Invocations now have a classification:
- Stable: LTS
- Beta: LTS planned, API may change
- Prototype: No LTS planned, API may change, may be removed entirely
The `@invocation` decorator has a new arg `classification`, and an enum `Classification` is added to `baseinvocation.py`.
The default is Stable; this is a non-breaking change.
The classification is presented in the node header as a hammer icon (Beta) or flask icon (prototype).
The icon has a tooltip briefly describing the classification.
Simplifies a couple things:
- Init is more straightforward
- It's clear in the migrator that the connection we are working with is related to the SqliteDatabase
- Simplify init args to path (None means use memory), logger, and verbose
- Add docstrings to SqliteDatabase (it had almost none)
- Update all usages of the class
- min_overlap removed * restrictions and round_to_8
- min_overlap handles tile size > image size by clipping the num tiles to 1.
- Updated assert test on min_overlap.
Calling `inspect.getmembers()` on a pydantic field results in `getattr` being called on all members of the field. Pydantic has some attrs that are marked deprecated.
In our test suite, we do not filter deprecation warnings, so this is surfaced.
Use a context manager to ignore deprecation warnings when calling the function.
Using default_factory to autogenerate UUIDs doesn't make sense here, and results awkward typescript types.
Remove the default factory and instead manually create a UUID for workflow id. There are only two places where this needs to happen so it's not a big change.
* chore: bump pydantic to 2.5.2
This release fixespydantic/pydantic#8175 and allows us to use `JsonValue`
* fix(ui): exclude public/en.json from prettier config
* fix(workflow_records): fix SQLite workflow insertion to ignore duplicates
* feat(backend): update workflows handling
Update workflows handling for Workflow Library.
**Updated Workflow Storage**
"Embedded Workflows" are workflows associated with images, and are now only stored in the image files. "Library Workflows" are not associated with images, and are stored only in DB.
This works out nicely. We have always saved workflows to files, but recently began saving them to the DB in addition to in image files. When that happened, we stopped reading workflows from files, so all the workflows that only existed in images were inaccessible. With this change, access to those workflows is restored, and no workflows are lost.
**Updated Workflow Handling in Nodes**
Prior to this change, workflows were embedded in images by passing the whole workflow JSON to a special workflow field on a node. In the node's `invoke()` function, the node was able to access this workflow and save it with the image. This (inaccurately) models workflows as a property of an image and is rather awkward technically.
A workflow is now a property of a batch/session queue item. It is available in the InvocationContext and therefore available to all nodes during `invoke()`.
**Database Migrations**
Added a `SQLiteMigrator` class to handle database migrations. Migrations were needed to accomodate the DB-related changes in this PR. See the code for details.
The `images`, `workflows` and `session_queue` tables required migrations for this PR, and are using the new migrator. Other tables/services are still creating tables themselves. A followup PR will adapt them to use the migrator.
**Other/Support Changes**
- Add a `has_workflow` column to `images` table to indicate that the image has an embedded workflow.
- Add handling for retrieving the workflow from an image in python. The image file must be fetched, the workflow extracted, and then sent to client, avoiding needing the browser to parse the image file. With the `has_workflow` column, the UI knows if there is a workflow to be fetched, and only fetches when the user requests to load the workflow.
- Add route to get the workflow from an image
- Add CRUD service/routes for the library workflows
- `workflow_images` table and services removed (no longer needed now that embedded workflows are not in the DB)
* feat(ui): updated workflow handling (WIP)
Clientside updates for the backend workflow changes.
Includes roughed-out workflow library UI.
* feat: revert SQLiteMigrator class
Will pursue this in a separate PR.
* feat(nodes): do not overwrite custom node module names
Use a different, simpler method to detect if a node is custom.
* feat(nodes): restore WithWorkflow as no-op class
This class is deprecated and no longer needed. Set its workflow attr value to None (meaning it is now a no-op), and issue a warning when an invocation subclasses it.
* fix(nodes): fix get_workflow from queue item dict func
* feat(backend): add WorkflowRecordListItemDTO
This is the id, name, description, created at and updated at workflow columns/attrs. Used to display lists of workflowsl
* chore(ui): typegen
* feat(ui): add workflow loading, deleting to workflow library UI
* feat(ui): workflow library pagination button styles
* wip
* feat: workflow library WIP
- Save to library
- Duplicate
- Filter/sort
- UI/queries
* feat: workflow library - system graphs - wip
* feat(backend): sync system workflows to db
* fix: merge conflicts
* feat: simplify default workflows
- Rename "system" -> "default"
- Simplify syncing logic
- Update UI to match
* feat(workflows): update default workflows
- Update TextToImage_SD15
- Add TextToImage_SDXL
- Add README
* feat(ui): refine workflow list UI
* fix(workflow_records): typo
* fix(tests): fix tests
* feat(ui): clean up workflow library hooks
* fix(db): fix mis-ordered db cleanup step
It was happening before pruning queue items - should happen afterwards, else you have to restart the app again to free disk space made available by the pruning.
* feat(ui): tweak reset workflow editor translations
* feat(ui): split out workflow redux state
The `nodes` slice is a rather complicated slice. Removing `workflow` makes it a bit more reasonable.
Also helps to flatten state out a bit.
* docs: update default workflows README
* fix: tidy up unused files, unrelated changes
* fix(backend): revert unrelated service organisational changes
* feat(backend): workflow_records.get_many arg "filter_text" -> "query"
* feat(ui): use custom hook in current image buttons
Already in use elsewhere, forgot to use it here.
