Compare commits

..

430 Commits

Author SHA1 Message Date
5a0c99816c chore: bump version to v4.2.6 2024-07-15 14:16:31 +10:00
24bf1ea65a fix(ui): boards cut off when search open 2024-07-15 14:07:20 +10:00
28e79c4c5e chore: ruff
Looks like an upstream change to ruff resulted in this file being a violation.
2024-07-15 14:05:04 +10:00
d7d59d704b chore: update default workflows
- Update all existing defaults
- Add Tiled MultiDiffusion workflow
2024-07-15 14:05:04 +10:00
8539c601e6 translationBot(ui): update translation (Italian)
Currently translated at 98.4% (1262 of 1282 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-07-15 11:54:45 +10:00
5cbe9fafb2 fix(ui): clear selection when deleting last image in board 2024-07-15 08:57:13 +10:00
3ecd14f394 chore: bump version to 4.2.6rc1 2024-07-13 14:55:21 +10:00
7c0dfd74a5 fix(api): deleting large images fails
This issue is caused by a race condition. When a large image is served to the client, it is done using a streaming `FileResponse`. This concurrently serves the image straight from disk. The file is kept open by FastAPI until the image is fully served.

When a user deletes an image before the file is done serving, the delete fails because the file is still held by FastAPI.

To reproduce the issue:
- Create a very large image (8k reliably creates the issue).
- Create a smaller image, so that the first image in the gallery is not the large image.
- Refresh the app. The small image should be selected.
- Select the large image and immediately delete it. You have to be fast, to delete it before it finishes loading.
- In the terminal, we expect to see an error saying `Failed to delete image file`, and the image does not disappear from the UI.
- After a short wait, once the image has fully loaded, try deleting it again. We expect this to work.

The workaround is to instead serve the image from memory.

Loading the image to memory is very fast, so there is only a tiny window in which we could create the race condition, but it technically could still occur, because FastAPI is asynchronous and handles requests concurrently.

Once we load the image into memory, deletions of that image will work. Then we return a normal `Response` object with the image bytes. This is essentially what `FileResponse` does - except it uses `anyio.open_file`, which is async.

The tradeoff is that the server thread is blocked while opening the file. I think this is a fair tradeoff.

A future enhancement could be to implement soft deletion of images (db is already set up for this), and then clean up deleted image files on startup/shutdown. We could move back to using the async `FileResponse` for best responsiveness in the server without any risk of race conditions.
2024-07-13 14:46:41 +10:00
2c1a91241e fix(app): windows indefinite hang while finding port
For some reason, I started getting this indefinite hang when the app checks if port 9090 is available. After some fiddling around, I found that adding a timeout resolves the issue.

I confirmed that the util still works by starting the app on 9090, then starting a second instance. The second instance correctly saw 9090 in use and moved to 9091.
2024-07-13 14:46:41 +10:00
84f136e737 translationBot(ui): update translation (Italian)
Currently translated at 98.4% (1262 of 1282 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-07-13 08:38:22 +10:00
712cf00a82 fix(app): vae tile size field description 2024-07-12 06:30:27 -07:00
fb1130c644 fix(ui): do not invalidate image dto cache when deleting image 2024-07-12 14:25:38 +10:00
0f65a12cf3 fix(ui): handle archived boards like other boards when they are visible, do not reset board selection when autoadd board is hidden 2024-07-12 14:25:38 +10:00
84abdc5780 fix(ui): prevent cutoff of last board 2024-07-12 14:25:38 +10:00
2320701929 Do not crash if there are invalid model configs in the DB (#6593)
## Summary

This PR changes the handling of invalid model configs in the DB to log a
warning rather than crashing the app.

This change is being made in preparation for some upcoming new model
additions. Previously, if a user rolled back from an app version that
added a new model type, the app would not launch until the DB was fixed.
This PR changes this behaviour to allow rollbacks of this type (with
warnings).

**Keep in mind that this change is only helpful to users _rolling back
to a version that has this fix_. I.e. it offers no help in the first
version that includes it.**

## QA Instructions

1. Run the Spandrel model branch, which adds a new model type
https://github.com/invoke-ai/InvokeAI/pull/6556.
2. Add a spandrel model via the model manager.
3. Rollback to main. The app will crash on launch due to the invalid
spandrel model config.
4. Checkout this branch. The app should now run with warnings about the
invalid model config.


## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-11 21:15:51 -04:00
69af099532 Warn on invalid model configs in the DB rather than crashing. 2024-07-11 21:05:55 -04:00
5795617f86 translationBot(ui): update translation (German)
Currently translated at 67.0% (859 of 1282 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-07-11 19:23:28 +10:00
b533bc072e translationBot(ui): update translation (French)
Currently translated at 25.2% (322 of 1275 strings)

Co-authored-by: Nathan <bonnemainsnathan@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fr/
Translation: InvokeAI/Web UI
2024-07-11 19:23:28 +10:00
d7199c7ca6 translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1282 of 1282 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1280 of 1280 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1275 of 1275 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1273 of 1273 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-07-11 19:23:28 +10:00
a69284367b translationBot(ui): update translation (Italian)
Currently translated at 98.2% (1260 of 1282 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1260 of 1280 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1255 of 1275 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1253 of 1273 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1245 of 1265 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-07-11 19:23:28 +10:00
c4d2fe9c65 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 76.5% (968 of 1265 strings)

Co-authored-by: Phrixus2023 <920414016@qq.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-07-11 19:23:28 +10:00
fe0d56de5c translationBot(ui): update translation files
Updated by "Remove blank strings" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-07-11 19:23:28 +10:00
HAL
7aec5624f7 translationBot(ui): update translation (Japanese)
Currently translated at 50.4% (636 of 1261 strings)

Co-authored-by: HAL <HALQME@users.noreply.hosted.weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2024-07-11 19:23:28 +10:00
B N
2f3ec41f94 translationBot(ui): update translation (German)
Currently translated at 67.3% (849 of 1261 strings)

Co-authored-by: B N <berndnieschalk@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-07-11 19:23:28 +10:00
de1235c980 chore: bump version to 4.2.6a1 2024-07-11 10:34:53 +10:00
88c3a71586 fix(ui): fix bug with usePanel 2024-07-10 04:27:24 -07:00
ec1b429d45 feat(ui): add divider between board search and list 2024-07-10 04:27:24 -07:00
146e3a3377 feat(ui): tweak board tooltip behaviour 2024-07-10 04:27:24 -07:00
38622b0d91 feat(ui): board list title verbiage 2024-07-10 04:27:24 -07:00
7db767b7c3 feat(ui): sticky board list header 2024-07-10 04:27:24 -07:00
b70e87f25b feat(ui): tweak add board button style 2024-07-10 04:27:24 -07:00
fea1ec9085 feat(ui): updated boards resizable panel logic 2024-07-10 04:27:24 -07:00
2e7a95998c feat(ui): add support for default size in usePanel 2024-07-10 04:27:24 -07:00
788f90a7d5 feat(ui): tweak resizehandle styling 2024-07-10 04:27:24 -07:00
6bf29b20af fix(ui): fix edge case in panels
Not sure why I didn't figure out how to do this before - we only should reset a panel if it's too small.
2024-07-10 04:27:24 -07:00
8f0edcd4f4 fix(ui): edge cases when deleting, archiving, updating boards
Need to handle different cases where the selected or auto-add board is hidden - fall back to uncategorized in these situations.
2024-07-10 04:27:24 -07:00
a7c44b4a98 feat(ui): rename gallery boards on double click 2024-07-10 04:27:24 -07:00
48a57f0da8 feat(ui): boards styling
- Refine layout
- Update colors - more minimal, fewer shaded boxes
- Add indicator for search icons showing a search term is entered
- Handle new `projectName` and `projectUrl` ui props
2024-07-10 04:27:24 -07:00
dfd94bbd0b feat(ui): remove galleryHeader in favor of projectUrl & projectName 2024-07-10 04:27:24 -07:00
2edfb2356d remove extra boardname 2024-07-10 04:27:24 -07:00
58d2c1557d prettier 2024-07-10 04:27:24 -07:00
8fdff33cf8 update board header styling, toggle board search, resizing gallery panels 2024-07-10 04:27:24 -07:00
a96e34d2d1 remove collapsibles and update board title 2024-07-10 04:27:24 -07:00
8826adad24 filter out uncategorized when not included in search 2024-07-10 04:27:24 -07:00
cdacf2ecd0 clear out boards search when adding a new board 2024-07-10 04:27:24 -07:00
f193a576a6 move boardname back and make collapsible again 2024-07-10 04:27:24 -07:00
b7ebdca70a update image and assets tabs styling 2024-07-10 04:27:24 -07:00
c90b5541e8 Boards UI update and add support for private boards (#6588)
## Summary
Update Boards UI in the gallery and adds support for creating and
displaying private boards
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions
Can view private boards by setting config.allowPrivateBoards to true
<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-07-09 10:52:01 -04:00
a79e9caab1 Merge branch 'main' into boards-ui-update 2024-07-09 10:00:26 -04:00
4313578d8e fix(docker): ensure 'chown' does not break on read-only fs; fixes #6264 2024-07-09 09:47:29 -04:00
42c2dea202 fix(docker): change 'nvidia' profile name to 'cuda' 2024-07-09 09:47:29 -04:00
b672cc37a7 docs: overhaul Docker documentation, add to main README 2024-07-09 09:47:29 -04:00
476ebd13ae feat(ui): add board button tooltip when private boards enabled 2024-07-09 22:51:08 +10:00
9ae808712e Demote error log to warning for models treated as having size 0 (#6589)
## Summary

Demote error log to warning for models treated as having size 0.

## Related Issues / Discussions

Closes #6587 

I looked into handling ESRGAN model sizes properly. They load a
state_dict with a bit of an unusual nested-dict structure. Rather than
figure out how to accurately calculate their size, we can just wait for
https://github.com/invoke-ai/InvokeAI/pull/6556. ESRGAN model size
handling should work properly when loaded through that pathway.

## QA Instructions

Loaded an ESRGAN model, and confirmed that the warning log is at the
warning level.

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-09 08:51:00 -04:00
2460689c00 feat(ui): style board name 2024-07-09 22:47:03 +10:00
781b800ef7 feat(ui): boards lists start collapsed 2024-07-09 22:40:50 +10:00
d38d513d23 fix(ui): autoadd badge doesn't flex shrink 2024-07-09 22:39:32 +10:00
80e1b87b9e fix(ui): autoadd badge hides when editing name 2024-07-09 22:39:17 +10:00
6014382c7b feat(ui): select a board when it is created 2024-07-09 22:37:41 +10:00
af63c538ed Demote error log to warning to models treated as having size 0. 2024-07-09 08:35:43 -04:00
060d698a12 feat(ui): restore image count for boards 2024-07-09 22:19:20 +10:00
637802d803 fix(ui): restore auto-add indicator 2024-07-09 22:14:21 +10:00
2faf1e2ed3 fix(ui): show uncategorized board when private boards disabled 2024-07-09 22:02:54 +10:00
81cf47dd99 feat(ui): boards list layout & style tweaking 2024-07-09 21:58:48 +10:00
907b257984 remove unused file and addressed pr feedback 2024-07-08 23:20:50 -04:00
e2667f957c prettier 2024-07-08 22:16:31 -04:00
40c3b5e727 generate types again 2024-07-08 22:13:12 -04:00
38c5804457 remove unused disclosure 2024-07-08 22:09:23 -04:00
faf65c988a Merge branch 'main' into boards-ui-update 2024-07-08 22:06:26 -04:00
1785825690 add current gallery board name 2024-07-08 22:03:42 -04:00
0e092c0fb5 update is_private name 2024-07-08 22:03:12 -04:00
79a7b11214 remove old boards list 2024-07-08 15:02:22 -04:00
3a85ab15a1 update BoardRecord 2024-07-08 14:55:04 -04:00
9ca6980c7a cleanup and bug fixes 2024-07-08 13:29:53 -04:00
bdf4fcda23 Fixed 404 error on latest release link (line 16):
This commit corrects a broken link on line 16 that was pointing to the latest release but causing a 404 error (page not found) when clicked. The issue was identified as a trailing dot at the end of the URL, which has now been removed. This ensures users can access the intended latest release page.
2024-07-07 08:35:06 -07:00
35f8781ea2 Fix static type errors with SCHEDULER_NAME_VALUES. And, avoid bi-directional cross-directory imports, which contribute to circular import issues. 2024-07-05 07:38:35 -07:00
3a24d70279 Update the PR template QA instructions (#6580)
## Summary

This PR tweaks the wording of the PR template QA instructions with the
goals of:
1. Make it more clear that PR authors are responsible for testing their
PRs.
2. Encouraging sufficient detail in the test descriptions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-04 21:20:08 +05:30
7c8846e309 Update the PR template QA instructions to 1) make it clear that authors are responsible for testing their PRs, and 2) encourage sufficient detail in the QA section. 2024-07-04 11:30:38 -04:00
bd42b75d1e Delete unused duplicate libc_util.py file (#6579)
## Summary
 
Delete an unused duplicate libc_util.py file. The active version is at
`invokeai/backend/model_manager/libc_util.py`

## QA Instructions

I ran a smoke test to confirm that memory snapshotting still works.

## Merge Plan

- [x] Change target branch to `main` before merging.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-04 20:15:39 +05:30
36202d6d25 Delete unused duplicate libc_util.py file. The active version is at invokeai/backend/model_manager/libc_util.py. 2024-07-04 10:30:40 -04:00
b35f5b3877 Enforce absolute imports with ruff (#6576)
## Summary

This PR migrates all relative imports to absolute imports, and adds a
ruff check to enforce this going forward.

The justification for this change is here:
https://github.com/invoke-ai/InvokeAI/issues/6575

## QA Instructions

Smoke test all common workflows. Most of the relative -> absolute
conversions could be completed automatically, so the risk is relatively
low.

## Merge Plan

As with any far-reaching change like this, it is likely to cause some
merge conflicts with some in-flight branches. Unfortunately, there's no
way around this, but let me know if you can think of in-flight work that
will be significantly disrupted by this.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_ N/A
- [x] _Documentation added / updated (if applicable)_ N/A
2024-07-04 10:29:01 -04:00
1d449097cc Apply ruff rule to disallow all relative imports. 2024-07-04 09:35:37 -04:00
9da5925287 Add ruff rule to disallow relative parent imports. 2024-07-04 09:35:37 -04:00
7bbd793064 Fix some models treated as having size 0 in the model cache (#6571)
## Summary

This PR fixes a regression that caused the following models to be
treated as having size 0 in the model cache: `(TextualInversionModelRaw,
IPAdapter, LoRAModelRaw)`.

Changes:
- Call the correct model size calculation for all supported model types.
- Log an error message if an unexpected model type is loaded, to prevent
similar regressions in the future.

## QA Instructions

I tested the following features and verified that no models fell back to
using a size of 0 unexpectedly:
- Test-to-image
- Textual Inversion
- LoRA
- IP-Adapter
- ControlNet
(All tested with both SD1.5 and SDXL.)

I compared the model cache switching behavior before and after this
change with a large number of LoRAs (10). Since LoRAs are small compared
to the main models, the changes in behaviour are minimal. Nonetheless,
it makes sense to get this in for correctness. And it might make a
difference for some usage patterns with limited RAM.

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-04 09:21:30 -04:00
414750a45d Update calc_model_size_by_data(...) to handle all expected model types, and to log an error if an unexpected model type is received. 2024-07-04 09:08:25 -04:00
0fe92cd406 [MM bugfix] Put model install errors on the event bus (#6578)
* fix access token lookup

* fix bug preventing model install error events from being reported

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-07-03 22:44:34 -04:00
6437ef3f82 add view that displays private boards with shared boards 2024-07-03 14:25:36 -04:00
bb6ff4cf37 chore(ci): update pnpm github action 2024-07-03 13:16:25 -04:00
e719018ba1 fix sort order 2024-07-03 09:20:08 -07:00
a11dc62c2e fix access token lookup 2024-07-03 13:31:08 +10:00
7c01b69c12 fix(ui): revise image selection after deletion
- For single image deletion, select the image in the same slot as the deleted image
- For multiple image deletion, empty selection
- On list images, if no images are currently selected, select the first image
2024-07-03 13:20:40 +10:00
5578660ccb fix(ui): reset page when search term changes 2024-07-03 13:20:40 +10:00
e9936c27fb Make the VAE tile size configurable for tiled VAE (#6555)
## Summary

- This PR exposes a `tile_size` field on `ImageToLatentsInvocation` and
`LatentsToImageInvocation`.
  - Setting `tile_size = 0` preserves the default behaviour.
- This feature is primarily intended to support upscaling workflows that
require VAE encoding/decoding high resolution images. In the future, we
may want to expose the tile size as a global application config, but
that's a separate conversation.
- As a general rule, larger tile sizes produce better results at the
cost of higher memory usage.

