions (#4355)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description
Allow an image and action to be passed into the app for starting state

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-29 01:15:08 +12:00
3c37245804 Merge branch 'main' into maryhipp/preselected-image 2023-08-29 01:12:09 +12:00
e60af40c8d chore: lint fixes 2023-08-29 01:11:55 +12:00
421f5b7d75 Seamless Updates 2023-08-28 08:43:08 -04:00
3ef36707a8 chore: Black lint 2023-08-28 23:10:00 +12:00
00ca9b027a Update CurrentImageNode.tsx 2023-08-28 19:15:53 +10:00
e81e17ccb6 Merge branch 'main' into nextprevcurrentimagenode 2023-08-28 18:05:33 +10:00
b9731cb434 Merge branch 'main' into Seamless 2023-08-28 00:12:23 -04:00
502570e083 fix: Inpaint Fixes (#4301)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description
Fix masked generation with inpaint models

## Related Tickets & Documents
- Closes #4295 

## Added/updated tests?

- [ ] Yes
- [x] No
2023-08-28 00:11:11 -04:00
1f476692da Seamless fixes 2023-08-28 00:10:46 -04:00
5fdd25501b updates per stalkers comments 2023-08-27 22:54:53 -04:00
4f00dbe704 Merge branch 'main' into fix/inpaint_gen 2023-08-27 22:49:55 -04:00
b65c9ad612 Add monkeypatch for xformers to align unaligned attention_mask 2023-08-28 04:50:58 +03:00
ef3bf2803f Merge branch 'main' into feat_compel_and 2023-08-28 04:11:35 +03:00
f87b2364b7 Merge branch 'main' into nextprevcurrentimagenode 2023-08-28 10:44:17 +10:00
3e6c49001c Change antialias to True as input - image
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
2023-08-28 02:54:39 +03:00
19e0f360e7 Fix vae fields 2023-08-27 15:05:10 -04:00
ea40a7844a add VAE 2023-08-27 14:53:57 -04:00
0d2e194213 Fixed dict error 2023-08-27 14:21:56 -04:00
c6d00387a7 Revert old latent changes, update seamless 2023-08-27 14:15:37 -04:00
3de45af734 updates 2023-08-27 14:13:00 -04:00
526c7e7737 Provide antialias argument as behaviour will be changed in future(deprecation warning) 2023-08-27 20:04:55 +03:00
1811b54727 Provide metadata to image creation call 2023-08-27 20:03:53 +03:00
95883c2efd Add Initial (non-working) Seamless Implementation 2023-08-27 12:29:11 -04:00
b5a83bbc8a Update CODEOWNERS 2023-08-27 11:28:42 -04:00
38851ae19a Merge branch 'main' into nextprevcurrentimagenode 2023-08-27 19:50:39 +10:00
71c3955530 feat: Add Scale Before Processing To Canvas Txt2Img / Img2Img (w/ SDXL) 2023-08-27 08:26:23 +12:00
3f8d17d6b7 chore: Black linting 2023-08-27 06:17:08 +12:00
b18695df6f fix: Update color of denoise mask socket
The previous red look too much like the error color.
2023-08-27 06:16:13 +12:00
249048aae7 fix: Reorder DenoiseMask socket fields 2023-08-27 06:14:35 +12:00
521da555d6 feat: Update color of Denoise Mask socket 2023-08-27 06:09:02 +12:00
c923d094c6 rename: Inpaint Mask to Denoise Mask 2023-08-27 05:50:13 +12:00
226721ce51 feat: Setup UnifiedCanvas to work with new InpaintMaskField 2023-08-27 03:50:29 +12:00
af3e316cee chore: Regen schema 2023-08-27 03:12:03 +12:00
382a55afd3 fix: merge conflicts 2023-08-27 03:07:42 +12:00
e9633a3adb Merge branch 'main' into fix/inpaint_gen 2023-08-27 02:54:19 +12:00
61224e5cfe Update communityNodes.md (#4362)
Added a node to prompt Oobabooga Text-Generation-Webui

## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [x] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [x] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-26 08:47:01 -04:00
dc581350e6 Merge branch 'main' into sammyf-patch-1-1 2023-08-26 08:46:38 -04:00
64c5b20ce3 Update communityNodes.md
discarded commits, resynced, added Load Video Frames to the community nodes. Hopefully I can start to understand github soon... sigh...
2023-08-25 23:43:57 -04:00
8a79798fa6 Merge branch 'main' into sammyf-patch-1-1 2023-08-25 20:40:34 -04:00
6b462f2ed5 feat(dev_reload): use jurigged to hot reload changes to Python source (#4313) 2023-08-25 14:27:40 -07:00
9c13f1b0fd Merge branch 'main' into feat/dev_reload 2023-08-25 17:06:58 -04:00
7ab3d3861c Merge branch 'main' into sammyf-patch-1-1 2023-08-26 00:48:05 +10:00
8e90468637 Node for Oobabooga, Update communityNodes.md
third try should be the right try. Now with link
2023-08-25 16:22:50 +02:00
f67bbadf83 Add to communityNodes.md 2023-08-25 08:43:05 -04:00
e2942b9b8d Add Retroize Nodes to Community Nodes 2023-08-25 08:41:49 -04:00
ac942a2034 Update communityNodes.md
Added a node to prompt Oobabooga Text-Generation-Webui
2023-08-25 10:55:52 +02:00
0bf5fee1b2 correct solution to crash 2023-08-24 23:16:03 -04:00
8114fc7bc2 UI tweak to column select 2023-08-24 23:16:03 -04:00
f9d2bcce04 blackify 2023-08-24 23:16:03 -04:00
84bf2a03e9 fix crash that occurs when no invokeai.yaml is present 2023-08-24 23:16:03 -04:00
4ee65d179c 3.1 Documentation Updates (#4318)
* Updating Nodes documentation

* Restructured nodes docs

* Comfy to Invoke Overview

* Corrections to Comfy -> Invoke Mappings

* Adding GA4 to docs

* Hiding CLI status

* Node doc updates

* File path updates

* Updates based on lstein's feedback

* Fix broken links

* Fix broken links

* Update comfy to invoke nodes list

* Updated prompts documenation

* Fix formatting
2023-08-25 11:59:46 +10:00
368ff17ed4 Merge branch 'main' into feat/dev_reload 2023-08-24 15:21:50 -07:00
d52a096607 enable preselected image actions 2023-08-24 13:29:53 -04:00
44b6adfb9f cleanup 2023-08-25 00:09:16 +10:00
466a819f06 render created_by in UI if its present 2023-08-25 00:09:16 +10:00
e6fd1c3d1f add optional field to type 2023-08-25 00:09:16 +10:00
7caccb11fa fix(backend): fix workflow not saving to image 2023-08-25 00:01:29 +10:00
e22c797fa3 fix(db): fix typing on ImageRecordChanges 2023-08-24 22:13:05 +10:00
0c5736d9c9 feat(ui): cache image metadata for 24 hours 2023-08-24 22:12:13 +10:00
2d8f7d425c feat(nodes): retain image metadata on save 2023-08-24 22:10:24 +10:00
7d1942e9f0 feat: workflow saving and loading 2023-08-24 21:42:32 +10:00
5d8cd62e44 Update CurrentImageNode.tsx 2023-08-24 19:20:35 +10:00
b6dc5c0fee Run Prettier 2023-08-24 18:45:38 +10:00
c1b8e4b501 Add Next/Prev Buttons CurrentImageNode.tsx 2023-08-24 18:31:27 +10:00
65feb92286 Merge branch 'main' into feat_compel_and 2023-08-24 17:38:35 +10:00
7f6fdf5d39 feat(ui): hide lama infill 2023-08-23 23:05:29 -04:00
40e6dd8464 feat(ui): use seed + 1 for second inpaint/outpaint pass 2023-08-23 23:05:29 -04:00
79df46bad2 chore: flake8 2023-08-23 23:05:29 -04:00
2f11936db0 fix(ui): use seed + 1 for inpaint/outpaint second pass 2023-08-23 23:05:29 -04:00
2ba52b8921 fix: File Tile Infill being broken 2023-08-23 23:05:29 -04:00
fa3fcd7820 cleanup: Lama 2023-08-23 23:05:29 -04:00
f45ea1145d fix: LoRA's not working with new canvas refine 2023-08-23 23:05:29 -04:00
5eb6148336 chore: black fix 2023-08-23 23:05:29 -04:00
49892faee4 experimental: LaMa Infill 2023-08-23 23:05:29 -04:00
7bb876a79b feat: Add Refiner Pass to Canvas Inpainting 2023-08-23 23:05:29 -04:00
f89be8c685 cleanup: Some minor cleanup 2023-08-23 23:05:29 -04:00
7e4009a58e chore: Rename canvas refine elements to have more apt names 2023-08-23 23:05:29 -04:00
5141e82f88 fix: Remove paste back from inpainting too 2023-08-23 23:05:29 -04:00
8277bfab5e feat: Add Refiner Pass to SDXL Outpainting
Also fix Scale Before Processing
2023-08-23 23:05:29 -04:00
0af8a0e84b feat: Replace Seam Painting with Refine Pass for Outpainting 2023-08-23 23:05:29 -04:00
9bafe4a94f fix: Paste Back Not Respecting Inpainted Mask 2023-08-23 23:05:29 -04:00
54e844f7da Merge branch 'main' into feat/dev_reload 2023-08-23 09:47:24 -07:00
111322b015 fix(ui): fix staging area shadow
It was too strong
2023-08-23 23:06:42 +10:00
859c155e7f fix(ui): fix IAICollapse styling 2023-08-23 23:06:42 +10:00
955fef35aa chore(ui): remove cruft related to old canvas scaling method 2023-08-23 23:06:42 +10:00
f3b293b5cc feat: Add Blank Image Node 2023-08-23 23:06:42 +10:00
6efa953172 fix(ui): fix canvas scaling 2023-08-23 23:06:42 +10:00
06ac16a77d feat(ui): style minimap 2023-08-23 23:06:42 +10:00
05c939d41e feat(ui): remove canvas beta layout 2023-08-23 23:06:42 +10:00
cfee02b753 feat(ui): align invoke buttons 2023-08-23 23:06:42 +10:00
4f088252db fix: Restyle the WorkflowPanel 2023-08-23 23:06:42 +10:00
ca3e826a14 feat: Make the in progress dark mode colors golden 2023-08-23 23:06:42 +10:00
0cb886b915 feat(ui): node buttons and shadow 2023-08-23 23:06:42 +10:00
2ec8fd3dc7 feat: Make the active processing node light up 2023-08-23 23:06:42 +10:00
90abd0fe49 fix(ui): position floating buttons 2023-08-23 23:06:42 +10:00
3651cf7ee2 wip buttons 2023-08-23 23:06:42 +10:00
8eca3bbbcd chore: Remove Pinned Hotkeys from Hotkeys Modal 2023-08-23 23:06:42 +10:00
73318c2847 feat(ui): remove floating panels, move all to resizable panels
There is a console error we can ignore when toggling gallery panel on canvas - this will be resolved in the next release of the resizable library
2023-08-23 23:06:42 +10:00
6d10e40c9b feat(ui): add selection mode toggle 2023-08-23 23:06:42 +10:00
5cf9b75d77 fix: Remove / as hotkey for add node and add tooltip 2023-08-23 23:06:42 +10:00
d4463674cf fix: Move add node hotkey to the right component 2023-08-23 23:06:42 +10:00
ce7172d78c feat(ui): add workflow saving/loading (wip)
Adds loading workflows with exhaustive validation via `zod`.

There is a load button but no dedicated save/load UI yet. Also need to add versioning to the workflow format itself.
2023-08-23 23:06:42 +10:00
38b2dedc1d feat(ui): use new ui_order to sort fields; connection-only fields in grid 2023-08-23 23:06:42 +10:00
cd73085eb9 feat(nodes): add ui_order node field attribute
used by UI to sort fields in workflow editor
2023-08-23 23:06:42 +10:00
2497aa5cd8 feat(ui): improve node schema parsing and add outputType to templates 2023-08-23 23:06:42 +10:00
089ada8cd1 chore(ui): typegen 2023-08-23 23:06:42 +10:00
35d14fc0f9 fix(ui): simplify typegen script
i had this committed earlier but lost it somehow
2023-08-23 23:06:42 +10:00
b79bca2c14 build(ui): fix up lint scripts (way faster now) 2023-08-23 23:06:42 +10:00
5fc60d0539 fix(nodes): id field is not an InputField 2023-08-23 23:06:42 +10:00
7b97754271 chore(ui): update all packages
- only breaking change was in `openapi-fetch`, easy fix
- also looks like prettier/eslint is a bit more comprehensive? caught a couple extra things
2023-08-23 23:06:42 +10:00
98dcc8d8b3 Merge remote-tracking branch 'origin/main' into feat/dev_reload 2023-08-22 18:18:16 -07:00
d3c177aaef Refactor config class and reorganize image generation options (#4309)
## What type of PR is this? (check all applicable)

- [X Refactor
- [X] Feature

## Have you discussed this change with the InvokeAI team?
- [X] Yes
      
## Have you updated all relevant documentation?
- [X] Yes

## Description

### Refactoring

This PR refactors `invokeai.app.services.config` to be easier to
maintain by splitting off the argument, environment and init file
parsing code from the InvokeAIAppConfig object. This will hopefully make
it easier for people to find the place where the various settings are
defined.

### New Features

In collaboration with @StAlKeR7779 , I have renamed and reorganized the
settings controlling image generation and model management to be more
intuitive. The relevant portion of the init file now looks like this:

```
  Model Cache:
    ram: 14.5
    vram: 0.5
    lazy_offload: true
  Device:
    precision: auto
    device: auto
  Generation:
    sequential_guidance: false
    attention_type: auto
    attention_slice_size: auto
    force_tiled_decode: false
```
Key differences are:
1. Split `Performance/Memory` into `Device`, `Generation` and `Model
Cache`
2. Added the ability to force the `device`. The value of this option is
one of {`auto`, `cpu`, `cuda`, `cuda:1`, `mps`}
3. Added the ability to force the `attention_type`. Possible values are
{`auto`, `normal`, `xformers`, `sliced`, `torch-sdp`}
4. Added the ability to force the `attention_slice_size` when `sliced`
attention is in use. The value of this option is one of {`auto`, `max`}
or an integer between 1 and 8.
 
@StAlKeR7779 Please confirm that I wired the `attention_type` and
`attention_slice_size` configuration options to the diffusers backend
correctly.

In addition, I have exposed the generation-related configuration options
to the TUI:


![image](https://github.com/invoke-ai/InvokeAI/assets/111189/8c0235d4-c3b0-494e-a1ab-ff45cdbfd9af)

### Backward Compatibility

This refactor should be backward compatible with earlier versions of
`invokeai.yaml`. If the user re-runs the `invokeai-configure` script,
`invokeai.yaml` will be upgraded to the current format. Several
configuration attributes had to be changed in order to preserve backward
compatibility. These attributes been changed in the code where
appropriate. For the record:

| Old Name | Preferred New Name | Comment |
| ------------| ---------------|------------|
| `max_cache_size` | `ram_cache_size` |
| `max_vram_cache` | `vram_cache_size` |
| `always_use_cpu` | `use_cpu` | Better to check conf.device == "cpu" |
2023-08-22 21:01:25 -04:00
3f7ac556c6 Merge branch 'main' into refactor/rename-performance-options 2023-08-21 22:29:34 -04:00
56c052a747 Merge branch 'main' into feat/dev_reload 2023-08-21 18:22:31 -07:00
8087b428cc ui: node editor misc 2 (#4306)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

Next batch of Node Editor changes.
2023-08-21 20:46:20 -04:00
0c639bd751 fix(tests): fix tests 2023-08-22 10:26:11 +10:00
be6ba57775 chore: flake8 2023-08-22 10:14:46 +10:00
2f8d3022a0 Merge branch 'main' into feat/nodes-phase-3 2023-08-22 10:09:25 +10:00
4da861e980 chore: clean up .gitignore 2023-08-22 10:02:03 +10:00
9d7dfeb857 Merge branch 'main' into refactor/rename-performance-options 2023-08-21 19:47:55 -04:00
572e6b892a stats: handle exceptions (#4320)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission

## Description

[fix(stats): fix fail case when previous graph is
invalid](d1d2d5a47d)

When retrieving a graph, it is parsed through pydantic. It is possible
that this graph is invalid, and an error is thrown.

Handle this by deleting the failed graph from the stats if this occurs.

[fix(stats): fix InvocationStatsService
types](1b70bd1380)

- move docstrings to ABC
- `start_time: int` -> `start_time: float`
- remove class attribute assignments in `StatsContext`
- add `update_mem_stats()` to ABC
- add class attributes to ABC, because they are referenced in instances
of the class. if they should not be on the ABC, then maybe there needs
to be some restructuring

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

On `main` (not this PR), create a situation in which an graph is valid
but will be rendered invalid on invoke. Easy way in node editor:
- create an `Integer Primitive` node, set value to 3
- create a `Resize Image` node and add an image to it
- route the output of `Integer Primitive` to the `width` of `Resize
Image`
- Invoke - this will cause first a `Validation Error` (expected), and if
you inspect the error in the JS console, you'll see it is a "session
retrieval error"
- Invoke again - this will also cause a `Validation Error`, but if you
inspect the error you should see it originates in the stats module (this
is the error this PR fixes)
- Fix the graph by setting the `Integer Primitive` to 512
- Invoke again - you get the same `Validation Error` originating from
stats, even tho there are no issues

Switch to this PR, and then you should only ever get the `Validation
Error` that that is classified as a "session retrieval error".
2023-08-21 19:47:21 -04:00
76750b0121 doc(development): add section on hot reloading with --dev_reload 2023-08-21 16:45:39 -07:00
3039f92e69 doc(development): small updates to backend development intro 2023-08-21 16:38:47 -07:00
88963dbe6e Merge remote-tracking branch 'origin/main' into feat/dev_reload
# Conflicts:
#	invokeai/app/api_app.py
#	invokeai/app/services/config.py
2023-08-21 09:04:31 -07:00
7b2079cf83 feat: Add hotkey for Add Nodes (Shift+A)
Standard with other tools like Blender
2023-08-22 03:31:29 +12:00
535eb1db16 Merge branch 'main' into fix/stats/handle-exceptions 2023-08-21 19:19:32 +10:00
01738deb23 feat(ui): add eslint rules
- `curly` requires conditionals to use curly braces
- `react/jsx-curly-brace-presence` requires string props to *not* have curly braces
2023-08-21 19:17:36 +10:00
fbff22c94b feat(ui): memoize all components 2023-08-21 19:17:36 +10:00
5c305b1eeb feat(ui): add app error boundary
Should catch all app crashes
2023-08-21 19:17:36 +10:00
990b6b5f6a feat(ui): useful tooltips on invoke button 2023-08-21 19:17:36 +10:00
2dfcba8654 fix(ui): fix graphs using old field names 2023-08-21 19:17:36 +10:00
d95773f50f Revert "feat(nodes): make fields that accept connection input optional in OpenAPI schema"
This reverts commit 7325cbdd250153f347e3782265dd42783f7f1d00.
2023-08-21 19:17:36 +10:00
6d111aac90 fix(ui): fix node opacity slider hitbox 2023-08-21 19:17:36 +10:00
f9fc89b3c5 feat(ui): nodes scheduler type default value -> "euler" 2023-08-21 19:17:36 +10:00
ab76d54c10 feat(ui): update node schema parsing
simplified logic thanks to backend changes
2023-08-21 19:17:36 +10:00
56245a7406 chore(ui): regen types 2023-08-21 19:17:36 +10:00
bf04e913c2 feat(nodes): make primitive outputs not optional, fix primitive invocation defaults 2023-08-21 19:17:36 +10:00
cdc49456e8 feat(api): add additional class attribute to invocations and outputs in OpenAPI schema
It is `"invocation"` for invocations and `"output"` for outputs. Clients may use this to confidently and positively identify if an OpenAPI schema object is an invocation or output, instead of using a potentially fragile heuristic.
2023-08-21 19:17:36 +10:00
37dc2d9d4d feat(nodes): update vae node tags 2023-08-21 19:17:36 +10:00
6e1ddb671e feat(nodes): make fields that accept connection input optional in OpenAPI schema
Doing this via `BaseInvocation`'s `Config.schema_extra()` means all clients get an accurate OpenAPI schema.

Shifts the responsibility of correct types to the backend, where previously it was on the client.
2023-08-21 19:17:36 +10:00
496a2db15c feat(nodes): make id, type required in BaseInvocation, BaseInvocationOutput
Doing this via these classes' `Config.schema_extra()` method makes it unintrusive and clients will get the correct types for these properties.

Shifts the responsibility of correct types to the backend, where previously it was on the client.
2023-08-21 19:17:36 +10:00
5292eda0e4 feat(nodes): remove "Loader" from model nodes
They are not loaders, they are selectors - remove this to reduce confusion.
2023-08-21 19:17:36 +10:00
4ac41bc4b1 feat(ui): adding node selects new node exclusively 2023-08-21 19:17:36 +10:00
4be4fc6731 feat(ui): rework add node select
- `space` and `/` open floating add node select
- improved filter logic (partial word matches)
2023-08-21 19:17:36 +10:00
a9fdc77edd feat(ui): rename node editor to workflow editor 2023-08-21 19:17:36 +10:00
385765faec fix(ui): fix missing tags on template parse 2023-08-21 19:17:36 +10:00
adb05cde5b feat(ui): simple partial search for nodes 2023-08-21 19:17:36 +10:00
211e8203f8 feat(ui): organise nodes files
- also remove old `.gitignore` of `inputs/` which wasn't used and was ignoring a frontend folder
2023-08-21 19:17:36 +10:00
0b9ae74192 fix(stats): RuntimeError: dictionary changed size during iteration 2023-08-21 19:17:36 +10:00
165c57c001 feat(ui): add select all to workflow editor 2023-08-21 19:17:36 +10:00
2514af79a0 feat(ui): crude node outputs display
Resets on invoke. Nothing fancy for the UI yet, just simple text (for numbers and strings) or image. For other output types, the output in JSON.
2023-08-21 19:17:36 +10:00
f952f8f685 feat(ui): add typegen customisation for invocation outputs
The `type` property is required on all of them, but because this is defined in pydantic as a Literal, it is not required in the OpenAPI schema. Easier to fix this by changing the generated types than fiddling around with pydantic.
2023-08-21 19:17:36 +10:00
484b572023 feat(nodes): primitives have value instead of a as field names 2023-08-21 19:17:36 +10:00
cd9baf8092 fix(stats): fix InvocationStatsService types
- move docstrings to ABC
- `start_time: int` -> `start_time: float`
- remove class attribute assignments in `StatsContext`
- add `update_mem_stats()` to ABC
- add class attributes to ABC, because they are referenced in instances of the class. if they should not be on the ABC, then maybe there needs to be some restructuring
2023-08-21 19:17:36 +10:00
81385d7d35 fix(stats): fix fail case when previous graph is invalid
When retrieving a graph, it is parsed through pydantic. It is possible that this graph is invalid, and an error is thrown.

Handle this by deleting the failed graph from the stats if this occurs.
2023-08-21 19:17:36 +10:00
519bcb38c1 feat(ui): node delete, copy, paste 2023-08-21 19:17:36 +10:00
567d46b646 feat(ui): delete key works on workflow editor 2023-08-21 19:17:36 +10:00
030802295b feat(ui): reset only specific nodes/cnet that use images
Previously if an image was used in nodes and you deleted it, it would reset all of node editor. Same for controlnet.

Now it only resets the specific nodes or controlnets that used that image.
2023-08-21 19:17:36 +10:00
a495c8c156 feat(ui): misc cleanups 2023-08-21 19:17:36 +10:00
ae6db67068 feat(ui): add width to mantine selects 2023-08-21 19:17:36 +10:00
3d84e7756a fix(nodes): fix field names 2023-08-21 19:17:36 +10:00
98431b3de4 feat: add Scheduler as field type
- update node schemas
- add `UIType.Scheduler`
- add field type to schema parser, input components
2023-08-21 19:17:36 +10:00
210a3f9aa7 feat(ui): make mantine single selects *exactly* the same size as chakra ones 2023-08-21 19:17:36 +10:00
9332ce639c fix(ui): fix node mouse interactions
Add "nodrag", "nowheel" and "nopan" class names in interactable elements, as neeeded. This fixes the mouse interactions and also makes the node draggable from anywhere without needing shift.

Also fixes ctrl/cmd multi-select to support deselecting.
2023-08-21 19:17:36 +10:00
84cf8bdc08 feat(ui): field context menu, add/remove from linear ui 2023-08-21 19:17:36 +10:00
64a6aa0293 fix(ui): move BoardContextMenu to use IAIContextMenu 2023-08-21 19:17:36 +10:00
5ae14bffba fix(ui): clear exposedFields when resetting graph 2023-08-21 19:17:36 +10:00
0909812c84 chore: black 2023-08-21 19:17:15 +10:00
66c0aea9e7 fix(nodes): removed duplicate node 2023-08-21 19:17:15 +10:00
2bcded78e1 add BlendInvocation 2023-08-21 19:17:15 +10:00
beb3e5aeb7 Report correctly to compel if we want get pooled in future(affects blend computation) 2023-08-21 19:05:40 +10:00
5b6069b916 blackify (again) 2023-08-20 16:06:01 -04:00
766cb887e4 resolve more flake8 problems 2023-08-20 15:57:15 -04:00
ef317be1f9 blackify (again) 2023-08-20 15:46:12 -04:00
027b84d1aa add noqa comments to util/__init__ 2023-08-20 15:43:17 -04:00
11b670755d fix flake8 error 2023-08-20 15:39:45 -04:00
a536719fc3 blackify 2023-08-20 15:27:51 -04:00
8e6d88e98c resolve merge conflicts 2023-08-20 15:26:52 -04:00
0f1b975d0e dep(diffusers): upgrade diffusers to 0.20 (#4311) 2023-08-18 18:22:11 -07:00
2fef478497 fix(convert_ckpt): Removed is_safetensors_available as safetensors is now a required dependency. 2023-08-18 11:05:59 -07:00
6df6abf6f6 Merge branch 'main' into dep/diffusers020 2023-08-18 11:02:52 -07:00
1b70bd1380 fix(stats): fix InvocationStatsService types
- move docstrings to ABC
- `start_time: int` -> `start_time: float`
- remove class attribute assignments in `StatsContext`
- add `update_mem_stats()` to ABC
- add class attributes to ABC, because they are referenced in instances of the class. if they should not be on the ABC, then maybe there needs to be some restructuring
2023-08-18 21:35:03 +10:00
d1d2d5a47d fix(stats): fix fail case when previous graph is invalid
When retrieving a graph, it is parsed through pydantic. It is possible that this graph is invalid, and an error is thrown.

Handle this by deleting the failed graph from the stats if this occurs.
2023-08-18 21:34:55 +10:00
3798c8bdb0 Merge branch 'main' into feat_compel_and 2023-08-18 17:04:03 +10:00
c49851e027 chore: minor cleanup after merge & flake8 2023-08-18 16:05:39 +10:00
3c43594c26 Merge branch 'main' into fix/inpaint_gen 2023-08-18 15:57:48 +10:00
c96ae4c331 Reverting late imports to fix tests 2023-08-18 15:52:04 +10:00
ce465acf04 Fixed OnnxRuntimeModel import 2023-08-18 15:52:04 +10:00
33ee418d8c Fixing class level import 2023-08-18 15:52:04 +10:00
4f1008f31f Installing Flake8-pyproject in GHA workflow 2023-08-18 15:52:04 +10:00
6cc629e19d Adding flake8 to GHA and pre-commit. Fixing missing flake8 2023-08-18 15:52:04 +10:00
537ae2f901 Resolving merge conflicts for flake8 2023-08-18 15:52:04 +10:00
f6db9da06c chore(ui): rename file to not cause madge to fail 2023-08-18 13:20:29 +10:00
a17dbd7df6 feat(ui): improve error toast messages 2023-08-18 13:20:29 +10:00
98a4cc20a9 Merge branch 'main' into dep/diffusers020 2023-08-17 20:04:11 -07:00
e2bdcc0271 Merge branch 'main' into refactor/rename-performance-options 2023-08-17 22:36:08 -04:00
ffd0f5924b pass lazy_offload to model cache 2023-08-17 22:35:16 -04:00
654dcd453f feat(dev_reload): use jurigged to hot reload changes to Python source 2023-08-17 19:02:44 -07:00
cfd827cfad Added node for creating mask inpaint 2023-08-18 04:07:40 +03:00
498d2ecc2b allow symbolic links to be followed during autoimport (#4268)
## What type of PR is this? (check all applicable)

- [X] Feature
- [X] Bug Fix

## Have you discussed this change with the InvokeAI team?
- [X] Yes

## Have you updated all relevant documentation?
- [X] Yes

## Description

Follow symbolic links when auto importing from a directory. Previously
links to files worked, but links to directories weren’t entered during
the scanning/import process.
2023-08-17 20:31:00 -04:00
4ebe839d54 Merge branch 'main' into bugfix/enable-links-in-autoimport 2023-08-17 18:55:45 -04:00
bc16b50302 add followlinks to all os.walk() calls 2023-08-17 18:54:18 -04:00
4267132926 dep(diffusers): upgrade diffusers to 0.20
Removed `is_safetensors_available` as safetensors is now a required dependency of diffusers.
2023-08-17 13:42:29 -07:00
e9a294f733 Merge branch 'main' into fix/inpaint_gen 2023-08-17 16:13:33 -04:00
b69f26c85c add support for "balanced" attention slice size 2023-08-17 16:11:09 -04:00
832335998f Update 'monkeypatched' controlnet class (#4269)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
Should be removed when added in diffusers
https://github.com/huggingface/diffusers/pull/4599
2023-08-17 15:49:54 -04:00
1102c12084 Merge branch 'main' into fix/sdxl_controlnet 2023-08-17 15:40:51 -04:00
b5cee7d20c blackify chore 2023-08-17 15:40:15 -04:00
23b4e1cea0 Merge branch 'main' into refactor/rename-performance-options 2023-08-17 14:43:00 -04:00
635a814dfb fix up documentation 2023-08-17 14:32:05 -04:00
c19835c2d0 wired attention configuration into backend 2023-08-17 14:20:45 -04:00
ed38eaa10c refactor InvokeAIAppConfig 2023-08-17 13:47:26 -04:00
b213335316 feat: Add InpaintMask Field type 2023-08-18 04:54:23 +12:00
ff5c725586 Update mask field type 2023-08-17 19:35:03 +03:00
bf0dfcac2f Add inapint mask field class 2023-08-17 19:19:07 +03:00
842eb4bb0a Merge branch 'main' into bugfix/enable-links-in-autoimport 2023-08-17 07:20:26 -04:00
89b82b3dc4 (feat): Add Seam Painting to Canvas (1.x, 2.x & SDXL w/ Refiner) (#4292)
## What type of PR is this? (check all applicable)

- [x] Feature

## Have you discussed this change with the InvokeAI team?
- [x] Yes
      
## Description

PR to add Seam Painting back to the Canvas.

## TODO Later

While the graph works as intended, it has become extremely large and
complex. I don't know if there's a simpler way to do this. Maybe there
is but there's soo many connections and visualizing the graph in my head
is extremely difficult. We might need to create some kind of tooling for
this. Coz it's going going to get crazier.

But well works for now.
2023-08-17 21:24:39 +12:00
8923201fdf Merge branch 'main' into seam-painting 2023-08-17 21:21:44 +12:00
226409107b Fix for Image Deletion issue 2023-08-17 17:18:11 +10:00
ae986bf873 Report RAM usage and RAM cache statistics after each generation (#4287)
## What type of PR is this? (check all applicable)

- [X] Feature

## Have you discussed this change with the InvokeAI team?
- [X] Yes

     
## Have you updated all relevant documentation?
- [X] Yes


## Description

This PR enhances the logging of performance statistics to include RAM
and model cache information. After each generation, the following will
be logged. The new information follows TOTAL GRAPH EXECUTION TIME.

```
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> Graph stats: 2408dbec-50d0-44a3-bbc4-427037e3f7d4
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> Node                 Calls    Seconds VRAM Used
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> main_model_loader        1     0.004s     0.000G
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> clip_skip                1     0.002s     0.000G
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> compel                   2     2.706s     0.246G
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> rand_int                 1     0.002s     0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> range_of_size            1     0.002s     0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> iterate                  1     0.002s     0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> metadata_accumulator     1     0.002s     0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> noise                    1     0.003s     0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> denoise_latents          1     2.429s     2.022G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> l2i                      1     1.020s     1.858G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME:    6.171s
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> RAM used by InvokeAI process: 4.50G (delta=0.10G)
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> RAM used to load models: 1.99G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> VRAM in use: 0.303G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> RAM cache statistics:
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO -->    Model cache hits: 2
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO -->    Model cache misses: 5
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO -->    Models cached: 5
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO -->    Models cleared from cache: 0
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO -->    Cache high water mark: 1.99/7.50G    
```

There may be a memory leak in InvokeAI. I'm seeing the process memory
usage increasing by about 100 MB with each generation as shown in the
example above.
2023-08-17 16:10:18 +12:00
503e3bca54 revise config but need to migrate old format to new 2023-08-16 23:30:00 -04:00
daf75a1361 blackify 2023-08-16 21:47:29 -04:00
fe4b2d53ed Merge branch 'feat/collect-more-stats' of github.com:invoke-ai/InvokeAI into feat/collect-more-stats 2023-08-16 21:39:29 -04:00
c39f8b478b fix misplaced ram_used and ram_changed attributes 2023-08-16 21:39:18 -04:00
1f82d8013e Merge branch 'main' into feat/collect-more-stats 2023-08-16 18:51:17 -04:00
e373bfca54 fix several broken links in the installation index 2023-08-16 17:54:39 -04:00
2ca8611723 add +/- sign in front of RAM delta 2023-08-16 15:53:01 -04:00
5aa7bfebd4 Fix masked generation with inpaint models 2023-08-16 20:28:33 +03:00
b12cf315a8 Merge branch 'main' into feat/collect-more-stats 2023-08-16 09:19:33 -04:00
975586bb40 Merge branch 'main' into seam-painting 2023-08-17 01:05:42 +12:00
a7ba142ad9 feat(ui): set min zoom on nodes to 0.1 2023-08-16 23:04:36 +10:00
0d36bab6cc fix(ui): do not rerender top panel buttons 2023-08-16 23:04:36 +10:00
c2e7f62701 fix(ui): do not rerender edges 2023-08-16 23:04:36 +10:00
1f194e3688 chore(ui): lint 2023-08-16 23:04:36 +10:00
f9b8b5cff2 fix(ui): improve node rendering performance
Previously the editor was using prop-drilling node data and templates to get values deep into nodes. This ended up causing very noticeable performance degradation. For example, any text entry fields were super laggy.

Refactor the whole thing to use memoized selectors via hooks. The hooks are mostly very narrow, returning only the data needed.

Data objects are never passed down, only node id and field name - sometimes the field kind ('input' or 'output').

The end result is a *much* smoother node editor with very minimal rerenders.
2023-08-16 23:04:36 +10:00
f7c92e1eff fix(ui): disable awkward resize animation for <Flow /> 2023-08-16 23:04:36 +10:00
70b8c3dfea fix(ui): fix context menu on workflow editor
There is a tricky mouse event interaction between chakra's `useOutsideClick()` hook (used by chakra `<Menu />`) and reactflow. The hook doesn't work when you click the main reactflow area.

To get around this, I've used a dirty hack, copy-pasting the simple context menu component we use, and extending it slightly to respond to a global `contextMenusClosed` redux action.
2023-08-16 23:04:36 +10:00
43b30355e4 feat: make primitive node titles consistent 2023-08-16 23:04:36 +10:00
a93bd01353 fix bad merge 2023-08-16 08:53:07 -04:00
bb1b8ceaa8 Update invokeai/backend/model_management/model_cache.py
Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>
2023-08-16 08:48:44 -04:00
be8edaf3fd Merge branch 'main' into feat/collect-more-stats 2023-08-16 08:48:14 -04:00
9cbaefaa81 feat: Add Seam Painting to SDXL 2023-08-16 19:46:48 +12:00
cc7c6e5d41 feat: Add Seam Painting with Scale Before 2023-08-16 19:35:03 +12:00
f2ee8a3da8 wip: Basic Seam Painting (only normal models) (no scale) 2023-08-16 17:26:23 +12:00
e98d7a52d4 feat: Add Seam Painting Options 2023-08-16 17:25:55 +12:00
21e1c0a5f0 tweaked formatting 2023-08-15 22:25:30 -04:00
611e241ca7 chore(ui): regen types 2023-08-16 12:07:34 +10:00
6df4af2c79 chore: lint 2023-08-16 12:07:34 +10:00
0f8606914e feat(ui): remove shouldShowDeleteButton
- remove this state entirely
- use `state.hotkeys.shift` directly to hide and show the icon on gallery
- also formatting
2023-08-16 12:07:34 +10:00
5b1099193d fix(ui): restore reset button in node image component 2023-08-16 12:07:34 +10:00
230131646f feat(ui): use imageDTOs instead of images in starring queries 2023-08-16 12:07:34 +10:00
8b1ec2685f chore: black 2023-08-16 12:07:34 +10:00
60c2c877d7 fix: add response model for star/unstar routes
- also implement pessimistic updates for starring, only changing the images that were successfully updated by backend
- some autoformat changes crept in
2023-08-16 12:07:34 +10:00
315a056686 feat(ui): show Star All if selection is a mix of starred and unstarred 2023-08-16 12:07:34 +10:00
80b0c5eab4 change from pin to star 2023-08-16 12:07:34 +10:00
08dc265e09 add listener to update selection list with change in star status 2023-08-16 12:07:34 +10:00
029a95550e rename pin to star, add multiselect and remove single image update api 2023-08-16 12:07:34 +10:00
ee6a26a97d update list images endpoint to sort by pinnedness and then created_at 2023-08-16 12:07:34 +10:00
a512fdc0f6 update IAIDndImage to use children for icons, add UI for shift+delete to delete images from gallery 2023-08-16 12:07:34 +10:00
767a612746 (ui) WIP trying to get all cache scenarios working smoothly, fix assets 2023-08-16 12:07:34 +10:00
0a71d6baa1 (ui) update cache to render pinned images alongside unpinned correctly, as well as changes in pinnedness 2023-08-16 12:07:34 +10:00
37be827e17 (ui) hook up toggle pin mutation with context menu for single image 2023-08-16 12:07:34 +10:00
04a9894e77 (api) add ability to pin and unpin images 2023-08-16 12:07:34 +10:00
f9958de6be added memory used to load models 2023-08-15 21:56:19 -04:00
ec10aca91e report RAM and RAM cache statistics 2023-08-15 21:00:30 -04:00
2b7dd3e236 feat: add missing primitive collections
- add missing primitive collections
- remove `Seed` and `LoRAField` (they don't exist)
2023-08-16 09:54:38 +10:00
fa884134d9 feat: rename ui_type_hint to ui_type
Just a bit more succinct while not losing any clarity.
2023-08-16 09:54:38 +10:00
18006cab9a chore: Regen frontend types 2023-08-16 09:54:38 +10:00
75ea716c13 feat(ui): hide node footer if there is nothing to display 2023-08-16 09:54:38 +10:00
d5f7027597 feat: Save Mask option for Canvas 2023-08-16 09:54:38 +10:00
b1ad777f5a fix: Outpainting being broken due to field name change 2023-08-16 09:54:38 +10:00
f65c8092cb fix(ui): fix issue with node editor state not restoring correctly on mount
If `reactflow` initializes before the node templates are parsed, edges may not be rendered and the viewport may get reset.