* fix(ui): remove commented out property
* fix(ui): fix workflow loading
- Different handling for loading from library vs external
- Fix bug where only nodes and edges loaded
* fix(ui): fix save/save-as workflow naming
* fix(ui): fix circular dependency
* fix(db): fix bug with releasing without lock in db.clean()
* fix(db): remove extraneous lock
* chore: bump ruff
* fix(workflow_records): default `category` to `WorkflowCategory.User`
This allows old workflows to validate when reading them from the db or image files.
* hide workflow library buttons if feature is disabled
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Adds logic to `DiskLatentsStorage.start()` to empty the latents folder on startup.
Adds start and stop methods to `ForwardCacheLatentsStorage`. This is required for `DiskLatentsStorage.start()` to be called, due to how this particular service breaks the direct DI pattern, wrapping the underlying storage with a cache.
* add centerpadcrop node
- Allows users to add padding to or crop images from the center
- Also outputs a white mask with the dimensions of the output image for use with outpainting
* add CenterPadCrop to NODES.md
Updates NODES.md with CenterPadCrop entry.
* remove mask & output class
- Remove "ImageMaskOutput" where both image and mask are output
- Remove ability to output mask from node
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Use UTF-8 encoding on reading prompts from files to allow Unicode characters to load correctly.
The following examples currently will not load correctly from a file:
Hello, 世界!
😭🤮💔
Custom nodes have a new attribute `node_pack` indicating the node pack they came from.
- This is displayed in the UI in the icon icon tooltip.
- If a workflow is loaded and a node is unavailable, its node pack will be displayed (if it is known).
- If a workflow is migrated from v1 to v2, and the node is unknown, it falls back to "Unknown". If the missing node pack is installed and the node is updated, the node pack will be updated as expected.
Node authors may now create their own arbitrary/custom field types. Any pydantic model is supported.
Two notes:
1. Your field type's class name must be unique.
Suggest prefixing fields with something related to the node pack as a kind of namespace.
2. Custom field types function as connection-only fields.
For example, if your custom field has string attributes, you will not get a text input for that attribute when you give a node a field with your custom type.
This is the same behaviour as other complex fields that don't have custom UIs in the workflow editor - like, say, a string collection.
feat(ui): fix tooltips for custom types
We need to hold onto the original type of the field so they don't all just show up as "Unknown".
fix(ui): fix ts error with custom fields
feat(ui): custom field types connection validation
In the initial commit, a custom field's original type was added to the *field templates* only as `originalType`. Custom fields' `type` property was `"Custom"`*. This allowed for type safety throughout the UI logic.
*Actually, it was `"Unknown"`, but I changed it to custom for clarity.
Connection validation logic, however, uses the *field instance* of the node/field. Like the templates, *field instances* with custom types have their `type` set to `"Custom"`, but they didn't have an `originalType` property. As a result, all custom fields could be connected to all other custom fields.
To resolve this, we need to add `originalType` to the *field instances*, then switch the validation logic to use this instead of `type`.
This ended up needing a bit of fanagling:
- If we make `originalType` a required property on field instances, existing workflows will break during connection validation, because they won't have this property. We'd need a new layer of logic to migrate the workflows, adding the new `originalType` property.
While this layer is probably needed anyways, typing `originalType` as optional is much simpler. Workflow migration logic can come layer.
(Technically, we could remove all references to field types from the workflow files, and let the templates hold all this information. This feels like a significant change and I'm reluctant to do it now.)
- Because `originalType` is optional, anywhere we care about the type of a field, we need to use it over `type`. So there are a number of `field.originalType ?? field.type` expressions. This is a bit of a gotcha, we'll need to remember this in the future.
- We use `Array.prototype.includes()` often in the workflow editor, e.g. `COLLECTION_TYPES.includes(type)`. In these cases, the const array is of type `FieldType[]`, and `type` is is `FieldType`.
Because we now support custom types, the arg `type` is now widened from `FieldType` to `string`.
This causes a TS error. This behaviour is somewhat controversial (see https://github.com/microsoft/TypeScript/issues/14520). These expressions are now rewritten as `COLLECTION_TYPES.some((t) => t === type)` to satisfy TS. It's logically equivalent.
fix(ui): typo
feat(ui): add CustomCollection and CustomPolymorphic field types
feat(ui): add validation for CustomCollection & CustomPolymorphic types
- Update connection validation for custom types
- Use simple string parsing to determine if a field is a collection or polymorphic type.
- No longer need to keep a list of collection and polymorphic types.
- Added runtime checks in `baseinvocation.py` to ensure no fields are named in such a way that it could mess up the new parsing
chore(ui): remove errant console.log
fix(ui): rename 'nodes.currentConnectionFieldType' -> 'nodes.connectionStartFieldType'
This was confusingly named and kept tripping me up. Renamed to be consistent with the `reactflow` `ConnectionStartParams` type.
fix(ui): fix ts error
feat(nodes): add runtime check for custom field names
"Custom", "CustomCollection" and "CustomPolymorphic" are reserved field names.
chore(ui): add TODO for revising field type names
wip refactor fieldtype structured
wip refactor field types
wip refactor types
wip refactor types
fix node layout
refactor field types
chore: mypy
organisation
organisation
organisation
fix(nodes): fix field orig_required, field_kind and input statuses
feat(nodes): remove broken implementation of default_factory on InputField
Use of this could break connection validation due to the difference in node schemas required fields and invoke() required args.