### Example:

Original (5472x5472)

![orig](https://github.com/invoke-ai/InvokeAI/assets/14897797/af0a975d-11ed-4f3c-9e53-84f3da6c997e)

VAE roundtrip with 512x512 tiles (note the discoloration)

![vae_roundtrip_512x512](https://github.com/invoke-ai/InvokeAI/assets/14897797/d589ae3e-fe93-410a-904c-f61f0fc0f1f2)

VAE roundtrip with 1024x1024 tiles (some discoloration still present,
but less severe than at 512x512)

![vae_roundtrip_1024x1024](https://github.com/invoke-ai/InvokeAI/assets/14897797/d0bb9752-3bfa-444f-88c9-39a3ca89c748)


## Related Issues / Discussions

Related: #6144 

## QA Instructions

- [x] Test image generation via the Linear tab
- [x] Test VAE roundtrip with tiling disabled
- [x] Test VAE roundtrip with tiling and tile_size = 0
- [x] Test VAE roundtrip with tiling and tile_size > 0

## Merge Plan

No special instructions.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-07-02 09:16:07 -04:00
3752509066 Expose the VAE tile_size on the VAE encode and decode invocations. 2024-07-02 09:07:03 -04:00
a1b7dbfa54 Add unit test for patch_vae_tiling_params(). 2024-07-02 09:07:03 -04:00
79640ba14e Add context manager for overriding VAE tiling params. 2024-07-02 09:07:03 -04:00
4075a81676 feat(ui): gallery image selection ux
The selection logic is a bit complicated. We have image selection and pagination, both of which can be triggered using the mouse or hotkeys. We have viewer image selection and comparison image selection, which is determined by the alt key.

This change ties the room together with these behaviours:

- Changing the page using pagination buttons never changes the selection.
- Changing the selected image using arrows may change the page, if the arrow key pressed would select an image off the current page.
  - `right` on the last image of the current page goes to the next page
  - `down` on the last row of images goes to the next page
  - `left` on the first image of the current page goes to the previous page
  - `up` on the first row of images goes to the previous page
- If `alt` is held when using arrow keys, we change the page, but we only change the comparison image selection.
- When using arrow keys, if the page has changed since the last image was selected, the selection is reset to the first image on the page.
- The next/previous buttons on the image viewer do the same thing as `left` and `right` without `alt`.
- When clicking an image in the gallery:
  - If no modifier keys are held, the image is exclusively selected.
  - If `ctrl` or `meta` are held, the image's selection status is toggled.
  - If `shift` is held, all images from the last-selected image to the image are selected. If there are no images on the current page, the selection is unchanged.
  - If `alt` is held, the image is set as the compare image.
- `ctrl+a` and `meta+a` add the current page to the selection.

The logic for gallery navigation and selection is now pretty hairy. It's spread across 3 hooks, a listener, redux slice, components.

When we next make changes to this part of the app, we should consider consolidating some of the related logic. Probably most of it can go into a single listener and make it much simpler to grok.
2024-07-02 13:52:32 +10:00
4d39976909 feat(ui): restore loading spinner in search box
@maryhipp you were right, after trying loading bars and different placements, this feels like the best place for it.
2024-07-02 13:52:32 +10:00
d14894b3ae (ui) clarify auto-add options 2024-07-02 06:44:09 +10:00
6f5c5b0757 lint fix 2024-07-01 15:36:06 -04:00
93caa23ef8 undo 2024-07-01 15:36:06 -04:00
977a77f4e6 fix(ui): dont mess up redux if 403 gets thrown 2024-07-01 15:36:06 -04:00
57c0fcb93d (ui) clarify auto-add options 2024-07-01 15:36:06 -04:00
8b55900035 Update README.md
Updated to include more context confirming the community edition is in fact free for commercial use.
2024-07-01 09:12:31 -07:00
b1cc413bbd tidy(ui): remove search term fetching indicator
Don't like this UI (even though I suggested it). No need to prevent the user from interacting with the search term field during fetching. Let's figure out a nicer way to present this in a followup.
2024-07-01 20:06:28 +10:00
face94ce33 feat(ui): tweak search term placeholder verbiage 2024-07-01 20:06:28 +10:00
f0b1f0e5b6 feat(ui): pass search term as-is to query
The images service does not add the query filter if the search term is an empty string.
2024-07-01 20:06:28 +10:00
390dc47db5 feat(app): transform search term to lowercase 2024-07-01 20:06:28 +10:00
20d5c3a8bf (ui): improve loader/fetching state while searching, make search term a string in redux 2024-07-01 20:06:28 +10:00
134d831ebf (api) simplify query 2024-07-01 20:06:28 +10:00
b65ed8e8f2 fix commented out migration 2024-07-01 20:06:28 +10:00
93951dcf82 (api) ruff 2024-07-01 20:06:28 +10:00
da05034e20 feat(ui): debounced gallery search 2024-07-01 20:06:28 +10:00
d579aefb3e feat(api): add optional search_term query param to image list to search metadata 2024-07-01 20:06:28 +10:00
5d1f6db414 fix(app): fix SQL query w/ enum for python 3.11 (#6557)
## Summary

Python 3.11 has a wonderfully devious breaking change where _sometimes_
using enum classes that inherit from `str` or `int` do not work the same
way as they do in 3.10 when used within string formatting/interpolation.

This breaks the new gallery sort queries. The fix is to use
`order_dir.value` instead of `order_dir` in the query.

This was not an issue during development because the feature was
developed w/ python 3.10.

## Related Issues / Discussions

Thanks to @JPPhoto for reporting and troubleshooting:
https://discord.com/channels/1020123559063990373/1149513625321603162/1256211815982039173

## QA Instructions

JP's fancy python 3.11 system should work on this PR.

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-06-29 18:50:16 +05:30
f9961eceb7 fix(app): fix SQL query w/ enum for python 3.11 2024-06-29 11:07:39 +10:00
10076fb1e8 feat(ui): tweak gallery settings popover divider styling 2024-06-28 18:01:01 +10:00
d6e85e5f67 tidy(ui): rename GalleryBulkSelect -> GallerySelectionCountTag 2024-06-28 18:01:01 +10:00
1ce459198c chore(ui): knip 2024-06-28 18:01:01 +10:00
17d337169d fix(ui): do not reset limit when changing gallery view 2024-06-28 18:01:01 +10:00
1468f4d37e perf(ui): split out gallery settings popover components
This was taking over 15ms (!) to render each time a setting changed, wtf
2024-06-28 18:01:01 +10:00
2b744480d6 feat(ui): update UI for sorting 2024-06-28 18:01:01 +10:00
abb8d34b56 chore(ui): typegen 2024-06-28 18:01:01 +10:00
9e664d7c58 feat(api): remove order_by in favor of starred_first for images records 2024-06-28 18:01:01 +10:00
c96ccae70b feat(app): remove order_by in favor of starred_first for images records 2024-06-28 18:01:01 +10:00
f268fe126e feat(api): add order_by and order_dir to list images for sorting 2024-06-28 18:01:01 +10:00
6109a06f04 feat(ui): gallery sort by created at or starred, asc or desc 2024-06-28 18:01:01 +10:00
5df2a79549 Update starter models 2024-06-28 17:49:45 +10:00
10b9088312 update controlnet starter models 2024-06-28 17:49:45 +10:00
41f46b846b chore: ruff 2024-06-28 10:36:05 +10:00
6dfc406c52 tests: update test_bulk_download.py after addition of archived field 2024-06-28 10:36:05 +10:00
0d4b80780b feat(ui): handle edge cases when archiving/deleting boards
If the currently selected or auto-add board is archived or deleted, we should reset them. There are some edge cases taht weren't handled in the previous implementation.

All handling of this logic is moved to the (renamed) listener.
2024-06-28 10:36:05 +10:00
15b9ece411 chore(ui): typegen 2024-06-28 10:36:05 +10:00
89fcab34d0 feat(app): BoardRecord.archived is a required field 2024-06-28 10:36:05 +10:00
132289de55 chore: ruff E721
Looks like in the latest version of ruff, E721 was added or changed and now catches something it didn't before.
2024-06-28 10:36:05 +10:00
9f93e9d120 fix(app): when creating image, skip adding to board if board doesn't exist
Before this change, if you attempt to create an image that with a nonexistent board, we'd get an unhandled error when adding the image to a board. The record would be created, but file not, due to the structure of the code.

With this change, we now log a warning if we have a problem adding the image to the board, but the record and file are still created.

A future improvement would be to create a transaction for this part of the code, preventing some other situation that could result in only the record or only the file beings saved.
2024-06-28 10:36:05 +10:00
b5f23292d4 lint fix 2024-06-28 10:36:05 +10:00
a63dbb2c2d (api) change query param to include_archived 2024-06-28 10:36:05 +10:00
740bf80f3e (ui): update query param to include_archived, fix cache when archiving boards 2024-06-28 10:36:05 +10:00
dc90de600d (ui) allow auto-add on archived boards, reset to uncategorized if auto-add board is not currently visible due to archived view 2024-06-28 10:36:05 +10:00
5709f82e5f feat(ui): separate context menu for no board board
Much easier to not need to handle the board being optional in the component.
2024-06-28 10:36:05 +10:00
20042d99ec tidy(ui): archived icon component 2024-06-28 10:36:05 +10:00
8fce168dc5 fix tsc errors 2024-06-28 10:36:05 +10:00
a7ea096b28 ruff format 2024-06-28 10:36:05 +10:00
29eb3c8b62 lint fix 2024-06-28 10:36:05 +10:00
071e8bcee4 feat(ui): make archiving and auto-add mutually exclusive 2024-06-28 10:36:05 +10:00
68c0aa898f feat(ui): add ability to archive/unarchive boards, add toggle to gallery settings to show/hide archived boards in list 2024-06-28 10:36:05 +10:00
5120a76ce5 cleanup 2024-06-28 10:36:05 +10:00
38a948ac9f feat(api): add archived query param to board list endpoint to include them in the response 2024-06-28 10:36:05 +10:00
c33111468e feat(api): ability to archive boards 2024-06-28 10:36:05 +10:00
3e0fb45dd7 Load single-file checkpoints directly without conversion (#6510)
* use model_class.load_singlefile() instead of converting; works, but performance is poor

* adjust the convert api - not right just yet

* working, needs sql migrator update

* rename migration_11 before conflict merge with main

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* implement lightweight version-by-version config migration

* simplified config schema migration code

* associate sdxl config with sdxl VAEs

* remove use of original_config_file in load_single_file()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-27 17:31:28 -04:00
aba16085a5 fix(backend): mps should not use non_blocking (#6549)
## Summary

We can get black outputs when moving tensors from CPU to MPS. It appears
MPS to CPU is fine. See:
- https://github.com/pytorch/pytorch/issues/107455
-
https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28

Changes:
- Add properties for each device on `TorchDevice` as a convenience.
- Add `get_non_blocking` static method on `TorchDevice`. This utility
takes a torch device and returns the flag to be used for non_blocking
when moving a tensor to the device provided.
- Update model patching and caching APIs to use this new utility.

## Related Issues / Discussions

Fixes: #6545

## QA Instructions

For both MPS and CUDA:
- Generate at least 5 images using LoRAs
- Generate at least 5 images using IP Adapters

## Merge Plan

We have pagination merged into `main` but aren't ready for that to be
released.

Once this fix is tested and merged, we will probably want to create a
`v4.2.5post1` branch off the `v4.2.5` tag, cherry-pick the fix and do a
release from the hotfix branch.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_ @RyanJDick @lstein This
feels testable but I'm not sure how.
- [ ] _Documentation added / updated (if applicable)_
2024-06-27 10:11:53 -04:00
14775cc9c4 ruff format 2024-06-27 09:45:13 -04:00
c7562dd6c0 fix(backend): mps should not use non_blocking
We can get black outputs when moving tensors from CPU to MPS. It appears MPS to CPU is fine. See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28

Changes:
- Add properties for each device on `TorchDevice` as a convenience.
- Add `get_non_blocking` static method on `TorchDevice`. This utility takes a torch device and returns the flag to be used for non_blocking when moving a tensor to the device provided.
- Update model patching and caching APIs to use this new utility.

Fixes: #6545
2024-06-27 19:15:23 +10:00
a0a0c57789 chore(ui): knip 2024-06-27 13:48:40 +10:00
32ebf82d1a feat(ui): better pagination buttons 2024-06-27 13:48:40 +10:00
2dd172c2c6 feat(ui): gallery bulk select styling 2024-06-27 13:48:40 +10:00
280ec9d4b3 fix(ui): invalidate getImageDTO caches when images are mutated 2024-06-27 13:48:40 +10:00
fde8fc7575 perf(ui): optimistic updates for getImageDTO query cache 2024-06-27 13:48:40 +10:00
6dcdc87eb1 fix(ui): control adapter image preview 2024-06-27 13:48:40 +10:00
93ffcb642e lint fix 2024-06-27 13:48:40 +10:00
4c914ef2e8 use correct query params for boardIdSelected listener 2024-06-27 13:48:40 +10:00
c0ad5bc4a4 fix when deleting first image in list 2024-06-27 13:48:40 +10:00
8c58a180de GG another fix 2024-06-27 13:48:40 +10:00
715dd983b0 appease the knip 2024-06-27 13:48:40 +10:00
84ffd36071 lint fix 2024-06-27 13:48:40 +10:00
9f30f1bfec fix circular dep 2024-06-27 13:48:40 +10:00
bdff5c4e87 only show selected when greater than 0 2024-06-27 13:48:40 +10:00
afb0651f91 clear selection when board or gallery view changes 2024-06-27 13:48:40 +10:00
66e25628c3 fix neg pages 2024-06-27 13:48:40 +10:00
3a531a3c88 remove rest of cache, add bulk select UI 2024-06-27 13:48:40 +10:00
f01df49128 lint fix 2024-06-27 13:48:40 +10:00
7bbe236107 implmenet custom sort to replace images adapter logic 2024-06-27 13:48:40 +10:00
719c066ac4 feat(ui): more efficient board totals fetching
We only need to show the totals in the tooltip. Tooltips accpet a component for the tooltip label. The component isn't rendered until the tooltip is triggered.

Move the board total fetching into a tooltip component for the boards. Now we only fire these requests when the user mouses over the board
2024-06-27 13:48:40 +10:00
689dc30f87 feat(ui): tweak pagination buttons
- Fix off-by-one error when going to last page
- Update component to have minimal/no layout shift
2024-06-27 13:48:40 +10:00
1f22f6ae02 feat(ui): iterate on dynamic gallery limit
- Simplify the gallery layout
- Set an initial gallery limit to load _some_ images immediately.
- Refactor the resize observer to use the actual rendered image component to calculate the number of images per row/col. This prevents inaccuracies caused by image padding that could result in the wrong number of images.
- Debounce the limit update to not thrash teh API
- Use absolute positioning trick to ensure the gallery container is always exactly the right size
- Minimum of `imagesPerRow` images loaded at all times
2024-06-27 13:48:40 +10:00
9c931d9ca0 fix(ui): gallery content overflow
This is one of those unexpected CSS quirks. Flex containers need min-width or min-height for their children to not overflow. Add `minH={0}` to gallery container.
2024-06-27 13:48:40 +10:00
e0a241fa4f wip change limit based on size of gallery 2024-06-27 13:48:40 +10:00
6a4b4ee340 trying to invalidate all the tags 2024-06-27 13:48:40 +10:00
488bf21925 fix single pagers 2024-06-27 13:48:40 +10:00
c9c39c02b6 handle generations coming in, fix pagination to use total from list query so it updates as that changes 2024-06-27 13:48:40 +10:00
5101dc4bef some cleanup, add page buttons 2024-06-27 13:48:40 +10:00
98c77a3ed1 pull in spencers work 2024-06-27 13:48:40 +10:00
4fca62680d Update invokeai_version.py 2024-06-27 10:41:01 +10:00
f76282a5ff Fix handling handling of 0-step denoising process (#6544)
## Summary

https://github.com/invoke-ai/InvokeAI/pull/6522 introduced a change in
behavior in cases where start/end were set such that there are 0
timesteps. This PR reverts that change.

cc @StAlKeR7779 

## QA Instructions

Run with euler, 5 steps, start: 0.0, end: 0.05. I ran this test before
#6522, after #6522, and on this branch. This branch restores the
behavior to pre-#6522 i.e. noise is injected even if no denoising steps
are applied.


## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-06-26 13:01:58 -04:00
9a3b8c6fcb Fix handling of init_timestep in StableDiffusionGeneratorPipeline and improve its documentation. 2024-06-26 12:51:51 -04:00
bd74b84cc5 Revert "Remove the redundant init_timestep parameter that was being passed around. It is simply the first element of the timesteps array."
This reverts commit fa40061eca.
2024-06-26 12:51:51 -04:00
dc23bebebf Run ruff 2024-06-26 21:46:59 +10:00
38b6f90c02 Update prevention exception message 2024-06-26 21:46:59 +10:00
cd9dfefe3c Fix inpainting mask shape assertions. 2024-06-25 11:31:52 -07:00
b9946e50f9 Use image-space tile dimensions on the TiledMultiDiffusionDenoiseLatents invocation. This is more natural for many users. 2024-06-25 11:31:52 -07:00
06f49a30f6 Mark TiledMultiDiffusionDenoiseLatents as a Beta node. 2024-06-25 11:31:52 -07:00
e1af78c702 Make the tile_overlap input to MultiDiffusion *strictly* control the amount of overlap rather than being a lower bound. 2024-06-25 11:31:52 -07:00
c5588e1ff7 Add TODO comment explaining why some schedulers do not interact well with MultiDiffusion. 2024-06-25 11:31:52 -07:00
07ac292680 Consolidate _region_step() function - the separation wasn't really adding any value. 2024-06-25 11:31:52 -07:00
7c032ea604 (minor) Fix some documentation typos. 2024-06-25 11:31:52 -07:00
c5ee415607 Add progress image callbacks to TiledMultiDiffusionDenoiseLatentsInvocation. 2024-06-25 11:31:52 -07:00
fa40061eca Remove the redundant init_timestep parameter that was being passed around. It is simply the first element of the timesteps array. 2024-06-25 11:31:52 -07:00
7cafd78d6e Revert "Expose vae_decode(...) as a staticmethod on LatentsToImageInvocation."
This reverts commit 753239b48d.
2024-06-25 11:31:52 -07:00
8a43656cf9 (minor) Address a few small TODOs. 2024-06-25 11:31:52 -07:00
bd3b6ca11b Remove TiledStableDiffusionRefineInvocation. It was a proof-of-concept that has been superseded by TiledMultiDiffusionDenoiseLatents. 2024-06-25 11:31:52 -07:00
ceae5fe1db (minor) typo 2024-06-25 11:31:52 -07:00
25067e4f0d Delete rough notes. 2024-06-25 11:31:52 -07:00
fb0aaa3e6d Fix advanced scheduler behaviour in MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
c22526b9d0 Fix handling of stateful schedulers in MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
c881882f73 Connect TiledMultiDiffusionDenoiseLatents to the MultiDiffusionPipeline backend. 2024-06-25 11:31:52 -07:00
36473fc52a Remove regional conditioning logic from MultiDiffusionPipeline - it is not yet supported. 2024-06-25 11:31:52 -07:00
b9964ecc4a Initial (untested) implementation of MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
051af802fe Remove inpainting support from MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
3ff2e558d9 Remove IP-Adapter and T2I-Adapter support from MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
fc187c9253 Document plan for the rest of the MultiDiffusion implementation. 2024-06-25 11:31:52 -07:00
605f460c7d Add detailed docstring to latents_from_embeddings(). 2024-06-25 11:31:52 -07:00
60d1e686d8 Copy StableDiffusionGeneratorPipeline as a starting point for a new MultiDiffusionPipeline. 2024-06-25 11:31:52 -07:00
22704dd542 Simplify handling of inpainting models. Improve the in-code documentation around inpainting. 2024-06-25 11:31:52 -07:00
875673c9ba Minor tidying of latents_from_embeddings(...). 2024-06-25 11:31:52 -07:00
f604575862 Consolidate latents_from_embeddings(...) and generate_latents_from_embeddings(...) into a single function. 2024-06-25 11:31:52 -07:00
80a67572f1 Fix invocation name of tiled_multi_diffusion_denoise_latents. 2024-06-25 11:31:52 -07:00
60ac937698 Improve clarity of comments regarded when 'noise' and 'latents' are expected to be set. 2024-06-25 11:31:52 -07:00
1e41949a02 Fix static check errors on imports in diffusers_pipeline.py. 2024-06-25 11:31:52 -07:00
5f0e330ed2 Remove a condition for handling inpainting models that never resolves to True. The same logic is already applied earlier by AddsMaskLatents. 2024-06-25 11:31:52 -07:00
9dd779b414 Add clarifying comment to explain why noise might be None in latents_from_embedding(). 2024-06-25 11:31:52 -07:00
fa183025ac Remove unused are_like_tensors() function. 2024-06-25 11:31:52 -07:00
d3c85aa91a Remove unused StableDiffusionGeneratorPipeline.use_ip_adapter member. 2024-06-25 11:31:52 -07:00
82619602a5 Remove unused StableDiffusionGeneratorPipeline.control_model. 2024-06-25 11:31:52 -07:00
196f3b721d Stricter typing for the is_gradient_mask: bool. 2024-06-25 11:31:52 -07:00
244c28859d Fix typing of control_data to reflect that it can be None. 2024-06-25 11:31:52 -07:00
40ae174c41 Fix typing of timesteps and init_timestep. 2024-06-25 11:31:52 -07:00
afaebdf151 Fix typing to reflect that the callback arg to latents_from_embeddings is never None. 2024-06-25 11:31:52 -07:00
d661517d94 Move seed above optional params. 2024-06-25 11:31:52 -07:00
82a69a54ac Simplify handling of AddsMaskGuidance, and fix some related type errors. 2024-06-25 11:31:52 -07:00
ffc28176fe Remove unused num_inference_steps. 2024-06-25 11:31:52 -07:00
230e205541 WIP TiledMultiDiffusionDenoiseLatents. Updated parameter list and first half of the logic. 2024-06-25 11:31:52 -07:00
7e94350351 Tidy DenoiseLatentsInvocation.prep_control_data(...) and fix some type errors. 2024-06-25 11:31:52 -07:00
c4e8549c73 Make DenoiseLatentsInvocation.prep_control_data(...) a staticmethod so that it can be called externally. 2024-06-25 11:31:52 -07:00
350a210835 Copy TiledStableDiffusionRefineInvocation as a starting point for TiledMultiDiffusionDenoiseLatents.py 2024-06-25 11:31:52 -07:00
ed781dbb0c Change tiling strategy to make TiledStableDiffusionRefineInvocation work with more tile shapes and overlaps. 2024-06-25 11:31:52 -07:00
b41ea963e7 Expose a few more params from TiledStableDiffusionRefineInvocation. 2024-06-25 11:31:52 -07:00
da5d105049 Add support for LoRA models in TiledStableDiffusionRefineInvocation. 2024-06-25 11:31:52 -07:00
5301770525 Add naive ControlNet support to TiledStableDiffusionRefineInvocation 2024-06-25 11:31:52 -07:00
d08e405017 Fix ControlNetModel type hint import source. 2024-06-25 11:31:52 -07:00
534640ccde Rough prototype of TiledStableDiffusionRefineInvocation is working. 2024-06-25 11:31:52 -07:00
d5ab8cab5c WIP - TiledStableDiffusionRefine 2024-06-25 11:31:52 -07:00
4767301ad3 Minor improvements to LatentsToImageInvocation type hints. 2024-06-25 11:31:52 -07:00
21d7ca45e6 Expose vae_decode(...) as a staticmethod on LatentsToImageInvocation. 2024-06-25 11:31:52 -07:00
020e8eb413 Fix return type of prepare_noise_and_latents(...). 2024-06-25 11:31:52 -07:00
3d49541c09 Make init_scheduler() a staticmethod on DenoiseLatentsInvocation so that it can be called externally. 2024-06-25 11:31:52 -07:00
1ef266845a Only allow a single positive/negative prompt conditioning input for tiled refine. 2024-06-25 11:31:52 -07:00
a37589ca5f WIP on TiledStableDiffusionRefine 2024-06-25 11:31:52 -07:00
171a505f5e Convert several methods in DenoiseLatentsInvocation to staticmethods so that they can be called externally. 2024-06-25 11:31:52 -07:00
8004a0d5f5 Simplify the logic in prepare_noise_and_latents(...). 2024-06-25 11:31:52 -07:00
610a1fd611 Split out the prepare_noise_and_latents(...) logic in DenoiseLatentsInvocation so that it can be called from other invocations. 2024-06-25 11:31:52 -07:00
43108eec13 (minor) Add a TODO note to get_scheduler(...). 2024-06-25 11:31:52 -07:00
b03073d888 [MM] Add support for probing and loading SDXL VAE checkpoint files (#6524)
* add support for probing and loading SDXL VAE checkpoint files

* broaden regexp probe for SDXL VAEs

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-06-20 02:57:27 +00:00
a43d602f16 fix(queue): add clear_queue_on_startup config to clear problematic queues 2024-06-19 11:39:25 +10:00
7e9a89f8c6 Tidy SilenceWarnings context manager (#6493)
## Summary

No functional changes, just cleaning some things up as I touch the code.
This PR cleans up the `SilenceWarnings` context manager:
- Fix type errors
- Enable SilenceWarnings to be used as both a context manager and a
decorator
- Remove duplicate implementation
- Check the initial verbosity on `__enter__()` rather than `__init__()`
- Save an indentation level in DenoiseLatents

## QA Instructions

I generated an image to confirm that warnings are still muted.

## Merge Plan

- [x] ⚠️ Merge https://github.com/invoke-ai/InvokeAI/pull/6492 first,
then change the target branch to `main`.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-06-18 15:23:32 -04:00
79ceac2f82 (minor) Use SilenceWarnings as a decorator rather than a context manager to save an indentation level. 2024-06-18 15:06:22 -04:00
8e47e005a7 Tidy SilenceWarnings context manager:
- Fix type errors
- Enable SilenceWarnings to be used as both a context manager and a decorator
- Remove duplicate implementation
- Check the initial verbosity on __enter__() rather than __init__()
2024-06-18 15:06:22 -04:00
d13aafb514 Tidy denoise_latents.py imports to all use absolute import paths. 2024-06-18 15:06:22 -04:00
63a7e19dbf Run ruff 2024-06-18 10:38:29 -04:00
fbc5a8ec65 Ignore validation on improperly formatted hashes (pytest) 2024-06-18 10:38:29 -04:00
8ce6e4540e Run ruff 2024-06-18 10:38:29 -04:00
f14f377ede Update validator list 2024-06-18 10:38:29 -04:00
1925f83f5e Update validator list 2024-06-18 10:38:29 -04:00
3a5ad6d112 Update validator list 2024-06-18 10:38:29 -04:00
41a6bb45f3 Initial functionality 2024-06-18 10:38:29 -04:00
70e40fa6c1 added route to install huggingface models from model marketplace (#6515)
## Summary
added route to install huggingface models from model marketplace
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions
test by going to
http://localhost:5173/api/v2/models/install/huggingface?source=${hfRepo}
<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-06-16 21:13:58 -04:00
e26125b734 tests: fix test_model_install.py 2024-06-17 10:57:11 +10:00
cd70937b7f feat(api): improved model install confirmation page styling & messaging 2024-06-17 10:51:08 +10:00
f002bca2fa feat(ui): handle new model_install_download_started event
When a model install is initiated from outside the client, we now trigger the model manager tab's model install list to update.

- Handle new `model_install_download_started` event
- Handle `model_install_download_complete` event (this event is not new but was never handled)
- Update optimistic updates/cache invalidation logic to efficiently update the model install list
2024-06-17 10:07:10 +10:00
56771de856 feat(ui): add redux actions for model_install_download_started event 2024-06-17 09:52:46 +10:00
c11478a94a chore(ui): typegen 2024-06-17 09:51:18 +10:00
fb694b3e17 feat(app): add model_install_download_started event
Previously, we used `model_install_download_progress` for both download starting and progressing. When handling this event, we don't know which actual thing it represents.

Add `model_install_download_started` event to explicitly represent a model download started event.
2024-06-17 09:50:25 +10:00
1bc98abc76 docs(ui): explain model install events 2024-06-17 09:33:46 +10:00
7f03b04b2f Merge branch 'main' into chainchompa/model-install-deeplink 2024-06-14 17:16:25 -04:00
4029972530 formatting 2024-06-14 17:15:55 -04:00
328f160e88 refetch model installs when a new model install starts 2024-06-14 17:09:07 -04:00
aae318425d added route for installing huggingface model from model marketplace 2024-06-14 17:08:39 -04:00
785bb1d9e4 Fix all comparisons against the DEFAULT_PRECISION constant. DEFAULT_PRECISION is a torch.dtype. Previously, it was compared to a str in a number of places where it would always resolve to False. This is a bugfix that results in a change to the default behavior. In practice, this will not change the behavior for many users, because it only causes a change in behavior if a users has configured float32 as their default precision. 2024-06-14 11:26:10 -07:00
a3cb5da130 Improve RAM<->VRAM memory copy performance in LoRA patching and elsewhere (#6490)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes requested during penultimate review

* add non-blocking=True parameters to several torch.nn.Module.to() calls, for slight performance increases

* fix ruff errors

* prevent crash on non-cuda-enabled systems

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-13 17:10:03 +00:00
568a4844f7 fix: other recursive imports 2024-06-10 04:12:20 -07:00
b1e56e2485 fix: SchedulerOutput not being imported correctly 2024-06-10 04:12:20 -07:00
9432336e2b Add simplified model manager install API to InvocationContext (#6132)
## Summary

This three two model manager-related methods to the InvocationContext
uniform API. They are accessible via `context.models.*`:

1. **`load_local_model(model_path: Path, loader:
Optional[Callable[[Path], AnyModel]] = None) ->
LoadedModelWithoutConfig`**

*Load the model located at the indicated path.*

This will load a local model (.safetensors, .ckpt or diffusers
directory) into the model manager RAM cache and return its
`LoadedModelWithoutConfig`. If the optional loader argument is provided,
the loader will be invoked to load the model into memory. Otherwise the
method will call `safetensors.torch.load_file()` `torch.load()` (with a
pickle scan), or `from_pretrained()` as appropriate to the path type.

Be aware that the `LoadedModelWithoutConfig` object differs from
`LoadedModel` by having no `config` attribute.

Here is an example of usage:

```
def invoke(self, context: InvocatinContext) -> ImageOutput:
       model_path = Path('/opt/models/RealESRGAN_x4plus.pth')
       loadnet = context.models.load_local_model(model_path)
       with loadnet as loadnet_model:
             upscaler = RealESRGAN(loadnet=loadnet_model,...)
```

---

2. **`load_remote_model(source: str | AnyHttpUrl, loader:
Optional[Callable[[Path], AnyModel]] = None) ->
LoadedModelWithoutConfig`**

*Load the model located at the indicated URL or repo_id.*

This is similar to `load_local_model()` but it accepts either a
HugginFace repo_id (as a string), or a URL. The model's file(s) will be
downloaded to `models/.download_cache` and then loaded, returning a

```
def invoke(self, context: InvocatinContext) -> ImageOutput:
       model_url = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
       loadnet = context.models.load_remote_model(model_url)
       with loadnet as loadnet_model:
             upscaler = RealESRGAN(loadnet=loadnet_model,...)
```
---

3. **`download_and_cache_model( source: str | AnyHttpUrl, access_token:
Optional[str] = None, timeout: Optional[int] = 0) -> Path`**

Download the model file located at source to the models cache and return
its Path. This will check `models/.download_cache` for the desired model
file and download it from the indicated source if not already present.
The local Path to the downloaded file is then returned.

---

## Other Changes

This PR performs a migration, in which it renames `models/.cache` to
`models/.convert_cache`, and migrates previously-downloaded ESRGAN,
openpose, DepthAnything and Lama inpaint models from the `models/core`
directory into `models/.download_cache`.

There are a number of legacy model files in `models/core`, such as
GFPGAN, which are no longer used. This PR deletes them and tidies up the
`models/core` directory.

## Related Issues / Discussions

I have systematically replaced all the calls to
`download_with_progress_bar()`. This function is no longer used
elsewhere and has been removed.

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

I have added unit tests for the three new calls. You may test that the
`load_and_cache_model()` call is working by running the upscaler within
the web app. On first try, you will see the model file being downloaded
into the models `.cache` directory. On subsequent tries, the model will
either load from RAM (if it hasn't been displaced) or will be loaded
from the filesystem.

<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->

## Merge Plan

Squash merge when approved.

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [X] _The PR has a short but descriptive title, suitable for a
changelog_
- [X] _Tests added / updated (if applicable)_
- [X] _Documentation added / updated (if applicable)_
2024-06-08 16:24:31 -07:00
7d19af2caa Merge branch 'main' into lstein/feat/simple-mm2-api 2024-06-08 18:55:06 -04:00
0dbec3ad8b Split up latent.py (code reorganization, no functional changes) (#6491)
## Summary

I've started working towards a better tiled upscaling implementation. It
is going to require some refactoring of `DenoiseLatentsInvocation`. As a
first step, this PR splits up all of the invocations in latent.py into
their own files. That file had become a bit of a dumping ground - it
should be a bit more manageable to work with now.