- Add `isReady` state to `NodesState`. This is false when we are loading or parsing node templates and true when that is finished.
- Conditionally render `reactflow` based on `isReady`.
- Add `viewport` to `NodesState` & handlers to keep it synced. This allows `reactflow` to mount and unmount freely and not lose viewport.
2023-08-16 09:54:38 +10:00
94bfef3543 feat(ui): add UI component for unknown node types 2023-08-16 09:54:38 +10:00
c48fd9c083 feat(nodes): refactor parameter/primitive nodes
Refine concept of "parameter" nodes to "primitives":
- integer
- float
- string
- boolean
- image
- latents
- conditioning
- color

Each primitive has:
- A field definition, if it is not already python primitive value. The field is how this primitive value is passed between nodes. Collections are lists of the field in node definitions. ex: `ImageField` & `list[ImageField]`
- A single output class. ex: `ImageOutput`
- A collection output class. ex: `ImageCollectionOutput`
- A node, which functions to load or pass on the primitive value. ex: `ImageInvocation` (in this case, `ImageInvocation` replaces `LoadImage`)

Plus a number of related changes:
- Reorganize these into `primitives.py`
- Update all nodes and logic to use primitives
- Consolidate "prompt" outputs into "string" & "mask" into "image" (there's no reason for these to be different, the function identically)
- Update default graphs & tests
- Regen frontend types & minor frontend tidy related to changes
2023-08-16 09:54:38 +10:00
f49fc7fb55 feat: node editor
squashed rebase on main after backendd refactor
2023-08-16 09:54:38 +10:00
a4b029d03c write RAM usage and change after each generation 2023-08-15 18:21:31 -04:00
d6c9bf5b38 added sdxl controlnet detection 2023-08-15 12:51:15 -04:00
4f82273fc4 Update 'monkeypatched' controlnet class 2023-08-15 11:07:43 -04:00
e54355f0f3 Prevent merge from crashing with a WindowsPath serialization error (#4271)
## What type of PR is this? (check all applicable)

- [X] Bug Fix

## Have you discussed this change with the InvokeAI team?
- [X] Yes

## Have you updated all relevant documentation?
- [X] Yes

## Description

On Windows systems, model merging was crashing at the very last step
with an error related to not being able to serialize a WindowsPath
object. I have converted the path that is passed to `save_pretrained`
into a string, which I believe will solve the problem.

Note that I had to rebuild the web frontend and add it to the PR in
order to test on my Windows VM which does not have the full node stack
installed due to space limitations.

## Related Tickets & Documents


https://discord.com/channels/1020123559063990373/1042475531079262378/1140680788954861698
2023-08-15 15:11:01 +12:00
b2934be6ba use as_posix() instead of str() 2023-08-14 22:59:26 -04:00
eab67b6a01 fixed actual bug 2023-08-14 22:59:26 -04:00
02fa116690 rebuild frontend for windows testing 2023-08-14 22:59:26 -04:00
5190a4c282 further removal of Paths 2023-08-14 22:59:26 -04:00
141d438517 prevent windows from crashing with a WindowsPath serialization error on merge 2023-08-14 22:59:26 -04:00
549d2e0485 chore: remove old web server code and python deps 2023-08-15 10:54:57 +10:00
d3d8b71c67 feat: Change refinerStart default to 0.8
This is the recommended value according to the paper.
2023-08-15 10:13:02 +10:00
6eaaa75a5d Use double quotes in docker entrypoint to prevent word splitting (#4260)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: it's smol

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description
docker_entrypoint.sh does not quote variable expansion to prevent word
splitting, causing paths with spaces to fail as in #3913

## Related Tickets & Documents
#3913

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #3913
- Closes #3913

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [x] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-15 02:15:22 +12:00
ba57ec5907 Merge branch 'main' into fix/docker_entrypoint 2023-08-14 09:26:32 -04:00
b524bf3c04 allow symbolic links to be followed during autoimport 2023-08-14 07:37:47 -04:00
cd0e4bc1d7 Refactor generation backend (#4201)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [x] Feature
- [x] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description
- Remove SDXL raw prompt nodes
- SDXL and SD1/2 generation merged to same nodes - t2l/l2l
- Fixed - if no xformers installed we trying to enable attention
slicing, ignoring torch-sdp availability
- Fixed - In SDXL negative prompt now creating zeroed tensor(according
to official code)
- Added mask field to l2l node
- Removed inpaint node and all legacy code related to this node
- Pass info about seed in latents, so we can use it to initialize
ancestral/sde schedulers
- t2l and l2l nodes moved from strength to denoising_start/end
- Removed code for noise threshold(@hipsterusername said that there no
plans to restore this feature)
- Fixed - first preview image now not gray
- Fixed - report correct total step count in progress, added scheduler
order in progress event
- Added MaskEdge and ColorCorrect nodes (@hipsterusername)

## Added/updated tests?

- [ ] Yes
- [x] No
2023-08-13 23:08:11 -04:00
0b2925709c Use double quotes in docker entrypoint to prevent word splitting 2023-08-13 14:36:55 -05:00
e7d9e552a7 Merge branch 'main' into feat_compel_and 2023-08-01 07:20:25 -04:00
d2c55dc011 enable .and() syntax and long prompts 2023-07-30 14:20:59 +02:00
622 changed files with 25144 additions and 17211 deletions

4
.github/CODEOWNERS vendored
View File

@ -2,7 +2,7 @@
/.github/workflows/ @lstein @blessedcoolant
# documentation
/docs/ @lstein @blessedcoolant @hipsterusername
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
/mkdocs.yml @lstein @blessedcoolant
# nodes
@ -22,7 +22,7 @@
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp
# generation, model management, postprocessing
/invokeai/backend @damian0815 @lstein @blessedcoolant @gregghelt2 @StAlKeR7779 @brandonrising
/invokeai/backend @damian0815 @lstein @blessedcoolant @gregghelt2 @StAlKeR7779 @brandonrising @ryanjdick
# front ends
/invokeai/frontend/CLI @lstein

View File

@ -1,6 +1,6 @@
name: style checks
# just formatting for now
# TODO: add isort and flake8 later
# just formatting and flake8 for now
# TODO: add isort later
on:
pull_request:
@ -20,8 +20,8 @@ jobs:
- name: Install dependencies with pip
run: |
pip install black
pip install black flake8 Flake8-pyproject
# - run: isort --check-only .
- run: black --check .
# - run: flake8
- run: flake8

37
.gitignore vendored
View File

@ -1,23 +1,8 @@
# ignore default image save location and model symbolic link
.idea/
embeddings/
outputs/
models/ldm/stable-diffusion-v1/model.ckpt
**/restoration/codeformer/weights
# ignore user models config
configs/models.user.yaml
config/models.user.yml
invokeai.init
.version
.last_model
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
# ignore a directory which serves as a place for initial images
inputs/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@ -189,39 +174,17 @@ cython_debug/
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
src
**/__pycache__/
outputs
# Logs and associated folders
# created from generated embeddings.
logs
testtube
checkpoints
# If it's a Mac
.DS_Store
invokeai/frontend/yarn.lock
invokeai/frontend/node_modules
# Let the frontend manage its own gitignore
!invokeai/frontend/web/*
# Scratch folder
.scratch/
.vscode/
gfpgan/
models/ldm/stable-diffusion-v1/*.sha256
# GFPGAN model files
gfpgan/
# config file (will be created by installer)
configs/models.yaml
# ignore initfile
.invokeai
# ignore environment.yml and requirements.txt
# these are links to the real files in environments-and-requirements

View File

@ -8,3 +8,10 @@ repos:
language: system
entry: black
types: [python]
- id: flake8
name: flake8
stages: [commit]
language: system
entry: flake8
types: [python]

View File

@ -43,7 +43,7 @@ Web Interface, interactive Command Line Interface, and also serves as
the foundation for multiple commercial products.
**Quick links**: [[How to
Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a
Install](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>] [<a
@ -81,7 +81,7 @@ Table of Contents 📝
## Quick Start
For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)
If upgrading from version 2.3, please read [Migrating a 2.3 root
directory to 3.0](#migrating-to-3) first.

View File

@ -29,8 +29,8 @@ configure() {
echo "To reconfigure InvokeAI, delete the above file."
echo "======================================================================"
else
mkdir -p ${INVOKEAI_ROOT}
chown --recursive ${USER} ${INVOKEAI_ROOT}
mkdir -p "${INVOKEAI_ROOT}"
chown --recursive ${USER} "${INVOKEAI_ROOT}"
gosu ${USER} invokeai-configure --yes --default_only
fi
}
@ -50,16 +50,16 @@ fi
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
apt-get update
apt-get install -y openssh-server
pushd $HOME
pushd "$HOME"
mkdir -p .ssh
echo ${PUBLIC_KEY} > .ssh/authorized_keys
echo "${PUBLIC_KEY}" > .ssh/authorized_keys
chmod -R 700 .ssh
popd
service ssh start
fi
cd ${INVOKEAI_ROOT}
cd "${INVOKEAI_ROOT}"
# Run the CMD as the Container User (not root).
exec gosu ${USER} "$@"

Binary file not shown.

Before

Width:  |  Height:  |  Size: 335 KiB

After

Width:  |  Height:  |  Size: 319 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 179 KiB

After

Width:  |  Height:  |  Size: 197 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 501 KiB

After

Width:  |  Height:  |  Size: 421 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 473 KiB

After

Width:  |  Height:  |  Size: 585 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 557 KiB

After

Width:  |  Height:  |  Size: 598 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 340 KiB

After

Width:  |  Height:  |  Size: 438 KiB

View File

@ -14,11 +14,14 @@ To join, just raise your hand on the InvokeAI Discord server (#dev-chat) or the
#### Development
If youd like to help with development, please see our [development guide](contribution_guides/development.md). If youre unfamiliar with contributing to open source projects, there is a tutorial contained within the development guide.
#### Nodes
If youd like to help with development, please see our [nodes contribution guide](/nodes/contributingNodes). If youre unfamiliar with contributing to open source projects, there is a tutorial contained within the development guide.
#### Documentation
If youd like to help with documentation, please see our [documentation guide](contribution_guides/documenation.md).
If youd like to help with documentation, please see our [documentation guide](contribution_guides/documentation.md).
#### Translation
If you'd like to help with translation, please see our [translation guide](docs/contributing/.contribution_guides/translation.md).
If you'd like to help with translation, please see our [translation guide](contribution_guides/translation.md).
#### Tutorials
Please reach out to @imic or @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy) to help create tutorials for InvokeAI.