Removed entirely for now. It wasn't ever actually used by the system, because all graphs always had values provided for fields where default_factory was used.
Also, pydantic is smart enough to not reuse the same object when specifying a default value - it clones the object first. So, the common pattern of `default_factory=list` is extraneous. It can just be `default=[]`.
fix(nodes): fix InputField name validation
workflow validation
validation
chore: ruff
feat(nodes): fix up baseinvocation comments
fix(ui): improve typing & logic of buildFieldInputTemplate
improved error handling in parseFieldType
fix: back compat for deprecated default_factory and UIType
feat(nodes): do not show node packs loaded log if none loaded
chore(ui): typegen
We used the `RealESRGANer` utility class from the repo. It handled model loading and tiled upscaling logic.
Unfortunately, it hasn't been updated in over a year, had no types, and annoyingly printed to console.
I've adapted the class, cleaning it up a bit and removing the bits that are not relevant for us.
Upscaling functionality is identical.
Resolves two bugs introduced in #5106:
1. Linear UI images sometimes didn't make it to the gallery.
This was a race condition. The VAE decode nodes were handled by the socketInvocationComplete listener. At that moment, the image was marked as intermediate. Immediately after this node was handled, a LinearUIOutputInvocation, introduced in #5106, was handled by socketInvocationComplete. This node internally sets changed the image to not intermediate.
During the handling of that socketInvocationComplete, RTK Query would sometimes use its cache instead of retrieving the image DTO again. The result is that the UI never got the message that the image was not intermediate, so it wasn't added to the gallery.
This is resolved by refactoring the socketInvocationComplete listener. We now skip the gallery processing for linear UI events, except for the LinearUIOutputInvocation. Images now always make it to the gallery, and network requests to get image DTOs are substantially reduced.
2. Canvas temp images always went into the gallery
The LinearUIOutputInvocation was always setting its image's is_intermediate to false. This included all canvas images and resulted in all canvas temp images going to gallery.
This is resolved by making LinearUIOutputInvocation set is_intermediate based on `self.is_intermediate`. The behaviour now more or less mirroring the behaviour of is_intermediate on other image-outputting nodes, except it doesn't save the image again - only changes it.
One extra minor change - LinearUIOutputInvocation only changes is_intermediate if it differs from the image's current setting. Very minor optimisation.
Add a LinearUIOutputInvocation node to be the new terminal node for Linear UI graphs. This node is private and hidden from the Workflow Editor, as it is an implementation detail.
The Linear UI was using the Save Image node for this purpose. It allowed every linear graph to end a single node type, which handled saving metadata and board. This substantially reduced the complexity of the linear graphs.
This caused two related issues:
- Images were saved to disk twice
- Noticeable delay between when an image was decoded and showed up in the UI
To resolve this, the new LinearUIOutputInvocation node will handle adding an image to a board if one is provided.
Metadata is no longer provided in this unified node. Instead, the metadata graph helpers now need to know the node to add metadata to and provide it to the last node that actually outputs an image. This is a `l2i` node for txt2img & img2img graphs, and a different image-outputting node for canvas graphs.
HRF poses another complication, in that it changes the terminal node. To handle this, a new metadata util is added called `setMetadataReceivingNode()`. HRF calls this to change the node that should receive the graph's metadata.
This resolves the duplicate images issue and improves perf without otherwise changing the user experience.
* working
* added selector for method
* refactoring graph
* added ersgan method
* fixing yarn build
* add tooltips
* a conjuction
* rephrase
* removed manual sliders, set HRF to calculate dimensions automatically to match 512^2 pixels
* working
* working
* working
* fixed tooltip
* add hrf to use all parameters
* adding hrf method to parameters
* working on parameter recall
* working on parameter recall
* cleaning
* fix(ui): fix unnecessary casts in addHrfToGraph
* chore(ui): use camelCase in addHrfToGraph
* fix(ui): do not add HRF metadata unless HRF is added to graph
* fix(ui): remove unused imports in addHrfToGraph
* feat(ui): do not hide HRF params when disabled, only disable them
* fix(ui): remove unused vars in addHrfToGraph
* feat(ui): default HRF str to 0.35, method ESRGAN
* fix(ui): use isValidBoolean to check hrfEnabled param
* fix(nodes): update CoreMetadataInvocation fields for HRF
* feat(ui): set hrf strength default to 0.45
* fix(ui): set default hrf strength in configSlice
* feat(ui): use translations for HRF features
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
We have a number of shared classes, objects, and functions that are used in multiple places. This causes circular import issues.
This commit creates a new `app/shared/` module to hold these shared classes, objects, and functions.
Initially, only `FreeUConfig` and `FieldDescriptions` are moved here. This resolves a circular import issue with custom nodes.
Other shared classes, objects, and functions will be moved here in future commits.
Custom nodes may be places in `$INVOKEAI_ROOT/nodes/` (configurable with `custom_nodes_dir` option).
On app startup, an `__init__.py` is copied into the custom nodes dir, which recursively loads all python files in the directory as modules (files starting with `_` are ignored). The custom nodes dir is now a python module itself.
When we `from invocations import *` to load init all invocations, we load the custom nodes dir, registering all custom nodes.
- Refactor how metadata is handled to support a user-defined metadata in graphs
- Update workflow embed handling
- Update UI to work with these changes
- Update tests to support metadata/workflow changes
This fixes a weird issue where the list images method needed to handle `None` for its `limit` and `offset` arguments, in order to get a count of all intermediates.
