Compare commits

..

536 Commits

Author SHA1 Message Date
efabf250d7 Merge branch 'main' into Convert-Model-Endpoint 2023-05-18 18:51:38 -04:00
7025c00581 Add configuration system, remove legacy globals, args, generate and CLI (#3340)
# Application-wide configuration service

This PR creates a new `InvokeAIAppConfig` object that reads
application-wide settings from an init file, the environment, and the
command line.

Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has a top-level key of "InvokeAI" and subheadings for each of the
categories returned by `invokeai --help`.

The file looks like this:

[file: invokeai.yaml]
```
InvokeAI:
  Paths:
    root: /home/lstein/invokeai-main
    conf_path: configs/models.yaml
    legacy_conf_dir: configs/stable-diffusion
    outdir: outputs
    embedding_dir: embeddings
    lora_dir: loras
    autoconvert_dir: null
    gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth
  Models:
    model: stable-diffusion-1.5
    embeddings: true
  Memory/Performance:
    xformers_enabled: false
    sequential_guidance: false
    precision: float16
    max_loaded_models: 4
    always_use_cpu: false
    free_gpu_mem: false
  Features:
    nsfw_checker: true
    restore: true
    esrgan: true
    patchmatch: true
    internet_available: true
    log_tokenization: false
  Cross-Origin Resource Sharing:
    allow_origins: []
    allow_credentials: true
    allow_methods:
    - '*'
    allow_headers:
    - '*'
  Web Server:
    host: 127.0.0.1
    port: 8081

```

The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can use any OmegaConf dictionary by passing it to
the config object at initialization time:

```
 omegaconf = OmegaConf.load('/tmp/init.yaml')
 conf = InvokeAIAppConfig(conf=omegaconf)
```
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing
anyOmegaConf dictionary object initialization time:

```
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig(conf=omegaconf)
```

By default, InvokeAIAppConfig will parse the contents of `sys.argv` at
initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv:

```
conf = InvokeAIAppConfig(arg=['--xformers_enabled'])
```

It is also possible to set a value at initialization time. This value
has highest priority.
```
conf = InvokeAIAppConfig(xformers_enabled=True)
```
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<setting>", as in:

```
export INVOKEAI_port=8080
```

Order of precedence (from highest):
   1) initialization options
   2) command line options
   3) environment variable options
   4) config file options
   5) pydantic defaults

Typical usage:

```
from invokeai.app.services.config import InvokeAIAppConfig

# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig()
print(conf.nsfw_checker)
```
Finally, the configuration object is able to recreate its (modified)
yaml file, by calling its `to_yaml()` method:

```
conf = InvokeAIAppConfig(outdir='/tmp', port=8080)
print(conf.to_yaml())
```

# Legacy code removal and porting

This PR replaces Globals with the InvokeAIAppConfig system throughout,
and therefore removes the `globals.py` and `args.py` modules. It also
removes `generate` and the legacy CLI. ***The old CLI and web servers
are now gone.***

I have ported the functionality of the configuration script, the model
installer, and the merge and textual inversion scripts. The `invokeai`
command will now launch `invokeai-node-cli`, and `invokeai-web` will
launch the web server.

I have changed the continuous invocation tests to accommodate the new
command syntax in `invokeai-node-cli`. As a convenience function, you
can also pass invocations to `invokeai-node-cli` (or its alias
`invokeai`) on the command line as as standard input:

```
invokeai-node-cli "t2i --positive_prompt 'banana sushi' --seed 42"
invokeai < invocation_commands.txt
```
2023-05-18 13:37:09 -04:00
7ea995149e fixes to env parsing, textual inversion & help text
- Make environment variable settings case InSenSiTive:
  INVOKEAI_MAX_LOADED_MODELS and InvokeAI_Max_Loaded_Models
  environment variables will both set `max_loaded_models`

- Updated realesrgan to use new config system.

- Updated textual_inversion_training to use new config system.

- Discovered a race condition when InvokeAIAppConfig is created
  at module load time, which makes it impossible to customize
  or replace the help message produced with --help on the command
  line. To fix this, moved all instances of get_invokeai_config()
  from module load time to object initialization time. Makes code
  cleaner, too.

- Added `--from_file` argument to `invokeai-node-cli` and changed
  github action to match. CI tests will hopefully work now.
2023-05-18 10:48:23 -04:00
f9710dd6ed remove reference to legacy opt.hf_token, clean up whitespace in invokeai_configure 2023-05-17 20:39:00 -04:00
4e7dd7d3f6 ci: remove reference to Globals in a workflow 2023-05-17 20:26:26 -04:00
20ca9e1fc1 config: move 'CORS' settings to 'Web Server' in the docstring to match the actual category 2023-05-17 19:45:51 -04:00
8a8b09a953 api_app: rename web_config to app_config for consistency 2023-05-17 19:42:13 -04:00
9e4e386c9b web and formatting fixes
- remove non-existent import InvokeAIWebConfig
- fix workflow file formatting
- clean up whitespace
2023-05-17 19:12:03 -04:00
eca1e449a8 Merge branch 'lstein/global-configuration' of github.com:invoke-ai/InvokeAI into lstein/global-configuration 2023-05-17 15:23:21 -04:00
ffaadb9d05 reorder options in help text 2023-05-17 15:22:58 -04:00
8adff96e29 Merge branch 'main' into lstein/global-configuration 2023-05-17 14:37:09 -04:00
7593dc19d6 complete several steps needed to make 3.0 installable
- invokeai-configure updated to work with new config system
- migrate invokeai.init to invokeai.yaml during configure
- replace legacy invokeai with invokeai-node-cli
- add ability to run an invocation directly from invokeai-node-cli command line
- update CI tests to work with new invokeai syntax
2023-05-17 14:13:27 -04:00
b7c5a39685 make invokeai.yaml more hierarchical; fix list configuration bug 2023-05-17 12:19:19 -04:00
bd1b84f7d0 tell user to refresh page on image load error (#3425)
* refetch images list if error loading

* tell user to refresh instead of refetching

* unused import

* feat(ui): use `useAppToaster` to make toast

* fix(ui): clear selected/initial image on error

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-05-17 11:52:37 -04:00
eadfd239a8 update config script to work with new config system 2023-05-17 00:18:19 -04:00
8d75e50435 partial port of invokeai-configure 2023-05-16 01:50:01 -04:00
1d9c115225 feat(nodes): add low and high to RandomIntInvocation 2023-05-16 13:50:52 +10:00
30af20a056 ui: cleanup (#3418)
- tidy up a lot of cruft
- `sampler` --> `scheduler`
2023-05-16 15:27:12 +12:00
cc21fb216c chore(ui): clean up GalleryPanel 2023-05-16 10:43:26 +10:00
6fe62a2705 feat(ui): sampler --> scheduler 2023-05-16 10:40:26 +10:00
da87378713 chore(ui): regen api client 2023-05-16 10:39:40 +10:00
b6f5267385 chore(ui): clean up generationSlice 2023-05-16 10:21:18 +10:00
f9e78d3c64 chore(ui): clean up gallerySlice 2023-05-16 10:16:36 +10:00
b7b5bd1b46 chore(ui): clean up uiSlice 2023-05-16 09:57:19 +10:00
9a3727d3ad chore(ui): clean up systemSlice 2023-05-16 09:48:58 +10:00
d68c14516c chore(ui): clean up persist denylists 2023-05-16 09:46:03 +10:00
9f4d39aa42 chore(ui): clean up modelSlice 2023-05-16 09:45:49 +10:00
84b801d88f ui: restore canvas and upload functionality (#3414)
- refactor image uploading, fix init image upload button 
- refactor toast and hotkey hooks into logical components
- restore canvas save/download/copy/merge functionality
- clean up unused files and packages
- fix canvas rendering issue resulting from fractional stage coords
2023-05-16 02:23:39 +12:00
2fc70c509b Merge branch 'main' into feat/ui/fix-uploading 2023-05-16 02:20:59 +12:00
34fb1c4b19 make conditioning.py work with compel 1.1.5 (#3383)
This PR fixes the ValueError issue that was preventing all prompts from
working.
2023-05-15 09:46:04 -04:00
80bdd550cf Merge branch 'main' into lstein/bugfix/compel 2023-05-15 09:25:21 -04:00
7ef0d2aa35 merge with main 2023-05-15 09:07:17 -04:00
2359b92b46 chore(ui): tidy unused component ref 2023-05-15 22:58:15 +10:00
a404fb2d32 docs(ui): update PACKAGE_SCRIPTS.md 2023-05-15 22:49:28 +10:00
513eb11616 chore(ui): clean up unused files/packages 2023-05-15 22:48:06 +10:00
d2c9140e69 feat(ui): restore save/copy/download/merge functionality 2023-05-15 22:21:03 +10:00
d95fe5925a feat(ui): restore image post-upload actions
eg set init image if on img2img when uploading
2023-05-15 18:52:48 +10:00
835922ea8f fix(ui): floor canvas coords to prevent partial pixel offset rendering issues 2023-05-15 18:50:34 +10:00
e1e5266fc3 feat(ui): refactor base image uploading logic 2023-05-15 17:45:05 +10:00
5e4457445f feat(ui): make toast/hotkey into logical components 2023-05-15 15:25:27 +10:00
0221ca8f49 fix(ui): use cloned canvas for retrieving dataURL/Blobs 2023-05-15 13:54:30 +10:00
cf36e4029e fix(ui): fix syntax error in the logo component flexbox 2023-05-15 08:24:33 +10:00
c8a98a9a22 Merge branch 'main' into lstein/bugfix/compel 2023-05-14 14:43:18 -04:00
38ecca9362 Logging Improvements (#3401)
This PR improves the logging module a tad bit along with the
documentation.

**New Look:**


![WindowsTerminal_XaijwCqFpo](https://github.com/invoke-ai/InvokeAI/assets/54517381/49a97411-1927-4a49-80ff-f4d9665be55f)

## Usage

**General Logger**

InvokeAI has a module level logger. You can call it this way.

In this below example, you will use the default logger `InvokeAI` and
all your messages will be logged under that name.

```python

from invokeai.backend.util.logging import logger

logger.critical("CriticalMessage") // In Bold Red
logger.error("Info Message") // In Red
logger.warning("Info Message") // In Yellow
logger.info("Info Message") // In Grey 
logger.debug("Debug Message") // In Grey
```

Results:

```
[12-05-2023 20]::[InvokeAI]::CRITICAL --> This is an info message [In Bold Red]
[12-05-2023 20]::[InvokeAI]::ERROR --> This is an info message [In Red]
[12-05-2023 20]::[InvokeAI]::WARNING --> This is an info message [In Yellow]
[12-05-2023 20]::[InvokeAI]::INFO --> This is an info message [In Grey]
[12-05-2023 20]::[InvokeAI]::DEBUG --> This is an info message [In Grey]
```

**Custom Logger**

If you want to use a custom logger for your module, you can import it
the following way.

```python

from invokeai.backend.util.logging import logging
logger = logging.getLogger(name='Model Manager')

logger.critical("CriticalMessage") // In Bold Red
logger.error("Info Message") // In Red
logger.warning("Info Message") // In Yellow
logger.info("Info Message") // In Grey 
logger.debug("Debug Message") // In Grey
```

Results:

```
[12-05-2023 20]::[Model Manager]::CRITICAL --> This is an info message [In Bold Red]
[12-05-2023 20]::[Model Manager]::ERROR --> This is an info message [In Red]
[12-05-2023 20]::[Model Manager]::WARNING --> This is an info message [In Yellow]
[12-05-2023 20]::[Model Manager]::INFO --> This is an info message [In Grey]
[12-05-2023 20]::[Model Manager]::DEBUG --> This is an info message [In Grey]
```

**When to use custom logger?**

It is recommended to use a custom logger if your module is not a part of
base InvokeAI. For example: custom extensions / nodes.
2023-05-15 02:18:20 +12:00
c4681774a5 Merge branch 'main' into logging-facelift 2023-05-15 02:08:29 +12:00
050add58d2 fix getting conditionings 2023-05-14 12:20:54 +02:00
3d60c958c7 ui: commercial fixes (#3409)
minor commercial fixes
2023-05-14 20:44:06 +12:00
f5df150097 feat(ui): add callback to signal app is ready
needed for commercial
2023-05-14 18:42:15 +10:00
dac82adb5b fix(ui): make logo component non-selectable 2023-05-14 18:41:11 +10:00
b72c9787a9 Revert "comment out customer_attention_context"
This reverts commit 8f8cd90787.

Due to NameError: name 'options' is not defined
2023-05-14 00:37:55 -04:00
2623941d91 Merge branch 'main' into lstein/bugfix/compel 2023-05-13 22:23:59 -04:00
d3a7fea939 Revert "fix: Rework the layout of the parameters scrollbar"
This reverts commit 6f1fc397f7.
2023-05-14 11:45:08 +10:00
5a7b687c84 fix(ui): add missing packages 2023-05-14 11:45:08 +10:00
0020457fc7 fix(ui): tweak settings scheduler styling 2023-05-14 11:45:08 +10:00
658b556544 feat(ui): IAICustomSelect v2, implement for scheduler & model 2023-05-14 11:45:08 +10:00
37da0fc075 feat(ui): IAICustomSelect v1 2023-05-14 11:45:08 +10:00
6d3e8507cc fix(ui): fix "no image" fallbacks 2023-05-14 11:45:08 +10:00
0e9470503f fix: Rework the layout of the parameters scrollbar 2023-05-14 11:45:08 +10:00
d2ebc6741b feat: Add setting to hide / display schedulers 2023-05-14 11:45:08 +10:00
026d3260b4 Add Heun Karras Scheduler 2023-05-14 11:45:08 +10:00
1103ab2844 merge with main 2023-05-13 21:35:19 -04:00
11b2076b46 implement change to web_config suggested by ebr 2023-05-13 21:33:19 -04:00
78533714e3 Merge branch 'main' into logging-facelift 2023-05-14 09:07:51 +12:00
691e1bf829 Make debug messages cyan/blue 2023-05-14 09:06:57 +12:00
47a088d685 rehydrate selectedImage URL when results and uploads are fetched 2023-05-13 09:48:38 +10:00
63db3fc22f reduce queue check interval to 0.5s 2023-05-12 17:54:26 -04:00
ad0bb3f61a fix: queue error should not crash InvocationProcessor
1. if retrieving an item from the queue raises an exception, the
   InvocationProcessor thread crashes, but the API continues running in
   a non-functional state. This fixes the issue
2. when there are no items in the queue, sleep 1 second before checking
   again.
3. Also ensures the thread isn't crashed if an exception is raised from
   invoker, and emits the error event

Intentionally using base Exceptions because for now we don't know which
specific exception to expect.

Fixes (sort of)? #3222
2023-05-12 17:54:26 -04:00
8f8cd90787 comment out customer_attention_context 2023-05-12 13:59:00 -04:00
d796ea7bec feat: Logging Improvements 2023-05-13 02:13:49 +12:00
e5b7dd63e9 fix(nodes): temporarily disable librarygraphs
- Do not retrieve graph from DB until we resolve the issue of changing node schemas causing application to fail to start up due to invalid graphs
2023-05-12 22:33:49 +10:00
af060188bd Merge branch 'main' into lstein/bugfix/compel 2023-05-12 08:22:18 -04:00
4270e7ae25 Feat/ui/improve-language (#3399) 2023-05-12 23:32:50 +12:00
60a565d7de feat(ui): use chakra menu for theme changer 2023-05-12 20:04:29 +10:00
78cf70eaad fix(ui): tweak lang picker style 2023-05-12 20:04:10 +10:00
eebaa50710 fix(ui): fix language picker tooltip 2023-05-12 19:52:21 +10:00
7d582553f2 feat(ui): use chakra menu for language picker 2023-05-12 19:50:34 +10:00
4d6eea7e81 feat(ui): store language in redux 2023-05-12 19:35:03 +10:00
f44593331d ui: misc fixes (#3398)
- do not show canvas intermediates in gallery
- do not show progress image in uploads gallery category
- use custom dark mode `localStorage` key (prevents collision with
commercial)
- use variable font (reduce bundle size by factor of 10)
- change how custom headers are used
- use style injection for building package
- fix tab icon sizes
2023-05-12 21:00:47 +12:00
3d9ecbf3c7 fix(ui): add missing package 2023-05-12 18:55:59 +10:00
032aa1d59c fix(ui): excise most zIndexs
our stacking contexts are accurate, `zIndex` isn't needed
2023-05-12 18:50:54 +10:00
35e0863bdb fix(ui): fix tab icon sizes 2023-05-12 17:56:18 +10:00
14070d674e build(ui): add style injection plugin
when building for package, CSS is all in JS files. when used as a package, it is then injected into the page. bit of a hack to missing CSS in commercial product
2023-05-12 17:56:18 +10:00
108ce06c62 feat(ui): change custom header to be a prop instead of children 2023-05-12 17:56:18 +10:00
da364f3444 feat(ui): use variable font
reduces package build's CSS by an order of magnitude
2023-05-12 17:56:18 +10:00
df5ba75c14 feat(ui): use custom dark mode localStorage key 2023-05-12 17:56:18 +10:00
e4fb9cb33f chore(ui): regen api client 2023-05-12 17:56:18 +10:00
65b527eb20 fix(ui): do not show progress images in uploads gallery category 2023-05-12 17:56:18 +10:00
7dc9d18052 fix(ui): do not show intermediates uploads in gallery 2023-05-12 17:56:18 +10:00
5013a4b9f3 feat(ui): expand config options (#3393)
now may disable individual SD features eg Noise, Variation, etc - stuff
which is not ready for consumption in commercial.
2023-05-12 16:10:17 +12:00
f929359322 Merge branch 'main' into feat/ui/expand-config 2023-05-12 16:06:31 +12:00
6522c71971 feat(nodes): add RandomIntInvocation (#3390)
just outputs a single random int
2023-05-12 16:06:06 +12:00
9c1e65f3a3 Merge branch 'main' into feat/nodes/add-randomintinvocation 2023-05-12 15:56:41 +12:00
ebec200ba6 Remove unused import 2023-05-12 13:56:02 +10:00
e559730b6e feat(nodes): add w/h to latents outputs (#3389)
This reduces the number of nodes needed when working with latents (ie
fewer plain integer value nodes)

Also correct a few mistakes in the fields
2023-05-12 15:40:46 +12:00
0acb8ed85d Merge branch 'main' into feat/nodes/add-w-h-latentsoutput 2023-05-12 15:23:29 +12:00
8c1c9cd702 Merge branch 'main' into feat/nodes/add-randomintinvocation 2023-05-12 15:21:49 +12:00
0ece4686aa fix(nodes): remove Optionals on ImageOutputs (#3392) 2023-05-12 15:21:42 +12:00
af95cef7f9 Merge branch 'main' into fix/nodes/fix-imageoutput-optionals 2023-05-12 15:08:19 +12:00
1eca7a918a feat(ui): make core parameters layout consistent (#3394) 2023-05-12 15:08:07 +12:00
9e6b958023 Merge branch 'main' into feat/ui/consistent-param-layout 2023-05-12 15:06:16 +12:00
f7b99d93ae docs(ui): update ui readme (#3396) 2023-05-12 15:05:55 +12:00
85d03dcd90 Merge branch 'main' into docs/ui/update-ui-readme 2023-05-12 15:04:12 +12:00
032555bcfe fix(model manager): fix string formatting error on model checksum timer (#3397)
The error occurs when loading a model for the first time. (or after
removing its checksum file, probably.)
2023-05-12 15:04:01 +12:00
4caa1f19b2 fix(model manager): fix string formatting error on model checksum timer 2023-05-11 19:06:02 -07:00
95d4bd3012 Merge branch 'lstein/bugfix/compel' of github.com:invoke-ai/InvokeAI into lstein/bugfix/compel 2023-05-11 21:13:29 -04:00
037078c8ad make InvokeAIDiffuserComponent.custom_attention_control a classmethod 2023-05-11 21:13:18 -04:00
6de2f66b50 docs(ui): update ui readme 2023-05-12 11:11:59 +10:00
cd7b248eda Add UniPC / Euler Karras / DPMPP_2 Karras / DEIS / DDPM Schedulers (#3388)
**Features:**

- Add UniPC Scheduler
- Add Euler Karras Scheduler
- Add DPMPP_2 Karras Scheduler
- Add DEIS Scheduler
- Add DDPM Scheduler

**Other:**

- Renamed schedulers to their accurate names: _a = Ancestral, _k =
Karras
- Fix scheduler not defaulting correctly to DDIM.
- Code split SCHEDULER_MAP so its consistently loaded from the same
place.

**Known Bugs:**

- dpmpp_2s not working in img2img for denoising values < 0.8 ==> // This
seems to be an upstream bug. I've disabled it in img2img and canvas
until the upstream bug is fixed.
https://github.com/huggingface/diffusers/issues/1866
2023-05-12 09:06:22 +12:00
6d8c077f4e Merge branch 'main' into unipc-sched 2023-05-12 05:59:13 +12:00
97127e560e Disable dpmpp_2s in img2img & unifiedCanvas
... until upstream bug is fixed.
2023-05-12 04:51:58 +12:00
27dc07d95a Set zero eta by default(fix ddim scheduler error) 2023-05-11 18:49:27 +03:00
f7dc171c4f Rename default schedulers across the app 2023-05-12 03:44:20 +12:00
4b957edfec Add DDPM Scheduler 2023-05-12 03:18:34 +12:00
46ca7718d9 Add DEIS Scheduler 2023-05-12 03:10:30 +12:00
b928d7a6e6 Change scheduler names to be accurate
_a = Ancestral
_k = Karras
2023-05-12 02:59:43 +12:00
8a836247c8 Add DPMPP Single, Euler Karras and DPMPP2 Multi Karras Schedulers 2023-05-12 02:23:33 +12:00
95c3644564 fix it again 2023-05-12 00:10:39 +10:00
799cd07174 feat(ui): make core parameters layout consistent 2023-05-11 22:45:53 +10:00
9af385468d feat(ui): expand config options
now may disable individual SD features eg Noise, Variation, etc - stuff which is not ready for consumption in commercial.
2023-05-11 22:42:13 +10:00
3487388788 Merge branch 'unipc-sched' of https://github.com/blessedcoolant/InvokeAI into unipc-sched 2023-05-12 00:40:24 +12:00
9a383e456d Codesplit SCHEDULER_MAP for reusage 2023-05-12 00:40:03 +12:00
805f9f8f4a Merge branch 'main' into unipc-sched 2023-05-12 00:24:55 +12:00
52aa0c9bbd ui: miscellaneous fixes (#3386) 2023-05-12 00:21:29 +12:00
7f5f4689cc fix(ui): clear progress image on cancel 2023-05-11 22:20:37 +10:00
a3f81f4b98 fix(ui): fix results not displaying
- fix for commercial product
2023-05-11 22:20:37 +10:00
15c59e606f feat(ui): add spinner to gallery progress images
- otherwise you may think you can click it but you cannot
2023-05-11 22:20:37 +10:00
40d4cabecd feat(ui): improve image overlay 2023-05-11 22:20:37 +10:00
3493c8119b feat(ui): improve image preview css and fallback 2023-05-11 22:20:30 +10:00
c1e7460d39 Merge branch 'main' into unipc-sched 2023-05-12 00:11:09 +12:00
3ffff023b2 Add missing key to scheduler_map
It was breaking coz the sampler was not being reset. So needs a key on each. Will simplify this later.
2023-05-12 00:08:50 +12:00
f9384be59b fix(ui): fix init image causing overflow 2023-05-11 20:55:30 +10:00
6cf308004a fix(nodes): remove Optionals on ImageOutputs 2023-05-11 20:54:57 +10:00
d1029138d2 Default to DDIM if scheduler is missing 2023-05-11 22:54:35 +12:00
06b5800d28 Add UniPC Scheduler 2023-05-11 22:43:18 +12:00
483f2ccb56 feat(nodes): add RandomIntInvocation
just outputs a single random int
2023-05-11 20:33:32 +10:00
93ced0bec6 feat(nodes): add w/h to latents outputs
This reduces the number of nodes needed when working with latents (ie fewer plain integer value nodes)

Also correct a few mistakes in the fields
2023-05-11 20:32:55 +10:00
4333852c37 fix(nodes): fix missing context arg in LatentsToLatents 2023-05-11 19:28:42 +10:00
3baa230077 Merge branch 'main' into lstein/bugfix/compel 2023-05-11 00:50:45 -04:00
9e594f9018 pad conditioning tensors to same length
fixes crash when prompt length is greater than 75 tokens
2023-05-11 00:34:15 -04:00
b0c41b4828 filter our websocket errors (#3382)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-05-11 01:58:40 +00:00
e0d6946b6b fix(nodes): fix metadata test
- `progress_images` is no longer a parameter
- `seamless` needs to be reworked as a model config, removed as a param
2023-05-11 11:55:51 +10:00
bf7ea8309f fix(ui): change tab to img2img when selected initial image 2023-05-11 11:55:51 +10:00
54b65f725f fix(ui): rescale canvas on gallery resize 2023-05-11 11:55:51 +10:00
8ef49c2640 fix(ui): fix canvas img2img if no init image selected 2023-05-11 11:55:51 +10:00
f488b1a7f2 fix(nodes): fix usage of Optional 2023-05-11 11:55:51 +10:00
d2edb7c402 build(ui): add yalc to gitignore 2023-05-11 11:55:51 +10:00
f0a3f07b45 feat(ui): antialias progress images 2023-05-11 11:55:51 +10:00
b42b630583 fix(ui): h/w disabled bug 2023-05-11 11:55:51 +10:00
31a78d571b feat(ui): canvas antialiasing 2023-05-11 11:55:51 +10:00
fdc2232ea0 feat(ui): progress images in gallery and viewer 2023-05-11 11:55:51 +10:00
e94d0b2d40 fix(ui): fix janky gallery image delete 2023-05-11 11:55:51 +10:00
75ccbaee9c fix(ui): disable invoke button as soon as pressed 2023-05-11 11:55:51 +10:00
2848c8397c fix(ui): fix missing images on reload issue
- Mainly an issue for commercial due to incomplete metadata handling
2023-05-11 11:55:51 +10:00
fe8b5193de feat(ui): half-baked use all parameters
until we have a better system for metadata, this will remain half-baked
2023-05-11 11:55:51 +10:00
3d1470399c fix(ui): fix metadataviewer styling 2023-05-11 11:55:51 +10:00
fcf9c63049 fix(ui): fix copying image link 2023-05-11 11:55:51 +10:00
7bfb5640ad cleanup(ui): Remove unused vars + minor bug fixes 2023-05-11 11:55:51 +10:00
15e57e3a3d fix(ui): duplicate gallery in nodes editor 2023-05-11 11:55:51 +10:00
279468c0e8 feat(ui): restore tab names 2023-05-11 11:55:51 +10:00
c565812723 feat(ui): organize parameters panels 2023-05-11 11:55:51 +10:00
ec6c8e2a38 feat(ui): wip layout 2023-05-11 11:55:51 +10:00
77f2690711 fix(ui): remove duplicate gallery 2023-05-11 11:55:51 +10:00
c4b3a24ed7 feat(ui): revert tabs to txt2img/img2img 2023-05-11 11:55:51 +10:00
33c69359c2 feat(ui): add IAICollapse for parameters 2023-05-11 11:55:51 +10:00
864f4bb4af feat(ui): wip img2img layouting 2023-05-11 11:55:51 +10:00
5365f42a04 feat(ui): wip layouting 2023-05-11 11:55:51 +10:00
3dc60254b9 feat(ui): support collect nodes 2023-05-11 11:55:51 +10:00
027a8562d7 fix(ui): default node model selection 2023-05-11 11:55:51 +10:00
34f3a0f0e3 feat(nodes): improve default model choosing output 2023-05-11 11:55:51 +10:00
d0bac1675e fix(nodes): fix ImageOutput Config 2023-05-11 11:55:51 +10:00
4e56c962f4 fix(nodes): fix infill docstrings 2023-05-11 11:55:51 +10:00
4ef0e43759 fix(nodes): remove dataURL invocation 2023-05-11 11:55:51 +10:00
6945d10297 chore(ui): regen api client 2023-05-11 11:55:51 +10:00
4d6cef7ac8 fix(ui): fix types bug 2023-05-11 11:55:51 +10:00
a7786d5ff2 fix(nodes): restore seamless to TextToLatents 2023-05-11 11:55:51 +10:00
6c1de975d9 feat(nodes): add infill nodes 2023-05-11 11:55:51 +10:00
a1079e455a feat(nodes): cleanup unused params, seed generation 2023-05-11 11:55:51 +10:00
5457c7f069 fix(ui): use lodash-es instead of lodash 2023-05-11 11:55:51 +10:00
b8c1a3f96c chore(ui): remove unused babelrc & npm script 2023-05-11 11:55:51 +10:00
cee8e85f76 chore(ui): bump redux-remember 2023-05-11 11:55:51 +10:00
09f166577e feat(ui): migrate to redux-remember 2023-05-11 11:55:51 +10:00
bcc21531fb feat(ui): update for InfillInvocation 2023-05-11 11:55:51 +10:00
da4eacdffe feat(nodes): add InfillInvocation 2023-05-11 11:55:51 +10:00
6102e560ba feat(nodes): add LatentsToImage node (VAE encode) 2023-05-11 11:55:51 +10:00
ff3aa57117 feat(ui): fix endless gallery scroll for single col layout 2023-05-11 11:55:51 +10:00
49db6f4fac fix(nodes): fix trivial typing issues 2023-05-11 11:55:51 +10:00
20f6a597ab fix(nodes): add MetadataColorField 2023-05-11 11:55:51 +10:00
04c453721c feat(ui): tweak gallery loading indicator 2023-05-11 11:55:51 +10:00
350ffecc1f feat(ui): endless gallery scroll 2023-05-11 11:55:51 +10:00
b0557aa16b fix(ui): fix currentimagepreview not working for uploads 2023-05-11 11:55:51 +10:00
1c9429a6ea feat(ui): wip canvas 2023-05-11 11:55:51 +10:00
206e6b1730 feat(nodes): wip inpaint node 2023-05-11 11:55:51 +10:00
357cee2849 fix(nodes): fix cfg scale min value 2023-05-11 11:55:51 +10:00
0b49997bb6 feat(nodes): allow uploaded images to be any ImageType (eg intermediates) 2023-05-11 11:55:51 +10:00
5e09dd380d Revert "feat(nodes): free gpu mem after invocation"
This reverts commit 99cb33f477306d5dcc455efe04053ce41b8d85bd.
2023-05-11 11:55:51 +10:00
c7303adb0d feat(ui): fix generation mode logic 2023-05-11 11:55:51 +10:00
ed1f096a6f feat(ui): wip canvas migration 4 2023-05-11 11:55:51 +10:00
6ab5d28cf3 feat(ui): wip canvas migration, createListenerMiddleware 2023-05-11 11:55:51 +10:00
a75148cb16 feat(nodes): free gpu mem after invocation 2023-05-11 11:55:51 +10:00
f7bbc4004a feat(ui): wip canvas nodes migration 3 2023-05-11 11:55:51 +10:00
cee21ca082 feat(ui): wip canvas nodes migration 2 2023-05-11 11:55:51 +10:00
08ec12b391 feat(ui): wip canvas nodes migration 2023-05-11 11:55:51 +10:00
ff5e2a9a8c chore(ui): regen api client 2023-05-11 11:55:51 +10:00
e0b9b5cc6c feat(nodes): add dataURL to image node 2023-05-11 11:55:51 +10:00
aca4770481 fixed compel.py as requested 2023-05-10 21:40:44 -04:00
5d5157fc65 make conditioning.py work with compel 1.1.5 2023-05-10 18:08:33 -04:00
fb6ef61a4d change path for locale (#3381)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-05-10 10:30:17 -04:00
ee24ad7b13 fix(nodes): fix broken docs routes 2023-05-10 08:28:17 -04:00
f8e90ba3f0 feat(nodes): add ui build static route 2023-05-10 08:28:17 -04:00
ad0b70ca23 fix(nodes): fix #3306 (#3377)
Check if the cache has the object before deleting it.
2023-05-10 17:39:45 +12:00
7dfa135b2c fix(nodes): fix #3306
Check if the cache has the object before deleting it.
2023-05-10 15:29:10 +10:00
beeaa05658 Update dependencies to get deterministic image generation behavior (main branch) (#3354)
This PR updates to `xformers ~= 0.0.19` and `torch ~= 2.0.0`, which
together seem to solve the non-deterministic image generation issue that
was previously seen with earlier versions of `xformers`.
2023-05-10 00:10:51 -04:00
6b6d654f60 Merge branch 'main' into enhance/update-dependencies 2023-05-09 23:56:46 -04:00
853c83d0c2 surface detail field for 403 errors 2023-05-09 12:40:19 +10:00
1809990ed4 if backend returns an error, show it in toast 2023-05-09 11:09:36 +10:00
79d49853d2 use websocket transport first for socket.io 2023-05-09 11:01:02 +10:00
1f608d3743 add v2.3 branch to push trigger (#3363)
Update the push trigger with the branch which should deploy the docs,
also bring over the updates to the workflow from the v2.3 branch and:

- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method (`pip install ".[docs]"`)
2023-05-08 16:26:06 -04:00
df024dd982 bring changes from v2.3 branch over
- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method
2023-05-08 21:50:00 +02:00
45da85765c add v2.3 branch to push trigger 2023-05-08 21:10:20 +02:00
bd0ad59c27 bump compel version 2023-05-07 15:22:46 -04:00
cce40acba5 Merge branch 'enhance/update-dependencies' of github.com:invoke-ai/InvokeAI into enhance/update-dependencies 2023-05-07 15:22:31 -04:00
bc9491ab69 bump compel version 2023-05-07 15:21:24 -04:00
f28632980d Merge branch 'main' into lstein/global-configuration 2023-05-07 07:52:46 -04:00
b909bac0dc Merge branch 'main' into enhance/update-dependencies 2023-05-07 21:44:43 +12:00
8618e41b32 Deploy documentation from v2.3 branch rather than main (#3356)
This PR instructs github to deploy documentation pages from the v2.3
branch.
2023-05-07 21:43:44 +12:00
4687f94141 Merge branch 'main' into actions/mkdocs-deploy 2023-05-07 21:43:18 +12:00
440912dcff feat(ui): make base log level debug 2023-05-07 15:36:37 +10:00
8b87a26e7e feat(ui): support collect nodes 2023-05-07 15:36:37 +10:00
44ae93df3e Deploy documentation from v2.3 branch rather than main 2023-05-06 23:56:04 -04:00
42d938fda5 remove debugging statement 2023-05-06 23:54:11 -04:00
8f80ba9520 update dependencies to get deterministic image generation 2023-05-06 23:09:24 -04:00
25ce47c44f remove reference to globals in compel.py 2023-05-06 22:49:35 -04:00
afd2e32092 Merge branch 'main' into lstein/global-configuration 2023-05-06 21:20:25 -04:00
2b213da967 add -y to the automated install instructions (#3349)
hi there, love the project! i noticed a small typo when going over the
install process.

when copying the automated install instructions from the docs into a
terminal, the line to install the python packages failed as it was
missing the `-y` flag.
2023-05-06 13:34:37 -04:00
e91e1eb9aa Merge branch 'main' into patch-1 2023-05-06 13:34:12 -04:00
b24129fb3e Fix logger namespace clash in web server (#3344)
This PR fixes a bug that appeared in the legacy web server after the
logging PR was merged.

closes #3343
2023-05-06 08:35:13 -04:00
350b1421bb Merge branch 'main' into lstein/bugfix/logger-namespace 2023-05-06 08:14:44 -04:00
f01c79a94f add -y to the automated install instructions
when copying the automated install instructions from the docs into a terminal, the line to install the python packages failed as it was missing the `-y` flag.
2023-05-05 21:28:00 -04:00
463f6352ce Add compel node and conditioning field type (#3265)
Done as I said in title, but need to test(and understand) how cli works,
as previously it uses single prompt and now it's positive and negative.
2023-05-06 13:05:04 +12:00
a80fe05e23 Rename compel node 2023-05-05 21:30:16 +03:00
58d7833c5c Review changes 2023-05-05 21:09:29 +03:00
5012f61599 Separate conditionings back to positive and negative 2023-05-05 15:47:51 +03:00
85c33823c3 Merge branch 'main' into feat/compel_node 2023-05-05 14:41:45 +12:00
c83a112669 Fix inpaint node (#3284)
Seems like this is the only change needed for the existing inpaint code
to work as a node. Kyle said on Discord that inpaint shouldn't be a
node, so feel free to just reject this if this code is going to be gone
soon.
2023-05-05 14:41:13 +12:00
e04ada1319 Merge branch 'main' into patch-1 2023-05-05 10:38:45 +10:00
d866dcb3d2 close #3343 2023-05-04 20:30:59 -04:00
81ec476f3a Revert seed field addition 2023-05-04 21:50:40 +03:00
1e6adf0a06 Fix default graph and test 2023-05-04 21:14:31 +03:00
7d221e2518 Combine conditioning to one field(better fits for multiple type conditioning like perp-neg) 2023-05-04 20:14:22 +03:00
742ed19d66 add missing config module 2023-05-04 01:20:30 -04:00
29c2ada23c add test for the configuration module 2023-05-04 00:45:52 -04:00
e4196bbe5b adjust non-app modules to use new config system 2023-05-04 00:43:51 -04:00
15ffb53e59 remove globals, args, generate and the legacy CLI 2023-05-03 23:36:51 -04:00
90054ddf0d use InvokeAISettings for app-wide configuration 2023-05-03 22:30:30 -04:00
56d3cbead0 Merge branch 'main' into feat/compel_node 2023-05-04 00:28:33 +03:00
5e8c97f1ba [Enhancement] Regularize logging messages (#3176)
# Intro

This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions:

```
 ### A critical error
 *** A non-fatal error
 ** A warning
  >> Informational message
        | Debugging message
```

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add InvokeAI's
informational message decorations, while `ialog.error("foo")` will add
the decorations.
    
# Usage:

This is a thin wrapper around the standard Python logging module. It can
be used in several ways:


## Module-level logging style
 
This style logs everything through a single default logging object and
is identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus to
logging:
    
```
      import invokeai.backend.util.logging as logger
    
      logger.debug('this is a debugging message')
      logger.info('this is a informational message')
      logger.log(level=logging.CRITICAL, 'get out of dodge')

      logger.disable(level=logging.INFO)
      logger.basicConfig(filename='/var/log/invokeai.log')
      logger.error('this will be logged to console and to invokeai.log')
```    

Internally these functions all go through a custom logging object named
"invokeai". You can access it to perform additional customization in
either of these ways:

```
logger = logger.getLogger()
logger = logger.getLogger('invokeai')
```
    
## Object-oriented style

For more control, the logging module's object-oriented logging style is
also supported. The API is identical to the vanilla logging usage. In
fact, the only thing that has changed is that the getLogger() method
adds a custom formatter to the log messages.
    
```
     import logging
     from invokeai.backend.util.logging import InvokeAILogger
    
     logger = InvokeAILogger.getLogger(__name__)
     fh = logging.FileHandler('/var/invokeai.log')
     logger.addHandler(fh)
     logger.critical('this will be logged to both the console and the log file')
```

## Within the nodes API

From within the nodes API, the logger module is stored in the `logger`
slot of InvocationServices during dependency initialization. For
example, in a router, the idiom is:

```
from ..dependencies import ApiDependencies
logger = ApiDependencies.invoker.services.logger
logger.warning('uh oh')
```

Currently, to change the logger used by the API, one must change the
logging module passed to `ApiDependencies.initialize()` in `api_app.py`.
However, this will eventually be replaced with a method to select the
preferred logging module using the configuration file (dependent on
merging of PR #3221)
2023-05-03 15:00:05 -04:00
4687ad4ed6 Merge branch 'main' into enhance/invokeai-logs 2023-05-03 13:36:06 -04:00
994b247f8e feat(ui): do not persist gallery images
- I've sorted out the issues that make *not* persisting troublesome, these will be rolled out with canvas
- Also realized that persisting gallery images very quickly fills up localStorage, so we can't really do it anyways
2023-05-03 23:41:48 +10:00
0419f50ab0 chore(ui): bump react-virtuoso
- Resolves an issue with gallery not rendering all items
2023-05-02 20:15:29 +10:00
f9f40adcdc fix(nodes): fix t2i graph
Removed width and height edges.
2023-05-02 13:11:28 +10:00
3264d30b44 feat(nodes): allow multiples of 8 for dimensions 2023-05-02 12:01:52 +10:00
4d885653e9 feat(ui): tidy 2023-05-02 11:27:08 +10:00
475b6bef53 feat(ui): use windowing for gallery
vastly improves the gallery performance when many images are loaded.

- `react-virtuoso` to do the virtualized list
- `overlayscrollbars` for a scrollbar
2023-05-02 11:27:08 +10:00
d39de0ad38 fix(nodes): fix duplicate Invoker start/stop events 2023-05-01 18:24:37 -04:00
d14a7d756e nodes-api: enforce single thread for the processor
On hyperthreaded CPUs we get two threads operating on the queue by
default on each core. This cases two threads to process queue items.
This results in pytorch errors and sometimes generates garbage.