View File

@ -29,12 +29,13 @@ The first set of things we need to do when creating a new Invocation are -
- Create a new class that derives from a predefined parent class called
`BaseInvocation`.
- The name of every Invocation must end with the word `Invocation` in order for
it to be recognized as an Invocation.
- Every Invocation must have a `docstring` that describes what this Invocation
does.
- Every Invocation must have a unique `type` field defined which becomes its
indentifier.
- While not strictly required, we suggest every invocation class name ends in
"Invocation", eg "CropImageInvocation".
- Every Invocation must use the `@invocation` decorator to provide its unique
invocation type. You may also provide its title, tags and category using the
decorator.
- Invocations are strictly typed. We make use of the native
[typing](https://docs.python.org/3/library/typing.html) library and the
installed [pydantic](https://pydantic-docs.helpmanual.io/) library for
@ -43,12 +44,11 @@ The first set of things we need to do when creating a new Invocation are -
So let us do that.
```python
from typing import Literal
from .baseinvocation import BaseInvocation
from .baseinvocation import BaseInvocation, invocation
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
```
That's great.
@ -62,8 +62,10 @@ our Invocation takes.
### **Inputs**
Every Invocation input is a pydantic `Field` and like everything else should be
strictly typed and defined.
Every Invocation input must be defined using the `InputField` function. This is
a wrapper around the pydantic `Field` function, which handles a few extra things
and provides type hints. Like everything else, this should be strictly typed and
defined.
So let us create these inputs for our Invocation. First up, the `image` input we
need. Generally, we can use standard variable types in Python but InvokeAI
@ -76,55 +78,51 @@ create your own custom field types later in this guide. For now, let's go ahead
and use it.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation
from ..models.image import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
image: ImageField = InputField(description="The input image")
```
Let us break down our input code.
```python
image: Union[ImageField, None] = Field(description="The input image", default=None)
image: ImageField = InputField(description="The input image")
```
| Part | Value | Description |
| --------- | ---------------------------------------------------- | -------------------------------------------------------------------------------------------------- |
| Name | `image` | The variable that will hold our image |
| Type Hint | `Union[ImageField, None]` | The types for our field. Indicates that the image can either be an `ImageField` type or `None` |
| Field | `Field(description="The input image", default=None)` | The image variable is a field which needs a description and a default value that we set to `None`. |
| Part | Value | Description |
| --------- | ------------------------------------------- | ------------------------------------------------------------------------------- |
| Name | `image` | The variable that will hold our image |
| Type Hint | `ImageField` | The types for our field. Indicates that the image must be an `ImageField` type. |
| Field | `InputField(description="The input image")` | The image variable is an `InputField` which needs a description. |
Great. Now let us create our other inputs for `width` and `height`
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation
from ..models.image import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
```
As you might have noticed, we added two new parameters to the field type for
`width` and `height` called `gt` and `le`. These basically stand for _greater
than or equal to_ and _less than or equal to_. There are various other param
types for field that you can find on the **pydantic** documentation.
As you might have noticed, we added two new arguments to the `InputField`
definition for `width` and `height`, called `gt` and `le`. They stand for
_greater than or equal to_ and _less than or equal to_.
These impose contraints on those fields, and will raise an exception if the
values do not meet the constraints. Field constraints are provided by
**pydantic**, so anything you see in the **pydantic docs** will work.
**Note:** _Any time it is possible to define constraints for our field, we
should do it so the frontend has more information on how to parse this field._
@ -141,20 +139,17 @@ that are provided by it by InvokeAI.
Let us create this function first.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext
from ..models.image import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext):
pass
@ -173,21 +168,18 @@ all the necessary info related to image outputs. So let us use that.
We will cover how to create your own output types later in this guide.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext
from ..models.image import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
from .image import ImageOutput
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput:
pass
@ -195,39 +187,34 @@ class ResizeInvocation(BaseInvocation):
Perfect. Now that we have our Invocation setup, let us do what we want to do.
- We will first load the image. Generally we do this using the `PIL` library but
we can use one of the services provided by InvokeAI to load the image.
- We will first load the image using one of the services provided by InvokeAI to
load the image.
- We will resize the image using `PIL` to our input data.
- We will output this image in the format we set above.
So let's do that.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext
from ..models.image import ImageField, ResourceOrigin, ImageCategory
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
from .image import ImageOutput
@invocation("resize")
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
"""Resizes an image"""
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the image using InvokeAI's predefined Image Service.
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
# Load the image using InvokeAI's predefined Image Service. Returns the PIL image.
image = context.services.images.get_pil_image(self.image.image_name)
# Resizing the image
# Because we used the above service, we already have a PIL image. So we can simply resize.
resized_image = image.resize((self.width, self.height))
# Preparing the image for output using InvokeAI's predefined Image Service.
# Save the image using InvokeAI's predefined Image Service. Returns the prepared PIL image.
output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
@ -241,7 +228,6 @@ class ResizeInvocation(BaseInvocation):
return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
image_origin=output_image.image_origin,
),
width=output_image.width,
height=output_image.height,
@ -253,6 +239,20 @@ certain way that the images need to be dispatched in order to be stored and read
correctly. In 99% of the cases when dealing with an image output, you can simply
copy-paste the template above.
### Customization
We can use the `@invocation` decorator to provide some additional info to the
UI, like a custom title, tags and category.
```python
@invocation("resize", title="My Resizer", tags=["resize", "image"], category="My Invocations")
class ResizeInvocation(BaseInvocation):
"""Resizes an image"""
image: ImageField = InputField(description="The input image")
...
```
That's it. You made your own **Resize Invocation**.
## Result
@ -270,9 +270,59 @@ new Invocation ready to be used.
![resize node editor](../assets/contributing/resize_node_editor.png)
# Advanced
## Contributing Nodes
## Custom Input Fields
Once you've created a Node, the next step is to share it with the community! The
best way to do this is to submit a Pull Request to add the Node to the
[Community Nodes](nodes/communityNodes) list. If you're not sure how to do that,
take a look a at our [contributing nodes overview](contributingNodes).
## Advanced
-->
### Custom Output Types
Like with custom inputs, sometimes you might find yourself needing custom
outputs that InvokeAI does not provide. We can easily set one up.
Now that you are familiar with Invocations and Inputs, let us use that knowledge
to create an output that has an `image` field, a `color` field and a `string`
field.
- An invocation output is a class that derives from the parent class of
`BaseInvocationOutput`.
- All invocation outputs must use the `@invocation_output` decorator to provide
their unique output type.
- Output fields must use the provided `OutputField` function. This is very
similar to the `InputField` function described earlier - it's a wrapper around
`pydantic`'s `Field()`.
- It is not mandatory but we recommend using names ending with `Output` for
output types.
- It is not mandatory but we highly recommend adding a `docstring` to describe
what your output type is for.
Now that we know the basic rules for creating a new output type, let us go ahead
and make it.
```python
from .baseinvocation import BaseInvocationOutput, OutputField, invocation_output
from .primitives import ImageField, ColorField
@invocation_output('image_color_string_output')
class ImageColorStringOutput(BaseInvocationOutput):
'''Base class for nodes that output a single image'''
image: ImageField = OutputField(description="The image")
color: ColorField = OutputField(description="The color")
text: str = OutputField(description="The string")
```
That's all there is to it.
<!-- TODO: DANGER - we probably do not want people to create their own field types, because this requires a lot of work on the frontend to accomodate.
### Custom Input Fields
Now that you know how to create your own Invocations, let us dive into slightly
more advanced topics.
@ -326,173 +376,7 @@ like this.
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
```
**Extra Config**
All input fields also take an additional `Config` class that you can use to do
various advanced things like setting required parameters and etc.
Let us do that for our _ColorField_ and enforce all the values because we did
not define any defaults for our fields.
```python
class ColorField(BaseModel):
'''A field that holds the rgba values of a color'''
r: int = Field(ge=0, le=255, description="The red channel")
g: int = Field(ge=0, le=255, description="The green channel")
b: int = Field(ge=0, le=255, description="The blue channel")
a: int = Field(ge=0, le=255, description="The alpha channel")
class Config:
schema_extra = {"required": ["r", "g", "b", "a"]}
```
Now it becomes mandatory for the user to supply all the values required by our
input field.
We will discuss the `Config` class in extra detail later in this guide and how
you can use it to make your Invocations more robust.
## Custom Output Types
Like with custom inputs, sometimes you might find yourself needing custom
outputs that InvokeAI does not provide. We can easily set one up.
Now that you are familiar with Invocations and Inputs, let us use that knowledge
to put together a custom output type for an Invocation that returns _width_,
_height_ and _background_color_ that we need to create a blank image.
- A custom output type is a class that derives from the parent class of
`BaseInvocationOutput`.
- It is not mandatory but we recommend using names ending with `Output` for
output types. So we'll call our class `BlankImageOutput`
- It is not mandatory but we highly recommend adding a `docstring` to describe
what your output type is for.
- Like Invocations, each output type should have a `type` variable that is
**unique**
Now that we know the basic rules for creating a new output type, let us go ahead
and make it.
```python
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocationOutput
class BlankImageOutput(BaseInvocationOutput):
'''Base output type for creating a blank image'''
type: Literal['blank_image_output'] = 'blank_image_output'
# Inputs
width: int = Field(description='Width of blank image')
height: int = Field(description='Height of blank image')
bg_color: ColorField = Field(description='Background color of blank image')
class Config:
schema_extra = {"required": ["type", "width", "height", "bg_color"]}
```
All set. We now have an output type that requires what we need to create a
blank_image. And if you noticed it, we even used the `Config` class to ensure
the fields are required.
## Custom Configuration
As you might have noticed when making inputs and outputs, we used a class called
`Config` from _pydantic_ to further customize them. Because our inputs and
outputs essentially inherit from _pydantic_'s `BaseModel` class, all
[configuration options](https://docs.pydantic.dev/latest/usage/schema/#schema-customization)
that are valid for _pydantic_ classes are also valid for our inputs and outputs.
You can do the same for your Invocations too but InvokeAI makes our life a
little bit easier on that end.
InvokeAI provides a custom configuration class called `InvocationConfig`
particularly for configuring Invocations. This is exactly the same as the raw
`Config` class from _pydantic_ with some extra stuff on top to help faciliate
parsing of the scheme in the frontend UI.
At the current moment, tihs `InvocationConfig` class is further improved with
the following features related the `ui`.
| Config Option | Field Type | Example |
| ------------- | ------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------- |
| type_hints | `Dict[str, Literal["integer", "float", "boolean", "string", "enum", "image", "latents", "model", "control"]]` | `type_hint: "model"` provides type hints related to the model like displaying a list of available models |
| tags | `List[str]` | `tags: ['resize', 'image']` will classify your invocation under the tags of resize and image. |
| title | `str` | `title: 'Resize Image` will rename your to this custom title rather than infer from the name of the Invocation class. |
So let us update your `ResizeInvocation` with some extra configuration and see
how that works.
```python
from typing import Literal, Union
from pydantic import Field
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from ..models.image import ImageField, ResourceOrigin, ImageCategory
from .image import ImageOutput
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
type: Literal['resize'] = 'resize'
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
width: int = Field(default=512, ge=64, le=2048, description="Width of the new image")
height: int = Field(default=512, ge=64, le=2048, description="Height of the new image")
class Config(InvocationConfig):
schema_extra: {
ui: {
tags: ['resize', 'image'],
title: ['My Custom Resize']
}
}
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the image using InvokeAI's predefined Image Service.
image = context.services.images.get_pil_image(self.image.image_origin, self.image.image_name)
# Resizing the image
# Because we used the above service, we already have a PIL image. So we can simply resize.
resized_image = image.resize((self.width, self.height))
# Preparing the image for output using InvokeAI's predefined Image Service.
output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
# Returning the Image
return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
image_origin=output_image.image_origin,
),
width=output_image.width,
height=output_image.height,
)
```
We now customized our code to let the frontend know that our Invocation falls
under `resize` and `image` categories. So when the user searches for these
particular words, our Invocation will show up too.
We also set a custom title for our Invocation. So instead of being called
`Resize`, it will be called `My Custom Resize`.
As simple as that.
As time goes by, InvokeAI will further improve and add more customizability for
Invocation configuration. We will have more documentation regarding this at a
later time.
# **[TODO]**
## Custom Components For Frontend
### Custom Components For Frontend
Every backend input type should have a corresponding frontend component so the
UI knows what to render when you use a particular field type.
@ -510,281 +394,4 @@ Let us create a new component for our custom color field we created above. When
we use a color field, let us say we want the UI to display a color picker for
the user to pick from rather than entering values. That is what we will build
now.
---
# OLD -- TO BE DELETED OR MOVED LATER
---
## Creating a new invocation
To create a new invocation, either find the appropriate module file in
`/ldm/invoke/app/invocations` to add your invocation to, or create a new one in
that folder. All invocations in that folder will be discovered and made
available to the CLI and API automatically. Invocations make use of
[typing](https://docs.python.org/3/library/typing.html) and
[pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration
into the CLI and API.
An invocation looks like this:
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
# fmt: off
type: Literal["upscale"] = "upscale"
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
```
Each portion is important to implement correctly.
### Class definition and type
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
type: Literal['upscale'] = 'upscale'
```
All invocations must derive from `BaseInvocation`. They should have a docstring
that declares what they do in a single, short line. They should also have a
`type` with a type hint that's `Literal["command_name"]`, where `command_name`
is what the user will type on the CLI or use in the API to create this
invocation. The `command_name` must be unique. The `type` must be assigned to
the value of the literal in the type hint.
### Inputs
```py
# Inputs
image: Union[ImageField,None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2,4] = Field(default=2, description="The upscale level")
```
Inputs consist of three parts: a name, a type hint, and a `Field` with default,
description, and validation information. For example:
| Part | Value | Description |
| --------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this
field to be parsed with `None` as a value, which enables linking to previous
invocations. All fields should either provide a default value or allow `None` as
a value, so that they can be overwritten with a linked output from another
invocation.
The special type `ImageField` is also used here. All images are passed as
`ImageField`, which protects them from pydantic validation errors (since images
only ever come from links).
Finally, note that for all linking, the `type` of the linked fields must match.
If the `name` also matches, then the field can be **automatically linked** to a
previous invocation by name and matching.
### Config
```py
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
```
This is an optional configuration for the invocation. It inherits from
pydantic's model `Config` class, and it used primarily to customize the
autogenerated OpenAPI schema.
The UI relies on the OpenAPI schema in two ways:
- An API client & Typescript types are generated from it. This happens at build
time.
- The node editor parses the schema into a template used by the UI to create the
node editor UI. This parsing happens at runtime.
In this example, a `ui` key has been added to the `schema_extra` dict to provide
some tags for the UI, to facilitate filtering nodes.
See the Schema Generation section below for more information.
### Invoke Function
```py
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
```
The `invoke` function is the last portion of an invocation. It is provided an
`InvocationContext` which contains services to perform work as well as a
`session_id` for use as needed. It should return a class with output values that
derives from `BaseInvocationOutput`.
Before being called, the invocation will have all of its fields set from
defaults, inputs, and finally links (overriding in that order).
Assume that this invocation may be running simultaneously with other
invocations, may be running on another machine, or in other interesting
scenarios. If you need functionality, please provide it as a service in the
`InvocationServices` class, and make sure it can be overridden.
### Outputs
```py
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
```
Output classes look like an invocation class without the invoke method. Prefer
to use an existing output class if available, and prefer to name inputs the same
as outputs when possible, to promote automatic invocation linking.
## Schema Generation
Invocation, output and related classes are used to generate an OpenAPI schema.
### Required Properties
The schema generation treat all properties with default values as optional. This
makes sense internally, but when when using these classes via the generated
schema, we end up with e.g. the `ImageOutput` class having its `image` property
marked as optional.
We know that this property will always be present, so the additional logic
needed to always check if the property exists adds a lot of extraneous cruft.
To fix this, we can leverage `pydantic`'s
[schema customisation](https://docs.pydantic.dev/usage/schema/#schema-customization)
to mark properties that we know will always be present as required.
Here's that `ImageOutput` class, without the needed schema customisation:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
```
The OpenAPI schema that results from this `ImageOutput` will have the `type`,
`image`, `width` and `height` properties marked as optional, even though we know
they will always have a value.
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
# Add schema customization
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
```
With the customization in place, the schema will now show these properties as
required, obviating the need for extensive null checks in client code.
See this `pydantic` issue for discussion on this solution:
<https://github.com/pydantic/pydantic/discussions/4577>
-->

View File

@ -35,18 +35,17 @@ access.
## Backend
The backend is contained within the `./invokeai/backend` folder structure. To
get started however please install the development dependencies.
The backend is contained within the `./invokeai/backend` and `./invokeai/app` directories.
To get started please install the development dependencies.
From the root of the repository run the following command. Note the use of `"`.
```zsh
pip install ".[test]"
pip install ".[dev,test]"
```
This in an optional group of packages which is defined within the
`pyproject.toml` and will be required for testing the changes you make the the
code.
These are optional groups of packages which are defined within the `pyproject.toml`
and will be required for testing the changes you make to the code.
### Running Tests
@ -76,6 +75,20 @@ pytest --cov; open ./coverage/html/index.html
![html-detail](../assets/contributing/html-detail.png)
### Reloading Changes
Experimenting with changes to the Python source code is a drag if you have to re-start the server —
and re-load those multi-gigabyte models —
after every change.
For a faster development workflow, add the `--dev_reload` flag when starting the server.
The server will watch for changes to all the Python files in the `invokeai` directory and apply those changes to the
running server on the fly.
This will allow you to avoid restarting the server (and reloading models) in most cases, but there are some caveats; see
the [jurigged documentation](https://github.com/breuleux/jurigged#caveats) for details.
## Front End
<!--#TODO: get input from blessedcoolant here, for the moment inserted the frontend README via snippets extension.-->

View File

@ -175,22 +175,27 @@ These configuration settings allow you to enable and disable various InvokeAI fe
| `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet |
| `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected |
| `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting |
| `restore` | `true` | Activate the facial restoration features (DEPRECATED; restoration features will be removed in 3.0.0) |
### Memory/Performance
### Generation
These options tune InvokeAI's memory and performance characteristics.
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `always_use_cpu` | `false` | Use the CPU to generate images, even if a GPU is available |
| `free_gpu_mem` | `false` | Aggressively free up GPU memory after each operation; this will allow you to run in low-VRAM environments with some performance penalties |
| `max_cache_size` | `6` | Amount of CPU RAM (in GB) to reserve for caching models in memory; more cache allows you to keep models in memory and switch among them quickly |
| `max_vram_cache_size` | `2.75` | Amount of GPU VRAM (in GB) to reserve for caching models in VRAM; more cache speeds up generation but reduces the size of the images that can be generated. This can be set to zero to maximize the amount of memory available for generation. |
| `precision` | `auto` | Floating point precision. One of `auto`, `float16` or `float32`. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system |
| `sequential_guidance` | `false` | Calculate guidance in serial rather than in parallel, lowering memory requirements at the cost of some performance loss |
| `xformers_enabled` | `true` | If the x-formers memory-efficient attention module is installed, activate it for better memory usage and generation speed|
| `tiled_decode` | `false` | If true, then during the VAE decoding phase the image will be decoded a section at a time, reducing memory consumption at the cost of a performance hit |
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `sequential_guidance` | `false` | Calculate guidance in serial rather than in parallel, lowering memory requirements at the cost of some performance loss |
| `attention_type` | `auto` | Select the type of attention to use. One of `auto`,`normal`,`xformers`,`sliced`, or `torch-sdp` |
| `attention_slice_size` | `auto` | When "sliced" attention is selected, set the slice size. One of `auto`, `balanced`, `max` or the integers 1-8|
| `force_tiled_decode` | `false` | Force the VAE step to decode in tiles, reducing memory consumption at the cost of performance |
### Device
These options configure the generation execution device.
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `device` | `auto` | Preferred execution device. One of `auto`, `cpu`, `cuda`, `cuda:1`, `mps`. `auto` will choose the device depending on the hardware platform and the installed torch capabilities. |
| `precision` | `auto` | Floating point precision. One of `auto`, `float16` or `float32`. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system |
### Paths

View File

@ -1,208 +0,0 @@
# Nodes Editor (Experimental)
🚨
*The node editor is experimental. We've made it accessible because we use it to develop the application, but we have not addressed the many known rough edges. It's very easy to shoot yourself in the foot, and we cannot offer support for it until it sees full release (ETA v3.1). Everything is subject to change without warning.*
🚨
The nodes editor is a blank canvas allowing for the use of individual functions and image transformations to control the image generation workflow. The node processing flow is usually done from left (inputs) to right (outputs), though linearity can become abstracted the more complex the node graph becomes. Nodes inputs and outputs are connected by dragging connectors from node to node.
To better understand how nodes are used, think of how an electric power bar works. It takes in one input (electricity from a wall outlet) and passes it to multiple devices through multiple outputs. Similarly, a node could have multiple inputs and outputs functioning at the same (or different) time, but all node outputs pass information onward like a power bar passes electricity. Not all outputs are compatible with all inputs, however - Each node has different constraints on how it is expecting to input/output information. In general, node outputs are colour-coded to match compatible inputs of other nodes.
## Anatomy of a Node
Individual nodes are made up of the following:
- Inputs: Edge points on the left side of the node window where you connect outputs from other nodes.
- Outputs: Edge points on the right side of the node window where you connect to inputs on other nodes.
- Options: Various options which are either manually configured, or overridden by connecting an output from another node to the input.
## Diffusion Overview
Taking the time to understand the diffusion process will help you to understand how to set up your nodes in the nodes editor.
There are two main spaces Stable Diffusion works in: image space and latent space.
Image space represents images in pixel form that you look at. Latent space represents compressed inputs. Its in latent space that Stable Diffusion processes images. A VAE (Variational Auto Encoder) is responsible for compressing and encoding inputs into latent space, as well as decoding outputs back into image space.
When you generate an image using text-to-image, multiple steps occur in latent space:
1. Random noise is generated at the chosen height and width. The noises characteristics are dictated by the chosen (or not chosen) seed. This noise tensor is passed into latent space. Well call this noise A.
1. Using a models U-Net, a noise predictor examines noise A, and the words tokenized by CLIP from your prompt (conditioning). It generates its own noise tensor to predict what the final image might look like in latent space. Well call this noise B.
1. Noise B is subtracted from noise A in an attempt to create a final latent image indicative of the inputs. This step is repeated for the number of sampler steps chosen.
1. The VAE decodes the final latent image from latent space into image space.
image-to-image is a similar process, with only step 1 being different:
1. The input image is decoded from image space into latent space by the VAE. Noise is then added to the input latent image. Denoising Strength dictates how much noise is added, 0 being none, and 1 being all-encompassing. Well call this noise A. The process is then the same as steps 2-4 in the text-to-image explanation above.
Furthermore, a model provides the CLIP prompt tokenizer, the VAE, and a U-Net (where noise prediction occurs given a prompt and initial noise tensor).
A noise scheduler (eg. DPM++ 2M Karras) schedules the subtraction of noise from the latent image across the sampler steps chosen (step 3 above). Less noise is usually subtracted at higher sampler steps.
## Node Types (Base Nodes)
| Node <img width=160 align="right"> | Function |
| ---------------------------------- | --------------------------------------------------------------------------------------|
| Add | Adds two numbers |
| CannyImageProcessor | Canny edge detection for ControlNet |
| ClipSkip | Skip layers in clip text_encoder model |
| Collect | Collects values into a collection |
| Prompt (Compel) | Parse prompt using compel package to conditioning |
| ContentShuffleImageProcessor | Applies content shuffle processing to image |
| ControlNet | Collects ControlNet info to pass to other nodes |
| CvInpaint | Simple inpaint using opencv |
| Divide | Divides two numbers |
| DynamicPrompt | Parses a prompt using adieyal/dynamic prompt's random or combinatorial generator |
| FloatLinearRange | Creates a range |
| HedImageProcessor | Applies HED edge detection to image |
| ImageBlur | Blurs an image |
| ImageChannel | Gets a channel from an image |
| ImageCollection | Load a collection of images and provide it as output |
| ImageConvert | Converts an image to a different mode |
| ImageCrop | Crops an image to a specified box. The box can be outside of the image. |
| ImageInverseLerp | Inverse linear interpolation of all pixels of an image |
| ImageLerp | Linear interpolation of all pixels of an image |
| ImageMultiply | Multiplies two images together using `PIL.ImageChops.Multiply()` |
| ImageNSFWBlurInvocation | Detects and blurs images that may contain sexually explicit content |
| ImagePaste | Pastes an image into another image |
| ImageProcessor | Base class for invocations that reprocess images for ControlNet |
| ImageResize | Resizes an image to specific dimensions |
| ImageScale | Scales an image by a factor |
| ImageToLatents | Scales latents by a given factor |
| ImageWatermarkInvocation | Adds an invisible watermark to images |
| InfillColor | Infills transparent areas of an image with a solid color |
| InfillPatchMatch | Infills transparent areas of an image using the PatchMatch algorithm |
| InfillTile | Infills transparent areas of an image with tiles of the image |
| Inpaint | Generates an image using inpaint |
| Iterate | Iterates over a list of items |
| LatentsToImage | Generates an image from latents |
| LatentsToLatents | Generates latents using latents as base image |
| LeresImageProcessor | Applies leres processing to image |
| LineartAnimeImageProcessor | Applies line art anime processing to image |
| LineartImageProcessor | Applies line art processing to image |
| LoadImage | Load an image and provide it as output |
| Lora Loader | Apply selected lora to unet and text_encoder |
| Model Loader | Loads a main model, outputting its submodels |
| MaskFromAlpha | Extracts the alpha channel of an image as a mask |
| MediapipeFaceProcessor | Applies mediapipe face processing to image |
| MidasDepthImageProcessor | Applies Midas depth processing to image |
| MlsdImageProcessor | Applied MLSD processing to image |
| Multiply | Multiplies two numbers |
| Noise | Generates latent noise |
| NormalbaeImageProcessor | Applies NormalBAE processing to image |
| OpenposeImageProcessor | Applies Openpose processing to image |
| ParamFloat | A float parameter |
| ParamInt | An integer parameter |
| PidiImageProcessor | Applies PIDI processing to an image |
| Progress Image | Displays the progress image in the Node Editor |
| RandomInit | Outputs a single random integer |
| RandomRange | Creates a collection of random numbers |
| Range | Creates a range of numbers from start to stop with step |
| RangeOfSize | Creates a range from start to start + size with step |
| ResizeLatents | Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8. |
| RestoreFace | Restores faces in the image |
| ScaleLatents | Scales latents by a given factor |
| SegmentAnythingProcessor | Applies segment anything processing to image |
| ShowImage | Displays a provided image, and passes it forward in the pipeline |
| StepParamEasing | Experimental per-step parameter for easing for denoising steps |
| Subtract | Subtracts two numbers |
| TextToLatents | Generates latents from conditionings |
| TileResampleProcessor | Bass class for invocations that preprocess images for ControlNet |
| Upscale | Upscales an image |
| VAE Loader | Loads a VAE model, outputting a VaeLoaderOutput |
| ZoeDepthImageProcessor | Applies Zoe depth processing to image |
## Node Grouping Concepts
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
### Noise
As described, an initial noise tensor is necessary for the latent diffusion process. As a result, all non-image *ToLatents nodes require a noise node input.
![groupsnoise](../assets/nodes/groupsnoise.png)
### Conditioning
As described, conditioning is necessary for the latent diffusion process, whether empty or not. As a result, all non-image *ToLatents nodes require positive and negative conditioning inputs. Conditioning is reliant on a CLIP tokenizer provided by the Model Loader node.
![groupsconditioning](../assets/nodes/groupsconditioning.png)
### Image Space & VAE
The ImageToLatents node doesn't require a noise node input, but requires a VAE input to convert the image from image space into latent space. In reverse, the LatentsToImage node requires a VAE input to convert from latent space back into image space.
![groupsimgvae](../assets/nodes/groupsimgvae.png)
### Defined & Random Seeds
It is common to want to use both the same seed (for continuity) and random seeds (for variance). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
![groupsrandseed](../assets/nodes/groupsrandseed.png)
### Control
Control means to guide the diffusion process to adhere to a defined input or structure. Control can be provided as input to non-image *ToLatents nodes from ControlNet nodes. ControlNet nodes usually require an image processor which converts an input image for use with ControlNet.
![groupscontrol](../assets/nodes/groupscontrol.png)
### LoRA
The Lora Loader node lets you load a LoRA (say that ten times fast) and pass it as output to both the Prompt (Compel) and non-image *ToLatents nodes. A model's CLIP tokenizer is passed through the LoRA into Prompt (Compel), where it affects conditioning. A model's U-Net is also passed through the LoRA into a non-image *ToLatents node, where it affects noise prediction.
![groupslora](../assets/nodes/groupslora.png)
### Scaling
Use the ImageScale, ScaleLatents, and Upscale nodes to upscale images and/or latent images. The chosen method differs across contexts. However, be aware that latents are already noisy and compressed at their original resolution; scaling an image could produce more detailed results.
![groupsallscale](../assets/nodes/groupsallscale.png)
### Iteration + Multiple Images as Input
Iteration is a common concept in any processing, and means to repeat a process with given input. In nodes, you're able to use the Iterate node to iterate through collections usually gathered by the Collect node. The Iterate node has many potential uses, from processing a collection of images one after another, to varying seeds across multiple image generations and more. This screenshot demonstrates how to collect several images and pass them out one at a time.
![groupsiterate](../assets/nodes/groupsiterate.png)
### Multiple Image Generation + Random Seeds
Multiple image generation in the node editor is done using the RandomRange node. In this case, the 'Size' field represents the number of images to generate. As RandomRange produces a collection of integers, we need to add the Iterate node to iterate through the collection.
To control seeds across generations takes some care. The first row in the screenshot will generate multiple images with different seeds, but using the same RandomRange parameters across invocations will result in the same group of random seeds being used across the images, producing repeatable results. In the second row, adding the RandomInt node as input to RandomRange's 'Seed' edge point will ensure that seeds are varied across all images across invocations, producing varied results.
![groupsmultigenseeding](../assets/nodes/groupsmultigenseeding.png)
## Examples
With our knowledge of node grouping and the diffusion process, lets break down some basic graphs in the nodes editor. Note that a node's options can be overridden by inputs from other nodes. These examples aren't strict rules to follow and only demonstrate some basic configurations.
### Basic text-to-image Node Graph
![nodest2i](../assets/nodes/nodest2i.png)
- Model Loader: A necessity to generating images (as weve read above). We choose our model from the dropdown. It outputs a U-Net, CLIP tokenizer, and VAE.
- Prompt (Compel): Another necessity. Two prompt nodes are created. One will output positive conditioning (what you want, dog), one will output negative (what you dont want, cat). They both input the CLIP tokenizer that the Model Loader node outputs.
- Noise: Consider this noise A from step one of the text-to-image explanation above. Choose a seed number, width, and height.
- TextToLatents: This node takes many inputs for converting and processing text & noise from image space into latent space, hence the name TextTo**Latents**. In this setup, it inputs positive and negative conditioning from the prompt nodes for processing (step 2 above). It inputs noise from the noise node for processing (steps 2 & 3 above). Lastly, it inputs a U-Net from the Model Loader node for processing (step 2 above). It outputs latents for use in the next LatentsToImage node. Choose number of sampler steps, CFG scale, and scheduler.
- LatentsToImage: This node takes in processed latents from the TextToLatents node, and the models VAE from the Model Loader node which is responsible for decoding latents back into the image space, hence the name LatentsTo**Image**. This node is the last stop, and once the image is decoded, it is saved to the gallery.
### Basic image-to-image Node Graph
![nodesi2i](../assets/nodes/nodesi2i.png)
- Model Loader: Choose a model from the dropdown.
- Prompt (Compel): Two prompt nodes. One positive (dog), one negative (dog). Same CLIP inputs from the Model Loader node as before.
- ImageToLatents: Upload a source image directly in the node window, via drag'n'drop from the gallery, or passed in as input. The ImageToLatents node inputs the VAE from the Model Loader node to decode the chosen image from image space into latent space, hence the name ImageTo**Latents**. It outputs latents for use in the next LatentsToLatents node. It also outputs the source image's width and height for use in the next Noise node if the final image is to be the same dimensions as the source image.
- Noise: A noise tensor is created with the width and height of the source image, and connected to the next LatentsToLatents node. Notice the width and height fields are overridden by the input from the ImageToLatents width and height outputs.
- LatentsToLatents: The inputs and options are nearly identical to TextToLatents, except that LatentsToLatents also takes latents as an input. Considering our source image is already converted to latents in the last ImageToLatents node, and text + noise are no longer the only inputs to process, we use the LatentsToLatents node.
- LatentsToImage: Like previously, the LatentsToImage node will use the VAE from the Model Loader as input to decode the latents from LatentsToLatents into image space, and save it to the gallery.
### Basic ControlNet Node Graph
![nodescontrol](../assets/nodes/nodescontrol.png)
- Model Loader
- Prompt (Compel)
- Noise: Width and height of the CannyImageProcessor ControlNet image is passed in to set the dimensions of the noise passed to TextToLatents.
- CannyImageProcessor: The CannyImageProcessor node is used to process the source image being used as a ControlNet. Each ControlNet processor node applies control in different ways, and has some different options to configure. Width and height are passed to noise, as mentioned. The processed ControlNet image is output to the ControlNet node.
- ControlNet: Select the type of control model. In this case, canny is chosen as the CannyImageProcessor was used to generate the ControlNet image. Configure the control node options, and pass the control output to TextToLatents.
- TextToLatents: Similar to the basic text-to-image example, except ControlNet is passed to the control input edge point.
- LatentsToImage

View File

@ -4,80 +4,6 @@ title: Prompting-Features
# :octicons-command-palette-24: Prompting-Features
## **Negative and Unconditioned Prompts**
Any words between a pair of square brackets will instruct Stable
Diffusion to attempt to ban the concept from the generated image. The
same effect is achieved by placing words in the "Negative Prompts"
textbox in the Web UI.
```text
this is a test prompt [not really] to make you understand [cool] how this works.
```
In the above statement, the words 'not really cool` will be ignored by Stable
Diffusion.
Here's a prompt that depicts what it does.
original prompt:
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve"`
`#!bash parameters: steps=20, dimensions=512x768, CFG=7.5, Scheduler=k_euler_a, seed=1654590180`
<figure markdown>
![step1](../assets/negative_prompt_walkthru/step1.png)
</figure>
That image has a woman, so if we want the horse without a rider, we can
influence the image not to have a woman by putting [woman] in the prompt, like
this:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]"`
(same parameters as above)
<figure markdown>
![step2](../assets/negative_prompt_walkthru/step2.png)
</figure>
That's nice - but say we also don't want the image to be quite so blue. We can
add "blue" to the list of negative prompts, so it's now [woman blue]:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]"`
(same parameters as above)
<figure markdown>
![step3](../assets/negative_prompt_walkthru/step3.png)
</figure>
Getting close - but there's no sense in having a saddle when our horse doesn't
have a rider, so we'll add one more negative prompt: [woman blue saddle].
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]"`
(same parameters as above)
<figure markdown>
![step4](../assets/negative_prompt_walkthru/step4.png)
</figure>
!!! notes "Notes about this feature:"
* The only requirement for words to be ignored is that they are in between a pair of square brackets.
* You can provide multiple words within the same bracket.
* You can provide multiple brackets with multiple words in different places of your prompt. That works just fine.
* To improve typical anatomy problems, you can add negative prompts like `[bad anatomy, extra legs, extra arms, extra fingers, poorly drawn hands, poorly drawn feet, disfigured, out of frame, tiling, bad art, deformed, mutated]`.
---
## **Prompt Syntax Features**
The InvokeAI prompting language has the following features:
@ -102,9 +28,6 @@ The following syntax is recognised:
`a tall thin man (picking (apricots)1.3)1.1`. (`+` is equivalent to 1.1, `++`
is pow(1.1,2), `+++` is pow(1.1,3), etc; `-` means 0.9, `--` means pow(0.9,2),
etc.)
- attention also applies to `[unconditioning]` so
`a tall thin man picking apricots [(ladder)0.01]` will _very gently_ nudge SD
away from trying to draw the man on a ladder
You can use this to increase or decrease the amount of something. Starting from
this prompt of `a man picking apricots from a tree`, let's see what happens if
@ -150,7 +73,7 @@ Or, alternatively, with more man:
| ---------------------------------------------- | ---------------------------------------------- | ---------------------------------------------- | ---------------------------------------------- |
| ![](../assets/prompt_syntax/mountain-man1.png) | ![](../assets/prompt_syntax/mountain-man2.png) | ![](../assets/prompt_syntax/mountain-man3.png) | ![](../assets/prompt_syntax/mountain-man4.png) |
### Blending between prompts
### Prompt Blending
- `("a tall thin man picking apricots", "a tall thin man picking pears").blend(1,1)`
- The existing prompt blending using `:<weight>` will continue to be supported -
@ -168,6 +91,24 @@ Or, alternatively, with more man:
See the section below on "Prompt Blending" for more information about how this
works.
### Prompt Conjunction
Join multiple clauses together to create a conjoined prompt. Each clause will be passed to CLIP separately.
For example, the prompt:
```bash
"A mystical valley surround by towering granite cliffs, watercolor, warm"
```
Can be used with .and():
```bash
("A mystical valley", "surround by towering granite cliffs", "watercolor", "warm").and()
```
Each will give you different results - try them out and see what you prefer!
### Cross-Attention Control ('prompt2prompt')
Sometimes an image you generate is almost right, and you just want to change one
@ -190,7 +131,7 @@ For example, consider the prompt `a cat.swap(dog) playing with a ball in the for
- For multiple word swaps, use parentheses: `a (fluffy cat).swap(barking dog) playing with a ball in the forest`.
- To swap a comma, use quotes: `a ("fluffy, grey cat").swap("big, barking dog") playing with a ball in the forest`.
- Supports options `t_start` and `t_end` (each 0-1) loosely corresponding to bloc97's `prompt_edit_tokens_start/_end` but with the math swapped to make it easier to
- Supports options `t_start` and `t_end` (each 0-1) loosely corresponding to (bloc97's)[(https://github.com/bloc97/CrossAttentionControl)] `prompt_edit_tokens_start/_end` but with the math swapped to make it easier to
intuitively understand. `t_start` and `t_end` are used to control on which steps cross-attention control should run. With the default values `t_start=0` and `t_end=1`, cross-attention control is active on every step of image generation. Other values can be used to turn cross-attention control off for part of the image generation process.
- For example, if doing a diffusion with 10 steps for the prompt is `a cat.swap(dog, t_start=0.3, t_end=1.0) playing with a ball in the forest`, the first 3 steps will be run as `a cat playing with a ball in the forest`, while the last 7 steps will run as `a dog playing with a ball in the forest`, but the pixels that represent `dog` will be locked to the pixels that would have represented `cat` if the `cat` prompt had been used instead.
- Conversely, for `a cat.swap(dog, t_start=0, t_end=0.7) playing with a ball in the forest`, the first 7 steps will run as `a dog playing with a ball in the forest` with the pixels that represent `dog` locked to the same pixels that would have represented `cat` if the `cat` prompt was being used instead. The final 3 steps will just run `a cat playing with a ball in the forest`.
@ -201,7 +142,7 @@ Prompt2prompt `.swap()` is not compatible with xformers, which will be temporari
The `prompt2prompt` code is based off
[bloc97's colab](https://github.com/bloc97/CrossAttentionControl).
### Escaping parantheses () and speech marks ""
### Escaping parentheses () and speech marks ""
If the model you are using has parentheses () or speech marks "" as part of its
syntax, you will need to "escape" these using a backslash, so that`(my_keyword)`
@ -212,23 +153,16 @@ the parentheses as part of the prompt syntax and it will get confused.
## **Prompt Blending**
You may blend together different sections of the prompt to explore the AI's
You may blend together prompts to explore the AI's
latent semantic space and generate interesting (and often surprising!)
variations. The syntax is:
```bash
blue sphere:0.25 red cube:0.75 hybrid
("prompt #1", "prompt #2").blend(0.25, 0.75)
```
This will tell the sampler to blend 25% of the concept of a blue sphere with 75%
of the concept of a red cube. The blend weights can use any combination of
integers and floating point numbers, and they do not need to add up to 1.
Everything to the left of the `:XX` up to the previous `:XX` is used for
merging, so the overall effect is:
```bash
0.25 * "blue sphere" + 0.75 * "white duck" + hybrid
```
This will tell the sampler to blend 25% of the concept of prompt #1 with 75%
of the concept of prompt #2. It is recommended to keep the sum of the weights to around 1.0, but interesting things might happen if you go outside of this range.
Because you are exploring the "mind" of the AI, the AI's way of mixing two
concepts may not match yours, leading to surprising effects. To illustrate, here
@ -236,13 +170,14 @@ are three images generated using various combinations of blend weights. As
usual, unless you fix the seed, the prompts will give you different results each
time you run them.
<figure markdown>
Let's examine how this affects image generation results:
### "blue sphere, red cube, hybrid"
</figure>
```bash
"blue sphere, red cube, hybrid"
```
This example doesn't use melding at all and represents the default way of mixing
This example doesn't use blending at all and represents the default way of mixing
concepts.
<figure markdown>
@ -251,55 +186,47 @@ concepts.
</figure>
It's interesting to see how the AI expressed the concept of "cube" as the four
quadrants of the enclosing frame. If you look closely, there is depth there, so
the enclosing frame is actually a cube.
It's interesting to see how the AI expressed the concept of "cube" within the sphere. If you look closely, there is depth there, so the enclosing frame is actually a cube.
<figure markdown>
### "blue sphere:0.25 red cube:0.75 hybrid"
```bash
("blue sphere", "red cube").blend(0.25, 0.75)
```
![blue-sphere-25-red-cube-75](../assets/prompt-blending/blue-sphere-0.25-red-cube-0.75-hybrid.png)
</figure>
Now that's interesting. We get neither a blue sphere nor a red cube, but a red
sphere embedded in a brick wall, which represents a melding of concepts within
the AI's "latent space" of semantic representations. Where is Ludwig
Wittgenstein when you need him?
Now that's interesting. We get an image with a resemblance of a red cube, with a hint of blue shadows which represents a melding of concepts within the AI's "latent space" of semantic representations.
<figure markdown>
### "blue sphere:0.75 red cube:0.25 hybrid"
```bash
("blue sphere", "red cube").blend(0.75, 0.25)
```
![blue-sphere-75-red-cube-25](../assets/prompt-blending/blue-sphere-0.75-red-cube-0.25-hybrid.png)
</figure>
Definitely more blue-spherey. The cube is gone entirely, but it's really cool
abstract art.
Definitely more blue-spherey.
<figure markdown>
### "blue sphere:0.5 red cube:0.5 hybrid"
```bash
("blue sphere", "red cube").blend(0.5, 0.5)
```
</figure>
<figure markdown>