On our local installs this will be a very minor change. For those running on remote servers, load times should be slightly improved.
It's a small change but I think correct.
This should prevent `index.html` from *ever* being cached, so UIs will never be out of date.
Minor organisation to accomodate this.
Deleting old unused files from the early days
Upgrade pydantic and fastapi to latest.
- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1
**Big Changes**
There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.
**Invocations**
The biggest change relates to invocation creation, instantiation and validation.
Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.
Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.
With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.
This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.
In the end, this implementation is cleaner.
**Invocation Fields**
In pydantic v2, you can no longer directly add or remove fields from a model.
Previously, we did this to add the `type` field to invocations.
**Invocation Decorators**
With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.
A similar technique is used for `invocation_output()`.
**Minor Changes**
There are a number of minor changes around the pydantic v2 models API.
**Protected `model_` Namespace**
All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".
Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.
```py
class IPAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the IP-Adapter model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
```
**Model Serialization**
Pydantic models no longer have `Model.dict()` or `Model.json()`.
Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.
**Model Deserialization**
Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.
Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.
```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```
**Field Customisation**
Pydantic `Field`s no longer accept arbitrary args.
Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.
**Schema Customisation**
FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.
This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised
The specific aren't important, but this does present additional surface area for bugs.
**Performance Improvements**
Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.
I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
Facetools nodes were cutting off faces that extended beyond chunk boundaries in some cases. All faces found are considered and are coalesced rather than pruned, meaning that you should not see half a face any more.
- Make all metadata items optional. This will reduce errors related to metadata not being provided when we update the backend but old queue items still exist
- Fix a bug in t2i adapter metadata handling where it checked for ip adapter metadata instaed of t2i adapter metadata
- Fix some metadata fields that were not using `InputField`
* added HrfScale type with initial value
* working
* working
* working
* working
* working
* added addHrfToGraph
* continueing to implement this
* working on this
* comments
* working
* made hrf into its own collapse
* working on adding strength slider
* working
* working
* refactoring
* working
* change of this working: 0
* removed onnx support since apparently its not used
* working
* made scale integer
* trying out psycicpebbles idea
* working
* working on this
* working
* added toggle
* comments
* self review
* fixing things
* remove 'any' type
* fixing typing
* changed initial strength value to 3 (large values cause issues)
* set denoising start to be 1 - strength to resemble image to image
* set initial value
* added image to image
* pr1
* pr2
* updating to resolution finding
* working
* working
* working
* working
* working
* working
* working
* working
* working
* use memo
* connect rescale hw to noise
* working
* fixed min bug
* nit
* hides elements conditionally
* style
* feat(ui): add config for HRF, disable if feature disabled or ONNX model in use
* fix(ui): use `useCallback` for HRF toggle
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Refactor services folder/module structure.
**Motivation**
While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.
**Services**
Services are now in their own folder with a few files:
- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc
Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.
There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.
**Shared**
Things that are used across disparate services are in `services/shared/`:
- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
**Service Dependencies**
Services that depend on other services now access those services via the `Invoker` object. This object is provided to the service as a kwarg to its `start()` method.
Until now, most services did not utilize this feature, and several services required their dependencies to be initialized and passed in on init.
Additionally, _all_ services are now registered as invocation services - including the low-level services. This obviates issues with inter-dependent services we would otherwise experience as we add workflow storage.
**Database Access**
Previously, we were passing in a separate sqlite connection and corresponding lock as args to services in their init. A good amount of posturing was done in each service that uses the db.
These objects, along with the sqlite startup and cleanup logic, is now abstracted into a simple `SqliteDatabase` class. This creates the shared connection and lock objects, enables foreign keys, and provides a `clean()` method to do startup db maintenance.
This is not a service as it's only used by sqlite services.
* UI for bulk downloading boards or groups of images
* placeholder route for bulk downloads that does nothing
* lint
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Add support for FreeU. See:
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
- https://github.com/ChenyangSi/FreeU
Implementation:
- `ModelPatcher.apply_freeu()` handles the enabling freeu (which is very simple with diffusers).
- `FreeUConfig` model added to hold the hyperparameters.
- `freeu_config` added as optional sub-field on `UNetField`.
- `FreeUInvocation` added, works like LoRA - chain it to add the FreeU config to the UNet
- No support for model-dependent presets, this will be a future workflow editor enhancement
Closes#4845
The UI will always re-fetch queue and batch status on receiving this event, so we may as well jsut include that data in the event and save the extra network roundtrips.
- Update backend metadata for t2i adapter
- Fix typo in `T2IAdapterInvocation`: `ip_adapter_model` -> `t2i_adapter_model`
- Update linear graphs to use t2i adapter
- Add client metadata recall for t2i adapter
- Fix bug with controlnet metadata recall - processor should be set to 'none' when recalling a control adapter
* Bump diffusers to 0.21.2.
* Add T2IAdapterInvocation boilerplate.
* Add T2I-Adapter model to model-management.
* (minor) Tidy prepare_control_image(...).
* Add logic to run the T2I-Adapter models at the start of the DenoiseLatentsInvocation.
* Add logic for applying T2I-Adapter weights and accumulating.
* Add T2IAdapter to MODEL_CLASSES map.
* yarn typegen
* Add model probes for T2I-Adapter models.
* Add all of the frontend boilerplate required to use T2I-Adapter in the nodes editor.
* Add T2IAdapterModel.convert_if_required(...).