Locking this to single thread makes sense because we are bound by the
number of GPUs in the system, not by CPU cores. And to parallelize
across GPUs we should just start multiple processors (and use async
instead of threading)

Fixes #3289
2023-05-01 18:24:37 -04:00
b050c1bb8f use logger in ApiDependencies 2023-05-01 16:27:44 -04:00
276dfc591b feat(ui): disable w/h when img2img & not fit 2023-05-01 17:28:22 +10:00
b49d76ebee feat(nodes): fix image to image fit param
it was ignored previously.
2023-05-01 17:28:22 +10:00
a6be44789b fix(ui): progress image rerender, checkbox 2023-05-01 11:16:49 +10:00
a4313c26cb fix: Do not hide Preview button & color code it 2023-05-01 11:16:49 +10:00
d4b250d509 feat(ui): Add auto show progress previews setting 2023-05-01 11:16:49 +10:00
29743a9e02 fix(ui): next/prev image buttons 2023-05-01 11:16:49 +10:00
fecb77e344 feat(ui): dndkit --> rnd for draggable 2023-05-01 11:16:49 +10:00
779671753d feat(ui): tweak floating preview 2023-05-01 11:16:49 +10:00
d5e152b35e fix(ui): ignore events after canceling session 2023-05-01 11:16:49 +10:00
270657a62c feat(ui): gallery & progress image refactor 2023-05-01 11:16:49 +10:00
3601b9c860 feat(ui): revamp status indicator 2023-05-01 11:16:49 +10:00
c8fe12cd91 feat(ui): init image tweaks 2023-05-01 11:16:49 +10:00
deae5fbaec fix(ui): socket event types 2023-05-01 11:16:49 +10:00
5b558af2b3 fix(ui): fix metadata viewer scroll 2023-05-01 11:16:49 +10:00
4150d5306f chore(ui): regen api client 2023-05-01 11:16:49 +10:00
8c2e4700f9 feat(ui): persist gallery state 2023-05-01 11:16:49 +10:00
adaecada20 fix(ui): fix current image seed button 2023-05-01 11:16:49 +10:00
258895bcc9 feat(ui): being dismantling old sio stuff, fix recall seed/prompt/init
- still need to fix up metadataviewer's recall features
2023-05-01 11:16:49 +10:00
2eb7c25bae feat(ui): clean up and simplify socketio middleware 2023-05-01 11:16:49 +10:00
2e4e9434c1 fix(ui): fix initial image for uploads 2023-05-01 11:16:49 +10:00
0cad204e74 feat(ui): add error handling for linear graph generation 2023-05-01 11:16:49 +10:00
0bc2edc044 Merge branch 'main' into enhance/invokeai-logs 2023-04-29 11:00:18 -04:00
16488e7db8 fix tests 2023-04-29 10:59:50 -04:00
974841926d logger is a interchangeable service 2023-04-29 10:48:50 -04:00
8db20e0d95 rename log to logger throughout 2023-04-29 09:43:40 -04:00
d00d29d6b5 feat(ui): update settings modal 2023-04-29 18:28:19 +10:00
dc976cd665 feat(ui): add switch for logging 2023-04-29 18:28:19 +10:00
6d6b986a66 feat(ui): remove Console and redux logging state 2023-04-29 18:28:19 +10:00
bffdede0fa feat(ui): improve log messages 2023-04-29 18:28:19 +10:00
a4c258e9ec feat(ui): add roarr logger 2023-04-29 18:28:19 +10:00
8d837558ac fix(ui): fix spelling of systemPersistDenylist.ts 2023-04-29 18:28:19 +10:00
e673ed08ec fix(ui): restore missing chakra-cli package
(amending to try and get the workflow to run)
2023-04-29 12:21:11 +10:00
f0e07bff5a fix bad logging path in config script 2023-04-28 15:39:00 -04:00
3ec06a1fc3 Merge branch 'main' into enhance/invokeai-logs 2023-04-28 10:10:33 -04:00
6b79e2b407 Merge branch 'main' into enhance/invokeai-logs
- resolve conflicts
- remove unused code identified by pyflakes
2023-04-28 10:09:46 -04:00
0eed9dbc44 fix(ui): fix packaging import issue (#3294)
I accidentally merged a broken #3292 (merge conflicts incorrectly
resolved). Fixing it
2023-04-29 00:39:56 +12:00
53c7832fd1 fix(ui): fix packaging import issue 2023-04-28 22:37:51 +10:00
ca1cc0e2c2 feat(ui): rerender mitigation sweep 2023-04-28 22:00:18 +10:00
5d8728c7ef feat(ui): persist socket session ids and re-sub on connect 2023-04-28 22:00:18 +10:00
a8cec4c7e6 fix(ui): improve schema parsing error handling 2023-04-28 22:00:18 +10:00
2b5ccdc55f build(ui): treeshake lodash via lodash-es 2023-04-28 21:56:43 +10:00
d92d5b5258 build(ui): fix types exports 2023-04-28 21:56:43 +10:00
a591184d2a build(ui): remove unneeded types file 2023-04-28 21:56:43 +10:00
ee881e4c78 build(ui): add react/react-dom peer deps 2023-04-28 21:56:43 +10:00
61fbb24e36 feat(ui): set up for packaging 2023-04-28 21:56:43 +10:00
d582949488 feat(ui): rename main app components 2023-04-28 21:56:43 +10:00
de574eb4d9 chore(ui): upgrade all packages 2023-04-28 21:56:43 +10:00
bfd90968f1 chore(ui): tidy npm structure 2023-04-28 21:56:43 +10:00
4a924c9b54 feat(nodes): hardcode resize latents downsampling 2023-04-28 09:52:09 +10:00
0453d60c64 fix(nodes): fix slatents and rlatents bugs 2023-04-28 09:52:09 +10:00
c4f4f8b1b8 fix(nodes): remove unused width and height from t2l 2023-04-28 09:52:09 +10:00
3e80eaa342 feat(nodes): add resize and scale latents nodes
- this resize/scale latents is what is needed for hires fix
- also remove unused `seed` from t2l
2023-04-28 09:52:09 +10:00
00a0cb3403 fix(ui): update exported types 2023-04-28 09:20:09 +10:00
ea93cad5ff fix(ui): update to match change in route params 2023-04-28 09:19:03 +10:00
4453a0d20d feat(ui): remove toasts for network bc we have status to tell us 2023-04-28 09:18:19 +10:00
1e837e3c9d fix(ui): add formatted neg prompt for linear nodes (#3282)
* fix(ui): add formatted neg prompt for linear nodes

* remove conditional

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-27 15:05:35 -04:00
0f95f7cea3 Fix inpaint node
Seems like this is the only change needed for the existing inpaint node to work.
2023-04-27 11:03:07 -07:00
0b0068ab86 Merge branch 'main' into feat/compel_node 2023-04-27 14:53:10 +03:00
31c7fa833e feat(ui): simplify image display 2023-04-27 14:10:44 +10:00
db16ca0079 fix(ui): Current Image Buttons position 2023-04-27 14:10:44 +10:00
a824f47bc6 fix(nodes): use absolute path when deleting 2023-04-27 14:10:44 +10:00
99392debe8 feat(ui): refactor DeleteImageModal
- refactor the component
- use translations
- add config for systems where deleted images are not sent to bin (only changes the messaging)
2023-04-27 14:10:44 +10:00
0cc739afc8 feat(nodes): use send2trash to delete images, fix thumbnail_path 2023-04-27 14:10:44 +10:00
0ab62b0343 feat(ui): "blacklist" -> "denylist" 2023-04-27 14:10:44 +10:00
75d25dd5cc feat(ui): restore image deletion functionality 2023-04-27 14:10:44 +10:00
2e54da13d8 chore(ui): regen api client 2023-04-27 14:10:44 +10:00
f34f416bf5 fix(ui): handle floats in NumberInputFieldComponent 2023-04-27 14:10:44 +10:00
021c63891d fix(ui): fix config types and merging 2023-04-27 14:10:44 +10:00
a968862e6b feat(ui): Move img2img badge info to top right 2023-04-27 14:10:44 +10:00
a08189d457 ui: Match styling of img2img to the rest of the accordions 2023-04-27 14:10:44 +10:00
0a936696c3 feat(ui): add config slice, configuration default values 2023-04-27 14:10:44 +10:00
55e33eaf4c docs: add note on README about migration (#3277) 2023-04-27 13:17:43 +12:00
3da5fb223f docs: add note on README about migration 2023-04-27 11:05:32 +10:00
a3c5a664e5 fix(ui): update UI to handle uploads with alternate URLs (#3274) 2023-04-26 07:14:08 -07:00
b638fb2f30 fix(ui): use name in response instead of parsing out of URL to handle alternative URLs 2023-04-26 09:48:16 -04:00
c1b10b2222 feat(ui): open in new tab @ hoverable image 2023-04-26 12:40:10 +10:00
bee29714d9 fix(ui): fix templates not refreshing correctly 2023-04-26 12:40:10 +10:00
d40d5276dd feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
568f0aad71 feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
38474fa9d4 feat(ui): add lil spinner to loading 2023-04-26 12:17:01 +10:00
f7f974a28b fix(ui): fix inverted conditional 2023-04-26 12:17:01 +10:00
3c150b384c fix(ui): fix export of ApplicationFeature type 2023-04-26 12:17:01 +10:00
65816049ba feat(ui): add secret loading screen override button 2023-04-26 12:17:01 +10:00
c1c881ded5 feat(ui): support disabledFeatures, add nicer loading
- `disabledParametersPanels` -> `disabledFeatures`
- handle disabling `faceRestore`, `upscaling`, `lightbox`, `modelManager` and OSS header links/buttons
- wait until models are loaded to hide loading screen
- also wait until schema is parsed if `nodes` is an enabled tab
2023-04-26 12:17:01 +10:00
82c4dd8b86 fix(api): return same URL on location header 2023-04-26 06:29:30 +10:00
711d09a107 feat(nodes): add get_uri method to image storage
- gets the external URI of an image
2023-04-26 06:29:30 +10:00
74013b6611 fix(nodes): address feedback 2023-04-26 06:29:30 +10:00
790f399986 feat(nodes): tidy images routes 2023-04-26 06:29:30 +10:00
73cdd36594 feat(nodes): raise HTTPExceptions instead of returning Reponses 2023-04-26 06:29:30 +10:00
50ac3eb28d feat(nodes): add delete_image & delete_images routes 2023-04-26 06:29:30 +10:00
d753cff91a Undo debug message 2023-04-25 13:18:50 +03:00
89f1909e4b Update default graph 2023-04-25 13:11:50 +03:00
37916a22ad Use textual inversion manager from pipeline, remove extra conditioning info for uc 2023-04-25 12:53:13 +03:00
76e5d0595d fix(ui): fix no progress images when gallery is empty (#3268)
When gallery was empty (and there is therefore no selected image), no
progress images were displayed.

- fix by correcting the logic in CurrentImageDisplay
- also fix app crash introduced by fixing the first bug
2023-04-25 17:48:24 +12:00
f03cb8f134 fix(ui): fix no progress images when gallery is empty 2023-04-25 15:00:54 +10:00
c2a0e8afc3 [Bugfix] prevent cli crash (#3132)
Prevent legacy CLI crash caused by removal of convert option
    
- Compensatory change to the CLI that prevents it from crashing when it
tries to import a model.
- Bug introduced when the "convert" option removed from the model
manager.
2023-04-25 03:55:33 +01:00
31a904b903 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:28:45 +01:00
c174cab3ee [Bugfix] fixes and code cleanup to update and installation routines (#3101)
- Fix the update script to work again and fixes the ambiguity between
when a user wants to update to a tag vs updating to a branch, by making
these two operations explicitly separate.
- Remove dangling functions and arguments related to legacy checkpoint
conversion. These are no longer needed now that all legacy models are
either converted at import time, or on-the-fly in RAM.
2023-04-25 03:28:23 +01:00
fe12938c23 update to diffusers 0.15 and fix code for name changes (#3201)
- This is a port of #3184 to the main branch
2023-04-25 03:23:24 +01:00
4fa5c963a1 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:10:51 +01:00
48ce256ba2 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-25 02:49:59 +01:00
8cb2fa8600 Restore log_tokenization check 2023-04-25 04:29:17 +03:00
8f460b92f1 Make latent generation nodes use conditions instead of prompt 2023-04-25 04:21:03 +03:00
d99a08a441 Add compel node and conditioning field type 2023-04-25 03:48:44 +03:00
7555b1f876 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly (#3256)
I noticed that the current invokeai-new.py was using almost all of a CPU
core. After a bit of profileing I noticed that there were many thousands
of calls to epoll() which suggested to me that something wasn't sleeping
properly in asyncio's loop.

A bit of further investigation with Python profiling revealed that the
__dispatch_from_queue() method in FastAPIEventService
(app/api/events.py:33) was also being called thousands of times.

I believe the asyncio.sleep(0.001) in that method is too aggressive (it
means that the queue will be polled every 1ms) and that 0.1 (100ms) is
still entirely reasonable.
2023-04-24 19:35:27 +12:00
a537231f19 Merge branch 'main' into reduce-event-polling 2023-04-24 19:14:10 +12:00
8044d1b840 translationBot(ui): update translation (Turkish)
Currently translated at 11.3% (58 of 512 strings)

translationBot(ui): added translation (Turkish)

Co-authored-by: ismail ihsan bülbül <e-ben@msn.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/tr/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
2b58ce4ae4 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 75.0% (380 of 506 strings)

Co-authored-by: Patrick Tien <ivetien@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
ef605cd76c translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

Co-authored-by: Fabian Bahl <fabian98@bahl-netz.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
a84b5b168f translationBot(ui): update translation (Swedish)
Currently translated at 34.7% (176 of 506 strings)

translationBot(ui): added translation (Swedish)

Co-authored-by: figgefigge <qvintuz@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/sv/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
16f6ee04d0 translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

translationBot(ui): update translation (German)

Currently translated at 80.8% (409 of 506 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
44be057aa3 translationBot(ui): update translation (Ukrainian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (English)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Ukrainian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/en/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
422f6967b2 translationBot(ui): update translation (Ukrainian)
Currently translated at 75.8% (384 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 85.5% (433 of 506 strings)

Co-authored-by: mitien <mitien@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
4528cc8ba6 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
87e91ebc1d translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
fd00d111ea translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (504 of 504 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
b8dc9000bd translationBot(ui): update translation (German)
Currently translated at 73.4% (370 of 504 strings)

Co-authored-by: Jaulustus <jaulustus@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
58c1066765 translationBot(ui): update translation (Finnish)
Currently translated at 18.2% (92 of 504 strings)

translationBot(ui): added translation (Finnish)

Co-authored-by: Juuso V <juuso.vantola@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fi/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
37096a697b translationBot(ui): added translation (Mongolian)
Co-authored-by: Bouncyknighter <gebifirm@gmail.com>
2023-04-24 16:05:16 +10:00
17d0920186 translationBot(ui): update translation (Japanese)
Currently translated at 73.0% (368 of 504 strings)

Co-authored-by: 唐澤 克幸 <4ranci0ne@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
1e05538364 translationBot(ui): added translation (Vietnamese)
Co-authored-by: techybrain-dev <techybrain.dev@gmail.com>
2023-04-24 16:05:16 +10:00
cf28617cd6 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly 2023-04-23 21:27:02 +01:00
d0d8640711 feat(ui): add reload schema button (#3252) 2023-04-23 19:51:37 +12:00
e6158d1874 feat(ui): add reload schema button 2023-04-23 17:49:02 +10:00
2e9d1ea8a3 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL (#3250)
* if `shouldFetchImages` is passed in, UI will make an additional
request to get valid image URL when an invocation is complete
* this is necessary in order to have optional authorization for images
2023-04-23 16:00:13 +10:00
59b0153236 add to types 2023-04-23 15:59:55 +10:00
9f8ff912c4 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL 2023-04-23 15:59:55 +10:00
f0e4a2124a [Nodes UI] More Work (#3248)
- Style the Minimap
- Made the Node UI Legend Responsive
- Set Min Width for nodes on Spawn so resize doesn't snap.
- Initial Implementation of Node Search
- Added FuseJS to handle the node filtering
2023-04-23 17:51:40 +12:00
11ab5c7d56 fix(ui): Fix up arrow not working on unfiltered list 2023-04-23 15:18:35 +12:00
3f334d9e5e feat(ui): Add fusejs to NodeSearch 2023-04-23 15:14:44 +12:00
ff891b1ff2 feat(ui): Basic Node Search Component
Very buggy
2023-04-23 13:35:02 +12:00
2914ee10b0 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-22 20:21:59 +01:00
e29c2fb782 Merge branch 'more-nodes-work' of https://github.com/blessedcoolant/InvokeAI into more-nodes-work 2023-04-23 02:53:25 +12:00
b763f1809e feat(ui): Stylize Node Minimap 2023-04-23 02:52:32 +12:00
d26b44104a fix(ui): minor tidy 2023-04-23 00:45:03 +10:00
b73fd2a6d2 fix(ui): Set Min Width for Nodes 2023-04-23 00:55:43 +12:00
f258aba6d1 chore(ui): Make the Node UI Legend Responsive 2023-04-23 00:55:22 +12:00
2e70848aa0 Responsive Mobile Layout (#3207)
The first draft for a Responsive Mobile Layout for InvokeAI. Some basic
documentation to help contributors. // Notes from: @blessedcoolant

---

The whole rework needs to be done using the `mobile first` concept where
the base design will be catered to mobile and we add responsive changes
as we grow to larger screens.

**Added**

- Basic breakpoints have been added to the `theme.ts` file that indicate
at which values Chakra makes the responsive changes.
- A basic `useResolution` hook has been added that either returns
`mobile`, `tablet` or `desktop` based on the breakpoint. We can
customize this hook further to do more complex checks for us if need be.

**Syntax**

- Any Chakra component is directly capable of taking different values
for the different breakpoints set in our `theme.ts` file. These can be
passed in a few ways with the most descriptive being an object. For
example:

`flexDir={{ base: 'column', xl: 'row' }}` - This would set the `0em and
above` to be column for the flex direction but change to row
automatically when we hit `xl` and above resolutions which in our case
is `80em or 1280px`. This same format is applicable for any element in
Chakra.

`flexDir={['column', null, null, 'row', null]}` - The above syntax can
also be passed as an array to the property with each value in the array
corresponding to each breakpoint we have. Setting `null` just bypasses
it. This is a good short hand but I think we stick to the above syntax
for readability.

**Note**: I've modified a few elements here and there to give an idea on
how the responsive syntax works for reference.

---

**Problems to be solved** @SammCheese 

- Some issues you might run into are with the Resizable components.
We've decided we will get not use resizable components for smaller
resolutions. Doesn't make sense. So you'll need to make conditional
renderings around these.
- Some components that need custom layouts for different screens might
be better if ported over to `Grid` and use `gridTemplateAreas` to swap
out the design layout. I've demonstrated an example of this in a commit
I've made. I'll let you be the judge of where we might need this.
- The header will probably need to be converted to a burger menu of some
sort with the model changing being handled correctly UX wise. We'll
discuss this on discord.

---

Anyone willing to contribute to this PR can feel free to join the
discussion on discord.

https://discord.com/channels/1020123559063990373/1020839344170348605/threads/1097323866780606615
2023-04-22 22:34:30 +10:00
e973aeef0d Merge branch 'main' into responsive-ui 2023-04-22 14:31:19 +02:00
50e1ac731d fix(ui): make input/outputs renderfn callback 2023-04-22 22:25:17 +10:00
43addc1548 fix(ui): memoize everything nodes 2023-04-22 22:25:17 +10:00
4901911c1a fix(ui): improve nodes performance 2023-04-22 22:25:17 +10:00
44a653925a feat(ui): node styling, controls
- custom node controls
- fix some types
- fix badge colors via colorScheme
- style nodes
2023-04-22 22:25:17 +10:00
94a07a8da7 feat(ui): Make Nodes always spawn in center of work area 2023-04-22 22:25:17 +10:00
ad41afe65e feat(ui): Make Nodes Resizable 2023-04-22 22:25:17 +10:00
77fa7519c4 chore(ui): Cleanup Invocation Component 2023-04-22 22:25:17 +10:00
6e29148d4d delete ImageToImageContent.tsx 2023-04-22 08:43:14 +02:00
3044f3bfe5 fix(ui): adapt NodeEditor for smaller screens 2023-04-22 08:33:05 +02:00
67a8627cf6 add dev:host script 2023-04-22 08:30:09 +02:00
3fb433cb91 Merge branch 'main' of https://github.com/invoke-ai/InvokeAI into responsive-ui 2023-04-22 08:27:00 +02:00
5f498e10bd Partial migration of UI to nodes API (#3195)
* feat(ui): add axios client generator and simple example

* fix(ui): update client & nodes test code w/ new Edge type

* chore(ui): organize generated files

* chore(ui): update .eslintignore, .prettierignore

* chore(ui): update openapi.json

* feat(backend): fixes for nodes/generator

* feat(ui): generate object args for api client

* feat(ui): more nodes api prototyping

* feat(ui): nodes cancel

* chore(ui): regenerate api client

* fix(ui): disable OG web server socket connection

* fix(ui): fix scrollbar styles typing and prop

just noticed the typo, and made the types stronger.

* feat(ui): add socketio types

* feat(ui): wip nodes

- extract api client method arg types instead of manually declaring them
- update example to display images
- general tidy up

* start building out node translations from frontend state and add notes about missing features

* use reference to sampler_name

* use reference to sampler_name

* add optional apiUrl prop

* feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation

* feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node

* feat(ui): img2img implementation

* feat(ui): get intermediate images working but types are stubbed out

* chore(ui): add support for package mode

* feat(ui): add nodes mode script

* feat(ui): handle random seeds

* fix(ui): fix middleware types

* feat(ui): add rtk action type guard

* feat(ui): disable NodeAPITest

This was polluting the network/socket logs.

* feat(ui): fix parameters panel border color

This commit should be elsewhere but I don't want to break my flow

* feat(ui): make thunk types more consistent

* feat(ui): add type guards for outputs

* feat(ui): load images on socket connect

Rudimentary

* chore(ui): bump redux-toolkit

* docs(ui): update readme

* chore(ui): regenerate api client

* chore(ui): add typescript as dev dependency

I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue.

* feat(ui): begin migrating gallery to nodes

Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way.

* feat(ui): clean up & comment results slice

* fix(ui): separate thunk for initial gallery load so it properly gets index 0

* feat(ui): POST upload working

* fix(ui): restore removed type

* feat(ui): patch api generation for headers access

* chore(ui): regenerate api

* feat(ui): wip gallery migration

* feat(ui): wip gallery migration

* chore(ui): regenerate api

* feat(ui): wip refactor socket events

* feat(ui): disable panels based on app props

* feat(ui): invert logic to be disabled

* disable panels when app mounts

* feat(ui): add support to disableTabs

* docs(ui): organise and update docs

* lang(ui): add toast strings

* feat(ui): wip events, comments, and general refactoring

* feat(ui): add optional token for auth

* feat(ui): export StatusIndicator and ModelSelect for header use

* feat(ui) working on making socket URL dynamic

* feat(ui): dynamic middleware loading

* feat(ui): prep for socket jwt

* feat(ui): migrate cancelation

also updated action names to be event-like instead of declaration-like

sorry, i was scattered and this commit has a lot of unrelated stuff in it.

* fix(ui): fix img2img type

* chore(ui): regenerate api client

* feat(ui): improve InvocationCompleteEvent types

* feat(ui): increase StatusIndicator font size

* fix(ui): fix middleware order for multi-node graphs

* feat(ui): add exampleGraphs object w/ iterations example

* feat(ui): generate iterations graph

* feat(ui): update ModelSelect for nodes API

* feat(ui): add hi-res functionality for txt2img generations

* feat(ui): "subscribe" to particular nodes

feels like a dirty hack but oh well it works

* feat(ui): first steps to node editor ui

* fix(ui): disable event subscription

it is not fully baked just yet

* feat(ui): wip node editor

* feat(ui): remove extraneous field types

* feat(ui): nodes before deleting stuff

* feat(ui): cleanup nodes ui stuff

* feat(ui): hook up nodes to redux

* fix(ui): fix handle

* fix(ui): add basic node edges & connection validation

* feat(ui): add connection validation styling

* feat(ui): increase edge width

* feat(ui): it blends

* feat(ui): wip model handling and graph topology validation

* feat(ui): validation connections w/ graphlib

* docs(ui): update nodes doc

* feat(ui): wip node editor

* chore(ui): rebuild api, update types

* add redux-dynamic-middlewares as a dependency

* feat(ui): add url host transformation

* feat(ui): handle already-connected fields

* feat(ui): rewrite SqliteItemStore in sqlalchemy

* fix(ui): fix sqlalchemy dynamic model instantiation

* feat(ui, nodes): metadata wip

* feat(ui, nodes): models

* feat(ui, nodes): more metadata wip

* feat(ui): wip range/iterate

* fix(nodes): fix sqlite typing

* feat(ui): export new type for invoke component

* tests(nodes): fix test instantiation of ImageField

* feat(nodes): fix LoadImageInvocation

* feat(nodes): add `title` ui hint

* feat(nodes): make ImageField attrs optional

* feat(ui): wip nodes etc

* feat(nodes): roll back sqlalchemy

* fix(nodes): partially address feedback

* fix(backend): roll back changes to pngwriter

* feat(nodes): wip address metadata feedback

* feat(nodes): add seeded rng to RandomRange

* feat(nodes): address feedback

* feat(nodes): move GET images error handling to DiskImageStorage

* feat(nodes): move GET images error handling to DiskImageStorage

* fix(nodes): fix image output schema customization

* feat(ui): img2img/txt2img -> linear

- remove txt2img and img2img tabs
- add linear tab
- add initial image selection to linear parameters accordion

* feat(ui): tidy graph builders

* feat(ui): tidy misc

* feat(ui): improve invocation union types

* feat(ui): wip metadata viewer recall

* feat(ui): move fonts to normal deps

* feat(nodes): fix broken upload

* feat(nodes): add metadata module + tests, thumbnails

- `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service`
- Handles loading/parsing/building metadata, and creating png info objects
- added tests for MetadataModule
- Lifted thumbnail stuff to util

* fix(nodes): revert change to RandomRangeInvocation

* feat(nodes): address feedback

- make metadata a service
- rip out pydantic validation, implement metadata parsing as simple functions
- update tests
- address other minor feedback items

* fix(nodes): fix other tests

* fix(nodes): add metadata service to cli

* fix(nodes): fix latents/image field parsing

* feat(nodes): customise LatentsField schema

* feat(nodes): move metadata parsing to frontend

* fix(nodes): fix metadata test

---------

Co-authored-by: maryhipp <maryhipp@gmail.com>
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 13:10:20 +10:00
fdad62e88b chore: add ".version" and ".last_model" to gitignore (#3208)
Mistakenly closed the previous pr.
2023-04-20 18:26:27 +01:00
955c81acef Merge branch 'main' into patch-1 2023-04-20 18:26:06 +01:00
e1058f3416 update CODEOWNERS for changed team composition (#3234)
Remove @mauwii and @keturn until they are able to reengage with the
development effort. @GreggHelt2 is designated co-codeowner for the
backend.
2023-04-20 17:19:10 +01:00
edf16a253d Merge branch 'main' into patch-1 2023-04-20 14:16:10 +02:00
46f5ef4100 Merge branch 'main' into dev/codeowner-fix-main 2023-04-19 22:40:56 +01:00
b843255236 update CODEOWNERS for changed team composition 2023-04-19 17:37:48 -04:00
3a968e5072 Update NSFW.md
Outdated doc said to change the '.invokeai' file, but it's now named 'invokeai.init' afaik.
2023-04-18 21:18:32 -04:00
b164330e3c replaced remaining print statements with log.*() 2023-04-18 20:49:00 -04:00
69433c9f68 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-18 19:21:53 -04:00
bd8ffd36bf bump to diffusers 0.15.1, remove dangling module 2023-04-18 19:20:38 -04:00
fd80e84ea6 Merge branch 'main' into patch-1 2023-04-18 19:14:28 -04:00
4824237a98 Added CPU instruction for README (#3225)
Since the change itself is quite straight-forward, I'll just describe
the context. Tried using automatic installer on my laptop, kept erroring
out on line 140-something of installer.py, "ERROR: Can not perform a
'--user' install. User site-packages are not visible in this
virtualenv."
Got tired of of fighting with pip so moved on to command line install.
Worked immediately, but at the time lacked instruction for CPU, so
instead of opening any helpful hyperlinks in the readme, took a few
minutes to grab the link from installer.py - thus this pr.
2023-04-18 19:07:37 -04:00
2c9a05eb59 Added CPU instruction for README 2023-04-18 18:46:55 +03:00
ecb5bdaf7e [bug] #3218 HuggingFace API off when --no-internet set (#3219)
#3218 

Huggingface API will not be queried if --no-internet flag is set
2023-04-18 14:34:34 +12:00
2feeb1f44c fix(ui): more responsive layout work 2023-04-18 04:29:31 +12:00
554f353773 fix(ui): Fix Width and Height showing 0 as input 2023-04-18 04:28:58 +12:00
f6cdff2c5b [bug] #3218 HuggingFace API off when --no-internet set
https://github.com/invoke-ai/InvokeAI/issues/3218

Huggingface API will not be queried if --no-internet flag is set
2023-04-17 16:53:31 +02:00
aee27e94c9 fix(ui): Fix site header on really small screens 2023-04-18 01:25:53 +12:00
695893e1ac fix(ui): Improve parameters panel and preview display 2023-04-18 01:09:48 +12:00
b800a8eb2e feat(ui): responsive wip
- Fixed a bunch of padding and margin issues across the app
- Fixed the Invoke logo compressing
- Disabled the visibility of the options panel pin button in tablet and mobile views
- Refined the header menu options in mobile and tablet views
- Refined other site header elements in mobile and tablet views
- Aligned Tab Icons to center in mobile and tablet views
2023-04-18 00:50:09 +12:00
9749ef34b5 layout improvements 2023-04-17 13:30:33 +02:00
9a43362127 Revert "Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207"
This reverts commit 866024ea6c, reversing
changes made to 601cc1f92c.
2023-04-17 13:51:08 +12:00
866024ea6c Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207 2023-04-17 13:50:44 +12:00
601cc1f92c help(ui): Basic responsive updates to demonstrate
Made some basic responsive changes to demonstrate how to go about making changes.

There are a bunch of problems not addressed yet. Like dealing with the resizeable component and etc.
2023-04-17 13:50:13 +12:00
d6a9a4464d feat(ui): Add Basic useResolution Component
This component just classifies `base` and `sm` as mobile, `md` and `lg` as tablet and `xl` and `2xl` as desktop.

This is a basic hook for quicker work with resolutions. Can be modified and adjusted to our needs. All resolution related work can go into this hook.
2023-04-17 13:48:42 +12:00
dac271725a feat(ui): Add Basic Breakpoints 2023-04-17 13:26:10 +12:00
e1fbecfcf7 fix(ui): Syntax issue with the HidePreview icon 2023-04-17 12:42:06 +12:00
63d10027a4 nodes: invocation queue item - make more pydantic 2023-04-16 09:39:33 -04:00
ef0773b8a3 nodes: set default for InvocationQueueItem.invoke_all 2023-04-16 09:39:33 -04:00
3daaddf15b nodes: remove duplicate LatentsToLatentsInvocation 2023-04-16 09:39:33 -04:00
570c3fe690 nodes: ensure Graph and GraphExecutionState ids are cast to str on instantiation 2023-04-16 09:39:33 -04:00
cbd1a7263a nodes: fix typing of GraphExecutionState.id 2023-04-16 09:39:33 -04:00
7fc5fbd4ce nodes: convert InvocationQueueItem to Pydantic class 2023-04-16 09:39:33 -04:00
6f6de402ad make InvocationQueueItem serializable 2023-04-16 09:39:33 -04:00
2ec4f5af10 remove unused import to pass lint & revert package.json 2023-04-15 21:53:33 +02:00
281662a6e1 chore: add ".version" and ".last_model" to gitignore
Mistakenly closed the previous pr
2023-04-15 21:46:47 +02:00
2edd032ec7 draft mobile layout 2023-04-15 21:34:03 +02:00
50eb02f68b chore(ui): build 2023-04-15 20:45:17 +10:00
d73f3adc43 moving shouldHidePreview from gallery to ui slice. 2023-04-15 20:45:17 +10:00
116107f464 chore(ui): build 2023-04-15 20:45:17 +10:00
da44bb1707 rename setter 2023-04-15 20:45:17 +10:00
f43aed677e chore(ui): build 2023-04-15 20:45:17 +10:00
0d051aaae2 rename hidden variable to something more descriptive 2023-04-15 20:45:17 +10:00
e4e48ff995 i forgor to push the locale 2023-04-15 20:45:17 +10:00
442a6bffa4 feat: add "Hide Preview" Button 2023-04-15 20:45:17 +10:00
aab262d991 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-14 20:12:38 -04:00
47b9910b48 update to diffusers 0.15 and fix code for name changes
- This is a port of #3184 to the main branch
2023-04-14 15:35:03 -04:00
0b0e6fe448 convert remainder of print() to log.info() 2023-04-14 15:15:14 -04:00
23d65e7162 [nodes] Add subgraph library, subgraph usage in CLI, and fix subgraph execution (#3180)
* Add latent to latent (img2img equivalent)
Fix a CLI bug with multiple links per node

* Using "latents" instead of "latent"

* [nodes] In-progress implementation of graph library

* Add linking to CLI for graph nodes (still broken)

* Fix subgraph execution, fix subgraph linking in CLI

* Fix LatentsToLatents
2023-04-14 06:41:06 +00:00
024fd54d0b Fixed a Typo. (#3190) 2023-04-14 14:33:31 +12:00
c44c19e911 Fixed a Typo. 2023-04-13 17:42:34 +02:00
c132dbdefa change "ialog" to "log" 2023-04-11 18:48:20 -04:00
f3081e7013 add module-level getLogger() method 2023-04-11 12:23:13 -04:00
f904f14f9e add missing module-level methods 2023-04-11 11:10:43 -04:00
8917a6d99b add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)

This style logs everything through a single logging object and is
identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus
to logging:

  import invokeai.backend.util.logging as ialog

  ialog.debug('this is a debugging message')
  ialog.info('this is a informational message')
  ialog.log(level=logging.CRITICAL, 'get out of dodge')
  ialog.disable(level=logging.INFO)
  ialog.basicConfig(filename='/var/log/invokeai.log')

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add the additional
message decorations.

For more control, the logging module's object-oriented logging style
is also supported. The API is identical to the vanilla logging
usage. In fact, the only thing that has changed is that the
getLogger() method adds a custom formatter to the log messages.

 import logging
 from invokeai.backend.util.logging import InvokeAILogger

 logger = InvokeAILogger.getLogger(__name__)
 fh = logging.FileHandler('/var/invokeai.log')
 logger.addHandler(fh)
 logger.critical('this will be logged to both the console and the log file')
2023-04-11 10:46:38 -04:00
5a4765046e add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)
2023-04-11 09:33:28 -04:00
d923d1d66b fix(nodes): fix naming of CvInvocationConfig 2023-04-11 12:13:53 +10:00
1f2c1e14db fix(nodes): move InvocationConfig to baseinvocation.py 2023-04-11 12:13:53 +10:00
07e3a0ec15 feat(nodes): add invocation schema customisation, add model selection
- add invocation schema customisation

done via fastapi's `Config` class and `schema_extra`. when using `Config`, inherit from `InvocationConfig` to get type hints.

where it makes sense - like for all math invocations - define a `MathInvocationConfig` class and have all invocations inherit from it.

this customisation can provide any arbitrary additional data to the UI. currently it provides tags and field type hints.

this is necessary for `model` type fields, which are actually string fields. without something like this, we can't reliably differentiate  `model` fields from normal `string` fields.

can also be used for future field types.

all invocations now have tags, and all `model` fields have ui type hints.

- fix model handling for invocations

added a helper to fall back to the default model if an invalid model name is chosen. model names in graphs now work.

- fix latents progress callback

noticed this wasn't correct while working on everything else.
2023-04-11 12:13:53 +10:00
427db7c7e2 feat(nodes): fix typo in PasteImageInvocation 2023-04-10 21:33:08 +10:00
dad3a7f263 fix(nodes): sampler_name --> scheduler
the name of this was changed at some point. nodes still used the old name, so scheduler selection did nothing. simple fix.
2023-04-10 19:54:09 +10:00
5bd0bb637f fix(nodes): add missing type to ImageField 2023-04-10 19:33:15 +10:00
f05095770c Increase chunk size when computing diffusers SHAs (#3159)
When running this app first time in WSL2 environment, which is
notoriously slow when it comes to IO, computing the SHAs of the models
takes an eternity.

Computing shas for sd2.1
```
| Calculating sha256 hash of model files
| sha256 = 1e4ce085102fe6590d41ec1ab6623a18c07127e2eca3e94a34736b36b57b9c5e (49 files hashed in 510.87s)
```

I increased the chunk size to 16MB reduce the number of round trips for
loading the data. New results:

```
| Calculating sha256 hash of model files
| sha256 = 1e4ce085102fe6590d41ec1ab6623a18c07127e2eca3e94a34736b36b57b9c5e (49 files hashed in 59.89s)
```

Higher values don't seem to make an impact.
2023-04-09 22:29:43 -04:00
de189f2db6 Increase chunk size when computing SHAs 2023-04-09 21:53:59 +02:00
cee159dfa3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-09 12:08:09 -04:00
4463124bdd feat(nodes): mark ImageField properties required, add docs 2023-04-09 22:53:17 +10:00
34402cc46a feat(nodes): add list_images endpoint
- add `list_images` endpoint at `GET api/v1/images`
- extend `ImageStorageBase` with `list()` method, implemented it for `DiskImageStorage`
- add `ImageReponse` class to for image responses, which includes urls, metadata
- add `ImageMetadata` class (basically a stub at the moment)
- uploaded images now named `"{uuid}_{timestamp}.png"`
- add `models` modules. besides separating concerns more clearly, this helps to mitigate circular dependencies
- improve thumbnail handling
2023-04-09 13:48:44 +10:00
9ecca13229 Add Convert Model Endpoint 2023-04-08 18:05:21 -04:00
54d9833db0 Else. 2023-04-08 12:08:51 -04:00
5fe8cb56fc Correct response note 2023-04-08 12:08:51 -04:00
7919d81fb1 Update to address feedback 2023-04-08 12:08:51 -04:00
9d80b28a4f Begin Convert Work 2023-04-08 12:08:51 -04:00
1fcd91bcc5 Add/Update and Delete Models 2023-04-08 12:08:51 -04:00
e456e2e63a fix typo (#3147)
fix typo.

reference:
21f79e5919/invokeai/configs/INITIAL_MODELS.yaml (L21-L25)
2023-04-08 20:25:31 +12:00
ee41b99049 Update 050_INSTALLING_MODELS.md
fix typo
2023-04-08 17:02:47 +09:00
111d674e71 fix(nodes): use correct torch device in NoiseInvocation 2023-04-08 12:32:03 +10:00
8f048cfbd9 Add python-multipart, which is needed by nodes (#3141)
I'm not quite sure why this isn't being installed by fastapi's
dependencies, but running without it installed yields:

```
root@gnubert:/srv/ssdtank/docker/invokeai/git/InvokeAI# docker run --gpus all -p 9989:9090 -v /srv/ssdtank/docker/invokeai/data:/data -v /srv/ssdtank/docker/invokeai/git/InvokeAI/static/dream_web/:/static/dream_web --rm -ti -u root --entrypoint /bin/bash ghcr.io/cmsj/invokeai-nodes@sha256:426ebc414936cb67e02f5f64d963196500a77b2f485df8122a2d462797293938
root@7a77b56a5771:/usr/src# /invoke-new.py --web
Form data requires "python-multipart" to be installed.
You can install "python-multipart" with:

pip install python-multipart

╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /invoke-new.py:22 in <module>                                                                    │
│                                                                                                  │
│   19                                                                                             │
│   20                                                                                             │
│   21 if __name__ == '__main__':                                                                  │
│ ❱ 22 │   main()                                                                                  │
│   23                                                                                             │
│                                                                                                  │
│ /invoke-new.py:13 in main                                                                        │
│                                                                                                  │
│   10 │   os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))                │
│   11 │                                                                                           │
│   12 │   if '--web' in sys.argv:                                                                 │
│ ❱ 13 │   │   from invokeai.app.api_app import invoke_api                                         │
│   14 │   │   invoke_api()                                                                        │
│   15 │   else:                                                                                   │
│   16 │   │   # TODO: Parse some top-level args here.                                             │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/invokeai/app/api_app.py:17 in <module>            │
│                                                                                                  │
│    14                                                                                            │
│    15 from ..backend import Args                                                                 │
│    16 from .api.dependencies import ApiDependencies                                              │
│ ❱  17 from .api.routers import images, sessions, models                                          │
│    18 from .api.sockets import SocketIO                                                          │
│    19 from .invocations import *                                                                 │
│    20 from .invocations.baseinvocation import BaseInvocation                                     │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/invokeai/app/api/routers/images.py:45 in <module> │
│                                                                                                  │
│   42 │   │   404: {"description": "Session not found"},                                          │
│   43 │   },                                                                                      │
│   44 )                                                                                           │
│ ❱ 45 async def upload_image(file: UploadFile, request: Request):                                 │
│   46 │   if not file.content_type.startswith("image"):                                           │
│   47 │   │   return Response(status_code=415)                                                    │
│   48                                                                                             │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/routing.py:630 in decorator               │
│                                                                                                  │
│    627 │   │   ),                                                                                │
│    628 │   ) -> Callable[[DecoratedCallable], DecoratedCallable]:                                │
│    629 │   │   def decorator(func: DecoratedCallable) -> DecoratedCallable:                      │
│ ❱  630 │   │   │   self.add_api_route(                                                           │
│    631 │   │   │   │   path,                                                                     │
│    632 │   │   │   │   func,                                                                     │
│    633 │   │   │   │   response_model=response_model,                                            │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/routing.py:569 in add_api_route           │
│                                                                                                  │
│    566 │   │   current_generate_unique_id = get_value_or_default(                                │
│    567 │   │   │   generate_unique_id_function, self.generate_unique_id_function                 │
│    568 │   │   )                                                                                 │
│ ❱  569 │   │   route = route_class(                                                              │
│    570 │   │   │   self.prefix + path,                                                           │
│    571 │   │   │   endpoint=endpoint,                                                            │
│    572 │   │   │   response_model=response_model,                                                │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/routing.py:444 in __init__                │
│                                                                                                  │
│    441 │   │   │   │   0,                                                                        │
│    442 │   │   │   │   get_parameterless_sub_dependant(depends=depends, path=self.path_format),  │
│    443 │   │   │   )                                                                             │
│ ❱  444 │   │   self.body_field = get_body_field(dependant=self.dependant, name=self.unique_id)   │
│    445 │   │   self.app = request_response(self.get_route_handler())                             │
│    446 │                                                                                         │
│    447 │   def get_route_handler(self) -> Callable[[Request], Coroutine[Any, Any, Response]]:    │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/dependencies/utils.py:756 in              │
│ get_body_field                                                                                   │
│                                                                                                  │
│   753 │   │   alias="body",                                                                      │
│   754 │   │   field_info=BodyFieldInfo(**BodyFieldInfo_kwargs),                                  │
│   755 │   )                                                                                      │
│ ❱ 756 │   check_file_field(final_field)                                                          │
│   757 │   return final_field                                                                     │
│   758                                                                                            │
│                                                                                                  │
│ /usr/src/InvokeAI/lib/python3.10/site-packages/fastapi/dependencies/utils.py:111 in              │
│ check_file_field                                                                                 │
│                                                                                                  │
│   108 │   │   │   │   raise RuntimeError(multipart_incorrect_install_error) from None            │
│   109 │   │   except ImportError:                                                                │
│   110 │   │   │   logger.error(multipart_not_installed_error)                                    │
│ ❱ 111 │   │   │   raise RuntimeError(multipart_not_installed_error) from None                    │
│   112                                                                                            │
│   113                                                                                            │
│   114 def get_param_sub_dependant(                                                               │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: Form data requires "python-multipart" to be installed.
You can install "python-multipart" with:

pip install python-multipart
```
2023-04-07 19:17:37 -04:00
cd1b350dae Merge branch 'main' into bugfix/release-updater 2023-04-07 18:56:21 -04:00
8334757af9 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-07 18:55:54 -04:00
7103ac6a32 Add python-multipart, which is needed by nodes 2023-04-07 19:43:42 +01:00
f6b131e706 remove vestiges of non-functional autoimport code for legacy checkpoints (#3076)
- the functionality to automatically import and run legacy checkpoint
files in a designated folder has been removed from the backend but there
are vestiges of the code remaining in the frontend that are causing
crashes.
- This fixes the problem.

- Closes #3075
2023-04-08 02:21:23 +12:00
d1b2b99226 Merge branch 'main' into bugfix/remove-autoimport-dead-code 2023-04-07 09:59:58 -04:00
e356f2511b chore: configure stale bot 2023-04-07 20:45:08 +10:00
e5f8b22a43 add a new method to model_manager that retrieves individual pipeline components (#3120)
This PR introduces a new set of ModelManager methods that enables you to
retrieve the individual parts of a stable diffusion pipeline model,
including the vae, text_encoder, unet, tokenizer, etc.

To use:

```
from invokeai.backend import ModelManager

manager = ModelManager('/path/to/models.yaml')

# get the VAE
vae = manager.get_model_vae('stable-diffusion-1.5')

# get the unet
unet = manager.get_model_unet('stable-diffusion-1.5')

# get the tokenizer
tokenizer = manager.get_model_tokenizer('stable-diffusion-1.5')

# etc etc
feature_extractor = manager.get_model_feature_extractor('stable-diffusion-1.5')
scheduler = manager.get_model_scheduler('stable-diffusion-1.5')
text_encoder = manager.get_model_text_encoder('stable-diffusion-1.5')

# if no model provided, then defaults to the one currently in GPU, if any
vae = manager.get_model_vae()
```
2023-04-07 01:39:57 -04:00
45b84fb4bb Merge branch 'main' into bugfix/remove-autoimport-dead-code 2023-04-07 17:07:25 +12:00
f022c89249 Merge branch 'main' into feat/return-submodels 2023-04-06 22:03:31 -04:00
ab05144716 Change where !replay looks for its infile (#3129)
!fetch puts its output file into the output directory; it may be
beneficial to have !replay look in the output directory as well.
2023-04-06 22:02:06 -04:00
aeb4914e67 Merge branch 'main' into replay-file_path 2023-04-06 21:45:23 -04:00
76bcd4d44f Fix typo (#3133)
'hotdot' to 'hotdog'; the world's least important PR :)
2023-04-07 12:38:05 +12:00
50f5e1bc83 Fix typo
'hotdot' to 'hotdog'; the world's least important PR :)
2023-04-06 16:47:57 -07:00
4c339dd4b0 refactor get_submodels() into individual methods 2023-04-06 17:08:23 -04:00
bc2b9500e3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-06 15:38:46 -04:00
32857d81c5 prevent legacy CLI crash caused by removal of convert option
- Compensatory change to the CLI that prevents it from crashing
  when it tries to import a model.
- Bug introduced when the "convert" option removed from the model
  manager.
2023-04-06 15:36:05 -04:00
7268131f57 change where !replay looks for its infile
!fetch puts its output file into the output directory; it may be beneficial to have !replay look in the output directory as well.
2023-04-06 08:14:11 -04:00
85b020f76c [nodes] Add latent nodes, storage, and fix iteration bugs (#3091)
* Add latents nodes.
* Fix iteration expansion.
* Add collection generator nodes, math nodes.
* Add noise node.
* Add some graph debug commands to the CLI.
* Fix negative id linking in CLI.
* Fix a CLI bug with multiple links per node.
2023-04-06 04:06:05 +00:00
a7833cc9a9 [api] Add models router and list model API. 2023-04-05 23:59:07 -04:00
28f75d80d5 Merge branch 'main' into bugfix/release-updater 2023-04-05 18:25:33 -04:00
919294e977 fix build-container.yml (#3117)
Add permission go write packages to GITHUB_TOKEN
2023-04-06 00:25:00 +02:00
b917ffa4d7 Merge branch 'main' into bugfix/release-updater 2023-04-05 17:37:27 -04:00
d44151d6ff add a new method to model_manager that retrieves individual pipeline parts
- New method is ModelManager.get_sub_model(model_name:str,model_part:SDModelComponent)

To use:

```
from invokeai.backend import ModelManager, SDModelComponent as sdmc
manager = ModelManager('/path/to/models.yaml')
vae = manager.get_sub_model('stable-diffusion-1.5', sdmc.vae)
```
2023-04-05 17:25:42 -04:00
7640acfb1f update build-container.yml
- add packages write permission
2023-04-05 15:44:26 +02:00
aed9ecef2a feat(nodes): add thumbnail generation to DiskImageStorage 2023-04-05 08:22:23 +10:00
18cddd7972 Right link on pytorch installer for linux rocm (#3084)
Right link on pytorch installer for linux rocm
2023-04-04 17:40:42 -04:00
e6b25f4ae3 Merge branch 'main' into patch-1 2023-04-04 17:40:12 -04:00
d1c0050e65 fix(nodes): fix typo in list_sessions handler (#3109)
The typo accidentally did not affect functionality; when `query==""`, it
`search()`ed but found everything due to empty query, then paginated
results, so it worked the same as `list()`.