![blue-sphere-5-red-cube-5-hybrid](../assets/prompt-blending/blue-sphere-0.5-red-cube-0.5-hybrid.png)
</figure>
Whoa...! I see blue and red, but no spheres or cubes. Is the word "hybrid"
summoning up the concept of some sort of scifi creature? Let's find out.
<figure markdown>
Whoa...! I see blue and red, and if I squint, spheres and cubes.
### "blue sphere:0.5 red cube:0.5"
![blue-sphere-5-red-cube-5](../assets/prompt-blending/blue-sphere-0.5-red-cube-0.5.png)
</figure>
Indeed, removing the word "hybrid" produces an image that is more like what we'd
expect.
## Dynamic Prompts

View File

@ -30,10 +30,6 @@ image output.
### * [Image-to-Image Guide](IMG2IMG.md)
Use a seed image to build new creations in the CLI.
### * [Generating Variations](VARIATIONS.md)
Have an image you like and want to generate many more like it? Variations
are the ticket.
## Model Management
### * [Model Installation](../installation/050_INSTALLING_MODELS.md)

27
docs/help/diffusion.md Normal file
View File

@ -0,0 +1,27 @@
Taking the time to understand the diffusion process will help you to understand how to more effectively use InvokeAI.
There are two main ways Stable Diffusion works - with images, and latents.
Image space represents images in pixel form that you look at. Latent space represents compressed inputs. Its in latent space that Stable Diffusion processes images. A VAE (Variational Auto Encoder) is responsible for compressing and encoding inputs into latent space, as well as decoding outputs back into image space.
To fully understand the diffusion process, we need to understand a few more terms: UNet, CLIP, and conditioning.
A U-Net is a model trained on a large number of latent images with with known amounts of random noise added. This means that the U-Net can be given a slightly noisy image and it will predict the pattern of noise needed to subtract from the image in order to recover the original.
CLIP is a model that tokenizes and encodes text into conditioning. This conditioning guides the model during the denoising steps to produce a new image.
The U-Net and CLIP work together during the image generation process at each denoising step, with the U-Net removing noise in such a way that the result is similar to images in the U-Nets training set, while CLIP guides the U-Net towards creating images that are most similar to the prompt.
When you generate an image using text-to-image, multiple steps occur in latent space:
1. Random noise is generated at the chosen height and width. The noises characteristics are dictated by seed. This noise tensor is passed into latent space. Well call this noise A.
2. Using a models U-Net, a noise predictor examines noise A, and the words tokenized by CLIP from your prompt (conditioning). It generates its own noise tensor to predict what the final image might look like in latent space. Well call this noise B.
3. Noise B is subtracted from noise A in an attempt to create a latent image consistent with the prompt. This step is repeated for the number of sampler steps chosen.
4. The VAE decodes the final latent image from latent space into image space.
Image-to-image is a similar process, with only step 1 being different:
1. The input image is encoded from image space into latent space by the VAE. Noise is then added to the input latent image. Denoising Strength dictates how may noise steps are added, and the amount of noise added at each step. A Denoising Strength of 0 means there are 0 steps and no noise added, resulting in an unchanged image, while a Denoising Strength of 1 results in the image being completely replaced with noise and a full set of denoising steps are performance. The process is then the same as steps 2-4 in the text-to-image process.
Furthermore, a model provides the CLIP prompt tokenizer, the VAE, and a U-Net (where noise prediction occurs given a prompt and initial noise tensor).
A noise scheduler (eg. DPM++ 2M Karras) schedules the subtraction of noise from the latent image across the sampler steps chosen (step 3 above). Less noise is usually subtracted at higher sampler steps.

View File

@ -49,9 +49,9 @@ title: Home
[![github stars badge]][github stars link]
[![github forks badge]][github forks link]
[![CI checks on main badge]][ci checks on main link]
<!-- [![CI checks on main badge]][ci checks on main link]
[![CI checks on dev badge]][ci checks on dev link]
<!-- [![latest commit to dev badge]][latest commit to dev link] -->
[![latest commit to dev badge]][latest commit to dev link] -->
[![github open issues badge]][github open issues link]
[![github open prs badge]][github open prs link]

View File

@ -8,9 +8,9 @@ title: Installing Manually
</figure>
!!! warning "This is for advanced Users"
!!! warning "This is for Advanced Users"
**python experience is mandatory**
**Python experience is mandatory**
## Introduction

View File

@ -4,9 +4,9 @@ title: Installing with Docker
# :fontawesome-brands-docker: Docker
!!! warning "For end users"
!!! warning "For most users"
We highly recommend to Install InvokeAI locally using [these instructions](index.md)
We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md)
!!! tip "For developers"

View File

@ -25,10 +25,10 @@ This method is recommended for experienced users and developers
#### [Docker Installation](040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers
### Other Installation Guides
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
- [XFormers](installation/070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](installation/050_INSTALLING_MODELS.md)
- [PyPatchMatch](060_INSTALL_PATCHMATCH.md)
- [XFormers](070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](050_INSTALLING_MODELS.md)
## :fontawesome-solid-computer: Hardware Requirements

View File

@ -0,0 +1,7 @@
document$.subscribe(function() {
var tables = document.querySelectorAll("article table:not([class])")
tables.forEach(function(table) {
new Tablesort(table)
})
})

68
docs/nodes/NODES.md Normal file
View File

@ -0,0 +1,68 @@
# Using the Node Editor
The nodes editor is a blank canvas allowing for the use of individual functions and image transformations to control the image generation workflow. Nodes take in inputs on the left side of the node, and return an output on the right side of the node. A node graph is composed of multiple nodes that are connected together to create a workflow. Nodes' inputs and outputs are connected by dragging connectors from node to node. Inputs and outputs are color coded for ease of use.
To better understand how nodes are used, think of how an electric power bar works. It takes in one input (electricity from a wall outlet) and passes it to multiple devices through multiple outputs. Similarly, a node could have multiple inputs and outputs functioning at the same (or different) time, but all node outputs pass information onward like a power bar passes electricity. Not all outputs are compatible with all inputs, however - Each node has different constraints on how it is expecting to input/output information. In general, node outputs are colour-coded to match compatible inputs of other nodes.
If you're not familiar with Diffusion, take a look at our [Diffusion Overview.](../help/diffusion.md) Understanding how diffusion works will enable you to more easily use the Nodes Editor and build workflows to suit your needs.
## Important Concepts
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
### Noise
An initial noise tensor is necessary for the latent diffusion process. As a result, the Denoising node requires a noise node input.
![groupsnoise](../assets/nodes/groupsnoise.png)
### Text Prompt Conditioning
Conditioning is necessary for the latent diffusion process, whether empty or not. As a result, the Denoising node requires positive and negative conditioning inputs. Conditioning is reliant on a CLIP text encoder provided by the Model Loader node.
![groupsconditioning](../assets/nodes/groupsconditioning.png)
### Image to Latents & VAE
The ImageToLatents node takes in a pixel image and a VAE and outputs a latents. The LatentsToImage node does the opposite, taking in a latents and a VAE and outpus a pixel image.
![groupsimgvae](../assets/nodes/groupsimgvae.png)
### Defined & Random Seeds
It is common to want to use both the same seed (for continuity) and random seeds (for variety). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
![groupsrandseed](../assets/nodes/groupsrandseed.png)
### ControlNet
The ControlNet node outputs a Control, which can be provided as input to non-image *ToLatents nodes. Depending on the type of ControlNet desired, ControlNet nodes usually require an image processor node, such as a Canny Processor or Depth Processor, which prepares an input image for use with ControlNet.
![groupscontrol](../assets/nodes/groupscontrol.png)
### LoRA
The Lora Loader node lets you load a LoRA and pass it as output.A LoRA provides fine-tunes to the UNet and text encoder weights that augment the base models image and text vocabularies.
![groupslora](../assets/nodes/groupslora.png)
### Scaling
Use the ImageScale, ScaleLatents, and Upscale nodes to upscale images and/or latent images. Upscaling is the process of enlarging an image and adding more detail. The chosen method differs across contexts. However, be aware that latents are already noisy and compressed at their original resolution; scaling an image could produce more detailed results.
![groupsallscale](../assets/nodes/groupsallscale.png)
### Iteration + Multiple Images as Input
Iteration is a common concept in any processing, and means to repeat a process with given input. In nodes, you're able to use the Iterate node to iterate through collections usually gathered by the Collect node. The Iterate node has many potential uses, from processing a collection of images one after another, to varying seeds across multiple image generations and more. This screenshot demonstrates how to collect several images and use them in an image generation workflow.
![groupsiterate](../assets/nodes/groupsiterate.png)
### Multiple Image Generation + Random Seeds
Multiple image generation in the node editor is done using the RandomRange node. In this case, the 'Size' field represents the number of images to generate. As RandomRange produces a collection of integers, we need to add the Iterate node to iterate through the collection.
To control seeds across generations takes some care. The first row in the screenshot will generate multiple images with different seeds, but using the same RandomRange parameters across invocations will result in the same group of random seeds being used across the images, producing repeatable results. In the second row, adding the RandomInt node as input to RandomRange's 'Seed' edge point will ensure that seeds are varied across all images across invocations, producing varied results.
![groupsmultigenseeding](../assets/nodes/groupsmultigenseeding.png)

View File

@ -0,0 +1,80 @@
# ComfyUI to InvokeAI
If you're coming to InvokeAI from ComfyUI, welcome! You'll find things are similar but different - the good news is that you already know how things should work, and it's just a matter of wiring them up!
Some things to note:
- InvokeAI's nodes tend to be more granular than default nodes in Comfy. This means each node in Invoke will do a specific task and you might need to use multiple nodes to achieve the same result. The added granularity improves the control you have have over your workflows.
- InvokeAI's backend and ComfyUI's backend are very different which means Comfy workflows are not able to be imported into InvokeAI. However, we have created a [list of popular workflows](exampleWorkflows.md) for you to get started with Nodes in InvokeAI!
## Node Equivalents:
| Comfy UI Category | ComfyUI Node | Invoke Equivalent |
|:---------------------------------- |:---------------------------------- | :----------------------------------|
| Sampling |KSampler |Denoise Latents|
| Sampling |Ksampler Advanced|Denoise Latents |
| Loaders |Load Checkpoint | Main Model Loader _or_ SDXL Main Model Loader|
| Loaders |Load VAE | VAE Loader |
| Loaders |Load Lora | LoRA Loader _or_ SDXL Lora Loader|
| Loaders |Load ControlNet Model | ControlNet|
| Loaders |Load ControlNet Model (diff) | ControlNet|
| Loaders |Load Style Model | Reference Only ControlNet will be coming in a future version of InvokeAI|
| Loaders |unCLIPCheckpointLoader | N/A |
| Loaders |GLIGENLoader | N/A |
| Loaders |Hypernetwork Loader | N/A |
| Loaders |Load Upscale Model | Occurs within "Upscale (RealESRGAN)"|
|Conditioning |CLIP Text Encode (Prompt) | Compel (Prompt) or SDXL Compel (Prompt) |
|Conditioning |CLIP Set Last Layer | CLIP Skip|
|Conditioning |Conditioning (Average) | Use the .blend() feature of prompts |
|Conditioning |Conditioning (Combine) | N/A |
|Conditioning |Conditioning (Concat) | See the Prompt Tools Community Node|
|Conditioning |Conditioning (Set Area) | N/A |
|Conditioning |Conditioning (Set Mask) | Mask Edge |
|Conditioning |CLIP Vision Encode | N/A |
|Conditioning |unCLIPConditioning | N/A |
|Conditioning |Apply ControlNet | ControlNet |
|Conditioning |Apply ControlNet (Advanced) | ControlNet |
|Latent |VAE Decode | Latents to Image|
|Latent |VAE Encode | Image to Latents |
|Latent |Empty Latent Image | Noise |
|Latent |Upscale Latent |Resize Latents |
|Latent |Upscale Latent By |Scale Latents |
|Latent |Latent Composite | Blend Latents |
|Latent |LatentCompositeMasked | N/A |
|Image |Save Image | Image |
|Image |Preview Image |Current |
|Image |Load Image | Image|
|Image |Empty Image| Blank Image |
|Image |Invert Image | Invert Lerp Image |
|Image |Batch Images | Link "Image" nodes into an "Image Collection" node |
|Image |Pad Image for Outpainting | Outpainting is easily accomplished in the Unified Canvas |
|Image |ImageCompositeMasked | Paste Image |
|Image | Upscale Image | Resize Image |
|Image | Upscale Image By | Upscale Image |
|Image | Upscale Image (using Model) | Upscale Image |
|Image | ImageBlur | Blur Image |
|Image | ImageQuantize | N/A |
|Image | ImageSharpen | N/A |
|Image | Canny | Canny Processor |
|Mask |Load Image (as Mask) | Image |
|Mask |Convert Mask to Image | Image|
|Mask |Convert Image to Mask | Image |
|Mask |SolidMask | N/A |
|Mask |InvertMask |Invert Lerp Image |
|Mask |CropMask | Crop Image |
|Mask |MaskComposite | Combine Mask |
|Mask |FeatherMask | Blur Image |
|Advanced | Load CLIP | Main Model Loader _or_ SDXL Main Model Loader|
|Advanced | UNETLoader | Main Model Loader _or_ SDXL Main Model Loader|
|Advanced | DualCLIPLoader | Main Model Loader _or_ SDXL Main Model Loader|
|Advanced | Load Checkpoint | Main Model Loader _or_ SDXL Main Model Loader |
|Advanced | ConditioningZeroOut | N/A |
|Advanced | ConditioningSetTimestepRange | N/A |
|Advanced | CLIPTextEncodeSDXLRefiner | Compel (Prompt) or SDXL Compel (Prompt) |
|Advanced | CLIPTextEncodeSDXL |Compel (Prompt) or SDXL Compel (Prompt) |
|Advanced | ModelMergeSimple | Model Merging is available in the Model Manager |
|Advanced | ModelMergeBlocks | Model Merging is available in the Model Manager|
|Advanced | CheckpointSave | Model saving is available in the Model Manager|
|Advanced | CLIPMergeSimple | N/A |

View File

@ -2,17 +2,13 @@
These are nodes that have been developed by the community, for the community. If you're not sure what a node is, you can learn more about nodes [here](overview.md).
If you'd like to submit a node for the community, please refer to the [node creation overview](./overview.md#contributing-nodes).
If you'd like to submit a node for the community, please refer to the [node creation overview](contributingNodes.md).
To download a node, simply download the `.py` node file from the link and add it to the `invokeai/app/invocations/` folder in your Invoke AI install location. Along with the node, an example node graph should be provided to help you get started with the node.
To download a node, simply download the `.py` node file from the link and add it to the `invokeai/app/invocations` folder in your Invoke AI install location. Along with the node, an example node graph should be provided to help you get started with the node.
To use a community node graph, download the the `.json` node graph file and load it into Invoke AI via the **Load Nodes** button on the Node Editor.
## Disclaimer
The nodes linked below have been developed and contributed by members of the Invoke AI community. While we strive to ensure the quality and safety of these contributions, we do not guarantee the reliability or security of the nodes. If you have issues or concerns with any of the nodes below, please raise it on GitHub or in the Discord.
## List of Nodes
## Community Nodes
### FaceTools
@ -26,15 +22,81 @@ The nodes linked below have been developed and contributed by members of the Inv
![b920b710-1882-49a0-8d02-82dff2cca907](https://github.com/invoke-ai/InvokeAI/assets/25252829/7660c1ed-bf7d-4d0a-947f-1fc1679557ba)
![71a91805-fda5-481c-b380-264665703133](https://github.com/invoke-ai/InvokeAI/assets/25252829/f8f6a2ee-2b68-4482-87da-b90221d5c3e2)
<hr>
### Ideal Size
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Node Link:** https://github.com/JPPhoto/ideal-size-node
--------------------------------
### Retroize
**Description:** Retroize is a collection of nodes for InvokeAI to "Retroize" images. Any image can be given a fresh coat of retro paint with these nodes, either from your gallery or from within the graph itself. It includes nodes to pixelize, quantize, palettize, and ditherize images; as well as to retrieve palettes from existing images.
**Node Link:** https://github.com/Ar7ific1al/invokeai-retroizeinode/
**Retroize Output Examples**
![image](https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974)
--------------------------------
### GPT2RandomPromptMaker
**Description:** A node for InvokeAI utilizes the GPT-2 language model to generate random prompts based on a provided seed and context.
**Node Link:** https://github.com/mickr777/GPT2RandomPromptMaker
**Output Examples**
Generated Prompt: An enchanted weapon will be usable by any character regardless of their alignment.
![9acf5aef-7254-40dd-95b3-8eac431dfab0 (1)](https://github.com/mickr777/InvokeAI/assets/115216705/8496ba09-bcdd-4ff7-8076-ff213b6a1e4c)
--------------------------------
### Load Video Frame
**Description:** This is a video frame image provider + indexer/video creation nodes for hooking up to iterators and ranges and ControlNets and such for invokeAI node experimentation. Think animation + ControlNet outputs.
**Node Link:** https://github.com/helix4u/load_video_frame
**Example Node Graph:** https://github.com/helix4u/load_video_frame/blob/main/Example_Workflow.json
**Output Example:**
=======
![Example animation](https://github.com/helix4u/load_video_frame/blob/main/testmp4_embed_converted.gif)
[Full mp4 of Example Output test.mp4](https://github.com/helix4u/load_video_frame/blob/main/test.mp4)
--------------------------------
### Oobabooga
**Description:** asks a local LLM running in Oobabooga's Text-Generation-Webui to write a prompt based on the user input.
**Link:** https://github.com/sammyf/oobabooga-node
**Example:**
"describe a new mystical creature in its natural environment"
*can return*
"The mystical creature I am describing to you is called the "Glimmerwing". It is a majestic, iridescent being that inhabits the depths of the most enchanted forests and glimmering lakes. Its body is covered in shimmering scales that reflect every color of the rainbow, and it has delicate, translucent wings that sparkle like diamonds in the sunlight. The Glimmerwing's home is a crystal-clear lake, surrounded by towering trees with leaves that shimmer like jewels. In this serene environment, the Glimmerwing spends its days swimming gracefully through the water, chasing schools of glittering fish and playing with the gentle ripples of the lake's surface.
As the sun sets, the Glimmerwing perches on a branch of one of the trees, spreading its wings to catch the last rays of light. The creature's scales glow softly, casting a rainbow of colors across the forest floor. The Glimmerwing sings a haunting melody, its voice echoing through the stillness of the night air. Its song is said to have the power to heal the sick and bring peace to troubled souls. Those who are lucky enough to hear the Glimmerwing's song are forever changed by its beauty and grace."
![glimmerwing_small](https://github.com/sammyf/oobabooga-node/assets/42468608/cecdd820-93dd-4c35-abbf-607e001fb2ed)
**Requirement**
a Text-Generation-Webui instance (might work remotely too, but I never tried it) and obviously InvokeAI 3.x
**Note**
This node works best with SDXL models, especially as the style can be described independantly of the LLM's output.
--------------------------------
### Example Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
@ -47,7 +109,12 @@ The nodes linked below have been developed and contributed by members of the Inv
![Example Image](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png){: style="height:115px;width:240px"}
## Disclaimer
The nodes linked have been developed and contributed by members of the Invoke AI community. While we strive to ensure the quality and safety of these contributions, we do not guarantee the reliability or security of the nodes. If you have issues or concerns with any of the nodes below, please raise it on GitHub or in the Discord.
## Help
If you run into any issues with a node, please post in the [InvokeAI Discord](https://discord.gg/ZmtBAhwWhy).

View File

@ -0,0 +1,27 @@
# Contributing Nodes
To learn about the specifics of creating a new node, please visit our [Node creation documentation](../contributing/INVOCATIONS.md).
Once youve created a node and confirmed that it behaves as expected locally, follow these steps:
- Make sure the node is contained in a new Python (.py) file
- Submit a pull request with a link to your node in GitHub against the `nodes` branch to add the node to the [Community Nodes](Community Nodes) list
- Make sure you are following the template below and have provided all relevant details about the node and what it does.
- A maintainer will review the pull request and node. If the node is aligned with the direction of the project, you might be asked for permission to include it in the core project.
### Community Node Template
```markdown
--------------------------------
### Super Cool Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
**Node Link:** https://github.com/invoke-ai/InvokeAI/fake_node.py
**Example Node Graph:** https://github.com/invoke-ai/InvokeAI/fake_node_graph.json
**Output Examples**
![InvokeAI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png)
```

View File

@ -0,0 +1,97 @@
# List of Default Nodes
The table below contains a list of the default nodes shipped with InvokeAI and their descriptions.
| Node <img width=160 align="right"> | Function |
|: ---------------------------------- | :--------------------------------------------------------------------------------------|
|Add Integers | Adds two numbers|
|Boolean Primitive Collection | A collection of boolean primitive values|
|Boolean Primitive | A boolean primitive value|
|Canny Processor | Canny edge detection for ControlNet|
|CLIP Skip | Skip layers in clip text_encoder model.|
|Collect | Collects values into a collection|
|Color Correct | Shifts the colors of a target image to match the reference image, optionally using a mask to only color-correct certain regions of the target image.|
|Color Primitive | A color primitive value|
|Compel Prompt | Parse prompt using compel package to conditioning.|
|Conditioning Primitive Collection | A collection of conditioning tensor primitive values|
|Conditioning Primitive | A conditioning tensor primitive value|
|Content Shuffle Processor | Applies content shuffle processing to image|
|ControlNet | Collects ControlNet info to pass to other nodes|
|OpenCV Inpaint | Simple inpaint using opencv.|
|Denoise Latents | Denoises noisy latents to decodable images|
|Divide Integers | Divides two numbers|
|Dynamic Prompt | Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator|
|Upscale (RealESRGAN) | Upscales an image using RealESRGAN.|
|Float Primitive Collection | A collection of float primitive values|
|Float Primitive | A float primitive value|
|Float Range | Creates a range|
|HED (softedge) Processor | Applies HED edge detection to image|
|Blur Image | Blurs an image|
|Extract Image Channel | Gets a channel from an image.|
|Image Primitive Collection | A collection of image primitive values|
|Convert Image Mode | Converts an image to a different mode.|
|Crop Image | Crops an image to a specified box. The box can be outside of the image.|
|Image Hue Adjustment | Adjusts the Hue of an image.|
|Inverse Lerp Image | Inverse linear interpolation of all pixels of an image|
|Image Primitive | An image primitive value|
|Lerp Image | Linear interpolation of all pixels of an image|
|Image Luminosity Adjustment | Adjusts the Luminosity (Value) of an image.|
|Multiply Images | Multiplies two images together using `PIL.ImageChops.multiply()`.|
|Blur NSFW Image | Add blur to NSFW-flagged images|
|Paste Image | Pastes an image into another image.|
|ImageProcessor | Base class for invocations that preprocess images for ControlNet|
|Resize Image | Resizes an image to specific dimensions|
|Image Saturation Adjustment | Adjusts the Saturation of an image.|
|Scale Image | Scales an image by a factor|
|Image to Latents | Encodes an image into latents.|
|Add Invisible Watermark | Add an invisible watermark to an image|
|Solid Color Infill | Infills transparent areas of an image with a solid color|
|PatchMatch Infill | Infills transparent areas of an image using the PatchMatch algorithm|
|Tile Infill | Infills transparent areas of an image with tiles of the image|
|Integer Primitive Collection | A collection of integer primitive values|
|Integer Primitive | An integer primitive value|
|Iterate | Iterates over a list of items|
|Latents Primitive Collection | A collection of latents tensor primitive values|
|Latents Primitive | A latents tensor primitive value|
|Latents to Image | Generates an image from latents.|
|Leres (Depth) Processor | Applies leres processing to image|
|Lineart Anime Processor | Applies line art anime processing to image|
|Lineart Processor | Applies line art processing to image|
|LoRA Loader | Apply selected lora to unet and text_encoder.|
|Main Model Loader | Loads a main model, outputting its submodels.|
|Combine Mask | Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`.|
|Mask Edge | Applies an edge mask to an image|
|Mask from Alpha | Extracts the alpha channel of an image as a mask.|
|Mediapipe Face Processor | Applies mediapipe face processing to image|
|Midas (Depth) Processor | Applies Midas depth processing to image|
|MLSD Processor | Applies MLSD processing to image|
|Multiply Integers | Multiplies two numbers|
|Noise | Generates latent noise.|
|Normal BAE Processor | Applies NormalBae processing to image|
|ONNX Latents to Image | Generates an image from latents.|
|ONNX Prompt (Raw) | A node to process inputs and produce outputs. May use dependency injection in __init__ to receive providers.|
|ONNX Text to Latents | Generates latents from conditionings.|
|ONNX Model Loader | Loads a main model, outputting its submodels.|
|Openpose Processor | Applies Openpose processing to image|
|PIDI Processor | Applies PIDI processing to image|
|Prompts from File | Loads prompts from a text file|
|Random Integer | Outputs a single random integer.|
|Random Range | Creates a collection of random numbers|
|Integer Range | Creates a range of numbers from start to stop with step|
|Integer Range of Size | Creates a range from start to start + size with step|
|Resize Latents | Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.|
|SDXL Compel Prompt | Parse prompt using compel package to conditioning.|
|SDXL LoRA Loader | Apply selected lora to unet and text_encoder.|
|SDXL Main Model Loader | Loads an sdxl base model, outputting its submodels.|
|SDXL Refiner Compel Prompt | Parse prompt using compel package to conditioning.|
|SDXL Refiner Model Loader | Loads an sdxl refiner model, outputting its submodels.|
|Scale Latents | Scales latents by a given factor.|
|Segment Anything Processor | Applies segment anything processing to image|
|Show Image | Displays a provided image, and passes it forward in the pipeline.|
|Step Param Easing | Experimental per-step parameter easing for denoising steps|
|String Primitive Collection | A collection of string primitive values|
|String Primitive | A string primitive value|
|Subtract Integers | Subtracts two numbers|
|Tile Resample Processor | Tile resampler processor|
|VAE Loader | Loads a VAE model, outputting a VaeLoaderOutput|
|Zoe (Depth) Processor | Applies Zoe depth processing to image|

View File

@ -0,0 +1,15 @@
# Example Workflows
TODO: Will update once uploading workflows is available.
## Text2Image
## Image2Image
## ControlNet
## Upscaling
## Inpainting / Outpainting
## LoRAs

View File

@ -1,42 +1,26 @@
# Nodes
## What are Nodes?
An Node is simply a single operation that takes in some inputs and gives
out some outputs. We can then chain multiple nodes together to create more
An Node is simply a single operation that takes in inputs and returns
out outputs. Multiple nodes can be linked together to create more
complex functionality. All InvokeAI features are added through nodes.
This means nodes can be used to easily extend the image generation capabilities of InvokeAI, and allow you build workflows to suit your needs.
### Anatomy of a Node
You can read more about nodes and the node editor [here](../features/NODES.md).
Individual nodes are made up of the following:
- Inputs: Edge points on the left side of the node window where you connect outputs from other nodes.
- Outputs: Edge points on the right side of the node window where you connect to inputs on other nodes.
- Options: Various options which are either manually configured, or overridden by connecting an output from another node to the input.
## Downloading Nodes
To download a new node, visit our list of [Community Nodes](communityNodes.md). These are nodes that have been created by the community, for the community.
With nodes, you can can easily extend the image generation capabilities of InvokeAI, and allow you build workflows that suit your needs.
You can read more about nodes and the node editor [here](../nodes/NODES.md).
To get started with nodes, take a look at some of our examples for [common workflows](../nodes/exampleWorkflows.md)
## Downloading New Nodes
To download a new node, visit our list of [Community Nodes](../nodes/communityNodes.md). These are nodes that have been created by the community, for the community.
## Contributing Nodes
To learn about creating a new node, please visit our [Node creation documenation](../contributing/INVOCATIONS.md).
Once youve created a node and confirmed that it behaves as expected locally, follow these steps:
* Make sure the node is contained in a new Python (.py) file
* Submit a pull request with a link to your node in GitHub against the `nodes` branch to add the node to the [Community Nodes](Community Nodes) list
* Make sure you are following the template below and have provided all relevant details about the node and what it does.
* A maintainer will review the pull request and node. If the node is aligned with the direction of the project, you might be asked for permission to include it in the core project.
### Community Node Template
```markdown
--------------------------------
### Super Cool Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
**Node Link:** https://github.com/invoke-ai/InvokeAI/fake_node.py
**Example Node Graph:** https://github.com/invoke-ai/InvokeAI/fake_node_graph.json
**Output Examples**
![InvokeAI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png)
```

View File

@ -46,6 +46,7 @@ if [[ $(python -c 'from importlib.util import find_spec; print(find_spec("build"
pip install --user build
fi
rm -r ../build
python -m build --wheel --outdir dist/ ../.
# ----------------------

View File

@ -407,7 +407,7 @@ def get_pip_from_venv(venv_path: Path) -> str:
:rtype: str
"""
pip = "Scripts\pip.exe" if OS == "Windows" else "bin/pip"
pip = "Scripts\\pip.exe" if OS == "Windows" else "bin/pip"
return str(venv_path.expanduser().resolve() / pip)

View File

@ -49,7 +49,7 @@ if __name__ == "__main__":
try:
inst.install(**args.__dict__)
except KeyboardInterrupt as exc:
except KeyboardInterrupt:
print("\n")
print("Ctrl-C pressed. Aborting.")
print("Come back soon!")

View File

@ -70,7 +70,7 @@ def confirm_install(dest: Path) -> bool:
)
else:
print(f"InvokeAI will be installed in {dest}")
dest_confirmed = not Confirm.ask(f"Would you like to pick a different location?", default=False)
dest_confirmed = not Confirm.ask("Would you like to pick a different location?", default=False)
console.line()
return dest_confirmed
@ -90,7 +90,7 @@ def dest_path(dest=None) -> Path:
dest = Path(dest).expanduser().resolve()
else:
dest = Path.cwd().expanduser().resolve()
prev_dest = dest.expanduser().resolve()
prev_dest = init_path = dest
dest_confirmed = confirm_install(dest)
@ -109,9 +109,9 @@ def dest_path(dest=None) -> Path:
)
console.line()
print(f"[orange3]Please select the destination directory for the installation:[/] \[{browse_start}]: ")
console.print(f"[orange3]Please select the destination directory for the installation:[/] \\[{browse_start}]: ")
selected = prompt(
f">>> ",
">>> ",
complete_in_thread=True,
completer=path_completer,
default=str(browse_start) + os.sep,
@ -134,14 +134,14 @@ def dest_path(dest=None) -> Path:
try:
dest.mkdir(exist_ok=True, parents=True)
return dest
except PermissionError as exc:
print(
except PermissionError:
console.print(
f"Failed to create directory {dest} due to insufficient permissions",
style=Style(color="red"),
highlight=True,
)
except OSError as exc:
console.print_exception(exc)
except OSError:
console.print_exception()
if Confirm.ask("Would you like to try again?"):
dest_path(init_path)

View File

@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Optional
from logging import Logger
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
@ -45,7 +44,7 @@ def check_internet() -> bool:
try:
urllib.request.urlopen(host, timeout=1)
return True
except:
except Exception:
return False

View File

@ -55,7 +55,7 @@ async def get_version() -> AppVersion:
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
async def get_config() -> AppConfig:
infill_methods = ["tile"]
infill_methods = ["tile", "lama"]
if PatchMatch.patchmatch_available():
infill_methods.append("patchmatch")

View File

@ -34,7 +34,7 @@ async def add_image_to_board(
board_id=board_id, image_name=image_name
)
return result
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to add image to board")
@ -53,7 +53,7 @@ async def remove_image_from_board(
try:
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
return result
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to remove image from board")
@ -79,10 +79,10 @@ async def add_images_to_board(
board_id=board_id, image_name=image_name
)
added_image_names.append(image_name)
except:
except Exception:
pass
return AddImagesToBoardResult(board_id=board_id, added_image_names=added_image_names)
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to add images to board")
@ -105,8 +105,8 @@ async def remove_images_from_board(
try:
ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
removed_image_names.append(image_name)
except:
except Exception:
pass
return RemoveImagesFromBoardResult(removed_image_names=removed_image_names)
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to remove images from board")

View File

@ -37,7 +37,7 @@ async def create_board(
try:
result = ApiDependencies.invoker.services.boards.create(board_name=board_name)
return result
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to create board")
@ -50,7 +50,7 @@ async def get_board(
try:
result = ApiDependencies.invoker.services.boards.get_dto(board_id=board_id)
return result
except Exception as e:
except Exception:
raise HTTPException(status_code=404, detail="Board not found")
@ -73,7 +73,7 @@ async def update_board(
try:
result = ApiDependencies.invoker.services.boards.update(board_id=board_id, changes=changes)
return result
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to update board")
@ -105,7 +105,7 @@ async def delete_board(
deleted_board_images=deleted_board_images,
deleted_images=[],
)
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to delete board")

View File

@ -5,7 +5,7 @@ from PIL import Image
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from pydantic import BaseModel
from pydantic import BaseModel, Field
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ImageCategory, ResourceOrigin
@ -19,6 +19,7 @@ from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"])
# images are immutable; set a high max-age
IMAGE_MAX_AGE = 31536000
@ -54,7 +55,7 @@ async def upload_image(
if crop_visible:
bbox = pil_image.getbbox()
pil_image = pil_image.crop(bbox)
except:
except Exception:
# Error opening the image
raise HTTPException(status_code=415, detail="Failed to read image")
@ -72,7 +73,7 @@ async def upload_image(
response.headers["Location"] = image_dto.image_url
return image_dto
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to create image")
@ -84,7 +85,7 @@ async def delete_image(
try:
ApiDependencies.invoker.services.images.delete(image_name)
except Exception as e:
except Exception:
# TODO: Does this need any exception handling at all?
pass
@ -96,7 +97,7 @@ async def clear_intermediates() -> int:
try:
count_deleted = ApiDependencies.invoker.services.images.delete_intermediates()
return count_deleted
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to clear intermediates")
pass
@ -114,7 +115,7 @@ async def update_image(
try:
return ApiDependencies.invoker.services.images.update(image_name, image_changes)
except Exception as e:
except Exception:
raise HTTPException(status_code=400, detail="Failed to update image")
@ -130,7 +131,7 @@ async def get_image_dto(
try:
return ApiDependencies.invoker.services.images.get_dto(image_name)
except Exception as e:
except Exception:
raise HTTPException(status_code=404)
@ -146,7 +147,7 @@ async def get_image_metadata(
try:
return ApiDependencies.invoker.services.images.get_metadata(image_name)
except Exception as e:
except Exception:
raise HTTPException(status_code=404)
@ -182,7 +183,7 @@ async def get_image_full(
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception as e:
except Exception:
raise HTTPException(status_code=404)
@ -211,7 +212,7 @@ async def get_image_thumbnail(
response = FileResponse(path, media_type="image/webp", content_disposition_type="inline")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception as e:
except Exception:
raise HTTPException(status_code=404)
@ -233,7 +234,7 @@ async def get_image_urls(
image_url=image_url,
thumbnail_url=thumbnail_url,
)
except Exception as e:
except Exception:
raise HTTPException(status_code=404)
@ -281,8 +282,46 @@ async def delete_images_from_list(
try:
ApiDependencies.invoker.services.images.delete(image_name)
deleted_images.append(image_name)
except:
except Exception:
pass
return DeleteImagesFromListResult(deleted_images=deleted_images)
except Exception as e:
except Exception:
raise HTTPException(status_code=500, detail="Failed to delete images")
class ImagesUpdatedFromListResult(BaseModel):
updated_image_names: list[str] = Field(description="The image names that were updated")
@images_router.post("/star", operation_id="star_images_in_list", response_model=ImagesUpdatedFromListResult)
async def star_images_in_list(
image_names: list[str] = Body(description="The list of names of images to star", embed=True),
) -> ImagesUpdatedFromListResult:
try:
updated_image_names: list[str] = []
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.update(image_name, changes=ImageRecordChanges(starred=True))
updated_image_names.append(image_name)
except Exception:
pass
return ImagesUpdatedFromListResult(updated_image_names=updated_image_names)
except Exception:
raise HTTPException(status_code=500, detail="Failed to star images")
@images_router.post("/unstar", operation_id="unstar_images_in_list", response_model=ImagesUpdatedFromListResult)
async def unstar_images_in_list(
image_names: list[str] = Body(description="The list of names of images to unstar", embed=True),
) -> ImagesUpdatedFromListResult:
try:
updated_image_names: list[str] = []
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.update(image_name, changes=ImageRecordChanges(starred=False))
updated_image_names.append(image_name)
except Exception:
pass
return ImagesUpdatedFromListResult(updated_image_names=updated_image_names)
except Exception:
raise HTTPException(status_code=500, detail="Failed to unstar images")

View File

@ -1,12 +1,13 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Annotated, List, Optional, Union
from typing import Annotated, Optional, Union
from fastapi import Body, HTTPException, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic.fields import Field
from ...invocations import *
# Importing * is bad karma but needed here for node detection
from ...invocations import * # noqa: F401 F403
from ...invocations.baseinvocation import BaseInvocation
from ...services.graph import (
Edge,

View File

@ -1,12 +1,11 @@
# Copyright (c) 2022-2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
import asyncio
import sys
from inspect import signature
import logging
import uvicorn
import socket
from inspect import signature
from pathlib import Path
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
@ -14,38 +13,34 @@ from fastapi.openapi.utils import get_openapi
from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from pathlib import Path
from pydantic.schema import schema
# This should come early so that modules can log their initialization properly
from .services.config import InvokeAIAppConfig
from ..backend.util.logging import InvokeAILogger
app_config = InvokeAIAppConfig.get_config()
app_config.parse_args()
logger = InvokeAILogger.getLogger(config=app_config)
from invokeai.version.invokeai_version import __version__
# we call this early so that the message appears before
# other invokeai initialization messages
if app_config.version:
print(f"InvokeAI version {__version__}")
sys.exit(0)
import invokeai.frontend.web as web_dir
import mimetypes
from .api.dependencies import ApiDependencies
from .api.routers import sessions, models, images, boards, board_images, app_info
from .api.sockets import SocketIO
from .invocations.baseinvocation import BaseInvocation
from .invocations.baseinvocation import BaseInvocation, _InputField, _OutputField, UIConfigBase
import torch
import invokeai.backend.util.hotfixes
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes
# noinspection PyUnresolvedReferences
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
app_config = InvokeAIAppConfig.get_config()
app_config.parse_args()
logger = InvokeAILogger.getLogger(config=app_config)
# fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
@ -128,12 +123,18 @@ def custom_openapi():
output_schemas = schema(output_types, ref_prefix="#/components/schemas/")
for schema_key, output_schema in output_schemas["definitions"].items():
output_schema["class"] = "output"
openapi_schema["components"]["schemas"][schema_key] = output_schema
# TODO: note that we assume the schema_key here is the TYPE.__name__
# This could break in some cases, figure out a better way to do it
output_type_titles[schema_key] = output_schema["title"]
# Add Node Editor UI helper schemas
ui_config_schemas = schema([UIConfigBase, _InputField, _OutputField], ref_prefix="#/components/schemas/")
for schema_key, ui_config_schema in ui_config_schemas["definitions"].items():
openapi_schema["components"]["schemas"][schema_key] = ui_config_schema
# Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations:
invoker_name = invoker.__name__
@ -141,8 +142,8 @@ def custom_openapi():
output_type_title = output_type_titles[output_type.__name__]
invoker_schema = openapi_schema["components"]["schemas"][invoker_name]
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref
invoker_schema["class"] = "invocation"
from invokeai.backend.model_management.models import get_model_config_enums
@ -208,6 +209,17 @@ def invoke_api():
check_invokeai_root(app_config) # note, may exit with an exception if root not set up
if app_config.dev_reload:
try:
import jurigged
except ImportError as e:
logger.error(
'Can\'t start `--dev_reload` because jurigged is not found; `pip install -e ".[dev]"` to include development dependencies.',
exc_info=e,
)
else:
jurigged.watch(logger=InvokeAILogger.getLogger(name="jurigged").info)
port = find_port(app_config.port)
if port != app_config.port:
logger.warn(f"Port {app_config.port} in use, using port {port}")
@ -225,13 +237,16 @@ def invoke_api():
# replace uvicorn's loggers with InvokeAI's for consistent appearance
for logname in ["uvicorn.access", "uvicorn"]:
l = logging.getLogger(logname)
l.handlers.clear()
log = logging.getLogger(logname)
log.handlers.clear()
for ch in logger.handlers:
l.addHandler(ch)
log.addHandler(ch)
loop.run_until_complete(server.serve())
if __name__ == "__main__":
invoke_api()
if app_config.version:
print(f"InvokeAI version {__version__}")
else:
invoke_api()

View File

@ -145,10 +145,10 @@ def set_autocompleter(services: InvocationServices) -> Completer:
completer = Completer(services.model_manager)
readline.set_completer(completer.complete)
# pyreadline3 does not have a set_auto_history() method
try:
readline.set_auto_history(True)
except:
except AttributeError:
# pyreadline3 does not have a set_auto_history() method
pass
readline.set_pre_input_hook(completer._pre_input_hook)
readline.set_completer_delims(" ")

View File

@ -13,16 +13,8 @@ from pydantic.fields import Field
# This should come early so that the logger can pick up its configuration options
from .services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger().getLogger(config=config)
from invokeai.version.invokeai_version import __version__
# we call this early so that the message appears before other invokeai initialization messages
if config.version:
print(f"InvokeAI version {__version__}")
sys.exit(0)
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
@ -62,10 +54,15 @@ from .services.processor import DefaultInvocationProcessor
from .services.sqlite import SqliteItemStorage
import torch
import invokeai.backend.util.hotfixes
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger().getLogger(config=config)
class CliCommand(BaseModel):
@ -482,4 +479,7 @@ def invoke_cli():
if __name__ == "__main__":
invoke_cli()
if config.version:
print(f"InvokeAI version {__version__}")
else:
invoke_cli()

View File

@ -2,16 +2,382 @@
from __future__ import annotations
import json
from abc import ABC, abstractmethod
from enum import Enum
from inspect import signature
from typing import TYPE_CHECKING, Dict, List, Literal, TypedDict, get_args, get_type_hints
import re
from typing import (
TYPE_CHECKING,
AbstractSet,
Any,
Callable,
ClassVar,
Literal,
Mapping,
Optional,
Type,
TypeVar,
Union,
get_args,
get_type_hints,
)
from pydantic import BaseConfig, BaseModel, Field
from pydantic import BaseModel, Field, validator
from pydantic.fields import Undefined, ModelField
from pydantic.typing import NoArgAnyCallable
if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices
class FieldDescriptions:
denoising_start = "When to start denoising, expressed a percentage of total steps"
denoising_end = "When to stop denoising, expressed a percentage of total steps"
cfg_scale = "Classifier-Free Guidance scale"
scheduler = "Scheduler to use during inference"
positive_cond = "Positive conditioning tensor"
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
unet = "UNet (scheduler, LoRAs)"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
skipped_layers = "Number of layers to skip in text encoder"
seed = "Seed for random number generation"
steps = "Number of steps to run"
width = "Width of output (px)"
height = "Height of output (px)"
control = "ControlNet(s) to apply"
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
core_metadata = "Optional core metadata to be written to image"
interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"
scribble_mode = "Whether or not to use scribble mode"
scale_factor = "The factor by which to scale"
blend_alpha = (
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
class Input(str, Enum):
"""
The type of input a field accepts.
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
are instantiated.
- `Input.Connection`: The field must have its value provided by a connection.
- `Input.Any`: The field may have its value provided either directly or by a connection.
"""
Connection = "connection"
Direct = "direct"
Any = "any"
class UIType(str, Enum):
"""
Type hints for the UI.
If a field should be provided a data type that does not exactly match the python type of the field, \
use this to provide the type that should be used instead. See the node development docs for detail \
on adding a new field type, which involves client-side changes.
"""
# region Primitives
Integer = "integer"
Float = "float"
Boolean = "boolean"
String = "string"
Array = "array"
Image = "ImageField"
Latents = "LatentsField"
Conditioning = "ConditioningField"
Control = "ControlField"
Color = "ColorField"
ImageCollection = "ImageCollection"
ConditioningCollection = "ConditioningCollection"
ColorCollection = "ColorCollection"
LatentsCollection = "LatentsCollection"
IntegerCollection = "IntegerCollection"
FloatCollection = "FloatCollection"
StringCollection = "StringCollection"
BooleanCollection = "BooleanCollection"
# endregion
# region Models
MainModel = "MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VaeModel = "VaeModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
UNet = "UNetField"
Vae = "VaeField"
CLIP = "ClipField"
# endregion
# region Iterate/Collect
Collection = "Collection"
CollectionItem = "CollectionItem"
# endregion
# region Misc
Enum = "enum"
Scheduler = "Scheduler"
WorkflowField = "WorkflowField"
IsIntermediate = "IsIntermediate"
MetadataField = "MetadataField"
# endregion
class UIComponent(str, Enum):
"""
The type of UI component to use for a field, used to override the default components, which are \
inferred from the field type.
"""
None_ = "none"
Textarea = "textarea"
Slider = "slider"
class _InputField(BaseModel):
"""
*DO NOT USE*
This helper class is used to tell the client about our custom field attributes via OpenAPI
schema generation, and Typescript type generation from that schema. It serves no functional
purpose in the backend.
"""
input: Input
ui_hidden: bool
ui_type: Optional[UIType]
ui_component: Optional[UIComponent]
ui_order: Optional[int]
class _OutputField(BaseModel):
"""
*DO NOT USE*
This helper class is used to tell the client about our custom field attributes via OpenAPI
schema generation, and Typescript type generation from that schema. It serves no functional
purpose in the backend.
"""
ui_hidden: bool
ui_type: Optional[UIType]
ui_order: Optional[int]
def InputField(
*args: Any,
default: Any = Undefined,
default_factory: Optional[NoArgAnyCallable] = None,
alias: Optional[str] = None,
title: Optional[str] = None,
description: Optional[str] = None,
exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
const: Optional[bool] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
multiple_of: Optional[float] = None,
allow_inf_nan: Optional[bool] = None,
max_digits: Optional[int] = None,
decimal_places: Optional[int] = None,
min_items: Optional[int] = None,
max_items: Optional[int] = None,
unique_items: Optional[bool] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
allow_mutation: bool = True,
regex: Optional[str] = None,
discriminator: Optional[str] = None,
repr: bool = True,
input: Input = Input.Any,
ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
**kwargs: Any,
) -> Any:
"""
Creates an input field for an invocation.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param Input input: [Input.Any] The kind of input this field requires. \
`Input.Direct` means a value must be provided on instantiation. \
`Input.Connection` means the value must be provided by a connection. \
`Input.Any` means either will do.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
The UI will always render a suitable component, but sometimes you want something different than the default. \
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
For this case, you could provide `UIComponent.Textarea`.
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
"""
return Field(
*args,
default=default,
default_factory=default_factory,
alias=alias,
title=title,
description=description,
exclude=exclude,
include=include,
const=const,
gt=gt,
ge=ge,
lt=lt,
le=le,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
min_items=min_items,