This PR just re-organizes the code. There should be no functional
changes.

## QA Instructions

I've done some light smoke testing. I'll do some more before merging.
The main risk is that I missed a broken import, or some other copy-paste
error.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_: N/A
- [x] _Documentation added / updated (if applicable)_: N/A
2024-06-07 12:01:56 -04:00
52c0c4a32f Rename latent.py -> denoise_latents.py. 2024-06-07 09:28:42 -04:00
8f1afc032a Move SchedulerInvocation to a new file. No functional changes. 2024-06-07 09:28:42 -04:00
854bca668a Move CreateDenoiseMaskInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
fea9013cad Move CreateGradientMaskInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
045caddee1 Move LatentsToImageInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
58697141bf Move ImageToLatentsInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
5e419dbb56 Move ScaleLatentsInvocation and ResizeLatentsInvocation to their own file. No functional changes. 2024-06-07 09:28:42 -04:00
595096bdcf Move BlendLatentsInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
ed03d281e6 Move CropLatentsCoreInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
0b37496c57 Move IdealSizeInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
fde58ce0a3 Merge remote-tracking branch 'origin/main' into lstein/feat/simple-mm2-api 2024-06-07 14:23:41 +10:00
dc134935c8 replace load_and_cache_model() with load_remote_model() and load_local_odel() 2024-06-07 14:12:16 +10:00
9f9379682e ruff fixes 2024-06-07 13:54:41 +10:00
f81b8bc9f6 add support for generic loading of diffusers directories 2024-06-07 13:54:30 +10:00
6d067e56f2 fix(ui): on page load, if CA processed image no longer exists, re-process it 2024-06-07 10:32:28 +10:00
2871676f79 LoRA patching optimization (#6439)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes added during penultimate review

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-06 13:53:35 +00:00
1c5c3cdbd6 tidy(ui): organize control layers konva logic
- More comments, docstrings
- Move things into saner, less-coupled locations
2024-06-06 07:45:13 +10:00
3db69af220 refactor(ui): generalize stage event handlers
Create intermediary nanostores for values required by the event handlers. This allows the event handlers to be purely imperative, with no reactivity: instead of recreating/setting the handlers when a dependent piece of state changes, we use nanostores' imperative API to access dependent state.

For example, some handlers depend on brush size. If we used the standard declarative `useSelector` API, we'd need to recreate the event handler callback each time the brush size changed. This can be costly.

An intermediate `$brushSize` nanostore is set in a `useLayoutEffect()`, which responds to changes to the redux store. Then, in the event handler, we use the imperative API to access the brush size: `$brushSize.get()`.

This change allows the event handler logic to be shared with the pending canvas v2, and also more easily tested. It's a noticeable perf improvement, too, especially when changing brush size.
2024-06-06 07:45:13 +10:00
1823e446ac fix(ui): conditionally render CL preview
This fixes an issue where it sometimes gets out of sync, and fixes some konva errors.
2024-06-06 07:45:13 +10:00
311e44ad19 tidy(ui): clean up control layers renderers, docstrings 2024-06-06 07:45:13 +10:00
848ca79da8 Changed translated labels to static suffixes, cleanup. 2024-06-05 14:45:43 +10:00
9cba0dfac9 Providing fileName string directly to DataViewer as suggested 2024-06-05 14:45:43 +10:00
37b1f21bcf ... and the workflow 2024-06-05 14:45:43 +10:00
b2e005f6b5 Just realized we might want the same change made for the Graph JSON 2024-06-05 14:45:43 +10:00
52aac954c0 Prefixed JSON filenames with the image UUID #6469 2024-06-05 14:45:43 +10:00
ff01ceae99 Update invokeai_version.py 2024-06-05 05:53:19 +10:00
669d92d8db translationBot(ui): update translation (Chinese (Traditional))
Currently translated at 14.1% (179 of 1261 strings)

Co-authored-by: hugoalh <hugoalh@users.noreply.hosted.weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hant/
Translation: InvokeAI/Web UI
2024-06-05 00:08:03 +10:00
2903060154 translationBot(ui): update translation (German)
Currently translated at 67.0% (834 of 1243 strings)

Co-authored-by: Ettore Atalan <atalanttore@googlemail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-06-05 00:08:03 +10:00
4af8699a00 translationBot(ui): update translation (Spanish)
Currently translated at 34.3% (427 of 1243 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-06-05 00:08:03 +10:00
71fedd1a07 translationBot(ui): update translation (Spanish)
Currently translated at 34.3% (427 of 1243 strings)

Co-authored-by: Bruno Castillejo <soybrunocastillejo@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-06-05 00:08:03 +10:00
6bb1189c88 translationBot(ui): update translation (Italian)
Currently translated at 98.5% (1243 of 1261 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1243 of 1261 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1225 of 1243 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1225 of 1243 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-06-05 00:08:03 +10:00
c7546bc82e translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1261 of 1261 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1243 of 1243 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-06-05 00:08:03 +10:00
14372e3818 fix(nodes): blend latents with weight=0 with DPMSolverSDEScheduler
- Pass the seed from `latents_a` to the output latents. Fixed an issue where using `BlendLatentsInvocation` could result in different outputs during denoising even when the alpha or slerp weight was 0.

## Explanation

`LatentsField` has an optional `seed` field. During denoising, if this `seed` field is not present, we **fall back to 0 for the seed**. The seed is used during denoising in a few ways:

1. Initializing the scheduler.

The seed is used in two places in `invokeai/app/invocations/latent.py`.

The `get_scheduler()` utility function has special handling for `DPMSolverSDEScheduler`, which appears to need a seed for deterministic outputs.

`DenoiseLatentsInvocation.init_scheduler()` has special handling for schedulers that accept a generator - the generator needs to be seeded in a particular way. At the time of this commit, these are the Invoke-supported schedulers that need this seed:
  - DDIMScheduler
  - DDPMScheduler
  - DPMSolverMultistepScheduler
  - EulerAncestralDiscreteScheduler
  - EulerDiscreteScheduler
  - KDPM2AncestralDiscreteScheduler
  - LCMScheduler
  - TCDScheduler

2. Adding noise during inpainting.

If a mask is used for denoising, and we are not using an inpainting model, we add noise to the unmasked area. If, for some reason, we have a mask but no noise, the seed is used to add noise.

I wonder if we should instead assert that if a mask is provided, we also have noise.

This is done in `invokeai/backend/stable_diffusion/diffusers_pipeline.py` in `StableDiffusionGeneratorPipeline.latents_from_embeddings()`.

When we create noise to be used in denoising, we are expected to set `LatentsField.seed` to the seed used to create the noise. This introduces some awkwardness when we manipulate any "latents" that will be used for denoising. We have to pass the seed along for every operation.

If the wrong seed or no seed is passed along, we can get unexpected outputs during denoising. One notable case relates to blending latents (slerping tensors).

If we slerp two noise tensors (`LatentsField`s) _without_ passing along the seed from the source latents, when we denoise with a seed-dependent scheduler*, the schedulers use the fallback seed of 0 and we get the wrong output. This is most obvious when slerping with a weight of 0, in which case we expect the exact same output after denoising.

*It looks like only the DPMSolver* schedulers are affected, but I haven't tested all of them.

Passing the seed along in the output fixes this issue.
2024-06-05 00:02:52 +10:00
64523c4b1b fix(ui): handle concat when recalling prompts
This required some minor reworking of of the logic to recall multiple items. I split this into a utility function that includes some special handling for concat.

Closes #6478
2024-06-04 06:01:01 +10:00
89a764a359 fix(ui): improve model metadata parsing fallback
When the model in metadata's key no longer exists, fall back to fetching by name, base and type. This was the intention all along but the logic was never put in place.
2024-06-04 06:01:01 +10:00
756108f6bd Update invokeai/app/invocations/latent.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-03 11:41:47 -07:00
68d628dc14 use zip to iterate over image prompts and adapters 2024-06-03 11:41:47 -07:00
93c9852142 fix ruff 2024-06-03 11:41:47 -07:00
493f81788c added a few comments to document design choices 2024-06-03 11:41:47 -07:00
f13427e3f4 refactor redundant code and fix typechecking errors 2024-06-03 11:41:47 -07:00
e28737fc8b add check for congruence between # of ip_adapters and image_prompts 2024-06-03 11:41:47 -07:00
7391c126d3 handle case of no IP adapters requested 2024-06-03 11:41:47 -07:00
1c59fce6ad reduce peak VRAM memory usage of IP adapter 2024-06-03 11:41:47 -07:00
a9962fd104 chore: ruff 2024-06-03 11:53:20 +10:00
e7513f6088 docs(mm): add comment in move_model_to_device 2024-06-03 10:56:04 +10:00
c7f22b6a3b tidy(mm): remove extraneous docstring
It's inherited from the ABC.
2024-06-03 10:46:28 +10:00
99413256ce tidy(mm): pass enum member instead of string 2024-06-03 10:43:09 +10:00
aa9695e377 tidy(download): _download_job -> _multifile_job 2024-06-03 10:15:53 +10:00
c58ac1e80d tidy(mm): minor formatting 2024-06-03 10:11:08 +10:00
6cc6a45274 feat(download): add type for callback_name
Just a bit of typo protection in lieu of full type safety for these methods, which is difficult due to the typing of `DownloadEventHandler`.
2024-06-03 10:05:52 +10:00
521f907f58 tidy(nodes): infill
- Set `self._context=context` instead of passing it as an arg
2024-06-03 09:43:25 +10:00
ccdecf21a3 tidy(nodes): cnet processors
- Set `self._context=context` instead of changing the type signature of `run_processor`
- Tidy a few typing things
2024-06-03 09:41:17 +10:00
b124440023 tidy(mm): move load_model_from_url from mm to invocation context 2024-06-03 08:51:21 +10:00
e3a70e598e docs(app): simplify docstring in invocation_context 2024-06-03 08:40:29 +10:00
132bbf330a tidy(app): remove unnecessary changes in invocation_context
- Any mypy issues are a misconfiguration of mypy
- Use simple conditionals instead of ternaries
- Consistent & standards-compliant docstring formatting
- Use `dict` instead of `typing.Dict`
2024-06-03 08:35:23 +10:00
2276f327e5 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-06-02 09:45:31 -04:00
6b24424727 feat(ui): add help icon to compare toolbar 2024-06-02 15:30:00 +10:00
7153d846a9 feat(ui): add hotkey to cycle compare modes 2024-06-02 15:30:00 +10:00
9a0b77ad38 feat(ui): add hotkey to swap comparison images 2024-06-02 15:30:00 +10:00
220d45967e fix(ui): typo 2024-06-02 15:30:00 +10:00
038a482ef0 feat(ui): rework visibility conditions for image viewer 2024-06-02 15:30:00 +10:00
c325ad3432 feat(ui): add hotkey hint to exit compare button 2024-06-02 15:30:00 +10:00
449bc4dbe5 feat(ui): abstract out and share logic between comparisons 2024-06-02 15:30:00 +10:00
34d68a3663 feat(ui): hover comparison mode 2024-06-02 15:30:00 +10:00
8bb9571485 feat(ui): tweak slider divider styling 2024-06-02 15:30:00 +10:00
08bcc71e99 fix(ui): workflows fit on load 2024-06-02 15:30:00 +10:00
ff2b2fad83 feat(ui): revise drop zones
The main viewer area has two drop zones:
- Select for Viewer
- Select for Compare

These do what you'd imagine they would do.
2024-06-02 15:30:00 +10:00
0f0a6852f1 fix(ui): make compare image scale with first image when using contain fit 2024-06-02 15:30:00 +10:00
745140fa6b feat(ui): "first image"/"second image" -> "viewer image"/"compare image" 2024-06-02 15:30:00 +10:00
405fc46888 feat(ui): z/esc first exit compare before closing viewer 2024-06-02 15:30:00 +10:00
ca728ca29f fix(ui): ignore context menu in slider view
It doesn't make sense to allow context menu here, because the context menu will technically be on a div and not an image - there won't be any image options there.
2024-06-02 15:30:00 +10:00
d0fca53e67 fix(ui): only clear comparison image on alt click of gallery image
This logic can't e in the reducer else it applies to dnd events which isn't right
2024-06-02 15:30:00 +10:00
ad9740d72d feat(ui): alt-click comparison image exits compare 2024-06-02 15:30:00 +10:00
1c9c982b63 feat(ui): use appropriate cursor on slider 2024-06-02 15:30:00 +10:00
3cfd2755c2 fix(ui): when changing viewer state, always clear compare image 2024-06-02 15:30:00 +10:00
8ea4067f83 feat(ui): rework compare toolbar 2024-06-02 15:30:00 +10:00
940de6a5c5 fix(ui): allow drop of currently-selected image for compare 2024-06-02 15:30:00 +10:00
dd74e89127 fix(ui): close context menu on click select for compare 2024-06-02 15:30:00 +10:00
69da67e920 fix(ui): dnd on board
Copy-paste error broke this
2024-06-02 15:30:00 +10:00
76b1f241d7 fix(ui): useGalleryNavigation callback typing issue 2024-06-02 15:30:00 +10:00
0e5336d8fa feat(ui): rework comparison activation, add hotkeys 2024-06-02 15:30:00 +10:00
3501636018 feat(ui): add fill mode for slider comparison 2024-06-02 15:30:00 +10:00
e4ce188500 feat(ui): image selection gallery state & tweaks 2024-06-02 15:30:00 +10:00
e976571fba build(ui): remove unused dep 2024-06-02 15:30:00 +10:00
0da36c1238 feat(ui): use IAIDndImage for compare mode 2024-06-02 15:30:00 +10:00
4ef8cbd9d0 fix(ui): use isValidDrop in imageDropped listener
It was possible for a drop event to be invalid but still processed. Fixed by slightly changing the signature of isValidDrop.
2024-06-02 15:30:00 +10:00
8f8ddd620b feat(ui): add comparison modes, side-by-side view 2024-06-02 15:30:00 +10:00
1af53aed60 feat(ui): fix image comparison slider resizing/aspect ratio jank 2024-06-02 15:30:00 +10:00
7a4bbd092e feat(ui): revised image comparison slider
Should work for any components and image now.
2024-06-02 15:30:00 +10:00
72bbcb2d94 feat(ui): slider working for all aspect ratios 2024-06-02 15:30:00 +10:00
c2eef93476 feat(ui): wip slider implementations 2024-06-02 15:30:00 +10:00
cfb12615e1 fix: openapi stuff (#6454)
## Summary

Fix some issues with openapi schema generation. See commits for details.

## Related Issues / Discussions


https://discord.com/channels/1020123559063990373/1049495067846524939/1245141831394529352

## QA Instructions

App should work, workflows should work.

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-05-30 08:22:34 +05:30
a983f27aad fix(ui): update types 2024-05-30 12:03:38 +10:00
7cb32d3d83 chore(ui): typegen 2024-05-30 12:03:38 +10:00
ac56ab79a7 fix(app): add dynamic validator to AnyInvocation & AnyInvocationOutput
This fixes the tests and slightly changes output types.
2024-05-30 12:03:38 +10:00
50d3030471 feat(app): dynamic type adapters for invocations & outputs
Keep track of whether or not the typeadapter needs to be updated. Allows for dynamic invocation and output unions.
2024-05-30 12:03:38 +10:00
5beec8211a feat(api): sort openapi schemas
Reduces the constant changes to the frontend client types due to inconsistent ordering of pydantic models.
2024-05-30 12:03:38 +10:00
5a4d10467b feat(ui): use updated types 2024-05-30 12:03:38 +10:00
7590f3005e chore(ui): typegen 2024-05-30 12:03:03 +10:00
2f9ebdec69 fix(app): openapi schema generation
Some tech debt related to dynamic pydantic schemas for invocations became problematic. Including the invocations and results in the event schemas was breaking pydantic's handling of ref schemas. I don't really understand why - I think it's a pydantic bug in a remote edge case that we are hitting.

After many failed attempts I landed on this implementation, which is actually much tidier than what was in there before.