Still fix it
2023-04-03 21:24:48 -04:00
ecdfa136a0 fix(nodes): fix typo in list_sessions handler 2023-04-04 00:34:32 +10:00
5cd513ee63 [deps] bump compel version to fix crash on invalid (auto111) syntax (#3107)
currently if users input eg `happy (camper:0.3)` it gets parsed
incorrectly, which causes crashes if it's in the negative prompt. bump
to compel 1.0.5 fixes the parser to avoid this (note the weight is
parsed as plain text, it's not converted to proper invoke syntax)
2023-04-04 02:30:17 +12:00
ab45086546 Merge branch 'main' into deps_bump_compel 2023-04-04 02:05:40 +12:00
77ba7359f4 fix(nodes): commit changes to db 2023-04-03 19:09:49 +10:00
8cbe2e14d9 bump compel version to fix on invalid (auto111) syntax 2023-04-03 10:37:01 +02:00
f682fb8040 fix invokeai-update script
- This commit fixes the update script to work again, as well as fixing
  the ambiguity between updating to a tag and updating to a branch.
2023-04-02 11:08:12 -04:00
ee86eedf01 Right link on pytorch installer for linux rocm
Right link on pytorch installer for linux rocm
2023-03-31 17:22:00 -03:00
1f89cf3343 remove vestiges of non-functional autoimport code for legacy checkpoints
- Closes #3075
2023-03-31 04:27:03 -04:00
c4e6511a59 Add support for yet another TI embedding format (main version) (#3050)
- This PR adds support for embedding files that contain a single key
"emb_params". The only example I know of this format is the
"EasyNegative" embedding on HuggingFace, but there are certainly others.

- This PR also adds support for loading embedding files that have been
saved in safetensors format.

- It also cleans up the code so that the logic of probing for and
selecting the right format parser is clear.

- This is the same as #3045, which is on the 2.3 branch.
2023-03-31 03:57:57 -04:00
44843be4c8 Merge branch 'main' into enhance/support-another-embedding-format-main 2023-03-30 23:16:52 -04:00
b9df9e26f2 Merge branch 'main' into enhance/support-another-embedding-format-main 2023-03-30 07:51:23 -04:00
e11c1d66ab handle multiple tokens and embeddings in single file 2023-03-29 22:05:06 -04:00
cdb3616dca Merge branch 'main' into enhance/support-another-embedding-format-main 2023-03-28 21:03:06 -04:00
abe4dc8ac1 Add support for yet another textual inversion embedding format
- This PR adds support for embedding files that contain a single key
  "emb_params". The only example I know of this format is the
  "EasyNegative" embedding on HuggingFace, but there are certainly
  others.

- This PR also adds support for loading embedding files that have been
  saved in safetensors format.

- It also cleans up the code so that the logic of probing for and
  selecting the right format parser is clear.
2023-03-27 09:39:03 -04:00
788 changed files with 31370 additions and 16049 deletions

14
.github/CODEOWNERS vendored
View File

@ -1,16 +1,16 @@
# continuous integration
/.github/workflows/ @mauwii @lstein @blessedcoolant
/.github/workflows/ @lstein @blessedcoolant
# documentation
/docs/ @lstein @mauwii @tildebyte @blessedcoolant
/mkdocs.yml @lstein @mauwii @blessedcoolant
/docs/ @lstein @tildebyte @blessedcoolant
/mkdocs.yml @lstein @blessedcoolant
# nodes
/invokeai/app/ @Kyle0654 @blessedcoolant
# installation and configuration
/pyproject.toml @mauwii @lstein @blessedcoolant
/docker/ @mauwii @lstein @blessedcoolant
/pyproject.toml @lstein @blessedcoolant
/docker/ @lstein @blessedcoolant
/scripts/ @ebr @lstein
/installer/ @lstein @ebr
/invokeai/assets @lstein @ebr
@ -22,11 +22,11 @@
/invokeai/backend @blessedcoolant @psychedelicious @lstein
# generation, model management, postprocessing
/invokeai/backend @keturn @damian0815 @lstein @blessedcoolant @jpphoto
/invokeai/backend @damian0815 @lstein @blessedcoolant @jpphoto @gregghelt2
# front ends
/invokeai/frontend/CLI @lstein
/invokeai/frontend/install @lstein @ebr @mauwii
/invokeai/frontend/install @lstein @ebr
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant

19
.github/stale.yaml vendored Normal file
View File

@ -0,0 +1,19 @@
# Number of days of inactivity before an issue becomes stale
daysUntilStale: 28
# Number of days of inactivity before a stale issue is closed
daysUntilClose: 14
# Issues with these labels will never be considered stale
exemptLabels:
- pinned
- security
# Label to use when marking an issue as stale
staleLabel: stale
# Comment to post when marking an issue as stale. Set to `false` to disable
markComment: >
This issue has been automatically marked as stale because it has not had
recent activity. It will be closed if no further activity occurs. Please
update the ticket if this is still a problem on the latest release.
# Comment to post when closing a stale issue. Set to `false` to disable
closeComment: >
Due to inactivity, this issue has been automatically closed. If this is
still a problem on the latest release, please recreate the issue.

View File

@ -18,6 +18,7 @@ on:
permissions:
contents: write
packages: write
jobs:
docker:

View File

@ -2,8 +2,7 @@ name: mkdocs-material
on:
push:
branches:
- 'main'
- 'development'
- 'refs/heads/v2.3'
permissions:
contents: write
@ -12,6 +11,10 @@ jobs:
mkdocs-material:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout sources
uses: actions/checkout@v3
@ -22,11 +25,15 @@ jobs:
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install -r docs/requirements-mkdocs.txt
pip install ".[docs]"
- name: confirm buildability
run: |
@ -36,7 +43,7 @@ jobs:
--verbose
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
if: ${{ github.ref == 'refs/heads/v2.3' }}
run: |
python -m \
mkdocs gh-deploy \

View File

@ -80,12 +80,7 @@ jobs:
uses: actions/checkout@v3
- name: set test prompt to main branch validation
if: ${{ github.ref == 'refs/heads/main' }}
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> ${{ matrix.github-env }}
- name: set test prompt to Pull Request validation
if: ${{ github.ref != 'refs/heads/main' }}
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
run:echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
uses: actions/setup-python@v4
@ -105,12 +100,6 @@ jobs:
id: run-pytest
run: pytest
- name: set INVOKEAI_OUTDIR
run: >
python -c
"import os;from invokeai.backend.globals import Globals;OUTDIR=os.path.join(Globals.root,str('outputs'));print(f'INVOKEAI_OUTDIR={OUTDIR}')"
>> ${{ matrix.github-env }}
- name: run invokeai-configure
id: run-preload-models
env:
@ -129,15 +118,20 @@ jobs:
HF_HUB_OFFLINE: 1
HF_DATASETS_OFFLINE: 1
TRANSFORMERS_OFFLINE: 1
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
run: >
invokeai
--no-patchmatch
--no-nsfw_checker
--from_file ${{ env.TEST_PROMPTS }}
--precision=float32
--always_use_cpu
--outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
--from_file ${{ env.TEST_PROMPTS }}
- name: Archive results
id: archive-results
env:
INVOKEAI_OUTDIR: ${{ github.workspace }}/results
uses: actions/upload-artifact@v3
with:
name: results

4
.gitignore vendored
View File

@ -9,6 +9,8 @@ models/ldm/stable-diffusion-v1/model.ckpt
configs/models.user.yaml
config/models.user.yml
invokeai.init
.version
.last_model
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
@ -199,6 +201,8 @@ checkpoints
# If it's a Mac
.DS_Store
invokeai/frontend/web/dist/*
# Let the frontend manage its own gitignore
!invokeai/frontend/web/*

View File

@ -33,6 +33,8 @@
</div>
_**Note: The UI is not fully functional on `main`. If you need a stable UI based on `main`, use the `pre-nodes` tag while we [migrate to a new backend](https://github.com/invoke-ai/InvokeAI/discussions/3246).**_
InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products.
**Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
@ -84,7 +86,7 @@ installing lots of models.
6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generaiton models.
select a set of starting image generation models.
7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this
@ -148,6 +150,11 @@ not supported.
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2:_
```sh

View File

@ -1,10 +1,18 @@
# Invocations
Invocations represent a single operation, its inputs, and its outputs. These operations and their outputs can be chained together to generate and modify images.
Invocations represent a single operation, its inputs, and its outputs. These
operations and their outputs can be chained together to generate and modify
images.
## Creating a new invocation
To create a new invocation, either find the appropriate module file in `/ldm/invoke/app/invocations` to add your invocation to, or create a new one in that folder. All invocations in that folder will be discovered and made available to the CLI and API automatically. Invocations make use of [typing](https://docs.python.org/3/library/typing.html) and [pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration into the CLI and API.
To create a new invocation, either find the appropriate module file in
`/ldm/invoke/app/invocations` to add your invocation to, or create a new one in
that folder. All invocations in that folder will be discovered and made
available to the CLI and API automatically. Invocations make use of
[typing](https://docs.python.org/3/library/typing.html) and
[pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration
into the CLI and API.
An invocation looks like this:
@ -41,34 +49,54 @@ class UpscaleInvocation(BaseInvocation):
Each portion is important to implement correctly.
### Class definition and type
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
type: Literal['upscale'] = 'upscale'
```
All invocations must derive from `BaseInvocation`. They should have a docstring that declares what they do in a single, short line. They should also have a `type` with a type hint that's `Literal["command_name"]`, where `command_name` is what the user will type on the CLI or use in the API to create this invocation. The `command_name` must be unique. The `type` must be assigned to the value of the literal in the type hint.
All invocations must derive from `BaseInvocation`. They should have a docstring
that declares what they do in a single, short line. They should also have a
`type` with a type hint that's `Literal["command_name"]`, where `command_name`
is what the user will type on the CLI or use in the API to create this
invocation. The `command_name` must be unique. The `type` must be assigned to
the value of the literal in the type hint.
### Inputs
```py
# Inputs
image: Union[ImageField,None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2,4] = Field(default=2, description="The upscale level")
```
Inputs consist of three parts: a name, a type hint, and a `Field` with default, description, and validation information. For example:
| Part | Value | Description |
| ---- | ----- | ----------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this field to be parsed with `None` as a value, which enables linking to previous invocations. All fields should either provide a default value or allow `None` as a value, so that they can be overwritten with a linked output from another invocation.
Inputs consist of three parts: a name, a type hint, and a `Field` with default,
description, and validation information. For example:
The special type `ImageField` is also used here. All images are passed as `ImageField`, which protects them from pydantic validation errors (since images only ever come from links).
| Part | Value | Description |
| --------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| Name | `strength` | This field is referred to as `strength` |
| Type Hint | `float` | This field must be of type `float` |
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
Finally, note that for all linking, the `type` of the linked fields must match. If the `name` also matches, then the field can be **automatically linked** to a previous invocation by name and matching.
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this
field to be parsed with `None` as a value, which enables linking to previous
invocations. All fields should either provide a default value or allow `None` as
a value, so that they can be overwritten with a linked output from another
invocation.
The special type `ImageField` is also used here. All images are passed as
`ImageField`, which protects them from pydantic validation errors (since images
only ever come from links).
Finally, note that for all linking, the `type` of the linked fields must match.
If the `name` also matches, then the field can be **automatically linked** to a
previous invocation by name and matching.
### Invoke Function
```py
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
@ -88,13 +116,22 @@ Finally, note that for all linking, the `type` of the linked fields must match.
image = ImageField(image_type = image_type, image_name = image_name)
)
```
The `invoke` function is the last portion of an invocation. It is provided an `InvocationContext` which contains services to perform work as well as a `session_id` for use as needed. It should return a class with output values that derives from `BaseInvocationOutput`.
Before being called, the invocation will have all of its fields set from defaults, inputs, and finally links (overriding in that order).
The `invoke` function is the last portion of an invocation. It is provided an
`InvocationContext` which contains services to perform work as well as a
`session_id` for use as needed. It should return a class with output values that
derives from `BaseInvocationOutput`.
Assume that this invocation may be running simultaneously with other invocations, may be running on another machine, or in other interesting scenarios. If you need functionality, please provide it as a service in the `InvocationServices` class, and make sure it can be overridden.
Before being called, the invocation will have all of its fields set from
defaults, inputs, and finally links (overriding in that order).
Assume that this invocation may be running simultaneously with other
invocations, may be running on another machine, or in other interesting
scenarios. If you need functionality, please provide it as a service in the
`InvocationServices` class, and make sure it can be overridden.
### Outputs
```py
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
@ -102,4 +139,64 @@ class ImageOutput(BaseInvocationOutput):
image: ImageField = Field(default=None, description="The output image")
```
Output classes look like an invocation class without the invoke method. Prefer to use an existing output class if available, and prefer to name inputs the same as outputs when possible, to promote automatic invocation linking.
Output classes look like an invocation class without the invoke method. Prefer
to use an existing output class if available, and prefer to name inputs the same
as outputs when possible, to promote automatic invocation linking.
## Schema Generation
Invocation, output and related classes are used to generate an OpenAPI schema.
### Required Properties
The schema generation treat all properties with default values as optional. This
makes sense internally, but when when using these classes via the generated
schema, we end up with e.g. the `ImageOutput` class having its `image` property
marked as optional.
We know that this property will always be present, so the additional logic
needed to always check if the property exists adds a lot of extraneous cruft.
To fix this, we can leverage `pydantic`'s
[schema customisation](https://docs.pydantic.dev/usage/schema/#schema-customization)
to mark properties that we know will always be present as required.
Here's that `ImageOutput` class, without the needed schema customisation:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
```
The generated OpenAPI schema, and all clients/types generated from it, will have
the `type` and `image` properties marked as optional, even though we know they
will always have a value by the time we can interact with them via the API.
Here's the same class, but with the schema customisation added:
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
class Config:
schema_extra = {
'required': [
'type',
'image',
]
}
```
The resultant schema (and any API client or types generated from it) will now
have see `type` as string literal `"image"` and `image` as an `ImageField`
object.
See this `pydantic` issue for discussion on this solution:
<https://github.com/pydantic/pydantic/discussions/4577>

View File

@ -32,7 +32,7 @@ turned on and off on the command line using `--nsfw_checker` and
At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file (usually
`.invokeai` in your home directory). You can change the default at any
`invokeai.init` in your home directory). You can change the default at any
time by opening this file in a text editor and commenting or
uncommenting the line `--nsfw_checker`.

View File

@ -268,7 +268,7 @@ model is so good at inpainting, a good substitute is to use the `clipseg` text
masking option:
```bash
invoke> a fluffy cat eating a hotdot
invoke> a fluffy cat eating a hotdog
Outputs:
[1010] outputs/000025.2182095108.png: a fluffy cat eating a hotdog
invoke> a smiling dog eating a hotdog -I 000025.2182095108.png -tm cat

View File

@ -89,7 +89,7 @@ experimental versions later.
sudo apt update
sudo apt install -y software-properties-common
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt install python3.10 python3-pip python3.10-venv
sudo apt install -y python3.10 python3-pip python3.10-venv
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
```

View File

@ -50,7 +50,7 @@ subset that are currently installed are found in
|stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting |
|stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-inpainting|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-inpainting |
|analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion |
|deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate |
|d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion |

View File

@ -247,8 +247,8 @@ class InvokeAiInstance:
pip[
"install",
"--require-virtualenv",
"torch",
"torchvision",
"torch~=2.0.0",
"torchvision>=0.14.1",
"--force-reinstall",
"--find-links" if find_links is not None else None,
find_links,
@ -456,7 +456,7 @@ def get_torch_source() -> (Union[str, None],str):
optional_modules = None
if OS == "Linux":
if device == "rocm":
url = "https://download.pytorch.org/whl/rocm5.2"
url = "https://download.pytorch.org/whl/rocm5.4.2"
elif device == "cpu":
url = "https://download.pytorch.org/whl/cpu"

View File

@ -1,18 +1,22 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os
from argparse import Namespace
from ...backend import Globals
import invokeai.backend.util.logging as logger
from typing import types
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState
from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.image_storage import DiskImageStorage
from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from ..services.metadata import PngMetadataService
from .events import FastAPIEventService
@ -37,16 +41,8 @@ class ApiDependencies:
invoker: Invoker = None
@staticmethod
def initialize(config, event_handler_id: int):
Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert
# TODO: Use a logger
print(f">> Internet connectivity is {Globals.internet_available}")
def initialize(config, event_handler_id: int, logger: types.ModuleType=logger):
logger.info(f"Internet connectivity is {config.internet_available}")
events = FastAPIEventService(event_handler_id)
@ -54,23 +50,36 @@ class ApiDependencies:
os.path.join(os.path.dirname(__file__), "../../../../outputs")
)
images = DiskImageStorage(output_folder)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
metadata = PngMetadataService()
images = DiskImageStorage(f'{output_folder}/images', metadata_service=metadata)
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices(
model_manager=get_model_manager(config),
model_manager=get_model_manager(config,logger),
events=events,
latents=latents,
images=images,
metadata=metadata,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
restoration=RestorationServices(config,logger),
configuration=config,
logger=logger,
)
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services)
@staticmethod

View File

@ -45,7 +45,7 @@ class FastAPIEventService(EventServiceBase):
)
except Empty:
await asyncio.sleep(0.001)
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:

View File

@ -0,0 +1,40 @@
from typing import Optional
from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import InvokeAIMetadata
class ImageResponseMetadata(BaseModel):
"""An image's metadata. Used only in HTTP responses."""
created: int = Field(description="The creation timestamp of the image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
invokeai: Optional[InvokeAIMetadata] = Field(
description="The image's InvokeAI-specific metadata"
)
class ImageResponse(BaseModel):
"""The response type for images"""
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
image_url: str = Field(description="The url of the image")
thumbnail_url: str = Field(description="The url of the image's thumbnail")
metadata: ImageResponseMetadata = Field(description="The image's metadata")
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class SavedImage(BaseModel):
image_name: str = Field(description="The name of the saved image")
thumbnail_name: str = Field(description="The name of the saved thumbnail")
created: int = Field(description="The created timestamp of the saved image")

View File

@ -1,11 +1,20 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import io
from datetime import datetime, timezone
import json
import os
from typing import Any
import uuid
from fastapi import Path, Request, UploadFile
from fastapi import Body, HTTPException, Path, Query, Request, UploadFile
from fastapi.responses import FileResponse, Response
from fastapi.routing import APIRouter
from PIL import Image
from invokeai.app.api.models.images import (
ImageResponse,
ImageResponseMetadata,
)
from invokeai.app.services.item_storage import PaginatedResults
from ...services.image_storage import ImageType
from ..dependencies import ApiDependencies
@ -17,40 +26,123 @@ images_router = APIRouter(prefix="/v1/images", tags=["images"])
async def get_image(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
):
"""Gets a result"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, image_name)
return FileResponse(filename)
) -> FileResponse:
"""Gets an image"""
path = ApiDependencies.invoker.services.images.get_path(
image_type=image_type, image_name=image_name
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.delete("/{image_type}/{image_name}", operation_id="delete_image")
async def delete_image(
image_type: ImageType = Path(description="The type of image to delete"),
image_name: str = Path(description="The name of the image to delete"),
) -> None:
"""Deletes an image and its thumbnail"""
ApiDependencies.invoker.services.images.delete(
image_type=image_type, image_name=image_name
)
@images_router.get(
"/{thumbnail_type}/thumbnails/{thumbnail_name}", operation_id="get_thumbnail"
)
async def get_thumbnail(
thumbnail_type: ImageType = Path(description="The type of thumbnail to get"),
thumbnail_name: str = Path(description="The name of the thumbnail to get"),
) -> FileResponse | Response:
"""Gets a thumbnail"""
path = ApiDependencies.invoker.services.images.get_path(
image_type=thumbnail_type, image_name=thumbnail_name, is_thumbnail=True
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.post(
"/uploads/",
operation_id="upload_image",
responses={
201: {"description": "The image was uploaded successfully"},
404: {"description": "Session not found"},
201: {
"description": "The image was uploaded successfully",
"model": ImageResponse,
},
415: {"description": "Image upload failed"},
},
status_code=201,
)
async def upload_image(file: UploadFile, request: Request):
async def upload_image(
file: UploadFile, image_type: ImageType, request: Request, response: Response
) -> ImageResponse:
if not file.content_type.startswith("image"):
return Response(status_code=415)
raise HTTPException(status_code=415, detail="Not an image")
contents = await file.read()
try:
im = Image.open(contents)
img = Image.open(io.BytesIO(contents))
except:
# Error opening the image
return Response(status_code=415)
raise HTTPException(status_code=415, detail="Failed to read image")
filename = f"{str(int(datetime.now(timezone.utc).timestamp()))}.png"
ApiDependencies.invoker.services.images.save(ImageType.UPLOAD, filename, im)
filename = f"{uuid.uuid4()}_{str(int(datetime.now(timezone.utc).timestamp()))}.png"
return Response(
status_code=201,
headers={
"Location": request.url_for(
"get_image", image_type=ImageType.UPLOAD, image_name=filename
)
},
saved_image = ApiDependencies.invoker.services.images.save(
image_type, filename, img
)
invokeai_metadata = ApiDependencies.invoker.services.metadata.get_metadata(img)
image_url = ApiDependencies.invoker.services.images.get_uri(
image_type, saved_image.image_name
)
thumbnail_url = ApiDependencies.invoker.services.images.get_uri(
image_type, saved_image.image_name, True
)
res = ImageResponse(
image_type=image_type,
image_name=saved_image.image_name,
image_url=image_url,
thumbnail_url=thumbnail_url,
metadata=ImageResponseMetadata(
created=saved_image.created,
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
response.status_code = 201
response.headers["Location"] = image_url
return res
@images_router.get(
"/",
operation_id="list_images",
responses={200: {"model": PaginatedResults[ImageResponse]}},
)
async def list_images(
image_type: ImageType = Query(
default=ImageType.RESULT, description="The type of images to get"
),
page: int = Query(default=0, description="The page of images to get"),
per_page: int = Query(default=10, description="The number of images per page"),
) -> PaginatedResults[ImageResponse]:
"""Gets a list of images"""
result = ApiDependencies.invoker.services.images.list(image_type, page, per_page)
return result

View File

@ -0,0 +1,335 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and Kent Keirsey (https://github.com/hipsterusername)
import shutil
import os
from typing import Annotated, Any, List, Literal, Optional, Union
from fastapi.routing import APIRouter, HTTPException
from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
class VaeRepo(BaseModel):
repo_id: str = Field(description="The repo ID to use for this VAE")
path: Optional[str] = Field(description="The path to the VAE")
subfolder: Optional[str] = Field(description="The subfolder to use for this VAE")
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
config: str = Field(description="The path to the model config")
weights: str = Field(description="The path to the model weights")
vae: str = Field(description="The path to the model VAE")
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model")
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class CreateModelRequest(BaseModel):
name: str = Field(description="The name of the model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
class CreateModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
status: str = Field(description="The status of the API response")
class ConversionRequest(BaseModel):
name: str = Field(description="The name of the new model")
save_location: str = Field(description="The path to save the converted model weights")
class ConvertedModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: DiffusersModelInfo = Field(description="The converted model info")
class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList }},
)
async def list_models() -> ModelsList:
"""Gets a list of models"""
models_raw = ApiDependencies.invoker.services.model_manager.list_models()
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
@models_router.post(
"/",
operation_id="update_model",
responses={200: {"status": "success"}},
)
async def update_model(
model_request: CreateModelRequest
) -> CreateModelResponse:
""" Add Model """
model_request_info = model_request.info
info_dict = model_request_info.dict()
model_response = CreateModelResponse(name=model_request.name, info=model_request.info, status="success")
ApiDependencies.invoker.services.model_manager.add_model(
model_name=model_request.name,
model_attributes=info_dict,
clobber=True,
)
return model_response
@models_router.delete(
"/{model_name}",
operation_id="del_model",
responses={
204: {
"description": "Model deleted successfully"
},
404: {
"description": "Model not found"
}
},
)
async def delete_model(model_name: str) -> None:
"""Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names()
logger = ApiDependencies.invoker.services.logger
model_exists = model_name in model_names
# check if model exists
logger.info(f"Checking for model {model_name}...")
if model_exists:
logger.info(f"Deleting Model: {model_name}")
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
logger.info(f"Model Deleted: {model_name}")
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
else:
logger.error(f"Model not found")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
# TODO: Refactor these support functions below to live somewhere more appropriate
def get_model_info(model_name: str):
model_info = ApiDependencies.invoker.services.model_manager.model_info(
model_name=model_name
)
if not model_info:
raise HTTPException(status_code=404, detail=f"Unable to retrieve model info for '{model_name}'")
return model_info
def ckpt_validate(model_info: dict, model_name: str):
if "weights" not in model_info:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' is not a valid checkpoint model")
def get_paths(model: ConversionRequest, root: Path) -> tuple:
model_info = get_model_info(model.name)
ckpt_path = Path(model_info.weights)
config_path = Path(model_info.config)
if not ckpt_path.is_absolute():
ckpt_path = Path(root, ckpt_path)
if config_path and not config_path.is_absolute():
config_path = Path(root, config_path)
return ckpt_path, config_path
def get_diffusers_path(convert_request: ConversionRequest, model_name: str) -> Path:
if convert_request.save_location == "root":
diffusers_path = Path(global_converted_ckpts_dir(), f"{model_name}_diffusers")
elif convert_request.save_location == "custom" and convert_request.save_location is not None:
diffusers_path = Path(convert_request.save_location, f"{model_name}_diffusers")
else:
raise ValueError("Invalid save_location value")
if diffusers_path.exists():
shutil.rmtree(diffusers_path)
return diffusers_path
@models_router.post(
"/{model_to_convert}",
operation_id="convert_model",
responses={
200: {
"model_response": "Model converted successfully.",
}
},
)
async def convert_model(convert_request: ConversionRequest) -> ConvertedModelResponse:
"""Convert Model"""
opt=Args()
args = opt.parse_args()
# Set the root directory for static files and relative paths
args.root_dir = os.path.expanduser(args.root_dir or "..")
if not os.path.isabs(args.outdir):
args.outdir = os.path.join(args.root_dir, args.outdir)
# normalize the config directory relative to root
if not os.path.isabs(opt.conf):
opt.conf = os.path.normpath(os.path.join(Globals.root, opt.conf))
model_info = get_model_info(convert_request.name)
ckpt_validate(model_info, convert_request.name)
ckpt_path, original_config_file = get_paths(convert_request, Globals.root)
diffusers_path = get_diffusers_path(convert_request, convert_request.name)
ApiDependencies.invoker.services.model_manager.convert_and_import(
ckpt_path,
diffusers_path,
model_name=convert_request.name,
model_description=model_info.description,
vae=None,
original_config_file=original_config_file,
commit_to_conf=opt.conf,
)
model_info = get_model_info(convert_request.name)
convert_response = ConvertedModelResponse(name=f"{convert_request.name}_diffusers", info=model_info)
print(f">> Model Converted: {convert_request.name}")
return convert_response
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
# model_name=model_to_convert["model_name"]
# ):
# if "weights" in model_info:
# ckpt_path = Path(model_info["weights"])
# original_config_file = Path(model_info["config"])
# model_name = model_to_convert["model_name"]
# model_description = model_info["description"]
# else:
# self.socketio.emit(
# "error", {"message": "Model is not a valid checkpoint file"}
# )
# else:
# self.socketio.emit(
# "error", {"message": "Could not retrieve model info."}
# )
# if not ckpt_path.is_absolute():
# ckpt_path = Path(Globals.root, ckpt_path)
# if original_config_file and not original_config_file.is_absolute():
# original_config_file = Path(Globals.root, original_config_file)
# diffusers_path = Path(
# ckpt_path.parent.absolute(), f"{model_name}_diffusers"
# )
# if model_to_convert["save_location"] == "root":
# diffusers_path = Path(
# global_converted_ckpts_dir(), f"{model_name}_diffusers"
# )
# if (
# model_to_convert["save_location"] == "custom"
# and model_to_convert["custom_location"] is not None
# ):
# diffusers_path = Path(
# model_to_convert["custom_location"], f"{model_name}_diffusers"
# )
# if diffusers_path.exists():
# shutil.rmtree(diffusers_path)
# self.generate.model_manager.convert_and_import(
# ckpt_path,
# diffusers_path,
# model_name=model_name,
# model_description=model_description,
# vae=None,
# original_config_file=original_config_file,
# commit_to_conf=opt.conf,
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelConverted",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Model Converted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("mergeDiffusersModels")
# def merge_diffusers_models(model_merge_info: dict):
# try:
# models_to_merge = model_merge_info["models_to_merge"]
# model_ids_or_paths = [
# self.generate.model_manager.model_name_or_path(x)
# for x in models_to_merge
# ]
# merged_pipe = merge_diffusion_models(
# model_ids_or_paths,
# model_merge_info["alpha"],
# model_merge_info["interp"],
# model_merge_info["force"],
# )
# dump_path = global_models_dir() / "merged_models"
# if model_merge_info["model_merge_save_path"] is not None:
# dump_path = Path(model_merge_info["model_merge_save_path"])
# os.makedirs(dump_path, exist_ok=True)
# dump_path = dump_path / model_merge_info["merged_model_name"]
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
# merged_model_config = dict(
# model_name=model_merge_info["merged_model_name"],
# description=f'Merge of models {", ".join(models_to_merge)}',
# commit_to_conf=opt.conf,
# )
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
# "vae", None
# ):
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
# merged_model_config.update(vae=vae)
# self.generate.model_manager.import_diffuser_model(
# dump_path, **merged_model_config
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelsMerged",
# {
# "merged_models": models_to_merge,
# "merged_model_name": model_merge_info["merged_model_name"],
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:

View File

@ -2,8 +2,7 @@
from typing import Annotated, List, Optional, Union
from fastapi import Body, Path, Query
from fastapi.responses import Response
from fastapi import Body, HTTPException, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic.fields import Field
@ -51,7 +50,7 @@ async def list_sessions(
query: str = Query(default="", description="The query string to search for"),
) -> PaginatedResults[GraphExecutionState]:
"""Gets a list of sessions, optionally searching"""
if filter == "":
if query == "":
result = ApiDependencies.invoker.services.graph_execution_manager.list(
page, per_page
)
@ -76,7 +75,7 @@ async def get_session(
"""Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
else:
return session
@ -99,7 +98,7 @@ async def add_node(
"""Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.add_node(node)
@ -108,9 +107,9 @@ async def add_node(
) # TODO: can this be done automatically, or add node through an API?
return session.id
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.put(
@ -132,7 +131,7 @@ async def update_node(
"""Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.update_node(node_path, node)
@ -141,9 +140,9 @@ async def update_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.delete(
@ -162,7 +161,7 @@ async def delete_node(
"""Deletes a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.delete_node(node_path)
@ -171,9 +170,9 @@ async def delete_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.post(
@ -192,7 +191,7 @@ async def add_edge(
"""Adds an edge to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.add_edge(edge)
@ -201,9 +200,9 @@ async def add_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
# TODO: the edge being in the path here is really ugly, find a better solution
@ -226,7 +225,7 @@ async def delete_edge(
"""Deletes an edge from the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
edge = Edge(
@ -239,9 +238,9 @@ async def delete_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.put(
@ -259,14 +258,14 @@ async def invoke_session(
all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations"
),
) -> None:
) -> Response:
"""Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
if session.is_complete():
return Response(status_code=400)
raise HTTPException(status_code=400)
ApiDependencies.invoker.invoke(session, invoke_all=all)
return Response(status_code=202)
@ -281,7 +280,7 @@ async def invoke_session(
)
async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"),
) -> None:
) -> Response:
"""Invokes a session"""
ApiDependencies.invoker.cancel(session_id)
return Response(status_code=202)

View File

@ -3,6 +3,7 @@ import asyncio
from inspect import signature
import uvicorn
import invokeai.backend.util.logging as logger
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
@ -12,12 +13,11 @@ from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from pydantic.schema import schema
from ..backend import Args
from .api.dependencies import ApiDependencies
from .api.routers import images, sessions
from .api.routers import images, sessions, models
from .api.sockets import SocketIO
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.config import InvokeAIAppConfig
# Create the app
# TODO: create this all in a method so configuration/etc. can be passed in?
@ -33,30 +33,25 @@ app.add_middleware(
middleware_id=event_handler_id,
)
# Add CORS
# TODO: use configuration for this
origins = []
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
socket_io = SocketIO(app)
config = {}
# initialize config
# this is a module global
app_config = InvokeAIAppConfig()
# Add startup event to load dependencies
@app.on_event("startup")
async def startup_event():
config = Args()
config.parse_args()
app.add_middleware(
CORSMiddleware,
allow_origins=app_config.allow_origins,
allow_credentials=app_config.allow_credentials,
allow_methods=app_config.allow_methods,
allow_headers=app_config.allow_headers,
)
ApiDependencies.initialize(
config=config, event_handler_id=event_handler_id
config=app_config, event_handler_id=event_handler_id, logger=logger
)
@ -76,6 +71,8 @@ app.include_router(sessions.session_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(models.models_router, prefix="/api")
# Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow?
@ -124,7 +121,6 @@ app.openapi = custom_openapi
# Override API doc favicons
app.mount("/static", StaticFiles(directory="static/dream_web"), name="static")
@app.get("/docs", include_in_schema=False)
def overridden_swagger():
return get_swagger_ui_html(
@ -142,17 +138,16 @@ def overridden_redoc():
redoc_favicon_url="/static/favicon.ico",
)
# Must mount *after* the other routes else it borks em
app.mount("/", StaticFiles(directory="invokeai/frontend/web/dist", html=True), name="ui")
def invoke_api():
# Start our own event loop for eventing usage
# TODO: determine if there's a better way to do this
loop = asyncio.new_event_loop()
config = uvicorn.Config(app=app, host="0.0.0.0", port=9090, loop=loop)
config = uvicorn.Config(app=app, host=app_config.host, port=app_config.port, loop=loop)
# Use access_log to turn off logging
server = uvicorn.Server(config)
loop.run_until_complete(server.serve())
if __name__ == "__main__":
invoke_api()

View File

@ -2,14 +2,46 @@
from abc import ABC, abstractmethod
import argparse
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
from typing import Any, Callable, Iterable, Literal, Union, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field
import networkx as nx
import matplotlib.pyplot as plt
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation
from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState
from ..services.graph import GraphExecutionState, LibraryGraph, Edge
from ..services.invoker import Invoker
def add_field_argument(command_parser, name: str, field, default_override = None):
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
help=field.field_info.description,
)
def add_parsers(
subparsers,
commands: list[type],
@ -34,30 +66,26 @@ def add_parsers(
if name in exclude_fields:
continue
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
add_field_argument(command_parser, name, field)
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=field.default,
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=field.default,
help=field.field_info.description,
)
def add_graph_parsers(
subparsers,
graphs: list[LibraryGraph],
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
):
for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description)
if add_arguments is not None:
add_arguments(command_parser)
# Add arguments for inputs
for exposed_input in graph.exposed_inputs:
node = graph.graph.get_node(exposed_input.node_path)
field = node.__fields__[exposed_input.field]
default_override = getattr(node, exposed_input.field)
add_field_argument(command_parser, exposed_input.alias, field, default_override)
class CliContext:
@ -65,17 +93,38 @@ class CliContext:
session: GraphExecutionState
parser: argparse.ArgumentParser
defaults: dict[str, Any]
graph_nodes: dict[str, str]
nodes_added: list[str]
def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser):
self.invoker = invoker
self.session = session
self.parser = parser
self.defaults = dict()
self.graph_nodes = dict()
self.nodes_added = list()
def get_session(self):
self.session = self.invoker.services.graph_execution_manager.get(self.session.id)
return self.session
def reset(self):
self.session = self.invoker.create_execution_state()
self.graph_nodes = dict()
self.nodes_added = list()
# Leave defaults unchanged
def add_node(self, node: BaseInvocation):
self.get_session()
self.session.graph.add_node(node)
self.nodes_added.append(node.id)
self.invoker.services.graph_execution_manager.set(self.session)
def add_edge(self, edge: Edge):
self.get_session()
self.session.add_edge(edge)
self.invoker.services.graph_execution_manager.set(self.session)
class ExitCli(Exception):
"""Exception to exit the CLI"""
@ -181,7 +230,7 @@ class HistoryCommand(BaseCommand):
for i in range(min(self.count, len(history))):
entry_id = history[-1 - i]
entry = context.get_session().graph.get_node(entry_id)
print(f"{entry_id}: {get_invocation_command(entry)}")
logger.info(f"{entry_id}: {get_invocation_command(entry)}")
class SetDefaultCommand(BaseCommand):
@ -200,3 +249,55 @@ class SetDefaultCommand(BaseCommand):
del context.defaults[self.field]
else:
context.defaults[self.field] = self.value
class DrawGraphCommand(BaseCommand):
"""Debugs a graph"""
type: Literal['draw_graph'] = 'draw_graph'
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()
class DrawExecutionGraphCommand(BaseCommand):
"""Debugs an execution graph"""
type: Literal['draw_xgraph'] = 'draw_xgraph'
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.execution_graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()
class SortedHelpFormatter(argparse.HelpFormatter):
def _iter_indented_subactions(self, action):
try:
get_subactions = action._get_subactions
except AttributeError:
pass
else:
self._indent()
if isinstance(action, argparse._SubParsersAction):
for subaction in sorted(get_subactions(), key=lambda x: x.dest):
yield subaction
else:
for subaction in get_subactions():
yield subaction
self._dedent()

View File

@ -10,9 +10,11 @@ import shlex
from pathlib import Path
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
from ...backend import ModelManager, Globals
import invokeai.backend.util.logging as logger
from ...backend import ModelManager
from ..invocations.baseinvocation import BaseInvocation
from .commands import BaseCommand
from ..services.invocation_services import InvocationServices
# singleton object, class variable
completer = None
@ -130,13 +132,13 @@ class Completer(object):
readline.redisplay()
self.linebuffer = None
def set_autocompleter(model_manager: ModelManager) -> Completer:
def set_autocompleter(services: InvocationServices) -> Completer:
global completer
if completer:
return completer
completer = Completer(model_manager)
completer = Completer(services.model_manager)
readline.set_completer(completer.complete)
# pyreadline3 does not have a set_auto_history() method
@ -152,7 +154,7 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
readline.parse_and_bind("set skip-completed-text on")
readline.parse_and_bind("set show-all-if-ambiguous on")
histfile = Path(Globals.root, ".invoke_history")
histfile = Path(services.configuration.root_dir / ".invoke_history")
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)
@ -160,8 +162,8 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
pass
except OSError: # file likely corrupted
newname = f"{histfile}.old"
print(
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
logger.error(
f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
)
histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile)

View File

@ -2,32 +2,39 @@
import argparse
import os
import re
import shlex
import sys
import time
from typing import (
Union,
get_type_hints,
)
from pydantic import BaseModel
from pydantic import BaseModel, ValidationError
from pydantic.fields import Field
from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history
import invokeai.backend.util.logging as logger
from invokeai.app.services.metadata import PngMetadataService
from .services.default_graphs import create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, SortedHelpFormatter
from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState
from .services.graph import Edge, EdgeConnection, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
from .services.invoker import Invoker
from .services.processor import DefaultInvocationProcessor
from .services.sqlite import SqliteItemStorage
from .services.config import get_invokeai_config
class CliCommand(BaseModel):
command: Union[BaseCommand.get_commands() + BaseInvocation.get_invocations()] = Field(discriminator="type") # type: ignore
@ -44,7 +51,7 @@ def add_invocation_args(command_parser):
"-l",
action="append",
nargs=3,
help="A link in the format 'dest_field source_node source_field'. source_node can be relative to history (e.g. -1)",
help="A link in the format 'source_node source_field dest_field'. source_node can be relative to history (e.g. -1)",
)
command_parser.add_argument(
@ -55,9 +62,9 @@ def add_invocation_args(command_parser):
)
def get_command_parser() -> argparse.ArgumentParser:
def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
# Create invocation parser
parser = argparse.ArgumentParser()
parser = argparse.ArgumentParser(formatter_class=SortedHelpFormatter)
def exit(*args, **kwargs):
raise InvalidArgs
@ -73,20 +80,72 @@ def get_command_parser() -> argparse.ArgumentParser:
commands = BaseCommand.get_all_subclasses()
add_parsers(subparsers, commands, exclude_fields=["type"])
# Create subparsers for exposed CLI graphs
# TODO: add a way to identify these graphs
text_to_image = services.graph_library.get(default_text_to_image_graph_id)
add_graph_parsers(subparsers, [text_to_image], add_arguments=add_invocation_args)
return parser
class NodeField():
alias: str
node_path: str
field: str
field_type: type
def __init__(self, alias: str, node_path: str, field: str, field_type: type):
self.alias = alias
self.node_path = node_path
self.field = field
self.field_type = field_type
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str,NodeField]:
return {k:NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_input.node_path))
return NodeField(alias=exposed_input.alias, node_path=f'{node_id}.{exposed_input.node_path}', field=exposed_input.field, field_type=get_type_hints(node_type)[exposed_input.field])
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_output.node_path))
node_output_type = node_type.get_output_type()
return NodeField(alias=exposed_output.alias, node_path=f'{node_id}.{exposed_output.node_path}', field=exposed_output.field, field_type=get_type_hints(node_output_type)[exposed_output.field])
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the inputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_input_field(graph, e.alias, invocation.id) for e in graph.exposed_inputs}
def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the outputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type.get_output_type()), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
def generate_matching_edges(
a: BaseInvocation, b: BaseInvocation
a: BaseInvocation, b: BaseInvocation, context: CliContext
) -> list[Edge]:
"""Generates all possible edges between two invocations"""
atype = type(a)
btype = type(b)
aoutputtype = atype.get_output_type()
afields = get_type_hints(aoutputtype)
bfields = get_type_hints(btype)
afields = get_node_outputs(a, context)
bfields = get_node_inputs(b, context)
matching_fields = set(afields.keys()).intersection(bfields.keys())
@ -94,12 +153,15 @@ def generate_matching_edges(
invalid_fields = set(["type", "id"])
matching_fields = matching_fields.difference(invalid_fields)
# Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)]
edges = [
Edge(
source=EdgeConnection(node_id=a.id, field=field),
destination=EdgeConnection(node_id=b.id, field=field)
source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field),
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field)
)
for field in matching_fields
for alias in matching_fields
]
return edges
@ -119,7 +181,7 @@ def invoke_all(context: CliContext):
# Print any errors
if context.session.has_error():
for n in context.session.errors:
print(
context.invoker.services.logger.error(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
)
@ -127,21 +189,24 @@ def invoke_all(context: CliContext):
def invoke_cli():
config = Args()
config.parse_args()
model_manager = get_model_manager(config)
# this gets the basic configuration
config = get_invokeai_config()
# This initializes the autocompleter and returns it.
# Currently nothing is done with the returned Completer
# object, but the object can be used to change autocompletion
# behavior on the fly, if desired.
completer = set_autocompleter(model_manager)
# get the optional list of invocations to execute on the command line
parser = config.get_parser()
parser.add_argument('commands',nargs='*')
invocation_commands = parser.parse_args().commands
# get the optional file to read commands from.
# Simplest is to use it for STDIN
if infile := config.from_file:
sys.stdin = open(infile,"r")
model_manager = get_model_manager(config,logger=logger)
events = EventServiceBase()
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs")
)
output_folder = config.output_path
metadata = PngMetadataService()
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
@ -149,38 +214,59 @@ def invoke_cli():
services = InvocationServices(
model_manager=model_manager,
events=events,
images=DiskImageStorage(output_folder),
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images', metadata_service=metadata),
metadata=metadata,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
restoration=RestorationServices(config,logger=logger),
logger=logger,
configuration=config,
)
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser()
parser = get_command_parser(services)
re_negid = re.compile('^-[0-9]+$')
# Uncomment to print out previous sessions at startup
# print(services.session_manager.list())
context = CliContext(invoker, session, parser)
set_autocompleter(services)
while True:
command_line_args_exist = len(invocation_commands) > 0
done = False
while not done:
try:
cmd_input = input("invoke> ")
if command_line_args_exist:
cmd_input = invocation_commands.pop(0)
done = len(invocation_commands) == 0
else:
cmd_input = input("invoke> ")
except (KeyboardInterrupt, EOFError):
# Ctrl-c exits
break
try:
# Refresh the state of the session
history = list(get_graph_execution_history(context.session))
#history = list(get_graph_execution_history(context.session))
history = list(reversed(context.nodes_added))
# Split the command for piping
cmds = cmd_input.split("|")
start_id = len(history)
start_id = len(context.nodes_added)
current_id = start_id
new_invocations = list()
for cmd in cmds:
@ -196,8 +282,24 @@ def invoke_cli():
args[field_name] = field_default
# Parse invocation
args["id"] = current_id
command = CliCommand(command=args)
command: CliCommand = None # type:ignore
system_graph: LibraryGraph|None = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
for exposed_input in system_graph.exposed_inputs:
if exposed_input.alias in args:
node = invocation.graph.get_node(exposed_input.node_path)
field = exposed_input.field
setattr(node, field, args[exposed_input.alias])
command = CliCommand(command = invocation)
context.graph_nodes[invocation.id] = system_graph.id
else:
args["id"] = current_id
command = CliCommand(command=args)
if command is None:
continue
# Run any CLI commands immediately
if isinstance(command.command, BaseCommand):
@ -208,6 +310,7 @@ def invoke_cli():
command.command.run(context)
continue
# TODO: handle linking with library graphs
# Pipe previous command output (if there was a previous command)
edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id:
@ -220,16 +323,20 @@ def invoke_cli():
else context.session.graph.get_node(from_id)
)
matching_edges = generate_matching_edges(
from_node, command.command
from_node, command.command, context
)
edges.extend(matching_edges)
# Parse provided links
if "link_node" in args and args["link_node"]:
for link in args["link_node"]:
link_node = context.session.graph.get_node(link)
node_id = link
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges(
link_node, command.command
link_node, command.command, context
)
matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations]
@ -237,13 +344,20 @@ def invoke_cli():
if "link" in args and args["link"]:
for link in args["link"]:
edges = [e for e in edges if e.destination.node_id != command.command.id and e.destination.field != link[2]]
edges = [e for e in edges if e.destination.node_id != command.command.id or e.destination.field != link[2]]
node_id = link[0]
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
# TODO: handle missing input/output
node_output = get_node_outputs(context.session.graph.get_node(node_id), context)[link[1]]
node_input = get_node_inputs(command.command, context)[link[2]]
edges.append(
Edge(
source=EdgeConnection(node_id=link[1], field=link[0]),
destination=EdgeConnection(
node_id=command.command.id, field=link[2]
)
source=EdgeConnection(node_id=node_output.node_path, field=node_output.field),
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field)
)
)
@ -252,22 +366,25 @@ def invoke_cli():
current_id = current_id + 1
# Add the node to the session
context.session.add_node(command.command)
context.add_node(command.command)
for edge in edges:
print(edge)
context.session.add_edge(edge)
context.add_edge(edge)
# Execute all remaining nodes
invoke_all(context)
except InvalidArgs:
print('Invalid command, use "help" to list commands')
invoker.services.logger.warning('Invalid command, use "help" to list commands')
continue
except ValidationError:
invoker.services.logger.warning('Invalid command arguments, run "<command> --help" for summary')
except SessionError:
# Start a new session
print("Session error: creating a new session")
context.session = context.invoker.create_execution_state()
invoker.services.logger.warning("Session error: creating a new session")
context.reset()
except ExitCli:
break