* Fix errors in T2I-Adapter input image sizing logic.
* Fix bug with handling of multiple T2I-Adapters.
* black / flake8
* Fix typo
* yarn build
* Add num_channels param to prepare_control_image(...).
* Link to upstream diffusers bugfix PR that currently requires a workaround.
* feat: Add Color Map Preprocessor
Needed for the color T2I Adapter
* feat: Add Color Map Preprocessor to Linear UI
* Revert "feat: Add Color Map Preprocessor"
This reverts commit a1119a00bf.
* Revert "feat: Add Color Map Preprocessor to Linear UI"
This reverts commit bd8a9b82d8.
* Fix T2I-Adapter field rendering in workflow editor.
* yarn build, yarn typegen
---------
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
When the processor has an error and it has a queue item, mark that item failed.
This addresses processor errors resulting in `in_progress` queue items, which create a soft lock of the processor, requiring the user to cancel the `in_progress` item before anything else processes.
Makes graph validation logic more rigorous, validating graphs when they are created as part of a session or batch.
`validate_self()` method added to `Graph` model. It does all the validation that `is_valid()` did, plus a few extras:
- unique `node.id` values across graph
- node ids match their key in `Graph.nodes`
- recursively validate subgraphs
- validate all edges
- validate graph is acyclical
The new method is required because `is_valid()` just returned a boolean. That behaviour is retained, but `validate_self()` now raises appropriate exceptions for validation errors. This are then surfaced to the client.
The function is named `validate_self()` because pydantic reserves `validate()`.
There are two main places where graphs are created - in batches and in sessions.
Field validators are added to each of these for their `graph` fields, which call the new validation logic.
**Closes #4744**
In this issue, a batch is enqueued with an invalid graph. The output field is typed as optional while the input field is required. The field types themselves are not relevant - this change addresses the case where an invalid graph was created.
The mismatched types problem is not noticed until we attempt to invoke the graph, because the graph was never *fully* validated. An error is raised during the call to `graph_execution_state.next()` in `invoker.py`. This function prepares the edges and validates them, raising an exception due to the mismatched types.
This exception is caught by the session processor, but it doesn't handle this situation well - the graph is not marked as having an error and the queue item status is never changed. The queue item is therefore forever `in_progress`, so no new queue items are popped - the app won't do anything until the queue item is canceled manually.
This commit addresses this by preventing invalid graphs from being created in the first place, addressing a substantial number of fail cases.
The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize
Closes#4786
The helper function `generate_face_box_mask()` had a bug that prevented larger faces from being detected in some situations. This is resolved, and its dependent nodes (all the FaceTools nodes) have a patch version bump.
* node-FaceTools
* Added more documentation for facetools
* invert FaceMask masking
- FaceMask had face protected and surroundings change by default (face white, else black)
- Change to how FaceOff/others work: the opposite where surroundings protected, face changes by default (face black, else white)
* reflect changed facemask behaviour in docs
* add FaceOff+FaceMask workflows
- Add FaceOff and FaceMask example workflows to docs/workflows
* add FaceMask+FaceOff workflows to exampleworkflows.md
- used invokeai URL paths mimicking other workflow URLs, hopefully they translate when/if merged
* inheriting, typehints, black/isort/flake8
- modified FaceMask and FaceOff output classes to inherit base image, height, width from ImageOutput
- Added type annotations to helper functions, required some reworking of code's stored data
* remove credit header
- Was in my personal/repo copy, don't think it's necessary if merged.
* Optionals & image declaration duplication
- Added Optional[] to optional outputs and types
- removed duplication of image = context.services.images.get_pil_images(self.image.image_name) declaration
- Still need to find a way to deal with mask_pil None typing errors
* face(facetools): fix typing issues, add validation, clean up structure
* feat(facetools): update field descriptions
* Update FaceOff_FaceScale2x.json
- update FaceOff workflow after Bounded Image field removed in place of inheriting Image out field from ImageOutput
* feat(facetools): pass through original image on facemask if invalid face ids requested
* feat(facetools): tidy variable names & fn calls
* feat(facetools): bundle inter font, draw ids with it
Inter is a SIL Open Font license. The license is included and is fully permissive. Inter is the same font the UI and commercial application already uses.
Only the "regular" version is bundled.
* chore(facetools): isort & fix mypy issues
* docs(facetools): update and format docs
---------
Co-authored-by: Millun Atluri <millun.atluri@gmail.com>
Co-authored-by: Millun Atluri <Millu@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* add control net to useRecallParams
* got recall controlnets working
* fix metadata viewer controlnet
* fix type errors
* fix controlnet metadata viewer
* add ip adapter to metadata
* added ip adapter to recall parameters
* got ip adapter recall working, still need to fix type errors
* fix type issues
* clean up logs
* python formatting
* cleanup
* fix(ui): only store `image_name` as ip adapter image
* fix(ui): use nullish coalescing operator for numbers
Need to use the nullish coalescing operator `??` instead of false-y coalescing operator `||` when the value being check is a number. This prevents unintended coalescing when the value is zero and therefore false-y.
* feat(ui): fall back on default values for ip adapter metadata
* fix(ui): remove unused schema
* feat(ui): re-use existing schemas in metadata schema
* fix(ui): do not disable invocationCache
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* Add 'Random Float' node <3
does what it says on the tin :)
* Add random float + random seeded float nodes
altered my random float node as requested by Millu, kept the seeded version as an alternate variant for those that would like to control the randomization seed :)
* Update math.py
* Update math.py
* feat(nodes): standardize fields to match other nodes
---------
Co-authored-by: Millun Atluri <Millu@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* fix(nodes): do not disable invocation cache delete methods
When the runtime disabled flag is on, do not skip the delete methods. This could lead to a hit on a missing resource.