- Create pydantic-enabled types for `AnyInvocation` and `AnyInvocationOutput` and use these in place of the janky dynamic unions. Actually, they are kinda the same, but better encapsulated. Use these in `Graph`, `GraphExecutionState`, `InvocationEventBase` and `InvocationCompleteEvent`.
- Revise the custom openapi function to work with the new models.
- Split out the custom openapi function to a separate file. Add a `post_transform` callback so consumers can customize the output schema.
- Update makefile scripts.
2024-05-30 12:03:03 +10:00
e257a72f94 chore: bump pydantic, fastapi to latest 2024-05-30 12:03:03 +10:00
843f82c837 fix(ui): remove overly strict constraints on control adapter weight 2024-05-29 19:01:28 -07:00
66858effa2 docs: add FAQ for fixing controlnet_aux 2024-05-29 18:19:06 -07:00
21a60af881 when unlocking models, offload_unlocked_models should prune to vram limit only (#6450)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-05-29 03:01:21 +00:00
ead1748c54 issue a download progress event when install download starts 2024-05-28 19:30:42 -04:00
cd12ca6e85 add migration_11; fix typo 2024-05-27 22:40:01 -04:00
34e1eb19f9 merge with main and resolve conflicts 2024-05-27 22:20:34 -04:00
987ee704a1 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-05-17 22:54:03 -04:00
e77c7e40b7 fix ruff error 2024-05-17 22:53:45 -04:00
8aebc29b91 fix test to run on 32bit cpu 2024-05-17 22:48:54 -04:00
d968c6f379 refactor multifile download code 2024-05-17 22:29:19 -04:00
2dae5eb7ad more refactoring; HF subfolders not working 2024-05-16 22:26:18 -04:00
911a24479b add tests for model install file size reporting 2024-05-16 07:18:33 -04:00
f29c406fed refactor model_install to work with refactored download queue 2024-05-13 22:49:15 -04:00
287c679f7b clean up type checking for single file and multifile download job callbacks 2024-05-13 18:31:40 -04:00
0bf14c2830 add multifile_download() method to download service 2024-05-12 20:14:00 -06:00
b48d4a049d bad implementation of diffusers folder download 2024-05-08 21:21:01 -07:00
f211c95dbc move access token regex matching into download queue 2024-05-05 21:00:31 -04:00
8e5e9b53d6 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-05-04 17:01:15 -04:00
e9a20051bd refactor DWOpenPose and add type hints 2024-05-03 18:08:53 -04:00
38df6f3702 fix ruff error 2024-05-02 21:22:33 -04:00
3b64e7a1fd Merge branch 'main' into lstein/feat/simple-mm2-api 2024-05-02 21:20:35 -04:00
49c84cd423 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-30 18:13:42 -04:00
1fe90c357c feat(backend): lift managed model loading out of depthanything class 2024-04-29 08:56:00 +10:00
fcb071f30c feat(backend): lift managed model loading out of lama class 2024-04-29 08:12:51 +10:00
57c831442e fix safe_filename() on windows 2024-04-28 14:42:40 -04:00
f65c7e2bfd Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-28 13:42:54 -04:00
7c39929758 support VRAM caching of dict models that lack to() 2024-04-28 13:41:06 -04:00
a26667d3ca make download and convert cache keys safe for filename length 2024-04-28 12:24:36 -04:00
bb04f496e0 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-28 11:33:26 -04:00
70903ef057 refactor load_ckpt_from_url() 2024-04-28 11:33:23 -04:00
d72f272f16 Address change requests in first round of PR reviews.
Pending:

- Move model install calls into model manager and create passthrus in invocation_context.
- Consider splitting load_model_from_url() into a call to get the path and a call to load the path.
2024-04-24 23:53:30 -04:00
34cdfc61ab Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-17 17:18:13 -04:00
470a39935c fix merge conflicts with main 2024-04-15 09:24:57 -04:00
f1e79d5a8f Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-15 09:14:55 -04:00
f055e1edb6 Merge branch 'lstein/feat/simple-mm2-api' of github.com:invoke-ai/InvokeAI into lstein/feat/simple-mm2-api 2024-04-15 09:14:37 -04:00
fa6efac436 change names of convert and download caches and add migration script 2024-04-14 16:10:24 -04:00
3ead827d61 port dw_openpose, depth_anything, and lama processors to new model download scheme 2024-04-14 16:10:24 -04:00
c140d3b1df add invocation_context.load_ckpt_from_url() method 2024-04-14 16:10:24 -04:00
34438ce1af add simplified model manager install API to InvocationContext 2024-04-14 16:10:24 -04:00
3ddd7ced49 change names of convert and download caches and add migration script 2024-04-14 15:57:33 -04:00
41b909cbe3 port dw_openpose, depth_anything, and lama processors to new model download scheme 2024-04-14 15:57:03 -04:00
3a26c7bb9e fix merge conflicts 2024-04-12 00:58:11 -04:00
df5ebdbc4f add invocation_context.load_ckpt_from_url() method 2024-04-12 00:55:21 -04:00
af1b57a01f add simplified model manager install API to InvocationContext 2024-04-11 21:46:00 -04:00
9cc1f20ad5 add simplified model manager install API to InvocationContext 2024-04-03 23:26:48 -04:00
343 changed files with 17618 additions and 10284 deletions

View File

@ -9,9 +9,9 @@ runs:
node-version: '18'
- name: setup pnpm
uses: pnpm/action-setup@v2
uses: pnpm/action-setup@v4
with:
version: 8
version: 8.15.6
run_install: false
- name: get pnpm store directory

View File

@ -8,7 +8,7 @@
## QA Instructions
<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->
<!--WHEN APPLICABLE: Describe how you have tested the changes in this PR. Provide enough detail that a reviewer can reproduce your tests.-->
## Merge Plan

1
.gitignore vendored
View File

@ -188,4 +188,3 @@ installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/
.aider*

View File

@ -18,6 +18,7 @@ help:
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
@echo "openapi Generate the OpenAPI schema for the app, outputting to stdout"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
@ -70,3 +71,6 @@ installer-zip:
tag-release:
cd installer && ./tag_release.sh
# Generate the OpenAPI Schema for the app
openapi:
python scripts/generate_openapi_schema.py

View File

@ -12,12 +12,24 @@
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
[Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs]
Invoke is available in two editions:
| **Community Edition** | **Professional Edition** |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| **For users looking for a locally installed, self-hosted and self-managed service** | **For users or teams looking for a cloud-hosted, fully managed service** |
| - Free to use under a commercially-friendly license | - Monthly subscription fee with three different plan levels |
| - Download and install on compatible hardware | - Offers additional benefits, including multi-user support, improved model training, and more |
| - Includes all core studio features: generate, refine, iterate on images, and build workflows | - Hosted in the cloud for easy, secure model access and scalability |
| Quick Start -> [Installation and Updates][installation docs] | More Information -> [www.invoke.com/pricing](https://www.invoke.com/pricing) |
<div align="center">
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
# Documentation
| **Quick Links** |
|----------------------------------------------------------------------------------------------------------------------------|
| [Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs] |
</div>
## Quick Start
@ -37,6 +49,33 @@ Invoke is a leading creative engine built to empower professionals and enthusias
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
## Docker Container
We publish official container images in Github Container Registry: https://github.com/invoke-ai/InvokeAI/pkgs/container/invokeai. Both CUDA and ROCm images are available. Check the above link for relevant tags.
> [!IMPORTANT]
> Ensure that Docker is set up to use the GPU. Refer to [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] documentation.
### Generate!
Run the container, modifying the command as necessary:
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
Then open `http://localhost:9090` and install some models using the Model Manager tab to begin generating.
For ROCm, add `--device /dev/kfd --device /dev/dri` to the `docker run` command.
### Persist your data
You will likely want to persist your workspace outside of the container. Use the `--volume /home/myuser/invokeai:/invokeai` flag to mount some local directory (using its **absolute** path) to the `/invokeai` path inside the container. Your generated images and models will reside there. You can use this directory with other InvokeAI installations, or switch between runtime directories as needed.
### DIY
Build your own image and customize the environment to match your needs using our `docker-compose` stack. See [README.md](./docker/README.md) in the [docker](./docker) directory.
## Troubleshooting, FAQ and Support
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
@ -114,3 +153,5 @@ Original portions of the software are Copyright © 2024 by respective contributo
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
[translation status link]: https://hosted.weblate.org/engage/invokeai/
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html

View File

@ -19,8 +19,9 @@
## INVOKEAI_PORT is the port on which the InvokeAI web interface will be available
# INVOKEAI_PORT=9090
## GPU_DRIVER can be set to either `nvidia` or `rocm` to enable GPU support in the container accordingly.
# GPU_DRIVER=nvidia #| rocm
## GPU_DRIVER can be set to either `cuda` or `rocm` to enable GPU support in the container accordingly.
# GPU_DRIVER=cuda #| rocm
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
## It is usually not necessary to change this. Use `id -u` on the host system to find the UID.
# CONTAINER_UID=1000