View File

@ -2,7 +2,7 @@
from abc import ABC, abstractmethod
from inspect import signature
from typing import get_args, get_type_hints
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict
from pydantic import BaseModel, Field
@ -76,3 +76,56 @@ class BaseInvocation(ABC, BaseModel):
#fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
#fmt: on
# TODO: figure out a better way to provide these hints
# TODO: when we can upgrade to python 3.11, we can use the`NotRequired` type instead of `total=False`
class UIConfig(TypedDict, total=False):
type_hints: Dict[
str,
Literal[
"integer",
"float",
"boolean",
"string",
"enum",
"image",
"latents",
"model",
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
class InvocationConfig(BaseModel.Config):
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.
`tags`
- A list of strings, used to categorise invocations.
`type_hints`
- A dict of field types which override the types in the invocation definition.
- Each key should be the name of one of the invocation's fields.
- Each value should be one of the valid types:
- `integer`, `float`, `boolean`, `string`, `enum`, `image`, `latents`, `model`
```python
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"initial_image": "image",
},
},
}
```
"""
schema_extra: CustomisedSchemaExtra

View File

@ -0,0 +1,64 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional
import numpy as np
from pydantic import Field
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from .baseinvocation import (
BaseInvocation,
InvocationContext,
BaseInvocationOutput,
)
class IntCollectionOutput(BaseInvocationOutput):
"""A collection of integers"""
type: Literal["int_collection"] = "int_collection"
# Outputs
collection: list[int] = Field(default=[], description="The int collection")
class RangeInvocation(BaseInvocation):
"""Creates a range"""
type: Literal["range"] = "range"
# Inputs
start: int = Field(default=0, description="The start of the range")
stop: int = Field(default=10, description="The stop of the range")
step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(
collection=list(range(self.start, self.stop, self.step))
)
class RandomRangeInvocation(BaseInvocation):
"""Creates a collection of random numbers"""
type: Literal["random_range"] = "random_range"
# Inputs
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
size: int = Field(default=1, description="The number of values to generate")
seed: int = Field(
ge=0,
le=SEED_MAX,
description="The seed for the RNG (omit for random)",
default_factory=get_random_seed,
)
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
rng = np.random.default_rng(self.seed)
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)

View File

@ -0,0 +1,244 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
from compel import Compel
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment,
)
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
class CompelOutput(BaseInvocationOutput):
"""Compel parser output"""
#fmt: off
type: Literal["compel_output"] = "compel_output"
conditioning: ConditioningField = Field(default=None, description="Conditioning")
#fmt: on
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
type: Literal["compel"] = "compel"
prompt: str = Field(default="", description="Prompt")
model: str = Field(default="", description="Model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
def invoke(self, context: InvocationContext) -> CompelOutput:
# TODO: load without model
model = choose_model(context.services.model_manager, self.model)
pipeline = model["model"]
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
# TODO: global? input?
#use_full_precision = precision == "float32" or precision == "autocast"
#use_full_precision = False
# TODO: redo TI when separate model loding implemented
#textual_inversion_manager = TextualInversionManager(
# tokenizer=tokenizer,
# text_encoder=text_encoder,
# full_precision=use_full_precision,
#)
def load_huggingface_concepts(concepts: list[str]):
pipeline.textual_inversion_manager.load_huggingface_concepts(concepts)
# apply the concepts library to the prompt
prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
self.prompt,
lambda concepts: load_huggingface_concepts(concepts),
pipeline.textual_inversion_manager.get_all_trigger_strings(),
)
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_str
)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=pipeline.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
)
# TODO: support legacy blend?
conjunction = Compel.parse_prompt_string(prompt_str)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
# TODO: long prompt support
#if not self.truncate_long_prompts:
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, prompt),
cross_attention_control_args=options.get("cross_attention_control", None),
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.set(conditioning_name, (c, ec))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
[
get_max_token_count(tokenizer, c, truncate_if_too_long)
for c in blend.prompts
]
)
else:
return len(
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> [str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
original_fragments = []
edited_fragments = []
for f in flattened_prompt.children:
if type(f) is CrossAttentionControlSubstitute:
original_fragments += f.original
edited_fragments += f.edited
else:
original_fragments.append(f)
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")

View File

@ -5,14 +5,26 @@ from typing import Literal
import cv2 as cv
import numpy
from PIL import Image, ImageOps
from pydantic import Field
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
class CvInpaintInvocation(BaseInvocation):
class CvInvocationConfig(BaseModel):
"""Helper class to provide all OpenCV invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["cv", "image"],
},
}
class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
"""Simple inpaint using opencv."""
#fmt: off
type: Literal["cv_inpaint"] = "cv_inpaint"
@ -44,7 +56,14 @@ class CvInpaintInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_inpainted)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_inpainted, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_inpainted,
)

View File

@ -1,26 +1,44 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from functools import partial
from typing import Literal, Optional, Union
from typing import Literal, Optional, Union, get_args
import numpy as np
from torch import Tensor
from pydantic import Field
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ColorField, ImageField, ImageType
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.generator.inpaint import infill_methods
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.util import diffusers_step_callback_adapter, CanceledException
from ..util.step_callback import stable_diffusion_step_callback
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = 'patchmatch' if 'patchmatch' in get_args(INFILL_METHODS) else 'tile'
class SDImageInvocation(BaseModel):
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"model": "model",
},
},
}
SAMPLER_NAME_VALUES = Literal[
tuple(InvokeAIGenerator.schedulers())
]
# Text to image
class TextToImageInvocation(BaseInvocation):
class TextToImageInvocation(BaseInvocation, SDImageInvocation):
"""Generates an image using text2img."""
type: Literal["txt2img"] = "txt2img"
@ -29,48 +47,42 @@ class TextToImageInvocation(BaseInvocation):
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
sampler_name: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The sampler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed)
steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="lms", description="The scheduler to use" )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
# def step_callback(state: PipelineIntermediateState):
# if (context.services.queue.is_canceled(context.graph_execution_state_id)):
# raise CanceledException
# self.dispatch_progress(context, state.latents, state.step)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
# (right now uses whatever current model is set in model manager)
model= context.services.model_manager.get_model()
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Txt2Img(model).generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context),
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually
@ -86,9 +98,18 @@ class TextToImageInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, generate_output.image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(
image_type, image_name, generate_output.image, metadata
)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=generate_output.image,
)
@ -108,20 +129,17 @@ class ImageToImageInvocation(TextToImageInvocation):
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
@ -131,21 +149,27 @@ class ImageToImageInvocation(TextToImageInvocation):
self.image.image_type, self.image.image_name
)
)
mask = None
if self.fit:
image = image.resize((self.width, self.height))
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_image=image,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
@ -160,9 +184,16 @@ class ImageToImageInvocation(TextToImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)
class InpaintInvocation(ImageToImageInvocation):
@ -172,6 +203,17 @@ class InpaintInvocation(ImageToImageInvocation):
# Inputs
mask: Union[ImageField, None] = Field(description="The mask")
seam_size: int = Field(default=96, ge=1, description="The seam inpaint size (px)")
seam_blur: int = Field(default=16, ge=0, description="The seam inpaint blur radius (px)")
seam_strength: float = Field(
default=0.75, gt=0, le=1, description="The seam inpaint strength"
)
seam_steps: int = Field(default=30, ge=1, description="The number of steps to use for seam inpaint")
tile_size: int = Field(default=32, ge=1, description="The tile infill method size (px)")
infill_method: INFILL_METHODS = Field(default=DEFAULT_INFILL_METHOD, description="The method used to infill empty regions (px)")
inpaint_width: Optional[int] = Field(default=None, multiple_of=8, gt=0, description="The width of the inpaint region (px)")
inpaint_height: Optional[int] = Field(default=None, multiple_of=8, gt=0, description="The height of the inpaint region (px)")
inpaint_fill: Optional[ColorField] = Field(default=ColorField(r=127, g=127, b=127, a=255), description="The solid infill method color")
inpaint_replace: float = Field(
default=0.0,
ge=0.0,
@ -180,20 +222,17 @@ class InpaintInvocation(ImageToImageInvocation):
)
def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState
) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)):
raise CanceledException
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
@ -210,18 +249,23 @@ class InpaintInvocation(ImageToImageInvocation):
)
# Handle invalid model parameter
# TODO: figure out if this can be done via a validator that uses the model_cache
# TODO: How to get the default model name now?
model = context.services.model_manager.get_model()
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
prompt=self.prompt,
init_image=image,
mask_image=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
@ -236,7 +280,14 @@ class InpaintInvocation(ImageToImageInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, result_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)

View File

@ -1,70 +1,95 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
import io
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from ..models.image import ImageField, ImageType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
image_type: str = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
#fmt: off
# fmt: off
type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image")
#fmt: on
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {
'required': [
'type',
'image',
]
}
schema_extra = {"required": ["type", "image", "width", "height"]}
def build_image_output(
image_type: ImageType, image_name: str, image: Image.Image
) -> ImageOutput:
"""Builds an ImageOutput and its ImageField"""
image_field = ImageField(
image_name=image_name,
image_type=image_type,
)
return ImageOutput(
image=image_field,
width=image.width,
height=image.height,
)
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
#fmt: off
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
#fmt: on
# fmt: on
class Config:
schema_extra = {
'required': [
'type',
'mask',
"required": [
"type",
"mask",
]
}
# TODO: this isn't really necessary anymore
class LoadImageInvocation(BaseInvocation):
"""Load an image from a filename and provide it as output."""
#fmt: off
"""Load an image and provide it as output."""
# fmt: off
type: Literal["load_image"] = "load_image"
# Inputs
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
return ImageOutput(
image=ImageField(image_type=self.image_type, image_name=self.image_name)
image = context.services.images.get(self.image_type, self.image_name)
return build_image_output(
image_type=self.image_type,
image_name=self.image_name,
image=image,
)
@ -85,16 +110,17 @@ class ShowImageInvocation(BaseInvocation):
# TODO: how to handle failure?
return ImageOutput(
image=ImageField(
image_type=self.image.image_type, image_name=self.image.image_name
)
return build_image_output(
image_type=self.image.image_type,
image_name=self.image.image_name,
image=image,
)
class CropImageInvocation(BaseInvocation):
class CropImageInvocation(BaseInvocation, PILInvocationConfig):
"""Crops an image to a specified box. The box can be outside of the image."""
#fmt: off
# fmt: off
type: Literal["crop"] = "crop"
# Inputs
@ -103,7 +129,7 @@ class CropImageInvocation(BaseInvocation):
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
@ -119,15 +145,23 @@ class CropImageInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_crop)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_crop, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_crop,
)
class PasteImageInvocation(BaseInvocation):
class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
"""Pastes an image into another image."""
#fmt: off
# fmt: off
type: Literal["paste"] = "paste"
# Inputs
@ -136,7 +170,7 @@ class PasteImageInvocation(BaseInvocation):
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get(
@ -149,7 +183,7 @@ class PasteImageInvocation(BaseInvocation):
None
if self.mask is None
else ImageOps.invert(
services.images.get(self.mask.image_type, self.mask.image_name)
context.services.images.get(self.mask.image_type, self.mask.image_name)
)
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
@ -169,21 +203,29 @@ class PasteImageInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, new_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, new_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=new_image,
)
class MaskFromAlphaInvocation(BaseInvocation):
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
"""Extracts the alpha channel of an image as a mask."""
#fmt: off
# fmt: off
type: Literal["tomask"] = "tomask"
# Inputs
image: ImageField = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get(
@ -198,22 +240,27 @@ class MaskFromAlphaInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, image_mask)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_mask, metadata)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class BlurInvocation(BaseInvocation):
class BlurInvocation(BaseInvocation, PILInvocationConfig):
"""Blurs an image"""
#fmt: off
# fmt: off
type: Literal["blur"] = "blur"
# Inputs
image: ImageField = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -230,22 +277,28 @@ class BlurInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, blur_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, blur_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=blur_image
)
class LerpInvocation(BaseInvocation):
class LerpInvocation(BaseInvocation, PILInvocationConfig):
"""Linear interpolation of all pixels of an image"""
#fmt: off
# fmt: off
type: Literal["lerp"] = "lerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
@ -261,23 +314,29 @@ class LerpInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, lerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, lerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=lerp_image
)
class InverseLerpInvocation(BaseInvocation):
class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Inverse linear interpolation of all pixels of an image"""
#fmt: off
# fmt: off
type: Literal["ilerp"] = "ilerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -297,7 +356,12 @@ class InverseLerpInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, ilerp_image)
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, ilerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=ilerp_image
)

View File

@ -0,0 +1,233 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional, Union, get_args
import numpy as np
import math
from PIL import Image, ImageOps
from pydantic import Field
from invokeai.app.invocations.image import ImageOutput, build_image_output
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ColorField, ImageField, ImageType
from .baseinvocation import (
BaseInvocation,
InvocationContext,
)
def infill_methods() -> list[str]:
methods = [
"tile",
"solid",
]
if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch")
return methods
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = (
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
def infill_patchmatch(im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
# Skip patchmatch if patchmatch isn't available
if not PatchMatch.patchmatch_available():
return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
def get_tile_images(image: np.ndarray, width=8, height=8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False,
)
def tile_fill_missing(
im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum()
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[
rng.choice(filtered_tiles.shape[0], replace_count), :, :, :
]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
return si
class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color"""
type: Literal["infill_rgba"] = "infill_rgba"
image: Optional[ImageField] = Field(default=None, description="The image to infill")
color: Optional[ColorField] = Field(
default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image)
infilled.paste(image, (0, 0), image.split()[-1])
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, infilled, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image,
)
class InfillTileInvocation(BaseInvocation):
"""Infills transparent areas of an image with tiles of the image"""
type: Literal["infill_tile"] = "infill_tile"
image: Optional[ImageField] = Field(default=None, description="The image to infill")
tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
seed: int = Field(
ge=0,
le=SEED_MAX,
description="The seed to use for tile generation (omit for random)",
default_factory=get_random_seed,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
infilled = tile_fill_missing(
image.copy(), seed=self.seed, tile_size=self.tile_size
)
infilled.paste(image, (0, 0), image.split()[-1])
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, infilled, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image,
)
class InfillPatchMatchInvocation(BaseInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
type: Literal["infill_patchmatch"] = "infill_patchmatch"
image: Optional[ImageField] = Field(default=None, description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
if PatchMatch.patchmatch_available():
infilled = infill_patchmatch(image.copy())
else:
raise ValueError("PatchMatch is not available on this system")
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, infilled, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image,
)

View File

@ -0,0 +1,482 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
from typing import Literal, Optional, Union
import einops
from pydantic import BaseModel, Field
import torch
from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput, build_image_output
from .compel import ConditioningField
from ...backend.stable_diffusion import PipelineIntermediateState
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
type: Literal["latents_output"] = "latents_output"
# Inputs
latents: LatentsField = Field(default=None, description="The output latents")
width: int = Field(description="The width of the latents in pixels")
height: int = Field(description="The height of the latents in pixels")
#fmt: on
def build_latents_output(latents_name: str, latents: torch.Tensor):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
#fmt: off
type: Literal["noise_output"] = "noise_output"
# Inputs
noise: LatentsField = Field(default=None, description="The output noise")
width: int = Field(description="The width of the noise in pixels")
height: int = Field(description="The height of the noise in pixels")
#fmt: on
def build_noise_output(latents_name: str, latents: torch.Tensor):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
SAMPLER_NAME_VALUES = Literal[
tuple(list(SCHEDULER_MAP.keys()))
]
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
scheduler_config = model.scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
generator = torch.Generator(device=use_device).manual_seed(seed)
x = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=use_device,
generator=generator,
).to(device)
# if self.perlin > 0.0:
# perlin_noise = self.get_perlin_noise(
# width // self.downsampling_factor, height // self.downsampling_factor
# )
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed)
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(choose_torch_device())
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, noise)
return build_noise_output(latents_name=name, latents=noise)
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
type: Literal["t2l"] = "t2l"
# Inputs
# fmt: off
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="lms", description="The scheduler to use" )
model: str = Field(default="", description="The model to use (currently ignored)")
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = choose_model(model_manager, self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.scheduler
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
self.seamless,
self.seamless_axes
)
else:
configure_model_padding(model,
self.seamless,
self.seamless_axes
)
return model
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
conditioning_data = ConditioningData(
uc,
c,
self.cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(model.scheduler, eta=0.0)#ddim_eta)
return conditioning_data
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.5, description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model"
}
},
}
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
timesteps, _ = model.get_img2img_timesteps(self.steps, self.strength)
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
# Latent to image
class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
torch.cuda.empty_cache()
context.services.images.save(image_type, image_name, image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=image
)
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
type: Literal["i2l"] = "i2l"
# Inputs
image: Union[ImageField, None] = Field(description="The image to encode")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {"model": "model"},
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info["model"]
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = model.non_noised_latents_from_image(
image_tensor,
device=model._model_group.device_for(model.unet),
dtype=model.unet.dtype,
)
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, latents)
return build_latents_output(latents_name=name, latents=latents)

View File

@ -0,0 +1,100 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from pydantic import BaseModel, Field
import numpy as np
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class MathInvocationConfig(BaseModel):
"""Helper class to provide all math invocations with additional config"""
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["math"],
}
}
class IntOutput(BaseInvocationOutput):
"""An integer output"""
# fmt: off
type: Literal["int_output"] = "int_output"
a: int = Field(default=None, description="The output integer")
# fmt: on
class AddInvocation(BaseInvocation, MathInvocationConfig):
"""Adds two numbers"""
# fmt: off
type: Literal["add"] = "add"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a + self.b)
class SubtractInvocation(BaseInvocation, MathInvocationConfig):
"""Subtracts two numbers"""
# fmt: off
type: Literal["sub"] = "sub"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a - self.b)
class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
"""Multiplies two numbers"""
# fmt: off
type: Literal["mul"] = "mul"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a * self.b)
class DivideInvocation(BaseInvocation, MathInvocationConfig):
"""Divides two numbers"""
# fmt: off
type: Literal["div"] = "div"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=int(self.a / self.b))
class RandomIntInvocation(BaseInvocation):
"""Outputs a single random integer."""
# fmt: off
type: Literal["rand_int"] = "rand_int"
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=np.random.randint(self.low, self.high))

View File

@ -0,0 +1,18 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .math import IntOutput
# Pass-through parameter nodes - used by subgraphs
class ParamIntInvocation(BaseInvocation):
"""An integer parameter"""
#fmt: off
type: Literal["param_int"] = "param_int"
a: int = Field(default=0, description="The integer value")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a)

View File

@ -1,12 +1,11 @@
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image."""
@ -18,6 +17,14 @@ class RestoreFaceInvocation(BaseInvocation):
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
#fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["restoration", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -36,7 +43,14 @@ class RestoreFaceInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@ -1,14 +1,12 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union
from pydantic import Field
from ..services.image_storage import ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput
from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
class UpscaleInvocation(BaseInvocation):
@ -22,6 +20,15 @@ class UpscaleInvocation(BaseInvocation):
level: Literal[2, 4] = Field(default=2, description="The upscale level")
#fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
@ -40,7 +47,14 @@ class UpscaleInvocation(BaseInvocation):
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image=ImageField(image_type=image_type, image_name=image_name)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@ -0,0 +1,14 @@
from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
logger = model_manager.logger
if model_name and not model_manager.valid_model(model_name):
default_model_name = model_manager.default_model()
logger.warning(f"\'{model_name}\' is not a valid model name. Using default model \'{default_model_name}\' instead.")
model = model_manager.get_model()
else:
model = model_manager.get_model(model_name)
return model

View File

View File

@ -0,0 +1,3 @@
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@ -0,0 +1,39 @@
from enum import Enum
from typing import Optional, Tuple
from pydantic import BaseModel, Field
class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
def is_image_type(obj):
try:
ImageType(obj)
except ValueError:
return False
return True
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_type: ImageType = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_type", "image_name"]}
class ColorField(BaseModel):
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)

View File

@ -0,0 +1,521 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
'''Invokeai configuration system.
Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has a top-level key of "InvokeAI" and subheadings for each of the
categories returned by `invokeai --help`. The file looks like this:
[file: invokeai.yaml]
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
embedding_dir: embeddings
lora_dir: loras
autoconvert_dir: null
gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth
Models:
model: stable-diffusion-1.5
embeddings: true
Memory/Performance:
xformers_enabled: false
sequential_guidance: false
precision: float16
max_loaded_models: 4
always_use_cpu: false
free_gpu_mem: false
Features:
nsfw_checker: true
restore: true
esrgan: true
patchmatch: true
internet_available: true
log_tokenization: false
Web Server:
host: 127.0.0.1
port: 8081
allow_origins: []
allow_credentials: true
allow_methods:
- '*'
allow_headers:
- '*'
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing any
OmegaConf dictionary object initialization time:
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig(conf=omegaconf)
By default, InvokeAIAppConfig will parse the contents of `sys.argv` at
initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv:
conf = InvokeAIAppConfig(arg=['--xformers_enabled'])
It is also possible to set a value at initialization time. This value
has highest priority.
conf = InvokeAIAppConfig(xformers_enabled=True)
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<setting>", as in:
export INVOKEAI_port=8080
Order of precedence (from highest):
1) initialization options
2) command line options
3) environment variable options
4) config file options
5) pydantic defaults
Typical usage:
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.invocations.generate import TextToImageInvocation
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig()
print(conf.nsfw_checker)
# get the text2image invocation and print its step value
text2image = TextToImageInvocation()
print(text2image.steps)
Computed properties:
The InvokeAIAppConfig object has a series of properties that
resolve paths relative to the runtime root directory. They each return
a Path object:
root_path - path to InvokeAI root
output_path - path to default outputs directory
model_conf_path - path to models.yaml
conf - alias for the above
embedding_path - path to the embeddings directory
lora_path - path to the LoRA directory
In most cases, you will want to create a single InvokeAIAppConfig
object for the entire application. The get_invokeai_config() function
does this:
config = get_invokeai_config()
print(config.root)
# Subclassing
If you wish to create a similar class, please subclass the
`InvokeAISettings` class and define a Literal field named "type",
which is set to the desired top-level name. For example, to create a
"InvokeBatch" configuration, define like this:
class InvokeBatch(InvokeAISettings):
type: Literal["InvokeBatch"] = "InvokeBatch"
node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources')
cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources')
This will now read and write from the "InvokeBatch" section of the
config file, look for environment variables named INVOKEBATCH_*, and
accept the command-line arguments `--node_count` and `--cpu_count`. The
two configs are kept in separate sections of the config file:
# invokeai.yaml
InvokeBatch:
Resources:
node_count: 1
cpu_count: 8
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
...
'''
import argparse
import pydoc
import typing
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import Any, ClassVar, Dict, List, Literal, Type, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path('invokeai.yaml')
LEGACY_INIT_FILE = Path('invokeai.init')
# This global stores a singleton InvokeAIAppConfig configuration object
global_config = None
class InvokeAISettings(BaseSettings):
'''
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
'''
initconf : ClassVar[DictConfig] = None
argparse_groups : ClassVar[Dict] = {}
def parse_args(self, argv: list=sys.argv[1:]):
parser = self.get_parser()
opt, _ = parser.parse_known_args(argv)
for name in self.__fields__:
if name not in self._excluded():
setattr(self, name, getattr(opt,name))
def to_yaml(self)->str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)['type'])[0]
field_dict = dict({type:dict()})
for name,field in self.__fields__.items():
if name in cls._excluded():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self,name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value,Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
@classmethod
def add_parser_arguments(cls, parser):
if 'type' in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)['type'])[0]
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config,'env_prefix') else settings_stanza.upper()
initconf = cls.initconf.get(settings_stanza) \
if cls.initconf and settings_stanza in cls.initconf \
else OmegaConf.create()
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key,value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category","Uncategorized")
env_name = env_prefix + '_' + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
field.default = upcase_environ[env_name.upper()]
cls.add_field_argument(parser, name, field)
field.default = current_default
@classmethod
def cmd_name(self, command_field: str='type')->str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return 'Uncategorized'
@classmethod
def get_parser(cls)->ArgumentParser:
parser = PagingArgumentParser(
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self)->List[str]:
return ['type','initconf']
class Config:
env_file_encoding = 'utf-8'
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override = None):
field_type = get_type_hints(cls).get(name)
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field_type) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
elif get_origin(field_type) == list:
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs='*',
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
help=field.field_info.description,
)
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
help=field.field_info.description,
)
def _find_root()->Path:
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif (
os.environ.get("VIRTUAL_ENV")
and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists()
or
Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists()
)
):
root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
class InvokeAIAppConfig(InvokeAISettings):
'''
Generate images using Stable Diffusion. Use "invokeai" to launch
the command-line client (recommended for experts only), or
"invokeai-web" to launch the web server. Global options
can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by
setting environment variables INVOKEAI_<setting>.
'''
#fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server')
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server')
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server')
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server')
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
restore : bool = Field(default=True, description="Enable/disable face restoration code", category='Features')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_loaded_models : int = Field(default=2, gt=0, description="Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
autoconvert_dir : Path = Field(default=None, description='Path to a directory of ckpt files to be converted into diffusers and imported on startup.', category='Paths')
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
embedding_dir : Path = Field(default='embeddings', description='Path to InvokeAI textual inversion aembeddings directory', category='Paths')
gfpgan_model_dir : Path = Field(default="./models/gfpgan/GFPGANv1.4.pth", description='Path to GFPGAN models directory.', category='Paths')
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
lora_dir : Path = Field(default='loras', description='Path to InvokeAI LoRA model directory', category='Paths')
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
embeddings : bool = Field(default=True, description='Load contents of embeddings directory', category='Models')
#fmt: on
def __init__(self, conf: DictConfig = None, argv: List[str]=None, **kwargs):
'''
Initialize InvokeAIAppconfig.
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
:param **kwargs: attributes to initialize with
'''
super().__init__(**kwargs)
# Set the runtime root directory. We parse command-line switches here
# in order to pick up the --root_dir option.
self.parse_args(argv)
if conf is None:
try:
conf = OmegaConf.load(self.root_dir / INIT_FILE)
except:
pass
InvokeAISettings.initconf = conf
# parse args again in order to pick up settings in configuration file
self.parse_args(argv)
# restore initialization values
hints = get_type_hints(self)
for k in kwargs:
setattr(self,k,parse_obj_as(hints[k],kwargs[k]))
@property
def root_path(self)->Path:
'''
Path to the runtime root directory
'''
if self.root:
return Path(self.root).expanduser()
else:
return self.find_root()
@property
def root_dir(self)->Path:
'''
Alias for above.
'''
return self.root_path
def _resolve(self,partial_path:Path)->Path:
return (self.root_path / partial_path).resolve()
@property
def output_path(self)->Path:
'''
Path to defaults outputs directory.
'''
return self._resolve(self.outdir)
@property
def model_conf_path(self)->Path:
'''
Path to models configuration file.
'''
return self._resolve(self.conf_path)
@property
def legacy_conf_path(self)->Path:
'''
Path to directory of legacy configuration files (e.g. v1-inference.yaml)
'''
return self._resolve(self.legacy_conf_dir)
@property
def cache_dir(self)->Path:
'''
Path to the global cache directory for HuggingFace hub-managed models
'''
return self.models_dir / "hub"
@property
def models_dir(self)->Path:
'''
Path to the models directory
'''
return self._resolve("models")
@property
def embedding_path(self)->Path:
'''
Path to the textual inversion embeddings directory.
'''
return self._resolve(self.embedding_dir) if self.embedding_dir else None
@property
def lora_path(self)->Path:
'''
Path to the LoRA models directory.
'''
return self._resolve(self.lora_dir) if self.lora_dir else None
@property
def autoconvert_path(self)->Path:
'''
Path to the directory containing models to be imported automatically at startup.
'''
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
@property
def gfpgan_model_path(self)->Path:
'''
Path to the GFPGAN model.
'''
return self._resolve(self.gfpgan_model_dir) if self.gfpgan_model_dir else None
# the following methods support legacy calls leftover from the Globals era
@property
def full_precision(self)->bool:
"""Return true if precision set to float32"""
return self.precision=='float32'
@property
def disable_xformers(self)->bool:
"""Return true if xformers_enabled is false"""
return not self.xformers_enabled
@property
def try_patchmatch(self)->bool:
"""Return true if patchmatch true"""
return self.patchmatch
@staticmethod
def find_root()->Path:
'''
Choose the runtime root directory when not specified on command line or
init file.
'''
return _find_root()
class PagingArgumentParser(argparse.ArgumentParser):
'''
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
'''
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def get_invokeai_config(cls:Type[InvokeAISettings]=InvokeAIAppConfig,**kwargs)->InvokeAISettings:
'''
This returns a singleton InvokeAIAppConfig configuration object.
'''
global global_config
if global_config is None or type(global_config)!=cls:
global_config = cls(**kwargs)
return global_config

View File

@ -0,0 +1,64 @@
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
default_text_to_image_graph_id = '539b2af5-2b4d-4d8c-8071-e54a3255fc74'
def create_text_to_image() -> LibraryGraph:
return LibraryGraph(
id=default_text_to_image_graph_id,
name='t2i',
description='Converts text to an image',
graph=Graph(
nodes={
'width': ParamIntInvocation(id='width', a=512),
'height': ParamIntInvocation(id='height', a=512),
'seed': ParamIntInvocation(id='seed', a=-1),
'3': NoiseInvocation(id='3'),
'4': CompelInvocation(id='4'),
'5': CompelInvocation(id='5'),
'6': TextToLatentsInvocation(id='6'),
'7': LatentsToImageInvocation(id='7'),
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='6', field='noise')),
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')),
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')),
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')),
]
),
exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='positive_prompt'),
ExposedNodeInput(node_path='5', field='prompt', alias='negative_prompt'),
ExposedNodeInput(node_path='width', field='a', alias='width'),
ExposedNodeInput(node_path='height', field='a', alias='height'),
ExposedNodeInput(node_path='seed', field='a', alias='seed'),
],
exposed_outputs=[
ExposedNodeOutput(node_path='7', field='image', alias='image')
])
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
# TODO: Uncomment this when we are ready to fix this up to prevent breaking changes
graphs: list[LibraryGraph] = list()
# text_to_image = graph_library.get(default_text_to_image_graph_id)
# # TODO: Check if the graph is the same as the default one, and if not, update it
# #if text_to_image is None:
text_to_image = create_text_to_image()
graph_library.set(text_to_image)
graphs.append(text_to_image)
return graphs

View File

@ -1,10 +1,9 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, TypedDict
from typing import Any
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.util.misc import get_timestamp
ProgressImage = TypedDict(
"ProgressImage", {"dataURL": str, "width": int, "height": int}
)
class EventServiceBase:
session_event: str = "session_event"
@ -14,7 +13,8 @@ class EventServiceBase:
def dispatch(self, event_name: str, payload: Any) -> None:
pass
def __emit_session_event(self, event_name: str, payload: Dict) -> None:
def __emit_session_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch(
event_name=EventServiceBase.session_event,
payload=dict(event=event_name, data=payload),
@ -25,7 +25,8 @@ class EventServiceBase:
def emit_generator_progress(
self,
graph_execution_state_id: str,
invocation_id: str,
node: dict,
source_node_id: str,
progress_image: ProgressImage | None,
step: int,
total_steps: int,
@ -35,48 +36,60 @@ class EventServiceBase:
event_name="generator_progress",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
progress_image=progress_image,
node=node,
source_node_id=source_node_id,
progress_image=progress_image.dict() if progress_image is not None else None,
step=step,
total_steps=total_steps,
),
)
def emit_invocation_complete(
self, graph_execution_state_id: str, invocation_id: str, result: Dict
self,
graph_execution_state_id: str,
result: dict,
node: dict,
source_node_id: str,
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_complete",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
result=result,
),
)
def emit_invocation_error(
self, graph_execution_state_id: str, invocation_id: str, error: str
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
error: str,
) -> None:
"""Emitted when an invocation has completed"""
self.__emit_session_event(
event_name="invocation_error",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
error=error,
),
)
def emit_invocation_started(
self, graph_execution_state_id: str, invocation_id: str
self, graph_execution_state_id: str, node: dict, source_node_id: str
) -> None:
"""Emitted when an invocation has started"""
self.__emit_session_event(
event_name="invocation_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id,
node=node,
source_node_id=source_node_id,
),
)
@ -84,5 +97,7 @@ class EventServiceBase:
"""Emitted when a session has completed all invocations"""
self.__emit_session_event(
event_name="graph_execution_state_complete",
payload=dict(graph_execution_state_id=graph_execution_state_id),
payload=dict(
graph_execution_state_id=graph_execution_state_id,
),
)

View File

@ -2,7 +2,6 @@
import copy
import itertools
import traceback
import uuid
from types import NoneType
from typing import (
@ -17,7 +16,7 @@ from typing import (
)
import networkx as nx
from pydantic import BaseModel, validator
from pydantic import BaseModel, root_validator, validator
from pydantic.fields import Field
from ..invocations import *
@ -26,7 +25,6 @@ from ..invocations.baseinvocation import (
BaseInvocationOutput,
InvocationContext,
)
from .invocation_services import InvocationServices
class EdgeConnection(BaseModel):
@ -137,6 +135,7 @@ class GraphInvocationOutput(BaseInvocationOutput):
# TODO: Fill this out and move to invocations
class GraphInvocation(BaseInvocation):
"""Execute a graph"""
type: Literal["graph"] = "graph"
# TODO: figure out how to create a default here
@ -164,6 +163,7 @@ class IterateInvocationOutput(BaseInvocationOutput):
# TODO: Fill this out and move to invocations
class IterateInvocation(BaseInvocation):
"""Iterates over a list of items"""
type: Literal["iterate"] = "iterate"
collection: list[Any] = Field(
@ -215,7 +215,7 @@ InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()]
class Graph(BaseModel):
id: str = Field(description="The id of this graph", default_factory=uuid.uuid4)
id: str = Field(description="The id of this graph", default_factory=lambda: uuid.uuid4().__str__())
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field(
description="The nodes in this graph", default_factory=dict
@ -283,7 +283,8 @@ class Graph(BaseModel):
:raises InvalidEdgeError: the provided edge is invalid.
"""
if self._is_edge_valid(edge) and edge not in self.edges:
self._validate_edge(edge)
if edge not in self.edges:
self.edges.append(edge)
else:
raise InvalidEdgeError()
@ -354,7 +355,7 @@ class Graph(BaseModel):
return True
def _is_edge_valid(self, edge: Edge) -> bool:
def _validate_edge(self, edge: Edge):
"""Validates that a new edge doesn't create a cycle in the graph"""
# Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly)
@ -362,54 +363,53 @@ class Graph(BaseModel):
from_node = self.get_node(edge.source.node_id)
to_node = self.get_node(edge.destination.node_id)
except NodeNotFoundError:
return False
raise InvalidEdgeError("One or both nodes don't exist")
# Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
return False
raise InvalidEdgeError(f'Edge to node {edge.destination.node_id} field {edge.destination.field} already exists')
# Validate that no cycles would be created
g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g):
return False
raise InvalidEdgeError(f'Edge creates a cycle in the graph')
# Validate that the field types are compatible
if not are_connections_compatible(
from_node, edge.source.field, to_node, edge.destination.field
):
return False
raise InvalidEdgeError(f'Fields are incompatible')
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid(
edge.destination.node_id, new_input=edge.source
):
return False
raise InvalidEdgeError(f'Iterator input type does not match iterator output type')
# Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid(
edge.source.node_id, new_output=edge.destination
):
return False
raise InvalidEdgeError(f'Iterator output type does not match iterator input type')
# Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid(
edge.destination.node_id, new_input=edge.source
):
return False
raise InvalidEdgeError(f'Collector output type does not match collector input type')
# Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid(
edge.source.node_id, new_output=edge.destination
):
return False
raise InvalidEdgeError(f'Collector input type does not match collector output type')
return True
def has_node(self, node_path: str) -> bool:
"""Determines whether or not a node exists in the graph."""
@ -733,7 +733,7 @@ class Graph(BaseModel):
for sgn in (
gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)
):
sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
g = sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
# TODO: figure out if iteration nodes need to be expanded
@ -750,9 +750,7 @@ class Graph(BaseModel):
class GraphExecutionState(BaseModel):
"""Tracks the state of a graph execution"""
id: str = Field(
description="The id of the execution state", default_factory=uuid.uuid4
)
id: str = Field(description="The id of the execution state", default_factory=lambda: uuid.uuid4().__str__())
# TODO: Store a reference to the graph instead of the actual graph?
graph: Graph = Field(description="The graph being executed")
@ -794,9 +792,6 @@ class GraphExecutionState(BaseModel):
default_factory=dict,
)
# Declare all fields as required; necessary for OpenAPI schema generation build.
# Technically only fields without a `default_factory` need to be listed here.
# See: https://github.com/pydantic/pydantic/discussions/4577
class Config:
schema_extra = {
'required': [
@ -861,7 +856,8 @@ class GraphExecutionState(BaseModel):
def is_complete(self) -> bool:
"""Returns true if the graph is complete"""
return self.has_error() or all((k in self.executed for k in self.graph.nodes))
node_ids = set(self.graph.nx_graph_flat().nodes)
return self.has_error() or all((k in self.executed for k in node_ids))
def has_error(self) -> bool:
"""Returns true if the graph has any errors"""
@ -949,11 +945,11 @@ class GraphExecutionState(BaseModel):
def _iterator_graph(self) -> nx.DiGraph:
"""Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node"""
g = self.graph.nx_graph()
g = self.graph.nx_graph_flat()
collectors = (
n
for n in self.graph.nodes
if isinstance(self.graph.nodes[n], CollectInvocation)
if isinstance(self.graph.get_node(n), CollectInvocation)
)
for c in collectors:
g.remove_edges_from(list(g.in_edges(c)))
@ -965,7 +961,7 @@ class GraphExecutionState(BaseModel):
iterators = [
n
for n in nx.ancestors(g, node_id)
if isinstance(self.graph.nodes[n], IterateInvocation)
if isinstance(self.graph.get_node(n), IterateInvocation)
]
return iterators
@ -1069,9 +1065,8 @@ class GraphExecutionState(BaseModel):
n
for n in prepared_nodes
if all(
pit
nx.has_path(execution_graph, pit[0], n)
for pit in parent_iterators
if nx.has_path(execution_graph, pit[0], n)
)
),
None,
@ -1102,7 +1097,9 @@ class GraphExecutionState(BaseModel):
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
def _is_edge_valid(self, edge: Edge) -> bool:
if not self._is_edge_valid(edge):
try:
self.graph._validate_edge(edge)
except InvalidEdgeError:
return False
# Invalid if destination has already been prepared or executed
@ -1148,4 +1145,52 @@ class GraphExecutionState(BaseModel):
self.graph.delete_edge(edge)
class ExposedNodeInput(BaseModel):
node_path: str = Field(description="The node path to the node with the input")
field: str = Field(description="The field name of the input")
alias: str = Field(description="The alias of the input")
class ExposedNodeOutput(BaseModel):
node_path: str = Field(description="The node path to the node with the output")
field: str = Field(description="The field name of the output")
alias: str = Field(description="The alias of the output")
class LibraryGraph(BaseModel):
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4)
graph: Graph = Field(description="The graph")
name: str = Field(description="The name of the graph")
description: str = Field(description="The description of the graph")
exposed_inputs: list[ExposedNodeInput] = Field(description="The inputs exposed by this graph", default_factory=list)
exposed_outputs: list[ExposedNodeOutput] = Field(description="The outputs exposed by this graph", default_factory=list)
@validator('exposed_inputs', 'exposed_outputs')
def validate_exposed_aliases(cls, v):
if len(v) != len(set(i.alias for i in v)):
raise ValueError("Duplicate exposed alias")
return v
@root_validator
def validate_exposed_nodes(cls, values):
graph = values['graph']
# Validate exposed inputs
for exposed_input in values['exposed_inputs']:
if not graph.has_node(exposed_input.node_path):
raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist")
node = graph.get_node(exposed_input.node_path)
if get_input_field(node, exposed_input.field) is None:
raise ValueError(f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}")
# Validate exposed outputs
for exposed_output in values['exposed_outputs']:
if not graph.has_node(exposed_output.node_path):
raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist")
node = graph.get_node(exposed_output.node_path)
if get_output_field(node, exposed_output.field) is None:
raise ValueError(f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}")
return values
GraphInvocation.update_forward_refs()