max_items=max_items,
unique_items=unique_items,
min_length=min_length,
max_length=max_length,
allow_mutation=allow_mutation,
regex=regex,
discriminator=discriminator,
repr=repr,
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
**kwargs,
)
def OutputField(
*args: Any,
default: Any = Undefined,
default_factory: Optional[NoArgAnyCallable] = None,
alias: Optional[str] = None,
title: Optional[str] = None,
description: Optional[str] = None,
exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
const: Optional[bool] = None,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
multiple_of: Optional[float] = None,
allow_inf_nan: Optional[bool] = None,
max_digits: Optional[int] = None,
decimal_places: Optional[int] = None,
min_items: Optional[int] = None,
max_items: Optional[int] = None,
unique_items: Optional[bool] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
allow_mutation: bool = True,
regex: Optional[str] = None,
discriminator: Optional[str] = None,
repr: bool = True,
ui_type: Optional[UIType] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
**kwargs: Any,
) -> Any:
"""
Creates an output field for an invocation output.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
"""
return Field(
*args,
default=default,
default_factory=default_factory,
alias=alias,
title=title,
description=description,
exclude=exclude,
include=include,
const=const,
gt=gt,
ge=ge,
lt=lt,
le=le,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
min_items=min_items,
max_items=max_items,
unique_items=unique_items,
min_length=min_length,
max_length=max_length,
allow_mutation=allow_mutation,
regex=regex,
discriminator=discriminator,
repr=repr,
ui_type=ui_type,
ui_hidden=ui_hidden,
ui_order=ui_order,
**kwargs,
)
class UIConfigBase(BaseModel):
"""
Provides additional node configuration to the UI.
This is used internally by the @invocation decorator logic. Do not use this directly.
"""
tags: Optional[list[str]] = Field(default_factory=None, description="The node's tags")
title: Optional[str] = Field(default=None, description="The node's display name")
category: Optional[str] = Field(default=None, description="The node's category")
class InvocationContext:
services: InvocationServices
graph_execution_state_id: str
@ -22,10 +388,11 @@ class InvocationContext:
class BaseInvocationOutput(BaseModel):
"""Base class for all invocation outputs"""
"""
Base class for all invocation outputs.
# All outputs must include a type name like this:
# type: Literal['your_output_name']
All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
"""
@classmethod
def get_all_subclasses_tuple(cls):
@ -38,14 +405,35 @@ class BaseInvocationOutput(BaseModel):
toprocess.extend(next_subclasses)
return tuple(subclasses)
class Config:
@staticmethod
def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"].extend(["type"])
class RequiredConnectionException(Exception):
"""Raised when an field which requires a connection did not receive a value."""
def __init__(self, node_id: str, field_name: str):
super().__init__(f"Node {node_id} missing connections for field {field_name}")
class MissingInputException(Exception):
"""Raised when an field which requires some input, but did not receive a value."""
def __init__(self, node_id: str, field_name: str):
super().__init__(f"Node {node_id} missing value or connection for field {field_name}")
class BaseInvocation(ABC, BaseModel):
"""A node to process inputs and produce outputs.
May use dependency injection in __init__ to receive providers.
"""
A node to process inputs and produce outputs.
May use dependency injection in __init__ to receive providers.
# All invocations must include a type name like this:
# type: Literal['your_output_name']
All invocations must use the `@invocation` decorator to provide their unique type.
"""
@classmethod
def get_all_subclasses(cls):
@ -76,70 +464,159 @@ class BaseInvocation(ABC, BaseModel):
def get_output_type(cls):
return signature(cls.invoke).return_annotation
class Config:
@staticmethod
def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
uiconfig = getattr(model_class, "UIConfig", None)
if uiconfig and hasattr(uiconfig, "title"):
schema["title"] = uiconfig.title
if uiconfig and hasattr(uiconfig, "tags"):
schema["tags"] = uiconfig.tags
if uiconfig and hasattr(uiconfig, "category"):
schema["category"] = uiconfig.category
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"].extend(["type", "id"])
@abstractmethod
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
"""Invoke with provided context and return outputs."""
pass
# fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
is_intermediate: bool = Field(default=False, description="Whether or not this node is an intermediate node.")
# fmt: on
def __init__(self, **data):
# nodes may have required fields, that can accept input from connections
# on instantiation of the model, we need to exclude these from validation
restore = dict()
try:
field_names = list(self.__fields__.keys())
for field_name in field_names:
# if the field is required and may get its value from a connection, exclude it from validation
field = self.__fields__[field_name]
_input = field.field_info.extra.get("input", None)
if _input in [Input.Connection, Input.Any] and field.required:
if field_name not in data:
restore[field_name] = self.__fields__.pop(field_name)
# instantiate the node, which will validate the data
super().__init__(**data)
finally:
# restore the removed fields
for field_name, field in restore.items():
self.__fields__[field_name] = field
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
for field_name, field in self.__fields__.items():
_input = field.field_info.extra.get("input", None)
if field.required and not hasattr(self, field_name):
if _input == Input.Connection:
raise RequiredConnectionException(self.__fields__["type"].default, field_name)
elif _input == Input.Any:
raise MissingInputException(self.__fields__["type"].default, field_name)
return self.invoke(context)
id: str = Field(
description="The id of this instance of an invocation. Must be unique among all instances of invocations."
)
is_intermediate: bool = InputField(
default=False, description="Whether or not this is an intermediate invocation.", ui_type=UIType.IsIntermediate
)
workflow: Optional[str] = InputField(
default=None,
description="The workflow to save with the image",
ui_type=UIType.WorkflowField,
)
@validator("workflow", pre=True)
def validate_workflow_is_json(cls, v):
if v is None:
return None
try:
json.loads(v)
except json.decoder.JSONDecodeError:
raise ValueError("Workflow must be valid JSON")
return v
UIConfig: ClassVar[Type[UIConfigBase]]
# TODO: figure out a better way to provide these hints
# TODO: when we can upgrade to python 3.11, we can use the`NotRequired` type instead of `total=False`
class UIConfig(TypedDict, total=False):
type_hints: Dict[
str,
Literal[
"integer",
"float",
"boolean",
"string",
"enum",
"image",
"latents",
"model",
"control",
"image_collection",
"vae_model",
"lora_model",
],
]
tags: List[str]
title: str
GenericBaseInvocation = TypeVar("GenericBaseInvocation", bound=BaseInvocation)
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
def invocation(
invocation_type: str, title: Optional[str] = None, tags: Optional[list[str]] = None, category: Optional[str] = None
) -> Callable[[Type[GenericBaseInvocation]], Type[GenericBaseInvocation]]:
"""
Adds metadata to an invocation.
class InvocationConfig(BaseConfig):
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.
`tags`
- A list of strings, used to categorise invocations.
`type_hints`
- A dict of field types which override the types in the invocation definition.
- Each key should be the name of one of the invocation's fields.
- Each value should be one of the valid types:
- `integer`, `float`, `boolean`, `string`, `enum`, `image`, `latents`, `model`
```python
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"initial_image": "image",
},
},
}
```
:param str invocation_type: The type of the invocation. Must be unique among all invocations.
:param Optional[str] title: Adds a title to the invocation. Use if the auto-generated title isn't quite right. Defaults to None.
:param Optional[list[str]] tags: Adds tags to the invocation. Invocations may be searched for by their tags. Defaults to None.
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
"""
schema_extra: CustomisedSchemaExtra
def wrapper(cls: Type[GenericBaseInvocation]) -> Type[GenericBaseInvocation]:
# Validate invocation types on creation of invocation classes
# TODO: ensure unique?
if re.compile(r"^\S+$").match(invocation_type) is None:
raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"')
# Add OpenAPI schema extras
uiconf_name = cls.__qualname__ + ".UIConfig"
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
cls.UIConfig = type(uiconf_name, (UIConfigBase,), dict())
if title is not None:
cls.UIConfig.title = title
if tags is not None:
cls.UIConfig.tags = tags
if category is not None:
cls.UIConfig.category = category
# Add the invocation type to the pydantic model of the invocation
invocation_type_annotation = Literal[invocation_type] # type: ignore
invocation_type_field = ModelField.infer(
name="type",
value=invocation_type,
annotation=invocation_type_annotation,
class_validators=None,
config=cls.__config__,
)
cls.__fields__.update({"type": invocation_type_field})
cls.__annotations__.update({"type": invocation_type_annotation})
return cls
return wrapper
GenericBaseInvocationOutput = TypeVar("GenericBaseInvocationOutput", bound=BaseInvocationOutput)
def invocation_output(
output_type: str,
) -> Callable[[Type[GenericBaseInvocationOutput]], Type[GenericBaseInvocationOutput]]:
"""
Adds metadata to an invocation output.
:param str output_type: The type of the invocation output. Must be unique among all invocation outputs.
"""
def wrapper(cls: Type[GenericBaseInvocationOutput]) -> Type[GenericBaseInvocationOutput]:
# Validate output types on creation of invocation output classes
# TODO: ensure unique?
if re.compile(r"^\S+$").match(output_type) is None:
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
# Add the output type to the pydantic model of the invocation output
output_type_annotation = Literal[output_type] # type: ignore
output_type_field = ModelField.infer(
name="type",
value=output_type,
annotation=output_type_annotation,
class_validators=None,
config=cls.__config__,
)
cls.__fields__.update({"type": output_type_field})
cls.__annotations__.update({"type": output_type_annotation})
return cls
return wrapper

View File

@ -1,60 +1,22 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import Literal
import numpy as np
from pydantic import Field, validator
from pydantic import validator
from invokeai.app.models.image import ImageField
from invokeai.app.invocations.primitives import IntegerCollectionOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext, UIConfig
class IntCollectionOutput(BaseInvocationOutput):
"""A collection of integers"""
type: Literal["int_collection"] = "int_collection"
# Outputs
collection: list[int] = Field(default=[], description="The int collection")
class FloatCollectionOutput(BaseInvocationOutput):
"""A collection of floats"""
type: Literal["float_collection"] = "float_collection"
# Outputs
collection: list[float] = Field(default=[], description="The float collection")
class ImageCollectionOutput(BaseInvocationOutput):
"""A collection of images"""
type: Literal["image_collection"] = "image_collection"
# Outputs
collection: list[ImageField] = Field(default=[], description="The output images")
class Config:
schema_extra = {"required": ["type", "collection"]}
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@invocation("range", title="Integer Range", tags=["collection", "integer", "range"], category="collections")
class RangeInvocation(BaseInvocation):
"""Creates a range of numbers from start to stop with step"""
type: Literal["range"] = "range"
# Inputs
start: int = Field(default=0, description="The start of the range")
stop: int = Field(default=10, description="The stop of the range")
step: int = Field(default=1, description="The step of the range")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Range", "tags": ["range", "integer", "collection"]},
}
start: int = InputField(default=0, description="The start of the range")
stop: int = InputField(default=10, description="The stop of the range")
step: int = InputField(default=1, description="The step of the range")
@validator("stop")
def stop_gt_start(cls, v, values):
@ -62,76 +24,46 @@ class RangeInvocation(BaseInvocation):
raise ValueError("stop must be greater than start")
return v
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
return IntegerCollectionOutput(collection=list(range(self.start, self.stop, self.step)))
@invocation(
"range_of_size",
title="Integer Range of Size",
tags=["collection", "integer", "size", "range"],
category="collections",
)
class RangeOfSizeInvocation(BaseInvocation):
"""Creates a range from start to start + size with step"""
type: Literal["range_of_size"] = "range_of_size"
start: int = InputField(default=0, description="The start of the range")
size: int = InputField(default=1, description="The number of values")
step: int = InputField(default=1, description="The step of the range")
# Inputs
start: int = Field(default=0, description="The start of the range")
size: int = Field(default=1, description="The number of values")
step: int = Field(default=1, description="The step of the range")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Sized Range", "tags": ["range", "integer", "size", "collection"]},
}
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(range(self.start, self.start + self.size, self.step)))
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
return IntegerCollectionOutput(collection=list(range(self.start, self.start + self.size, self.step)))
@invocation(
"random_range",
title="Random Range",
tags=["range", "integer", "random", "collection"],
category="collections",
)
class RandomRangeInvocation(BaseInvocation):
"""Creates a collection of random numbers"""
type: Literal["random_range"] = "random_range"
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value")
size: int = Field(default=1, description="The number of values to generate")
seed: int = Field(
low: int = InputField(default=0, description="The inclusive low value")
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
size: int = InputField(default=1, description="The number of values to generate")
seed: int = InputField(
ge=0,
le=SEED_MAX,
description="The seed for the RNG (omit for random)",
default_factory=get_random_seed,
)
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Random Range", "tags": ["range", "integer", "random", "collection"]},
}
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
rng = np.random.default_rng(self.seed)
return IntCollectionOutput(collection=list(rng.integers(low=self.low, high=self.high, size=self.size)))
class ImageCollectionInvocation(BaseInvocation):
"""Load a collection of images and provide it as output."""
# fmt: off
type: Literal["image_collection"] = "image_collection"
# Inputs
images: list[ImageField] = Field(
default=[], description="The image collection to load"
)
# fmt: on
def invoke(self, context: InvocationContext) -> ImageCollectionOutput:
return ImageCollectionOutput(collection=self.images)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"type_hints": {
"title": "Image Collection",
"images": "image_collection",
}
},
}
return IntegerCollectionOutput(collection=list(rng.integers(low=self.low, high=self.high, size=self.size)))

View File

@ -1,32 +1,35 @@
from typing import Literal, Optional, Union, List, Annotated
from pydantic import BaseModel, Field
import re
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from .model import ClipField
from ...backend.util.devices import torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.model_management import BaseModelType, ModelType, SubModelType, ModelPatcher
from dataclasses import dataclass
from typing import List, Union
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from ...backend.util.devices import torch_dtype
from ...backend.model_management import ModelType
from ...backend.model_management.models import ModelNotFoundException
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import (
BasicConditioningInfo,
SDXLConditioningInfo,
)
from ...backend.model_management.models import ModelType
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion import InvokeAIDiffuserComponent, BasicConditioningInfo, SDXLConditioningInfo
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from ...backend.model_management.models import ModelNotFoundException
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.util.devices import torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
invocation,
invocation_output,
)
from .model import ClipField
from dataclasses import dataclass
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
@dataclass
@ -41,32 +44,23 @@ class ConditioningFieldData:
# PerpNeg = "perp_neg"
class CompelOutput(BaseInvocationOutput):
"""Compel parser output"""
# fmt: off
type: Literal["compel_output"] = "compel_output"
conditioning: ConditioningField = Field(default=None, description="Conditioning")
# fmt: on
@invocation("compel", title="Prompt", tags=["prompt", "compel"], category="conditioning")
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
type: Literal["compel"] = "compel"
prompt: str = Field(default="", description="Prompt")
clip: ClipField = Field(None, description="Clip to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}},
}
prompt: str = InputField(
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
clip: ClipField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
context=context,
@ -119,16 +113,15 @@ class CompelInvocation(BaseInvocation):
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True,
truncate_long_prompts=False,
)
conjunction = Compel.parse_prompt_string(self.prompt)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
log_tokenization_for_conjunction(conjunction, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
@ -149,7 +142,7 @@ class CompelInvocation(BaseInvocation):
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
return CompelOutput(
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
@ -234,17 +227,16 @@ class SDXLPromptInvocationBase:
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
truncate_long_prompts=False, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=True,
requires_pooled=get_pooled,
)
conjunction = Compel.parse_prompt_string(prompt)
if context.services.configuration.log_tokenization:
# TODO: better logging for and syntax
for prompt_obj in conjunction.prompts:
log_tokenization_for_prompt_object(prompt_obj, tokenizer)
log_tokenization_for_conjunction(conjunction, tokenizer)
# TODO: ask for optimizations? to not run text_encoder twice
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
@ -270,30 +262,28 @@ class SDXLPromptInvocationBase:
return c, c_pooled, ec
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
type: Literal["sdxl_compel_prompt"] = "sdxl_compel_prompt"
prompt: str = Field(default="", description="Prompt")
style: str = Field(default="", description="Style prompt")
original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="")
crop_left: int = Field(0, description="")
target_width: int = Field(1024, description="")
target_height: int = Field(1024, description="")
clip: ClipField = Field(None, description="Clip to use")
clip2: ClipField = Field(None, description="Clip2 to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "SDXL Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": {"model": "model"}},
}
prompt: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea)
style: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea)
original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="")
crop_top: int = InputField(default=0, description="")
crop_left: int = InputField(default=0, description="")
target_width: int = InputField(default=1024, description="")
target_height: int = InputField(default=1024, description="")
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
def invoke(self, context: InvocationContext) -> ConditioningOutput:
c1, c1_pooled, ec1 = self.run_clip_compel(
context, self.clip, self.prompt, False, "lora_te1_", zero_on_empty=True
)
@ -312,6 +302,29 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
add_time_ids = torch.tensor([original_size + crop_coords + target_size])
# [1, 77, 768], [1, 154, 1280]
if c1.shape[1] < c2.shape[1]:
c1 = torch.cat(
[
c1,
torch.zeros(
(c1.shape[0], c2.shape[1] - c1.shape[1], c1.shape[2]), device=c1.device, dtype=c1.dtype
),
],
dim=1,
)
elif c1.shape[1] > c2.shape[1]:
c2 = torch.cat(
[
c2,
torch.zeros(
(c2.shape[0], c1.shape[1] - c2.shape[1], c2.shape[2]), device=c2.device, dtype=c2.dtype
),
],
dim=1,
)
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
@ -326,38 +339,34 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
return CompelOutput(
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
@invocation(
"sdxl_refiner_compel_prompt",
title="SDXL Refiner Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
type: Literal["sdxl_refiner_compel_prompt"] = "sdxl_refiner_compel_prompt"
style: str = Field(default="", description="Style prompt") # TODO: ?
original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="")
crop_left: int = Field(0, description="")
aesthetic_score: float = Field(6.0, description="")
clip2: ClipField = Field(None, description="Clip to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Refiner Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {"model": "model"},
},
}
style: str = InputField(
default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea
) # TODO: ?
original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="")
crop_top: int = InputField(default=0, description="")
crop_left: int = InputField(default=0, description="")
aesthetic_score: float = InputField(default=6.0, description=FieldDescriptions.sdxl_aesthetic)
clip2: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
def invoke(self, context: InvocationContext) -> ConditioningOutput:
# TODO: if there will appear lora for refiner - write proper prefix
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True, "<NONE>", zero_on_empty=False)
@ -380,32 +389,26 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
return CompelOutput(
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output"""
type: Literal["clip_skip_output"] = "clip_skip_output"
clip: ClipField = Field(None, description="Clip with skipped layers")
clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("clip_skip", title="CLIP Skip", tags=["clipskip", "clip", "skip"], category="conditioning")
class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
type: Literal["clip_skip"] = "clip_skip"
clip: ClipField = Field(None, description="Clip to use")
skipped_layers: int = Field(0, description="Number of layers to skip in text_encoder")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "CLIP Skip", "tags": ["clip", "skip"]},
}
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
skipped_layers: int = InputField(default=0, description=FieldDescriptions.skipped_layers)
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers

View File

@ -26,79 +26,31 @@ from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, validator
from ...backend.model_management import BaseModelType, ModelType
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from ..models.image import ImageOutput, PILInvocationConfig
from invokeai.app.invocations.primitives import ImageField, ImageOutput
CONTROLNET_DEFAULT_MODELS = [
###########################################
# lllyasviel sd v1.5, ControlNet v1.0 models
##############################################
"lllyasviel/sd-controlnet-canny",
"lllyasviel/sd-controlnet-depth",
"lllyasviel/sd-controlnet-hed",
"lllyasviel/sd-controlnet-seg",
"lllyasviel/sd-controlnet-openpose",
"lllyasviel/sd-controlnet-scribble",
"lllyasviel/sd-controlnet-normal",
"lllyasviel/sd-controlnet-mlsd",
#############################################
# lllyasviel sd v1.5, ControlNet v1.1 models
#############################################
"lllyasviel/control_v11p_sd15_canny",
"lllyasviel/control_v11p_sd15_openpose",
"lllyasviel/control_v11p_sd15_seg",
# "lllyasviel/control_v11p_sd15_depth", # broken
"lllyasviel/control_v11f1p_sd15_depth",
"lllyasviel/control_v11p_sd15_normalbae",
"lllyasviel/control_v11p_sd15_scribble",
"lllyasviel/control_v11p_sd15_mlsd",
"lllyasviel/control_v11p_sd15_softedge",
"lllyasviel/control_v11p_sd15s2_lineart_anime",
"lllyasviel/control_v11p_sd15_lineart",
"lllyasviel/control_v11p_sd15_inpaint",
# "lllyasviel/control_v11u_sd15_tile",
# problem (temporary?) with huffingface "lllyasviel/control_v11u_sd15_tile",
# so for now replace "lllyasviel/control_v11f1e_sd15_tile",
"lllyasviel/control_v11e_sd15_shuffle",
"lllyasviel/control_v11e_sd15_ip2p",
"lllyasviel/control_v11f1e_sd15_tile",
#################################################
# thibaud sd v2.1 models (ControlNet v1.0? or v1.1?
##################################################
"thibaud/controlnet-sd21-openpose-diffusers",
"thibaud/controlnet-sd21-canny-diffusers",
"thibaud/controlnet-sd21-depth-diffusers",
"thibaud/controlnet-sd21-scribble-diffusers",
"thibaud/controlnet-sd21-hed-diffusers",
"thibaud/controlnet-sd21-zoedepth-diffusers",
"thibaud/controlnet-sd21-color-diffusers",
"thibaud/controlnet-sd21-openposev2-diffusers",
"thibaud/controlnet-sd21-lineart-diffusers",
"thibaud/controlnet-sd21-normalbae-diffusers",
"thibaud/controlnet-sd21-ade20k-diffusers",
##############################################
# ControlNetMediaPipeface, ControlNet v1.1
##############################################
# ["CrucibleAI/ControlNetMediaPipeFace", "diffusion_sd15"], # SD 1.5
# diffusion_sd15 needs to be passed to from_pretrained() as subfolder arg
# hacked t2l to split to model & subfolder if format is "model,subfolder"
"CrucibleAI/ControlNetMediaPipeFace,diffusion_sd15", # SD 1.5
"CrucibleAI/ControlNetMediaPipeFace", # SD 2.1?
]
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])]
from ...backend.model_management import BaseModelType
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
InputField,
Input,
InvocationContext,
OutputField,
UIType,
invocation,
invocation_output,
)
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
CONTROLNET_RESIZE_VALUES = Literal[
tuple(
[
"just_resize",
"crop_resize",
"fill_resize",
"just_resize_simple",
]
)
"just_resize",
"crop_resize",
"fill_resize",
"just_resize_simple",
]
@ -110,9 +62,8 @@ class ControlNetModelField(BaseModel):
class ControlField(BaseModel):
image: ImageField = Field(default=None, description="The control image")
control_model: Optional[ControlNetModelField] = Field(default=None, description="The ControlNet model to use")
# control_weight: Optional[float] = Field(default=1, description="weight given to controlnet")
image: ImageField = Field(description="The control image")
control_model: ControlNetModelField = Field(description="The ControlNet model to use")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
@ -135,60 +86,34 @@ class ControlField(BaseModel):
raise ValueError("Control weights must be within -1 to 2 range")
return v
class Config:
schema_extra = {
"required": ["image", "control_model", "control_weight", "begin_step_percent", "end_step_percent"],
"ui": {
"type_hints": {
"control_weight": "float",
"control_model": "controlnet_model",
# "control_weight": "number",
}
},
}
@invocation_output("control_output")
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# fmt: off
type: Literal["control_output"] = "control_output"
control: ControlField = Field(default=None, description="The control info")
# fmt: on
# Outputs
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
# fmt: off
type: Literal["controlnet"] = "controlnet"
# Inputs
image: ImageField = Field(default=None, description="The control image")
control_model: ControlNetModelField = Field(default="lllyasviel/sd-controlnet-canny",
description="control model used")
control_weight: Union[float, List[float]] = Field(default=1.0, description="The weight given to the ControlNet")
begin_step_percent: float = Field(default=0, ge=-1, le=2,
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode used")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "ControlNet",
"tags": ["controlnet", "latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number",
"control_weight": "float",
},
},
}
image: ImageField = InputField(description="The control image")
control_model: ControlNetModelField = InputField(
default="lllyasviel/sd-controlnet-canny", description=FieldDescriptions.controlnet_model, input=Input.Direct
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, description="The weight given to the ControlNet", ui_type=UIType.Float
)
begin_step_percent: float = InputField(
default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
@ -204,19 +129,11 @@ class ControlNetInvocation(BaseInvocation):
)
class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
@invocation("image_processor", title="Base Image Processor", tags=["controlnet"], category="controlnet")
class ImageProcessorInvocation(BaseInvocation):
"""Base class for invocations that preprocess images for ControlNet"""
# fmt: off
type: Literal["image_processor"] = "image_processor"
# Inputs
image: ImageField = Field(default=None, description="The image to process")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Image Processor", "tags": ["image", "processor"]},
}
image: ImageField = InputField(description="The image to process")
def run_processor(self, image):
# superclass just passes through image without processing
@ -227,11 +144,6 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
# FIXME: what happened to image metadata?
# metadata = context.services.metadata.build_metadata(
# session_id=context.graph_execution_state_id, node=self
# )
# currently can't see processed image in node UI without a showImage node,
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
image_dto = context.services.images.create(
@ -241,6 +153,7 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
"""Builds an ImageOutput and its ImageField"""
@ -255,20 +168,21 @@ class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
)
class CannyImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"canny_image_processor",
title="Canny Processor",
tags=["controlnet", "canny"],
category="controlnet",
)
class CannyImageProcessorInvocation(ImageProcessorInvocation):
"""Canny edge detection for ControlNet"""
# fmt: off
type: Literal["canny_image_processor"] = "canny_image_processor"
# Input
low_threshold: int = Field(default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)")
high_threshold: int = Field(default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Canny Processor", "tags": ["controlnet", "canny", "image", "processor"]},
}
low_threshold: int = InputField(
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
)
high_threshold: int = InputField(
default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)"
)
def run_processor(self, image):
canny_processor = CannyDetector()
@ -276,23 +190,20 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfi
return processed_image
class HedImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"hed_image_processor",
title="HED (softedge) Processor",
tags=["controlnet", "hed", "softedge"],
category="controlnet",
)
class HedImageProcessorInvocation(ImageProcessorInvocation):
"""Applies HED edge detection to image"""
# fmt: off
type: Literal["hed_image_processor"] = "hed_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
# safe not supported in controlnet_aux v0.0.3
# safe: bool = Field(default=False, description="whether to use safe mode")
scribble: bool = Field(default=False, description="Whether to use scribble mode")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Softedge(HED) Processor", "tags": ["controlnet", "softedge", "hed", "image", "processor"]},
}
# safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image):
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
@ -307,21 +218,18 @@ class HedImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig)
return processed_image
class LineartImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"lineart_image_processor",
title="Lineart Processor",
tags=["controlnet", "lineart"],
category="controlnet",
)
class LineartImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art processing to image"""
# fmt: off
type: Literal["lineart_image_processor"] = "lineart_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
coarse: bool = Field(default=False, description="Whether to use coarse mode")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Lineart Processor", "tags": ["controlnet", "lineart", "image", "processor"]},
}
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
coarse: bool = InputField(default=False, description="Whether to use coarse mode")
def run_processor(self, image):
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
@ -331,23 +239,17 @@ class LineartImageProcessorInvocation(ImageProcessorInvocation, PILInvocationCon
return processed_image
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"lineart_anime_image_processor",
title="Lineart Anime Processor",
tags=["controlnet", "lineart", "anime"],
category="controlnet",
)
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art anime processing to image"""
# fmt: off
type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Lineart Anime Processor",
"tags": ["controlnet", "lineart", "anime", "image", "processor"],
},
}
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
@ -359,21 +261,18 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation, PILInvocati
return processed_image
class OpenposeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"openpose_image_processor",
title="Openpose Processor",
tags=["controlnet", "openpose", "pose"],
category="controlnet",
)
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Openpose processing to image"""
# fmt: off
type: Literal["openpose_image_processor"] = "openpose_image_processor"
# Inputs
hand_and_face: bool = Field(default=False, description="Whether to use hands and face mode")
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Openpose Processor", "tags": ["controlnet", "openpose", "image", "processor"]},
}
hand_and_face: bool = InputField(default=False, description="Whether to use hands and face mode")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
@ -386,22 +285,19 @@ class OpenposeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationCo
return processed_image
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"midas_depth_image_processor",
title="Midas Depth Processor",
tags=["controlnet", "midas"],
category="controlnet",
)
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Midas depth processing to image"""
# fmt: off
type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor"
# Inputs
a_mult: float = Field(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
bg_th: float = Field(default=0.1, ge=0, description="Midas parameter `bg_th`")
a_mult: float = InputField(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
bg_th: float = InputField(default=0.1, ge=0, description="Midas parameter `bg_th`")
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = Field(default=False, description="whether to use depth and normal mode")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Midas (Depth) Processor", "tags": ["controlnet", "midas", "depth", "image", "processor"]},
}
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
def run_processor(self, image):
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
@ -415,20 +311,17 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocation
return processed_image
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"normalbae_image_processor",
title="Normal BAE Processor",
tags=["controlnet"],
category="controlnet",
)
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies NormalBae processing to image"""
# fmt: off
type: Literal["normalbae_image_processor"] = "normalbae_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Normal BAE Processor", "tags": ["controlnet", "normal", "bae", "image", "processor"]},
}
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
@ -438,22 +331,14 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationC
return processed_image
class MlsdImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation("mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet")
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
"""Applies MLSD processing to image"""
# fmt: off
type: Literal["mlsd_image_processor"] = "mlsd_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
thr_v: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_d`")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "MLSD Processor", "tags": ["controlnet", "mlsd", "image", "processor"]},
}
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
def run_processor(self, image):
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
@ -467,22 +352,14 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig
return processed_image
class PidiImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation("pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet")
class PidiImageProcessorInvocation(ImageProcessorInvocation):
"""Applies PIDI processing to image"""
# fmt: off
type: Literal["pidi_image_processor"] = "pidi_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
safe: bool = Field(default=False, description="Whether to use safe mode")
scribble: bool = Field(default=False, description="Whether to use scribble mode")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "PIDI Processor", "tags": ["controlnet", "pidi", "image", "processor"]},
}
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image):
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
@ -496,26 +373,20 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig
return processed_image
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"content_shuffle_image_processor",
title="Content Shuffle Processor",
tags=["controlnet", "contentshuffle"],
category="controlnet",
)
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
"""Applies content shuffle processing to image"""
# fmt: off
type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
h: Optional[int] = Field(default=512, ge=0, description="Content shuffle `h` parameter")
w: Optional[int] = Field(default=512, ge=0, description="Content shuffle `w` parameter")
f: Optional[int] = Field(default=256, ge=0, description="Content shuffle `f` parameter")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Content Shuffle Processor",
"tags": ["controlnet", "contentshuffle", "image", "processor"],
},
}
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
h: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
w: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: Optional[int] = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector()
@ -531,38 +402,32 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvoca
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"zoe_depth_image_processor",
title="Zoe (Depth) Processor",
tags=["controlnet", "zoe", "depth"],
category="controlnet",
)
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
# fmt: off
type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Zoe (Depth) Processor", "tags": ["controlnet", "zoe", "depth", "image", "processor"]},
}
def run_processor(self, image):
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"mediapipe_face_processor",
title="Mediapipe Face Processor",
tags=["controlnet", "mediapipe", "face"],
category="controlnet",
)
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
"""Applies mediapipe face processing to image"""
# fmt: off
type: Literal["mediapipe_face_processor"] = "mediapipe_face_processor"
# Inputs
max_faces: int = Field(default=1, ge=1, description="Maximum number of faces to detect")
min_confidence: float = Field(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Mediapipe Processor", "tags": ["controlnet", "mediapipe", "image", "processor"]},
}
max_faces: int = InputField(default=1, ge=1, description="Maximum number of faces to detect")
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
def run_processor(self, image):
# MediaPipeFaceDetector throws an error if image has alpha channel
@ -574,23 +439,20 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationCo
return processed_image
class LeresImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"leres_image_processor",
title="Leres (Depth) Processor",
tags=["controlnet", "leres", "depth"],
category="controlnet",
)
class LeresImageProcessorInvocation(ImageProcessorInvocation):
"""Applies leres processing to image"""
# fmt: off
type: Literal["leres_image_processor"] = "leres_image_processor"
# Inputs
thr_a: float = Field(default=0, description="Leres parameter `thr_a`")
thr_b: float = Field(default=0, description="Leres parameter `thr_b`")
boost: bool = Field(default=False, description="Whether to use boost mode")
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Leres (Depth) Processor", "tags": ["controlnet", "leres", "depth", "image", "processor"]},
}
thr_a: float = InputField(default=0, description="Leres parameter `thr_a`")
thr_b: float = InputField(default=0, description="Leres parameter `thr_b`")
boost: bool = InputField(default=False, description="Whether to use boost mode")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
@ -605,21 +467,17 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfi
return processed_image
class TileResamplerProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
# fmt: off
type: Literal["tile_image_processor"] = "tile_image_processor"
# Inputs
#res: int = Field(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
down_sampling_rate: float = Field(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
# fmt: on
@invocation(
"tile_image_processor",
title="Tile Resample Processor",
tags=["controlnet", "tile"],
category="controlnet",
)
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
"""Tile resampler processor"""
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Tile Resample Processor",
"tags": ["controlnet", "tile", "resample", "image", "processor"],
},
}
# res: int = InputField(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
down_sampling_rate: float = InputField(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
def tile_resample(
@ -648,21 +506,15 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation, PILInvocationCo
return processed_image
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
@invocation(
"segment_anything_processor",
title="Segment Anything Processor",
tags=["controlnet", "segmentanything"],
category="controlnet",
)
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"""Applies segment anything processing to image"""
# fmt: off
type: Literal["segment_anything_processor"] = "segment_anything_processor"
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Segment Anything Processor",
"tags": ["controlnet", "segment", "anything", "sam", "image", "processor"],
},
}
def run_processor(self, image):
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(

View File

@ -1,44 +1,26 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
import cv2 as cv
import numpy
from PIL import Image, ImageOps
from pydantic import BaseModel, Field
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
class CvInvocationConfig(BaseModel):
"""Helper class to provide all OpenCV invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["cv", "image"],
},
}
class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
@invocation(
"cv_inpaint",
title="OpenCV Inpaint",
tags=["opencv", "inpaint"],
category="inpaint",
)
class CvInpaintInvocation(BaseInvocation):
"""Simple inpaint using opencv."""
# fmt: off
type: Literal["cv_inpaint"] = "cv_inpaint"
# Inputs
image: ImageField = Field(default=None, description="The image to inpaint")
mask: ImageField = Field(default=None, description="The mask to use when inpainting")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "OpenCV Inpaint", "tags": ["opencv", "inpaint"]},
}
image: ImageField = InputField(description="The image to inpaint")
mask: ImageField = InputField(description="The mask to use when inpainting")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -63,6 +45,7 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(

View File

@ -1,60 +1,26 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from pathlib import Path
from typing import Literal, Optional, Union
from typing import Literal, Optional
import cv2
import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from pydantic import Field
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from ..models.image import ImageCategory, ImageField, ImageOutput, MaskOutput, PILInvocationConfig, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationConfig, InvocationContext
class LoadImageInvocation(BaseInvocation):
"""Load an image and provide it as output."""
# fmt: off
type: Literal["load_image"] = "load_image"
# Inputs
image: Optional[ImageField] = Field(
default=None, description="The image to load"
)
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Load Image", "tags": ["image", "load"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
@invocation("show_image", title="Show Image", tags=["image"], category="image")
class ShowImageInvocation(BaseInvocation):
"""Displays a provided image, and passes it forward in the pipeline."""
"""Displays a provided image using the OS image viewer, and passes it forward in the pipeline."""
type: Literal["show_image"] = "show_image"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to show")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Show Image", "tags": ["image", "show"]},
}
image: ImageField = InputField(description="The image to show")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -70,24 +36,44 @@ class ShowImageInvocation(BaseInvocation):
)
class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
@invocation("blank_image", title="Blank Image", tags=["image"], category="image")
class BlankImageInvocation(BaseInvocation):
"""Creates a blank image and forwards it to the pipeline"""
width: int = InputField(default=512, description="The width of the image")
height: int = InputField(default=512, description="The height of the image")
mode: Literal["RGB", "RGBA"] = InputField(default="RGB", description="The mode of the image")
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=255), description="The color of the image")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = Image.new(mode=self.mode, size=(self.width, self.height), color=self.color.tuple())
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image")
class ImageCropInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image."""
# fmt: off
type: Literal["img_crop"] = "img_crop"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to crop")
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Crop Image", "tags": ["image", "crop"]},
}
image: ImageField = InputField(description="The image to crop")
x: int = InputField(default=0, description="The left x coordinate of the crop rectangle")
y: int = InputField(default=0, description="The top y coordinate of the crop rectangle")
width: int = InputField(default=512, gt=0, description="The width of the crop rectangle")
height: int = InputField(default=512, gt=0, description="The height of the crop rectangle")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -102,6 +88,7 @@ class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -111,24 +98,18 @@ class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
)
class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image")
class ImagePasteInvocation(BaseInvocation):
"""Pastes an image into another image."""
# fmt: off
type: Literal["img_paste"] = "img_paste"
# Inputs
base_image: Optional[ImageField] = Field(default=None, description="The base image")
image: Optional[ImageField] = Field(default=None, description="The image to paste")
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Paste Image", "tags": ["image", "paste"]},
}
base_image: ImageField = InputField(description="The base image")
image: ImageField = InputField(description="The image to paste")
mask: Optional[ImageField] = InputField(
default=None,
description="The mask to use when pasting",
)
x: int = InputField(default=0, description="The left x coordinate at which to paste the image")
y: int = InputField(default=0, description="The top y coordinate at which to paste the image")
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get_pil_image(self.base_image.image_name)
@ -155,6 +136,7 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -164,23 +146,14 @@ class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
)
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image")
class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask."""
# fmt: off
type: Literal["tomask"] = "tomask"
image: ImageField = InputField(description="The image to create the mask from")
invert: bool = InputField(default=False, description="Whether or not to invert the mask")
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Mask From Alpha", "tags": ["image", "mask", "alpha"]},
}
def invoke(self, context: InvocationContext) -> MaskOutput:
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_mask = image.split()[-1]
@ -194,30 +167,22 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return MaskOutput(
mask=ImageField(image_name=image_dto.image_name),
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image")
class ImageMultiplyInvocation(BaseInvocation):
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
# fmt: off
type: Literal["img_mul"] = "img_mul"
# Inputs
image1: Optional[ImageField] = Field(default=None, description="The first image to multiply")
image2: Optional[ImageField] = Field(default=None, description="The second image to multiply")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Multiply Images", "tags": ["image", "multiply"]},
}
image1: ImageField = InputField(description="The first image to multiply")
image2: ImageField = InputField(description="The second image to multiply")
def invoke(self, context: InvocationContext) -> ImageOutput:
image1 = context.services.images.get_pil_image(self.image1.image_name)
@ -232,6 +197,7 @@ class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -244,21 +210,12 @@ class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image")
class ImageChannelInvocation(BaseInvocation):
"""Gets a channel from an image."""
# fmt: off
type: Literal["img_chan"] = "img_chan"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to get the channel from")
channel: IMAGE_CHANNELS = Field(default="A", description="The channel to get")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Image Channel", "tags": ["image", "channel"]},
}
image: ImageField = InputField(description="The image to get the channel from")
channel: IMAGE_CHANNELS = InputField(default="A", description="The channel to get")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -272,6 +229,7 @@ class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -284,21 +242,12 @@ class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image")
class ImageConvertInvocation(BaseInvocation):
"""Converts an image to a different mode."""
# fmt: off
type: Literal["img_conv"] = "img_conv"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to convert")
mode: IMAGE_MODES = Field(default="L", description="The mode to convert to")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Convert Image", "tags": ["image", "convert"]},
}
image: ImageField = InputField(description="The image to convert")
mode: IMAGE_MODES = InputField(default="L", description="The mode to convert to")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -312,6 +261,7 @@ class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -321,22 +271,14 @@ class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
)
class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image")
class ImageBlurInvocation(BaseInvocation):
"""Blurs an image"""
# fmt: off
type: Literal["img_blur"] = "img_blur"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Blur Image", "tags": ["image", "blur"]},
}
image: ImageField = InputField(description="The image to blur")
radius: float = InputField(default=8.0, ge=0, description="The blur radius")
# Metadata
blur_type: Literal["gaussian", "box"] = InputField(default="gaussian", description="The type of blur")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -353,6 +295,7 @@ class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -382,23 +325,17 @@ PIL_RESAMPLING_MAP = {
}
class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image")
class ImageResizeInvocation(BaseInvocation):
"""Resizes an image to specific dimensions"""