Do skip them when the cache size is 0, because the user cannot change this (must restart app to change it).
* fix(nodes): do not use double-underscores in cache service
* Thread lock for cache
* Making cache LRU
* Bug fixes
* bugfix
* Switching to one Lock and OrderedDict cache
* Removing unused imports
* Move lock cache instance
* Addressing PR comments
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Martin Kristiansen <martin@modyfi.io>
When the runtime disabled flag is on, do not skip the delete methods. This could lead to a hit on a missing resource.
Do skip them when the cache size is 0, because the user cannot change this (must restart app to change it).
- Remove the add-to-board node
- Create `BoardField` field type & add it to `save_image` node
- Add UI for `BoardField`
- Tighten up some loose types
- Make `save_image` node, in workflow editor, default to not intermediate
- Patch bump `save_image`
- New routes to clear, enable, disable and get the status of the cache
- Status includes hits, misses, size, max size, enabled
- Add client cache queries and mutations, abstracted into hooks
- Add invocation cache status area (next to queue status) w/ buttons
* Remove fastapi-socketio dependency, doesn't really do much for us and isn't well maintained
* Run python black
* Remove fastapi_socketio import
* Add __app as class variable in case we ever need it later
* Run isort
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Add `batch_id` to outbound events. This necessitates adding it to both `InvocationContext` and `InvocationQueueItem`. This allows the canvas to receive images.
When the user enqueues a batch on the canvas, it is expected that all images from that batch are directed to the canvas.
The simplest, most flexible solution is to add the `batch_id` to the invocation context-y stuff. Then everything knows what batch it came from, and we can have the canvas pick up images associated with its list of canvas `batch_id`s.
This change enhances the invocation cache logic to delete cache entries when the resources to which they refer are deleted.
For example, a cached output may refer to "some_image.png". If that image is deleted, and this particular cache entry is later retrieved by a node, that node's successors will receive references to the now non-existent "some_image.png". When they attempt to use that image, they will fail.
To resolve this, we need to invalidate the cache when the resources to which it refers are deleted. Two options:
- Invalidate the whole cache on every image/latents/etc delete
- Selectively invalidate cache entries when their resources are deleted
Node outputs can be any shape, with any number of resource references in arbitrarily nested pydantic models. Traversing that structure to identify resources is not trivial.
But invalidating the whole cache is a bit heavy-handed. It would be nice to be more selective.
Simple solution:
- Invocation outputs' resource references are always string identifiers - like the image's or latents' name
- Invocation outputs can be stringified, which includes said identifiers
- When the invocation is cached, we store the stringified output alongside the "live" output classes
- When a resource is deleted, pass its identifier to the cache service, which can then invalidate any cache entries that refer to it
The images and latents storage services have been outfitted with `on_deleted()` callbacks, and the cache service registers itself to handle those events. This logic was copied from `ItemStorageABC`.
`on_changed()` callback are also added to the images and latents services, though these are not currently used. Just following the existing pattern.
* fix(config): fix typing issues in `config/`
`config/invokeai_config.py`:
- use `Optional` for things that are optional
- fix typing of `ram_cache_size()` and `vram_cache_size()`
- remove unused and incorrectly typed method `autoconvert_path`
- fix types and logic for `parse_args()`, in which `InvokeAIAppConfig.initconf` *must* be a `DictConfig`, but function would allow it to be set as a `ListConfig`, which presumably would cause issues elsewhere
`config/base.py`:
- use `cls` for first arg of class methods
- use `Optional` for things that are optional
- fix minor type issue related to setting of `env_prefix`
- remove unused `add_subparser()` method, which calls `add_parser()` on an `ArgumentParser` (method only available on the `_SubParsersAction` object, which is returned from ArgumentParser.add_subparsers()`)
* feat: queued generation and batches
Due to a very messy branch with broad addition of `isort` on `main` alongside it, some git surgery was needed to get an agreeable git history. This commit represents all of the work on queued generation. See PR for notes.
* chore: flake8, isort, black
* fix(nodes): fix incorrect service stop() method
* fix(nodes): improve names of a few variables
* fix(tests): fix up tests after changes to batches/queue
* feat(tests): add unit tests for session queue helper functions
* feat(ui): dynamic prompts is always enabled
* feat(queue): add queue_status_changed event
* feat(ui): wip queue graphs
* feat(nodes): move cleanup til after invoker startup
* feat(nodes): add cancel_by_batch_ids
* feat(ui): wip batch graphs & UI
* fix(nodes): remove `Batch.batch_id` from required
* fix(ui): cleanup and use fixedCacheKey for all mutations
* fix(ui): remove orphaned nodes from canvas graphs
* fix(nodes): fix cancel_by_batch_ids result count
* fix(ui): only show cancel batch tooltip when batches were canceled
* chore: isort
* fix(api): return `[""]` when dynamic prompts generates no prompts
Just a simple fallback so we always have a prompt.
* feat(ui): dynamicPrompts.combinatorial is always on
There seems to be little purpose in using the combinatorial generation for dynamic prompts. I've disabled it by hiding it from the UI and defaulting combinatorial to true. If we want to enable it again in the future it's straightforward to do so.