View File

@ -1,41 +1,75 @@
# InvokeAI Containerized
# Invoke in Docker
All commands should be run within the `docker` directory: `cd docker`
- Ensure that Docker can use the GPU on your system
- This documentation assumes Linux, but should work similarly under Windows with WSL2
- We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly.
## Quickstart :rocket:
## Quickstart :lightning:
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
No `docker compose`, no persistence, just a simple one-liner using the official images:
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
**CUDA:**
## Detailed setup
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
**ROCm:**
```bash
docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm
```
Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away!
> [!TIP]
> To persist your data (including downloaded models) outside of the container, add a `--volume/-v` flag to the above command, e.g.: `docker run --volume /some/local/path:/invokeai <...the rest of the command>`
## Customize the container
We ship the `run.sh` script, which is a convenient wrapper around `docker compose` for cases where custom image build args are needed. Alternatively, the familiar `docker compose` commands work just as well.
```bash
cd docker
cp .env.sample .env
# edit .env to your liking if you need to; it is well commented.
./run.sh
```
It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke!
## Docker setup in detail
#### Linux
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
- The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version.
3. Ensure docker daemon is able to access the GPU.
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
- [NVIDIA docs](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
- [AMD docs](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html)
#### macOS
> [!TIP]
> You'll be better off installing Invoke directly on your system, because Docker can not use the GPU on macOS.
If you are still reading:
1. Ensure Docker has at least 16GB RAM
2. Enable VirtioFS for file sharing
3. Enable `docker compose` V2 support
This is done via Docker Desktop preferences
This is done via Docker Desktop preferences.
### Configure Invoke environment
### Configure the Invoke Environment
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to the desired location of the InvokeAI runtime directory. It may be an existing directory from a previous installation (post 4.0.0).
1. Execute `run.sh`
The image will be built automatically if needed.
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. Navigate to the Model Manager tab and install some models before generating.
### Use a GPU
@ -43,9 +77,9 @@ The runtime directory (holding models and outputs) will be created in the locati
- WSL2 is *required* for Windows.
- only `x86_64` architecture is supported.
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker/NVIDIA/AMD documentation for the most up-to-date instructions for using your GPU with Docker.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file before running `./run.sh`.
## Customize
@ -59,10 +93,10 @@ Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The defa
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000
GPU_DRIVER=nvidia
GPU_DRIVER=cuda
```
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
## Even More Customizing!

View File

@ -1,7 +1,5 @@
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
version: '3.8'
x-invokeai: &invokeai
image: "local/invokeai:latest"
build:
@ -32,7 +30,7 @@ x-invokeai: &invokeai
services:
invokeai-nvidia:
invokeai-cuda:
<<: *invokeai
deploy:
resources:

View File

@ -23,18 +23,18 @@ usermod -u ${USER_ID} ${USER} 1>/dev/null
# but it is useful to have the full SSH server e.g. on Runpod.
# (use SCP to copy files to/from the image, etc)
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
apt-get update
apt-get install -y openssh-server
pushd "$HOME"
mkdir -p .ssh
echo "${PUBLIC_KEY}" > .ssh/authorized_keys
chmod -R 700 .ssh
popd
service ssh start
apt-get update
apt-get install -y openssh-server
pushd "$HOME"
mkdir -p .ssh
echo "${PUBLIC_KEY}" >.ssh/authorized_keys
chmod -R 700 .ssh
popd
service ssh start
fi
mkdir -p "${INVOKEAI_ROOT}"
chown --recursive ${USER} "${INVOKEAI_ROOT}"
chown --recursive ${USER} "${INVOKEAI_ROOT}" || true
cd "${INVOKEAI_ROOT}"
# Run the CMD as the Container User (not root).

View File

@ -8,11 +8,15 @@ run() {
local build_args=""
local profile=""
# create .env file if it doesn't exist, otherwise docker compose will fail
touch .env
# parse .env file for build args
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
[[ -z "$profile" ]] && profile="nvidia"
# default to 'cuda' profile
[[ -z "$profile" ]] && profile="cuda"
local service_name="invokeai-$profile"

View File

@ -128,7 +128,8 @@ The queue operates on a series of download job objects. These objects
specify the source and destination of the download, and keep track of
the progress of the download.
The only job type currently implemented is `DownloadJob`, a pydantic object with the
Two job types are defined. `DownloadJob` and
`MultiFileDownloadJob`. The former is a pydantic object with the
following fields:
| **Field** | **Type** | **Default** | **Description** |
@ -138,7 +139,7 @@ following fields:
| `dest` | Path | | Where to download to |
| `access_token` | str | | [optional] string containing authentication token for access |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
@ -190,6 +191,33 @@ A cancelled job will have status `DownloadJobStatus.ERROR` and an
`error_type` field of "DownloadJobCancelledException". In addition,
the job's `cancelled` property will be set to True.
The `MultiFileDownloadJob` is used for diffusers model downloads,
which contain multiple files and directories under a common root:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `download_parts` | Set[DownloadJob]| | Component download jobs |
| `dest` | Path | | Where to download to |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the root of the downloaded files |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
Note that the MultiFileDownloadJob does not support the `priority`,
`job_started`, `job_ended` or `content_type` attributes. You can get
these from the individual download jobs in `download_parts`.
### Callbacks
Download jobs can be associated with a series of callbacks, each with
@ -251,11 +279,40 @@ jobs using `list_jobs()`, fetch a single job by its with
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
with `join()`.
#### job = queue.download(source, dest, priority, access_token)
#### job = queue.download(source, dest, priority, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
Create a new download job and put it on the queue, returning the
DownloadJob object.
#### multifile_job = queue.multifile_download(parts, dest, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
This is similar to download(), but instead of taking a single source,
it accepts a `parts` argument consisting of a list of
`RemoteModelFile` objects. Each part corresponds to a URL/Path pair,
where the URL is the location of the remote file, and the Path is the
destination.
`RemoteModelFile` can be imported from `invokeai.backend.model_manager.metadata`, and
consists of a url/path pair. Note that the path *must* be relative.
The method returns a `MultiFileDownloadJob`.
```
from invokeai.backend.model_manager.metadata import RemoteModelFile
remote_file_1 = RemoteModelFile(url='http://www.foo.bar/my/pytorch_model.safetensors'',
path='my_model/textencoder/pytorch_model.safetensors'
)
remote_file_2 = RemoteModelFile(url='http://www.bar.baz/vae.ckpt',
path='my_model/vae/diffusers_model.safetensors'
)
job = queue.multifile_download(parts=[remote_file_1, remote_file_2],
dest='/tmp/downloads',
on_progress=TqdmProgress().update)
queue.wait_for_job(job)
print(f"The files were downloaded to {job.download_path}")
```
#### jobs = queue.list_jobs()
Return a list of all active and inactive `DownloadJob`s.

View File

@ -397,26 +397,25 @@ In the event you wish to create a new installer, you may use the
following initialization pattern:
```
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.config import get_config
from invokeai.app.services.model_records import ModelRecordServiceSQL
from invokeai.app.services.model_install import ModelInstallService
from invokeai.app.services.download import DownloadQueueService
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
db = SqliteDatabase(config, logger)
record_store = ModelRecordServiceSQL(db)
db = SqliteDatabase(config.db_path, logger)
record_store = ModelRecordServiceSQL(db, logger)
queue = DownloadQueueService()
queue.start()
installer = ModelInstallService(app_config=config,
installer = ModelInstallService(app_config=config,
record_store=record_store,
download_queue=queue
)
download_queue=queue
)
installer.start()
```
@ -1367,12 +1366,20 @@ the in-memory loaded model:
| `model` | AnyModel | The instantiated model (details below) |
| `locker` | ModelLockerBase | A context manager that mediates the movement of the model into VRAM |
Because the loader can return multiple model types, it is typed to
return `AnyModel`, a Union `ModelMixin`, `torch.nn.Module`,
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
models. The others are obvious.
### get_model_by_key(key, [submodel]) -> LoadedModel
The `get_model_by_key()` method will retrieve the model using its
unique database key. For example:
loaded_model = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
`get_model_by_key()` may raise any of the following exceptions:
* `UnknownModelException` -- key not in database
* `ModelNotFoundException` -- key in database but model not found at path
* `NotImplementedException` -- the loader doesn't know how to load this type of model
### Using the Loaded Model in Inference
`LoadedModel` acts as a context manager. The context loads the model
into the execution device (e.g. VRAM on CUDA systems), locks the model
@ -1380,17 +1387,33 @@ in the execution device for the duration of the context, and returns
the model. Use it like this:
```
model_info = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with model_info as vae:
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with loaded_model as vae:
image = vae.decode(latents)[0]
```
`get_model_by_key()` may raise any of the following exceptions:
The object returned by the LoadedModel context manager is an
`AnyModel`, which is a Union of `ModelMixin`, `torch.nn.Module`,
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
models. The others are obvious.
In addition, you may call `LoadedModel.model_on_device()`, a context
manager that returns a tuple of the model's state dict in CPU and the
model itself in VRAM. It is used to optimize the LoRA patching and
unpatching process:
```
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with loaded_model.model_on_device() as (state_dict, vae):
image = vae.decode(latents)[0]
```
Since not all models have state dicts, the `state_dict` return value
can be None.
* `UnknownModelException` -- key not in database
* `ModelNotFoundException` -- key in database but model not found at path
* `NotImplementedException` -- the loader doesn't know how to load this type of model
### Emitting model loading events
When the `context` argument is passed to `load_model_*()`, it will
@ -1578,3 +1601,59 @@ This method takes a model key, looks it up using the
`ModelRecordServiceBase` object in `mm.store`, and passes the returned
model configuration to `load_model_by_config()`. It may raise a
`NotImplementedException`.
## Invocation Context Model Manager API
Within invocations, the following methods are available from the
`InvocationContext` object:
### context.download_and_cache_model(source) -> Path
This method accepts a `source` of a remote model, downloads and caches
it locally, and then returns a Path to the local model. The source can
be a direct download URL or a HuggingFace repo_id.
In the case of HuggingFace repo_id, the following variants are
recognized:
* stabilityai/stable-diffusion-v4 -- default model
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
You can also point at an arbitrary individual file within a repo_id
directory using this syntax:
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
### context.load_local_model(model_path, [loader]) -> LoadedModel
This method loads a local model from the indicated path, returning a
`LoadedModel`. The optional loader is a Callable that accepts a Path
to the object, and returns a `AnyModel` object. If no loader is
provided, then the method will use `torch.load()` for a .ckpt or .bin
checkpoint file, `safetensors.torch.load_file()` for a safetensors
checkpoint file, or `cls.from_pretrained()` for a directory that looks
like a diffusers directory.
### context.load_remote_model(source, [loader]) -> LoadedModel
This method accepts a `source` of a remote model, downloads and caches
it locally, loads it, and returns a `LoadedModel`. The source can be a
direct download URL or a HuggingFace repo_id.
In the case of HuggingFace repo_id, the following variants are
recognized:
* stabilityai/stable-diffusion-v4 -- default model
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
You can also point at an arbitrary individual file within a repo_id
directory using this syntax:
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors

View File

@ -154,6 +154,18 @@ This is caused by an invalid setting in the `invokeai.yaml` configuration file.
Check the [configuration docs] for more detail about the settings and how to specify them.
## `ModuleNotFoundError: No module named 'controlnet_aux'`
`controlnet_aux` is a dependency of Invoke and appears to have been packaged or distributed strangely. Sometimes, it doesn't install correctly. This is outside our control.
If you encounter this error, the solution is to remove the package from the `pip` cache and re-run the Invoke installer so a fresh, working version of `controlnet_aux` can be downloaded and installed:
- Run the Invoke launcher
- Choose the developer console option
- Run this command: `pip cache remove controlnet_aux`
- Close the terminal window
- Download and run the [installer](https://github.com/invoke-ai/InvokeAI/releases/latest), selecting your current install location
## Out of Memory Issues
The models are large, VRAM is expensive, and you may find yourself

View File

@ -4,50 +4,37 @@ title: Installing with Docker
# :fontawesome-brands-docker: Docker
!!! warning "macOS and AMD GPU Users"
!!! warning "macOS users"
We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md),
because Docker containers can not access the GPU on macOS.
!!! warning "AMD GPU Users"
Container support for AMD GPUs has been reported to work by the community, but has not received
extensive testing. Please make sure to set the `GPU_DRIVER=rocm` environment variable (see below), and
use the `build.sh` script to build the image for this to take effect at build time.
Docker can not access the GPU on macOS, so your generation speeds will be slow. [Install InvokeAI](INSTALLATION.md) instead.
!!! tip "Linux and Windows Users"
For optimal performance, configure your Docker daemon to access your machine's GPU.
Configure Docker to access your machine's GPU.
Docker Desktop on Windows [includes GPU support](https://www.docker.com/blog/wsl-2-gpu-support-for-docker-desktop-on-nvidia-gpus/).
Linux users should install and configure the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
## Why containers?
They provide a flexible, reliable way to build and deploy InvokeAI.
See [Processes](https://12factor.net/processes) under the Twelve-Factor App
methodology for details on why running applications in such a stateless fashion is important.
The container is configured for CUDA by default, but can be built to support AMD GPUs
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
Developers on Apple silicon (M1/M2/M3): You
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
and performance is reduced compared with running it directly on macOS but for
development purposes it's fine. Once you're done with development tasks on your
laptop you can build for the target platform and architecture and deploy to
another environment with NVIDIA GPUs on-premises or in the cloud.
Linux users should follow the [NVIDIA](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) or [AMD](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html) documentation.
## TL;DR
This assumes properly configured Docker on Linux or Windows/WSL2. Read on for detailed customization options.
Ensure your Docker setup is able to use your GPU. Then:
```bash
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
```
Once the container starts up, open http://localhost:9090 in your browser, install some models, and start generating.
## Build-It-Yourself
All the docker materials are located inside the [docker](https://github.com/invoke-ai/InvokeAI/tree/main/docker) directory in the Git repo.
```bash
# docker compose commands should be run from the `docker` directory
cd docker
cp .env.sample .env
docker compose up
```
## Installation in a Linux container (desktop)
We also ship the `run.sh` convenience script. See the `docker/README.md` file for detailed instructions on how to customize the docker setup to your needs.
### Prerequisites
@ -58,18 +45,9 @@ Preferences, Resources, Advanced. Increase the CPUs and Memory to avoid this
[Issue](https://github.com/invoke-ai/InvokeAI/issues/342). You may need to
increase Swap and Disk image size too.
#### Get a Huggingface-Token
Besides the Docker Agent you will need an Account on
[huggingface.co](https://huggingface.co/join).
After you succesfully registered your account, go to
[huggingface.co/settings/tokens](https://huggingface.co/settings/tokens), create
a token and copy it, since you will need in for the next step.
### Setup
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
Set up your environment variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.
@ -103,10 +81,9 @@ Once the container starts up (and configures the InvokeAI root directory if this
## Troubleshooting / FAQ
- Q: I am running on Windows under WSL2, and am seeing a "no such file or directory" error.
- A: Your `docker-entrypoint.sh` file likely has Windows (CRLF) as opposed to Unix (LF) line endings,
and you may have cloned this repository before the issue was fixed. To solve this, please change
the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
- A: Your `docker-entrypoint.sh` might have has Windows (CRLF) line endings, depending how you cloned the repository.
To solve this, change the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
(`Ctrl+P` and search for "line endings"), or by using the `dos2unix` utility in WSL.
Finally, you may delete `docker-entrypoint.sh` followed by `git pull; git checkout docker/docker-entrypoint.sh`
to reset the file to its most recent version.
For more information on this issue, please see the [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
For more information on this issue, see [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)

View File

@ -13,7 +13,7 @@ echo 2. Open the developer console
echo 3. Command-line help
echo Q - Quit
echo.
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest
echo.
set /P choice="Please enter 1-4, Q: [1] "
if not defined choice set choice=1

View File

@ -4,37 +4,39 @@ from logging import Logger
import torch
from invokeai.app.services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
from invokeai.app.services.board_images.board_images_default import BoardImagesService
from invokeai.app.services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from invokeai.app.services.boards.boards_default import BoardService
from invokeai.app.services.bulk_download.bulk_download_default import BulkDownloadService
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.download.download_default import DownloadQueueService
from invokeai.app.services.events.events_fastapievents import FastAPIEventService
from invokeai.app.services.image_files.image_files_disk import DiskImageFileStorage
from invokeai.app.services.image_records.image_records_sqlite import SqliteImageRecordStorage
from invokeai.app.services.images.images_default import ImageService
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.invocation_stats.invocation_stats_default import InvocationStatsService
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_default import ModelImageFileStorageDisk
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService
from invokeai.app.services.model_records.model_records_sql import ModelRecordServiceSQL
from invokeai.app.services.names.names_default import SimpleNameService
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
from invokeai.app.services.session_processor.session_processor_default import (
DefaultSessionProcessor,
DefaultSessionRunner,
)
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
from ..services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
from ..services.board_images.board_images_default import BoardImagesService
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from ..services.boards.boards_default import BoardService
from ..services.bulk_download.bulk_download_default import BulkDownloadService
from ..services.config import InvokeAIAppConfig
from ..services.download import DownloadQueueService
from ..services.events.events_fastapievents import FastAPIEventService
from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker
from ..services.model_images.model_images_default import ModelImageFileStorageDisk
from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor, DefaultSessionRunner
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.urls.urls_default import LocalUrlService
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
# TODO: is there a better way to achieve this?
def check_internet() -> bool:
@ -93,11 +95,11 @@ class ApiDependencies:
conditioning = ObjectSerializerForwardCache(
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
)
download_queue_service = DownloadQueueService(event_bus=events)
download_queue_service = DownloadQueueService(app_config=configuration, event_bus=events)
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
model_manager = ModelManagerService.build_model_manager(
app_config=configuration,
model_record_service=ModelRecordServiceSQL(db=db),
model_record_service=ModelRecordServiceSQL(db=db, logger=logger),
download_queue=download_queue_service,
events=events,
)

View File

@ -10,14 +10,13 @@ from fastapi import Body
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.util.logging import logging
from invokeai.version import __version__
from ..dependencies import ApiDependencies
class LogLevel(int, Enum):
NotSet = logging.NOTSET

View File

@ -2,7 +2,7 @@ from fastapi import Body, HTTPException
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from ..dependencies import ApiDependencies
from invokeai.app.api.dependencies import ApiDependencies
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])

View File

@ -4,12 +4,11 @@ from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from ..dependencies import ApiDependencies
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
@ -32,6 +31,7 @@ class DeleteBoardResult(BaseModel):
)
async def create_board(
board_name: str = Query(description="The name of the board to create"),
is_private: bool = Query(default=False, description="Whether the board is private"),
) -> BoardDTO:
"""Creates a board"""
try:
@ -118,15 +118,13 @@ async def list_boards(
all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
offset: Optional[int] = Query(default=None, description="The page offset"),
limit: Optional[int] = Query(default=None, description="The number of boards per page"),
include_archived: bool = Query(default=False, description="Whether or not to include archived boards in list"),
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
"""Gets a list of boards"""
if all:
return ApiDependencies.invoker.services.boards.get_all()
return ApiDependencies.invoker.services.boards.get_all(include_archived)
elif offset is not None and limit is not None:
return ApiDependencies.invoker.services.boards.get_many(
offset,
limit,
)
return ApiDependencies.invoker.services.boards.get_many(offset, limit, include_archived)
else:
raise HTTPException(