# fmt: off
type: Literal["img_resize"] = "img_resize"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to resize")
width: Union[int, None] = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: Union[int, None] = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Resize Image", "tags": ["image", "resize"]},
}
image: ImageField = InputField(description="The image to resize")
width: int = InputField(default=512, ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = InputField(default=512, ge=64, multiple_of=8, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -417,6 +354,8 @@ class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
@ -426,22 +365,17 @@ class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
)
class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image")
class ImageScaleInvocation(BaseInvocation):
"""Scales an image by a factor"""
# fmt: off
type: Literal["img_scale"] = "img_scale"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to scale")
scale_factor: Optional[float] = Field(default=2.0, gt=0, description="The factor by which to scale the image")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Scale Image", "tags": ["image", "scale"]},
}
image: ImageField = InputField(description="The image to scale")
scale_factor: float = InputField(
default=2.0,
gt=0,
description="The factor by which to scale the image",
)
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -462,6 +396,7 @@ class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -471,22 +406,13 @@ class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
)
class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image")
class ImageLerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image"""
# fmt: off
type: Literal["img_lerp"] = "img_lerp"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Image Linear Interpolation", "tags": ["image", "linear", "interpolation", "lerp"]},
}
image: ImageField = InputField(description="The image to lerp")
min: int = InputField(default=0, ge=0, le=255, description="The minimum output value")
max: int = InputField(default=255, ge=0, le=255, description="The maximum output value")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -503,6 +429,7 @@ class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -512,25 +439,13 @@ class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
)
class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image")
class ImageInverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image"""
# fmt: off
type: Literal["img_ilerp"] = "img_ilerp"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Image Inverse Linear Interpolation",
"tags": ["image", "linear", "interpolation", "inverse"],
},
}
image: ImageField = InputField(description="The image to lerp")
min: int = InputField(default=0, ge=0, le=255, description="The minimum input value")
max: int = InputField(default=255, ge=0, le=255, description="The maximum input value")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -547,6 +462,7 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -556,21 +472,14 @@ class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
)
class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image")
class ImageNSFWBlurInvocation(BaseInvocation):
"""Add blur to NSFW-flagged images"""
# fmt: off
type: Literal["img_nsfw"] = "img_nsfw"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to check")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Blur NSFW Images", "tags": ["image", "nsfw", "checker"]},
}
image: ImageField = InputField(description="The image to check")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -592,6 +501,7 @@ class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
@ -607,22 +517,15 @@ class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig):
return caution.resize((caution.width // 2, caution.height // 2))
class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
@invocation("img_watermark", title="Add Invisible Watermark", tags=["image", "watermark"], category="image")
class ImageWatermarkInvocation(BaseInvocation):
"""Add an invisible watermark to an image"""
# fmt: off
type: Literal["img_watermark"] = "img_watermark"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to check")
text: str = Field(default='InvokeAI', description="Watermark text")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Add Invisible Watermark", "tags": ["image", "watermark", "invisible"]},
}
image: ImageField = InputField(description="The image to check")
text: str = InputField(default="InvokeAI", description="Watermark text")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -635,6 +538,7 @@ class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
@ -644,21 +548,19 @@ class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
)
class MaskEdgeInvocation(BaseInvocation, PILInvocationConfig):
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image")
class MaskEdgeInvocation(BaseInvocation):
"""Applies an edge mask to an image"""
# fmt: off
type: Literal["mask_edge"] = "mask_edge"
image: ImageField = InputField(description="The image to apply the mask to")
edge_size: int = InputField(description="The size of the edge")
edge_blur: int = InputField(description="The amount of blur on the edge")
low_threshold: int = InputField(description="First threshold for the hysteresis procedure in Canny edge detection")
high_threshold: int = InputField(
description="Second threshold for the hysteresis procedure in Canny edge detection"
)
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to apply the mask to")
edge_size: int = Field(description="The size of the edge")
edge_blur: int = Field(description="The amount of blur on the edge")
low_threshold: int = Field(description="First threshold for the hysteresis procedure in Canny edge detection")
high_threshold: int = Field(description="Second threshold for the hysteresis procedure in Canny edge detection")
# fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
def invoke(self, context: InvocationContext) -> ImageOutput:
mask = context.services.images.get_pil_image(self.image.image_name)
npimg = numpy.asarray(mask, dtype=numpy.uint8)
@ -681,30 +583,22 @@ class MaskEdgeInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return MaskOutput(
mask=ImageField(image_name=image_dto.image_name),
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class MaskCombineInvocation(BaseInvocation, PILInvocationConfig):
@invocation("mask_combine", title="Combine Masks", tags=["image", "mask", "multiply"], category="image")
class MaskCombineInvocation(BaseInvocation):
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
# fmt: off
type: Literal["mask_combine"] = "mask_combine"
# Inputs
mask1: ImageField = Field(default=None, description="The first mask to combine")
mask2: ImageField = Field(default=None, description="The second image to combine")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Mask Combine", "tags": ["mask", "combine"]},
}
mask1: ImageField = InputField(description="The first mask to combine")
mask2: ImageField = InputField(description="The second image to combine")
def invoke(self, context: InvocationContext) -> ImageOutput:
mask1 = context.services.images.get_pil_image(self.mask1.image_name).convert("L")
@ -719,6 +613,7 @@ class MaskCombineInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -728,18 +623,17 @@ class MaskCombineInvocation(BaseInvocation, PILInvocationConfig):
)
class ColorCorrectInvocation(BaseInvocation, PILInvocationConfig):
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image")
class ColorCorrectInvocation(BaseInvocation):
"""
Shifts the colors of a target image to match the reference image, optionally
using a mask to only color-correct certain regions of the target image.
"""
type: Literal["color_correct"] = "color_correct"
image: Optional[ImageField] = Field(default=None, description="The image to color-correct")
reference: Optional[ImageField] = Field(default=None, description="Reference image for color-correction")
mask: Optional[ImageField] = Field(default=None, description="Mask to use when applying color-correction")
mask_blur_radius: float = Field(default=8, description="Mask blur radius")
image: ImageField = InputField(description="The image to color-correct")
reference: ImageField = InputField(description="Reference image for color-correction")
mask: Optional[ImageField] = InputField(default=None, description="Mask to use when applying color-correction")
mask_blur_radius: float = InputField(default=8, description="Mask blur radius")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_init_mask = None
@ -824,6 +718,7 @@ class ColorCorrectInvocation(BaseInvocation, PILInvocationConfig):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -833,16 +728,12 @@ class ColorCorrectInvocation(BaseInvocation, PILInvocationConfig):
)
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image")
class ImageHueAdjustmentInvocation(BaseInvocation):
"""Adjusts the Hue of an image."""
# fmt: off
type: Literal["img_hue_adjust"] = "img_hue_adjust"
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
hue: int = Field(default=0, description="The degrees by which to rotate the hue, 0-360")
# fmt: on
image: ImageField = InputField(description="The image to adjust")
hue: int = InputField(default=0, description="The degrees by which to rotate the hue, 0-360")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
@ -866,6 +757,7 @@ class ImageHueAdjustmentInvocation(BaseInvocation):
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
workflow=self.workflow,
)
return ImageOutput(
@ -877,16 +769,19 @@ class ImageHueAdjustmentInvocation(BaseInvocation):
)
@invocation(
"img_luminosity_adjust",
title="Adjust Image Luminosity",
tags=["image", "luminosity", "hsl"],
category="image",
)
class ImageLuminosityAdjustmentInvocation(BaseInvocation):
"""Adjusts the Luminosity (Value) of an image."""
# fmt: off
type: Literal["img_luminosity_adjust"] = "img_luminosity_adjust"
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
luminosity: float = Field(default=1.0, ge=0, le=1, description="The factor by which to adjust the luminosity (value)")
# fmt: on
image: ImageField = InputField(description="The image to adjust")
luminosity: float = InputField(
default=1.0, ge=0, le=1, description="The factor by which to adjust the luminosity (value)"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
@ -914,6 +809,7 @@ class ImageLuminosityAdjustmentInvocation(BaseInvocation):
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
workflow=self.workflow,
)
return ImageOutput(
@ -925,16 +821,17 @@ class ImageLuminosityAdjustmentInvocation(BaseInvocation):
)
@invocation(
"img_saturation_adjust",
title="Adjust Image Saturation",
tags=["image", "saturation", "hsl"],
category="image",
)
class ImageSaturationAdjustmentInvocation(BaseInvocation):
"""Adjusts the Saturation of an image."""
# fmt: off
type: Literal["img_saturation_adjust"] = "img_saturation_adjust"
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
saturation: float = Field(default=1.0, ge=0, le=1, description="The factor by which to adjust the saturation")
# fmt: on
image: ImageField = InputField(description="The image to adjust")
saturation: float = InputField(default=1.0, ge=0, le=1, description="The factor by which to adjust the saturation")
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
@ -962,6 +859,7 @@ class ImageSaturationAdjustmentInvocation(BaseInvocation):
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
workflow=self.workflow,
)
return ImageOutput(

View File

@ -1,28 +1,25 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
import math
from typing import Literal, Optional, get_args
import numpy as np
import math
from PIL import Image, ImageOps
from pydantic import Field
from invokeai.app.invocations.image import ImageOutput
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ColorField, ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
InvocationConfig,
InvocationContext,
)
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
def infill_methods() -> list[str]:
methods = [
"tile",
"solid",
"lama",
]
if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch")
@ -33,6 +30,11 @@ INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
def infill_lama(im: Image.Image) -> Image.Image:
lama = LaMA()
return lama(im)
def infill_patchmatch(im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
@ -95,7 +97,7 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum()
replace_count = (tiles_mask == False).sum() # noqa: E712
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :]
@ -114,21 +116,16 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
return si
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint")
class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color"""
type: Literal["infill_rgba"] = "infill_rgba"
image: Optional[ImageField] = Field(default=None, description="The image to infill")
color: ColorField = Field(
image: ImageField = InputField(description="The image to infill")
color: ColorField = InputField(
default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill",
)
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Color Infill", "tags": ["image", "inpaint", "color", "infill"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -144,6 +141,7 @@ class InfillColorInvocation(BaseInvocation):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -153,25 +151,19 @@ class InfillColorInvocation(BaseInvocation):
)
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint")
class InfillTileInvocation(BaseInvocation):
"""Infills transparent areas of an image with tiles of the image"""
type: Literal["infill_tile"] = "infill_tile"
image: Optional[ImageField] = Field(default=None, description="The image to infill")
tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
seed: int = Field(
image: ImageField = InputField(description="The image to infill")
tile_size: int = InputField(default=32, ge=1, description="The tile size (px)")
seed: int = InputField(
ge=0,
le=SEED_MAX,
description="The seed to use for tile generation (omit for random)",
default_factory=get_random_seed,
)
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Tile Infill", "tags": ["image", "inpaint", "tile", "infill"]},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -185,6 +177,7 @@ class InfillTileInvocation(BaseInvocation):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
@ -194,17 +187,11 @@ class InfillTileInvocation(BaseInvocation):
)
@invocation("infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint")
class InfillPatchMatchInvocation(BaseInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
type: Literal["infill_patchmatch"] = "infill_patchmatch"
image: Optional[ImageField] = Field(default=None, description="The image to infill")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Patch Match Infill", "tags": ["image", "inpaint", "patchmatch", "infill"]},
}
image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -214,6 +201,34 @@ class InfillPatchMatchInvocation(BaseInvocation):
else:
raise ValueError("PatchMatch is not available on this system")
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint")
class LaMaInfillInvocation(BaseInvocation):
"""Infills transparent areas of an image using the LaMa model"""
image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
infilled = infill_lama(image.copy())
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,

View File

@ -4,6 +4,7 @@ from contextlib import ExitStack
from typing import List, Literal, Optional, Union
import einops
import numpy as np
import torch
import torchvision.transforms as T
from diffusers.image_processor import VaeImageProcessor
@ -13,16 +14,28 @@ from diffusers.models.attention_processor import (
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.schedulers import DPMSolverSDEScheduler, SchedulerMixin as Scheduler
from pydantic import BaseModel, Field, validator
from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import validator
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import (
DenoiseMaskField,
DenoiseMaskOutput,
ImageField,
ImageOutput,
LatentsField,
LatentsOutput,
build_latents_output,
)
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
from ...backend.model_management import BaseModelType, ModelPatcher
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.seamless import set_seamless
from ...backend.model_management.models import BaseModelType
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData,
@ -32,49 +45,106 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device, torch_dtype
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from ...backend.util.devices import choose_precision, choose_torch_device
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
invocation,
invocation_output,
)
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
DEFAULT_PRECISION = choose_precision(choose_torch_device())
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
seed: Optional[int] = Field(description="Seed used to generate this latents")
class Config:
schema_extra = {"required": ["latents_name"]}
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
# fmt: off
type: Literal["latents_output"] = "latents_output"
# Inputs
latents: LatentsField = Field(default=None, description="The output latents")
width: int = Field(description="The width of the latents in pixels")
height: int = Field(description="The height of the latents in pixels")
# fmt: on
@invocation_output("scheduler_output")
class SchedulerOutput(BaseInvocationOutput):
scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
def build_latents_output(latents_name: str, latents: torch.Tensor, seed: Optional[int]):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
@invocation("scheduler", title="Scheduler", tags=["scheduler"], category="latents")
class SchedulerInvocation(BaseInvocation):
"""Selects a scheduler."""
scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
)
def invoke(self, context: InvocationContext) -> SchedulerOutput:
return SchedulerOutput(scheduler=self.scheduler)
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
@invocation("create_denoise_mask", title="Create Denoise Mask", tags=["mask", "denoise"], category="latents")
class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
vae: VaeField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32, ui_order=4)
def prep_mask_tensor(self, mask_image):
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
# if shape is not None:
# mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR)
return mask_tensor
@torch.no_grad()
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
if self.image is not None:
image = context.services.images.get_pil_image(self.image.image_name)
image = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image.dim() == 3:
image = image.unsqueeze(0)
else:
image = None
mask = self.prep_mask_tensor(
context.services.images.get_pil_image(self.mask.image_name),
)
if image is not None:
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
context=context,
)
img_mask = tv_resize(mask, image.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image * torch.where(img_mask < 0.5, 0.0, 1.0)
# TODO:
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
masked_latents_name = f"{context.graph_execution_state_id}__{self.id}_masked_latents"
context.services.latents.save(masked_latents_name, masked_latents)
else:
masked_latents_name = None
mask_name = f"{context.graph_execution_state_id}__{self.id}_mask"
context.services.latents.save(mask_name, mask)
return DenoiseMaskOutput(
denoise_mask=DenoiseMaskField(
mask_name=mask_name,
masked_latents_name=masked_latents_name,
),
)
def get_scheduler(
@ -111,30 +181,39 @@ def get_scheduler(
return scheduler
@invocation(
"denoise_latents",
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
type: Literal["denoise_latents"] = "denoise_latents"
# Inputs
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
cfg_scale: Union[float, List[float]] = Field(
default=7.5,
ge=1,
description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt",
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
)
denoising_start: float = Field(default=0.0, ge=0, le=1, description="")
denoising_end: float = Field(default=1.0, ge=0, le=1, description="")
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use")
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
mask: Optional[ImageField] = Field(
None,
description="Mask",
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
)
noise: Optional[LatentsField] = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=3)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField(
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, ui_type=UIType.Float, title="CFG Scale"
)
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
)
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet", ui_order=2)
control: Union[ControlField, list[ControlField]] = InputField(
default=None, description=FieldDescriptions.control, input=Input.Connection, ui_order=5
)
latents: Optional[LatentsField] = InputField(description=FieldDescriptions.latents, input=Input.Connection)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.mask,
)
@validator("cfg_scale")
@ -149,20 +228,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1")
return v
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Denoise Latents",
"tags": ["denoise", "latents"],
"type_hints": {
"model": "model",
"control": "control",
"cfg_scale": "number",
},
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self,
@ -221,30 +286,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
unet,
scheduler,
) -> StableDiffusionGeneratorPipeline:
# TODO:
# configure_model_padding(
# unet,
# self.seamless,
# self.seamless_axes,
# )
class FakeVae:
class FakeVaeConfig:
def __init__(self):
self.block_out_channels = [0]
def __init__(self):
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
def prep_control_data(
@ -326,52 +370,46 @@ class DenoiseLatentsInvocation(BaseInvocation):
# original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps
def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end):
num_inference_steps = steps
if scheduler.config.get("cpu_only", False):
scheduler.set_timesteps(num_inference_steps, device="cpu")
scheduler.set_timesteps(steps, device="cpu")
timesteps = scheduler.timesteps.to(device=device)
else:
scheduler.set_timesteps(num_inference_steps, device=device)
scheduler.set_timesteps(steps, device=device)
timesteps = scheduler.timesteps
# apply denoising_start
# skip greater order timesteps
_timesteps = timesteps[:: scheduler.order]
# get start timestep index
t_start_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_start)))
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, timesteps)))
timesteps = timesteps[t_start_idx:]
if scheduler.order == 2 and t_start_idx > 0:
timesteps = timesteps[1:]
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps)))
# save start timestep to apply noise
init_timestep = timesteps[:1]
# apply denoising_end
# get end timestep index
t_end_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_end)))
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, timesteps)))
if scheduler.order == 2 and t_end_idx > 0:
t_end_idx += 1
timesteps = timesteps[:t_end_idx]
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:])))
# calculate step count based on scheduler order
num_inference_steps = len(timesteps)
if scheduler.order == 2:
num_inference_steps += num_inference_steps % 2
num_inference_steps = num_inference_steps // 2
# apply order to indexes
t_start_idx *= scheduler.order
t_end_idx *= scheduler.order
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
num_inference_steps = len(timesteps) // scheduler.order
return num_inference_steps, timesteps, init_timestep
def prep_mask_tensor(self, mask, context, lantents):
if mask is None:
return None
def prep_inpaint_mask(self, context, latents):
if self.denoise_mask is None:
return None, None
mask_image = context.services.images.get_pil_image(mask.image_name)
if mask_image.mode != "L":
# FIXME: why do we get passed an RGB image here? We can only use single-channel.
mask_image = mask_image.convert("L")
mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
mask_tensor = tv_resize(mask_tensor, lantents.shape[-2:], T.InterpolationMode.BILINEAR)
return 1 - mask_tensor
mask = context.services.latents.get(self.denoise_mask.mask_name)
mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
if self.denoise_mask.masked_latents_name is not None:
masked_latents = context.services.latents.get(self.denoise_mask.masked_latents_name)
else:
masked_latents = None
return 1 - mask, masked_latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
@ -386,13 +424,19 @@ class DenoiseLatentsInvocation(BaseInvocation):
latents = context.services.latents.get(self.latents.latents_name)
if seed is None:
seed = self.latents.seed
else:
if noise is not None and noise.shape[1:] != latents.shape[1:]:
raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
elif noise is not None:
latents = torch.zeros_like(noise)
else:
raise Exception("'latents' or 'noise' must be provided!")
if seed is None:
seed = 0
mask = self.prep_mask_tensor(self.mask, context, latents)
mask, masked_latents = self.prep_inpaint_mask(context, latents)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
@ -417,12 +461,14 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
unet_info.context.model, _lora_loader()
), unet_info as unet:
), set_seamless(unet_info.context.model, self.unet.seamless_axes), unet_info as unet:
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
if mask is not None:
mask = mask.to(device=unet.device, dtype=unet.dtype)
if masked_latents is not None:
masked_latents = masked_latents.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
@ -459,6 +505,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
noise=noise,
seed=seed,
mask=mask,
masked_latents=masked_latents,
num_inference_steps=num_inference_steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
@ -474,29 +521,25 @@ class DenoiseLatentsInvocation(BaseInvocation):
return build_latents_output(latents_name=name, latents=result_latents, seed=seed)
# Latent to image
@invocation("l2i", title="Latents to Image", tags=["latents", "image", "vae", "l2i"], category="latents")
class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(default=False, description="Decode latents by overlaping tiles (less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION == "float32", description="Decode in full precision")
metadata: Optional[CoreMetadata] = Field(
default=None, description="Optional core metadata to be written to the image"
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VaeField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
metadata: CoreMetadata = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Latents To Image",
"tags": ["latents", "image"],
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
@ -507,7 +550,7 @@ class LatentsToImageInvocation(BaseInvocation):
context=context,
)
with vae_info as vae:
with set_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae:
latents = latents.to(vae.device)
if self.fp32:
vae.to(dtype=torch.float32)
@ -562,6 +605,7 @@ class LatentsToImageInvocation(BaseInvocation):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
@ -574,24 +618,26 @@ class LatentsToImageInvocation(BaseInvocation):
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
@invocation("lresize", title="Resize Latents", tags=["latents", "resize"], category="latents")
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: Union[int, None] = Field(default=512, ge=64, multiple_of=8, description="The width to resize to (px)")
height: Union[int, None] = Field(default=512, ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)"
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Resize Latents", "tags": ["latents", "resize"]},
}
width: int = InputField(
ge=64,
multiple_of=8,
description=FieldDescriptions.width,
)
height: int = InputField(
ge=64,
multiple_of=8,
description=FieldDescriptions.width,
)
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
@ -616,23 +662,17 @@ class ResizeLatentsInvocation(BaseInvocation):
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation("lscale", title="Scale Latents", tags=["latents", "resize"], category="latents")
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)"
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Scale Latents", "tags": ["latents", "scale"]},
}
scale_factor: float = InputField(gt=0, description=FieldDescriptions.scale_factor)
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
@ -658,43 +698,25 @@ class ScaleLatentsInvocation(BaseInvocation):
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation("i2l", title="Image to Latents", tags=["latents", "image", "vae", "i2l"], category="latents")
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
type: Literal["i2l"] = "i2l"
# Inputs
image: Optional[ImageField] = Field(description="The image to encode")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(default=False, description="Encode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION == "float32", description="Decode in full precision")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Image To Latents", "tags": ["latents", "image"]},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
# image = context.services.images.get(
# self.image.image_type, self.image.image_name
# )
image = context.services.images.get_pil_image(self.image.image_name)
# vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
context=context,
)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
image: ImageField = InputField(
description="The image to encode",
)
vae: VaeField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
@staticmethod
def vae_encode(vae_info, upcast, tiled, image_tensor):
with vae_info as vae:
orig_dtype = vae.dtype
if self.fp32:
if upcast:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
@ -719,7 +741,7 @@ class ImageToLatentsInvocation(BaseInvocation):
vae.to(dtype=torch.float16)
# latents = latents.half()
if self.tiled:
if tiled:
vae.enable_tiling()
else:
vae.disable_tiling()
@ -733,7 +755,98 @@ class ImageToLatentsInvocation(BaseInvocation):
latents = vae.config.scaling_factor * latents
latents = latents.to(dtype=orig_dtype)
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.services.images.get_pil_image(self.image.image_name)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
context=context,
)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor)
name = f"{context.graph_execution_state_id}__{self.id}"
latents = latents.to("cpu")
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents, seed=None)
@invocation("lblend", title="Blend Latents", tags=["latents", "blend"], category="latents")
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size."""
latents_a: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
latents_b: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.services.latents.get(self.latents_a.latents_name)
latents_b = context.services.latents.get(self.latents_b.latents_name)
if latents_a.shape != latents_b.shape:
raise "Latents to blend must be the same size."
# TODO:
device = choose_torch_device()
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(device)
return v2
# blend
blended_latents = slerp(self.alpha, latents_a, latents_b)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, blended_latents)
return build_latents_output(latents_name=name, latents=blended_latents)

View File

@ -1,135 +1,62 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from pydantic import BaseModel, Field
import numpy as np
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from invokeai.app.invocations.primitives import IntegerOutput
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
class MathInvocationConfig(BaseModel):
"""Helper class to provide all math invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["math"],
}
}
class IntOutput(BaseInvocationOutput):
"""An integer output"""
# fmt: off
type: Literal["int_output"] = "int_output"
a: int = Field(default=None, description="The output integer")
# fmt: on
class FloatOutput(BaseInvocationOutput):
"""A float output"""
# fmt: off
type: Literal["float_output"] = "float_output"
param: float = Field(default=None, description="The output float")
# fmt: on
class AddInvocation(BaseInvocation, MathInvocationConfig):
@invocation("add", title="Add Integers", tags=["math", "add"], category="math")
class AddInvocation(BaseInvocation):
"""Adds two numbers"""
# fmt: off
type: Literal["add"] = "add"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
# fmt: on
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Add", "tags": ["math", "add"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a + self.b)
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=self.a + self.b)
class SubtractInvocation(BaseInvocation, MathInvocationConfig):
@invocation("sub", title="Subtract Integers", tags=["math", "subtract"], category="math")
class SubtractInvocation(BaseInvocation):
"""Subtracts two numbers"""
# fmt: off
type: Literal["sub"] = "sub"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
# fmt: on
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Subtract", "tags": ["math", "subtract"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a - self.b)
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=self.a - self.b)
class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
@invocation("mul", title="Multiply Integers", tags=["math", "multiply"], category="math")
class MultiplyInvocation(BaseInvocation):
"""Multiplies two numbers"""
# fmt: off
type: Literal["mul"] = "mul"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
# fmt: on
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Multiply", "tags": ["math", "multiply"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a * self.b)
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=self.a * self.b)
class DivideInvocation(BaseInvocation, MathInvocationConfig):
@invocation("div", title="Divide Integers", tags=["math", "divide"], category="math")
class DivideInvocation(BaseInvocation):
"""Divides two numbers"""
# fmt: off
type: Literal["div"] = "div"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
# fmt: on
a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2)
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Divide", "tags": ["math", "divide"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=int(self.a / self.b))
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=int(self.a / self.b))
@invocation("rand_int", title="Random Integer", tags=["math", "random"], category="math")
class RandomIntInvocation(BaseInvocation):
"""Outputs a single random integer."""
# fmt: off
type: Literal["rand_int"] = "rand_int"
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
# fmt: on
low: int = InputField(default=0, description="The inclusive low value")
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Random Integer", "tags": ["math", "random", "integer"]},
}
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=np.random.randint(self.low, self.high))
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=np.random.randint(self.low, self.high))

View File

@ -1,18 +1,22 @@
from typing import Literal, Optional, Union
from typing import Optional
from pydantic import Field
from ...version import __version__
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationConfig,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from ...version import __version__
class LoRAMetadataField(BaseModelExcludeNull):
"""LoRA metadata for an image generated in InvokeAI."""
@ -28,6 +32,7 @@ class CoreMetadata(BaseModelExcludeNull):
generation_mode: str = Field(
description="The generation mode that output this image",
)
created_by: Optional[str] = Field(description="The name of the creator of the image")
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
@ -43,37 +48,37 @@ class CoreMetadata(BaseModelExcludeNull):
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
vae: Union[VAEModelField, None] = Field(
vae: Optional[VAEModelField] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# Latents-to-Latents
strength: Union[float, None] = Field(
strength: Optional[float] = Field(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Union[str, None] = Field(default=None, description="The name of the initial image")
init_image: Optional[str] = Field(default=None, description="The name of the initial image")
# SDXL
positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter")
negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter")
positive_style_prompt: Optional[str] = Field(default=None, description="The positive style prompt parameter")
negative_style_prompt: Optional[str] = Field(default=None, description="The negative style prompt parameter")
# SDXL Refiner
refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used")
refiner_cfg_scale: Union[float, None] = Field(
refiner_model: Optional[MainModelField] = Field(default=None, description="The SDXL Refiner model used")
refiner_cfg_scale: Optional[float] = Field(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner")
refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner")
refiner_positive_aesthetic_store: Union[float, None] = Field(
refiner_steps: Optional[int] = Field(default=None, description="The number of steps used for the refiner")
refiner_scheduler: Optional[str] = Field(default=None, description="The scheduler used for the refiner")
refiner_positive_aesthetic_store: Optional[float] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_negative_aesthetic_store: Union[float, None] = Field(
refiner_negative_aesthetic_store: Optional[float] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
refiner_start: Optional[float] = Field(default=None, description="The start value used for refiner denoising")
class ImageMetadata(BaseModelExcludeNull):
@ -86,74 +91,87 @@ class ImageMetadata(BaseModelExcludeNull):
graph: Optional[dict] = Field(default=None, description="The graph that created the image")
@invocation_output("metadata_accumulator_output")
class MetadataAccumulatorOutput(BaseInvocationOutput):
"""The output of the MetadataAccumulator node"""
type: Literal["metadata_accumulator_output"] = "metadata_accumulator_output"
metadata: CoreMetadata = Field(description="The core metadata for the image")
metadata: CoreMetadata = OutputField(description="The core metadata for the image")
@invocation("metadata_accumulator", title="Metadata Accumulator", tags=["metadata"], category="metadata")
class MetadataAccumulatorInvocation(BaseInvocation):
"""Outputs a Core Metadata Object"""
type: Literal["metadata_accumulator"] = "metadata_accumulator"
generation_mode: str = Field(
generation_mode: str = InputField(
description="The generation mode that output this image",
)
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
height: int = Field(description="The height parameter")
seed: int = Field(description="The seed used for noise generation")
rand_device: str = Field(description="The device used for random number generation")
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference")
clip_skip: int = Field(
positive_prompt: str = InputField(description="The positive prompt parameter")
negative_prompt: str = InputField(description="The negative prompt parameter")
width: int = InputField(description="The width parameter")
height: int = InputField(description="The height parameter")
seed: int = InputField(description="The seed used for noise generation")
rand_device: str = InputField(description="The device used for random number generation")
cfg_scale: float = InputField(description="The classifier-free guidance scale parameter")
steps: int = InputField(description="The number of steps used for inference")
scheduler: str = InputField(description="The scheduler used for inference")
clip_skip: int = InputField(
description="The number of skipped CLIP layers",
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
strength: Union[float, None] = Field(
model: MainModelField = InputField(description="The main model used for inference")
controlnets: list[ControlField] = InputField(description="The ControlNets used for inference")
loras: list[LoRAMetadataField] = InputField(description="The LoRAs used for inference")
strength: Optional[float] = InputField(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Union[str, None] = Field(default=None, description="The name of the initial image")
vae: Union[VAEModelField, None] = Field(
init_image: Optional[str] = InputField(
default=None,
description="The name of the initial image",
)
vae: Optional[VAEModelField] = InputField(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# SDXL
positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter")
negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter")
positive_style_prompt: Optional[str] = InputField(
default=None,
description="The positive style prompt parameter",
)
negative_style_prompt: Optional[str] = InputField(
default=None,
description="The negative style prompt parameter",
)
# SDXL Refiner
refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used")
refiner_cfg_scale: Union[float, None] = Field(
refiner_model: Optional[MainModelField] = InputField(
default=None,
description="The SDXL Refiner model used",
)
refiner_cfg_scale: Optional[float] = InputField(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner")
refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner")
refiner_positive_aesthetic_score: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner"
refiner_steps: Optional[int] = InputField(
default=None,
description="The number of steps used for the refiner",
)
refiner_negative_aesthetic_score: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner"
refiner_scheduler: Optional[str] = InputField(
default=None,
description="The scheduler used for the refiner",
)
refiner_positive_aesthetic_store: Optional[float] = InputField(
default=None,
description="The aesthetic score used for the refiner",
)
refiner_negative_aesthetic_store: Optional[float] = InputField(
default=None,
description="The aesthetic score used for the refiner",
)
refiner_start: Optional[float] = InputField(
default=None,
description="The start value used for refiner denoising",
)
refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Metadata Accumulator",
"tags": ["image", "metadata", "generation"],
},
}
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
"""Collects and outputs a CoreMetadata object"""

View File

@ -1,10 +1,21 @@
import copy
from typing import List, Literal, Optional, Union
from typing import List, Optional
from pydantic import BaseModel, Field
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
invocation,
invocation_output,
)
class ModelInfo(BaseModel):
@ -22,6 +33,7 @@ class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
class ClipField(BaseModel):
@ -34,18 +46,16 @@ class ClipField(BaseModel):
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
@invocation_output("model_loader_output")
class ModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["model_loader_output"] = "model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
class MainModelField(BaseModel):
@ -63,24 +73,13 @@ class LoRAModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model")
@invocation("main_model_loader", title="Main Model", tags=["model"], category="model")
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
type: Literal["main_model_loader"] = "main_model_loader"
model: MainModelField = Field(description="The model to load")
model: MainModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct)
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Model Loader",
"tags": ["model", "loader"],
"type_hints": {"model": "model"},
},
}
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
@ -155,22 +154,6 @@ class MainModelLoaderInvocation(BaseInvocation):
loras=[],
skipped_layers=0,
),
clip2=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer2,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder2,
),
loras=[],
skipped_layers=0,
),
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
@ -182,36 +165,26 @@ class MainModelLoaderInvocation(BaseInvocation):
)
@invocation_output("lora_loader_output")
class LoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["lora_loader_output"] = "lora_loader_output"
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
# fmt: on
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model")
class LoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
type: Literal["lora_loader"] = "lora_loader"
lora: Union[LoRAModelField, None] = Field(default=None, description="Lora model name")
weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Lora Loader",
"tags": ["lora", "loader"],
"type_hints": {"lora": "lora_model"},
},
}
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
)
clip: Optional[ClipField] = InputField(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP"
)
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
if self.lora is None:
@ -262,38 +235,30 @@ class LoraLoaderInvocation(BaseInvocation):
return output
@invocation_output("sdxl_lora_loader_output")
class SDXLLoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
"""SDXL LoRA Loader Output"""
# fmt: off
type: Literal["sdxl_lora_loader_output"] = "sdxl_lora_loader_output"
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
clip2: Optional[ClipField] = Field(default=None, description="Tokenizer2 and text_encoder2 submodels")
# fmt: on
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
@invocation("sdxl_lora_loader", title="SDXL LoRA", tags=["lora", "model"], category="model")
class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
type: Literal["sdxl_lora_loader"] = "sdxl_lora_loader"
lora: Union[LoRAModelField, None] = Field(default=None, description="Lora model name")
weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
clip2: Optional[ClipField] = Field(description="Clip2 model for applying lora")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Lora Loader",
"tags": ["lora", "loader"],
"type_hints": {"lora": "lora_model"},
},
}
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = Field(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = Field(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNET"
)
clip: Optional[ClipField] = Field(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1"
)
clip2: Optional[ClipField] = Field(
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2"
)
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
if self.lora is None:
@ -366,32 +331,20 @@ class VAEModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model")
@invocation_output("vae_loader_output")
class VaeLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
"""VAE output"""
# fmt: off
type: Literal["vae_loader_output"] = "vae_loader_output"
vae: VaeField = Field(default=None, description="Vae model")
# fmt: on
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model")
class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
type: Literal["vae_loader"] = "vae_loader"
vae_model: VAEModelField = Field(description="The VAE to load")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "VAE Loader",
"tags": ["vae", "loader"],
"type_hints": {"vae_model": "vae_model"},
},
}
vae_model: VAEModelField = InputField(
description=FieldDescriptions.vae_model, input=Input.Direct, ui_type=UIType.VaeModel, title="VAE"
)
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
base_model = self.vae_model.base_model
@ -413,3 +366,44 @@ class VaeLoaderInvocation(BaseInvocation):
)
)
)
@invocation_output("seamless_output")
class SeamlessModeOutput(BaseInvocationOutput):
"""Modified Seamless Model output"""
unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("seamless", title="Seamless", tags=["seamless", "model"], category="model")
class SeamlessModeInvocation(BaseInvocation):
"""Applies the seamless transformation to the Model UNet and VAE."""
unet: Optional[UNetField] = InputField(
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
)
vae: Optional[VaeField] = InputField(
default=None, description=FieldDescriptions.vae_model, input=Input.Connection, title="VAE"
)
seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless")
seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless")
def invoke(self, context: InvocationContext) -> SeamlessModeOutput:
# Conditionally append 'x' and 'y' based on seamless_x and seamless_y
unet = copy.deepcopy(self.unet)
vae = copy.deepcopy(self.vae)
seamless_axes_list = []
if self.seamless_x:
seamless_axes_list.append("x")
if self.seamless_y:
seamless_axes_list.append("y")
if unet is not None:
unet.seamless_axes = seamless_axes_list
if vae is not None:
vae.seamless_axes = seamless_axes_list
return SeamlessModeOutput(unet=unet, vae=vae)

View File

@ -1,19 +1,22 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
import math
from typing import Literal
from pydantic import Field, validator
import torch
from invokeai.app.invocations.latent import LatentsField
from pydantic import validator
from invokeai.app.invocations.latent import LatentsField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationConfig,
FieldDescriptions,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
"""
@ -58,17 +61,13 @@ Nodes
"""
@invocation_output("noise_output")
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
# fmt: off
type: Literal["noise_output"] = "noise_output"
# Inputs
noise: LatentsField = Field(default=None, description="The output noise")
width: int = Field(description="The width of the noise in pixels")
height: int = Field(description="The height of the noise in pixels")
# fmt: on
noise: LatentsField = OutputField(default=None, description=FieldDescriptions.noise)
width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height)
def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
@ -79,44 +78,33 @@ def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
)
@invocation("noise", title="Noise", tags=["latents", "noise"], category="latents")
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(
seed: int = InputField(
ge=0,
le=SEED_MAX,
description="The seed to use",
description=FieldDescriptions.seed,
default_factory=get_random_seed,
)
width: int = Field(
width: int = InputField(
default=512,
multiple_of=8,
gt=0,
description="The width of the resulting noise",
description=FieldDescriptions.width,
)
height: int = Field(
height: int = InputField(
default=512,
multiple_of=8,
gt=0,
description="The height of the resulting noise",
description=FieldDescriptions.height,
)
use_cpu: bool = Field(
use_cpu: bool = InputField(
default=True,
description="Use CPU for noise generation (for reproducible results across platforms)",
)
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Noise",
"tags": ["latents", "noise"],
},
}
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""

View File

@ -1,37 +1,42 @@
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
from contextlib import ExitStack
import inspect
import re
# from contextlib import ExitStack
from typing import List, Literal, Optional, Union
import re
import inspect
from pydantic import BaseModel, Field, validator
import torch
import numpy as np
from diffusers import ControlNetModel, DPMSolverMultistepScheduler
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from ...backend.model_management import ONNXModelPatcher
from ...backend.util import choose_torch_device
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
from pydantic import BaseModel, Field, validator
from tqdm import tqdm
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.backend import BaseModelType, ModelType, SubModelType
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend import BaseModelType, ModelType, SubModelType
from ...backend.model_management import ONNXModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from tqdm import tqdm
from .model import ClipField
from .latent import LatentsField, LatentsOutput, build_latents_output, get_scheduler, SAMPLER_NAME_VALUES
from .compel import CompelOutput
from ...backend.util import choose_torch_device
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
InputField,
Input,
InvocationContext,
OutputField,
UIComponent,
UIType,
invocation,
invocation_output,
)
from .controlnet_image_processors import ControlField
from .latent import SAMPLER_NAME_VALUES, LatentsField, LatentsOutput, build_latents_output, get_scheduler
from .model import ClipField, ModelInfo, UNetField, VaeField
ORT_TO_NP_TYPE = {
"tensor(bool)": np.bool_,
@ -51,20 +56,19 @@ ORT_TO_NP_TYPE = {
PRECISION_VALUES = Literal[tuple(list(ORT_TO_NP_TYPE.keys()))]
@invocation("prompt_onnx", title="ONNX Prompt (Raw)", tags=["prompt", "onnx"], category="conditioning")
class ONNXPromptInvocation(BaseInvocation):
type: Literal["prompt_onnx"] = "prompt_onnx"
prompt: str = InputField(default="", description=FieldDescriptions.raw_prompt, ui_component=UIComponent.Textarea)
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
prompt: str = Field(default="", description="Prompt")