* feat: add queue_id & support logic
* feat(ui): fix upscale button
It prepends the upscale operation to queue
* feat(nodes): return queue item when enqueuing a single graph
This facilitates one-off graph async workflows in the client.
* feat(ui): move controlnet autoprocess to queue
* fix(ui): fix non-serializable DOMRect in redux state
* feat(ui): QueueTable performance tweaks
* feat(ui): update queue list
Queue items expand to show the full queue item. Just as JSON for now.
* wip threaded session_processor
* feat(nodes,ui): fully migrate queue to session_processor
* feat(nodes,ui): add processor events
* feat(ui): ui tweaks
* feat(nodes,ui): consolidate events, reduce network requests
* feat(ui): cleanup & abstract queue hooks
* feat(nodes): optimize batch permutation
Use a generator to do only as much work as is needed.
Previously, though we only ended up creating exactly as many queue items as was needed, there was still some intermediary work that calculated *all* permutations. When that number was very high, the system had a very hard time and used a lot of memory.
The logic has been refactored to use a generator. Additionally, the batch validators are optimized to return early and use less memory.
* feat(ui): add seed behaviour parameter
This dynamic prompts parameter allows the seed to be randomized per prompt or per iteration:
- Per iteration: Use the same seed for all prompts in a single dynamic prompt expansion
- Per prompt: Use a different seed for every single prompt
"Per iteration" is appropriate for exploring a the latents space with a stable starting noise, while "Per prompt" provides more variation.
* fix(ui): remove extraneous random seed nodes from linear graphs
* fix(ui): fix controlnet autoprocess not working when queue is running
* feat(queue): add timestamps to queue status updates
Also show execution time in queue list
* feat(queue): change all execution-related events to use the `queue_id` as the room, also include `queue_item_id` in InvocationQueueItem
This allows for much simpler handling of queue items.
* feat(api): deprecate sessions router
* chore(backend): tidy logging in `dependencies.py`
* fix(backend): respect `use_memory_db`
* feat(backend): add `config.log_sql` (enables sql trace logging)
* feat: add invocation cache
Supersedes #4574
The invocation cache provides simple node memoization functionality. Nodes that use the cache are memoized and not re-executed if their inputs haven't changed. Instead, the stored output is returned.
## Results
This feature provides anywhere some significant to massive performance improvement.
The improvement is most marked on large batches of generations where you only change a couple things (e.g. different seed or prompt for each iteration) and low-VRAM systems, where skipping an extraneous model load is a big deal.
## Overview
A new `invocation_cache` service is added to handle the caching. There's not much to it.
All nodes now inherit a boolean `use_cache` field from `BaseInvocation`. This is a node field and not a class attribute, because specific instances of nodes may want to opt in or out of caching.
The recently-added `invoke_internal()` method on `BaseInvocation` is used as an entrypoint for the cache logic.
To create a cache key, the invocation is first serialized using pydantic's provided `json()` method, skipping the unique `id` field. Then python's very fast builtin `hash()` is used to create an integer key. All implementations of `InvocationCacheBase` must provide a class method `create_key()` which accepts an invocation and outputs a string or integer key.
## In-Memory Implementation
An in-memory implementation is provided. In this implementation, the node outputs are stored in memory as python classes. The in-memory cache does not persist application restarts.
Max node cache size is added as `node_cache_size` under the `Generation` config category.
It defaults to 512 - this number is up for discussion, but given that these are relatively lightweight pydantic models, I think it's safe to up this even higher.
Note that the cache isn't storing the big stuff - tensors and images are store on disk, and outputs include only references to them.
## Node Definition
The default for all nodes is to use the cache. The `@invocation` decorator now accepts an optional `use_cache: bool` argument to override the default of `True`.
Non-deterministic nodes, however, should set this to `False`. Currently, all random-stuff nodes, including `dynamic_prompt`, are set to `False`.
The field name `use_cache` is now effectively a reserved field name and possibly a breaking change if any community nodes use this as a field name. In hindsight, all our reserved field names should have been prefixed with underscores or something.
## One Gotcha
Leaf nodes probably want to opt out of the cache, because if they are not cached, their outputs are not saved again.
If you run the same graph multiple times, you only end up with a single image output, because the image storage side-effects are in the `invoke()` method, which is bypassed if we have a cache hit.
## Linear UI
The linear graphs _almost_ just work, but due to the gotcha, we need to be careful about the final image-outputting node. To resolve this, a `SaveImageInvocation` node is added and used in the linear graphs.
This node is similar to `ImagePrimitive`, except it saves a copy of its input image, and has `use_cache` set to `False` by default.
This is now the leaf node in all linear graphs, and is the only node in those graphs with `use_cache == False` _and_ the only node with `is_intermedate == False`.
## Workflow Editor
All nodes now have a footer with a new `Use Cache [ ]` checkbox. It defaults to the value set by the invocation in its python definition, but can be changed by the user.
The workflow/node validation logic has been updated to migrate old workflows to use the new default values for `use_cache`. Users may still want to review the settings that have been chosen. In the event of catastrophic failure when running this migration, the default value of `True` is applied, as this is correct for most nodes.
Users should consider saving their workflows after loading them in and having them updated.
## Future Enhancements - Callback
A future enhancement would be to provide a callback to the `use_cache` flag that would be run as the node is executed to determine, based on its own internal state, if the cache should be used or not.
This would be useful for `DynamicPromptInvocation`, where the deterministic behaviour is determined by the `combinatorial: bool` field.