status_code=400,

View File

@ -8,13 +8,12 @@ from fastapi.routing import APIRouter
from pydantic.networks import AnyHttpUrl
from starlette.exceptions import HTTPException
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.download import (
DownloadJob,
UnknownJobIDException,
)
from ..dependencies import ApiDependencies
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])

View File

@ -8,12 +8,16 @@ from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field, JsonValue
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecordChanges,
ResourceOrigin,
)
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from ..dependencies import ApiDependencies
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@ -229,21 +233,14 @@ async def get_image_workflow(
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> FileResponse:
) -> Response:
"""Gets a full-resolution image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(image_name)
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
response = FileResponse(
path,
media_type="image/png",
filename=image_name,
content_disposition_type="inline",
)
with open(path, "rb") as f:
content = f.read()
response = Response(content, media_type="image/png")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
@ -264,15 +261,14 @@ async def get_image_full(
)
async def get_image_thumbnail(
image_name: str = Path(description="The name of thumbnail image file to get"),
) -> FileResponse:
) -> Response:
"""Gets a thumbnail image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(image_name, thumbnail=True)
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
response = FileResponse(path, media_type="image/webp", content_disposition_type="inline")
with open(path, "rb") as f:
content = f.read()
response = Response(content, media_type="image/webp")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
@ -316,16 +312,14 @@ async def list_image_dtos(
),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of images per page"),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
starred_first: bool = Query(default=True, description="Whether to sort by starred images first"),
search_term: Optional[str] = Query(default=None, description="The term to search for"),
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a list of image DTOs"""
image_dtos = ApiDependencies.invoker.services.images.get_many(
offset,
limit,
image_origin,
categories,
is_intermediate,
board_id,
offset, limit, starred_first, order_dir, image_origin, categories, is_intermediate, board_id, search_term
)
return image_dtos

View File

@ -3,23 +3,23 @@
import io
import pathlib
import shutil
import traceback
from copy import deepcopy
from tempfile import TemporaryDirectory
from typing import Any, Dict, List, Optional, Type
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.responses import FileResponse, HTMLResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
ModelRecordChanges,
UnknownModelException,
@ -30,15 +30,12 @@ from invokeai.backend.model_manager.config import (
MainCheckpointConfig,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.model_manager.starter_models import STARTER_MODELS, StarterModel, StarterModelWithoutDependencies
from ..dependencies import ApiDependencies
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
# images are immutable; set a high max-age
@ -174,18 +171,6 @@ async def get_model_record(
raise HTTPException(status_code=404, detail=str(e))
# @model_manager_router.get("/summary", operation_id="list_model_summary")
# async def list_model_summary(
# page: int = Query(default=0, description="The page to get"),
# per_page: int = Query(default=10, description="The number of models per page"),
# order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
# ) -> PaginatedResults[ModelSummary]:
# """Gets a page of model summary data."""
# record_store = ApiDependencies.invoker.services.model_manager.store
# results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
# return results
class FoundModel(BaseModel):
path: str = Field(description="Path to the model")
is_installed: bool = Field(description="Whether or not the model is already installed")
@ -502,6 +487,133 @@ async def install_model(
return result
@model_manager_router.get(
"/install/huggingface",
operation_id="install_hugging_face_model",
responses={
201: {"description": "The model is being installed"},
400: {"description": "Bad request"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_class=HTMLResponse,
)
async def install_hugging_face_model(
source: str = Query(description="HuggingFace repo_id to install"),
) -> HTMLResponse:
"""Install a Hugging Face model using a string identifier."""
def generate_html(title: str, heading: str, repo_id: str, is_error: bool, message: str | None = "") -> str:
if message:
message = f"<p>{message}</p>"
title_class = "error" if is_error else "success"
return f"""
<html>
<head>
<title>{title}</title>
<style>
body {{
text-align: center;
background-color: hsl(220 12% 10% / 1);
font-family: Helvetica, sans-serif;
color: hsl(220 12% 86% / 1);
}}
.repo-id {{
color: hsl(220 12% 68% / 1);
}}
.error {{
color: hsl(0 42% 68% / 1)
}}
.message-box {{
display: inline-block;
border-radius: 5px;
background-color: hsl(220 12% 20% / 1);
padding-inline-end: 30px;
padding: 20px;
padding-inline-start: 30px;
padding-inline-end: 30px;
}}
.container {{
display: flex;
width: 100%;
height: 100%;
align-items: center;
justify-content: center;
}}
a {{
color: inherit
}}
a:visited {{
color: inherit
}}
a:active {{
color: inherit
}}
</style>
</head>
<body style="background-color: hsl(220 12% 10% / 1);">
<div class="container">
<div class="message-box">
<h2 class="{title_class}">{heading}</h2>
{message}
<p class="repo-id">Repo ID: {repo_id}</p>
</div>
</div>
</body>
</html>
"""
try:
metadata = HuggingFaceMetadataFetch().from_id(source)
assert isinstance(metadata, ModelMetadataWithFiles)
except UnknownMetadataException:
title = "Unable to Install Model"
heading = "No HuggingFace repository found with that repo ID."
message = "Ensure the repo ID is correct and try again."
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=400)
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_manager.install
if metadata.is_diffusers:
installer.heuristic_import(
source=source,
inplace=False,
)
elif metadata.ckpt_urls is not None and len(metadata.ckpt_urls) == 1:
installer.heuristic_import(
source=str(metadata.ckpt_urls[0]),
inplace=False,
)
else:
title = "Unable to Install Model"
heading = "This HuggingFace repo has multiple models."
message = "Please use the Model Manager to install this model."
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=200)
title = "Model Install Started"
heading = "Your HuggingFace model is installing now."
message = "You can close this tab and check the Model Manager for installation progress."
return HTMLResponse(content=generate_html(title, heading, source, False, message), status_code=201)
except Exception as e:
logger.error(str(e))
title = "Unable to Install Model"
heading = "There was an problem installing this model."
message = 'Please use the Model Manager directly to install this model. If the issue persists, ask for help on <a href="https://discord.gg/ZmtBAhwWhy">discord</a>.'
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=500)
@model_manager_router.get(
"/install",
operation_id="list_model_installs",
@ -619,39 +731,36 @@ async def convert_model(
logger.error(f"The model with key {key} is not a main checkpoint model.")
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
# loading the model will convert it into a cached diffusers file
try:
cc_size = loader.convert_cache.max_size
if cc_size == 0: # temporary set the convert cache to a positive number so that cached model is written
loader._convert_cache.max_size = 1.0
loader.load_model(model_config, submodel_type=SubModelType.Scheduler)
finally:
loader._convert_cache.max_size = cc_size
with TemporaryDirectory(dir=ApiDependencies.invoker.services.configuration.models_path) as tmpdir:
convert_path = pathlib.Path(tmpdir) / pathlib.Path(model_config.path).stem
converted_model = loader.load_model(model_config)
# write the converted file to the convert path
raw_model = converted_model.model
assert hasattr(raw_model, "save_pretrained")
raw_model.save_pretrained(convert_path)
assert convert_path.exists()
# Get the path of the converted model from the loader
cache_path = loader.convert_cache.cache_path(key)
assert cache_path.exists()
# temporarily rename the original safetensors file so that there is no naming conflict
original_name = model_config.name
model_config.name = f"{original_name}.DELETE"
changes = ModelRecordChanges(name=model_config.name)
store.update_model(key, changes=changes)
# temporarily rename the original safetensors file so that there is no naming conflict
original_name = model_config.name
model_config.name = f"{original_name}.DELETE"
changes = ModelRecordChanges(name=model_config.name)
store.update_model(key, changes=changes)
# install the diffusers
try:
new_key = installer.install_path(
cache_path,
config={
"name": original_name,
"description": model_config.description,
"hash": model_config.hash,
"source": model_config.source,
},
)
except DuplicateModelException as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
# install the diffusers
try:
new_key = installer.install_path(
convert_path,
config={
"name": original_name,
"description": model_config.description,
"hash": model_config.hash,
"source": model_config.source,
},
)
except Exception as e:
logger.error(str(e))
store.update_model(key, changes=ModelRecordChanges(name=original_name))
raise HTTPException(status_code=409, detail=str(e))
# Update the model image if the model had one
try:
@ -664,8 +773,8 @@ async def convert_model(
# delete the original safetensors file
installer.delete(key)
# delete the cached version
shutil.rmtree(cache_path)
# delete the temporary directory
# shutil.rmtree(cache_path)
# return the config record for the new diffusers directory
new_config = store.get_model(new_key)

View File

@ -4,6 +4,7 @@ from fastapi import Body, Path, Query
from fastapi.routing import APIRouter
from pydantic import BaseModel
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
@ -19,8 +20,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
)
from invokeai.app.services.shared.pagination import CursorPaginatedResults
from ..dependencies import ApiDependencies
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])

View File

@ -3,9 +3,7 @@ import logging
import mimetypes
import socket
from contextlib import asynccontextmanager
from inspect import signature
from pathlib import Path
from typing import Any
import torch
import uvicorn
@ -13,27 +11,18 @@ from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
from fastapi.openapi.utils import get_openapi
from fastapi.responses import HTMLResponse
from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from pydantic.json_schema import models_json_schema
from torch.backends.mps import is_available as is_mps_available
# for PyCharm:
# noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
import invokeai.frontend.web as web_dir
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.config.config_default import get_config
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.backend.util.devices import TorchDevice
from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies
from .api.routers import (
from invokeai.app.api.routers import (
app_info,
board_images,
boards,
@ -44,12 +33,11 @@ from .api.routers import (
utilities,
workflows,
)
from .api.sockets import SocketIO
from .invocations.baseinvocation import (
BaseInvocation,
UIConfigBase,
)
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
from invokeai.app.api.sockets import SocketIO
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.custom_openapi import get_openapi_func
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
app_config = get_config()
@ -119,84 +107,7 @@ app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")
# Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow?
def custom_openapi() -> dict[str, Any]:
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title=app.title,
description="An API for invoking AI image operations",
version="1.0.0",
routes=app.routes,
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
)
# Add all outputs
all_invocations = BaseInvocation.get_invocations()
output_types = set()
output_type_titles = {}
for invoker in all_invocations:
output_type = signature(invoker.invoke).return_annotation
output_types.add(output_type)
output_schemas = models_json_schema(
models=[(o, "serialization") for o in output_types], ref_template="#/components/schemas/{model}"
)
for schema_key, output_schema in output_schemas[1]["$defs"].items():
# TODO: note that we assume the schema_key here is the TYPE.__name__
# This could break in some cases, figure out a better way to do it
output_type_titles[schema_key] = output_schema["title"]
openapi_schema["components"]["schemas"][schema_key] = output_schema
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
# Some models don't end up in the schemas as standalone definitions
additional_schemas = models_json_schema(
[
(UIConfigBase, "serialization"),
(InputFieldJSONSchemaExtra, "serialization"),
(OutputFieldJSONSchemaExtra, "serialization"),
(ModelIdentifierField, "serialization"),
(ProgressImage, "serialization"),
],
ref_template="#/components/schemas/{model}",
)
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = schema_json
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": {},
"required": [],
}
# Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations:
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
output_type = signature(obj=invoker.invoke).return_annotation
output_type_title = output_type_titles[output_type.__name__]
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["properties"][invoker.get_type()] = outputs_ref
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["required"].append(invoker.get_type())
invoker_schema["class"] = "invocation"
# Add all event schemas
for event in sorted(EventBase.get_events(), key=lambda e: e.__name__):
json_schema = event.model_json_schema(mode="serialization", ref_template="#/components/schemas/{model}")
if "$defs" in json_schema:
for schema_key, schema in json_schema["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = schema
del json_schema["$defs"]
openapi_schema["components"]["schemas"][event.__name__] = json_schema
app.openapi_schema = openapi_schema
return app.openapi_schema
app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid assignment
app.openapi = get_openapi_func(app)
@app.get("/docs", include_in_schema=False)
@ -250,6 +161,7 @@ def invoke_api() -> None:
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
# https://github.com/WaylonWalker
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.settimeout(1)
if s.connect_ex(("localhost", port)) == 0:
return find_port(port=port + 1)
else:

View File

@ -40,7 +40,7 @@ from invokeai.app.util.misc import uuid_string
from invokeai.backend.util.logging import InvokeAILogger
if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices
from invokeai.app.services.invocation_services import InvocationServices
logger = InvokeAILogger.get_logger()
@ -98,11 +98,13 @@ class BaseInvocationOutput(BaseModel):
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
_typeadapter_needs_update: ClassVar[bool] = False
@classmethod
def register_output(cls, output: BaseInvocationOutput) -> None:
"""Registers an invocation output."""
cls._output_classes.add(output)
cls._typeadapter_needs_update = True
@classmethod
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
@ -112,11 +114,12 @@ class BaseInvocationOutput(BaseModel):
@classmethod
def get_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantc TypeAdapter for the union of all invocation output types."""
if not cls._typeadapter:
InvocationOutputsUnion = TypeAliasType(
"InvocationOutputsUnion", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
if not cls._typeadapter or cls._typeadapter_needs_update:
AnyInvocationOutput = TypeAliasType(
"AnyInvocationOutput", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(InvocationOutputsUnion)
cls._typeadapter = TypeAdapter(AnyInvocationOutput)
cls._typeadapter_needs_update = False
return cls._typeadapter
@classmethod
@ -125,12 +128,13 @@ class BaseInvocationOutput(BaseModel):
return (i.get_type() for i in BaseInvocationOutput.get_outputs())
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocationOutput]) -> None:
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
# Because we use a pydantic Literal field with default value for the invocation type,
# it will be typed as optional in the OpenAPI schema. Make it required manually.
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = []
schema["class"] = "output"
schema["required"].extend(["type"])
@classmethod
@ -167,6 +171,7 @@ class BaseInvocation(ABC, BaseModel):
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
_typeadapter_needs_update: ClassVar[bool] = False
@classmethod
def get_type(cls) -> str:
@ -177,15 +182,17 @@ class BaseInvocation(ABC, BaseModel):
def register_invocation(cls, invocation: BaseInvocation) -> None:
"""Registers an invocation."""
cls._invocation_classes.add(invocation)
cls._typeadapter_needs_update = True
@classmethod
def get_typeadapter(cls) -> TypeAdapter[Any]:
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
if not cls._typeadapter:
InvocationsUnion = TypeAliasType(
"InvocationsUnion", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
if not cls._typeadapter or cls._typeadapter_needs_update:
AnyInvocation = TypeAliasType(
"AnyInvocation", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(InvocationsUnion)
cls._typeadapter = TypeAdapter(AnyInvocation)
cls._typeadapter_needs_update = False
return cls._typeadapter
@classmethod
@ -221,7 +228,7 @@ class BaseInvocation(ABC, BaseModel):
return signature(cls.invoke).return_annotation
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel], *args, **kwargs) -> None:
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocation]) -> None:
"""Adds various UI-facing attributes to the invocation's OpenAPI schema."""
uiconfig = cast(UIConfigBase | None, getattr(model_class, "UIConfig", None))
if uiconfig is not None:
@ -237,6 +244,7 @@ class BaseInvocation(ABC, BaseModel):
schema["version"] = uiconfig.version
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = []
schema["class"] = "invocation"
schema["required"].extend(["type", "id"])
@abstractmethod
@ -310,7 +318,7 @@ class BaseInvocation(ABC, BaseModel):
protected_namespaces=(),
validate_assignment=True,
json_schema_extra=json_schema_extra,
json_schema_serialization_defaults_required=True,
json_schema_serialization_defaults_required=False,
coerce_numbers_to_str=True,
)

View File

@ -0,0 +1,98 @@
from typing import Any, Union
import numpy as np
import numpy.typing as npt
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.util.devices import TorchDevice
@invocation(
"lblend",
title="Blend Latents",
tags=["latents", "blend"],
category="latents",
version="1.0.3",
)
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size."""
latents_a: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
latents_b: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.tensors.load(self.latents_a.latents_name)
latents_b = context.tensors.load(self.latents_b.latents_name)
if latents_a.shape != latents_b.shape:
raise Exception("Latents to blend must be the same size.")
device = TorchDevice.choose_torch_device()
def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
v0: Union[torch.Tensor, npt.NDArray[Any]],
v1: Union[torch.Tensor, npt.NDArray[Any]],
DOT_THRESHOLD: float = 0.9995,
) -> Union[torch.Tensor, npt.NDArray[Any]]:
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
return v2_torch
else:
assert isinstance(v2, np.ndarray)
return v2
# blend
bl = slerp(self.alpha, latents_a, latents_b)
assert isinstance(bl, torch.Tensor)
blended_latents: torch.Tensor = bl # for type checking convenience
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)

View File

@ -4,13 +4,12 @@
import numpy as np
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField
from invokeai.app.invocations.primitives import IntegerCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField
@invocation(
"range", title="Integer Range", tags=["collection", "integer", "range"], category="collections", version="1.0.0"

View File

@ -5,6 +5,7 @@ from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
@ -14,6 +15,7 @@ from invokeai.app.invocations.fields import (
TensorField,
UIComponent,
)
from invokeai.app.invocations.model import CLIPField
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
@ -26,9 +28,6 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
)
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from .model import CLIPField
# unconditioned: Optional[torch.Tensor]
@ -81,9 +80,13 @@ class CompelInvocation(BaseInvocation):
with (
# apply all patches while the model is on the target device
text_encoder_info as text_encoder,
text_encoder_info.model_on_device() as (model_state_dict, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
ModelPatcher.apply_lora_text_encoder(
text_encoder,
loras=_lora_loader(),
model_state_dict=model_state_dict,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (
@ -172,9 +175,14 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info as text_encoder,
text_encoder_info.model_on_device() as (state_dict, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
ModelPatcher.apply_lora(
text_encoder,
loras=_lora_loader(),
prefix=lora_prefix,
model_state_dict=state_dict,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (

View File

@ -1,6 +1,6 @@
from typing import Literal
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.util.devices import TorchDevice
LATENT_SCALE_FACTOR = 8
"""
@ -10,8 +10,7 @@ factor is hard-coded to a literal '8' rather than using this constant.
The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
"""
SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
"""A literal type representing the valid scheduler names."""
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
"""A literal type for PIL image modes supported by Invoke"""
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()

View File

@ -2,6 +2,7 @@
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float
from pathlib import Path
from typing import Dict, List, Literal, Union
import cv2
@ -21,6 +22,13 @@ from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@ -36,14 +44,13 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
from invokeai.backend.util.devices import TorchDevice
class ControlField(BaseModel):
@ -139,6 +146,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
return context.images.get_pil(self.image.image_name, "RGB")
def invoke(self, context: InvocationContext) -> ImageOutput:
self._context = context
raw_image = self.load_image(context)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
@ -284,7 +292,8 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
# TODO: replace from_pretrained() calls with context.models.download_and_cache() (or similar)
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(
image,
@ -311,7 +320,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
@ -330,7 +339,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(
image,
@ -353,7 +362,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(
image,
@ -381,7 +390,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(
image,
@ -405,7 +414,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image
@ -426,7 +435,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(
image,
@ -454,7 +463,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor(
image,
@ -496,8 +505,8 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
return np_img
def run_processor(self, img):
np_img = np.array(img, dtype=np.uint8)
def run_processor(self, image: Image.Image) -> Image.Image:
np_img = np.array(image, dtype=np.uint8)
processed_np_image = self.tile_resample(
np_img,
# res=self.tile_size,
@ -520,7 +529,7 @@ class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
"ybelkada/segment-anything", subfolder="checkpoints"
@ -566,7 +575,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
color_map_tile_size: int = InputField(default=64, ge=1, description=FieldDescriptions.tile_size)