clip: ClipField = Field(None, description="Clip to use")
def invoke(self, context: InvocationContext) -> CompelOutput:
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
)
with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder, ExitStack() as stack:
with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder: # , ExitStack() as stack:
loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
for lora in self.clip.loras
@ -126,7 +130,7 @@ class ONNXPromptInvocation(BaseInvocation):
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (prompt_embeds, None))
return CompelOutput(
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
@ -134,25 +138,49 @@ class ONNXPromptInvocation(BaseInvocation):
# Text to image
@invocation(
"t2l_onnx",
title="ONNX Text to Latents",
tags=["latents", "inference", "txt2img", "onnx"],
category="latents",
)
class ONNXTextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
type: Literal["t2l_onnx"] = "t2l_onnx"
# Inputs
# fmt: off
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
precision: PRECISION_VALUES = Field(default = "tensor(float16)", description="The precision to use when generating latents")
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond,
input=Input.Connection,
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond,
input=Input.Connection,
)
noise: LatentsField = InputField(
description=FieldDescriptions.noise,
input=Input.Connection,
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField(
default=7.5,
ge=1,
description=FieldDescriptions.cfg_scale,
ui_type=UIType.Float,
)
scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, input=Input.Direct, ui_type=UIType.Scheduler
)
precision: PRECISION_VALUES = InputField(default="tensor(float16)", description=FieldDescriptions.precision)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
)
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
default=None,
description=FieldDescriptions.control,
ui_type=UIType.Control,
)
# seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'")
@validator("cfg_scale")
def ge_one(cls, v):
@ -166,20 +194,6 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1")
return v
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number",
},
},
}
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
def invoke(self, context: InvocationContext) -> LatentsOutput:
@ -242,7 +256,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
with unet_info as unet, ExitStack() as stack:
with unet_info as unet: # , ExitStack() as stack:
# loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
@ -300,26 +314,29 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
# Latent to image
@invocation(
"l2i_onnx",
title="ONNX Latents to Image",
tags=["latents", "image", "vae", "onnx"],
category="image",
)
class ONNXLatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i_onnx"] = "l2i_onnx"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
metadata: Optional[CoreMetadata] = Field(
default=None, description="Optional core metadata to be written to the image"
latents: LatentsField = InputField(
description=FieldDescriptions.denoised_latents,
input=Input.Connection,
)
# tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
},
}
vae: VaeField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
metadata: Optional[CoreMetadata] = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
# tiled: bool = InputField(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
@ -358,6 +375,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation):
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow,
)
return ImageOutput(
@ -367,93 +385,14 @@ class ONNXLatentsToImageInvocation(BaseInvocation):
)
@invocation_output("model_loader_output_onnx")
class ONNXModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["model_loader_output_onnx"] = "model_loader_output_onnx"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae_decoder: VaeField = Field(default=None, description="Vae submodel")
vae_encoder: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
class ONNXSD1ModelLoaderInvocation(BaseInvocation):
"""Loading submodels of selected model."""
type: Literal["sd1_model_loader_onnx"] = "sd1_model_loader_onnx"
model_name: str = Field(default="", description="Model to load")
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {"tags": ["model", "loader"], "type_hints": {"model_name": "model"}}, # TODO: rename to model_name?
}
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
model_name = "stable-diffusion-v1-5"
base_model = BaseModelType.StableDiffusion1
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.ONNX,
):
raise Exception(f"Unkown model name: {model_name}!")
return ONNXModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.TextEncoder,
),
loras=[],
),
vae_decoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.VaeDecoder,
),
),
vae_encoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.VaeEncoder,
),
),
)
unet: UNetField = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
vae_decoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Decoder")
vae_encoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Encoder")
class OnnxModelField(BaseModel):
@ -464,22 +403,13 @@ class OnnxModelField(BaseModel):
model_type: ModelType = Field(description="Model Type")
@invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model")
class OnnxModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
type: Literal["onnx_model_loader"] = "onnx_model_loader"
model: OnnxModelField = Field(description="The model to load")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Onnx Model Loader",
"tags": ["model", "loader"],
"type_hints": {"model": "model"},
},
}
model: OnnxModelField = InputField(
description=FieldDescriptions.onnx_main_model, input=Input.Direct, ui_type=UIType.ONNXModel
)
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
base_model = self.model.base_model

View File

@ -1,73 +1,57 @@
import io
from typing import Literal, Optional, Any
from typing import Literal, Optional
# from PIL.Image import Image
import PIL.Image
from matplotlib.ticker import MaxNLocator
from matplotlib.figure import Figure
from pydantic import BaseModel, Field
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
from easing_functions import (
LinearInOut,
QuadEaseInOut,
QuadEaseIn,
QuadEaseOut,
CubicEaseInOut,
CubicEaseIn,
CubicEaseOut,
QuarticEaseInOut,
QuarticEaseIn,
QuarticEaseOut,
QuinticEaseInOut,
QuinticEaseIn,
QuinticEaseOut,
SineEaseInOut,
SineEaseIn,
SineEaseOut,
CircularEaseIn,
CircularEaseInOut,
CircularEaseOut,
ExponentialEaseInOut,
ExponentialEaseIn,
ExponentialEaseOut,
ElasticEaseIn,
ElasticEaseInOut,
ElasticEaseOut,
BackEaseIn,
BackEaseInOut,
BackEaseOut,
BounceEaseIn,
BounceEaseInOut,
BounceEaseOut,
CircularEaseIn,
CircularEaseInOut,
CircularEaseOut,
CubicEaseIn,
CubicEaseInOut,
CubicEaseOut,
ElasticEaseIn,
ElasticEaseInOut,
ElasticEaseOut,
ExponentialEaseIn,
ExponentialEaseInOut,
ExponentialEaseOut,
LinearInOut,
QuadEaseIn,
QuadEaseInOut,
QuadEaseOut,
QuarticEaseIn,
QuarticEaseInOut,
QuarticEaseOut,
QuinticEaseIn,
QuinticEaseInOut,
QuinticEaseOut,
SineEaseIn,
SineEaseInOut,
SineEaseOut,
)
from matplotlib.ticker import MaxNLocator
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from ...backend.util.logging import InvokeAILogger
from .collections import FloatCollectionOutput
from invokeai.app.invocations.primitives import FloatCollectionOutput
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@invocation("float_range", title="Float Range", tags=["math", "range"], category="math")
class FloatLinearRangeInvocation(BaseInvocation):
"""Creates a range"""
type: Literal["float_range"] = "float_range"
# Inputs
start: float = Field(default=5, description="The first value of the range")
stop: float = Field(default=10, description="The last value of the range")
steps: int = Field(default=30, description="number of values to interpolate over (including start and stop)")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Linear Range (Float)", "tags": ["math", "float", "linear", "range"]},
}
start: float = InputField(default=5, description="The first value of the range")
stop: float = InputField(default=10, description="The last value of the range")
steps: int = InputField(default=30, description="number of values to interpolate over (including start and stop)")
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps))
@ -108,37 +92,28 @@ EASING_FUNCTIONS_MAP = {
"BounceInOut": BounceEaseInOut,
}
EASING_FUNCTION_KEYS: Any = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
EASING_FUNCTION_KEYS = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
# actually I think for now could just use CollectionOutput (which is list[Any]
@invocation("step_param_easing", title="Step Param Easing", tags=["step", "easing"], category="step")
class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps"""
type: Literal["step_param_easing"] = "step_param_easing"
# Inputs
# fmt: off
easing: EASING_FUNCTION_KEYS = Field(default="Linear", description="The easing function to use")
num_steps: int = Field(default=20, description="number of denoising steps")
start_value: float = Field(default=0.0, description="easing starting value")
end_value: float = Field(default=1.0, description="easing ending value")
start_step_percent: float = Field(default=0.0, description="fraction of steps at which to start easing")
end_step_percent: float = Field(default=1.0, description="fraction of steps after which to end easing")
easing: EASING_FUNCTION_KEYS = InputField(default="Linear", description="The easing function to use")
num_steps: int = InputField(default=20, description="number of denoising steps")
start_value: float = InputField(default=0.0, description="easing starting value")
end_value: float = InputField(default=1.0, description="easing ending value")
start_step_percent: float = InputField(default=0.0, description="fraction of steps at which to start easing")
end_step_percent: float = InputField(default=1.0, description="fraction of steps after which to end easing")
# if None, then start_value is used prior to easing start
pre_start_value: Optional[float] = Field(default=None, description="value before easing start")
pre_start_value: Optional[float] = InputField(default=None, description="value before easing start")
# if None, then end value is used prior to easing end
post_end_value: Optional[float] = Field(default=None, description="value after easing end")
mirror: bool = Field(default=False, description="include mirror of easing function")
post_end_value: Optional[float] = InputField(default=None, description="value after easing end")
mirror: bool = InputField(default=False, description="include mirror of easing function")
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# alt_mirror: bool = Field(default=False, description="alternative mirroring by dual easing")
show_easing_plot: bool = Field(default=False, description="show easing plot")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Param Easing By Step", "tags": ["param", "step", "easing"]},
}
# alt_mirror: bool = InputField(default=False, description="alternative mirroring by dual easing")
show_easing_plot: bool = InputField(default=False, description="show easing plot")
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
log_diagnostics = False

View File

@ -1,83 +0,0 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from pydantic import Field
from invokeai.app.invocations.prompt import PromptOutput
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .math import FloatOutput, IntOutput
# Pass-through parameter nodes - used by subgraphs
class ParamIntInvocation(BaseInvocation):
"""An integer parameter"""
# fmt: off
type: Literal["param_int"] = "param_int"
a: int = Field(default=0, description="The integer value")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"tags": ["param", "integer"], "title": "Integer Parameter"},
}
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a)
class ParamFloatInvocation(BaseInvocation):
"""A float parameter"""
# fmt: off
type: Literal["param_float"] = "param_float"
param: float = Field(default=0.0, description="The float value")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"tags": ["param", "float"], "title": "Float Parameter"},
}
def invoke(self, context: InvocationContext) -> FloatOutput:
return FloatOutput(param=self.param)
class StringOutput(BaseInvocationOutput):
"""A string output"""
type: Literal["string_output"] = "string_output"
text: str = Field(default=None, description="The output string")
class ParamStringInvocation(BaseInvocation):
"""A string parameter"""
type: Literal["param_string"] = "param_string"
text: str = Field(default="", description="The string value")
class Config(InvocationConfig):
schema_extra = {
"ui": {"tags": ["param", "string"], "title": "String Parameter"},
}
def invoke(self, context: InvocationContext) -> StringOutput:
return StringOutput(text=self.text)
class ParamPromptInvocation(BaseInvocation):
"""A prompt input parameter"""
type: Literal["param_prompt"] = "param_prompt"
prompt: str = Field(default="", description="The prompt value")
class Config(InvocationConfig):
schema_extra = {
"ui": {"tags": ["param", "prompt"], "title": "Prompt"},
}
def invoke(self, context: InvocationContext) -> PromptOutput:
return PromptOutput(prompt=self.prompt)

View File

@ -0,0 +1,463 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Optional, Tuple
import torch
from pydantic import BaseModel, Field
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
UIType,
invocation,
invocation_output,
)
"""
Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color
- primitive nodes
- primitive outputs
- primitive collection outputs
"""
# region Boolean
@invocation_output("boolean_output")
class BooleanOutput(BaseInvocationOutput):
"""Base class for nodes that output a single boolean"""
value: bool = OutputField(description="The output boolean")
@invocation_output("boolean_collection_output")
class BooleanCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of booleans"""
collection: list[bool] = OutputField(description="The output boolean collection", ui_type=UIType.BooleanCollection)
@invocation("boolean", title="Boolean Primitive", tags=["primitives", "boolean"], category="primitives")
class BooleanInvocation(BaseInvocation):
"""A boolean primitive value"""
value: bool = InputField(default=False, description="The boolean value")
def invoke(self, context: InvocationContext) -> BooleanOutput:
return BooleanOutput(value=self.value)
@invocation(
"boolean_collection",
title="Boolean Collection Primitive",
tags=["primitives", "boolean", "collection"],
category="primitives",
)
class BooleanCollectionInvocation(BaseInvocation):
"""A collection of boolean primitive values"""
collection: list[bool] = InputField(
default_factory=list, description="The collection of boolean values", ui_type=UIType.BooleanCollection
)
def invoke(self, context: InvocationContext) -> BooleanCollectionOutput:
return BooleanCollectionOutput(collection=self.collection)
# endregion
# region Integer
@invocation_output("integer_output")
class IntegerOutput(BaseInvocationOutput):
"""Base class for nodes that output a single integer"""
value: int = OutputField(description="The output integer")
@invocation_output("integer_collection_output")
class IntegerCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of integers"""
collection: list[int] = OutputField(description="The int collection", ui_type=UIType.IntegerCollection)
@invocation("integer", title="Integer Primitive", tags=["primitives", "integer"], category="primitives")
class IntegerInvocation(BaseInvocation):
"""An integer primitive value"""
value: int = InputField(default=0, description="The integer value")
def invoke(self, context: InvocationContext) -> IntegerOutput:
return IntegerOutput(value=self.value)
@invocation(
"integer_collection",
title="Integer Collection Primitive",
tags=["primitives", "integer", "collection"],
category="primitives",
)
class IntegerCollectionInvocation(BaseInvocation):
"""A collection of integer primitive values"""
collection: list[int] = InputField(
default_factory=list, description="The collection of integer values", ui_type=UIType.IntegerCollection
)
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
return IntegerCollectionOutput(collection=self.collection)
# endregion
# region Float
@invocation_output("float_output")
class FloatOutput(BaseInvocationOutput):
"""Base class for nodes that output a single float"""
value: float = OutputField(description="The output float")
@invocation_output("float_collection_output")
class FloatCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of floats"""
collection: list[float] = OutputField(description="The float collection", ui_type=UIType.FloatCollection)
@invocation("float", title="Float Primitive", tags=["primitives", "float"], category="primitives")
class FloatInvocation(BaseInvocation):
"""A float primitive value"""
value: float = InputField(default=0.0, description="The float value")
def invoke(self, context: InvocationContext) -> FloatOutput:
return FloatOutput(value=self.value)
@invocation(
"float_collection",
title="Float Collection Primitive",
tags=["primitives", "float", "collection"],
category="primitives",
)
class FloatCollectionInvocation(BaseInvocation):
"""A collection of float primitive values"""
collection: list[float] = InputField(
default_factory=list, description="The collection of float values", ui_type=UIType.FloatCollection
)
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
return FloatCollectionOutput(collection=self.collection)
# endregion
# region String
@invocation_output("string_output")
class StringOutput(BaseInvocationOutput):
"""Base class for nodes that output a single string"""
value: str = OutputField(description="The output string")
@invocation_output("string_collection_output")
class StringCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of strings"""
collection: list[str] = OutputField(description="The output strings", ui_type=UIType.StringCollection)
@invocation("string", title="String Primitive", tags=["primitives", "string"], category="primitives")
class StringInvocation(BaseInvocation):
"""A string primitive value"""
value: str = InputField(default="", description="The string value", ui_component=UIComponent.Textarea)
def invoke(self, context: InvocationContext) -> StringOutput:
return StringOutput(value=self.value)
@invocation(
"string_collection",
title="String Collection Primitive",
tags=["primitives", "string", "collection"],
category="primitives",
)
class StringCollectionInvocation(BaseInvocation):
"""A collection of string primitive values"""
collection: list[str] = InputField(
default_factory=list, description="The collection of string values", ui_type=UIType.StringCollection
)
def invoke(self, context: InvocationContext) -> StringCollectionOutput:
return StringCollectionOutput(collection=self.collection)
# endregion
# region Image
class ImageField(BaseModel):
"""An image primitive field"""
image_name: str = Field(description="The name of the image")
@invocation_output("image_output")
class ImageOutput(BaseInvocationOutput):
"""Base class for nodes that output a single image"""
image: ImageField = OutputField(description="The output image")
width: int = OutputField(description="The width of the image in pixels")
height: int = OutputField(description="The height of the image in pixels")
@invocation_output("image_collection_output")
class ImageCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of images"""
collection: list[ImageField] = OutputField(description="The output images", ui_type=UIType.ImageCollection)
@invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives")
class ImageInvocation(BaseInvocation):
"""An image primitive value"""
image: ImageField = InputField(description="The image to load")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
@invocation(
"image_collection",
title="Image Collection Primitive",
tags=["primitives", "image", "collection"],
category="primitives",
)
class ImageCollectionInvocation(BaseInvocation):
"""A collection of image primitive values"""
collection: list[ImageField] = InputField(
default_factory=list, description="The collection of image values", ui_type=UIType.ImageCollection
)
def invoke(self, context: InvocationContext) -> ImageCollectionOutput:
return ImageCollectionOutput(collection=self.collection)
# endregion
# region DenoiseMask
class DenoiseMaskField(BaseModel):
"""An inpaint mask field"""
mask_name: str = Field(description="The name of the mask image")
masked_latents_name: Optional[str] = Field(description="The name of the masked image latents")
@invocation_output("denoise_mask_output")
class DenoiseMaskOutput(BaseInvocationOutput):
"""Base class for nodes that output a single image"""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
# endregion
# region Latents
class LatentsField(BaseModel):
"""A latents tensor primitive field"""
latents_name: str = Field(description="The name of the latents")
seed: Optional[int] = Field(default=None, description="Seed used to generate this latents")
@invocation_output("latents_output")
class LatentsOutput(BaseInvocationOutput):
"""Base class for nodes that output a single latents tensor"""
latents: LatentsField = OutputField(
description=FieldDescriptions.latents,
)
width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height)
@invocation_output("latents_collection_output")
class LatentsCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of latents tensors"""
collection: list[LatentsField] = OutputField(
description=FieldDescriptions.latents,
ui_type=UIType.LatentsCollection,
)
@invocation("latents", title="Latents Primitive", tags=["primitives", "latents"], category="primitives")
class LatentsInvocation(BaseInvocation):
"""A latents tensor primitive value"""
latents: LatentsField = InputField(description="The latents tensor", input=Input.Connection)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
return build_latents_output(self.latents.latents_name, latents)
@invocation(
"latents_collection",
title="Latents Collection Primitive",
tags=["primitives", "latents", "collection"],
category="primitives",
)
class LatentsCollectionInvocation(BaseInvocation):
"""A collection of latents tensor primitive values"""
collection: list[LatentsField] = InputField(
description="The collection of latents tensors", ui_type=UIType.LatentsCollection
)
def invoke(self, context: InvocationContext) -> LatentsCollectionOutput:
return LatentsCollectionOutput(collection=self.collection)
def build_latents_output(latents_name: str, latents: torch.Tensor, seed: Optional[int] = None):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
# endregion
# region Color
class ColorField(BaseModel):
"""A color primitive field"""
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
@invocation_output("color_output")
class ColorOutput(BaseInvocationOutput):
"""Base class for nodes that output a single color"""
color: ColorField = OutputField(description="The output color")
@invocation_output("color_collection_output")
class ColorCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of colors"""
collection: list[ColorField] = OutputField(description="The output colors", ui_type=UIType.ColorCollection)
@invocation("color", title="Color Primitive", tags=["primitives", "color"], category="primitives")
class ColorInvocation(BaseInvocation):
"""A color primitive value"""
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=255), description="The color value")
def invoke(self, context: InvocationContext) -> ColorOutput:
return ColorOutput(color=self.color)
# endregion
# region Conditioning
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""
conditioning: ConditioningField = OutputField(description=FieldDescriptions.cond)
@invocation_output("conditioning_collection_output")
class ConditioningCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of conditioning tensors"""
collection: list[ConditioningField] = OutputField(
description="The output conditioning tensors",
ui_type=UIType.ConditioningCollection,
)
@invocation(
"conditioning",
title="Conditioning Primitive",
tags=["primitives", "conditioning"],
category="primitives",
)
class ConditioningInvocation(BaseInvocation):
"""A conditioning tensor primitive value"""
conditioning: ConditioningField = InputField(description=FieldDescriptions.cond, input=Input.Connection)
def invoke(self, context: InvocationContext) -> ConditioningOutput:
return ConditioningOutput(conditioning=self.conditioning)
@invocation(
"conditioning_collection",
title="Conditioning Collection Primitive",
tags=["primitives", "conditioning", "collection"],
category="primitives",
)
class ConditioningCollectionInvocation(BaseInvocation):
"""A collection of conditioning tensor primitive values"""
collection: list[ConditioningField] = InputField(
default_factory=list,
description="The collection of conditioning tensors",
ui_type=UIType.ConditioningCollection,
)
def invoke(self, context: InvocationContext) -> ConditioningCollectionOutput:
return ConditioningCollectionOutput(collection=self.collection)
# endregion

View File

@ -1,59 +1,24 @@
from os.path import exists
from typing import Literal, Optional
from typing import Optional, Union
import numpy as np
from pydantic import Field, validator
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from pydantic import validator
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from dynamicprompts.generators import RandomPromptGenerator, CombinatorialPromptGenerator
class PromptOutput(BaseInvocationOutput):
"""Base class for invocations that output a prompt"""
# fmt: off
type: Literal["prompt"] = "prompt"
prompt: str = Field(default=None, description="The output prompt")
# fmt: on
class Config:
schema_extra = {
"required": [
"type",
"prompt",
]
}
class PromptCollectionOutput(BaseInvocationOutput):
"""Base class for invocations that output a collection of prompts"""
# fmt: off
type: Literal["prompt_collection_output"] = "prompt_collection_output"
prompt_collection: list[str] = Field(description="The output prompt collection")
count: int = Field(description="The size of the prompt collection")
# fmt: on
class Config:
schema_extra = {"required": ["type", "prompt_collection", "count"]}
from invokeai.app.invocations.primitives import StringCollectionOutput
from .baseinvocation import BaseInvocation, InputField, InvocationContext, UIComponent, invocation
@invocation("dynamic_prompt", title="Dynamic Prompt", tags=["prompt", "collection"], category="prompt")
class DynamicPromptInvocation(BaseInvocation):
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
type: Literal["dynamic_prompt"] = "dynamic_prompt"
prompt: str = Field(description="The prompt to parse with dynamicprompts")
max_prompts: int = Field(default=1, description="The number of prompts to generate")
combinatorial: bool = Field(default=False, description="Whether to use the combinatorial generator")
prompt: str = InputField(description="The prompt to parse with dynamicprompts", ui_component=UIComponent.Textarea)
max_prompts: int = InputField(default=1, description="The number of prompts to generate")
combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Dynamic Prompt", "tags": ["prompt", "dynamic"]},
}
def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
def invoke(self, context: InvocationContext) -> StringCollectionOutput:
if self.combinatorial:
generator = CombinatorialPromptGenerator()
prompts = generator.generate(self.prompt, max_prompts=self.max_prompts)
@ -61,27 +26,22 @@ class DynamicPromptInvocation(BaseInvocation):
generator = RandomPromptGenerator()
prompts = generator.generate(self.prompt, num_images=self.max_prompts)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))
return StringCollectionOutput(collection=prompts)
@invocation("prompt_from_file", title="Prompts from File", tags=["prompt", "file"], category="prompt")
class PromptsFromFileInvocation(BaseInvocation):
"""Loads prompts from a text file"""
# fmt: off
type: Literal['prompt_from_file'] = 'prompt_from_file'
# Inputs
file_path: str = Field(description="Path to prompt text file")
pre_prompt: Optional[str] = Field(description="String to prepend to each prompt")
post_prompt: Optional[str] = Field(description="String to append to each prompt")
start_line: int = Field(default=1, ge=1, description="Line in the file to start start from")
max_prompts: int = Field(default=1, ge=0, description="Max lines to read from file (0=all)")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Prompts From File", "tags": ["prompt", "file"]},
}
file_path: str = InputField(description="Path to prompt text file")
pre_prompt: Optional[str] = InputField(
default=None, description="String to prepend to each prompt", ui_component=UIComponent.Textarea
)
post_prompt: Optional[str] = InputField(
default=None, description="String to append to each prompt", ui_component=UIComponent.Textarea
)
start_line: int = InputField(default=1, ge=1, description="Line in the file to start start from")
max_prompts: int = InputField(default=1, ge=0, description="Max lines to read from file (0=all)")
@validator("file_path")
def file_path_exists(cls, v):
@ -89,7 +49,14 @@ class PromptsFromFileInvocation(BaseInvocation):
raise ValueError(FileNotFoundError)
return v
def promptsFromFile(self, file_path: str, pre_prompt: str, post_prompt: str, start_line: int, max_prompts: int):
def promptsFromFile(
self,
file_path: str,
pre_prompt: Union[str, None],
post_prompt: Union[str, None],
start_line: int,
max_prompts: int,
):
prompts = []
start_line -= 1
end_line = start_line + max_prompts
@ -103,8 +70,8 @@ class PromptsFromFileInvocation(BaseInvocation):
break
return prompts
def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
def invoke(self, context: InvocationContext) -> StringCollectionOutput:
prompts = self.promptsFromFile(
self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts
)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))
return StringCollectionOutput(collection=prompts)

View File

@ -1,55 +1,47 @@
import torch
from typing import Literal
from pydantic import Field
from ...backend.model_management import ModelType, SubModelType
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .model import UNetField, ClipField, VaeField, MainModelField, ModelInfo
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
invocation,
invocation_output,
)
from .model import ClipField, MainModelField, ModelInfo, UNetField, VaeField
@invocation_output("sdxl_model_loader_output")
class SDXLModelLoaderOutput(BaseInvocationOutput):
"""SDXL base model loader output"""
# fmt: off
type: Literal["sdxl_model_loader_output"] = "sdxl_model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
clip2: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation_output("sdxl_refiner_model_loader_output")
class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
"""SDXL refiner model loader output"""
# fmt: off
type: Literal["sdxl_refiner_model_loader_output"] = "sdxl_refiner_model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel")
clip2: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
# fmt: on
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip2: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model")
class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
type: Literal["sdxl_model_loader"] = "sdxl_model_loader"
model: MainModelField = Field(description="The model to load")
model: MainModelField = InputField(
description=FieldDescriptions.sdxl_main_model, input=Input.Direct, ui_type=UIType.SDXLMainModel
)
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Model Loader",
"tags": ["model", "loader", "sdxl"],
"type_hints": {"model": "model"},
},
}
def invoke(self, context: InvocationContext) -> SDXLModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
@ -122,24 +114,22 @@ class SDXLModelLoaderInvocation(BaseInvocation):
)
@invocation(
"sdxl_refiner_model_loader",
title="SDXL Refiner Model",
tags=["model", "sdxl", "refiner"],
category="model",
)
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""
type: Literal["sdxl_refiner_model_loader"] = "sdxl_refiner_model_loader"
model: MainModelField = Field(description="The model to load")
model: MainModelField = InputField(
description=FieldDescriptions.sdxl_refiner_model,
input=Input.Direct,
ui_type=UIType.SDXLRefinerModel,
)
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Refiner Model Loader",
"tags": ["model", "loader", "sdxl_refiner"],
"type_hints": {"model": "refiner_model"},
},
}
def invoke(self, context: InvocationContext) -> SDXLRefinerModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name

View File

@ -1,18 +1,17 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
from pathlib import Path
from typing import Literal, Union
from typing import Literal
import cv2 as cv
import numpy as np
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from pydantic import Field
from realesrgan import RealESRGANer
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationConfig, InvocationContext
from .image import ImageOutput
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
# TODO: Populate this from disk?
# TODO: Use model manager to load?
@ -24,17 +23,12 @@ ESRGAN_MODELS = Literal[
]
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan")
class ESRGANInvocation(BaseInvocation):
"""Upscales an image using RealESRGAN."""
type: Literal["esrgan"] = "esrgan"
image: Union[ImageField, None] = Field(default=None, description="The input image")
model_name: ESRGAN_MODELS = Field(default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use")
class Config(InvocationConfig):
schema_extra = {
"ui": {"title": "Upscale (RealESRGAN)", "tags": ["image", "upscale", "realesrgan"]},
}
image: ImageField = InputField(description="The input image")
model_name: ESRGAN_MODELS = InputField(default="RealESRGAN_x4plus.pth", description="The Real-ESRGAN model to use")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
@ -112,6 +106,7 @@ class ESRGANInvocation(BaseInvocation):
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(

View File

@ -1,31 +1,8 @@
from enum import Enum
from typing import Optional, Tuple, Literal
from pydantic import BaseModel, Field
from invokeai.app.util.metaenum import MetaEnum
from ..invocations.baseinvocation import (
BaseInvocationOutput,
InvocationConfig,
)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_name"]}
class ColorField(BaseModel):
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ProgressImage(BaseModel):
@ -36,50 +13,6 @@ class ProgressImage(BaseModel):
dataURL: str = Field(description="The image data as a b64 data URL")
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
width: int = Field(description="The width of the mask in pixels")
height: int = Field(description="The height of the mask in pixels")
# fmt: on
class Config:
schema_extra = {
"required": [
"type",
"mask",
]
}
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image).

View File

@ -1,18 +1,14 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import List, Union, Optional
from typing import Optional
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.board_record_storage import (
BoardRecord,
BoardRecordStorageBase,
)
from invokeai.app.services.image_record_storage import (
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.image_record_storage import ImageRecordStorageBase
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.models.image_record import ImageDTO, image_record_to_dto
from invokeai.app.services.urls import UrlServiceBase

View File

@ -1,15 +1,14 @@
from abc import ABC, abstractmethod
from typing import Optional, cast
import sqlite3
import threading
from typing import Optional, Union
import uuid
from abc import ABC, abstractmethod
from typing import Optional, Union, cast
import sqlite3
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import (
BoardRecord,
deserialize_board_record,
)
from pydantic import BaseModel, Field, Extra
@ -230,7 +229,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
# Change the name of a board
if changes.board_name is not None:
self._cursor.execute(
f"""--sql
"""--sql
UPDATE boards
SET board_name = ?
WHERE board_id = ?;
@ -241,7 +240,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
# Change the cover image of a board
if changes.cover_image_name is not None:
self._cursor.execute(
f"""--sql
"""--sql
UPDATE boards
SET cover_image_name = ?
WHERE board_id = ?;

View File

@ -0,0 +1,9 @@
"""
Init file for InvokeAI configure package
"""
from .invokeai_config import ( # noqa F401
InvokeAIAppConfig,
get_invokeai_config,
)
from .base import PagingArgumentParser # noqa F401

View File

@ -0,0 +1,239 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
"""
Base class for the InvokeAI configuration system.
It defines a type of pydantic BaseSettings object that
is able to read and write from an omegaconf-based config file,
with overriding of settings from environment variables and/or
the command line.
"""
from __future__ import annotations
import argparse
import os
import pydoc
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig, ListConfig
from pathlib import Path
from pydantic import BaseSettings
from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
class PagingArgumentParser(argparse.ArgumentParser):
"""
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
"""
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
class InvokeAISettings(BaseSettings):
"""
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
"""
initconf: ClassVar[DictConfig] = None
argparse_groups: ClassVar[Dict] = {}
def parse_args(self, argv: list = sys.argv[1:]):
parser = self.get_parser()
opt = parser.parse_args(argv)
for name in self.__fields__:
if name not in self._excluded():
value = getattr(opt, name)
if isinstance(value, ListConfig):
value = list(value)
elif isinstance(value, DictConfig):
value = dict(value)
setattr(self, name, value)
def to_yaml(self) -> str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type: dict()})
for name, field in self.__fields__.items():
if name in cls._excluded_from_yaml():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self, name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
@classmethod
def add_parser_arguments(cls, parser):
if "type" in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)["type"])[0]
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config, "env_prefix") else settings_stanza.upper()
initconf = (
cls.initconf.get(settings_stanza)
if cls.initconf and settings_stanza in cls.initconf
else OmegaConf.create()
)
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key, value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category", "Uncategorized")
env_name = env_prefix + "_" + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
field.default = upcase_environ[env_name.upper()]
cls.add_field_argument(parser, name, field)
field.default = current_default
@classmethod
def cmd_name(self, command_field: str = "type") -> str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return "Uncategorized"
@classmethod
def get_parser(cls) -> ArgumentParser:
parser = PagingArgumentParser(
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self) -> List[str]:
# internal fields that shouldn't be exposed as command line options
return ["type", "initconf"]
@classmethod
def _excluded_from_yaml(self) -> List[str]:
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
return [
"type",
"initconf",
"version",
"from_file",
"model",
"root",
"max_cache_size",
"max_vram_cache_size",
"always_use_cpu",
"free_gpu_mem",
"xformers_enabled",
"tiled_decode",
]
class Config:
env_file_encoding = "utf-8"
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override=None):
field_type = get_type_hints(cls).get(name)
default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
)
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field_type) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else int_or_float_or_str
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
elif get_origin(field_type) == Union:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=int_or_float_or_str,
default=default,
help=field.field_info.description,
)
elif get_origin(field_type) == list:
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs="*",
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
def int_or_float_or_str(value: str) -> Union[int, float, str]:
"""
Workaround for argparse type checking.
"""
try:
return int(value)
except Exception as e: # noqa F841
pass
try:
return float(value)
except Exception as e: # noqa F841
pass
return str(value)

View File

@ -10,37 +10,49 @@ categories returned by `invokeai --help`. The file looks like this:
[file: invokeai.yaml]
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
autoimport_dir: null
Models:
model: stable-diffusion-1.5
embeddings: true
Memory/Performance:
xformers_enabled: false
sequential_guidance: false
precision: float16
max_cache_size: 6
max_vram_cache_size: 0.5
always_use_cpu: false
free_gpu_mem: false
Features:
esrgan: true
patchmatch: true
internet_available: true
log_tokenization: false
Web Server:
host: 127.0.0.1
port: 8081
port: 9090
allow_origins: []
allow_credentials: true
allow_methods:
- '*'
allow_headers:
- '*'
Features:
esrgan: true
internet_available: true
log_tokenization: false
patchmatch: true
ignore_missing_core_models: false
Paths:
autoimport_dir: autoimport
lora_dir: null
embedding_dir: null
controlnet_dir: null
conf_path: configs/models.yaml
models_dir: models
legacy_conf_dir: configs/stable-diffusion
db_dir: databases
outdir: /home/lstein/invokeai-main/outputs
use_memory_db: false
Logging:
log_handlers:
- console
log_format: plain
log_level: info
Model Cache:
ram: 13.5
vram: 0.25
lazy_offload: true
Device:
device: auto
precision: auto
Generation:
sequential_guidance: false
attention_type: xformers
attention_slice_size: auto
force_tiled_decode: false
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing any
@ -54,24 +66,23 @@ InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv`
at initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv:
conf.parse_args(argv=['--xformers_enabled'])
conf.parse_args(argv=['--log_tokenization'])
It is also possible to set a value at initialization time. However, if
you call parse_args() it may be overwritten.
conf = InvokeAIAppConfig(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
conf = InvokeAIAppConfig(log_tokenization=True)
conf.parse_args(argv=['--no-log_tokenization'])
conf.log_tokenization
# False
To avoid this, use `get_config()` to retrieve the application-wide
configuration object. This will retain any properties set at object
creation time:
conf = InvokeAIAppConfig.get_config(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
conf = InvokeAIAppConfig.get_config(log_tokenization=True)
conf.parse_args(argv=['--no-log_tokenization'])
conf.log_tokenization
# True
Any setting can be overwritten by setting an environment variable of
@ -93,7 +104,7 @@ Typical usage at the top level file:
# get global configuration and print its cache size
conf = InvokeAIAppConfig.get_config()
conf.parse_args()
print(conf.max_cache_size)
print(conf.ram_cache_size)
Typical usage in a backend module:
@ -101,8 +112,7 @@ Typical usage in a backend module:
# get global configuration and print its cache size value
conf = InvokeAIAppConfig.get_config()
print(conf.max_cache_size)
print(conf.ram_cache_size)
Computed properties:
@ -159,15 +169,15 @@ two configs are kept in separate sections of the config file:
"""
from __future__ import annotations
import argparse
import pydoc
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig, ListConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
from typing import ClassVar, Dict, List, Literal, Union, get_type_hints, Optional
from omegaconf import OmegaConf, DictConfig
from pydantic import Field, parse_obj_as
from .base import InvokeAISettings
INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db")
@ -175,195 +185,6 @@ LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_MAX_VRAM = 0.5
class InvokeAISettings(BaseSettings):
"""
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
"""
initconf: ClassVar[DictConfig] = None
argparse_groups: ClassVar[Dict] = {}
def parse_args(self, argv: list = sys.argv[1:]):
parser = self.get_parser()
opt = parser.parse_args(argv)
for name in self.__fields__:
if name not in self._excluded():
value = getattr(opt, name)
if isinstance(value, ListConfig):
value = list(value)
elif isinstance(value, DictConfig):
value = dict(value)
setattr(self, name, value)
def to_yaml(self) -> str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type: dict()})
for name, field in self.__fields__.items():
if name in cls._excluded_from_yaml():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self, name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
@classmethod
def add_parser_arguments(cls, parser):
if "type" in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)["type"])[0]
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config, "env_prefix") else settings_stanza.upper()
initconf = (
cls.initconf.get(settings_stanza)
if cls.initconf and settings_stanza in cls.initconf
else OmegaConf.create()
)
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key, value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category", "Uncategorized")
env_name = env_prefix + "_" + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
field.default = upcase_environ[env_name.upper()]
cls.add_field_argument(parser, name, field)
field.default = current_default
@classmethod
def cmd_name(self, command_field: str = "type") -> str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return "Uncategorized"
@classmethod
def get_parser(cls) -> ArgumentParser:
parser = PagingArgumentParser(
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self) -> List[str]:
# internal fields that shouldn't be exposed as command line options
return ["type", "initconf"]
@classmethod
def _excluded_from_yaml(self) -> List[str]:
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
return [
"type",
"initconf",
"version",
"from_file",
"model",
"root",
]
class Config:
env_file_encoding = "utf-8"
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override=None):
field_type = get_type_hints(cls).get(name)
default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
)
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field_type) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
elif get_origin(field_type) == list:
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs="*",
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ["INVOKEAI_ROOT"])
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]):
root = (venv.parent).resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
class InvokeAIAppConfig(InvokeAISettings):
"""
Generate images using Stable Diffusion. Use "invokeai" to launch
@ -378,6 +199,8 @@ class InvokeAIAppConfig(InvokeAISettings):
# fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
# WEB
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server')
@ -385,20 +208,14 @@ class InvokeAIAppConfig(InvokeAISettings):
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server')
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server')
# FEATURES
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='auto',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
# PATHS
root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
@ -409,16 +226,43 @@ class InvokeAIAppConfig(InvokeAISettings):
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
# LOGGING
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal[tuple(['plain','color','syslog','legacy'])] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", category="Development")
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
# CACHE
ram : Union[float, Literal["auto"]] = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number or 'auto')", category="Model Cache", )
vram : Union[float, Literal["auto"]] = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number or 'auto')", category="Model Cache", )
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", category="Model Cache", )
# DEVICE
device : Literal[tuple(["auto", "cpu", "cuda", "cuda:1", "mps"])] = Field(default="auto", description="Generation device", category="Device", )
precision: Literal[tuple(["auto", "float16", "float32", "autocast"])] = Field(default="auto", description="Floating point precision", category="Device", )
# GENERATION
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category="Generation", )
attention_type : Literal[tuple(["auto", "normal", "xformers", "sliced", "torch-sdp"])] = Field(default="auto", description="Attention type", category="Generation", )
attention_slice_size: Literal[tuple(["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8])] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', category="Generation", )
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",)
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
# See InvokeAIAppConfig subclass below for CACHE and DEVICE categories
# fmt: on
class Config:
@ -438,7 +282,7 @@ class InvokeAIAppConfig(InvokeAISettings):
if conf is None:
try:
conf = OmegaConf.load(self.root_dir / INIT_FILE)
except:
except Exception:
pass
InvokeAISettings.initconf = conf
@ -457,7 +301,7 @@ class InvokeAIAppConfig(InvokeAISettings):
"""
if (
cls.singleton_config is None
or type(cls.singleton_config) != cls
or type(cls.singleton_config) is not cls
or (kwargs and cls.singleton_init != kwargs)
):
cls.singleton_config = cls(**kwargs)
@ -541,11 +385,6 @@ class InvokeAIAppConfig(InvokeAISettings):
"""Return true if precision set to float32"""
return self.precision == "float32"
@property
def disable_xformers(self) -> bool:
"""Return true if xformers_enabled is false"""
return not self.xformers_enabled
@property
def try_patchmatch(self) -> bool:
"""Return true if patchmatch true"""
@ -561,6 +400,27 @@ class InvokeAIAppConfig(InvokeAISettings):
"""invisible watermark node is always active and disabled from Web UIe"""
return True
@property
def ram_cache_size(self) -> float:
return self.max_cache_size or self.ram
@property
def vram_cache_size(self) -> float:
return self.max_vram_cache_size or self.vram
@property
def use_cpu(self) -> bool:
return self.always_use_cpu or self.device == "cpu"
@property
def disable_xformers(self) -> bool:
"""
Return true if enable_xformers is false (reversed logic)
and attention type is not set to xformers.
"""
disabled_in_config = not self.xformers_enabled
return disabled_in_config and self.attention_type != "xformers"
@staticmethod
def find_root() -> Path:
"""
@ -570,19 +430,19 @@ class InvokeAIAppConfig(InvokeAISettings):
return _find_root()
class PagingArgumentParser(argparse.ArgumentParser):
"""
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
"""
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def get_invokeai_config(**kwargs) -> InvokeAIAppConfig:
"""
Legacy function which returns InvokeAIAppConfig.get_config()
"""
return InvokeAIAppConfig.get_config(**kwargs)
def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ["INVOKEAI_ROOT"])
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]):
root = (venv.parent).resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root

View File

@ -2,7 +2,7 @@ from ..invocations.latent import LatentsToImageInvocation, DenoiseLatentsInvocat
from ..invocations.image import ImageNSFWBlurInvocation
from ..invocations.noise import NoiseInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
from ..invocations.primitives import IntegerInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
@ -17,9 +17,9 @@ def create_text_to_image() -> LibraryGraph:
description="Converts text to an image",
graph=Graph(
nodes={
"width": ParamIntInvocation(id="width", a=512),
"height": ParamIntInvocation(id="height", a=512),
"seed": ParamIntInvocation(id="seed", a=-1),
"width": IntegerInvocation(id="width", value=512),
"height": IntegerInvocation(id="height", value=512),
"seed": IntegerInvocation(id="seed", value=-1),
"3": NoiseInvocation(id="3"),
"4": CompelInvocation(id="4"),
"5": CompelInvocation(id="5"),
@ -29,15 +29,15 @@ def create_text_to_image() -> LibraryGraph:
},
edges=[
Edge(
source=EdgeConnection(node_id="width", field="a"),
source=EdgeConnection(node_id="width", field="value"),
destination=EdgeConnection(node_id="3", field="width"),
),
Edge(
source=EdgeConnection(node_id="height", field="a"),
source=EdgeConnection(node_id="height", field="value"),
destination=EdgeConnection(node_id="3", field="height"),
),
Edge(
source=EdgeConnection(node_id="seed", field="a"),
source=EdgeConnection(node_id="seed", field="value"),
destination=EdgeConnection(node_id="3", field="seed"),
),
Edge(
@ -65,9 +65,9 @@ def create_text_to_image() -> LibraryGraph:
exposed_inputs=[
ExposedNodeInput(node_path="4", field="prompt", alias="positive_prompt"),
ExposedNodeInput(node_path="5", field="prompt", alias="negative_prompt"),
ExposedNodeInput(node_path="width", field="a", alias="width"),