View File

@ -1,22 +1,29 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import datetime
import os
from glob import glob
from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path
from queue import Queue
from typing import Dict
from typing import Dict, List
from PIL.Image import Image
from invokeai.backend.image_util import PngWriter
class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
import PIL.Image as PILImage
from send2trash import send2trash
from invokeai.app.api.models.images import (
ImageResponse,
ImageResponseMetadata,
SavedImage,
)
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import (
InvokeAIMetadata,
MetadataServiceBase,
build_invokeai_metadata_pnginfo,
)
from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.util.misc import get_timestamp
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class ImageStorageBase(ABC):
@ -24,40 +31,74 @@ class ImageStorageBase(ABC):
@abstractmethod
def get(self, image_type: ImageType, image_name: str) -> Image:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
"""Gets a paginated list of images."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_path(self, image_type: ImageType, image_name: str) -> str:
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the internal path to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_uri(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the external URI to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image path."""
pass
@abstractmethod
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass
@abstractmethod
def delete(self, image_type: ImageType, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
def create_name(self, context_id: str, node_id: str) -> str:
return f"{context_id}_{node_id}_{str(int(datetime.datetime.now(datetime.timezone.utc).timestamp()))}.png"
"""Creates a unique contextual image filename."""
return f"{context_id}_{node_id}_{str(get_timestamp())}.png"
class DiskImageStorage(ImageStorageBase):
"""Stores images on disk"""
__output_folder: str
__pngWriter: PngWriter
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, Image]
__max_cache_size: int
__metadata_service: MetadataServiceBase
def __init__(self, output_folder: str):
def __init__(self, output_folder: str, metadata_service: MetadataServiceBase):
self.__output_folder = output_folder
self.__pngWriter = PngWriter(output_folder)
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__metadata_service = metadata_service
Path(output_folder).mkdir(parents=True, exist_ok=True)
@ -66,6 +107,61 @@ class DiskImageStorage(ImageStorageBase):
Path(os.path.join(output_folder, image_type)).mkdir(
parents=True, exist_ok=True
)
Path(os.path.join(output_folder, image_type, "thumbnails")).mkdir(
parents=True, exist_ok=True
)
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
dir_path = os.path.join(self.__output_folder, image_type)
image_paths = glob(f"{dir_path}/*.png")
count = len(image_paths)
sorted_image_paths = sorted(
glob(f"{dir_path}/*.png"), key=os.path.getctime, reverse=True
)
page_of_image_paths = sorted_image_paths[
page * per_page : (page + 1) * per_page
]
page_of_images: List[ImageResponse] = []
for path in page_of_image_paths:
filename = os.path.basename(path)
img = PILImage.open(path)
invokeai_metadata = self.__metadata_service.get_metadata(img)
page_of_images.append(
ImageResponse(
image_type=image_type.value,
image_name=filename,
# TODO: DiskImageStorage should not be building URLs...?
image_url=self.get_uri(image_type, filename),
thumbnail_url=self.get_uri(image_type, filename, True),
# TODO: Creation of this object should happen elsewhere (?), just making it fit here so it works
metadata=ImageResponseMetadata(
created=int(os.path.getctime(path)),
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
)
page_count_trunc = int(count / per_page)
page_count_mod = count % per_page
page_count = page_count_trunc if page_count_mod == 0 else page_count_trunc + 1
return PaginatedResults[ImageResponse](
items=page_of_images,
page=page,
pages=page_count,
per_page=per_page,
total=count,
)
def get(self, image_type: ImageType, image_name: str) -> Image:
image_path = self.get_path(image_type, image_name)
@ -73,33 +169,97 @@ class DiskImageStorage(ImageStorageBase):
if cache_item:
return cache_item
image = Image.open(image_path)
image = PILImage.open(image_path)
self.__set_cache(image_path, image)
return image
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(self, image_type: ImageType, image_name: str) -> str:
path = os.path.join(self.__output_folder, image_type, image_name)
return path
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
def save(self, image_type: ImageType, image_name: str, image: Image) -> None:
image_subpath = os.path.join(image_type, image_name)
self.__pngWriter.save_image_and_prompt_to_png(
image, "", image_subpath, None
) # TODO: just pass full path to png writer
if is_thumbnail:
path = os.path.join(
self.__output_folder, image_type, "thumbnails", basename
)
else:
path = os.path.join(self.__output_folder, image_type, basename)
abspath = os.path.abspath(path)
return abspath
def get_uri(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
if is_thumbnail:
thumbnail_basename = get_thumbnail_name(basename)
uri = f"api/v1/images/{image_type.value}/thumbnails/{thumbnail_basename}"
else:
uri = f"api/v1/images/{image_type.value}/{basename}"
return uri
def validate_path(self, path: str) -> bool:
try:
os.stat(path)
return True
except Exception:
return False
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
image_path = self.get_path(image_type, image_name)
# TODO: Reading the image and then saving it strips the metadata...
if metadata:
pnginfo = build_invokeai_metadata_pnginfo(metadata=metadata)
image.save(image_path, "PNG", pnginfo=pnginfo)
else:
image.save(image_path) # this saved image has an empty info
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, is_thumbnail=True)
thumbnail_image = make_thumbnail(image)
thumbnail_image.save(thumbnail_path)
self.__set_cache(image_path, image)
self.__set_cache(thumbnail_path, thumbnail_image)
return SavedImage(
image_name=image_name,
thumbnail_name=thumbnail_name,
created=int(os.path.getctime(image_path)),
)
def delete(self, image_type: ImageType, image_name: str) -> None:
image_path = self.get_path(image_type, image_name)
if os.path.exists(image_path):
os.remove(image_path)
basename = os.path.basename(image_name)
image_path = self.get_path(image_type, basename)
if os.path.exists(image_path):
send2trash(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
def __get_cache(self, image_name: str) -> Image:
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, True)
if os.path.exists(thumbnail_path):
send2trash(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
def __get_cache(self, image_name: str) -> Image | None:
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: str, image: Image):
@ -110,4 +270,5 @@ class DiskImageStorage(ImageStorageBase):
) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size:
cache_id = self.__cache_ids.get()
del self.__cache[cache_id]
if cache_id in self.__cache:
del self.__cache[cache_id]

View File

@ -1,30 +1,17 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from abc import ABC, abstractmethod
from queue import Queue
import time
from pydantic import BaseModel, Field
# TODO: make this serializable
class InvocationQueueItem:
# session_id: str
graph_execution_state_id: str
invocation_id: str
invoke_all: bool
timestamp: float
def __init__(
self,
# session_id: str,
graph_execution_state_id: str,
invocation_id: str,
invoke_all: bool = False,
):
# self.session_id = session_id
self.graph_execution_state_id = graph_execution_state_id
self.invocation_id = invocation_id
self.invoke_all = invoke_all
self.timestamp = time.time()
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
invocation_id: str = Field(description="The ID of the node being invoked")
invoke_all: bool = Field(default=False)
timestamp: float = Field(default_factory=time.time)
class InvocationQueueABC(ABC):

View File

@ -1,22 +1,31 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import types
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.backend import ModelManager
from .events import EventServiceBase
from .latent_storage import LatentsStorageBase
from .image_storage import ImageStorageBase
from .restoration_services import RestorationServices
from .invocation_queue import InvocationQueueABC
from .item_storage import ItemStorageABC
from .config import InvokeAISettings
class InvocationServices:
"""Services that can be used by invocations"""
events: EventServiceBase
latents: LatentsStorageBase
images: ImageStorageBase
metadata: MetadataServiceBase
queue: InvocationQueueABC
model_manager: ModelManager
restoration: RestorationServices
configuration: InvokeAISettings
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_library: ItemStorageABC["LibraryGraph"]
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
processor: "InvocationProcessorABC"
@ -24,16 +33,26 @@ class InvocationServices:
self,
model_manager: ModelManager,
events: EventServiceBase,
logger: types.ModuleType,
latents: LatentsStorageBase,
images: ImageStorageBase,
metadata: MetadataServiceBase,
queue: InvocationQueueABC,
graph_library: ItemStorageABC["LibraryGraph"],
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: RestorationServices,
configuration: InvokeAISettings=None,
):
self.model_manager = model_manager
self.events = events
self.logger = logger
self.latents = latents
self.images = images
self.metadata = metadata
self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager
self.processor = processor
self.restoration = restoration
self.configuration = configuration

View File

@ -33,7 +33,6 @@ class Invoker:
self.services.graph_execution_manager.set(graph_execution_state)
# Queue the invocation
print(f"queueing item {invocation.id}")
self.services.queue.put(
InvocationQueueItem(
# session_id = session.id,
@ -50,7 +49,7 @@ class Invoker:
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state)
return new_state
def cancel(self, graph_execution_state_id: str) -> None:
"""Cancels the given execution state"""
self.services.queue.cancel(graph_execution_state_id)
@ -72,18 +71,12 @@ class Invoker:
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
def stop(self) -> None:
"""Stops the invoker. A new invoker will have to be created to execute further."""
# First stop all services
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
self.services.queue.put(None)

View File

@ -0,0 +1,93 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import os
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict
import torch
class LatentsStorageBase(ABC):
"""Responsible for storing and retrieving latents."""
@abstractmethod
def get(self, name: str) -> torch.Tensor:
pass
@abstractmethod
def set(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
def delete(self, name: str) -> None:
pass
class ForwardCacheLatentsStorage(LatentsStorageBase):
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
__cache: Dict[str, torch.Tensor]
__cache_ids: Queue
__max_cache_size: int
__underlying_storage: LatentsStorageBase
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
self.__underlying_storage = underlying_storage
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = max_cache_size
def get(self, name: str) -> torch.Tensor:
cache_item = self.__get_cache(name)
if cache_item is not None:
return cache_item
latent = self.__underlying_storage.get(name)
self.__set_cache(name, latent)
return latent
def set(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.set(name, data)
self.__set_cache(name, data)
def delete(self, name: str) -> None:
self.__underlying_storage.delete(name)
if name in self.__cache:
del self.__cache[name]
def __get_cache(self, name: str) -> torch.Tensor|None:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
if not name in self.__cache:
self.__cache[name] = data
self.__cache_ids.put(name)
if self.__cache_ids.qsize() > self.__max_cache_size:
self.__cache.pop(self.__cache_ids.get())
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: str
def __init__(self, output_folder: str):
self.__output_folder = output_folder
Path(output_folder).mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def set(self, name: str, data: torch.Tensor) -> None:
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
os.remove(latent_path)
def get_path(self, name: str) -> str:
return os.path.join(self.__output_folder, name)

View File

@ -0,0 +1,105 @@
import json
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, TypedDict
from PIL import Image, PngImagePlugin
from pydantic import BaseModel
from invokeai.app.models.image import ImageType, is_image_type
class MetadataImageField(TypedDict):
"""Pydantic-less ImageField, used for metadata parsing."""
image_type: ImageType
image_name: str
class MetadataLatentsField(TypedDict):
"""Pydantic-less LatentsField, used for metadata parsing."""
latents_name: str
class MetadataColorField(TypedDict):
"""Pydantic-less ColorField, used for metadata parsing"""
r: int
g: int
b: int
a: int
# TODO: This is a placeholder for `InvocationsUnion` pending resolution of circular imports
NodeMetadata = Dict[
str, None | str | int | float | bool | MetadataImageField | MetadataLatentsField | MetadataColorField
]
class InvokeAIMetadata(TypedDict, total=False):
"""InvokeAI-specific metadata format."""
session_id: Optional[str]
node: Optional[NodeMetadata]
def build_invokeai_metadata_pnginfo(
metadata: InvokeAIMetadata | None,
) -> PngImagePlugin.PngInfo:
"""Builds a PngInfo object with key `"invokeai"` and value `metadata`"""
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai", json.dumps(metadata))
return pnginfo
class MetadataServiceBase(ABC):
@abstractmethod
def get_metadata(self, image: Image.Image) -> InvokeAIMetadata | None:
"""Gets the InvokeAI metadata from a PIL Image, skipping invalid values"""
pass
@abstractmethod
def build_metadata(
self, session_id: str, node: BaseModel
) -> InvokeAIMetadata | None:
"""Builds an InvokeAIMetadata object"""
pass
class PngMetadataService(MetadataServiceBase):
"""Handles loading and building metadata for images."""
# TODO: Use `InvocationsUnion` to **validate** metadata as representing a fully-functioning node
def _load_metadata(self, image: Image.Image) -> dict | None:
"""Loads a specific info entry from a PIL Image."""
try:
info = image.info.get("invokeai")
if type(info) is not str:
return None
loaded_metadata = json.loads(info)
if type(loaded_metadata) is not dict:
return None
if len(loaded_metadata.items()) == 0:
return None
return loaded_metadata
except:
return None
def get_metadata(self, image: Image.Image) -> dict | None:
"""Retrieves an image's metadata as a dict"""
loaded_metadata = self._load_metadata(image)
return loaded_metadata
def build_metadata(self, session_id: str, node: BaseModel) -> InvokeAIMetadata:
metadata = InvokeAIMetadata(session_id=session_id, node=node.dict())
return metadata

View File

@ -2,26 +2,25 @@ import os
import sys
import torch
from argparse import Namespace
from invokeai.backend import Args
from omegaconf import OmegaConf
from pathlib import Path
from typing import types
import invokeai.version
from .config import InvokeAISettings
from ...backend import ModelManager
from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals
# TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config: Args) -> ModelManager:
if not config.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file):
report_model_error(
config, FileNotFoundError(f"The file {config_file} could not be found.")
)
def get_model_manager(config: InvokeAISettings, logger: types.ModuleType) -> ModelManager:
model_config = config.model_conf_path
if not model_config.exists():
report_model_error(
config, FileNotFoundError(f"The file {model_config} could not be found."), logger
)
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}")
logger.info(f'InvokeAI runtime directory is "{config.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
@ -31,20 +30,7 @@ def get_model_manager(config: Args) -> ModelManager:
import diffusers
diffusers.logging.set_verbosity_error()
# normalize the config directory relative to root
if not os.path.isabs(config.conf):
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
if config.embeddings:
if not os.path.isabs(config.embedding_path):
embedding_path = os.path.normpath(
os.path.join(Globals.root, config.embedding_path)
)
else:
embedding_path = config.embedding_path
else:
embedding_path = None
embedding_path = config.embedding_path
# migrate legacy models
ModelManager.migrate_models()
@ -57,37 +43,36 @@ def get_model_manager(config: Args) -> ModelManager:
else choose_precision(device)
model_manager = ModelManager(
OmegaConf.load(config.conf),
OmegaConf.load(config.model_conf_path),
precision=precision,
device_type=device,
max_loaded_models=config.max_loaded_models,
embedding_path = Path(embedding_path),
embedding_path = embedding_path,
logger = logger,
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e)
report_model_error(config, e, logger)
except (IOError, KeyError) as e:
print(f"{e}. Aborting.")
logger.error(f"{e}. Aborting.")
sys.exit(-1)
# try to autoconvert new models
# autoimport new .ckpt files
if path := config.autoconvert:
model_manager.autoconvert_weights(
conf_path=config.conf,
weights_directory=path,
if config.autoconvert_path:
model_manager.heuristic_import(
config.autoconvert_path,
)
return model_manager
def report_model_error(opt: Namespace, e: Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
print(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"')
logger.error(
"This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
print(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
logger.warning(
"Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
response = input(
@ -96,13 +81,12 @@ def report_model_error(opt: Namespace, e: Exception):
if response.startswith(("n", "N")):
return
print("invokeai-configure is launching....\n")
logger.info("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
previous_config = sys.argv
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config.to_dict())

View File

@ -1,17 +1,22 @@
import time
import traceback
from threading import Event, Thread
from threading import Event, Thread, BoundedSemaphore
from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem
from .invoker import InvocationProcessorABC, Invoker
from ..util.util import CanceledException
from ..models.exceptions import CanceledException
import invokeai.backend.util.logging as logger
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
__stop_event: Event
__invoker: Invoker
__threadLimit: BoundedSemaphore
def start(self, invoker) -> None:
# if we do want multithreading at some point, we could make this configurable
self.__threadLimit = BoundedSemaphore(1)
self.__invoker = invoker
self.__stop_event = Event()
self.__invoker_thread = Thread(
@ -20,7 +25,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
kwargs=dict(stop_event=self.__stop_event),
)
self.__invoker_thread.daemon = (
True # TODO: probably better to just not use threads?
True # TODO: make async and do not use threads
)
self.__invoker_thread.start()
@ -29,9 +34,16 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
def __process(self, stop_event: Event):
try:
self.__threadLimit.acquire()
while not stop_event.is_set():
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
try:
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
except Exception as e:
logger.debug("Exception while getting from queue: %s" % e)
if not queue_item: # Probably stopping
# do not hammer the queue
time.sleep(0.5)
continue
graph_execution_state = (
@ -43,10 +55,14 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item.invocation_id
)
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
# Send starting event
self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id
)
# Invoke
@ -75,7 +91,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(),
)
@ -99,12 +116,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send error event
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id,
node=invocation.dict(),
source_node_id=source_node_id,
error=error,
)
pass
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(
graph_execution_state.id
@ -114,11 +132,22 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Queue any further commands if invoking all
is_complete = graph_execution_state.is_complete()
if queue_item.invoke_all and not is_complete:
self.__invoker.invoke(graph_execution_state, invoke_all=True)
try:
self.__invoker.invoke(graph_execution_state, invoke_all=True)
except Exception as e:
logger.error("Error while invoking: %s" % e)
self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
error=traceback.format_exc()
)
elif is_complete:
self.__invoker.services.events.emit_graph_execution_complete(
graph_execution_state.id
)
except KeyboardInterrupt:
... # Log something?
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
finally:
self.__threadLimit.release()

View File

@ -1,6 +1,7 @@
import sys
import traceback
import torch
from typing import types
from ...backend.restoration import Restoration
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
@ -10,7 +11,7 @@ from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
class RestorationServices:
'''Face restoration and upscaling'''
def __init__(self,args):
def __init__(self,args,logger:types.ModuleType):
try:
gfpgan, codeformer, esrgan = None, None, None
if args.restore or args.esrgan:
@ -20,20 +21,22 @@ class RestorationServices:
args.gfpgan_model_path
)
else:
print(">> Face restoration disabled")
logger.info("Face restoration disabled")
if args.esrgan:
esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
else:
print(">> Upscaling disabled")
logger.info("Upscaling disabled")
else:
print(">> Face restoration and upscaling disabled")
logger.info("Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
self.device = torch.device(choose_torch_device())
self.gfpgan = gfpgan
self.codeformer = codeformer
self.esrgan = esrgan
self.logger = logger
self.logger.info('Face restoration initialized')
# note that this one method does gfpgan and codepath reconstruction, as well as
# esrgan upscaling
@ -58,15 +61,15 @@ class RestorationServices:
if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan":
if self.gfpgan is None:
print(
">> GFPGAN not found. Face restoration is disabled."
self.logger.info(
"GFPGAN not found. Face restoration is disabled."
)
else:
image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer":
if self.codeformer is None:
print(
">> CodeFormer not found. Face restoration is disabled."
self.logger.info(
"CodeFormer not found. Face restoration is disabled."
)
else:
cf_device = (
@ -80,7 +83,7 @@ class RestorationServices:
fidelity=codeformer_fidelity,
)
else:
print(">> Face Restoration is disabled.")
self.logger.info("Face Restoration is disabled.")
if upscale is not None:
if self.esrgan is not None:
if len(upscale) < 2:
@ -93,10 +96,10 @@ class RestorationServices:
denoise_str=upscale_denoise_str,
)
else:
print(">> ESRGAN is disabled. Image not upscaled.")
self.logger.info("ESRGAN is disabled. Image not upscaled.")
except Exception as e:
print(
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
self.logger.info(
f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
)
if image_callback is not None:

View File

@ -59,6 +59,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
f"""INSERT OR REPLACE INTO {self._table_name} (item) VALUES (?);""",
(item.json(),),
)
self._conn.commit()
finally:
self._lock.release()
self._on_changed(item)
@ -84,6 +85,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
self._cursor.execute(
f"""DELETE FROM {self._table_name} WHERE id = ?;""", (str(id),)
)
self._conn.commit()
finally:
self._lock.release()
self._on_deleted(id)

View File

13
invokeai/app/util/misc.py Normal file
View File

@ -0,0 +1,13 @@
import datetime
import numpy as np
def get_timestamp():
return int(datetime.datetime.now(datetime.timezone.utc).timestamp())
SEED_MAX = np.iinfo(np.int32).max
def get_random_seed():
return np.random.randint(0, SEED_MAX)

View File

@ -0,0 +1,55 @@
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.models.exceptions import CanceledException
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
def stable_diffusion_step_callback(
context: InvocationContext,
intermediate_state: PipelineIntermediateState,
node: dict,
source_node_id: str,
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be. Use
# that estimate if it is available.
if intermediate_state.predicted_original is not None:
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
# TODO: This does not seem to be needed any more?
# # txt2img provides a Tensor in the step_callback
# # img2img provides a PipelineIntermediateState
# if isinstance(sample, PipelineIntermediateState):
# # this was an img2img
# print('img2img')
# latents = sample.latents
# step = sample.step
# else:
# print('txt2img')
# latents = sample
# step = intermediate_state.step
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
graph_execution_state_id=context.graph_execution_state_id,
node=node,
source_node_id=source_node_id,
progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
step=intermediate_state.step,
total_steps=node["steps"],
)

View File

@ -0,0 +1,15 @@
import os
from PIL import Image
def get_thumbnail_name(image_name: str) -> str:
"""Formats given an image name, returns the appropriate thumbnail image name"""
thumbnail_name = os.path.splitext(image_name)[0] + ".webp"
return thumbnail_name
def make_thumbnail(image: Image.Image, size: int = 256) -> Image.Image:
"""Makes a thumbnail from a PIL Image"""
thumbnail = image.copy()
thumbnail.thumbnail(size=(size, size))
return thumbnail

View File

@ -1,42 +0,0 @@
import torch
from PIL import Image
from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState
class CanceledException(Exception):
pass
def fast_latents_step_callback(sample: torch.Tensor, step: int, steps: int, id: str, context: InvocationContext, ):
# TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress(
context.graph_execution_state_id,
id,
{
"width": width,
"height": height,
"dataURL": dataURL
},
step,
steps,
)
def diffusers_step_callback_adapter(*cb_args, **kwargs):
"""
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
This adapter grabs the needed data and passes it along to the callback function.
"""
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return fast_latents_step_callback(progress_state.latents, progress_state.step, **kwargs)
else:
return fast_latents_step_callback(*cb_args, **kwargs)

View File

@ -1,7 +1,6 @@
"""
Initialization file for invokeai.backend
"""
from .generate import Generate
from .generator import (
InvokeAIGeneratorBasicParams,
InvokeAIGenerator,
@ -10,7 +9,5 @@ from .generator import (
Img2Img,
Inpaint
)
from .model_management import ModelManager
from .model_management import ModelManager, SDModelComponent
from .safety_checker import SafetyChecker
from .args import Args
from .globals import Globals

File diff suppressed because it is too large Load Diff

View File

@ -19,10 +19,10 @@ import warnings
from argparse import Namespace
from pathlib import Path
from shutil import get_terminal_size
from typing import get_type_hints
from urllib import request
import npyscreen
import torch
import transformers
from diffusers import AutoencoderKL
from huggingface_hub import HfFolder
@ -38,34 +38,40 @@ from transformers import (
import invokeai.configs as configs
from ...frontend.install.model_install import addModelsForm, process_and_execute
from ...frontend.install.widgets import (
from invokeai.frontend.install.model_install import addModelsForm, process_and_execute
from invokeai.frontend.install.widgets import (
CenteredButtonPress,
IntTitleSlider,
set_min_terminal_size,
)
from ..args import PRECISION_CHOICES, Args
from ..globals import Globals, global_cache_dir, global_config_dir, global_config_file
from .model_install_backend import (
from invokeai.backend.config.legacy_arg_parsing import legacy_parser
from invokeai.backend.config.model_install_backend import (
default_dataset,
download_from_hf,
hf_download_with_resume,
recommended_datasets,
)
from invokeai.app.services.config import (
get_invokeai_config,
InvokeAIAppConfig,
)
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
# --------------------------globals-----------------------
config = get_invokeai_config()
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
Default_config_file = Path(global_config_dir()) / "models.yaml"
SD_Configs = Path(global_config_dir()) / "stable-diffusion"
Default_config_file = config.model_conf_path
SD_Configs = config.legacy_conf_path
Datasets = OmegaConf.load(Dataset_path)
@ -73,17 +79,12 @@ Datasets = OmegaConf.load(Dataset_path)
MIN_COLS = 135
MIN_LINES = 45
PRECISION_CHOICES = ['auto','float16','float32','autocast']
INIT_FILE_PREAMBLE = """# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running invokeai-configure again.
# Place frequently-used startup commands here, one or more per line.
# Examples:
# --outdir=D:\data\images
# --no-nsfw_checker
# --web --host=0.0.0.0
# --steps=20
# -Ak_euler_a -C10.0
"""
@ -96,14 +97,13 @@ If you installed manually from source or with 'pip install': activate the virtua
then run one of the following commands to start InvokeAI.
Web UI:
invokeai --web # (connect to http://localhost:9090)
invokeai --web --host 0.0.0.0 # (connect to http://your-lan-ip:9090 from another computer on the local network)
invokeai-web
Command-line interface:
Command-line client:
invokeai
If you installed using an installation script, run:
{Globals.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
{config.root}/invoke.{"bat" if sys.platform == "win32" else "sh"}
Add the '--help' argument to see all of the command-line switches available for use.
"""
@ -216,11 +216,11 @@ def download_realesrgan():
wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth"
model_dest = os.path.join(
Globals.root, "models/realesrgan/realesr-general-x4v3.pth"
config.root, "models/realesrgan/realesr-general-x4v3.pth"
)
wdn_model_dest = os.path.join(
Globals.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
config.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
)
download_with_progress_bar(model_url, model_dest, "RealESRGAN")
@ -243,7 +243,7 @@ def download_gfpgan():
"./models/gfpgan/weights/parsing_parsenet.pth",
],
):
model_url, model_dest = model[0], os.path.join(Globals.root, model[1])
model_url, model_dest = model[0], os.path.join(config.root, model[1])
download_with_progress_bar(model_url, model_dest, "GFPGAN weights")
@ -253,7 +253,7 @@ def download_codeformer():
model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
)
model_dest = os.path.join(Globals.root, "models/codeformer/codeformer.pth")
model_dest = os.path.join(config.root, "models/codeformer/codeformer.pth")
download_with_progress_bar(model_url, model_dest, "CodeFormer")
@ -295,7 +295,7 @@ def download_vaes():
# first the diffusers version
repo_id = "stabilityai/sd-vae-ft-mse"
args = dict(
cache_dir=global_cache_dir("hub"),
cache_dir=config.cache_dir,
)
if not AutoencoderKL.from_pretrained(repo_id, **args):
raise Exception(f"download of {repo_id} failed")
@ -306,7 +306,7 @@ def download_vaes():
if not hf_download_with_resume(
repo_id=repo_id,
model_name=model_name,
model_dir=str(Globals.root / Model_dir / Weights_dir),
model_dir=str(config.root / Model_dir / Weights_dir),
):
raise Exception(f"download of {model_name} failed")
except Exception as e:
@ -321,8 +321,7 @@ def get_root(root: str = None) -> str:
elif os.environ.get("INVOKEAI_ROOT"):
return os.environ.get("INVOKEAI_ROOT")
else:
return Globals.root
return config.root
# -------------------------------------
class editOptsForm(npyscreen.FormMultiPage):
@ -332,7 +331,7 @@ class editOptsForm(npyscreen.FormMultiPage):
def create(self):
program_opts = self.parentApp.program_opts
old_opts = self.parentApp.invokeai_opts
first_time = not (Globals.root / Globals.initfile).exists()
first_time = not (config.root / 'invokeai.yaml').exists()
access_token = HfFolder.get_token()
window_width, window_height = get_terminal_size()
for i in [
@ -366,7 +365,7 @@ class editOptsForm(npyscreen.FormMultiPage):
self.outdir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="(<tab> autocompletes, ctrl-N advances):",
value=old_opts.outdir or str(default_output_dir()),
value=str(old_opts.outdir) or str(default_output_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
@ -381,17 +380,17 @@ class editOptsForm(npyscreen.FormMultiPage):
editable=False,
color="CONTROL",
)
self.safety_checker = self.add_widget_intelligent(
self.nsfw_checker = self.add_widget_intelligent(
npyscreen.Checkbox,
name="NSFW checker",
value=old_opts.safety_checker,
value=old_opts.nsfw_checker,
relx=5,
scroll_exit=True,
)
self.nextrely += 1
for i in [
"If you have an account at HuggingFace you may paste your access token here",
'to allow InvokeAI to download styles & subjects from the "Concept Library".',
"If you have an account at HuggingFace you may optionally paste your access token here",
'to allow InvokeAI to download restricted styles & subjects from the "Concept Library".',
"See https://huggingface.co/settings/tokens",
]:
self.add_widget_intelligent(
@ -435,17 +434,10 @@ class editOptsForm(npyscreen.FormMultiPage):
relx=5,
scroll_exit=True,
)
self.xformers = self.add_widget_intelligent(
self.xformers_enabled = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Enable xformers support if available",
value=old_opts.xformers,
relx=5,
scroll_exit=True,
)
self.ckpt_convert = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Load legacy checkpoint models into memory as diffusers models",
value=old_opts.ckpt_convert,
value=old_opts.xformers_enabled,
relx=5,
scroll_exit=True,
)
@ -480,19 +472,30 @@ class editOptsForm(npyscreen.FormMultiPage):
self.nextrely += 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Directory containing embedding/textual inversion files:",
value="Directories containing textual inversion and LoRA models (<tab> autocompletes, ctrl-N advances):",
editable=False,
color="CONTROL",
)
self.embedding_path = self.add_widget_intelligent(
self.embedding_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name="(<tab> autocompletes, ctrl-N advances):",
name=" Textual Inversion Embeddings:",
value=str(default_embedding_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=40,
begin_entry_at=32,
scroll_exit=True,
)
self.lora_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name=" LoRA and LyCORIS:",
value=str(default_lora_dir()),
select_dir=True,
must_exist=False,
use_two_lines=False,
labelColor="GOOD",
begin_entry_at=32,
scroll_exit=True,
)
self.nextrely += 1
@ -559,9 +562,9 @@ class editOptsForm(npyscreen.FormMultiPage):
bad_fields.append(
f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory."
)
if not Path(opt.embedding_path).parent.exists():
if not Path(opt.embedding_dir).parent.exists():
bad_fields.append(
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_path).parent)} is an existing directory."
f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory."
)
if len(bad_fields) > 0:
message = "The following problems were detected and must be corrected:\n"
@ -576,20 +579,23 @@ class editOptsForm(npyscreen.FormMultiPage):
new_opts = Namespace()
for attr in [
"outdir",
"safety_checker",
"free_gpu_mem",
"max_loaded_models",
"xformers",
"always_use_cpu",
"embedding_path",
"ckpt_convert",
"outdir",
"nsfw_checker",
"free_gpu_mem",
"max_loaded_models",
"xformers_enabled",
"always_use_cpu",
"embedding_dir",
"lora_dir",
]:
setattr(new_opts, attr, getattr(self, attr).value)
new_opts.hf_token = self.hf_token.value
new_opts.license_acceptance = self.license_acceptance.value
new_opts.precision = PRECISION_CHOICES[self.precision.value[0]]
# widget library workaround to make max_loaded_models an int rather than a float
new_opts.max_loaded_models = int(new_opts.max_loaded_models)
return new_opts
@ -628,15 +634,14 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
def default_startup_options(init_file: Path) -> Namespace:
opts = Args().parse_args([])
opts = InvokeAIAppConfig(argv=[])
outdir = Path(opts.outdir)
if not outdir.is_absolute():
opts.outdir = str(Globals.root / opts.outdir)
opts.outdir = str(config.root / opts.outdir)
if not init_file.exists():
opts.safety_checker = True
opts.nsfw_checker = True
return opts
def default_user_selections(program_opts: Namespace) -> Namespace:
return Namespace(
starter_models=default_dataset()
@ -690,70 +695,61 @@ def run_console_ui(
# -------------------------------------
def write_opts(opts: Namespace, init_file: Path):
"""
Update the invokeai.init file with values from opts Namespace
Update the invokeai.yaml file with values from current settings.
"""
# touch file if it doesn't exist
if not init_file.exists():
with open(init_file, "w") as f:
f.write(INIT_FILE_PREAMBLE)
# We want to write in the changed arguments without clobbering
# any other initialization values the user has entered. There is
# no good way to do this because of the one-way nature of
# argparse: i.e. --outdir could be --outdir, --out, or -o
# initfile needs to be replaced with a fully structured format
# such as yaml; this is a hack that will work much of the time
args_to_skip = re.compile(
"^--?(o|out|no-xformer|xformer|no-ckpt|ckpt|free|no-nsfw|nsfw|prec|max_load|embed|always|ckpt|free_gpu)"
)
# fix windows paths
opts.outdir = opts.outdir.replace("\\", "/")
opts.embedding_path = opts.embedding_path.replace("\\", "/")
new_file = f"{init_file}.new"
try:
lines = [x.strip() for x in open(init_file, "r").readlines()]
with open(new_file, "w") as out_file:
for line in lines:
if len(line) > 0 and not args_to_skip.match(line):
out_file.write(line + "\n")
out_file.write(
f"""
--outdir={opts.outdir}
--embedding_path={opts.embedding_path}
--precision={opts.precision}
--max_loaded_models={int(opts.max_loaded_models)}
--{'no-' if not opts.safety_checker else ''}nsfw_checker
--{'no-' if not opts.xformers else ''}xformers
--{'no-' if not opts.ckpt_convert else ''}ckpt_convert
{'--free_gpu_mem' if opts.free_gpu_mem else ''}
{'--always_use_cpu' if opts.always_use_cpu else ''}
"""
)
except OSError as e:
print(f"** An error occurred while writing the init file: {str(e)}")
os.replace(new_file, init_file)
if opts.hf_token:
HfLogin(opts.hf_token)
# this will load current settings
config = InvokeAIAppConfig()
for key,value in opts.__dict__.items():
if hasattr(config,key):
setattr(config,key,value)
with open(init_file,'w', encoding='utf-8') as file:
file.write(config.to_yaml())
# -------------------------------------
def default_output_dir() -> Path:
return Globals.root / "outputs"
return config.root / "outputs"
# -------------------------------------
def default_embedding_dir() -> Path:
return Globals.root / "embeddings"
return config.root / "embeddings"
# -------------------------------------
def default_lora_dir() -> Path:
return config.root / "loras"
# -------------------------------------
def write_default_options(program_opts: Namespace, initfile: Path):
opt = default_startup_options(initfile)
opt.hf_token = HfFolder.get_token()
write_opts(opt, initfile)
# -------------------------------------
# Here we bring in
# the legacy Args object in order to parse
# the old init file and write out the new
# yaml format.
def migrate_init_file(legacy_format:Path):
old = legacy_parser.parse_args([f'@{str(legacy_format)}'])
new = InvokeAIAppConfig(conf={})
fields = list(get_type_hints(InvokeAIAppConfig).keys())
for attr in fields:
if hasattr(old,attr):
setattr(new,attr,getattr(old,attr))
# a few places where the field names have changed and we have to
# manually add in the new names/values
new.nsfw_checker = old.safety_checker
new.xformers_enabled = old.xformers
new.conf_path = old.conf
new.embedding_dir = old.embedding_path
invokeai_yaml = legacy_format.parent / 'invokeai.yaml'
with open(invokeai_yaml,"w", encoding="utf-8") as outfile:
outfile.write(new.to_yaml())
legacy_format.replace(legacy_format.parent / 'invokeai.init.old')
# -------------------------------------
def main():
@ -810,7 +806,8 @@ def main():
opt = parser.parse_args()
# setting a global here
Globals.root = Path(os.path.expanduser(get_root(opt.root) or ""))
global config
config.root = Path(os.path.expanduser(get_root(opt.root) or ""))
errors = set()
@ -818,19 +815,26 @@ def main():
models_to_download = default_user_selections(opt)
# We check for to see if the runtime directory is correctly initialized.
init_file = Path(Globals.root, Globals.initfile)
if not init_file.exists() or not global_config_file().exists():
initialize_rootdir(Globals.root, opt.yes_to_all)
old_init_file = Path(config.root, 'invokeai.init')
new_init_file = Path(config.root, 'invokeai.yaml')
if old_init_file.exists() and not new_init_file.exists():
print('** Migrating invokeai.init to invokeai.yaml')
migrate_init_file(old_init_file)
config = get_invokeai_config() # reread defaults
if not config.model_conf_path.exists():
initialize_rootdir(config.root, opt.yes_to_all)
if opt.yes_to_all:
write_default_options(opt, init_file)
write_default_options(opt, new_init_file)
init_options = Namespace(
precision="float32" if opt.full_precision else "float16"
)
else:
init_options, models_to_download = run_console_ui(opt, init_file)
init_options, models_to_download = run_console_ui(opt, new_init_file)
if init_options:
write_opts(init_options, init_file)
write_opts(init_options, new_init_file)
else:
print(
'\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n'

View File

@ -0,0 +1,390 @@
# Copyright 2023 Lincoln D. Stein and the InvokeAI Team
import argparse
import shlex
from argparse import ArgumentParser
SAMPLER_CHOICES = [
"ddim",
"ddpm",
"deis",
"lms",
"pndm",
"heun",
"heun_k",
"euler",
"euler_k",
"euler_a",
"kdpm_2",
"kdpm_2_a",
"dpmpp_2s",
"dpmpp_2m",
"dpmpp_2m_k",
"unipc",
]
PRECISION_CHOICES = [
"auto",
"float32",
"autocast",
"float16",
]
class FileArgumentParser(ArgumentParser):
"""
Supports reading defaults from an init file.
"""
def convert_arg_line_to_args(self, arg_line):
return shlex.split(arg_line, comments=True)
legacy_parser = FileArgumentParser(
description=
"""
Generate images using Stable Diffusion.
Use --web to launch the web interface.
Use --from_file to load prompts from a file path or standard input ("-").
Otherwise you will be dropped into an interactive command prompt (type -h for help.)
Other command-line arguments are defaults that can usually be overridden
prompt the command prompt.
""",
fromfile_prefix_chars='@',
)
general_group = legacy_parser.add_argument_group('General')
model_group = legacy_parser.add_argument_group('Model selection')
file_group = legacy_parser.add_argument_group('Input/output')
web_server_group = legacy_parser.add_argument_group('Web server')
render_group = legacy_parser.add_argument_group('Rendering')
postprocessing_group = legacy_parser.add_argument_group('Postprocessing')
deprecated_group = legacy_parser.add_argument_group('Deprecated options')
deprecated_group.add_argument('--laion400m')
deprecated_group.add_argument('--weights') # deprecated
general_group.add_argument(
'--version','-V',
action='store_true',
help='Print InvokeAI version number'
)
model_group.add_argument(
'--root_dir',
default=None,
help='Path to directory containing "models", "outputs" and "configs". If not present will read from environment variable INVOKEAI_ROOT. Defaults to ~/invokeai.',
)
model_group.add_argument(
'--config',
'-c',
'-config',
dest='conf',
default='./configs/models.yaml',
help='Path to configuration file for alternate models.',
)
model_group.add_argument(
'--model',
help='Indicates which diffusion model to load (defaults to "default" stanza in configs/models.yaml)',
)
model_group.add_argument(
'--weight_dirs',
nargs='+',
type=str,
help='List of one or more directories that will be auto-scanned for new model weights to import',
)
model_group.add_argument(
'--png_compression','-z',
type=int,
default=6,
choices=range(0,9),
dest='png_compression',
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
)
model_group.add_argument(
'-F',
'--full_precision',
dest='full_precision',
action='store_true',
help='Deprecated way to set --precision=float32',
)
model_group.add_argument(
'--max_loaded_models',
dest='max_loaded_models',
type=int,
default=2,
help='Maximum number of models to keep in memory for fast switching, including the one in GPU',
)
model_group.add_argument(
'--free_gpu_mem',
dest='free_gpu_mem',
action='store_true',
help='Force free gpu memory before final decoding',
)
model_group.add_argument(
'--sequential_guidance',
dest='sequential_guidance',
action='store_true',
help="Calculate guidance in serial instead of in parallel, lowering memory requirement "
"at the expense of speed",
)
model_group.add_argument(
'--xformers',
action=argparse.BooleanOptionalAction,
default=True,
help='Enable/disable xformers support (default enabled if installed)',
)
model_group.add_argument(
"--always_use_cpu",
dest="always_use_cpu",
action="store_true",
help="Force use of CPU even if GPU is available"
)
model_group.add_argument(
'--precision',
dest='precision',
type=str,
choices=PRECISION_CHOICES,
metavar='PRECISION',
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
default='auto',
)
model_group.add_argument(
'--ckpt_convert',
action=argparse.BooleanOptionalAction,
dest='ckpt_convert',
default=True,
help='Deprecated option. Legacy ckpt files are now always converted to diffusers when loaded.'
)
model_group.add_argument(
'--internet',
action=argparse.BooleanOptionalAction,
dest='internet_available',
default=True,
help='Indicate whether internet is available for just-in-time model downloading (default: probe automatically).',
)
model_group.add_argument(
'--nsfw_checker',
'--safety_checker',
action=argparse.BooleanOptionalAction,
dest='safety_checker',
default=False,
help='Check for and blur potentially NSFW images. Use --no-nsfw_checker to disable.',
)
model_group.add_argument(
'--autoimport',
default=None,
type=str,
help='Check the indicated directory for .ckpt/.safetensors weights files at startup and import directly',
)
model_group.add_argument(
'--autoconvert',
default=None,
type=str,
help='Check the indicated directory for .ckpt/.safetensors weights files at startup and import as optimized diffuser models',
)
model_group.add_argument(
'--patchmatch',
action=argparse.BooleanOptionalAction,
default=True,
help='Load the patchmatch extension for outpainting. Use --no-patchmatch to disable.',
)
file_group.add_argument(
'--from_file',
dest='infile',
type=str,
help='If specified, load prompts from this file',
)
file_group.add_argument(
'--outdir',
'-o',
type=str,
help='Directory to save generated images and a log of prompts and seeds. Default: ROOTDIR/outputs',
default='outputs',
)
file_group.add_argument(
'--prompt_as_dir',
'-p',
action='store_true',
help='Place images in subdirectories named after the prompt.',
)
render_group.add_argument(
'--fnformat',
default='{prefix}.{seed}.png',
type=str,
help='Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png',
)
render_group.add_argument(
'-s',
'--steps',
type=int,
default=50,
help='Number of steps'
)
render_group.add_argument(
'-W',
'--width',
type=int,
help='Image width, multiple of 64',
)
render_group.add_argument(
'-H',
'--height',
type=int,
help='Image height, multiple of 64',
)
render_group.add_argument(
'-C',
'--cfg_scale',
default=7.5,
type=float,
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
)
render_group.add_argument(
'--sampler',
'-A',
'-m',
dest='sampler_name',
type=str,
choices=SAMPLER_CHOICES,
metavar='SAMPLER_NAME',
help=f'Set the default sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
default='k_lms',
)
render_group.add_argument(
'--log_tokenization',
'-t',
action='store_true',
help='shows how the prompt is split into tokens'
)
render_group.add_argument(
'-f',
'--strength',
type=float,
help='img2img strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
)
render_group.add_argument(
'-T',
'-fit',
'--fit',
action=argparse.BooleanOptionalAction,
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)',
)
render_group.add_argument(
'--grid',
'-g',
action=argparse.BooleanOptionalAction,
help='generate a grid'
)
render_group.add_argument(
'--embedding_directory',
'--embedding_path',
dest='embedding_path',
default='embeddings',
type=str,
help='Path to a directory containing .bin and/or .pt files, or a single .bin/.pt file. You may use subdirectories. (default is ROOTDIR/embeddings)'
)
render_group.add_argument(
'--lora_directory',
dest='lora_path',
default='loras',
type=str,
help='Path to a directory containing LoRA files; subdirectories are not supported. (default is ROOTDIR/loras)'
)
render_group.add_argument(
'--embeddings',
action=argparse.BooleanOptionalAction,
default=True,
help='Enable embedding directory (default). Use --no-embeddings to disable.',
)
render_group.add_argument(
'--enable_image_debugging',
action='store_true',
help='Generates debugging image to display'
)
render_group.add_argument(
'--karras_max',
type=int,
default=None,
help="control the point at which the K* samplers will shift from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts). Set to 0 to use LatentDiffusion for all step values, and to a high value (e.g. 1000) to use Karras for all step values. [29]."
)
# Restoration related args
postprocessing_group.add_argument(
'--no_restore',
dest='restore',
action='store_false',
help='Disable face restoration with GFPGAN or codeformer',
)
postprocessing_group.add_argument(
'--no_upscale',
dest='esrgan',
action='store_false',
help='Disable upscaling with ESRGAN',
)
postprocessing_group.add_argument(
'--esrgan_bg_tile',
type=int,
default=400,
help='Tile size for background sampler, 0 for no tile during testing. Default: 400.',
)
postprocessing_group.add_argument(
'--esrgan_denoise_str',
type=float,
default=0.75,
help='esrgan denoise str. 0 is no denoise, 1 is max denoise. Default: 0.75',
)
postprocessing_group.add_argument(
'--gfpgan_model_path',
type=str,
default='./models/gfpgan/GFPGANv1.4.pth',
help='Indicates the path to the GFPGAN model',
)
web_server_group.add_argument(
'--web',
dest='web',
action='store_true',
help='Start in web server mode.',
)
web_server_group.add_argument(
'--web_develop',
dest='web_develop',
action='store_true',
help='Start in web server development mode.',
)
web_server_group.add_argument(
"--web_verbose",
action="store_true",
help="Enables verbose logging",
)
web_server_group.add_argument(
"--cors",
nargs="*",
type=str,
help="Additional allowed origins, comma-separated",
)
web_server_group.add_argument(
'--host',
type=str,
default='127.0.0.1',
help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.'
)
web_server_group.add_argument(
'--port',
type=int,
default='9090',
help='Web server: Port to listen on'
)
web_server_group.add_argument(
'--certfile',
type=str,
default=None,
help='Web server: Path to certificate file to use for SSL. Use together with --keyfile'
)
web_server_group.add_argument(
'--keyfile',
type=str,
default=None,
help='Web server: Path to private key file to use for SSL. Use together with --certfile'
)
web_server_group.add_argument(
'--gui',
dest='gui',
action='store_true',
help='Start InvokeAI GUI',
)