## Future Enhancements - Persisted Cache
Similar to how the latents storage is backed by disk, the invocation cache could be persisted to the database or disk. We'd need to be very careful about deserializing outputs, but it's perhaps worth exploring in the future.
* fix(ui): fix queue list item width
* feat(nodes): do not send the whole node on every generator progress
* feat(ui): strip out old logic related to sessions
Things like `isProcessing` are no longer relevant with queue. Removed them all & updated everything be appropriate for queue. May be a few little quirks I've missed...
* feat(ui): fix up param collapse labels
* feat(ui): click queue count to go to queue tab
* tidy(queue): update comment, query format
* feat(ui): fix progress bar when canceling
* fix(ui): fix circular dependency
* feat(nodes): bail on node caching logic if `node_cache_size == 0`
* feat(nodes): handle KeyError on node cache pop
* feat(nodes): bypass cache codepath if caches is disabled
more better no do thing
* fix(ui): reset api cache on connect/disconnect
* feat(ui): prevent enqueue when no prompts generated
* feat(ui): add queue controls to workflow editor
* feat(ui): update floating buttons & other incidental UI tweaks
* fix(ui): fix missing/incorrect translation keys
* fix(tests): add config service to mock invocation services
invoking needs access to `node_cache_size` to occur
* optionally remove pause/resume buttons from queue UI
* option to disable prepending
* chore(ui): remove unused file
* feat(queue): remove `order_id` entirely, `item_id` is now an autoinc pk
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
* Update collections.py
RangeOfSizeInvocation was not taking step into account when generating the end point of the range
* - updated the node description to refelect this mod
- added a gt=0 constraint to ensure only a positive size of the range
- moved the + 1 to be on the size. To ensure the range is the requested size in cases where the step is negative
- formatted with Black
* Removed +1 from the range calculation
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* New classes to support the PromptsFromFileInvocation Class
- PromptPosNegOutput
- PromptSplitNegInvocation
- PromptJoinInvocation
- PromptReplaceInvocation
* - Added PromptsToFileInvocation,
- PromptSplitNegInvocation
- now counts the bracket depth so ensures it cout the numbr of open and close brackets match.
- checks for escaped [ ] so ignores them if escaped e.g \[
- PromptReplaceInvocation - now has a user regex. and no regex in made caseinsesitive
* Update prompt.py
created class PromptsToFileInvocationOutput and use it in PromptsToFileInvocation instead of BaseInvocationOutput
* Update prompt.py
* Added schema_extra title and tags for PromptReplaceInvocation, PromptJoinInvocation, PromptSplitNegInvocation and PromptsToFileInvocation
* Added PTFileds Collect and Expand
* update to nodes v1
* added ui_type to file_path for PromptToFile
* update params for the primitive types used, remove the ui_type filepath, promptsToFile now only accepts collections until a fix is available
* updated the parameters for the StringOutput primitive
* moved the prompt tools nodes out of the prompt.py into prompt_tools.py
* more rework for v1
* added github link
* updated to use "@invocation"
* updated tags
* Adde new nodes PromptStrength and PromptStrengthsCombine
* chore: black
* feat(nodes): add version to prompt nodes
* renamed nodes from prompt related to string related. Also moved them into a strings.py file. Also moved and renamed the PromptsFromFileInvocation from prompt.py to strings.py. The PTfileds still remain in the Prompt_tool.py for now.
* added , version="1.0.0" to the invocations
* removed the PTField related nodes and the prompt-tools.py file all new nodes now live in the
* formatted prompt.py and strings.py with Black and fixed silly mistake in the new StringSplitInvocation
* - Revert Prompt.py back to original
- Update strings.py to be only StringJoin, StringJoinThre, StringReplace, StringSplitNeg, StringSplit
* applied isort to imports
* fix(nodes): typos in `strings.py`
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Millun Atluri <Millu@users.noreply.github.com>
This maps values to labels for multiple-choice fields.
This allows "enum" fields (i.e. `Literal["val1", "val2", ...]` fields) to use code-friendly string values for choices, but present this to the UI as human-friendly labels.
* Added crop option to ImagePasteInvocation
ImagePasteInvocation extended the image with transparency when pasting outside of the base image's bounds. This introduces a new option to crop the resulting image back to the original base image.
* Updated version for ImagePasteInvocation as 3.1.1 was released.
We need to parse the config before doing anything related to invocations to ensure that the invocations union picks up on denied nodes.
- Move that to the top of api_app and cli_app
- Wrap subsequent imports in `if True:`, as a hack to satisfy flake8 and not have to noqa every line or the whole file
- Add tests to ensure graph validation fails when using a denied node, and that the invocations union does not have denied nodes (this indirectly provides confidence that the generated OpenAPI schema will not include denied nodes)
Allow denying and explicitly allowing nodes. When a not-allowed node is used, a pydantic `ValidationError` will be raised.
- When collecting all invocations, check against the allowlist and denylist first. When pydantic constructs any unions related to nodes, the denied nodes will be omitted
- Add `allow_nodes` and `deny_nodes` to `InvokeAIAppConfig`. These are `Union[list[str], None]`, and may be populated with the `type` of invocations.
- When `allow_nodes` is `None`, allow all nodes, else if it is `list[str]`, only allow nodes in the list
- When `deny_nodes` is `None`, deny no nodes, else if it is `list[str]`, deny nodes in the list
- `deny_nodes` overrides `allow_nodes`