ExposedNodeInput(node_path="height", field="a", alias="height"),
ExposedNodeInput(node_path="seed", field="a", alias="seed"),
ExposedNodeInput(node_path="width", field="value", alias="width"),
ExposedNodeInput(node_path="height", field="value", alias="height"),
ExposedNodeInput(node_path="seed", field="value", alias="seed"),
],
exposed_outputs=[ExposedNodeOutput(node_path="8", field="image", alias="image")],
)

View File

@ -3,26 +3,24 @@
import copy
import itertools
import uuid
from typing import (
Annotated,
Any,
Literal,
Optional,
Union,
get_args,
get_origin,
get_type_hints,
)
from typing import Annotated, Any, Optional, Union, get_args, get_origin, get_type_hints
import networkx as nx
from pydantic import BaseModel, root_validator, validator
from pydantic.fields import Field
from ..invocations import *
# Importing * is bad karma but needed here for node detection
from ..invocations import * # noqa: F401 F403
from ..invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
invocation_output,
)
# in 3.10 this would be "from types import NoneType"
@ -152,24 +150,16 @@ class NodeAlreadyExecutedError(Exception):
# TODO: Create and use an Empty output?
@invocation_output("graph_output")
class GraphInvocationOutput(BaseInvocationOutput):
type: Literal["graph_output"] = "graph_output"
class Config:
schema_extra = {
"required": [
"type",
"image",
]
}
pass
# TODO: Fill this out and move to invocations
@invocation("graph")
class GraphInvocation(BaseInvocation):
"""Execute a graph"""
type: Literal["graph"] = "graph"
# TODO: figure out how to create a default here
graph: "Graph" = Field(description="The graph to run", default=None)
@ -178,62 +168,49 @@ class GraphInvocation(BaseInvocation):
return GraphInvocationOutput()
@invocation_output("iterate_output")
class IterateInvocationOutput(BaseInvocationOutput):
"""Used to connect iteration outputs. Will be expanded to a specific output."""
type: Literal["iterate_output"] = "iterate_output"
item: Any = Field(description="The item being iterated over")
class Config:
schema_extra = {
"required": [
"type",
"item",
]
}
item: Any = OutputField(
description="The item being iterated over", title="Collection Item", ui_type=UIType.CollectionItem
)
# TODO: Fill this out and move to invocations
@invocation("iterate")
class IterateInvocation(BaseInvocation):
"""Iterates over a list of items"""
type: Literal["iterate"] = "iterate"
collection: list[Any] = Field(description="The list of items to iterate over", default_factory=list)
index: int = Field(description="The index, will be provided on executed iterators", default=0)
collection: list[Any] = InputField(
description="The list of items to iterate over", default_factory=list, ui_type=UIType.Collection
)
index: int = InputField(description="The index, will be provided on executed iterators", default=0, ui_hidden=True)
def invoke(self, context: InvocationContext) -> IterateInvocationOutput:
"""Produces the outputs as values"""
return IterateInvocationOutput(item=self.collection[self.index])
@invocation_output("collect_output")
class CollectInvocationOutput(BaseInvocationOutput):
type: Literal["collect_output"] = "collect_output"
collection: list[Any] = Field(description="The collection of input items")
class Config:
schema_extra = {
"required": [
"type",
"collection",
]
}
collection: list[Any] = OutputField(
description="The collection of input items", title="Collection", ui_type=UIType.Collection
)
@invocation("collect")
class CollectInvocation(BaseInvocation):
"""Collects values into a collection"""
type: Literal["collect"] = "collect"
item: Any = Field(
item: Any = InputField(
description="The item to collect (all inputs must be of the same type)",
default=None,
ui_type=UIType.CollectionItem,
title="Collection Item",
input=Input.Connection,
)
collection: list[Any] = Field(
description="The collection, will be provided on execution",
default_factory=list,
collection: list[Any] = InputField(
description="The collection, will be provided on execution", default_factory=list, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> CollectInvocationOutput:
@ -459,7 +436,7 @@ class Graph(BaseModel):
node = graph.nodes[node_id]
# Ensure the node type matches the new node
if type(node) != type(new_node):
if type(node) is not type(new_node):
raise TypeError(f"Node {node_path} is type {type(node)} but new node is type {type(new_node)}")
# Ensure the new id is either the same or is not in the graph
@ -646,7 +623,7 @@ class Graph(BaseModel):
[
t
for input_field in input_fields
for t in ([input_field] if get_origin(input_field) == None else get_args(input_field))
for t in ([input_field] if get_origin(input_field) is None else get_args(input_field))
if t != NoneType
]
) # Get unique types
@ -937,7 +914,7 @@ class GraphExecutionState(BaseModel):
None,
)
if next_node_id == None:
if next_node_id is None:
return None
# Get all parents of the next node

View File

@ -60,7 +60,7 @@ class ImageFileStorageBase(ABC):
image: PILImageType,
image_name: str,
metadata: Optional[dict] = None,
graph: Optional[dict] = None,
workflow: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
@ -110,7 +110,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image: PILImageType,
image_name: str,
metadata: Optional[dict] = None,
graph: Optional[dict] = None,
workflow: Optional[str] = None,
thumbnail_size: int = 256,
) -> None:
try:
@ -119,12 +119,23 @@ class DiskImageFileStorage(ImageFileStorageBase):
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai_metadata", json.dumps(metadata))
if graph is not None:
pnginfo.add_text("invokeai_graph", json.dumps(graph))
if metadata is not None or workflow is not None:
if metadata is not None:
pnginfo.add_text("invokeai_metadata", json.dumps(metadata))
if workflow is not None:
pnginfo.add_text("invokeai_workflow", workflow)
else:
# For uploaded images, we want to retain metadata. PIL strips it on save; manually add it back
# TODO: retain non-invokeai metadata on save...
original_metadata = image.info.get("invokeai_metadata", None)
if original_metadata is not None:
pnginfo.add_text("invokeai_metadata", original_metadata)
original_workflow = image.info.get("invokeai_workflow", None)
if original_workflow is not None:
pnginfo.add_text("invokeai_workflow", original_workflow)
image.save(image_path, "PNG", pnginfo=pnginfo)
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(thumbnail_name, thumbnail=True)
thumbnail_image = make_thumbnail(image, thumbnail_size)
@ -179,7 +190,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: Path, image: PILImageType):
if not image_name in self.__cache:
if image_name not in self.__cache:
self.__cache[image_name] = image
self.__cache_ids.put(image_name) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size:

View File

@ -67,6 +67,7 @@ IMAGE_DTO_COLS = ", ".join(
"created_at",
"updated_at",
"deleted_at",
"starred",
],
)
)
@ -139,6 +140,7 @@ class ImageRecordStorageBase(ABC):
node_id: Optional[str],
metadata: Optional[dict],
is_intermediate: bool = False,
starred: bool = False,
) -> datetime:
"""Saves an image record."""
pass
@ -200,6 +202,16 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
"""
)
self._cursor.execute("PRAGMA table_info(images)")
columns = [column[1] for column in self._cursor.fetchall()]
if "starred" not in columns:
self._cursor.execute(
"""--sql
ALTER TABLE images ADD COLUMN starred BOOLEAN DEFAULT FALSE;
"""
)
# Create the `images` table indices.
self._cursor.execute(
"""--sql
@ -222,6 +234,12 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_starred ON images(starred);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
@ -264,7 +282,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
self._lock.acquire()
self._cursor.execute(
f"""--sql
"""--sql
SELECT images.metadata FROM images
WHERE image_name = ?;
""",
@ -291,7 +309,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
# Change the category of the image
if changes.image_category is not None:
self._cursor.execute(
f"""--sql
"""--sql
UPDATE images
SET image_category = ?
WHERE image_name = ?;
@ -302,7 +320,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
# Change the session associated with the image
if changes.session_id is not None:
self._cursor.execute(
f"""--sql
"""--sql
UPDATE images
SET session_id = ?
WHERE image_name = ?;
@ -313,7 +331,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
# Change the image's `is_intermediate`` flag
if changes.is_intermediate is not None:
self._cursor.execute(
f"""--sql
"""--sql
UPDATE images
SET is_intermediate = ?
WHERE image_name = ?;
@ -321,6 +339,17 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
(changes.is_intermediate, image_name),
)
# Change the image's `starred`` state
if changes.starred is not None:
self._cursor.execute(
"""--sql
UPDATE images
SET starred = ?
WHERE image_name = ?;
""",
(changes.starred, image_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
@ -397,7 +426,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
query_params.append(board_id)
query_pagination = """--sql
ORDER BY images.created_at DESC LIMIT ? OFFSET ?
ORDER BY images.starred DESC, images.created_at DESC LIMIT ? OFFSET ?
"""
# Final images query with pagination
@ -500,6 +529,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
node_id: Optional[str],
metadata: Optional[dict],
is_intermediate: bool = False,
starred: bool = False,
) -> datetime:
try:
metadata_json = None if metadata is None else json.dumps(metadata)
@ -515,9 +545,10 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
node_id,
session_id,
metadata,
is_intermediate
is_intermediate,
starred
)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
""",
(
image_name,
@ -529,6 +560,7 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
session_id,
metadata_json,
is_intermediate,
starred,
),
)
self._conn.commit()

View File

@ -1,4 +1,3 @@
import json
from abc import ABC, abstractmethod
from logging import Logger
from typing import TYPE_CHECKING, Optional
@ -55,6 +54,7 @@ class ImageServiceABC(ABC):
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@ -178,6 +178,7 @@ class ImageService(ImageServiceABC):
board_id: Optional[str] = None,
is_intermediate: bool = False,
metadata: Optional[dict] = None,
workflow: Optional[str] = None,
) -> ImageDTO:
if image_origin not in ResourceOrigin:
raise InvalidOriginException
@ -187,16 +188,16 @@ class ImageService(ImageServiceABC):
image_name = self._services.names.create_image_name()
graph = None
if session_id is not None:
session_raw = self._services.graph_execution_manager.get_raw(session_id)
if session_raw is not None:
try:
graph = get_metadata_graph_from_raw_session(session_raw)
except Exception as e:
self._services.logger.warn(f"Failed to parse session graph: {e}")
graph = None
# TODO: Do we want to store the graph in the image at all? I don't think so...
# graph = None
# if session_id is not None:
# session_raw = self._services.graph_execution_manager.get_raw(session_id)
# if session_raw is not None:
# try:
# graph = get_metadata_graph_from_raw_session(session_raw)
# except Exception as e:
# self._services.logger.warn(f"Failed to parse session graph: {e}")
# graph = None
(width, height) = image.size
@ -218,7 +219,7 @@ class ImageService(ImageServiceABC):
)
if board_id is not None:
self._services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
self._services.image_files.save(image_name=image_name, image=image, metadata=metadata, graph=graph)
self._services.image_files.save(image_name=image_name, image=image, metadata=metadata, workflow=workflow)
image_dto = self.get_dto(image_name)
return image_dto
@ -379,10 +380,10 @@ class ImageService(ImageServiceABC):
self._services.image_files.delete(image_name)
self._services.image_records.delete(image_name)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image record")
self._services.logger.error("Failed to delete image record")
raise
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image file")
self._services.logger.error("Failed to delete image file")
raise
except Exception as e:
self._services.logger.error("Problem deleting image record and file")
@ -395,10 +396,10 @@ class ImageService(ImageServiceABC):
self._services.image_files.delete(image_name)
self._services.image_records.delete_many(image_names)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image records")
self._services.logger.error("Failed to delete image records")
raise
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image files")
self._services.logger.error("Failed to delete image files")
raise
except Exception as e:
self._services.logger.error("Problem deleting image records and files")
@ -412,10 +413,10 @@ class ImageService(ImageServiceABC):
self._services.image_files.delete(image_name)
return count
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image records")
self._services.logger.error("Failed to delete image records")
raise
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image files")
self._services.logger.error("Failed to delete image files")
raise
except Exception as e:
self._services.logger.error("Problem deleting image records and files")

View File

@ -7,6 +7,7 @@ if TYPE_CHECKING:
from invokeai.app.services.board_images import BoardImagesServiceABC
from invokeai.app.services.boards import BoardServiceABC
from invokeai.app.services.images import ImageServiceABC
from invokeai.app.services.invocation_stats import InvocationStatsServiceBase
from invokeai.app.services.model_manager_service import ModelManagerServiceBase
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.latent_storage import LatentsStorageBase

View File

@ -1,7 +1,6 @@
# Copyright 2023 Lincoln D. Stein <lincoln.stein@gmail.com>
"""Utility to collect execution time and GPU usage stats on invocations in flight"""
"""Utility to collect execution time and GPU usage stats on invocations in flight
"""
Usage:
statistics = InvocationStatsService(graph_execution_manager)
@ -29,6 +28,7 @@ The abstract base class for this class is InvocationStatsServiceBase. An impleme
writes to the system log is stored in InvocationServices.performance_statistics.
"""
import psutil
import time
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
@ -42,11 +42,43 @@ import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation
from .graph import GraphExecutionState
from .item_storage import ItemStorageABC
from .model_manager_service import ModelManagerService
from invokeai.backend.model_management.model_cache import CacheStats
# size of GIG in bytes
GIG = 1073741824
@dataclass
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
cache_hits: int = 0
cache_misses: int = 0
cache_high_watermark: int = 0
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)
class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics"
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
# {graph_id => NodeLog}
_stats: Dict[str, NodeLog]
_cache_stats: Dict[str, CacheStats]
ram_used: float
ram_changed: float
@abstractmethod
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
"""
@ -107,22 +139,19 @@ class InvocationStatsServiceBase(ABC):
"""
pass
@abstractmethod
def update_mem_stats(
self,
ram_used: float,
ram_changed: float,
):
"""
Update the collector with RAM memory usage info.
@dataclass
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)
:param ram_used: How much RAM is currently in use.
:param ram_changed: How much RAM changed since last generation.
"""
pass
class InvocationStatsService(InvocationStatsServiceBase):
@ -133,60 +162,93 @@ class InvocationStatsService(InvocationStatsServiceBase):
self.graph_execution_manager = graph_execution_manager
# {graph_id => NodeLog}
self._stats: Dict[str, NodeLog] = {}
self._cache_stats: Dict[str, CacheStats] = {}
self.ram_used: float = 0.0
self.ram_changed: float = 0.0
class StatsContext:
def __init__(self, invocation: BaseInvocation, graph_id: str, collector: "InvocationStatsServiceBase"):
"""Context manager for collecting statistics."""
invocation: BaseInvocation
collector: "InvocationStatsServiceBase"
graph_id: str
start_time: float
ram_used: int
model_manager: ModelManagerService
def __init__(
self,
invocation: BaseInvocation,
graph_id: str,
model_manager: ModelManagerService,
collector: "InvocationStatsServiceBase",
):
"""Initialize statistics for this run."""
self.invocation = invocation
self.collector = collector
self.graph_id = graph_id
self.start_time = 0
self.start_time = 0.0
self.ram_used = 0
self.model_manager = model_manager
def __enter__(self):
self.start_time = time.time()
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
self.ram_used = psutil.Process().memory_info().rss
if self.model_manager:
self.model_manager.collect_cache_stats(self.collector._cache_stats[self.graph_id])
def __exit__(self, *args):
"""Called on exit from the context."""
ram_used = psutil.Process().memory_info().rss
self.collector.update_mem_stats(
ram_used=ram_used / GIG,
ram_changed=(ram_used - self.ram_used) / GIG,
)
self.collector.update_invocation_stats(
self.graph_id,
self.invocation.type,
time.time() - self.start_time,
torch.cuda.max_memory_allocated() / 1e9 if torch.cuda.is_available() else 0.0,
graph_id=self.graph_id,
invocation_type=self.invocation.type, # type: ignore - `type` is not on the `BaseInvocation` model, but *is* on all invocations
time_used=time.time() - self.start_time,
vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0,
)
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
model_manager: ModelManagerService,
) -> StatsContext:
"""
Return a context object that will capture the statistics.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state: GraphExecutionState object from the current session.
"""
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
self._stats[graph_execution_state_id] = NodeLog()
return self.StatsContext(invocation, graph_execution_state_id, self)
self._cache_stats[graph_execution_state_id] = CacheStats()
return self.StatsContext(invocation, graph_execution_state_id, model_manager, self)
def reset_all_stats(self):
"""Zero all statistics"""
self._stats = {}
def reset_stats(self, graph_execution_id: str):
"""Zero the statistics for the indicated graph."""
try:
self._stats.pop(graph_execution_id)
except KeyError:
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
def update_invocation_stats(self, graph_id: str, invocation_type: str, time_used: float, vram_used: float):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Floating point seconds used by node's exection
"""
def update_mem_stats(
self,
ram_used: float,
ram_changed: float,
):
self.ram_used = ram_used
self.ram_changed = ram_changed
def update_invocation_stats(
self,
graph_id: str,
invocation_type: str,
time_used: float,
vram_used: float,
):
if not self._stats[graph_id].nodes.get(invocation_type):
self._stats[graph_id].nodes[invocation_type] = NodeStats()
stats = self._stats[graph_id].nodes[invocation_type]
@ -195,29 +257,48 @@ class InvocationStatsService(InvocationStatsServiceBase):
stats.max_vram = max(stats.max_vram, vram_used)
def log_stats(self):
"""
Send the statistics to the system logger at the info level.
Stats will only be printed if when the execution of the graph
is complete.
"""
completed = set()
errored = set()
for graph_id, node_log in self._stats.items():
current_graph_state = self.graph_execution_manager.get(graph_id)
try:
current_graph_state = self.graph_execution_manager.get(graph_id)
except Exception:
errored.add(graph_id)
continue
if not current_graph_state.is_complete():
continue
total_time = 0
logger.info(f"Graph stats: {graph_id}")
logger.info("Node Calls Seconds VRAM Used")
logger.info(f"{'Node':>30} {'Calls':>7}{'Seconds':>9} {'VRAM Used':>10}")
for node_type, stats in self._stats[graph_id].nodes.items():
logger.info(f"{node_type:<20} {stats.calls:>5} {stats.time_used:7.3f}s {stats.max_vram:4.2f}G")
logger.info(f"{node_type:>30} {stats.calls:>4} {stats.time_used:7.3f}s {stats.max_vram:4.3f}G")
total_time += stats.time_used
cache_stats = self._cache_stats[graph_id]
hwm = cache_stats.high_watermark / GIG
tot = cache_stats.cache_size / GIG
loaded = sum([v for v in cache_stats.loaded_model_sizes.values()]) / GIG
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
logger.info("RAM used by InvokeAI process: " + "%4.2fG" % self.ram_used + f" ({self.ram_changed:+5.3f}G)")
logger.info(f"RAM used to load models: {loaded:4.2f}G")
if torch.cuda.is_available():
logger.info("Current VRAM utilization " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9))
logger.info("VRAM in use: " + "%4.3fG" % (torch.cuda.memory_allocated() / GIG))
logger.info("RAM cache statistics:")
logger.info(f" Model cache hits: {cache_stats.hits}")
logger.info(f" Model cache misses: {cache_stats.misses}")
logger.info(f" Models cached: {cache_stats.in_cache}")
logger.info(f" Models cleared from cache: {cache_stats.cleared}")
logger.info(f" Cache high water mark: {hwm:4.2f}/{tot:4.2f}G")
completed.add(graph_id)
for graph_id in completed:
del self._stats[graph_id]
del self._cache_stats[graph_id]
for graph_id in errored:
del self._stats[graph_id]
del self._cache_stats[graph_id]

View File

@ -60,7 +60,7 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if not name in self.__cache:
if name not in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:

View File

@ -22,6 +22,7 @@ from invokeai.backend.model_management import (
ModelNotFoundException,
)
from invokeai.backend.model_management.model_search import FindModels
from invokeai.backend.model_management.model_cache import CacheStats
import torch
from invokeai.app.models.exceptions import CanceledException
@ -276,6 +277,13 @@ class ModelManagerServiceBase(ABC):
"""
pass
@abstractmethod
def collect_cache_stats(self, cache_stats: CacheStats):
"""
Reset model cache statistics for graph with graph_id.
"""
pass
@abstractmethod
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
@ -322,8 +330,8 @@ class ModelManagerService(ModelManagerServiceBase):
# configuration value. If present, then the
# cache size is set to 2.5 GB times
# the number of max_loaded_models. Otherwise
# use new `max_cache_size` config setting
max_cache_size = config.max_cache_size if hasattr(config, "max_cache_size") else config.max_loaded_models * 2.5
# use new `ram_cache_size` config setting
max_cache_size = config.ram_cache_size
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")
@ -500,6 +508,12 @@ class ModelManagerService(ModelManagerServiceBase):
self.logger.debug(f"convert model {model_name}")
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
def collect_cache_stats(self, cache_stats: CacheStats):
"""
Reset model cache statistics for graph with graph_id.
"""
self.mgr.cache.stats = cache_stats
def commit(self, conf_file: Optional[Path] = None):
"""
Write current configuration out to the indicated file.

View File

@ -39,6 +39,8 @@ class ImageRecord(BaseModelExcludeNull):
description="The node ID that generated this image, if it is a generated image.",
)
"""The node ID that generated this image, if it is a generated image."""
starred: bool = Field(description="Whether this image is starred.")
"""Whether this image is starred."""
class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid):
@ -48,9 +50,10 @@ class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid):
- `image_category`: change the category of an image
- `session_id`: change the session associated with an image
- `is_intermediate`: change the image's `is_intermediate` flag
- `starred`: change whether the image is starred
"""
image_category: Optional[ImageCategory] = Field(description="The image's new category.")
image_category: Optional[ImageCategory] = Field(default=None, description="The image's new category.")
"""The image's new category."""
session_id: Optional[StrictStr] = Field(
default=None,
@ -59,6 +62,8 @@ class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid):
"""The image's new session ID."""
is_intermediate: Optional[StrictBool] = Field(default=None, description="The image's new `is_intermediate` flag.")
"""The image's new `is_intermediate` flag."""
starred: Optional[StrictBool] = Field(default=None, description="The image's new `starred` state")
"""The image's new `starred` state."""
class ImageUrlsDTO(BaseModelExcludeNull):
@ -113,6 +118,7 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
updated_at = image_dict.get("updated_at", get_iso_timestamp())
deleted_at = image_dict.get("deleted_at", get_iso_timestamp())
is_intermediate = image_dict.get("is_intermediate", False)
starred = image_dict.get("starred", False)
return ImageRecord(
image_name=image_name,
@ -126,4 +132,5 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
updated_at=updated_at,
deleted_at=deleted_at,
is_intermediate=is_intermediate,
starred=starred,
)

View File

@ -86,8 +86,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Invoke
try:
with statistics.collect_stats(invocation, graph_execution_state.id):
outputs = invocation.invoke(
graph_id = graph_execution_state.id
model_manager = self.__invoker.services.model_manager
with statistics.collect_stats(invocation, graph_id, model_manager):
# use the internal invoke_internal(), which wraps the node's invoke() method in
# this accomodates nodes which require a value, but get it only from a
# connection
outputs = invocation.invoke_internal(
InvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,

View File

@ -49,7 +49,8 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
def _parse_item(self, item: str) -> T:
item_type = get_args(self.__orig_class__)[0]
return parse_raw_as(item_type, item)
parsed = parse_raw_as(item_type, item)
return parsed
def set(self, item: T):
try:

View File

@ -1,3 +1,4 @@
from typing import Union
import torch
import numpy as np
import cv2
@ -5,7 +6,7 @@ from PIL import Image
from diffusers.utils import PIL_INTERPOLATION
from einops import rearrange
from controlnet_aux.util import HWC3, resize_image
from controlnet_aux.util import HWC3
###################################################################
# Copy of scripts/lvminthin.py from Mikubill/sd-webui-controlnet
@ -232,7 +233,8 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
def safeint(x: Union[int, float]) -> int:
return int(np.round(x))
# if resize_mode == external_code.ResizeMode.OUTER_FIT:
if resize_mode == "fill_resize": # OUTER_FIT

View File

@ -5,7 +5,6 @@ from invokeai.app.models.image import ProgressImage
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.stable_diffusion import PipelineIntermediateState
from invokeai.app.services.config import InvokeAIAppConfig
from ...backend.model_management.models import BaseModelType

View File

@ -1,5 +1,5 @@
"""
Initialization file for invokeai.backend
"""
from .model_management import ModelManager, ModelCache, BaseModelType, ModelType, SubModelType, ModelInfo
from .model_management.models import SilenceWarnings
from .model_management import ModelManager, ModelCache, BaseModelType, ModelType, SubModelType, ModelInfo # noqa: F401
from .model_management.models import SilenceWarnings # noqa: F401

View File

@ -1,14 +1,16 @@
"""
Initialization file for invokeai.backend.image_util methods.
"""
from .patchmatch import PatchMatch
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata
from .seamless import configure_model_padding
from .txt2mask import Txt2Mask
from .util import InitImageResizer, make_grid
from .patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .seamless import configure_model_padding # noqa: F401
from .txt2mask import Txt2Mask # noqa: F401
from .util import InitImageResizer, make_grid # noqa: F401
def debug_image(debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False):
from PIL import ImageDraw
if not debug_status:
return

View File

@ -0,0 +1,56 @@
import gc
from typing import Any
import numpy as np
import torch
from PIL import Image
from invokeai.app.services.config import get_invokeai_config
from invokeai.backend.util.devices import choose_torch_device
def norm_img(np_img):
if len(np_img.shape) == 2:
np_img = np_img[:, :, np.newaxis]
np_img = np.transpose(np_img, (2, 0, 1))
np_img = np_img.astype("float32") / 255
return np_img
def load_jit_model(url_or_path, device):
model_path = url_or_path
print(f"Loading model from: {model_path}")
model = torch.jit.load(model_path, map_location="cpu").to(device)
model.eval()
return model
class LaMA:
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
device = choose_torch_device()
model_location = get_invokeai_config().models_path / "core/misc/lama/lama.pt"
model = load_jit_model(model_location, device)
image = np.asarray(input_image.convert("RGB"))
image = norm_img(image)
mask = input_image.split()[-1]
mask = np.asarray(mask)
mask = np.invert(mask)
mask = norm_img(mask)
mask = (mask > 0) * 1
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)
with torch.inference_mode():
infilled_image = model(image, mask)
infilled_image = infilled_image[0].permute(1, 2, 0).detach().cpu().numpy()
infilled_image = np.clip(infilled_image * 255, 0, 255).astype("uint8")
infilled_image = Image.fromarray(infilled_image)
del model
gc.collect()
return infilled_image

View File

@ -26,7 +26,7 @@ class PngWriter:
dirlist = sorted(os.listdir(self.outdir), reverse=True)
# find the first filename that matches our pattern or return 000000.0.png
existing_name = next(
(f for f in dirlist if re.match("^(\d+)\..*\.png", f)),
(f for f in dirlist if re.match(r"^(\d+)\..*\.png", f)),
"0000000.0.png",
)
basecount = int(existing_name.split(".", 1)[0]) + 1
@ -98,11 +98,11 @@ class PromptFormatter:
# to do: put model name into the t2i object
# switches.append(f'--model{t2i.model_name}')
if opt.seamless or t2i.seamless:
switches.append(f"--seamless")
switches.append("--seamless")
if opt.init_img:
switches.append(f"-I{opt.init_img}")
if opt.fit:
switches.append(f"--fit")
switches.append("--fit")
if opt.strength and opt.init_img is not None:
switches.append(f"-f{opt.strength or t2i.strength}")
if opt.gfpgan_strength:

View File

@ -20,7 +20,8 @@ def _conv_forward_asymmetric(self, input, weight, bias):
def configure_model_padding(model, seamless, seamless_axes):
"""
Modifies the 2D convolution layers to use a circular padding mode based on the `seamless` and `seamless_axes` options.
Modifies the 2D convolution layers to use a circular padding mode based on
the `seamless` and `seamless_axes` options.
"""
# TODO: get an explicit interface for this in diffusers: https://github.com/huggingface/diffusers/issues/556
for m in model.modules():

View File

@ -21,6 +21,7 @@ from argparse import Namespace
from enum import Enum
from pathlib import Path
from shutil import get_terminal_size
from typing import get_type_hints, get_args, Any
from urllib import request
import npyscreen
@ -49,10 +50,10 @@ from invokeai.frontend.install.model_install import addModelsForm, process_and_e
# TO DO - Move all the frontend code into invokeai.frontend.install
from invokeai.frontend.install.widgets import (
SingleSelectColumns,
SingleSelectColumnsSimple,
MultiSelectColumns,
CenteredButtonPress,
FileBox,
IntTitleSlider,
set_min_terminal_size,
CyclingForm,
MIN_COLS,
@ -72,6 +73,10 @@ warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
def get_literal_fields(field) -> list[Any]:
return get_args(get_type_hints(InvokeAIAppConfig).get(field))
# --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config()
@ -81,7 +86,11 @@ Model_dir = "models"
Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path
PRECISION_CHOICES = ["auto", "float16", "float32"]
PRECISION_CHOICES = get_literal_fields("precision")
DEVICE_CHOICES = get_literal_fields("device")
ATTENTION_CHOICES = get_literal_fields("attention_type")
ATTENTION_SLICE_CHOICES = get_literal_fields("attention_slice_size")
GENERATION_OPT_CHOICES = ["sequential_guidance", "force_tiled_decode", "lazy_offload"]
GB = 1073741824 # GB in bytes
HAS_CUDA = torch.cuda.is_available()
_, MAX_VRAM = torch.cuda.mem_get_info() if HAS_CUDA else (0, 0)
@ -308,10 +317,11 @@ class editOptsForm(CyclingForm, npyscreen.FormMultiPage):
first_time = not (config.root_path / "invokeai.yaml").exists()
access_token = HfFolder.get_token()
window_width, window_height = get_terminal_size()
label = """Configure startup settings. You can come back and change these later.
label = """Configure startup settings. You can come back and change these later.
Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields.
Use cursor arrows to make a checkbox selection, and space to toggle.
"""
self.nextrely -= 1
for i in textwrap.wrap(label, width=window_width - 6):
self.add_widget_intelligent(
npyscreen.FixedText,
@ -338,76 +348,127 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
use_two_lines=False,
scroll_exit=True,
)
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="GPU Management",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.free_gpu_mem = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Free GPU memory after each generation",
value=old_opts.free_gpu_mem,
max_width=45,
relx=5,
scroll_exit=True,
)
self.nextrely -= 1
self.xformers_enabled = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Enable xformers support",
value=old_opts.xformers_enabled,
max_width=30,
relx=50,
scroll_exit=True,
)
self.nextrely -= 1
self.always_use_cpu = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Force CPU to be used on GPU systems",
value=old_opts.always_use_cpu,
relx=80,
scroll_exit=True,
)
# old settings for defaults
precision = old_opts.precision or ("float32" if program_opts.full_precision else "auto")
device = old_opts.device
attention_type = old_opts.attention_type
attention_slice_size = old_opts.attention_slice_size
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Floating Point Precision",
name="Image Generation Options:",
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 2
self.generation_options = self.add_widget_intelligent(
MultiSelectColumns,
columns=3,
values=GENERATION_OPT_CHOICES,
value=[GENERATION_OPT_CHOICES.index(x) for x in GENERATION_OPT_CHOICES if getattr(old_opts, x)],
relx=30,
max_height=2,
max_width=80,
scroll_exit=True,
)
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Floating Point Precision:",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.nextrely -= 2
self.precision = self.add_widget_intelligent(
SingleSelectColumns,
columns=3,
SingleSelectColumnsSimple,
columns=len(PRECISION_CHOICES),
name="Precision",
values=PRECISION_CHOICES,
value=PRECISION_CHOICES.index(precision),
begin_entry_at=3,
max_height=2,
relx=30,
max_width=56,
scroll_exit=True,
)
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Generation Device:",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 2
self.device = self.add_widget_intelligent(
SingleSelectColumnsSimple,
columns=len(DEVICE_CHOICES),
values=DEVICE_CHOICES,
value=[DEVICE_CHOICES.index(device)],
begin_entry_at=3,
relx=30,
max_height=2,
max_width=60,
scroll_exit=True,
)
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Attention Type:",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 2
self.attention_type = self.add_widget_intelligent(
SingleSelectColumnsSimple,
columns=len(ATTENTION_CHOICES),
values=ATTENTION_CHOICES,
value=[ATTENTION_CHOICES.index(attention_type)],
begin_entry_at=3,
max_height=2,
relx=30,
max_width=80,
scroll_exit=True,
)
self.nextrely += 1
self.attention_type.on_changed = self.show_hide_slice_sizes
self.attention_slice_label = self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="Attention Slice Size:",
relx=5,
editable=False,
hidden=attention_type != "sliced",
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 2
self.attention_slice_size = self.add_widget_intelligent(
SingleSelectColumnsSimple,
columns=len(ATTENTION_SLICE_CHOICES),
values=ATTENTION_SLICE_CHOICES,
value=[ATTENTION_SLICE_CHOICES.index(attention_slice_size)],
relx=30,
hidden=attention_type != "sliced",
max_height=2,
max_width=110,
scroll_exit=True,
)
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="RAM cache size (GB). Make this at least large enough to hold a single full model.",
name="Model RAM cache size (GB). Make this at least large enough to hold a single full model.",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.max_cache_size = self.add_widget_intelligent(
self.ram = self.add_widget_intelligent(
npyscreen.Slider,
value=clip(old_opts.max_cache_size, range=(3.0, MAX_RAM), step=0.5),
value=clip(old_opts.ram_cache_size, range=(3.0, MAX_RAM), step=0.5),
out_of=round(MAX_RAM),
lowest=0.0,
step=0.5,
@ -418,16 +479,16 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.TitleFixedText,
name="VRAM cache size (GB). Reserving a small amount of VRAM will modestly speed up the start of image generation.",
name="Model VRAM cache size (GB). Reserving a small amount of VRAM will modestly speed up the start of image generation.",
begin_entry_at=0,
editable=False,
color="CONTROL",
scroll_exit=True,
)
self.nextrely -= 1
self.max_vram_cache_size = self.add_widget_intelligent(
self.vram = self.add_widget_intelligent(
npyscreen.Slider,
value=clip(old_opts.max_vram_cache_size, range=(0, MAX_VRAM), step=0.25),
value=clip(old_opts.vram_cache_size, range=(0, MAX_VRAM), step=0.25),
out_of=round(MAX_VRAM * 2) / 2,
lowest=0.0,
relx=8,
@ -435,7 +496,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
scroll_exit=True,
)
else:
self.max_vram_cache_size = DummyWidgetValue.zero
self.vram_cache_size = DummyWidgetValue.zero
self.nextrely += 1
self.outdir = self.add_widget_intelligent(
FileBox,
@ -491,6 +552,11 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
when_pressed_function=self.on_ok,
)
def show_hide_slice_sizes(self, value):
show = ATTENTION_CHOICES[value[0]] == "sliced"
self.attention_slice_label.hidden = not show
self.attention_slice_size.hidden = not show
def on_ok(self):
options = self.marshall_arguments()
if self.validate_field_values(options):
@ -524,12 +590,9 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
new_opts = Namespace()
for attr in [
"ram",
"vram",
"outdir",
"free_gpu_mem",
"max_cache_size",
"max_vram_cache_size",
"xformers_enabled",
"always_use_cpu",
]:
setattr(new_opts, attr, getattr(self, attr).value)
@ -542,6 +605,12 @@ https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENS
new_opts.hf_token = self.hf_token.value
new_opts.license_acceptance = self.license_acceptance.value
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
new_opts.device = DEVICE_CHOICES[self.device.value[0]]
new_opts.attention_type = ATTENTION_CHOICES[self.attention_type.value[0]]
new_opts.attention_slice_size = ATTENTION_SLICE_CHOICES[self.attention_slice_size.value[0]]
generation_options = [GENERATION_OPT_CHOICES[x] for x in self.generation_options.value]
for v in GENERATION_OPT_CHOICES:
setattr(new_opts, v, v in generation_options)
return new_opts
@ -636,8 +705,6 @@ def initialize_rootdir(root: Path, yes_to_all: bool = False):
path = dest / "core"
path.mkdir(parents=True, exist_ok=True)
maybe_create_models_yaml(root)
def maybe_create_models_yaml(root: Path):
models_yaml = root / "configs" / "models.yaml"

View File

@ -116,7 +116,7 @@ class MigrateTo3(object):
appropriate location within the destination models directory.
"""
directories_scanned = set()
for root, dirs, files in os.walk(src_dir):
for root, dirs, files in os.walk(src_dir, followlinks=True):
for d in dirs:
try:
model = Path(root, d)
@ -492,10 +492,10 @@ def _parse_legacy_yamlfile(root: Path, initfile: Path) -> ModelPaths:
loras = paths.get("lora_dir", "loras")
controlnets = paths.get("controlnet_dir", "controlnets")
return ModelPaths(
models=root / models,
embeddings=root / embeddings,
loras=root / loras,
controlnets=root / controlnets,
models=root / models if models else None,
embeddings=root / embeddings if embeddings else None,
loras=root / loras if loras else None,
controlnets=root / controlnets if controlnets else None,
)
@ -525,7 +525,7 @@ def do_migrate(src_directory: Path, dest_directory: Path):
if version_3: # write into the dest directory
try:
shutil.copy(dest_directory / "configs" / "models.yaml", config_file)
except:
except Exception:
MigrateTo3.initialize_yaml(config_file)
mgr = ModelManager(config_file) # important to initialize BEFORE moving the models directory
(dest_directory / "models").replace(dest_models)
@ -553,7 +553,7 @@ def main():
parser = argparse.ArgumentParser(
prog="invokeai-migrate3",
description="""
This will copy and convert the models directory and the configs/models.yaml from the InvokeAI 2.3 format
This will copy and convert the models directory and the configs/models.yaml from the InvokeAI 2.3 format
'--from-directory' root to the InvokeAI 3.0 '--to-directory' root. These may be abbreviated '--from' and '--to'.a
The old models directory and config file will be renamed 'models.orig' and 'models.yaml.orig' respectively.

View File

@ -12,7 +12,6 @@ from typing import Optional, List, Dict, Callable, Union, Set
import requests
from diffusers import DiffusionPipeline
from diffusers import logging as dlogging
import onnx
import torch
from huggingface_hub import hf_hub_url, HfFolder, HfApi
from omegaconf import OmegaConf

View File

@ -1,10 +1,10 @@
"""
Initialization file for invokeai.backend.model_management
"""
from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType
from .model_cache import ModelCache
from .lora import ModelPatcher, ONNXModelPatcher
from .models import (
from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType # noqa: F401
from .model_cache import ModelCache # noqa: F401
from .lora import ModelPatcher, ONNXModelPatcher # noqa: F401
from .models import ( # noqa: F401
BaseModelType,
ModelType,
SubModelType,
@ -12,5 +12,4 @@ from .models import (
ModelNotFoundException,
DuplicateModelException,
)
from .model_merge import ModelMerger, MergeInterpolationMethod
from .lora import ModelPatcher
from .model_merge import ModelMerger, MergeInterpolationMethod # noqa: F401

View File

@ -20,11 +20,36 @@
import re
from contextlib import nullcontext
from io import BytesIO
from typing import Optional, Union
from pathlib import Path
from typing import Optional, Union
import requests
import torch
from diffusers.models import (
AutoencoderKL,
ControlNetModel,
PriorTransformer,
UNet2DConditionModel,
)
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.schedulers import (
DDIMScheduler,
DDPMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UnCLIPScheduler,
)
from diffusers.utils import is_accelerate_available, is_omegaconf_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
from picklescan.scanner import scan_file_path
from transformers import (
AutoFeatureExtractor,
BertTokenizerFast,
@ -37,35 +62,8 @@ from transformers import (
CLIPVisionModelWithProjection,
)
from diffusers.models import (
AutoencoderKL,
ControlNetModel,
PriorTransformer,
UNet2DConditionModel,
)
from diffusers.schedulers import (
DDIMScheduler,
DDPMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UnCLIPScheduler,
)
from diffusers.utils import is_accelerate_available, is_omegaconf_available, is_safetensors_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.app.services.config import InvokeAIAppConfig
from picklescan.scanner import scan_file_path
from invokeai.backend.util.logging import InvokeAILogger
from .models import BaseModelType, ModelVariantType
try:
@ -1221,9 +1219,6 @@ def download_from_original_stable_diffusion_ckpt(
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
if from_safetensors:
if not is_safetensors_available():
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
from safetensors.torch import load_file as safe_load
checkpoint = safe_load(checkpoint_path, device="cpu")
@ -1662,9 +1657,6 @@ def download_controlnet_from_original_ckpt(
from omegaconf import OmegaConf
if from_safetensors:
if not is_safetensors_available():
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
from safetensors import safe_open
checkpoint = {}
@ -1741,7 +1733,7 @@ def convert_ckpt_to_diffusers(
pipe.save_pretrained(
dump_path,
safe_serialization=use_safetensors and is_safetensors_available(),
safe_serialization=use_safetensors,
)
@ -1757,7 +1749,4 @@ def convert_controlnet_to_diffusers(
"""
pipe = download_controlnet_from_original_ckpt(checkpoint_path, **kwargs)
pipe.save_pretrained(
dump_path,
safe_serialization=is_safetensors_available(),
)
pipe.save_pretrained(dump_path, safe_serialization=True)

View File

@ -5,21 +5,16 @@ from contextlib import contextmanager
from typing import Optional, Dict, Tuple, Any, Union, List
from pathlib import Path
import torch
from safetensors.torch import load_file
from torch.utils.hooks import RemovableHandle
from diffusers.models import UNet2DConditionModel
from transformers import CLIPTextModel
from onnx import numpy_helper
from onnxruntime import OrtValue
import numpy as np
import torch
from compel.embeddings_provider import BaseTextualInversionManager
from diffusers.models import UNet2DConditionModel
from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer
from .models.lora import LoRAModel
"""
loras = [
(lora_model1, 0.7),
@ -52,7 +47,7 @@ class ModelPatcher:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except:
except Exception:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
@ -312,7 +307,8 @@ class TextualInversionManager(BaseTextualInversionManager):
class ONNXModelPatcher:
from .models.base import IAIOnnxRuntimeModel, OnnxRuntimeModel
from .models.base import IAIOnnxRuntimeModel
from diffusers import OnnxRuntimeModel
@classmethod
@contextmanager
@ -341,7 +337,7 @@ class ONNXModelPatcher:
def apply_lora(
cls,
model: IAIOnnxRuntimeModel,
loras: List[Tuple[LoraModel, float]],
loras: List[Tuple[LoRAModel, float]],
prefix: str,
):
from .models.base import IAIOnnxRuntimeModel

View File

@ -21,12 +21,12 @@ import os
import sys
import hashlib
from contextlib import suppress
from dataclasses import dataclass, field
from pathlib import Path
from typing import Dict, Union, types, Optional, Type, Any
import torch
import logging
import invokeai.backend.util.logging as logger
from .models import BaseModelType, ModelType, SubModelType, ModelBase
@ -41,6 +41,18 @@ DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
GIG = 1073741824
@dataclass
class CacheStats(object):
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
# {submodel_key => size}
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
class ModelLocker(object):
"Forward declaration"
pass
@ -115,6 +127,9 @@ class ModelCache(object):
self.sha_chunksize = sha_chunksize
self.logger = logger
# used for stats collection
self.stats = None
self._cached_models = dict()
self._cache_stack = list()
@ -181,13 +196,14 @@ class ModelCache(object):
model_type=model_type,
submodel_type=submodel,
)
# TODO: lock for no copies on simultaneous calls?
cache_entry = self._cached_models.get(key, None)
if cache_entry is None:
self.logger.info(
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
)
if self.stats:
self.stats.misses += 1
# this will remove older cached models until
# there is sufficient room to load the requested model
@ -201,6 +217,17 @@ class ModelCache(object):
cache_entry = _CacheRecord(self, model, mem_used)
self._cached_models[key] = cache_entry
else:
if self.stats:
self.stats.hits += 1
if self.stats:
self.stats.cache_size = self.max_cache_size * GIG
self.stats.high_watermark = max(self.stats.high_watermark, self._cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[key] = max(
self.stats.loaded_model_sizes.get(key, 0), model_info.get_size(submodel)
)
with suppress(Exception):
self._cache_stack.remove(key)
@ -246,7 +273,7 @@ class ModelCache(object):
self.cache.logger.debug(f"Locking {self.key} in {self.cache.execution_device}")
self.cache._print_cuda_stats()
except:
except Exception:
self.cache_entry.unlock()
raise
@ -280,14 +307,14 @@ class ModelCache(object):
"""
Given the HF repo id or path to a model on disk, returns a unique
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
:param model_path: Path to model file/directory on disk.
"""
return self._local_model_hash(model_path)
def cache_size(self) -> float:
"Return the current size of the cache, in GB"
current_cache_size = sum([m.size for m in self._cached_models.values()])
return current_cache_size / GIG
"""Return the current size of the cache, in GB."""
return self._cache_size() / GIG
def _has_cuda(self) -> bool:
return self.execution_device.type == "cuda"
@ -310,12 +337,15 @@ class ModelCache(object):
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
)
def _cache_size(self) -> int:
return sum([m.size for m in self._cached_models.values()])
def _make_cache_room(self, model_size):
# calculate how much memory this model will require
# multiplier = 2 if self.precision==torch.float32 else 1
bytes_needed = model_size
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
current_size = sum([m.size for m in self._cached_models.values()])
current_size = self._cache_size()
if current_size + bytes_needed > maximum_size:
self.logger.debug(
@ -364,6 +394,8 @@ class ModelCache(object):
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)
current_size -= cache_entry.size
if self.stats:
self.stats.cleared += 1
del self._cache_stack[pos]
del self._cached_models[model_key]
del cache_entry

View File

@ -341,7 +341,8 @@ class ModelManager(object):
self.logger = logger
self.cache = ModelCache(
max_cache_size=max_cache_size,
max_vram_cache_size=self.app_config.max_vram_cache_size,
max_vram_cache_size=self.app_config.vram_cache_size,
lazy_offloading=self.app_config.lazy_offload,
execution_device=device_type,
precision=precision,
sequential_offload=sequential_offload,
@ -419,12 +420,12 @@ class ModelManager(object):
base_model_str, model_type_str, model_name = model_key.split("/", 2)
try:
model_type = ModelType(model_type_str)
except:
except Exception:
raise Exception(f"Unknown model type: {model_type_str}")
try:
base_model = BaseModelType(base_model_str)
except:
except Exception:
raise Exception(f"Unknown base model: {base_model_str}")
return (model_name, base_model, model_type)
@ -855,7 +856,7 @@ class ModelManager(object):
info.pop("config")
result = self.add_model(model_name, base_model, model_type, model_attributes=info, clobber=True)
except:
except Exception:
# something went wrong, so don't leave dangling diffusers model in directory or it will cause a duplicate model error!
rmtree(new_diffusers_path)
raise
@ -1042,7 +1043,7 @@ class ModelManager(object):
# Patch in the SD VAE from core so that it is available for use by the UI
try:
self.heuristic_import({str(self.resolve_model_path("core/convert/sd-vae-ft-mse"))})
except:
except Exception:
pass
installer = ModelInstall(

View File

@ -109,7 +109,7 @@ class ModelMerger(object):
# pick up the first model's vae
if mod == model_names[0]:
vae = info.get("vae")
model_paths.extend([config.root_path / info["path"]])
model_paths.extend([(config.root_path / info["path"]).as_posix()])
merge_method = None if interp == "weighted_sum" else MergeInterpolationMethod(interp)
logger.debug(f"interp = {interp}, merge_method={merge_method}")
@ -120,11 +120,11 @@ class ModelMerger(object):
else config.models_path / base_model.value / ModelType.Main.value
)
dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name
dump_path = (dump_path / merged_model_name).as_posix()
merged_pipe.save_pretrained(dump_path, safe_serialization=True)
attributes = dict(
path=str(dump_path),
path=dump_path,
description=f"Merge of models {', '.join(model_names)}",
model_format="diffusers",
variant=ModelVariantType.Normal.value,

View File

@ -217,9 +217,9 @@ class ModelProbe(object):
raise "The model {model_name} is potentially infected by malware. Aborting import."
###################################################3
# ##################################################3
# Checkpoint probing
###################################################3
# ##################################################3
class ProbeBase(object):
def get_base_type(self) -> BaseModelType:
pass
@ -431,7 +431,7 @@ class PipelineFolderProbe(FolderProbeBase):
return ModelVariantType.Depth
elif in_channels == 4:
return ModelVariantType.Normal
except:
except Exception:
pass
return ModelVariantType.Normal
@ -481,9 +481,19 @@ class ControlNetFolderProbe(FolderProbeBase):
with open(config_file, "r") as file:
config = json.load(file)
# no obvious way to distinguish between sd2-base and sd2-768
return (
BaseModelType.StableDiffusion1 if config["cross_attention_dim"] == 768 else BaseModelType.StableDiffusion2
dimension = config["cross_attention_dim"]
base_model = (
BaseModelType.StableDiffusion1
if dimension == 768
else BaseModelType.StableDiffusion2
if dimension == 1024
else BaseModelType.StableDiffusionXL
if dimension == 2048
else None
)
if not base_model:
raise InvalidModelException(f"Unable to determine model base for {self.folder_path}")
return base_model
class LoRAFolderProbe(FolderProbeBase):

View File

@ -56,7 +56,7 @@ class ModelSearch(ABC):
self.on_search_completed()
def walk_directory(self, path: Path):
for root, dirs, files in os.walk(path):
for root, dirs, files in os.walk(path, followlinks=True):
if str(Path(root).name).startswith("."):
self._pruned_paths.add(root)
if any([Path(root).is_relative_to(x) for x in self._pruned_paths]):

Some files were not shown because too many files have changed in this diff Show More