View File

@ -19,13 +19,15 @@ from tqdm import tqdm
import invokeai.configs as configs
from ..globals import Globals, global_cache_dir, global_config_dir
from invokeai.app.services.config import get_invokeai_config
from ..model_management import ModelManager
from ..stable_diffusion import StableDiffusionGeneratorPipeline
warnings.filterwarnings("ignore")
# --------------------------globals-----------------------
config = get_invokeai_config()
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
@ -47,12 +49,11 @@ Config_preamble = """
def default_config_file():
return Path(global_config_dir()) / "models.yaml"
return config.model_conf_path
def sd_configs():
return Path(global_config_dir()) / "stable-diffusion"
return config.legacy_conf_path
def initial_models():
global Datasets
@ -67,7 +68,6 @@ def install_requested_models(
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
convert_to_diffusers: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
@ -113,7 +113,6 @@ def install_requested_models(
try:
model_manager.heuristic_import(
path_url_or_repo,
convert=convert_to_diffusers,
commit_to_conf=config_file_path,
)
except KeyboardInterrupt:
@ -122,9 +121,10 @@ def install_requested_models(
pass
if scan_at_startup and scan_directory.is_dir():
argument = "--autoconvert" if convert_to_diffusers else "--autoimport"
initfile = Path(Globals.root, Globals.initfile)
replacement = Path(Globals.root, f"{Globals.initfile}.new")
argument = "--autoconvert"
print('** The global initfile is no longer supported; rewrite to support new yaml format **')
initfile = Path(config.root, 'invokeai.init')
replacement = Path(config.root, f"invokeai.init.new")
directory = str(scan_directory).replace("\\", "/")
with open(initfile, "r") as input:
with open(replacement, "w") as output:
@ -152,7 +152,7 @@ def get_root(root: str = None) -> str:
elif os.environ.get("INVOKEAI_ROOT"):
return os.environ.get("INVOKEAI_ROOT")
else:
return Globals.root
return config.root
# ---------------------------------------------
@ -185,7 +185,7 @@ def all_datasets() -> dict:
# look for legacy model.ckpt in models directory and offer to
# normalize its name
def migrate_models_ckpt():
model_path = os.path.join(Globals.root, Model_dir, Weights_dir)
model_path = os.path.join(config.root, Model_dir, Weights_dir)
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
return
new_name = initial_models()["stable-diffusion-1.4"]["file"]
@ -230,7 +230,7 @@ def _download_repo_or_file(
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
repo_id = mconfig["repo_id"]
filename = mconfig["file"]
cache_dir = os.path.join(Globals.root, Model_dir, Weights_dir)
cache_dir = os.path.join(config.root, Model_dir, Weights_dir)
return hf_download_with_resume(
repo_id=repo_id,
model_dir=cache_dir,
@ -241,9 +241,9 @@ def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
# ---------------------------------------------
def download_from_hf(
model_class: object, model_name: str, cache_subdir: Path = Path("hub"), **kwargs
model_class: object, model_name: str, **kwargs
):
path = global_cache_dir(cache_subdir)
path = config.cache_dir
model = model_class.from_pretrained(
model_name,
cache_dir=path,
@ -419,7 +419,7 @@ def new_config_file_contents(
stanza["height"] = mod["height"]
if "file" in mod:
stanza["weights"] = os.path.relpath(
successfully_downloaded[model], start=Globals.root
successfully_downloaded[model], start=config.root
)
stanza["config"] = os.path.normpath(
os.path.join(sd_configs(), mod["config"])
@ -458,7 +458,7 @@ def delete_weights(model_name: str, conf_stanza: dict):
weights = Path(weights)
if not weights.is_absolute():
weights = Path(Globals.root) / weights
weights = Path(config.root) / weights
try:
weights.unlink()
except OSError as e:

File diff suppressed because it is too large Load Diff

View File

@ -25,11 +25,13 @@ from typing import Callable, List, Iterator, Optional, Type
from dataclasses import dataclass, field
from diffusers.schedulers import SchedulerMixin as Scheduler
import invokeai.backend.util.logging as logger
from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker
from ..prompting.conditioning import get_uc_and_c_and_ec
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..stable_diffusion.schedulers import SCHEDULER_MAP
downsampling = 8
@ -70,19 +72,6 @@ class InvokeAIGeneratorOutput:
# we are interposing a wrapper around the original Generator classes so that
# old code that calls Generate will continue to work.
class InvokeAIGenerator(metaclass=ABCMeta):
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
def __init__(self,
model_info: dict,
params: InvokeAIGeneratorBasicParams=InvokeAIGeneratorBasicParams(),
@ -174,14 +163,20 @@ class InvokeAIGenerator(metaclass=ABCMeta):
'''
Return list of all the schedulers that we currently handle.
'''
return list(self.scheduler_map.keys())
return list(SCHEDULER_MAP.keys())
def load_generator(self, model: StableDiffusionGeneratorPipeline, generator_class: Type[Generator]):
return generator_class(model, self.params.precision)
def get_scheduler(self, scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class = self.scheduler_map.get(scheduler_name,'ddim')
scheduler = scheduler_class.from_config(model.scheduler.config)
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP['ddim'])
scheduler_config = model.scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
@ -225,10 +220,10 @@ class Inpaint(Img2Img):
def generate(self,
mask_image: Image.Image | torch.FloatTensor,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 0,
seam_blur: int = 0,
seam_size: int = 96,
seam_blur: int = 16,
seam_strength: float = 0.7,
seam_steps: int = 10,
seam_steps: int = 30,
tile_size: int = 32,
inpaint_replace=False,
infill_method=None,
@ -372,7 +367,7 @@ class Generator:
try:
x_T = self.get_noise(width, height)
except:
print("** An error occurred while getting initial noise **")
logger.error("An error occurred while getting initial noise")
print(traceback.format_exc())
# Pass on the seed in case a layer beneath us needs to generate noise on its own.
@ -607,7 +602,7 @@ class Generator:
image = self.sample_to_image(sample)
dirname = os.path.dirname(filepath) or "."
if not os.path.exists(dirname):
print(f"** creating directory {dirname}")
logger.info(f"creating directory {dirname}")
os.makedirs(dirname, exist_ok=True)
image.save(filepath, "PNG")

View File

@ -8,10 +8,11 @@ import torch
from PIL import Image
from tqdm import trange
import invokeai.backend.util.logging as logger
from .base import Generator
from .img2img import Img2Img
class Embiggen(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
@ -72,22 +73,22 @@ class Embiggen(Generator):
embiggen = [1.0] # If not specified, assume no scaling
elif embiggen[0] < 0:
embiggen[0] = 1.0
print(
">> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
logger.warning(
"Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
)
if len(embiggen) < 2:
embiggen.append(0.75)
elif embiggen[1] > 1.0 or embiggen[1] < 0:
embiggen[1] = 0.75
print(
">> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
logger.warning(
"Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
)
if len(embiggen) < 3:
embiggen.append(0.25)
elif embiggen[2] < 0:
embiggen[2] = 0.25
print(
">> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
logger.warning(
"Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
)
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
@ -97,8 +98,8 @@ class Embiggen(Generator):
embiggen_tiles.sort()
if strength >= 0.5:
print(
f"* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
logger.warning(
f"Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
)
# Prep img2img generator, since we wrap over it
@ -121,8 +122,8 @@ class Embiggen(Generator):
from ..restoration.realesrgan import ESRGAN
esrgan = ESRGAN()
print(
f">> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
logger.info(
f"ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
)
if embiggen[0] > 2:
initsuperimage = esrgan.process(
@ -312,10 +313,10 @@ class Embiggen(Generator):
def make_image():
# Make main tiles -------------------------------------------------
if embiggen_tiles:
print(f">> Making {len(embiggen_tiles)} Embiggen tiles...")
logger.info(f"Making {len(embiggen_tiles)} Embiggen tiles...")
else:
print(
f">> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
logger.info(
f"Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
)
emb_tile_store = []
@ -361,11 +362,11 @@ class Embiggen(Generator):
# newinitimage.save(newinitimagepath)
if embiggen_tiles:
print(
logger.debug(
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
)
else:
print(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
logger.debug(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
# create a torch tensor from an Image
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
@ -547,8 +548,8 @@ class Embiggen(Generator):
# Layer tile onto final image
outputsuperimage.alpha_composite(intileimage, (left, top))
else:
print(
"Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
logger.error(
"Could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
)
# after internal loops and patching up return Embiggen image

View File

@ -4,6 +4,7 @@ invokeai.backend.generator.inpaint descends from .generator
from __future__ import annotations
import math
from typing import Tuple, Union
import cv2
import numpy as np
@ -59,7 +60,7 @@ class Inpaint(Img2Img):
writeable=False,
)
def infill_patchmatch(self, im: Image.Image) -> Image:
def infill_patchmatch(self, im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
@ -75,18 +76,18 @@ class Inpaint(Img2Img):
return im_patched
def tile_fill_missing(
self, im: Image.Image, tile_size: int = 16, seed: int = None
) -> Image:
self, im: Image.Image, tile_size: int = 16, seed: Union[int, None] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size = (tile_size, tile_size)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = self.get_tile_images(a, *tile_size).copy()
tiles = self.get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
@ -127,7 +128,9 @@ class Inpaint(Img2Img):
return si
def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image:
def mask_edge(
self, mask: Image.Image, edge_size: int, edge_blur: int
) -> Image.Image:
npimg = np.asarray(mask, dtype=np.uint8)
# Detect any partially transparent regions
@ -206,15 +209,15 @@ class Inpaint(Img2Img):
cfg_scale,
ddim_eta,
conditioning,
init_image: PIL.Image.Image | torch.FloatTensor,
mask_image: PIL.Image.Image | torch.FloatTensor,
init_image: Image.Image | torch.FloatTensor,
mask_image: Image.Image | torch.FloatTensor,
strength: float,
mask_blur_radius: int = 8,
# Seam settings - when 0, doesn't fill seam
seam_size: int = 0,
seam_blur: int = 0,
seam_size: int = 96,
seam_blur: int = 16,
seam_strength: float = 0.7,
seam_steps: int = 10,
seam_steps: int = 30,
tile_size: int = 32,
step_callback=None,
inpaint_replace=False,
@ -222,7 +225,7 @@ class Inpaint(Img2Img):
infill_method=None,
inpaint_width=None,
inpaint_height=None,
inpaint_fill: tuple(int) = (0x7F, 0x7F, 0x7F, 0xFF),
inpaint_fill: Tuple[int, int, int, int] = (0x7F, 0x7F, 0x7F, 0xFF),
attention_maps_callback=None,
**kwargs,
):
@ -239,7 +242,7 @@ class Inpaint(Img2Img):
self.inpaint_width = inpaint_width
self.inpaint_height = inpaint_height
if isinstance(init_image, PIL.Image.Image):
if isinstance(init_image, Image.Image):
self.pil_image = init_image.copy()
# Do infill
@ -250,8 +253,8 @@ class Inpaint(Img2Img):
self.pil_image.copy(), seed=self.seed, tile_size=tile_size
)
elif infill_method == "solid":
solid_bg = PIL.Image.new("RGBA", init_image.size, inpaint_fill)
init_filled = PIL.Image.alpha_composite(solid_bg, init_image)
solid_bg = Image.new("RGBA", init_image.size, inpaint_fill)
init_filled = Image.alpha_composite(solid_bg, init_image)
else:
raise ValueError(
f"Non-supported infill type {infill_method}", infill_method
@ -269,7 +272,7 @@ class Inpaint(Img2Img):
# Create init tensor
init_image = image_resized_to_grid_as_tensor(init_filled.convert("RGB"))
if isinstance(mask_image, PIL.Image.Image):
if isinstance(mask_image, Image.Image):
self.pil_mask = mask_image.copy()
debug_image(
mask_image,

View File

@ -14,6 +14,8 @@ from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeli
from ..stable_diffusion.diffusers_pipeline import ConditioningData
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
import invokeai.backend.util.logging as logger
class Txt2Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
@ -77,8 +79,8 @@ class Txt2Img2Img(Generator):
# the message below is accurate.
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
print(
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
logger.info(
f"Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
# resizing

View File

@ -1,122 +0,0 @@
"""
invokeai.backend.globals defines a small number of global variables that would
otherwise have to be passed through long and complex call chains.
It defines a Namespace object named "Globals" that contains
the attributes:
- root - the root directory under which "models" and "outputs" can be found
- initfile - path to the initialization file
- try_patchmatch - option to globally disable loading of 'patchmatch' module
- always_use_cpu - force use of CPU even if GPU is available
"""
import os
import os.path as osp
from argparse import Namespace
from pathlib import Path
from typing import Union
Globals = Namespace()
# Where to look for the initialization file and other key components
Globals.initfile = "invokeai.init"
Globals.models_file = "models.yaml"
Globals.models_dir = "models"
Globals.config_dir = "configs"
Globals.autoscan_dir = "weights"
Globals.converted_ckpts_dir = "converted_ckpts"
# Set the default root directory. This can be overwritten by explicitly
# passing the `--root <directory>` argument on the command line.
# logic is:
# 1) use INVOKEAI_ROOT environment variable (no check for this being a valid directory)
# 2) use VIRTUAL_ENV environment variable, with a check for initfile being there
# 3) use ~/invokeai
if os.environ.get("INVOKEAI_ROOT"):
Globals.root = osp.abspath(os.environ.get("INVOKEAI_ROOT"))
elif (
os.environ.get("VIRTUAL_ENV")
and Path(os.environ.get("VIRTUAL_ENV"), "..", Globals.initfile).exists()
):
Globals.root = osp.abspath(osp.join(os.environ.get("VIRTUAL_ENV"), ".."))
else:
Globals.root = osp.abspath(osp.expanduser("~/invokeai"))
# Try loading patchmatch
Globals.try_patchmatch = True
# Use CPU even if GPU is available (main use case is for debugging MPS issues)
Globals.always_use_cpu = False
# Whether the internet is reachable for dynamic downloads
# The CLI will test connectivity at startup time.
Globals.internet_available = True
# Whether to disable xformers
Globals.disable_xformers = False
# Low-memory tradeoff for guidance calculations.
Globals.sequential_guidance = False
# whether we are forcing full precision
Globals.full_precision = False
# whether we should convert ckpt files into diffusers models on the fly
Globals.ckpt_convert = True
# logging tokenization everywhere
Globals.log_tokenization = False
def global_config_file() -> Path:
return Path(Globals.root, Globals.config_dir, Globals.models_file)
def global_config_dir() -> Path:
return Path(Globals.root, Globals.config_dir)
def global_models_dir() -> Path:
return Path(Globals.root, Globals.models_dir)
def global_autoscan_dir() -> Path:
return Path(Globals.root, Globals.autoscan_dir)
def global_converted_ckpts_dir() -> Path:
return Path(global_models_dir(), Globals.converted_ckpts_dir)
def global_set_root(root_dir: Union[str, Path]):
Globals.root = root_dir
def global_cache_dir(subdir: Union[str, Path] = "") -> Path:
"""
Returns Path to the model cache directory. If a subdirectory
is provided, it will be appended to the end of the path, allowing
for Hugging Face-style conventions. Currently, Hugging Face has
moved all models into the "hub" subfolder, so for any pretrained
HF model, use:
global_cache_dir('hub')
The legacy location for transformers used to be global_cache_dir('transformers')
and global_cache_dir('diffusers') for diffusers.
"""
home: str = os.getenv("HF_HOME")
if home is None:
home = os.getenv("XDG_CACHE_HOME")
if home is not None:
# Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in Hugging Face Hub Client Library.
# See: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/environment_variables#xdgcachehome
home += os.sep + "huggingface"
if home is not None:
return Path(home, subdir)
else:
return Path(Globals.root, "models", subdir)

View File

@ -5,9 +5,8 @@ wraps the actual patchmatch object. It respects the global
be suppressed or deferred
"""
import numpy as np
from invokeai.backend.globals import Globals
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
class PatchMatch:
"""
@ -22,18 +21,19 @@ class PatchMatch:
@classmethod
def _load_patch_match(self):
config = get_invokeai_config()
if self.tried_load:
return
if Globals.try_patchmatch:
if config.try_patchmatch:
from patchmatch import patch_match as pm
if pm.patchmatch_available:
print(">> Patchmatch initialized")
logger.info("Patchmatch initialized")
else:
print(">> Patchmatch not loaded (nonfatal)")
logger.info("Patchmatch not loaded (nonfatal)")
self.patch_match = pm
else:
print(">> Patchmatch loading disabled")
logger.info("Patchmatch loading disabled")
self.tried_load = True
@classmethod

View File

@ -30,15 +30,14 @@ work fine.
import numpy as np
import torch
from PIL import Image, ImageOps
from torchvision import transforms
from transformers import AutoProcessor, CLIPSegForImageSegmentation
from invokeai.backend.globals import global_cache_dir
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
CLIPSEG_SIZE = 352
class SegmentedGrayscale(object):
def __init__(self, image: Image, heatmap: torch.Tensor):
self.heatmap = heatmap
@ -83,15 +82,16 @@ class Txt2Mask(object):
"""
def __init__(self, device="cpu", refined=False):
print(">> Initializing clipseg model for text to mask inference")
logger.info("Initializing clipseg model for text to mask inference")
config = get_invokeai_config()
# BUG: we are not doing anything with the device option at this time
self.device = device
self.processor = AutoProcessor.from_pretrained(
CLIPSEG_MODEL, cache_dir=global_cache_dir("hub")
CLIPSEG_MODEL, cache_dir=config.cache_dir
)
self.model = CLIPSegForImageSegmentation.from_pretrained(
CLIPSEG_MODEL, cache_dir=global_cache_dir("hub")
CLIPSEG_MODEL, cache_dir=config.cache_dir
)
@torch.no_grad()
@ -101,18 +101,6 @@ class Txt2Mask(object):
provided image and returns a SegmentedGrayscale object in which the brighter
pixels indicate where the object is inferred to be.
"""
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
transforms.Resize(
(CLIPSEG_SIZE, CLIPSEG_SIZE)
), # must be multiple of 64...
]
)
if type(image) is str:
image = Image.open(image).convert("RGB")

View File

@ -5,5 +5,7 @@ from .convert_ckpt_to_diffusers import (
convert_ckpt_to_diffusers,
load_pipeline_from_original_stable_diffusion_ckpt,
)
from .model_manager import ModelManager
from .model_manager import ModelManager,SDModelComponent

View File

@ -25,7 +25,8 @@ from typing import Union
import torch
from safetensors.torch import load_file
from invokeai.backend.globals import global_cache_dir, global_config_dir
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
from .model_manager import ModelManager, SDLegacyType
@ -46,6 +47,7 @@ from diffusers import (
LDMTextToImagePipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
@ -72,7 +74,6 @@ from transformers import (
from ..stable_diffusion import StableDiffusionGeneratorPipeline
def shave_segments(path, n_shave_prefix_segments=1):
"""
Removes segments. Positive values shave the first segments, negative shave the last segments.
@ -372,9 +373,9 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100:
print(f" | Checkpoint {path} has both EMA and non-EMA weights.")
logger.debug(f"Checkpoint {path} has both EMA and non-EMA weights.")
if extract_ema:
print(" | Extracting EMA weights (usually better for inference)")
logger.debug("Extracting EMA weights (usually better for inference)")
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
@ -392,8 +393,8 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
key
)
else:
print(
" | Extracting only the non-EMA weights (usually better for fine-tuning)"
logger.debug(
"Extracting only the non-EMA weights (usually better for fine-tuning)"
)
for key in keys:
@ -841,7 +842,7 @@ def convert_ldm_bert_checkpoint(checkpoint, config):
def convert_ldm_clip_checkpoint(checkpoint):
text_model = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14", cache_dir=global_cache_dir("hub")
"openai/clip-vit-large-patch14", cache_dir=get_invokeai_config().cache_dir
)
keys = list(checkpoint.keys())
@ -896,7 +897,7 @@ textenc_pattern = re.compile("|".join(protected.keys()))
def convert_paint_by_example_checkpoint(checkpoint):
cache_dir = global_cache_dir("hub")
cache_dir = get_invokeai_config().cache_dir
config = CLIPVisionConfig.from_pretrained(
"openai/clip-vit-large-patch14", cache_dir=cache_dir
)
@ -968,7 +969,7 @@ def convert_paint_by_example_checkpoint(checkpoint):
def convert_open_clip_checkpoint(checkpoint):
cache_dir = global_cache_dir("hub")
cache_dir = get_invokeai_config().cache_dir
text_model = CLIPTextModel.from_pretrained(
"stabilityai/stable-diffusion-2", subfolder="text_encoder", cache_dir=cache_dir
)
@ -1091,7 +1092,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
:param vae: A diffusers VAE to load into the pipeline.
:param vae_path: Path to a checkpoint VAE that will be converted into diffusers and loaded into the pipeline.
"""
config = get_invokeai_config()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity()
@ -1104,7 +1105,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
else:
checkpoint = load_file(checkpoint_path)
cache_dir = global_cache_dir("hub")
cache_dir = config.cache_dir
pipeline_class = (
StableDiffusionGeneratorPipeline
if return_generator_pipeline
@ -1115,7 +1116,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
if "global_step" in checkpoint:
global_step = checkpoint["global_step"]
else:
print(" | global_step key not found in model")
logger.debug("global_step key not found in model")
global_step = None
# sometimes there is a state_dict key and sometimes not
@ -1128,25 +1129,23 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
if model_type == SDLegacyType.V2_v:
original_config_file = (
global_config_dir() / "stable-diffusion" / "v2-inference-v.yaml"
config.legacy_conf_path / "v2-inference-v.yaml"
)
if global_step == 110000:
# v2.1 needs to upcast attention
upcast_attention = True
elif model_type == SDLegacyType.V2_e:
original_config_file = (
global_config_dir() / "stable-diffusion" / "v2-inference.yaml"
config.legacy_conf_path / "v2-inference.yaml"
)
elif model_type == SDLegacyType.V1_INPAINT:
original_config_file = (
global_config_dir()
/ "stable-diffusion"
/ "v1-inpainting-inference.yaml"
config.legacy_conf_path / "v1-inpainting-inference.yaml"
)
elif model_type == SDLegacyType.V1:
original_config_file = (
global_config_dir() / "stable-diffusion" / "v1-inference.yaml"
config.legacy_conf_path / "v1-inference.yaml"
)
else:
@ -1208,6 +1207,8 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
elif scheduler_type == "dpm":
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == 'unipc':
scheduler = UniPCMultistepScheduler.from_config(scheduler.config)
elif scheduler_type == "ddim":
scheduler = scheduler
else:
@ -1229,15 +1230,15 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
# If a replacement VAE path was specified, we'll incorporate that into
# the checkpoint model and then convert it
if vae_path:
print(f" | Converting VAE {vae_path}")
logger.debug(f"Converting VAE {vae_path}")
replace_checkpoint_vae(checkpoint,vae_path)
# otherwise we use the original VAE, provided that
# an externally loaded diffusers VAE was not passed
elif not vae:
print(" | Using checkpoint model's original VAE")
logger.debug("Using checkpoint model's original VAE")
if vae:
print(" | Using replacement diffusers VAE")
logger.debug("Using replacement diffusers VAE")
else: # convert the original or replacement VAE
vae_config = create_vae_diffusers_config(
original_config, image_size=image_size
@ -1296,7 +1297,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker",
cache_dir=global_cache_dir("hub"),
cache_dir=config.cache_dir,
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
"CompVis/stable-diffusion-safety-checker", cache_dir=cache_dir

View File

@ -1,4 +1,4 @@
"""
"""enum
Manage a cache of Stable Diffusion model files for fast switching.
They are moved between GPU and CPU as necessary. If CPU memory falls
below a preset minimum, the least recently used model will be
@ -15,55 +15,82 @@ import sys
import textwrap
import time
import warnings
from enum import Enum
from enum import Enum, auto
from pathlib import Path
from shutil import move, rmtree
from typing import Any, Optional, Union, Callable
from typing import Any, Optional, Union, Callable, types
import safetensors
import safetensors.torch
import torch
import transformers
from diffusers import AutoencoderKL
from diffusers import logging as dlogging
import invokeai.backend.util.logging as logger
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
SchedulerMixin,
logging as dlogging,
)
from huggingface_hub import scan_cache_dir
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from picklescan.scanner import scan_file_path
from invokeai.backend.globals import Globals, global_cache_dir
from ..stable_diffusion import StableDiffusionGeneratorPipeline
from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPFeatureExtractor,
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from ..stable_diffusion import (
StableDiffusionGeneratorPipeline,
)
from invokeai.app.services.config import get_invokeai_config
from ..util import CUDA_DEVICE, ask_user, download_with_resume
class SDLegacyType(Enum):
V1 = 1
V1_INPAINT = 2
V2 = 3
V2_e = 4
V2_v = 5
UNKNOWN = 99
V1 = auto()
V1_INPAINT = auto()
V2 = auto()
V2_e = auto()
V2_v = auto()
UNKNOWN = auto()
class SDModelComponent(Enum):
vae="vae"
text_encoder="text_encoder"
tokenizer="tokenizer"
unet="unet"
scheduler="scheduler"
safety_checker="safety_checker"
feature_extractor="feature_extractor"
DEFAULT_MAX_MODELS = 2
class ModelManager(object):
'''
"""
Model manager handles loading, caching, importing, deleting, converting, and editing models.
'''
"""
logger: types.ModuleType = logger
def __init__(
self,
config: OmegaConf|Path,
device_type: torch.device = CUDA_DEVICE,
precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
embedding_path: Path=None,
self,
config: OmegaConf | Path,
device_type: torch.device = CUDA_DEVICE,
precision: str = "float16",
max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False,
embedding_path: Path = None,
logger: types.ModuleType = logger,
):
"""
Initialize with the path to the models.yaml config file or
an initialized OmegaConf dictionary. Optional parameters
are the torch device type, precision, max_loaded_models,
and sequential_offload boolean. Note that the default device
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
# prevent nasty-looking CLIP log message
@ -71,6 +98,7 @@ class ModelManager(object):
if not isinstance(config, DictConfig):
config = OmegaConf.load(config)
self.config = config
self.globals = get_invokeai_config()
self.precision = precision
self.device = torch.device(device_type)
self.max_loaded_models = max_loaded_models
@ -79,6 +107,7 @@ class ModelManager(object):
self.current_model = None
self.sequential_offload = sequential_offload
self.embedding_path = embedding_path
self.logger = logger
def valid_model(self, model_name: str) -> bool:
"""
@ -87,18 +116,28 @@ class ModelManager(object):
"""
return model_name in self.config
def get_model(self, model_name: str=None)->dict:
"""
Given a model named identified in models.yaml, return
the model object. If in RAM will load into GPU VRAM.
If on disk, will load from there.
def get_model(self, model_name: str = None) -> dict:
"""Given a model named identified in models.yaml, return a dict
containing the model object and some of its key features. If
in RAM will load into GPU VRAM. If on disk, will load from
there.
The dict has the following keys:
'model': The StableDiffusionGeneratorPipeline object
'model_name': The name of the model in models.yaml
'width': The width of images trained by this model
'height': The height of images trained by this model
'hash': A unique hash of this model's files on disk.
"""
if not model_name:
return self.get_model(self.current_model) if self.current_model else self.get_model(self.default_model())
return (
self.get_model(self.current_model)
if self.current_model
else self.get_model(self.default_model())
)
if not self.valid_model(model_name):
print(
f'** "{model_name}" is not a known model name. Please check your models.yaml file'
self.logger.error(
f'"{model_name}" is not a known model name. Please check your models.yaml file'
)
return self.current_model
@ -109,7 +148,7 @@ class ModelManager(object):
if model_name in self.models:
requested_model = self.models[model_name]["model"]
print(f">> Retrieving model {model_name} from system RAM cache")
self.logger.info(f"Retrieving model {model_name} from system RAM cache")
requested_model.ready()
width = self.models[model_name]["width"]
height = self.models[model_name]["height"]
@ -135,6 +174,81 @@ class ModelManager(object):
"hash": hash,
}
def get_model_vae(self, model_name: str=None)->AutoencoderKL:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned VAE as an
AutoencoderKL object. If no model name is provided, return the
vae from the model currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.vae)
def get_model_tokenizer(self, model_name: str=None)->CLIPTokenizer:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTokenizer. If no
model name is provided, return the tokenizer from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.tokenizer)
def get_model_unet(self, model_name: str=None)->UNet2DConditionModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned UNet2DConditionModel. If no model
name is provided, return the UNet from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.unet)
def get_model_text_encoder(self, model_name: str=None)->CLIPTextModel:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPTextModel. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.text_encoder)
def get_model_feature_extractor(self, model_name: str=None)->CLIPFeatureExtractor:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned CLIPFeatureExtractor. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.feature_extractor)
def get_model_scheduler(self, model_name: str=None)->SchedulerMixin:
"""Given a model name identified in models.yaml, load the model into
GPU if necessary and return its assigned scheduler. If no
model name is provided, return the text encoder from the model
currently in the GPU.
"""
return self._get_sub_model(model_name, SDModelComponent.scheduler)
def _get_sub_model(
self,
model_name: str=None,
model_part: SDModelComponent=SDModelComponent.vae,
) -> Union[
AutoencoderKL,
CLIPTokenizer,
CLIPFeatureExtractor,
UNet2DConditionModel,
CLIPTextModel,
StableDiffusionSafetyChecker,
]:
"""Given a model name identified in models.yaml, and the part of the
model you wish to retrieve, return that part. Parts are in an Enum
class named SDModelComponent, and consist of:
SDModelComponent.vae
SDModelComponent.text_encoder
SDModelComponent.tokenizer
SDModelComponent.unet
SDModelComponent.scheduler
SDModelComponent.safety_checker
SDModelComponent.feature_extractor
"""
model_dict = self.get_model(model_name)
model = model_dict["model"]
return getattr(model, model_part.value)
def default_model(self) -> str | None:
"""
Returns the name of the default model, or None
@ -177,7 +291,7 @@ class ModelManager(object):
"""
# if we are converting legacy files automatically, then
# there are no legacy ckpts!
if Globals.ckpt_convert:
if self.globals.ckpt_convert:
return False
info = self.model_info(model_name)
if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")):
@ -269,7 +383,7 @@ class ModelManager(object):
"""
omega = self.config
if model_name not in omega:
print(f"** Unknown model {model_name}")
self.logger.error(f"Unknown model {model_name}")
return
# save these for use in deletion later
conf = omega[model_name]
@ -282,13 +396,13 @@ class ModelManager(object):
self.stack.remove(model_name)
if delete_files:
if weights:
print(f"** Deleting file {weights}")
self.logger.info(f"Deleting file {weights}")
Path(weights).unlink(missing_ok=True)
elif path:
print(f"** Deleting directory {path}")
self.logger.info(f"Deleting directory {path}")
rmtree(path, ignore_errors=True)
elif repo_id:
print(f"** Deleting the cached model directory for {repo_id}")
self.logger.info(f"Deleting the cached model directory for {repo_id}")
self._delete_model_from_cache(repo_id)
def add_model(
@ -329,7 +443,7 @@ class ModelManager(object):
def _load_model(self, model_name: str):
"""Load and initialize the model from configuration variables passed at object creation time"""
if model_name not in self.config:
print(
self.logger.error(
f'"{model_name}" is not a known model name. Please check your models.yaml file'
)
return
@ -347,7 +461,7 @@ class ModelManager(object):
model_format = mconfig.get("format", "ckpt")
if model_format == "ckpt":
weights = mconfig.weights
print(f">> Loading {model_name} from {weights}")
self.logger.info(f"Loading {model_name} from {weights}")
model, width, height, model_hash = self._load_ckpt_model(
model_name, mconfig
)
@ -360,16 +474,18 @@ class ModelManager(object):
f"Unknown model format {model_name}: {model_format}"
)
self._add_embeddings_to_model(model)
# usage statistics
toc = time.time()
print(">> Model loaded in", "%4.2fs" % (toc - tic))
self.logger.info("Model loaded in " + "%4.2fs" % (toc - tic))
if self._has_cuda():
print(
">> Max VRAM used to load the model:",
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9),
"\n>> Current VRAM usage:"
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
self.logger.info(
"Max VRAM used to load the model: "+
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9)
)
self.logger.info(
"Current VRAM usage: "+
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9)
)
return model, width, height, model_hash
@ -377,21 +493,21 @@ class ModelManager(object):
name_or_path = self.model_name_or_path(mconfig)
using_fp16 = self.precision == "float16"
print(f">> Loading diffusers model from {name_or_path}")
self.logger.info(f"Loading diffusers model from {name_or_path}")
if using_fp16:
print(" | Using faster float16 precision")
self.logger.debug("Using faster float16 precision")
else:
print(" | Using more accurate float32 precision")
self.logger.debug("Using more accurate float32 precision")
# TODO: scan weights maybe?
pipeline_args: dict[str, Any] = dict(
safety_checker=None, local_files_only=not Globals.internet_available
safety_checker=None, local_files_only=not self.globals.internet_available
)
if "vae" in mconfig and mconfig["vae"] is not None:
if vae := self._load_vae(mconfig["vae"]):
pipeline_args.update(vae=vae)
if not isinstance(name_or_path, Path):
pipeline_args.update(cache_dir=global_cache_dir("hub"))
pipeline_args.update(cache_dir=self.globals.cache_dir)
if using_fp16:
pipeline_args.update(torch_dtype=torch.float16)
fp_args_list = [{"revision": "fp16"}, {}]
@ -413,8 +529,8 @@ class ModelManager(object):
if str(e).startswith("fp16 is not a valid"):
pass
else:
print(
f"** An unexpected error occurred while downloading the model: {e})"
self.logger.error(
f"An unexpected error occurred while downloading the model: {e})"
)
if pipeline:
break
@ -432,8 +548,8 @@ class ModelManager(object):
# square images???
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
height = width
print(f" | Default image dimensions = {width} x {height}")
self.logger.debug(f"Default image dimensions = {width} x {height}")
return pipeline, width, height, model_hash
def _load_ckpt_model(self, model_name, mconfig):
@ -443,25 +559,24 @@ class ModelManager(object):
width = mconfig.width
height = mconfig.height
if not os.path.isabs(config):
config = os.path.join(Globals.root, config)
if not os.path.isabs(weights):
weights = os.path.normpath(os.path.join(Globals.root, weights))
root_dir = self.globals.root_dir
config = str(root_dir / config)
weights = str(root_dir / weights)
# Convert to diffusers and return a diffusers pipeline
print(f">> Converting legacy checkpoint {model_name} into a diffusers model...")
self.logger.info(f"Converting legacy checkpoint {model_name} into a diffusers model...")
from . import load_pipeline_from_original_stable_diffusion_ckpt
try:
if self.list_models()[self.current_model]['status'] == 'active':
if self.list_models()[self.current_model]["status"] == "active":
self.offload_model(self.current_model)
except Exception as e:
except Exception:
pass
vae_path = None
if vae:
vae_path = vae if os.path.isabs(vae) else os.path.normpath(os.path.join(Globals.root, vae))
vae_path = str(root_dir / vae)
if self._has_cuda():
torch.cuda.empty_cache()
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
@ -493,9 +608,7 @@ class ModelManager(object):
)
if "path" in mconfig and mconfig["path"] is not None:
path = Path(mconfig["path"])
if not path.is_absolute():
path = Path(Globals.root, path).resolve()
path = self.globals.root_dir / Path(mconfig["path"])
return path
elif "repo_id" in mconfig:
return mconfig["repo_id"]
@ -510,7 +623,7 @@ class ModelManager(object):
if model_name not in self.models:
return
print(f">> Offloading {model_name} to CPU")
self.logger.info(f"Offloading {model_name} to CPU")
model = self.models[model_name]["model"]
model.offload_all()
self.current_model = None
@ -526,30 +639,26 @@ class ModelManager(object):
and option to exit if an infected file is identified.
"""
# scan model
print(f" | Scanning Model: {model_name}")
self.logger.debug(f"Scanning Model: {model_name}")
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
if scan_result.infected_files == 1:
print(f"\n### Issues Found In Model: {scan_result.issues_count}")
print(
"### WARNING: The model you are trying to load seems to be infected."
)
print("### For your safety, InvokeAI will not load this model.")
print("### Please use checkpoints from trusted sources.")
print("### Exiting InvokeAI")
self.logger.critical(f"Issues Found In Model: {scan_result.issues_count}")
self.logger.critical("The model you are trying to load seems to be infected.")
self.logger.critical("For your safety, InvokeAI will not load this model.")
self.logger.critical("Please use checkpoints from trusted sources.")
self.logger.critical("Exiting InvokeAI")
sys.exit()
else:
print(
"\n### WARNING: InvokeAI was unable to scan the model you are using."
)
self.logger.warning("InvokeAI was unable to scan the model you are using.")
model_safe_check_fail = ask_user(
"Do you want to to continue loading the model?", ["y", "n"]
)
if model_safe_check_fail.lower() != "y":
print("### Exiting InvokeAI")
self.logger.critical("Exiting InvokeAI")
sys.exit()
else:
print(" | Model scanned ok")
self.logger.debug("Model scanned ok")
def import_diffuser_model(
self,
@ -571,9 +680,7 @@ class ModelManager(object):
models.yaml file.
"""
model_name = model_name or Path(repo_or_path).stem
model_description = (
description or f"Imported diffusers model {model_name}"
)
model_description = description or f"Imported diffusers model {model_name}"
new_config = dict(
description=model_description,
vae=vae,
@ -602,7 +709,7 @@ class ModelManager(object):
SDLegacyType.V2_v (V2 using 'v_prediction' prediction type)
SDLegacyType.UNKNOWN
"""
global_step = checkpoint.get('global_step')
global_step = checkpoint.get("global_step")
state_dict = checkpoint.get("state_dict") or checkpoint
try:
@ -628,13 +735,13 @@ class ModelManager(object):
return SDLegacyType.UNKNOWN
def heuristic_import(
self,
path_url_or_repo: str,
model_name: str = None,
description: str = None,
model_config_file: Path = None,
commit_to_conf: Path = None,
config_file_callback: Callable[[Path], Path] = None,
self,
path_url_or_repo: str,
model_name: str = None,
description: str = None,
model_config_file: Path = None,
commit_to_conf: Path = None,
config_file_callback: Callable[[Path], Path] = None,
) -> str:
"""Accept a string which could be:
- a HF diffusers repo_id
@ -668,26 +775,24 @@ class ModelManager(object):
model_path: Path = None
thing = path_url_or_repo # to save typing
print(f">> Probing {thing} for import")
self.logger.info(f"Probing {thing} for import")
if thing.startswith(("http:", "https:", "ftp:")):
print(f" | {thing} appears to be a URL")
self.logger.info(f"{thing} appears to be a URL")
model_path = self._resolve_path(
thing, "models/ldm/stable-diffusion-v1"
) # _resolve_path does a download if needed
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
print(
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
)
self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import")
return
else:
print(f" | {thing} appears to be a checkpoint file on disk")
self.logger.debug(f"{thing} appears to be a checkpoint file on disk")
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
print(f" | {thing} appears to be a diffusers file on disk")
self.logger.debug(f"{thing} appears to be a diffusers file on disk")
model_name = self.import_diffuser_model(
thing,
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
@ -698,34 +803,30 @@ class ModelManager(object):
elif Path(thing).is_dir():
if (Path(thing) / "model_index.json").exists():
print(f" | {thing} appears to be a diffusers model.")
self.logger.debug(f"{thing} appears to be a diffusers model.")
model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf
)
else:
print(
f" |{thing} appears to be a directory. Will scan for models to import"
)
self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import")
for m in list(Path(thing).rglob("*.ckpt")) + list(
Path(thing).rglob("*.safetensors")
):
if model_name := self.heuristic_import(
str(m), commit_to_conf=commit_to_conf
):
print(f" >> {model_name} successfully imported")
self.logger.info(f"{model_name} successfully imported")
return model_name
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
print(f" | {thing} appears to be a HuggingFace diffusers repo_id")
self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id")
model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf
)
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
return model_name
else:
print(
f"** {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id"
)
self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
# Model_path is set in the event of a legacy checkpoint file.
# If not set, we're all done
@ -733,13 +834,13 @@ class ModelManager(object):
return
if model_path.stem in self.config: # already imported
print(" | Already imported. Skipping")
self.logger.debug("Already imported. Skipping")
return model_path.stem
# another round of heuristics to guess the correct config file.
checkpoint = None
if model_path.suffix in [".ckpt",".pt"]:
self.scan_model(model_path,model_path)
if model_path.suffix in [".ckpt", ".pt"]:
self.scan_model(model_path, model_path)
checkpoint = torch.load(model_path)
else:
checkpoint = safetensors.torch.load_file(model_path)
@ -749,42 +850,30 @@ class ModelManager(object):
# look for a like-named .yaml file in same directory
if model_path.with_suffix(".yaml").exists():
model_config_file = model_path.with_suffix(".yaml")
print(f" | Using config file {model_config_file.name}")
self.logger.debug(f"Using config file {model_config_file.name}")
else:
model_type = self.probe_model_type(checkpoint)
if model_type == SDLegacyType.V1:
print(" | SD-v1 model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inference.yaml"
)
self.logger.debug("SD-v1 model detected")
model_config_file = self.globals.legacy_conf_path / "v1-inference.yaml"
elif model_type == SDLegacyType.V1_INPAINT:
print(" | SD-v1 inpainting model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml"
)
self.logger.debug("SD-v1 inpainting model detected")
model_config_file = self.globals.legacy_conf_path / "v1-inpainting-inference.yaml",
elif model_type == SDLegacyType.V2_v:
print(
" | SD-v2-v model detected"
)
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
)
self.logger.debug("SD-v2-v model detected")
model_config_file = self.globals.legacy_conf_path / "v2-inference-v.yaml"
elif model_type == SDLegacyType.V2_e:
print(
" | SD-v2-e model detected"
)
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference.yaml"
)
self.logger.debug("SD-v2-e model detected")
model_config_file = self.globals.legacy_conf_path / "v2-inference.yaml"
elif model_type == SDLegacyType.V2:
print(
f"** {thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
self.logger.warning(
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
)
return
else:
print(
f"** {thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
self.logger.warning(
f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
)
return
@ -800,12 +889,10 @@ class ModelManager(object):
for suffix in ["pt", "ckpt", "safetensors"]:
if (model_path.with_suffix(f".vae.{suffix}")).exists():
vae_path = model_path.with_suffix(f".vae.{suffix}")
print(f" | Using VAE file {vae_path.name}")
self.logger.debug(f"Using VAE file {vae_path.name}")
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
diffuser_path = Path(
Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem
)
diffuser_path = self.globals.root_dir / "models/converted_ckpts" / model_path.stem
model_name = self.convert_and_import(
model_path,
diffusers_path=diffuser_path,
@ -820,16 +907,16 @@ class ModelManager(object):
return model_name
def convert_and_import(
self,
ckpt_path: Path,
diffusers_path: Path,
model_name=None,
model_description=None,
vae:dict=None,
vae_path:Path=None,
original_config_file: Path = None,
commit_to_conf: Path = None,
scan_needed: bool=True,
self,
ckpt_path: Path,
diffusers_path: Path,
model_name=None,
model_description=None,
vae: dict = None,
vae_path: Path = None,
original_config_file: Path = None,
commit_to_conf: Path = None,
scan_needed: bool = True,
) -> str:
"""
Convert a legacy ckpt weights file to diffuser model and import
@ -846,21 +933,21 @@ class ModelManager(object):
from . import convert_ckpt_to_diffusers
if diffusers_path.exists():
print(
f"ERROR: The path {str(diffusers_path)} already exists. Please move or remove it and try again."
self.logger.error(
f"The path {str(diffusers_path)} already exists. Please move or remove it and try again."
)
return
model_name = model_name or diffusers_path.name
model_description = model_description or f"Converted version of {model_name}"
print(f" | Converting {model_name} to diffusers (30-60s)")
self.logger.debug(f"Converting {model_name} to diffusers (30-60s)")
try:
# By passing the specified VAE to the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file
vae_model=None
vae_model = None
if vae:
vae_model=self._load_vae(vae)
vae_path=None
vae_model = self._load_vae(vae)
vae_path = None
convert_ckpt_to_diffusers(
ckpt_path,
diffusers_path,
@ -870,10 +957,10 @@ class ModelManager(object):
vae_path=vae_path,
scan_needed=scan_needed,
)
print(
f" | Success. Converted model is now located at {str(diffusers_path)}"
self.logger.debug(
f"Success. Converted model is now located at {str(diffusers_path)}"
)
print(f" | Writing new config file entry for {model_name}")
self.logger.debug(f"Writing new config file entry for {model_name}")
new_config = dict(
path=str(diffusers_path),
description=model_description,
@ -884,17 +971,17 @@ class ModelManager(object):
self.add_model(model_name, new_config, True)
if commit_to_conf:
self.commit(commit_to_conf)
print(" | Conversion succeeded")
self.logger.debug("Conversion succeeded")
except Exception as e:
print(f"** Conversion failed: {str(e)}")
print(
"** If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
self.logger.warning(f"Conversion failed: {str(e)}")
self.logger.warning(
"If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
)
return model_name
def search_models(self, search_folder):
print(f">> Finding Models In: {search_folder}")
self.logger.info(f"Finding Models In: {search_folder}")
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
@ -918,8 +1005,8 @@ class ModelManager(object):
num_loaded_models = len(self.models)
if num_loaded_models >= self.max_loaded_models:
least_recent_model = self._pop_oldest_model()
print(
f">> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
self.logger.info(
f"Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
)
if least_recent_model is not None:
del self.models[least_recent_model]
@ -927,8 +1014,8 @@ class ModelManager(object):
def print_vram_usage(self) -> None:
if self._has_cuda:
print(
">> Current VRAM usage: ",
self.logger.info(
"Current VRAM usage:"+
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
)
@ -938,9 +1025,7 @@ class ModelManager(object):
"""
yaml_str = OmegaConf.to_yaml(self.config)
if not os.path.isabs(config_file_path):
config_file_path = os.path.normpath(
os.path.join(Globals.root, config_file_path)
)
config_file_path = self.globals.model_conf_path
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
with open(tmpfile, "w", encoding="utf-8") as outfile:
outfile.write(self.preamble())
@ -972,20 +1057,21 @@ class ModelManager(object):
"""
# Three transformer models to check: bert, clip and safety checker, and
# the diffusers as well
models_dir = Path(Globals.root, "models")
config = get_invokeai_config()
models_dir = config.root_dir / "models"
legacy_locations = [
Path(
models_dir,
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker",
),
Path(models_dir, "bert-base-uncased/models--bert-base-uncased"),
Path(
models_dir,
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14",
),
]
legacy_locations.extend(list(global_cache_dir("diffusers").glob('*')))
legacy_cache_dir = config.cache_dir / "../diffusers"
legacy_locations.extend(list(legacy_cache_dir.glob("*")))
legacy_layout = False
for model in legacy_locations:
legacy_layout = legacy_layout or model.exists()
@ -1003,11 +1089,11 @@ class ModelManager(object):
>> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready.
>> Otherwise press <enter> to continue."""
)
input('continue> ')
input("continue> ")
# transformer files get moved into the hub directory
if cls._is_huggingface_hub_directory_present():
hub = global_cache_dir("hub")
hub = config.cache_dir
else:
hub = models_dir / "hub"
@ -1017,10 +1103,10 @@ class ModelManager(object):
dest = hub / model.stem
if dest.exists() and not source.exists():
continue
print(f"** {source} => {dest}")
cls.logger.info(f"{source} => {dest}")
if source.exists():
if dest.is_symlink():
print(f"** Found symlink at {dest.name}. Not migrating.")
logger.warning(f"Found symlink at {dest.name}. Not migrating.")
elif dest.exists():
if source.is_dir():
rmtree(source)
@ -1037,7 +1123,7 @@ class ModelManager(object):
]
for d in empty:
os.rmdir(d)
print("** Migration is done. Continuing...")
cls.logger.info("Migration is done. Continuing...")
def _resolve_path(
self, source: Union[str, Path], dest_directory: str
@ -1046,13 +1132,12 @@ class ModelManager(object):
if str(source).startswith(("http:", "https:", "ftp:")):
dest_directory = Path(dest_directory)
if not dest_directory.is_absolute():
dest_directory = Globals.root / dest_directory
dest_directory = self.globals.root_dir / dest_directory
dest_directory.mkdir(parents=True, exist_ok=True)
resolved_path = download_with_resume(str(source), dest_directory)
else:
if not os.path.isabs(source):
source = os.path.join(Globals.root, source)
resolved_path = Path(source)
source = self.globals.root_dir / source
resolved_path = source
return resolved_path
def _invalidate_cached_model(self, model_name: str) -> None:
@ -1080,29 +1165,29 @@ class ModelManager(object):
def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline):
if self.embedding_path is not None:
print(f">> Loading embeddings from {self.embedding_path}")
self.logger.info(f"Loading embeddings from {self.embedding_path}")
for root, _, files in os.walk(self.embedding_path):
for name in files:
ti_path = os.path.join(root, name)
model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True
)
print(
f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
self.logger.info(
f'Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
)
def _has_cuda(self) -> bool:
return self.device.type == "cuda"
def _diffuser_sha256(
self, name_or_path: Union[str, Path], chunksize=4096
self, name_or_path: Union[str, Path], chunksize=16777216
) -> Union[str, bytes]:
path = None
if isinstance(name_or_path, Path):
path = name_or_path
else:
owner, repo = name_or_path.split("/")
path = Path(global_cache_dir("hub") / f"models--{owner}--{repo}")
path = self.globals.cache_dir / f"models--{owner}--{repo}"
if not path.exists():
return None
hashpath = path / "checksum.sha256"
@ -1110,7 +1195,7 @@ class ModelManager(object):
with open(hashpath) as f:
hash = f.read()
return hash
print(" | Calculating sha256 hash of model files")
self.logger.debug("Calculating sha256 hash of model files")
tic = time.time()
sha = hashlib.sha256()
count = 0
@ -1122,7 +1207,7 @@ class ModelManager(object):
sha.update(chunk)
hash = sha.hexdigest()
toc = time.time()
print(f" | sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
self.logger.debug(f"sha256 = {hash} ({count} files hashed in {toc - tic:4.2f}s)")
with open(hashpath, "w") as f:
f.write(hash)
return hash
@ -1140,13 +1225,13 @@ class ModelManager(object):
hash = f.read()
return hash
print(" | Calculating sha256 hash of weights file")
self.logger.debug("Calculating sha256 hash of weights file")
tic = time.time()
sha = hashlib.sha256()
sha.update(data)
hash = sha.hexdigest()
toc = time.time()
print(f">> sha256 = {hash}", "(%4.2fs)" % (toc - tic))
self.logger.debug(f"sha256 = {hash} "+"(%4.2fs)" % (toc - tic))
with open(hashpath, "w") as f:
f.write(hash)
@ -1163,16 +1248,16 @@ class ModelManager(object):
using_fp16 = self.precision == "float16"
vae_args.update(
cache_dir=global_cache_dir("hub"),
local_files_only=not Globals.internet_available,
cache_dir=self.globals.cache_dir,
local_files_only=not self.globals.internet_available,
)
print(f" | Loading diffusers VAE from {name_or_path}")
self.logger.debug(f"Loading diffusers VAE from {name_or_path}")
if using_fp16:
vae_args.update(torch_dtype=torch.float16)
fp_args_list = [{"revision": "fp16"}, {}]
else:
print(" | Using more accurate float32 precision")
self.logger.debug("Using more accurate float32 precision")
fp_args_list = [{}]
vae = None
@ -1196,13 +1281,13 @@ class ModelManager(object):
break
if not vae and deferred_error:
print(f"** Could not load VAE {name_or_path}: {str(deferred_error)}")
self.logger.warning(f"Could not load VAE {name_or_path}: {str(deferred_error)}")
return vae
@staticmethod
def _delete_model_from_cache(repo_id):
cache_info = scan_cache_dir(global_cache_dir("hub"))
@classmethod
def _delete_model_from_cache(cls,repo_id):
cache_info = scan_cache_dir(get_invokeai_config().cache_dir)
# I'm sure there is a way to do this with comprehensions
# but the code quickly became incomprehensible!
@ -1212,16 +1297,17 @@ class ModelManager(object):
for revision in repo.revisions:
hashes_to_delete.add(revision.commit_hash)
strategy = cache_info.delete_revisions(*hashes_to_delete)
print(
f"** Deletion of this model is expected to free {strategy.expected_freed_size_str}"
cls.logger.warning(
f"Deletion of this model is expected to free {strategy.expected_freed_size_str}"
)
strategy.execute()
@staticmethod
def _abs_path(path: str | Path) -> Path:
globals = get_invokeai_config()
if path is None or Path(path).is_absolute():
return path
return Path(Globals.root, path).resolve()
return Path(globals.root_dir, path).resolve()
@staticmethod
def _is_huggingface_hub_directory_present() -> bool:

View File

@ -16,66 +16,59 @@ from compel.prompt_parser import (
FlattenedPrompt,
Fragment,
PromptParser,
Conjunction,
)
from invokeai.backend.globals import Globals
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
from ..stable_diffusion import InvokeAIDiffuserComponent
from ..util import torch_dtype
def get_uc_and_c_and_ec(
prompt_string, model, log_tokens=False, skip_normalize_legacy_blend=False
):
def get_uc_and_c_and_ec(prompt_string,
model: InvokeAIDiffuserComponent,
log_tokens=False, skip_normalize_legacy_blend=False):
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
model.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_string
)
model.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(prompt_string)
tokenizer = model.tokenizer
compel = Compel(
tokenizer=tokenizer,
text_encoder=model.text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False
)
compel = Compel(tokenizer=model.tokenizer,
text_encoder=model.text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=False,
)
config = get_invokeai_config()
# get rid of any newline characters
prompt_string = prompt_string.replace("\n", " ")
(
positive_prompt_string,
negative_prompt_string,
) = split_prompt_to_positive_and_negative(prompt_string)
legacy_blend = try_parse_legacy_blend(
positive_prompt_string, skip_normalize_legacy_blend
)
positive_prompt: Union[FlattenedPrompt, Blend]
if legacy_blend is not None:
positive_prompt = legacy_blend
else:
positive_prompt = Compel.parse_prompt_string(positive_prompt_string)
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(
negative_prompt_string
)
positive_prompt_string, negative_prompt_string = split_prompt_to_positive_and_negative(prompt_string)
if log_tokens or getattr(Globals, "log_tokenization", False):
log_tokenization(positive_prompt, negative_prompt, tokenizer=tokenizer)
legacy_blend = try_parse_legacy_blend(positive_prompt_string, skip_normalize_legacy_blend)
positive_conjunction: Conjunction
if legacy_blend is not None:
positive_conjunction = legacy_blend
else:
positive_conjunction = Compel.parse_prompt_string(positive_prompt_string)
positive_prompt = positive_conjunction.prompts[0]
negative_conjunction = Compel.parse_prompt_string(negative_prompt_string)
negative_prompt: FlattenedPrompt | Blend = negative_conjunction.prompts[0]
tokens_count = get_max_token_count(model.tokenizer, positive_prompt)
if log_tokens or config.log_tokenization:
log_tokenization(positive_prompt, negative_prompt, tokenizer=model.tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(positive_prompt)
uc, _ = compel.build_conditioning_tensor_for_prompt_object(negative_prompt)
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
tokens_count = get_max_token_count(tokenizer, positive_prompt)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=tokens_count,
cross_attention_control_args=options.get("cross_attention_control", None),
)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(tokens_count_including_eos_bos=tokens_count,
cross_attention_control_args=options.get(
'cross_attention_control', None))
return uc, c, ec
def get_prompt_structure(
prompt_string, skip_normalize_legacy_blend: bool = False
) -> (Union[FlattenedPrompt, Blend], FlattenedPrompt):
@ -86,18 +79,17 @@ def get_prompt_structure(
legacy_blend = try_parse_legacy_blend(
positive_prompt_string, skip_normalize_legacy_blend
)
positive_prompt: Union[FlattenedPrompt, Blend]
positive_prompt: Conjunction
if legacy_blend is not None:
positive_prompt = legacy_blend
positive_conjunction = legacy_blend
else:
positive_prompt = Compel.parse_prompt_string(positive_prompt_string)
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(
negative_prompt_string
)
positive_conjunction = Compel.parse_prompt_string(positive_prompt_string)
positive_prompt = positive_conjunction.prompts[0]
negative_conjunction = Compel.parse_prompt_string(negative_prompt_string)
negative_prompt: FlattenedPrompt|Blend = negative_conjunction.prompts[0]
return positive_prompt, negative_prompt
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
) -> int:
@ -162,8 +154,8 @@ def log_tokenization(
negative_prompt: Union[Blend, FlattenedPrompt],
tokenizer,
):
print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}")
print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
logger.info(f"[TOKENLOG] Parsed Prompt: {positive_prompt}")
logger.info(f"[TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
log_tokenization_for_prompt_object(positive_prompt, tokenizer)
log_tokenization_for_prompt_object(
@ -237,29 +229,28 @@ def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_t
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
logger.info(f'[TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
logger.debug(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")
logger.info(f"[TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
logger.debug(f"{discarded}\x1b[0m")
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]:
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Conjunction]:
weighted_subprompts = split_weighted_subprompts(text, skip_normalize=skip_normalize)
if len(weighted_subprompts) <= 1:
return None
strings = [x[0] for x in weighted_subprompts]
weights = [x[1] for x in weighted_subprompts]
pp = PromptParser()
parsed_conjunctions = [pp.parse_conjunction(x) for x in strings]
flattened_prompts = [x.prompts[0] for x in parsed_conjunctions]
return Blend(
prompts=flattened_prompts, weights=weights, normalize_weights=not skip_normalize
)
flattened_prompts = []
weights = []
for i, x in enumerate(parsed_conjunctions):
if len(x.prompts)>0:
flattened_prompts.append(x.prompts[0])
weights.append(weighted_subprompts[i][1])
return Conjunction([Blend(prompts=flattened_prompts, weights=weights, normalize_weights=not skip_normalize)])
def split_weighted_subprompts(text, skip_normalize=False) -> list:
"""
@ -295,8 +286,8 @@ def split_weighted_subprompts(text, skip_normalize=False) -> list:
return parsed_prompts
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
if weight_sum == 0:
print(
"* Warning: Subprompt weights add up to zero. Discarding and using even weights instead."
logger.warning(
"Subprompt weights add up to zero. Discarding and using even weights instead."
)
equal_weight = 1 / max(len(parsed_prompts), 1)
return [(x[0], equal_weight) for x in parsed_prompts]

View File

@ -1,3 +1,5 @@
import invokeai.backend.util.logging as logger
class Restoration:
def __init__(self) -> None:
pass
@ -8,17 +10,17 @@ class Restoration:
# Load GFPGAN
gfpgan = self.load_gfpgan(gfpgan_model_path)
if gfpgan.gfpgan_model_exists:
print(">> GFPGAN Initialized")
logger.info("GFPGAN Initialized")
else:
print(">> GFPGAN Disabled")
logger.info("GFPGAN Disabled")
gfpgan = None
# Load CodeFormer
codeformer = self.load_codeformer()
if codeformer.codeformer_model_exists:
print(">> CodeFormer Initialized")
logger.info("CodeFormer Initialized")
else:
print(">> CodeFormer Disabled")
logger.info("CodeFormer Disabled")
codeformer = None
return gfpgan, codeformer
@ -39,5 +41,5 @@ class Restoration:
from .realesrgan import ESRGAN
esrgan = ESRGAN(esrgan_bg_tile)
print(">> ESRGAN Initialized")
logger.info("ESRGAN Initialized")
return esrgan

View File

@ -5,7 +5,8 @@ import warnings
import numpy as np
import torch
from ..globals import Globals
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
pretrained_model_url = (
"https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
@ -16,19 +17,19 @@ class CodeFormerRestoration:
def __init__(
self, codeformer_dir="models/codeformer", codeformer_model_path="codeformer.pth"
) -> None:
if not os.path.isabs(codeformer_dir):
codeformer_dir = os.path.join(Globals.root, codeformer_dir)
self.model_path = os.path.join(codeformer_dir, codeformer_model_path)
self.codeformer_model_exists = os.path.isfile(self.model_path)
self.globals = get_invokeai_config()
codeformer_dir = self.globals.root_dir / codeformer_dir
self.model_path = codeformer_dir / codeformer_model_path
self.codeformer_model_exists = self.model_path.exists()
if not self.codeformer_model_exists:
print("## NOT FOUND: CodeFormer model not found at " + self.model_path)
logger.error("NOT FOUND: CodeFormer model not found at " + self.model_path)
sys.path.append(os.path.abspath(codeformer_dir))
def process(self, image, strength, device, seed=None, fidelity=0.75):
if seed is not None:
print(f">> CodeFormer - Restoring Faces for image seed:{seed}")
logger.info(f"CodeFormer - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
@ -70,9 +71,7 @@ class CodeFormerRestoration:
upscale_factor=1,
use_parse=True,
device=device,
model_rootpath=os.path.join(
Globals.root, "models", "gfpgan", "weights"
),
model_rootpath = self.globals.root_dir / "gfpgan" / "weights"
)
face_helper.clean_all()
face_helper.read_image(bgr_image_array)
@ -97,7 +96,7 @@ class CodeFormerRestoration:
del output
torch.cuda.empty_cache()
except RuntimeError as error:
print(f"\tFailed inference for CodeFormer: {error}.")
logger.error(f"Failed inference for CodeFormer: {error}.")
restored_face = cropped_face
restored_face = restored_face.astype("uint8")

View File

@ -6,20 +6,19 @@ import numpy as np
import torch
from PIL import Image
from invokeai.backend.globals import Globals
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
class GFPGAN:
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
self.globals = get_invokeai_config()
if not os.path.isabs(gfpgan_model_path):
gfpgan_model_path = os.path.abspath(
os.path.join(Globals.root, gfpgan_model_path)
)
gfpgan_model_path = self.globals.root_dir / gfpgan_model_path
self.model_path = gfpgan_model_path
self.gfpgan_model_exists = os.path.isfile(self.model_path)
if not self.gfpgan_model_exists:
print("## NOT FOUND: GFPGAN model not found at " + self.model_path)
logger.error("NOT FOUND: GFPGAN model not found at " + self.model_path)
return None
def model_exists(self):
@ -27,13 +26,13 @@ class GFPGAN:
def process(self, image, strength: float, seed: str = None):
if seed is not None:
print(f">> GFPGAN - Restoring Faces for image seed:{seed}")
logger.info(f"GFPGAN - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
cwd = os.getcwd()
os.chdir(os.path.join(Globals.root, "models"))
os.chdir(self.globals.root_dir / 'models')
try:
from gfpgan import GFPGANer
@ -47,14 +46,14 @@ class GFPGAN:
except Exception:
import traceback
print(">> Error loading GFPGAN:", file=sys.stderr)
logger.error("Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
os.chdir(cwd)
if self.gfpgan is None:
print(f">> WARNING: GFPGAN not initialized.")
print(
f">> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
logger.warning("WARNING: GFPGAN not initialized.")
logger.warning(
f"Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
)
image = image.convert("RGB")

View File

@ -1,7 +1,7 @@
import math
from PIL import Image
import invokeai.backend.util.logging as logger
class Outcrop(object):
def __init__(
@ -82,7 +82,7 @@ class Outcrop(object):
pixels = extents[direction]
# round pixels up to the nearest 64
pixels = math.ceil(pixels / 64) * 64
print(f">> extending image {direction}ward by {pixels} pixels")
logger.info(f"extending image {direction}ward by {pixels} pixels")
image = self._rotate(image, direction)
image = self._extend(image, pixels)
image = self._rotate(image, direction, reverse=True)

View File

@ -1,4 +1,3 @@
import os
import warnings
import numpy as np
@ -6,18 +5,14 @@ import torch
from PIL import Image
from PIL.Image import Image as ImageType
from invokeai.backend.globals import Globals
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
config = get_invokeai_config()
class ESRGAN:
def __init__(self, bg_tile_size=400) -> None:
self.bg_tile_size = bg_tile_size
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
def load_esrgan_bg_upsampler(self, denoise_str):
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
@ -35,12 +30,8 @@ class ESRGAN:
upscale=4,
act_type="prelu",
)
model_path = os.path.join(
Globals.root, "models/realesrgan/realesr-general-x4v3.pth"
)
wdn_model_path = os.path.join(
Globals.root, "models/realesrgan/realesr-general-wdn-x4v3.pth"
)
model_path = config.root_dir / "models/realesrgan/realesr-general-x4v3.pth"
wdn_model_path = config.root_dir / "models/realesrgan/realesr-general-wdn-x4v3.pth"
scale = 4
bg_upsampler = RealESRGANer(
@ -74,16 +65,16 @@ class ESRGAN:
import sys
import traceback
print(">> Error loading Real-ESRGAN:", file=sys.stderr)
logger.error("Error loading Real-ESRGAN:")
print(traceback.format_exc(), file=sys.stderr)
if upsampler_scale == 0:
print(">> Real-ESRGAN: Invalid scaling option. Image not upscaled.")
logger.warning("Real-ESRGAN: Invalid scaling option. Image not upscaled.")
return image
if seed is not None:
print(
f">> Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
logger.info(
f"Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
)
# ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB
image = image.convert("RGB")

View File

@ -14,7 +14,8 @@ from PIL import Image, ImageFilter
from transformers import AutoFeatureExtractor
import invokeai.assets.web as web_assets
from .globals import global_cache_dir
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
from .util import CPU_DEVICE
class SafetyChecker(object):
@ -25,10 +26,11 @@ class SafetyChecker(object):
caution = Image.open(path)
self.caution_img = caution.resize((caution.width // 2, caution.height // 2))
self.device = device
config = get_invokeai_config()
try:
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_model_path = global_cache_dir("hub")
safety_model_path = config.cache_dir
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
safety_model_id,
local_files_only=True,
@ -40,8 +42,8 @@ class SafetyChecker(object):
cache_dir=safety_model_path,
)
except Exception:
print(
"** An error was encountered while installing the safety checker:"
logger.error(
"An error was encountered while installing the safety checker:"
)
print(traceback.format_exc())
@ -65,8 +67,8 @@ class SafetyChecker(object):
)
self.safety_checker.to(CPU_DEVICE) # offload
if has_nsfw_concept[0]:
print(
"** An image with potential non-safe content has been detected. A blurred image will be returned. **"
logger.warning(
"An image with potential non-safe content has been detected. A blurred image will be returned."
)
return self.blur(image)
else:

View File

@ -17,15 +17,16 @@ from huggingface_hub import (
hf_hub_url,
)
from invokeai.backend.globals import Globals
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
class HuggingFaceConceptsLibrary(object):
def __init__(self, root=None):
"""
Initialize the Concepts object. May optionally pass a root directory.
"""
self.root = root or Globals.root
self.config = get_invokeai_config()
self.root = root or self.config.root
self.hf_api = HfApi()
self.local_concepts = dict()
self.concept_list = None
@ -57,7 +58,7 @@ class HuggingFaceConceptsLibrary(object):
self.concept_list.extend(list(local_concepts_to_add))
return self.concept_list
return self.concept_list
else:
elif self.config.internet_available is True:
try:
models = self.hf_api.list_models(
filter=ModelFilter(model_name="sd-concepts-library/")
@ -66,13 +67,15 @@ class HuggingFaceConceptsLibrary(object):
# when init, add all in dir. when not init, add only concepts added between init and now
self.concept_list.extend(list(local_concepts_to_add))
except Exception as e:
print(
f" ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
logger.warning(
f"Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
)
print(
" ** You may load .bin and .pt file(s) manually using the --embedding_directory argument."
logger.warning(
"You may load .bin and .pt file(s) manually using the --embedding_directory argument."
)
return self.concept_list
else:
return self.concept_list
def get_concept_model_path(self, concept_name: str) -> str:
"""
@ -81,7 +84,7 @@ class HuggingFaceConceptsLibrary(object):
be downloaded.
"""
if not concept_name in self.list_concepts():
print(
logger.warning(
f"{concept_name} is not a local embedding trigger, nor is it a HuggingFace concept. Generation will continue without the concept."
)
return None
@ -219,7 +222,7 @@ class HuggingFaceConceptsLibrary(object):
if chunk == 0:
bytes += total
print(f">> Downloading {repo_id}...", end="")
logger.info(f"Downloading {repo_id}...", end="")
try:
for file in (
"README.md",
@ -233,22 +236,22 @@ class HuggingFaceConceptsLibrary(object):
)
except ul_error.HTTPError as e:
if e.code == 404:
print(
logger.warning(
f"Concept {concept_name} is not known to the Hugging Face library. Generation will continue without the concept."
)
else:
print(
logger.warning(
f"Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)"
)
os.rmdir(dest)
return False
except ul_error.URLError as e:
print(
f"ERROR while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
logger.error(
f"an error occurred while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
)
os.rmdir(dest)
return False
print("...{:.2f}Kb".format(bytes / 1024))
logger.info("...{:.2f}Kb".format(bytes / 1024))
return succeeded
def _concept_id(self, concept_name: str) -> str:

View File

@ -33,8 +33,7 @@ from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from typing_extensions import ParamSpec
from invokeai.backend.globals import Globals
from invokeai.app.services.config import get_invokeai_config
from ..util import CPU_DEVICE, normalize_device
from .diffusion import (
AttentionMapSaver,
@ -44,7 +43,6 @@ from .diffusion import (
from .offloading import FullyLoadedModelGroup, LazilyLoadedModelGroup, ModelGroup
from .textual_inversion_manager import TextualInversionManager
@dataclass
class PipelineIntermediateState:
run_id: str
@ -348,10 +346,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
"""
if xformers is available, use it, otherwise use sliced attention.
"""
config = get_invokeai_config()
if (
torch.cuda.is_available()
and is_xformers_available()
and not Globals.disable_xformers
and not config.disable_xformers
):
self.enable_xformers_memory_efficient_attention()
else:
@ -445,8 +444,15 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property
def _submodels(self) -> Sequence[torch.nn.Module]:
module_names, _, _ = self.extract_init_dict(dict(self.config))
values = [getattr(self, name) for name in module_names.keys()]
return [m for m in values if isinstance(m, torch.nn.Module)]
submodels = []
for name in module_names.keys():
if hasattr(self, name):
value = getattr(self, name)
else:
value = getattr(self.config, name)
if isinstance(value, torch.nn.Module):
submodels.append(value)
return submodels
def image_from_embeddings(
self,
@ -502,10 +508,13 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
run_id=None,
callback: Callable[[PipelineIntermediateState], None] = None,
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
if self.scheduler.config.get("cpu_only", False):
scheduler_device = torch.device('cpu')
else:
scheduler_device = self._model_group.device_for(self.unet)
if timesteps is None:
self.scheduler.set_timesteps(
num_inference_steps, device=self._model_group.device_for(self.unet)
)
self.scheduler.set_timesteps(num_inference_steps, device=scheduler_device)
timesteps = self.scheduler.timesteps
infer_latents_from_embeddings = GeneratorToCallbackinator(
self.generate_latents_from_embeddings, PipelineIntermediateState
@ -538,13 +547,14 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
additional_guidance = []
extra_conditioning_info = conditioning_data.extra
with self.invokeai_diffuser.custom_attention_context(
extra_conditioning_info=extra_conditioning_info,
step_count=len(self.scheduler.timesteps),
self.invokeai_diffuser.model,
extra_conditioning_info=extra_conditioning_info,
step_count=len(self.scheduler.timesteps),
):
yield PipelineIntermediateState(
run_id=run_id,
step=-1,
timestep=self.scheduler.num_train_timesteps,
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
@ -718,12 +728,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
noise: torch.Tensor,
run_id=None,
callback=None,
) -> InvokeAIStableDiffusionPipelineOutput:
timesteps, _ = self.get_img2img_timesteps(
num_inference_steps,
strength,
device=self._model_group.device_for(self.unet),
)
) -> InvokeAIStableDiffusionPipelineOutput:
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength)
result_latents, result_attention_maps = self.latents_from_embeddings(
latents=initial_latents if strength < 1.0 else torch.zeros_like(
initial_latents, device=initial_latents.device, dtype=initial_latents.dtype
@ -749,13 +755,19 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
return self.check_for_safety(output, dtype=conditioning_data.dtype)
def get_img2img_timesteps(
self, num_inference_steps: int, strength: float, device
self, num_inference_steps: int, strength: float, device=None
) -> (torch.Tensor, int):
img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components)
assert img2img_pipeline.scheduler is self.scheduler
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
if self.scheduler.config.get("cpu_only", False):
scheduler_device = torch.device('cpu')
else:
scheduler_device = self._model_group.device_for(self.unet)
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=scheduler_device)
timesteps, adjusted_steps = img2img_pipeline.get_timesteps(
num_inference_steps, strength, device=device
num_inference_steps, strength, device=scheduler_device
)
# Workaround for low strength resulting in zero timesteps.
# TODO: submit upstream fix for zero-step img2img
@ -789,9 +801,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if init_image.dim() == 3:
init_image = init_image.unsqueeze(0)
timesteps, _ = self.get_img2img_timesteps(
num_inference_steps, strength, device=device
)
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength)
# 6. Prepare latent variables
# can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents
@ -915,7 +925,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property
def channels(self) -> int:
"""Compatible with DiffusionWrapper"""
return self.unet.in_channels
return self.unet.config.in_channels
def decode_latents(self, latents):
# Explicit call to get the vae loaded, since `decode` isn't the forward method.

View File

@ -10,13 +10,13 @@ import diffusers
import psutil
import torch
from compel.cross_attention_control import Arguments
from diffusers.models.cross_attention import AttnProcessor
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.models.attention_processor import AttentionProcessor
from torch import nn
import invokeai.backend.util.logging as logger
from ...util import torch_dtype
class CrossAttentionType(enum.Enum):
SELF = 1
TOKENS = 2
@ -188,7 +188,7 @@ class Context:
class InvokeAICrossAttentionMixin:
"""
Enable InvokeAI-flavoured CrossAttention calculation, which does aggressive low-memory slicing and calls
Enable InvokeAI-flavoured Attention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection.
"""
@ -209,7 +209,7 @@ class InvokeAICrossAttentionMixin:
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current CrossAttention module for which the callback is being invoked.
`module` is the current Attention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
@ -345,16 +345,15 @@ class InvokeAICrossAttentionMixin:
def restore_default_cross_attention(
model,
is_running_diffusers: bool,
restore_attention_processor: Optional[AttnProcessor] = None,
restore_attention_processor: Optional[AttentionProcessor] = None,
):
if is_running_diffusers:
unet = model
unet.set_attn_processor(restore_attention_processor or CrossAttnProcessor())
unet.set_attn_processor(restore_attention_processor or AttnProcessor())
else:
remove_attention_function(model)
def override_cross_attention(model, context: Context, is_running_diffusers=False):
def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: Context):
"""
Inject attention parameters and functions into the passed in model to enable cross attention editing.
@ -373,47 +372,29 @@ def override_cross_attention(model, context: Context, is_running_diffusers=False
indices = torch.arange(max_length, dtype=torch.long)
for name, a0, a1, b0, b1 in context.arguments.edit_opcodes:
if b0 < max_length:
if name == "equal": # or (name == "replace" and a1 - a0 == b1 - b0):
if name == "equal":# or (name == "replace" and a1 - a0 == b1 - b0):
# these tokens have not been edited
indices[b0:b1] = indices_target[a0:a1]
mask[b0:b1] = 1
context.cross_attention_mask = mask.to(device)
context.cross_attention_index_map = indices.to(device)
if is_running_diffusers:
unet = model
old_attn_processors = unet.attn_processors
if torch.backends.mps.is_available():
# see note in StableDiffusionGeneratorPipeline.__init__ about borked slicing on MPS
unet.set_attn_processor(SwapCrossAttnProcessor())
else:
# try to re-use an existing slice size
default_slice_size = 4
slice_size = next(
(
p.slice_size
for p in old_attn_processors.values()
if type(p) is SlicedAttnProcessor
),
default_slice_size,
)
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
return old_attn_processors
old_attn_processors = unet.attn_processors
if torch.backends.mps.is_available():
# see note in StableDiffusionGeneratorPipeline.__init__ about borked slicing on MPS
unet.set_attn_processor(SwapCrossAttnProcessor())
else:
context.register_cross_attention_modules(model)
inject_attention_function(model, context)
return None
# try to re-use an existing slice size
default_slice_size = 4
slice_size = next((p.slice_size for p in old_attn_processors.values() if type(p) is SlicedAttnProcessor), default_slice_size)
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
def get_cross_attention_modules(
model, which: CrossAttentionType
) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
from ldm.modules.attention import CrossAttention # avoid circular import
cross_attention_class: type = (
InvokeAIDiffusersCrossAttention
if isinstance(model, UNet2DConditionModel)
else CrossAttention
)
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [
@ -425,13 +406,13 @@ def get_cross_attention_modules(
expected_count = 16
if cross_attention_modules_in_model_count != expected_count:
# non-fatal error but .swap() won't work.
print(
logger.error(
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
+ f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed "
+ f"or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
+ "or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
+ f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows "
+ f"what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not "
+ f"work properly until it is fixed."
+ "what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not "
+ "work properly until it is fixed."
)
return attention_module_tuples
@ -550,7 +531,7 @@ def get_mem_free_total(device):
class InvokeAIDiffusersCrossAttention(
diffusers.models.attention.CrossAttention, InvokeAICrossAttentionMixin
diffusers.models.attention.Attention, InvokeAICrossAttentionMixin
):
def __init__(self, **kwargs):
super().__init__(**kwargs)
@ -572,8 +553,8 @@ class InvokeAIDiffusersCrossAttention(
"""
# base implementation
class CrossAttnProcessor:
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
class AttnProcessor:
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
@ -601,9 +582,9 @@ class CrossAttnProcessor:
from dataclasses import dataclass, field
import torch
from diffusers.models.cross_attention import (
CrossAttention,
CrossAttnProcessor,
from diffusers.models.attention_processor import (
Attention,
AttnProcessor,
SlicedAttnProcessor,
)
@ -653,7 +634,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
def __call__(
self,
attn: CrossAttention,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,

View File

@ -5,10 +5,12 @@ from typing import Any, Callable, Dict, Optional, Union
import numpy as np
import torch
from diffusers.models.cross_attention import AttnProcessor
from diffusers import UNet2DConditionModel
from diffusers.models.attention_processor import AttentionProcessor
from typing_extensions import TypeAlias
from invokeai.backend.globals import Globals
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
from .cross_attention_control import (
Arguments,
@ -16,8 +18,8 @@ from .cross_attention_control import (
CrossAttentionType,
SwapCrossAttnContext,
get_cross_attention_modules,
override_cross_attention,
restore_default_cross_attention,
setup_cross_attention_control_attention_processors,
)
from .cross_attention_map_saving import AttentionMapSaver
@ -30,7 +32,6 @@ ModelForwardCallback: TypeAlias = Union[
Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor],
]
@dataclass(frozen=True)
class PostprocessingSettings:
threshold: float
@ -71,37 +72,49 @@ class InvokeAIDiffuserComponent:
:param model: the unet model to pass through to cross attention control
:param model_forward_callback: a lambda with arguments (x, sigma, conditioning_to_apply). will be called repeatedly. most likely, this should simply call model.forward(x, sigma, conditioning)
"""
config = get_invokeai_config()
self.conditioning = None
self.model = model
self.is_running_diffusers = is_running_diffusers
self.model_forward_callback = model_forward_callback
self.cross_attention_control_context = None
self.sequential_guidance = Globals.sequential_guidance
self.sequential_guidance = config.sequential_guidance
@classmethod
@contextmanager
def custom_attention_context(
self, extra_conditioning_info: Optional[ExtraConditioningInfo], step_count: int
cls,
unet: UNet2DConditionModel, # note: also may futz with the text encoder depending on requested LoRAs
extra_conditioning_info: Optional[ExtraConditioningInfo],
step_count: int
):
do_swap = (
extra_conditioning_info is not None
and extra_conditioning_info.wants_cross_attention_control
)
old_attn_processor = None
if do_swap:
old_attn_processor = self.override_cross_attention(
extra_conditioning_info, step_count=step_count
)
old_attn_processors = None
if extra_conditioning_info and (
extra_conditioning_info.wants_cross_attention_control
):
old_attn_processors = unet.attn_processors
# Load lora conditions into the model
if extra_conditioning_info.wants_cross_attention_control:
cross_attention_control_context = Context(
arguments=extra_conditioning_info.cross_attention_control_args,
step_count=step_count,
)
setup_cross_attention_control_attention_processors(
unet,
cross_attention_control_context,
)
try:
yield None
finally:
if old_attn_processor is not None:
self.restore_default_cross_attention(old_attn_processor)
if old_attn_processors is not None:
unet.set_attn_processor(old_attn_processors)
# TODO resuscitate attention map saving
# self.remove_attention_map_saving()
def override_cross_attention(
self, conditioning: ExtraConditioningInfo, step_count: int
) -> Dict[str, AttnProcessor]:
) -> Dict[str, AttentionProcessor]:
"""
setup cross attention .swap control. for diffusers this replaces the attention processor, so
the previous attention processor is returned so that the caller can restore it later.
@ -118,7 +131,7 @@ class InvokeAIDiffuserComponent:
)
def restore_default_cross_attention(
self, restore_attention_processor: Optional["AttnProcessor"] = None
self, restore_attention_processor: Optional["AttentionProcessor"] = None
):
self.conditioning = None
self.cross_attention_control_context = None
@ -262,7 +275,7 @@ class InvokeAIDiffuserComponent:
# TODO remove when compvis codepath support is dropped
if step_index is None and sigma is None:
raise ValueError(
f"Either step_index or sigma is required when doing cross attention control, but both are None."
"Either step_index or sigma is required when doing cross attention control, but both are None."
)
percent_through = self.estimate_percent_through(step_index, sigma)
return percent_through
@ -466,10 +479,14 @@ class InvokeAIDiffuserComponent:
outside = torch.count_nonzero(
(latents < -current_threshold) | (latents > current_threshold)
)
print(
f"\nThreshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})\n"
f" | min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}\n"
f" | {outside / latents.numel() * 100:.2f}% values outside threshold"
logger.info(
f"Threshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})"
)
logger.debug(
f"min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}"
)
logger.debug(
f"{outside / latents.numel() * 100:.2f}% values outside threshold"
)
if maxval < current_threshold and minval > -current_threshold:
@ -496,9 +513,11 @@ class InvokeAIDiffuserComponent:
)
if self.debug_thresholding:
print(
f" | min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})\n"
f" | {num_altered / latents.numel() * 100:.2f}% values altered"
logger.debug(
f"min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})"
)
logger.debug(
f"{num_altered / latents.numel() * 100:.2f}% values altered"
)
return latents
@ -599,7 +618,6 @@ class InvokeAIDiffuserComponent:
)
# below is fugly omg
num_actual_conditionings = len(c_or_weighted_c_list)
conditionings = [uc] + [c for c, weight in weighted_cond_list]
weights = [1] + [weight for c, weight in weighted_cond_list]
chunk_count = ceil(len(conditionings) / 2)

View File

@ -10,7 +10,7 @@ from torchvision.utils import make_grid
# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
import invokeai.backend.util.logging as logger
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
@ -191,7 +191,7 @@ def mkdirs(paths):
def mkdir_and_rename(path):
if os.path.exists(path):
new_name = path + "_archived_" + get_timestamp()
print("Path already exists. Rename it to [{:s}]".format(new_name))
logger.error("Path already exists. Rename it to [{:s}]".format(new_name))
os.replace(path, new_name)
os.makedirs(path)

View File

@ -0,0 +1 @@
from .schedulers import SCHEDULER_MAP

View File

@ -0,0 +1,23 @@
from diffusers import DDIMScheduler, DPMSolverMultistepScheduler, KDPM2DiscreteScheduler, \
KDPM2AncestralDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, \
HeunDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, UniPCMultistepScheduler, \
DPMSolverSinglestepScheduler, DEISMultistepScheduler, DDPMScheduler
SCHEDULER_MAP = dict(
ddim=(DDIMScheduler, dict()),
ddpm=(DDPMScheduler, dict()),
deis=(DEISMultistepScheduler, dict()),
lms=(LMSDiscreteScheduler, dict()),
pndm=(PNDMScheduler, dict()),
heun=(HeunDiscreteScheduler, dict(use_karras_sigmas=False)),
heun_k=(HeunDiscreteScheduler, dict(use_karras_sigmas=True)),
euler=(EulerDiscreteScheduler, dict(use_karras_sigmas=False)),
euler_k=(EulerDiscreteScheduler, dict(use_karras_sigmas=True)),
euler_a=(EulerAncestralDiscreteScheduler, dict()),
kdpm_2=(KDPM2DiscreteScheduler, dict()),
kdpm_2_a=(KDPM2AncestralDiscreteScheduler, dict()),
dpmpp_2s=(DPMSolverSinglestepScheduler, dict()),
dpmpp_2m=(DPMSolverMultistepScheduler, dict(use_karras_sigmas=False)),
dpmpp_2m_k=(DPMSolverMultistepScheduler, dict(use_karras_sigmas=True)),
unipc=(UniPCMultistepScheduler, dict(cpu_only=True))
)

View File

@ -1,16 +1,27 @@
import os
import traceback
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Union
from typing import Optional, Union, List
import safetensors.torch
import torch
from compel.embeddings_provider import BaseTextualInversionManager
from picklescan.scanner import scan_file_path
from transformers import CLIPTextModel, CLIPTokenizer
import invokeai.backend.util.logging as logger
from .concepts_lib import HuggingFaceConceptsLibrary
@dataclass
class EmbeddingInfo:
name: str
embedding: torch.Tensor
num_vectors_per_token: int
token_dim: int
trained_steps: int = None
trained_model_name: str = None
trained_model_checksum: str = None
@dataclass
class TextualInversion:
@ -49,12 +60,12 @@ class TextualInversionManager(BaseTextualInversionManager):
or self.has_textual_inversion_for_trigger_string(concept_name)
or self.has_textual_inversion_for_trigger_string(f"<{concept_name}>")
): # in case a token with literal angle brackets encountered
print(f">> Loaded local embedding for trigger {concept_name}")
logger.info(f"Loaded local embedding for trigger {concept_name}")
continue
bin_file = self.hf_concepts_library.get_concept_model_path(concept_name)
if not bin_file:
continue
print(f">> Loaded remote embedding for trigger {concept_name}")
logger.info(f"Loaded remote embedding for trigger {concept_name}")
self.load_textual_inversion(bin_file)
self.hf_concepts_library.concepts_loaded[concept_name] = True
@ -72,66 +83,46 @@ class TextualInversionManager(BaseTextualInversionManager):
if str(ckpt_path).endswith(".DS_Store"):
return
try:
scan_result = scan_file_path(str(ckpt_path))
if scan_result.infected_files == 1:
print(
f"\n### Security Issues Found in Model: {scan_result.issues_count}"
embedding_list = self._parse_embedding(str(ckpt_path))
for embedding_info in embedding_list:
if (self.text_encoder.get_input_embeddings().weight.data[0].shape[0] != embedding_info.token_dim):
logger.warning(
f"Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}."
)
print("### For your safety, InvokeAI will not load this embed.")
return
except Exception:
print(
f"### {ckpt_path.parents[0].name}/{ckpt_path.name} is damaged or corrupt."
)
return
continue
embedding_info = self._parse_embedding(str(ckpt_path))
if embedding_info is None:
# We've already put out an error message about the bad embedding in _parse_embedding, so just return.
return
elif (
self.text_encoder.get_input_embeddings().weight.data[0].shape[0]
!= embedding_info["token_dim"]
):
print(
f"** Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info['token_dim']}."
)
return
# Resolve the situation in which an earlier embedding has claimed the same
# trigger string. We replace the trigger with '<source_file>', as we used to.
trigger_str = embedding_info["name"]
sourcefile = (
f"{ckpt_path.parent.name}/{ckpt_path.name}"
if ckpt_path.name == "learned_embeds.bin"
else ckpt_path.name
)
if trigger_str in self.trigger_to_sourcefile:
replacement_trigger_str = (
f"<{ckpt_path.parent.name}>"
# Resolve the situation in which an earlier embedding has claimed the same
# trigger string. We replace the trigger with '<source_file>', as we used to.
trigger_str = embedding_info.name
sourcefile = (
f"{ckpt_path.parent.name}/{ckpt_path.name}"
if ckpt_path.name == "learned_embeds.bin"
else f"<{ckpt_path.stem}>"
else ckpt_path.name
)
print(
f">> {sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
)
trigger_str = replacement_trigger_str
try:
self._add_textual_inversion(
trigger_str,
embedding_info["embedding"],
defer_injecting_tokens=defer_injecting_tokens,
)
# remember which source file claims this trigger
self.trigger_to_sourcefile[trigger_str] = sourcefile
if trigger_str in self.trigger_to_sourcefile:
replacement_trigger_str = (
f"<{ckpt_path.parent.name}>"
if ckpt_path.name == "learned_embeds.bin"
else f"<{ckpt_path.stem}>"
)
logger.info(
f"{sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
)
trigger_str = replacement_trigger_str
except ValueError as e:
print(f' | Ignoring incompatible embedding {embedding_info["name"]}')
print(f" | The error was {str(e)}")
try:
self._add_textual_inversion(
trigger_str,
embedding_info.embedding,
defer_injecting_tokens=defer_injecting_tokens,
)
# remember which source file claims this trigger
self.trigger_to_sourcefile[trigger_str] = sourcefile
except ValueError as e:
logger.debug(f'Ignoring incompatible embedding {embedding_info["name"]}')
logger.debug(f"The error was {str(e)}")
def _add_textual_inversion(
self, trigger_str, embedding, defer_injecting_tokens=False
@ -143,8 +134,8 @@ class TextualInversionManager(BaseTextualInversionManager):
:return: The token id for the added embedding, either existing or newly-added.
"""
if trigger_str in [ti.trigger_string for ti in self.textual_inversions]:
print(
f"** TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
logger.warning(
f"TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
)
return
if not self.full_precision:
@ -165,11 +156,11 @@ class TextualInversionManager(BaseTextualInversionManager):
except ValueError as e:
if str(e).startswith("Warning"):
print(f">> {str(e)}")
logger.warning(f"{str(e)}")
else:
traceback.print_exc()
print(
f"** TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
logger.error(
f"TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
)
raise
@ -229,16 +220,16 @@ class TextualInversionManager(BaseTextualInversionManager):
for ti in self.textual_inversions:
if ti.trigger_token_id is None and ti.trigger_string in prompt_string:
if ti.embedding_vector_length > 1:
print(
f">> Preparing tokens for textual inversion {ti.trigger_string}..."
logger.info(
f"Preparing tokens for textual inversion {ti.trigger_string}..."
)
try:
self._inject_tokens_and_assign_embeddings(ti)
except ValueError as e:
print(
f" | Ignoring incompatible embedding trigger {ti.trigger_string}"
logger.debug(
f"Ignoring incompatible embedding trigger {ti.trigger_string}"
)
print(f" | The error was {str(e)}")
logger.debug(f"The error was {str(e)}")
continue
injected_token_ids.append(ti.trigger_token_id)
injected_token_ids.extend(ti.pad_token_ids)
@ -309,111 +300,130 @@ class TextualInversionManager(BaseTextualInversionManager):
return token_id
def _parse_embedding(self, embedding_file: str):
file_type = embedding_file.split(".")[-1]
if file_type == "pt":
return self._parse_embedding_pt(embedding_file)
elif file_type == "bin":
return self._parse_embedding_bin(embedding_file)
def _parse_embedding(self, embedding_file: str)->List[EmbeddingInfo]:
suffix = Path(embedding_file).suffix
try:
if suffix in [".pt",".ckpt",".bin"]:
scan_result = scan_file_path(embedding_file)
if scan_result.infected_files > 0:
logger.critical(
f"Security Issues Found in Model: {scan_result.issues_count}"
)
logger.critical("For your safety, InvokeAI will not load this embed.")
return list()
ckpt = torch.load(embedding_file,map_location="cpu")
else:
ckpt = safetensors.torch.load_file(embedding_file)
except Exception as e:
logger.warning(f"Notice: unrecognized embedding file format: {embedding_file}: {e}")
return list()
# try to figure out what kind of embedding file it is and parse accordingly
keys = list(ckpt.keys())
if all(x in keys for x in ['string_to_token','string_to_param','name','step']):
return self._parse_embedding_v1(ckpt, embedding_file) # example rem_rezero.pt
elif all(x in keys for x in ['string_to_token','string_to_param']):
return self._parse_embedding_v2(ckpt, embedding_file) # example midj-strong.pt
elif 'emb_params' in keys:
return self._parse_embedding_v3(ckpt, embedding_file) # example easynegative.safetensors
else:
print(f"** Notice: unrecognized embedding file format: {embedding_file}")
return None
return self._parse_embedding_v4(ckpt, embedding_file) # usually a '.bin' file
def _parse_embedding_pt(self, embedding_file):
embedding_ckpt = torch.load(embedding_file, map_location="cpu")
embedding_info = {}
def _parse_embedding_v1(self, embedding_ckpt: dict, file_path: str)->List[EmbeddingInfo]:
basename = Path(file_path).stem
logger.debug(f'Loading v1 embedding file: {basename}')
# Check if valid embedding file
if "string_to_token" and "string_to_param" in embedding_ckpt:
# Catch variants that do not have the expected keys or values.
try:
embedding_info["name"] = embedding_ckpt["name"] or os.path.basename(
os.path.splitext(embedding_file)[0]
)
embeddings = list()
token_counter = -1
for token,embedding in embedding_ckpt["string_to_param"].items():
if token_counter < 0:
trigger = embedding_ckpt["name"]
elif token_counter == 0:
trigger = '<basename>'
else:
trigger = f'<{basename}-{int(token_counter:=token_counter)}>'
token_counter += 1
embedding_info = EmbeddingInfo(
name = trigger,
embedding = embedding,
num_vectors_per_token = embedding.size()[0],
token_dim = embedding.size()[1],
trained_steps = embedding_ckpt["step"],
trained_model_name = embedding_ckpt["sd_checkpoint_name"],
trained_model_checksum = embedding_ckpt["sd_checkpoint"]
)
embeddings.append(embedding_info)
return embeddings
# Check num of embeddings and warn user only the first will be used
embedding_info["num_of_embeddings"] = len(
embedding_ckpt["string_to_token"]
)
if embedding_info["num_of_embeddings"] > 1:
print(">> More than 1 embedding found. Will use the first one")
embedding = list(embedding_ckpt["string_to_param"].values())[0]
except (AttributeError, KeyError):
return self._handle_broken_pt_variants(embedding_ckpt, embedding_file)
embedding_info["embedding"] = embedding
embedding_info["num_vectors_per_token"] = embedding.size()[0]
embedding_info["token_dim"] = embedding.size()[1]
try:
embedding_info["trained_steps"] = embedding_ckpt["step"]
embedding_info["trained_model_name"] = embedding_ckpt[
"sd_checkpoint_name"
]
embedding_info["trained_model_checksum"] = embedding_ckpt[
"sd_checkpoint"
]
except AttributeError:
print(">> No Training Details Found. Passing ...")
# .pt files found at https://cyberes.github.io/stable-diffusion-textual-inversion-models/
# They are actually .bin files
elif len(embedding_ckpt.keys()) == 1:
embedding_info = self._parse_embedding_bin(embedding_file)
else:
print(">> Invalid embedding format")
embedding_info = None
return embedding_info
def _parse_embedding_bin(self, embedding_file):
embedding_ckpt = torch.load(embedding_file, map_location="cpu")
embedding_info = {}
if list(embedding_ckpt.keys()) == 0:
print(">> Invalid concepts file")
embedding_info = None
else:
for token in list(embedding_ckpt.keys()):
embedding_info["name"] = (
token
or f"<{os.path.basename(os.path.splitext(embedding_file)[0])}>"
)
embedding_info["embedding"] = embedding_ckpt[token]
embedding_info[
"num_vectors_per_token"
] = 1 # All Concepts seem to default to 1
embedding_info["token_dim"] = embedding_info["embedding"].size()[0]
return embedding_info
def _handle_broken_pt_variants(
self, embedding_ckpt: dict, embedding_file: str
) -> dict:
def _parse_embedding_v2 (
self, embedding_ckpt: dict, file_path: str
) -> List[EmbeddingInfo]:
"""
This handles the broken .pt file variants. We only know of one at present.
This handles embedding .pt file variant #2.
"""
embedding_info = {}
basename = Path(file_path).stem
logger.debug(f'Loading v2 embedding file: {basename}')
embeddings = list()
if isinstance(
list(embedding_ckpt["string_to_token"].values())[0], torch.Tensor
):
for token in list(embedding_ckpt["string_to_token"].keys()):
embedding_info["name"] = (
token
if token != "*"
else f"<{os.path.basename(os.path.splitext(embedding_file)[0])}>"
token_counter = 0
for token,embedding in embedding_ckpt["string_to_param"].items():
trigger = token if token != '*' \
else f'<{basename}>' if token_counter == 0 \
else f'<{basename}-{int(token_counter:=token_counter+1)}>'
embedding_info = EmbeddingInfo(
name = trigger,
embedding = embedding,
num_vectors_per_token = embedding.size()[0],
token_dim = embedding.size()[1],
)
embedding_info["embedding"] = embedding_ckpt[
"string_to_param"
].state_dict()[token]
embedding_info["num_vectors_per_token"] = embedding_info[
"embedding"
].shape[0]
embedding_info["token_dim"] = embedding_info["embedding"].size()[1]
embeddings.append(embedding_info)
else:
print(">> Invalid embedding format")
embedding_info = None
logger.warning(f"{basename}: Unrecognized embedding format")
return embedding_info
return embeddings
def _parse_embedding_v3(self, embedding_ckpt: dict, file_path: str)->List[EmbeddingInfo]:
"""
Parse 'version 3' of the .pt textual inversion embedding files.
"""
basename = Path(file_path).stem
logger.debug(f'Loading v3 embedding file: {basename}')
embedding = embedding_ckpt['emb_params']
embedding_info = EmbeddingInfo(
name = f'<{basename}>',
embedding = embedding,
num_vectors_per_token = embedding.size()[0],
token_dim = embedding.size()[1],
)
return [embedding_info]
def _parse_embedding_v4(self, embedding_ckpt: dict, filepath: str)->List[EmbeddingInfo]:
"""
Parse 'version 4' of the textual inversion embedding files. This one
is usually associated with .bin files trained by HuggingFace diffusers.
"""
basename = Path(filepath).stem
short_path = Path(filepath).parents[0].name+'/'+Path(filepath).name
logger.debug(f'Loading v4 embedding file: {short_path}')
embeddings = list()
if list(embedding_ckpt.keys()) == 0:
logger.warning(f"Invalid embeddings file: {short_path}")
else:
for token,embedding in embedding_ckpt.items():
embedding_info = EmbeddingInfo(
name = token or f"<{basename}>",
embedding = embedding,
num_vectors_per_token = 1, # All Concepts seem to default to 1
token_dim = embedding.size()[0],
)
embeddings.append(embedding_info)
return embeddings

View File

@ -7,7 +7,6 @@
This is the backend to "textual_inversion.py"
"""
import argparse
import logging
import math
import os
@ -47,8 +46,7 @@ from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
# invokeai stuff
from ..args import ArgFormatter, PagingArgumentParser
from ..globals import Globals, global_cache_dir
from invokeai.app.services.config import InvokeAIAppConfig,PagingArgumentParser
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
@ -90,8 +88,9 @@ def save_progress(
def parse_args():
config = InvokeAIAppConfig(argv=[])
parser = PagingArgumentParser(
description="Textual inversion training", formatter_class=ArgFormatter
description="Textual inversion training"
)
general_group = parser.add_argument_group("General")
model_group = parser.add_argument_group("Models and Paths")
@ -112,7 +111,7 @@ def parse_args():
"--root_dir",
"--root",
type=Path,
default=Globals.root,
default=config.root,
help="Path to the invokeai runtime directory",
)
general_group.add_argument(
@ -127,7 +126,7 @@ def parse_args():
general_group.add_argument(
"--output_dir",
type=Path,
default=f"{Globals.root}/text-inversion-model",
default=f"{config.root}/text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
model_group.add_argument(
@ -528,6 +527,7 @@ def get_full_repo_name(
def do_textual_inversion_training(
config: InvokeAIAppConfig,
model: str,
train_data_dir: Path,
output_dir: Path,
@ -580,7 +580,7 @@ def do_textual_inversion_training(
# setting up things the way invokeai expects them
if not os.path.isabs(output_dir):
output_dir = os.path.join(Globals.root, output_dir)
output_dir = os.path.join(config.root, output_dir)
logging_dir = output_dir / logging_dir
@ -628,7 +628,7 @@ def do_textual_inversion_training(
elif output_dir is not None:
os.makedirs(output_dir, exist_ok=True)
models_conf = OmegaConf.load(os.path.join(Globals.root, "configs/models.yaml"))
models_conf = OmegaConf.load(config.model_conf_path)
model_conf = models_conf.get(model, None)
assert model_conf is not None, f"Unknown model: {model}"
assert (
@ -640,7 +640,7 @@ def do_textual_inversion_training(
assert (
pretrained_model_name_or_path
), f"models.yaml error: neither 'repo_id' nor 'path' is defined for {model}"
pipeline_args = dict(cache_dir=global_cache_dir("hub"))
pipeline_args = dict(cache_dir=config.cache_dir)
# Load tokenizer
if tokenizer_name:

View File

@ -4,17 +4,16 @@ from contextlib import nullcontext
import torch
from torch import autocast
from invokeai.backend.globals import Globals
from invokeai.app.services.config import get_invokeai_config
CPU_DEVICE = torch.device("cpu")
CUDA_DEVICE = torch.device("cuda")
MPS_DEVICE = torch.device("mps")
def choose_torch_device() -> torch.device:
"""Convenience routine for guessing which GPU device to run model on"""
if Globals.always_use_cpu:
config = get_invokeai_config()
if config.always_use_cpu:
return CPU_DEVICE
if torch.cuda.is_available():
return torch.device("cuda")
@ -33,7 +32,8 @@ def choose_precision(device: torch.device) -> str:
def torch_dtype(device: torch.device) -> torch.dtype:
if Globals.full_precision:
config = get_invokeai_config()
if config.full_precision:
return torch.float32
if choose_precision(device) == "float16":
return torch.float16

View File

@ -0,0 +1,110 @@
# Copyright (c) 2023 Lincoln D. Stein and The InvokeAI Development Team
"""invokeai.util.logging
Logging class for InvokeAI that produces console messages
Usage:
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.getLogger(name='InvokeAI') // Initialization
(or)
logger = InvokeAILogger.getLogger(__name__) // To use the filename
logger.critical('this is critical') // Critical Message
logger.error('this is an error') // Error Message
logger.warning('this is a warning') // Warning Message
logger.info('this is info') // Info Message
logger.debug('this is debugging') // Debug Message
Console messages:
[12-05-2023 20]::[InvokeAI]::CRITICAL --> This is an info message [In Bold Red]
[12-05-2023 20]::[InvokeAI]::ERROR --> This is an info message [In Red]
[12-05-2023 20]::[InvokeAI]::WARNING --> This is an info message [In Yellow]
[12-05-2023 20]::[InvokeAI]::INFO --> This is an info message [In Grey]
[12-05-2023 20]::[InvokeAI]::DEBUG --> This is an info message [In Grey]
Alternate Method (in this case the logger name will be set to InvokeAI):
import invokeai.backend.util.logging as IAILogger
IAILogger.debug('this is a debugging message')
"""
import logging
# module level functions
def debug(msg, *args, **kwargs):
InvokeAILogger.getLogger().debug(msg, *args, **kwargs)
def info(msg, *args, **kwargs):
InvokeAILogger.getLogger().info(msg, *args, **kwargs)
def warning(msg, *args, **kwargs):
InvokeAILogger.getLogger().warning(msg, *args, **kwargs)
def error(msg, *args, **kwargs):
InvokeAILogger.getLogger().error(msg, *args, **kwargs)
def critical(msg, *args, **kwargs):
InvokeAILogger.getLogger().critical(msg, *args, **kwargs)
def log(level, msg, *args, **kwargs):
InvokeAILogger.getLogger().log(level, msg, *args, **kwargs)
def disable(level=logging.CRITICAL):
InvokeAILogger.getLogger().disable(level)
def basicConfig(**kwargs):
InvokeAILogger.getLogger().basicConfig(**kwargs)
def getLogger(name: str = None) -> logging.Logger:
return InvokeAILogger.getLogger(name)
class InvokeAILogFormatter(logging.Formatter):
'''
Custom Formatting for the InvokeAI Logger
'''
# Color Codes
grey = "\x1b[38;20m"
yellow = "\x1b[33;20m"
red = "\x1b[31;20m"
cyan = "\x1b[36;20m"
bold_red = "\x1b[31;1m"
reset = "\x1b[0m"
# Log Format
format = "[%(asctime)s]::[%(name)s]::%(levelname)s --> %(message)s"
## More Formatting Options: %(pathname)s, %(filename)s, %(module)s, %(lineno)d
# Format Map
FORMATS = {
logging.DEBUG: cyan + format + reset,
logging.INFO: grey + format + reset,
logging.WARNING: yellow + format + reset,
logging.ERROR: red + format + reset,
logging.CRITICAL: bold_red + format + reset
}
def format(self, record):
log_fmt = self.FORMATS.get(record.levelno)
formatter = logging.Formatter(log_fmt, datefmt="%d-%m-%Y %H:%M:%S")
return formatter.format(record)
class InvokeAILogger(object):
loggers = dict()
@classmethod
def getLogger(self, name: str = 'InvokeAI') -> logging.Logger:
if name not in self.loggers:
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
fmt = InvokeAILogFormatter()
ch.setFormatter(fmt)
logger.addHandler(ch)
self.loggers[name] = logger
return self.loggers[name]

View File

@ -18,6 +18,7 @@ import torch
from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm
import invokeai.backend.util.logging as logger
from .devices import torch_dtype
@ -38,7 +39,7 @@ def log_txt_as_img(wh, xc, size=10):
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
logger.warning("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
@ -80,8 +81,8 @@ def mean_flat(tensor):
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(
f" | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
logger.debug(
f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
)
return total_params
@ -132,8 +133,8 @@ def parallel_data_prefetch(
raise ValueError("list expected but function got ndarray.")
elif isinstance(data, abc.Iterable):
if isinstance(data, dict):
print(
'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
logger.warning(
'"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
)
data = list(data.values())
if target_data_type == "ndarray":
@ -175,7 +176,7 @@ def parallel_data_prefetch(
processes += [p]
# start processes
print("Start prefetching...")
logger.info("Start prefetching...")
import time
start = time.time()
@ -194,7 +195,7 @@ def parallel_data_prefetch(
gather_res[res[0]] = res[1]
except Exception as e:
print("Exception: ", e)
logger.error("Exception: ", e)
for p in processes:
p.terminate()
@ -202,7 +203,7 @@ def parallel_data_prefetch(
finally:
for p in processes:
p.join()
print(f"Prefetching complete. [{time.time() - start} sec.]")
logger.info(f"Prefetching complete. [{time.time() - start} sec.]")
if target_data_type == "ndarray":
if not isinstance(gather_res[0], np.ndarray):
@ -318,23 +319,23 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
resp = requests.get(url, headers=header, stream=True) # new request with range
if exist_size > content_length:
print("* corrupt existing file found. re-downloading")
logger.warning("corrupt existing file found. re-downloading")
os.remove(dest)
exist_size = 0
if resp.status_code == 416 or exist_size == content_length:
print(f"* {dest}: complete file found. Skipping.")
logger.warning(f"{dest}: complete file found. Skipping.")
return dest
elif resp.status_code == 206 or exist_size > 0:
print(f"* {dest}: partial file found. Resuming...")
logger.warning(f"{dest}: partial file found. Resuming...")
elif resp.status_code != 200:
print(f"** An error occurred during downloading {dest}: {resp.reason}")
logger.error(f"An error occurred during downloading {dest}: {resp.reason}")
else:
print(f"* {dest}: Downloading...")
logger.error(f"{dest}: Downloading...")
try:
if content_length < 2000:
print(f"*** ERROR DOWNLOADING {url}: {resp.text}")
logger.error(f"ERROR DOWNLOADING {url}: {resp.text}")
return None
with open(dest, open_mode) as file, tqdm(
@ -349,7 +350,7 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
size = file.write(data)
bar.update(size)
except Exception as e:
print(f"An error occurred while downloading {dest}: {str(e)}")
logger.error(f"An error occurred while downloading {dest}: {str(e)}")
return None
return dest

View File

@ -19,6 +19,7 @@ from PIL import Image
from PIL.Image import Image as ImageType
from werkzeug.utils import secure_filename
import invokeai.backend.util.logging as logger
import invokeai.frontend.web.dist as frontend
from .. import Generate
@ -77,7 +78,6 @@ class InvokeAIWebServer:
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
# Socket IO
logger = True if args.web_verbose else False
engineio_logger = True if args.web_verbose else False
max_http_buffer_size = 10000000
@ -213,7 +213,7 @@ class InvokeAIWebServer:
self.load_socketio_listeners(self.socketio)
if args.gui:
print(">> Launching Invoke AI GUI")
logger.info("Launching Invoke AI GUI")
try:
from flaskwebgui import FlaskUI
@ -231,17 +231,17 @@ class InvokeAIWebServer:
sys.exit(0)
else:
useSSL = args.certfile or args.keyfile
print(">> Started Invoke AI Web Server")
logger.info("Started Invoke AI Web Server")
if self.host == "0.0.0.0":
print(
logger.info(
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."
)
else:
print(
">> Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
logger.info(
"Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
)
print(
f">> Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
logger.info(
f"Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
)
if not useSSL:
self.socketio.run(app=self.app, host=self.host, port=self.port)
@ -273,7 +273,7 @@ class InvokeAIWebServer:
# path for thumbnail images
self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/")
# txt log
self.log_path = os.path.join(self.result_path, "invoke_log.txt")
self.log_path = os.path.join(self.result_path, "invoke_logger.txt")
# make all output paths
[
os.makedirs(path, exist_ok=True)
@ -290,7 +290,7 @@ class InvokeAIWebServer:
def load_socketio_listeners(self, socketio):
@socketio.on("requestSystemConfig")
def handle_request_capabilities():
print(">> System config requested")
logger.info("System config requested")
config = self.get_system_config()
config["model_list"] = self.generate.model_manager.list_models()
config["infill_methods"] = infill_methods()
@ -330,7 +330,7 @@ class InvokeAIWebServer:
if model_name in current_model_list:
update = True
print(f">> Adding New Model: {model_name}")
logger.info(f"Adding New Model: {model_name}")
self.generate.model_manager.add_model(
model_name=model_name,
@ -348,14 +348,14 @@ class InvokeAIWebServer:
"update": update,
},
)
print(f">> New Model Added: {model_name}")
logger.info(f"New Model Added: {model_name}")
except Exception as e:
self.handle_exceptions(e)
@socketio.on("deleteModel")
def handle_delete_model(model_name: str):
try:
print(f">> Deleting Model: {model_name}")
logger.info(f"Deleting Model: {model_name}")
self.generate.model_manager.del_model(model_name)
self.generate.model_manager.commit(opt.conf)
updated_model_list = self.generate.model_manager.list_models()
@ -366,14 +366,14 @@ class InvokeAIWebServer:
"model_list": updated_model_list,
},
)
print(f">> Model Deleted: {model_name}")
logger.info(f"Model Deleted: {model_name}")
except Exception as e:
self.handle_exceptions(e)
@socketio.on("requestModelChange")
def handle_set_model(model_name: str):
try:
print(f">> Model change requested: {model_name}")
logger.info(f"Model change requested: {model_name}")
model = self.generate.set_model(model_name)
model_list = self.generate.model_manager.list_models()
if model is None:
@ -454,7 +454,7 @@ class InvokeAIWebServer:
"update": True,
},
)
print(f">> Model Converted: {model_name}")
logger.info(f"Model Converted: {model_name}")
except Exception as e:
self.handle_exceptions(e)
@ -490,7 +490,7 @@ class InvokeAIWebServer:
if vae := self.generate.model_manager.config[models_to_merge[0]].get(
"vae", None
):
print(f">> Using configured VAE assigned to {models_to_merge[0]}")
logger.info(f"Using configured VAE assigned to {models_to_merge[0]}")
merged_model_config.update(vae=vae)
self.generate.model_manager.import_diffuser_model(
@ -507,8 +507,8 @@ class InvokeAIWebServer:
"update": True,
},
)
print(f">> Models Merged: {models_to_merge}")
print(f">> New Model Added: {model_merge_info['merged_model_name']}")
logger.info(f"Models Merged: {models_to_merge}")
logger.info(f"New Model Added: {model_merge_info['merged_model_name']}")
except Exception as e:
self.handle_exceptions(e)
@ -698,7 +698,7 @@ class InvokeAIWebServer:
}
)
except Exception as e:
print(f">> Unable to load {path}")
logger.info(f"Unable to load {path}")
socketio.emit(
"error", {"message": f"Unable to load {path}: {str(e)}"}
)
@ -735,9 +735,9 @@ class InvokeAIWebServer:
printable_parameters["init_mask"][:64] + "..."
)
print(f"\n>> Image Generation Parameters:\n\n{printable_parameters}\n")
print(f">> ESRGAN Parameters: {esrgan_parameters}")
print(f">> Facetool Parameters: {facetool_parameters}")
logger.info(f"Image Generation Parameters:\n\n{printable_parameters}\n")
logger.info(f"ESRGAN Parameters: {esrgan_parameters}")
logger.info(f"Facetool Parameters: {facetool_parameters}")
self.generate_images(
generation_parameters,
@ -750,8 +750,8 @@ class InvokeAIWebServer:
@socketio.on("runPostprocessing")
def handle_run_postprocessing(original_image, postprocessing_parameters):
try:
print(
f'>> Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
logger.info(
f'Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
)
progress = Progress()
@ -861,14 +861,14 @@ class InvokeAIWebServer:
@socketio.on("cancel")
def handle_cancel():
print(">> Cancel processing requested")
logger.info("Cancel processing requested")
self.canceled.set()
# TODO: I think this needs a safety mechanism.
@socketio.on("deleteImage")
def handle_delete_image(url, thumbnail, uuid, category):
try:
print(f'>> Delete requested "{url}"')
logger.info(f'Delete requested "{url}"')
from send2trash import send2trash
path = self.get_image_path_from_url(url)
@ -1263,7 +1263,7 @@ class InvokeAIWebServer:
image, os.path.basename(path), self.thumbnail_image_path
)
print(f'\n\n>> Image generated: "{path}"\n')
logger.info(f'Image generated: "{path}"\n')
self.write_log_message(f'[Generated] "{path}": {command}')
if progress.total_iterations > progress.current_iteration:
@ -1329,7 +1329,7 @@ class InvokeAIWebServer:
except Exception as e:
# Clear the CUDA cache on an exception
self.empty_cuda_cache()
print(e)
logger.error(e)
self.handle_exceptions(e)
def empty_cuda_cache(self):

View File

@ -4,17 +4,21 @@ from .parse_seed_weights import parse_seed_weights
SAMPLER_CHOICES = [
"ddim",
"k_dpm_2_a",
"k_dpm_2",
"k_dpmpp_2_a",
"k_dpmpp_2",
"k_euler_a",
"k_euler",
"k_heun",
"k_lms",
"plms",
# diffusers:
"ddpm",
"deis",
"lms",
"pndm",
"heun",
'heun_k',
"euler",
"euler_k",
"euler_a",
"kdpm_2",
"kdpm_2_a",
"dpmpp_2s",
"dpmpp_2m",
"dpmpp_2m_k",
"unipc",
]

File diff suppressed because it is too large Load Diff

View File

@ -1,497 +0,0 @@
"""
Readline helper functions for invoke.py.
You may import the global singleton `completer` to get access to the
completer object itself. This is useful when you want to autocomplete
seeds:
from invokeai.frontend.CLI.readline import completer
completer.add_seed(18247566)
completer.add_seed(9281839)
"""
import atexit
import os
import re
from ...backend.args import Args
from ...backend.globals import Globals
from ...backend.stable_diffusion import HuggingFaceConceptsLibrary
# ---------------readline utilities---------------------
try:
import readline
readline_available = True
except (ImportError, ModuleNotFoundError) as e:
print(f"** An error occurred when loading the readline module: {str(e)}")
readline_available = False
IMG_EXTENSIONS = (".png", ".jpg", ".jpeg", ".PNG", ".JPG", ".JPEG", ".gif", ".GIF")
WEIGHT_EXTENSIONS = (".ckpt", ".vae", ".safetensors")
TEXT_EXTENSIONS = (".txt", ".TXT")
CONFIG_EXTENSIONS = (".yaml", ".yml")
COMMANDS = (
"--steps",
"-s",
"--seed",
"-S",
"--iterations",
"-n",
"--width",
"-W",
"--height",
"-H",
"--cfg_scale",
"-C",
"--threshold",
"--perlin",
"--grid",
"-g",
"--individual",
"-i",
"--save_intermediates",
"--init_img",
"-I",
"--init_mask",
"-M",
"--init_color",
"--strength",
"-f",
"--variants",
"-v",
"--outdir",
"-o",
"--sampler",
"-A",
"-m",
"--embedding_path",
"--device",
"--grid",
"-g",
"--facetool",
"-ft",
"--facetool_strength",
"-G",
"--codeformer_fidelity",
"-cf",
"--upscale",
"-U",
"-save_orig",
"--save_original",
"--log_tokenization",
"-t",
"--hires_fix",
"--inpaint_replace",
"-r",
"--png_compression",
"-z",
"--text_mask",
"-tm",
"--h_symmetry_time_pct",
"--v_symmetry_time_pct",
"!fix",
"!fetch",
"!replay",
"!history",
"!search",
"!clear",
"!models",
"!switch",
"!import_model",
"!optimize_model",
"!convert_model",
"!edit_model",
"!del_model",
"!mask",
"!triggers",
)
MODEL_COMMANDS = (
"!switch",
"!edit_model",
"!del_model",
)
CKPT_MODEL_COMMANDS = ("!optimize_model",)
WEIGHT_COMMANDS = (
"!import_model",
"!convert_model",
)
IMG_PATH_COMMANDS = ("--outdir[=\s]",)
TEXT_PATH_COMMANDS = ("!replay",)
IMG_FILE_COMMANDS = (
"!fix",
"!fetch",
"!mask",
"--init_img[=\s]",
"-I",
"--init_mask[=\s]",
"-M",
"--init_color[=\s]",
"--embedding_path[=\s]",
)
path_regexp = "(" + "|".join(IMG_PATH_COMMANDS + IMG_FILE_COMMANDS) + ")\s*\S*$"
weight_regexp = "(" + "|".join(WEIGHT_COMMANDS) + ")\s*\S*$"
text_regexp = "(" + "|".join(TEXT_PATH_COMMANDS) + ")\s*\S*$"
class Completer(object):
def __init__(self, options, models={}):
self.options = sorted(options)
self.models = models
self.seeds = set()
self.matches = list()
self.default_dir = None
self.linebuffer = None
self.auto_history_active = True
self.extensions = None
self.concepts = None
self.embedding_terms = set()
return
def complete(self, text, state):
"""
Completes invoke command line.
BUG: it doesn't correctly complete files that have spaces in the name.
"""
buffer = readline.get_line_buffer()
if state == 0:
# extensions defined, so go directly into path completion mode
if self.extensions is not None:
self.matches = self._path_completions(text, state, self.extensions)
# looking for an image file
elif re.search(path_regexp, buffer):
do_shortcut = re.search("^" + "|".join(IMG_FILE_COMMANDS), buffer)
self.matches = self._path_completions(
text, state, IMG_EXTENSIONS, shortcut_ok=do_shortcut
)
# looking for a seed
elif re.search("(-S\s*|--seed[=\s])\d*$", buffer):
self.matches = self._seed_completions(text, state)
# looking for an embedding concept
elif re.search("<[\w-]*$", buffer):
self.matches = self._concept_completions(text, state)
# looking for a model
elif re.match("^" + "|".join(MODEL_COMMANDS), buffer):
self.matches = self._model_completions(text, state)
# looking for a ckpt model
elif re.match("^" + "|".join(CKPT_MODEL_COMMANDS), buffer):
self.matches = self._model_completions(text, state, ckpt_only=True)
elif re.search(weight_regexp, buffer):
self.matches = self._path_completions(
text,
state,
WEIGHT_EXTENSIONS,
default_dir=Globals.root,
)
elif re.search(text_regexp, buffer):
self.matches = self._path_completions(text, state, TEXT_EXTENSIONS)
# This is the first time for this text, so build a match list.
elif text:
self.matches = [s for s in self.options if s and s.startswith(text)]
else:
self.matches = self.options[:]
# Return the state'th item from the match list,
# if we have that many.
try:
response = self.matches[state]
except IndexError:
response = None
return response
def complete_extensions(self, extensions: list):
"""
If called with a list of extensions, will force completer
to do file path completions.
"""
self.extensions = extensions
def add_history(self, line):
"""
Pass thru to readline
"""
if not self.auto_history_active:
readline.add_history(line)
def clear_history(self):
"""
Pass clear_history() thru to readline
"""
readline.clear_history()
def search_history(self, match: str):
"""
Like show_history() but only shows items that
contain the match string.
"""
self.show_history(match)
def remove_history_item(self, pos):
readline.remove_history_item(pos)
def add_seed(self, seed):
"""
Add a seed to the autocomplete list for display when -S is autocompleted.
"""
if seed is not None:
self.seeds.add(str(seed))
def set_default_dir(self, path):
self.default_dir = path
def set_options(self, options):
self.options = options
def get_line(self, index):
try:
line = self.get_history_item(index)
except IndexError:
return None
return line
def get_current_history_length(self):
return readline.get_current_history_length()
def get_history_item(self, index):
return readline.get_history_item(index)
def show_history(self, match=None):
"""
Print the session history using the pydoc pager
"""
import pydoc
lines = list()
h_len = self.get_current_history_length()
if h_len < 1:
print("<empty history>")
return
for i in range(0, h_len):
line = self.get_history_item(i + 1)
if match and match not in line:
continue
lines.append(f"[{i+1}] {line}")
pydoc.pager("\n".join(lines))
def set_line(self, line) -> None:
"""
Set the default string displayed in the next line of input.
"""
self.linebuffer = line
readline.redisplay()
def update_models(self, models: dict) -> None:
"""
update our list of models
"""
self.models = models
def _seed_completions(self, text, state):
m = re.search("(-S\s?|--seed[=\s]?)(\d*)", text)
if m:
switch = m.groups()[0]
partial = m.groups()[1]
else:
switch = ""
partial = text
matches = list()
for s in self.seeds:
if s.startswith(partial):
matches.append(switch + s)
matches.sort()
return matches
def add_embedding_terms(self, terms: list[str]):
self.embedding_terms = set(terms)
if self.concepts:
self.embedding_terms.update(set(self.concepts.list_concepts()))
def _concept_completions(self, text, state):
if self.concepts is None:
# cache Concepts() instance so we can check for updates in concepts_list during runtime.
self.concepts = HuggingFaceConceptsLibrary()
self.embedding_terms.update(set(self.concepts.list_concepts()))
else:
self.embedding_terms.update(set(self.concepts.list_concepts()))
partial = text[1:] # this removes the leading '<'
if len(partial) == 0:
return list(self.embedding_terms) # whole dump - think if user wants this!
matches = list()
for concept in self.embedding_terms:
if concept.startswith(partial):
matches.append(f"<{concept}>")
matches.sort()
return matches
def _model_completions(self, text, state, ckpt_only=False):
m = re.search("(!switch\s+)(\w*)", text)
if m:
switch = m.groups()[0]
partial = m.groups()[1]
else:
switch = ""
partial = text
matches = list()
for s in self.models:
format = self.models[s]["format"]
if format == "vae":
continue
if ckpt_only and format != "ckpt":
continue
if s.startswith(partial):
matches.append(switch + s)
matches.sort()
return matches
def _pre_input_hook(self):
if self.linebuffer:
readline.insert_text(self.linebuffer)
readline.redisplay()
self.linebuffer = None
def _path_completions(
self, text, state, extensions, shortcut_ok=True, default_dir: str = ""
):
# separate the switch from the partial path
match = re.search("^(-\w|--\w+=?)(.*)", text)
if match is None:
switch = None
partial_path = text
else:
switch, partial_path = match.groups()
partial_path = partial_path.lstrip()
matches = list()
path = os.path.expanduser(partial_path)
if os.path.isdir(path):
dir = path
elif os.path.dirname(path) != "":
dir = os.path.dirname(path)
else:
dir = default_dir if os.path.exists(default_dir) else ""
path = os.path.join(dir, path)
dir_list = os.listdir(dir or ".")
if shortcut_ok and os.path.exists(self.default_dir) and dir == "":
dir_list += os.listdir(self.default_dir)
for node in dir_list:
if node.startswith(".") and len(node) > 1:
continue
full_path = os.path.join(dir, node)
if not (node.endswith(extensions) or os.path.isdir(full_path)):
continue
if path and not full_path.startswith(path):
continue
if switch is None:
match_path = os.path.join(dir, node)
matches.append(
match_path + "/" if os.path.isdir(full_path) else match_path
)
elif os.path.isdir(full_path):
matches.append(
switch + os.path.join(os.path.dirname(full_path), node) + "/"
)
elif node.endswith(extensions):
matches.append(switch + os.path.join(os.path.dirname(full_path), node))
return matches
class DummyCompleter(Completer):
def __init__(self, options):
super().__init__(options)
self.history = list()
def add_history(self, line):
self.history.append(line)
def clear_history(self):
self.history = list()
def get_current_history_length(self):
return len(self.history)
def get_history_item(self, index):
return self.history[index - 1]
def remove_history_item(self, index):
return self.history.pop(index - 1)
def set_line(self, line):
print(f"# {line}")
def generic_completer(commands: list) -> Completer:
if readline_available:
completer = Completer(commands, [])
readline.set_completer(completer.complete)
readline.set_pre_input_hook(completer._pre_input_hook)
readline.set_completer_delims(" ")
readline.parse_and_bind("tab: complete")
readline.parse_and_bind("set print-completions-horizontally off")
readline.parse_and_bind("set page-completions on")
readline.parse_and_bind("set skip-completed-text on")
readline.parse_and_bind("set show-all-if-ambiguous on")
else:
completer = DummyCompleter(commands)
return completer
def get_completer(opt: Args, models=[]) -> Completer:
if readline_available:
completer = Completer(COMMANDS, models)
readline.set_completer(completer.complete)
# pyreadline3 does not have a set_auto_history() method
try:
readline.set_auto_history(False)
completer.auto_history_active = False
except:
completer.auto_history_active = True
readline.set_pre_input_hook(completer._pre_input_hook)
readline.set_completer_delims(" ")
readline.parse_and_bind("tab: complete")
readline.parse_and_bind("set print-completions-horizontally off")
readline.parse_and_bind("set page-completions on")
readline.parse_and_bind("set skip-completed-text on")
readline.parse_and_bind("set show-all-if-ambiguous on")
outdir = os.path.expanduser(opt.outdir)
if os.path.isabs(outdir):
histfile = os.path.join(outdir, ".invoke_history")
else:
histfile = os.path.join(Globals.root, outdir, ".invoke_history")
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)
except FileNotFoundError:
pass
except OSError: # file likely corrupted
newname = f"{histfile}.old"
print(
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
)
os.replace(histfile, newname)
atexit.register(readline.write_history_file, histfile)
else:
completer = DummyCompleter(COMMANDS)
return completer

View File

@ -1,30 +0,0 @@
'''
This is a modularized version of the sd-metadata.py script,
which retrieves and prints the metadata from a series of generated png files.
'''
import sys
import json
from invokeai.backend.image_util import retrieve_metadata
def print_metadata():
if len(sys.argv) < 2:
print("Usage: file2prompt.py <file1.png> <file2.png> <file3.png>...")
print("This script opens up the indicated invoke.py-generated PNG file(s) and prints out their metadata.")
exit(-1)
filenames = sys.argv[1:]
for f in filenames:
try:
metadata = retrieve_metadata(f)
print(f'{f}:\n',json.dumps(metadata['sd-metadata'], indent=4))
except FileNotFoundError:
sys.stderr.write(f'{f} not found\n')
continue
except PermissionError:
sys.stderr.write(f'{f} could not be opened due to inadequate permissions\n')
continue
if __name__== '__main__':
print_metadata()

View File

@ -1,10 +1,9 @@
"""
'''
Minimalist updater script. Prompts user for the tag or branch to update to and runs
pip install <path_to_git_source>.
"""
'''
import os
import platform
import requests
from rich import box, print
from rich.console import Console, Group, group
@ -16,8 +15,10 @@ from rich.text import Text
from invokeai.version import __version__
INVOKE_AI_SRC = "https://github.com/invoke-ai/InvokeAI/archive"
INVOKE_AI_REL = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive"
INVOKE_AI_TAG="https://github.com/invoke-ai/InvokeAI/archive/refs/tags"
INVOKE_AI_BRANCH="https://github.com/invoke-ai/InvokeAI/archive/refs/heads"
INVOKE_AI_REL="https://api.github.com/repos/invoke-ai/InvokeAI/releases"
OS = platform.uname().system
ARCH = platform.uname().machine
@ -28,22 +29,22 @@ if OS == "Windows":
else:
console = Console(style=Style(color="grey74", bgcolor="grey19"))
def get_versions() -> dict:
def get_versions()->dict:
return requests.get(url=INVOKE_AI_REL).json()
def welcome(versions: dict):
@group()
def text():
yield f"InvokeAI Version: [bold yellow]{__version__}"
yield ""
yield "This script will update InvokeAI to the latest release, or to a development version of your choice."
yield ""
yield "[bold yellow]Options:"
yield f"""[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic])
yield f'InvokeAI Version: [bold yellow]{__version__}'
yield ''
yield 'This script will update InvokeAI to the latest release, or to a development version of your choice.'
yield ''
yield '[bold yellow]Options:'
yield f'''[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic])
[2] Update to the bleeding-edge development version ([italic]main[/italic])
[3] Manually enter the tag or branch name you wish to update"""
[3] Manually enter the [bold]tag name[/bold] for the version you wish to update to
[4] Manually enter the [bold]branch name[/bold] for the version you wish to update to'''
console.rule()
print(
@ -59,33 +60,41 @@ def welcome(versions: dict):
)
console.line()
def main():
versions = get_versions()
welcome(versions)
tag = None
choice = Prompt.ask("Choice:", choices=["1", "2", "3"], default="1")
branch = None
release = None
choice = Prompt.ask('Choice:',choices=['1','2','3','4'],default='1')
if choice=='1':
release = versions[0]['tag_name']
elif choice=='2':
release = 'main'
elif choice=='3':
tag = Prompt.ask('Enter an InvokeAI tag name')
elif choice=='4':
branch = Prompt.ask('Enter an InvokeAI branch name')
if choice == "1":
tag = versions[0]["tag_name"]
elif choice == "2":
tag = "main"
elif choice == "3":
tag = Prompt.ask("Enter an InvokeAI tag or branch name")
print(f":crossed_fingers: Upgrading to [yellow]{tag}[/yellow]")
cmd = f"pip install {INVOKE_AI_SRC}/{tag}.zip --use-pep517"
print("")
print("")
if os.system(cmd) == 0:
print(f":heavy_check_mark: Upgrade successful")
print(f':crossed_fingers: Upgrading to [yellow]{tag if tag else release}[/yellow]')
if release:
cmd = f'pip install {INVOKE_AI_SRC}/{release}.zip --use-pep517 --upgrade'
elif tag:
cmd = f'pip install {INVOKE_AI_TAG}/{tag}.zip --use-pep517 --upgrade'
else:
print(f":exclamation: [bold red]Upgrade failed[/red bold]")
cmd = f'pip install {INVOKE_AI_BRANCH}/{branch}.zip --use-pep517 --upgrade'
print('')
print('')
if os.system(cmd)==0:
print(f':heavy_check_mark: Upgrade successful')
else:
print(f':exclamation: [bold red]Upgrade failed[/red bold]')
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass

View File

@ -22,7 +22,7 @@ import torch
from npyscreen import widget
from omegaconf import OmegaConf
from invokeai.backend.globals import Globals, global_config_dir
import invokeai.backend.util.logging as logger
from ...backend.config.model_install_backend import (
Dataset_path,
@ -40,11 +40,13 @@ from .widgets import (
TextBox,
set_min_terminal_size,
)
from invokeai.app.services.config import get_invokeai_config
# minimum size for the UI
MIN_COLS = 120
MIN_LINES = 45
config = get_invokeai_config()
class addModelsForm(npyscreen.FormMultiPage):
# for responsive resizing - disabled
@ -199,17 +201,6 @@ class addModelsForm(npyscreen.FormMultiPage):
relx=4,
scroll_exit=True,
)
self.nextrely += 1
self.convert_models = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="== CONVERT IMPORTED MODELS INTO DIFFUSERS==",
values=["Keep original format", "Convert to diffusers"],
value=0,
begin_entry_at=4,
max_height=4,
hidden=True, # will appear when imported models box is edited
scroll_exit=True,
)
self.cancel = self.add_widget_intelligent(
npyscreen.ButtonPress,
name="CANCEL",
@ -244,8 +235,6 @@ class addModelsForm(npyscreen.FormMultiPage):
self.show_directory_fields.addVisibleWhenSelected(i)
self.show_directory_fields.when_value_edited = self._clear_scan_directory
self.import_model_paths.when_value_edited = self._show_hide_convert
self.autoload_directory.when_value_edited = self._show_hide_convert
def resize(self):
super().resize()
@ -256,13 +245,6 @@ class addModelsForm(npyscreen.FormMultiPage):
if not self.show_directory_fields.value:
self.autoload_directory.value = ""
def _show_hide_convert(self):
model_paths = self.import_model_paths.value or ""
autoload_directory = self.autoload_directory.value or ""
self.convert_models.hidden = (
len(model_paths) == 0 and len(autoload_directory) == 0
)
def _get_starter_model_labels(self) -> List[str]:
window_width, window_height = get_terminal_size()
label_width = 25
@ -322,7 +304,6 @@ class addModelsForm(npyscreen.FormMultiPage):
.scan_directory: Path to a directory of models to scan and import
.autoscan_on_startup: True if invokeai should scan and import at startup time
.import_model_paths: list of URLs, repo_ids and file paths to import
.convert_to_diffusers: if True, convert legacy checkpoints into diffusers
"""
# we're using a global here rather than storing the result in the parentapp
# due to some bug in npyscreen that is causing attributes to be lost
@ -359,7 +340,6 @@ class addModelsForm(npyscreen.FormMultiPage):
# URLs and the like
selections.import_model_paths = self.import_model_paths.value.split()
selections.convert_to_diffusers = self.convert_models.value[0] == 1
class AddModelApplication(npyscreen.NPSAppManaged):
@ -372,7 +352,6 @@ class AddModelApplication(npyscreen.NPSAppManaged):
scan_directory=None,
autoscan_on_startup=None,
import_model_paths=None,
convert_to_diffusers=None,
)
def onStart(self):
@ -393,7 +372,6 @@ def process_and_execute(opt: Namespace, selections: Namespace):
directory_to_scan = selections.scan_directory
scan_at_startup = selections.autoscan_on_startup
potential_models_to_install = selections.import_model_paths
convert_to_diffusers = selections.convert_to_diffusers
install_requested_models(
install_initial_models=models_to_install,
@ -401,7 +379,6 @@ def process_and_execute(opt: Namespace, selections: Namespace):
scan_directory=Path(directory_to_scan) if directory_to_scan else None,
external_models=potential_models_to_install,
scan_at_startup=scan_at_startup,
convert_to_diffusers=convert_to_diffusers,
precision="float32"
if opt.full_precision
else choose_precision(torch.device(choose_torch_device())),
@ -477,11 +454,11 @@ def main():
opt = parser.parse_args()
# setting a global here
Globals.root = os.path.expanduser(get_root(opt.root) or "")
config.root = os.path.expanduser(get_root(opt.root) or "")
if not global_config_dir().exists():
print(
">> Your InvokeAI root directory is not set up. Calling invokeai-configure."
if not (config.conf_path / '..' ).exists():
logger.info(
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
)
from invokeai.frontend.install import invokeai_configure
@ -491,18 +468,18 @@ def main():
try:
select_and_download_models(opt)
except AssertionError as e:
print(str(e))
logger.error(e)
sys.exit(-1)
except KeyboardInterrupt:
print("\nGoodbye! Come back soon.")
logger.info("Goodbye! Come back soon.")
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
print(
"** Insufficient vertical space for the interface. Please make your window taller and try again"
logger.error(
"Insufficient vertical space for the interface. Please make your window taller and try again"
)
elif str(e).startswith("addwstr"):
print(
"** Insufficient horizontal space for the interface. Please make your window wider and try again."
logger.error(
"Insufficient horizontal space for the interface. Please make your window wider and try again."
)

Some files were not shown because too many files have changed in this diff Show More