def run_processor(self, image: Image.Image):
def run_processor(self, image: Image.Image) -> Image.Image:
np_image = np.array(image, dtype=np.uint8)
height, width = np_image.shape[:2]
@ -601,12 +610,18 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image):
depth_anything_detector = DepthAnythingDetector()
depth_anything_detector.load_model(model_size=self.model_size)
def run_processor(self, image: Image.Image) -> Image.Image:
def loader(model_path: Path):
return DepthAnythingDetector.load_model(
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
)
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
) as model:
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
@invocation(
@ -624,8 +639,11 @@ class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image):
dw_openpose = DWOpenposeDetector()
def run_processor(self, image: Image.Image) -> Image.Image:
onnx_det = self._context.models.download_and_cache_model(DWPOSE_MODELS["yolox_l.onnx"])
onnx_pose = self._context.models.download_and_cache_model(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"])
dw_openpose = DWOpenposeDetector(onnx_det=onnx_det, onnx_pose=onnx_pose)
processed_image = dw_openpose(
image,
draw_face=self.draw_face,

View File

@ -0,0 +1,80 @@
from typing import Optional
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import DenoiseMaskOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
@invocation(
"create_denoise_mask",
title="Create Denoise Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.2",
)
class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32,
ui_order=4,
)
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
# if shape is not None:
# mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR)
return mask_tensor
@torch.no_grad()
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
if self.image is not None:
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
else:
image_tensor = None
mask = self.prep_mask_tensor(
context.images.get_pil(self.mask.image_name),
)
if image_tensor is not None:
vae_info = context.models.load(self.vae.vae)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
# TODO:
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
masked_latents_name = context.tensors.save(tensor=masked_latents)
else:
masked_latents_name = None
mask_name = context.tensors.save(tensor=mask)
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=masked_latents_name,
gradient=False,
)

View File

@ -0,0 +1,138 @@
from typing import Literal, Optional
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image, ImageFilter
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
ImageField,
Input,
InputField,
OutputField,
)
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
@invocation_output("gradient_mask_output")
class GradientMaskOutput(BaseInvocationOutput):
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
expanded_mask_area: ImageField = OutputField(
description="Image representing the total gradient area of the mask. For paste-back purposes."
)
@invocation(
"create_gradient_mask",
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.1.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
edge_radius: int = InputField(
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
)
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
minimum_denoise: float = InputField(
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
)
image: Optional[ImageField] = InputField(
default=None,
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
title="[OPTIONAL] Image",
ui_order=6,
)
unet: Optional[UNetField] = InputField(
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
default=None,
input=Input.Connection,
title="[OPTIONAL] UNet",
ui_order=5,
)
vae: Optional[VAEField] = InputField(
default=None,
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
title="[OPTIONAL] VAE",
input=Input.Connection,
ui_order=7,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32,
ui_order=9,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
if self.edge_radius > 0:
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is less than fully masked, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
else:
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
# compute a [0, 1] mask from the blur_tensor
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
expanded_image_dto = context.images.save(expanded_mask_image)
masked_latents_name = None
if self.unet is not None and self.vae is not None and self.image is not None:
# all three fields must be present at the same time
main_model_config = context.models.get_config(self.unet.unet.key)
assert isinstance(main_model_config, MainConfigBase)
if main_model_config.variant is ModelVariantType.Inpaint:
mask = blur_tensor
vae_info: LoadedModel = context.models.load(self.vae.vae)
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
masked_latents = ImageToLatentsInvocation.vae_encode(
vae_info, self.fp32, self.tiled, masked_image.clone()
)
masked_latents_name = context.tensors.save(tensor=masked_latents)
return GradientMaskOutput(
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
)

View File

@ -0,0 +1,61 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
# The Crop Latents node was copied from @skunkworxdark's implementation here:
# https://github.com/skunkworxdark/XYGrid_nodes/blob/74647fa9c1fa57d317a94bd43ca689af7f0aae5e/images_to_grids.py#L1117C1-L1167C80
@invocation(
"crop_latents",
title="Crop Latents",
tags=["latents", "crop"],
category="latents",
version="1.0.2",
)
# TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`.
# Currently, if the class names conflict then 'GET /openapi.json' fails.
class CropLatentsCoreInvocation(BaseInvocation):
"""Crops a latent-space tensor to a box specified in image-space. The box dimensions and coordinates must be
divisible by the latent scale factor of 8.
"""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
x: int = InputField(
ge=0,
multiple_of=LATENT_SCALE_FACTOR,
description="The left x coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
y: int = InputField(
ge=0,
multiple_of=LATENT_SCALE_FACTOR,
description="The top y coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
width: int = InputField(
ge=1,
multiple_of=LATENT_SCALE_FACTOR,
description="The width (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
height: int = InputField(
ge=1,
multiple_of=LATENT_SCALE_FACTOR,
description="The height (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
x1 = self.x // LATENT_SCALE_FACTOR
y1 = self.y // LATENT_SCALE_FACTOR
x2 = x1 + (self.width // LATENT_SCALE_FACTOR)
y2 = y1 + (self.height // LATENT_SCALE_FACTOR)
cropped_latents = latents[..., y1:y2, x1:x2]
name = context.tensors.save(tensor=cropped_latents)
return LatentsOutput.build(latents_name=name, latents=cropped_latents)

View File

@ -5,13 +5,11 @@ import cv2 as cv
import numpy
from PIL import Image, ImageOps
from invokeai.app.invocations.fields import ImageField
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.3.1")
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithBoard):

View File

@ -0,0 +1,849 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import inspect
from contextlib import ExitStack
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
import torch
import torchvision
import torchvision.transforms as T
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.adapter import T2IAdapter
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
Input,
InputField,
LatentsField,
UIType,
)
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.model import ModelIdentifierField, UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
StableDiffusionGeneratorPipeline,
T2IAdapterData,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
IPAdapterConditioningInfo,
IPAdapterData,
Range,
SDXLConditioningInfo,
TextConditioningData,
TextConditioningRegions,
)
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
from invokeai.backend.util.mask import to_standard_float_mask
from invokeai.backend.util.silence_warnings import SilenceWarnings
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelIdentifierField,
scheduler_name: str,
seed: int,
) -> Scheduler:
"""Load a scheduler and apply some scheduler-specific overrides."""
# TODO(ryand): Silently falling back to ddim seems like a bad idea. Look into why this was added and remove if
# possible.
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {
**scheduler_config,
**scheduler_extra_config, # FIXME
"_backup": scheduler_config,
}
# make dpmpp_sde reproducable(seed can be passed only in initializer)
if scheduler_class is DPMSolverSDEScheduler:
scheduler_config["noise_sampler_seed"] = seed
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, "uses_inpainting_model"):
scheduler.uses_inpainting_model = lambda: False
assert isinstance(scheduler, Scheduler)
return scheduler
@invocation(
"denoise_latents",
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.5.3",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
positive_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
)
negative_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
)
noise: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
ui_order=3,
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField(
default=7.5, description=FieldDescriptions.cfg_scale, title="CFG Scale"
)
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
ui_order=2,
)
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
default=None,
input=Input.Connection,
ui_order=5,
)
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField(
description=FieldDescriptions.ip_adapter,
title="IP-Adapter",
default=None,
input=Input.Connection,
ui_order=6,
)
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]] = InputField(
description=FieldDescriptions.t2i_adapter,
title="T2I-Adapter",
default=None,
input=Input.Connection,
ui_order=7,
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
latents: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
ui_order=4,
)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.mask,
input=Input.Connection,
ui_order=8,
)
@field_validator("cfg_scale")
def ge_one(cls, v: Union[List[float], float]) -> Union[List[float], float]:
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def _get_text_embeddings_and_masks(
cond_list: list[ConditioningField],
context: InvocationContext,
device: torch.device,
dtype: torch.dtype,
) -> tuple[Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]], list[Optional[torch.Tensor]]]:
"""Get the text embeddings and masks from the input conditioning fields."""
text_embeddings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]] = []
text_embeddings_masks: list[Optional[torch.Tensor]] = []
for cond in cond_list:
cond_data = context.conditioning.load(cond.conditioning_name)
text_embeddings.append(cond_data.conditionings[0].to(device=device, dtype=dtype))
mask = cond.mask
if mask is not None:
mask = context.tensors.load(mask.tensor_name)
text_embeddings_masks.append(mask)
return text_embeddings, text_embeddings_masks
@staticmethod
def _preprocess_regional_prompt_mask(
mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
Returns:
torch.Tensor: The processed mask. shape: (1, 1, target_height, target_width).
"""
if mask is None:
return torch.ones((1, 1, target_height, target_width), dtype=dtype)
mask = to_standard_float_mask(mask, out_dtype=dtype)
tf = torchvision.transforms.Resize(
(target_height, target_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
return resized_mask
@staticmethod
def _concat_regional_text_embeddings(
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
masks: Optional[list[Optional[torch.Tensor]]],
latent_height: int,
latent_width: int,
dtype: torch.dtype,
) -> tuple[Union[BasicConditioningInfo, SDXLConditioningInfo], Optional[TextConditioningRegions]]:
"""Concatenate regional text embeddings into a single embedding and track the region masks accordingly."""
if masks is None:
masks = [None] * len(text_conditionings)
assert len(text_conditionings) == len(masks)
is_sdxl = type(text_conditionings[0]) is SDXLConditioningInfo
all_masks_are_none = all(mask is None for mask in masks)
text_embedding = []
pooled_embedding = None
add_time_ids = None
cur_text_embedding_len = 0
processed_masks = []
embedding_ranges = []
for prompt_idx, text_embedding_info in enumerate(text_conditionings):
mask = masks[prompt_idx]
if is_sdxl:
# We choose a random SDXLConditioningInfo's pooled_embeds and add_time_ids here, with a preference for
# prompts without a mask. We prefer prompts without a mask, because they are more likely to contain
# global prompt information. In an ideal case, there should be exactly one global prompt without a
# mask, but we don't enforce this.
# HACK(ryand): The fact that we have to choose a single pooled_embedding and add_time_ids here is a
# fundamental interface issue. The SDXL Compel nodes are not designed to be used in the way that we use
# them for regional prompting. Ideally, the DenoiseLatents invocation should accept a single
# pooled_embeds tensor and a list of standard text embeds with region masks. This change would be a
# pretty major breaking change to a popular node, so for now we use this hack.
if pooled_embedding is None or mask is None:
pooled_embedding = text_embedding_info.pooled_embeds
if add_time_ids is None or mask is None:
add_time_ids = text_embedding_info.add_time_ids
text_embedding.append(text_embedding_info.embeds)
if not all_masks_are_none:
embedding_ranges.append(
Range(
start=cur_text_embedding_len, end=cur_text_embedding_len + text_embedding_info.embeds.shape[1]
)
)
processed_masks.append(
DenoiseLatentsInvocation._preprocess_regional_prompt_mask(
mask, latent_height, latent_width, dtype=dtype
)
)
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
text_embedding = torch.cat(text_embedding, dim=1)
assert len(text_embedding.shape) == 3 # batch_size, seq_len, token_len
regions = None
if not all_masks_are_none:
regions = TextConditioningRegions(
masks=torch.cat(processed_masks, dim=1),
ranges=embedding_ranges,
)
if is_sdxl:
return (
SDXLConditioningInfo(embeds=text_embedding, pooled_embeds=pooled_embedding, add_time_ids=add_time_ids),
regions,
)
return BasicConditioningInfo(embeds=text_embedding), regions
@staticmethod
def get_conditioning_data(
context: InvocationContext,
positive_conditioning_field: Union[ConditioningField, list[ConditioningField]],
negative_conditioning_field: Union[ConditioningField, list[ConditioningField]],
unet: UNet2DConditionModel,
latent_height: int,
latent_width: int,
cfg_scale: float | list[float],
steps: int,
cfg_rescale_multiplier: float,
) -> TextConditioningData:
# Normalize positive_conditioning_field and negative_conditioning_field to lists.
cond_list = positive_conditioning_field
if not isinstance(cond_list, list):
cond_list = [cond_list]
uncond_list = negative_conditioning_field
if not isinstance(uncond_list, list):
uncond_list = [uncond_list]
cond_text_embeddings, cond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
cond_list, context, unet.device, unet.dtype
)
uncond_text_embeddings, uncond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
uncond_list, context, unet.device, unet.dtype
)
cond_text_embedding, cond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
text_conditionings=cond_text_embeddings,
masks=cond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
uncond_text_embedding, uncond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
text_conditionings=uncond_text_embeddings,
masks=uncond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
if isinstance(cfg_scale, list):
assert len(cfg_scale) == steps, "cfg_scale (list) must have the same length as the number of steps"
conditioning_data = TextConditioningData(
uncond_text=uncond_text_embedding,
cond_text=cond_text_embedding,
uncond_regions=uncond_regions,
cond_regions=cond_regions,
guidance_scale=cfg_scale,
guidance_rescale_multiplier=cfg_rescale_multiplier,
)
return conditioning_data
@staticmethod
def create_pipeline(
unet: UNet2DConditionModel,
scheduler: Scheduler,
) -> StableDiffusionGeneratorPipeline:
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:
self.block_out_channels = [0]
def __init__(self) -> None:
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
@staticmethod
def prep_control_data(
context: InvocationContext,
control_input: ControlField | list[ControlField] | None,
latents_shape: List[int],
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> list[ControlNetData] | None:
# Normalize control_input to a list.
control_list: list[ControlField]
if isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list):
control_list = control_input
elif control_input is None:
control_list = []
else:
raise ValueError(f"Unexpected control_input type: {type(control_input)}")
if len(control_list) == 0:
return None
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
_, _, latent_height, latent_width = latents_shape
control_height_resize = latent_height * LATENT_SCALE_FACTOR
control_width_resize = latent_width * LATENT_SCALE_FACTOR
controlnet_data: list[ControlNetData] = []
for control_info in control_list:
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
assert isinstance(control_model, ControlNetModel)
control_image_field = control_info.image
input_image = context.images.get_pil(control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
# and do real check for classifier_free_guidance?
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
control_image = prepare_control_image(
image=input_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=control_width_resize,
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
)
control_item = ControlNetData(
model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
# any resizing needed should currently be happening in prepare_control_image(),
# but adding resize_mode to ControlNetData in case needed in the future
resize_mode=control_info.resize_mode,
)
controlnet_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return controlnet_data
def prep_ip_adapter_image_prompts(
self,
context: InvocationContext,
ip_adapters: List[IPAdapterField],
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
image_prompts = []
for single_ip_adapter in ip_adapters:
with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model:
assert isinstance(ip_adapter_model, IPAdapter)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
single_ipa_image_fields = [single_ipa_image_fields]
single_ipa_images = [context.images.get_pil(image.image_name) for image in single_ipa_image_fields]
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model
)
image_prompts.append((image_prompt_embeds, uncond_image_prompt_embeds))
return image_prompts
def prep_ip_adapter_data(
self,
context: InvocationContext,
ip_adapters: List[IPAdapterField],
image_prompts: List[Tuple[torch.Tensor, torch.Tensor]],
exit_stack: ExitStack,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
) -> Optional[List[IPAdapterData]]:
"""If IP-Adapter is enabled, then this function loads the requisite models and adds the image prompt conditioning data."""
ip_adapter_data_list = []
for single_ip_adapter, (image_prompt_embeds, uncond_image_prompt_embeds) in zip(
ip_adapters, image_prompts, strict=True
):
ip_adapter_model = exit_stack.enter_context(context.models.load(single_ip_adapter.ip_adapter_model))
mask_field = single_ip_adapter.mask
mask = context.tensors.load(mask_field.tensor_name) if mask_field is not None else None
mask = self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
ip_adapter_data_list.append(
IPAdapterData(
ip_adapter_model=ip_adapter_model,
weight=single_ip_adapter.weight,
target_blocks=single_ip_adapter.target_blocks,
begin_step_percent=single_ip_adapter.begin_step_percent,
end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
mask=mask,
)
)
return ip_adapter_data_list if len(ip_adapter_data_list) > 0 else None
def run_t2i_adapters(
self,
context: InvocationContext,
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
latents_shape: list[int],
do_classifier_free_guidance: bool,
) -> Optional[list[T2IAdapterData]]:
if t2i_adapter is None:
return None
# Handle the possibility that t2i_adapter could be a list or a single T2IAdapterField.
if isinstance(t2i_adapter, T2IAdapterField):
t2i_adapter = [t2i_adapter]
if len(t2i_adapter) == 0:
return None
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_model_config.base == BaseModelType.StableDiffusion1:
max_unet_downscale = 8
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
t2i_adapter_model: T2IAdapter
with t2i_adapter_loaded_model as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=t2i_input_width,
height=t2i_input_height,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
device=t2i_adapter_model.device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
)
adapter_state = t2i_adapter_model(t2i_image)
if do_classifier_free_guidance:
for idx, value in enumerate(adapter_state):
adapter_state[idx] = torch.cat([value] * 2, dim=0)
t2i_adapter_data.append(
T2IAdapterData(
adapter_state=adapter_state,
weight=t2i_adapter_field.weight,
begin_step_percent=t2i_adapter_field.begin_step_percent,
end_step_percent=t2i_adapter_field.end_step_percent,
)
)
return t2i_adapter_data
# original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps
@staticmethod
def init_scheduler(
scheduler: Union[Scheduler, ConfigMixin],
device: torch.device,
steps: int,
denoising_start: float,
denoising_end: float,
seed: int,
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False):
scheduler.set_timesteps(steps, device="cpu")
timesteps = scheduler.timesteps.to(device=device)
else:
scheduler.set_timesteps(steps, device=device)
timesteps = scheduler.timesteps
# skip greater order timesteps
_timesteps = timesteps[:: scheduler.order]
# get start timestep index
t_start_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_start)))
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps)))
# get end timestep index
t_end_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_end)))
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:])))
# apply order to indexes
t_start_idx *= scheduler.order
t_end_idx *= scheduler.order
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
scheduler_step_kwargs: Dict[str, Any] = {}
scheduler_step_signature = inspect.signature(scheduler.step)
if "generator" in scheduler_step_signature.parameters:
# At some point, someone decided that schedulers that accept a generator should use the original seed with
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
# reproducibility.
#
# These Invoke-supported schedulers accept a generator as of 2024-06-04:
# - DDIMScheduler
# - DDPMScheduler
# - DPMSolverMultistepScheduler
# - EulerAncestralDiscreteScheduler
# - EulerDiscreteScheduler
# - KDPM2AncestralDiscreteScheduler
# - LCMScheduler
# - TCDScheduler
scheduler_step_kwargs.update({"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)})
if isinstance(scheduler, TCDScheduler):
scheduler_step_kwargs.update({"eta": 1.0})
return timesteps, init_timestep, scheduler_step_kwargs
def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], bool]:
if self.denoise_mask is None:
return None, None, False
mask = context.tensors.load(self.denoise_mask.mask_name)
mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
if self.denoise_mask.masked_latents_name is not None:
masked_latents = context.tensors.load(self.denoise_mask.masked_latents_name)
else:
masked_latents = torch.where(mask < 0.5, 0.0, latents)
return 1 - mask, masked_latents, self.denoise_mask.gradient
@staticmethod
def prepare_noise_and_latents(
context: InvocationContext, noise_field: LatentsField | None, latents_field: LatentsField | None
) -> Tuple[int, torch.Tensor | None, torch.Tensor]:
"""Depending on the workflow, we expect different combinations of noise and latents to be provided. This
function handles preparing these values accordingly.
Expected workflows:
- Text-to-Image Denoising: `noise` is provided, `latents` is not. `latents` is initialized to zeros.
- Image-to-Image Denoising: `noise` and `latents` are both provided.
- Text-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
- Image-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
NOTE(ryand): I wrote this docstring, but I am not the original author of this code. There may be other workflows
I haven't considered.
"""
noise = None
if noise_field is not None:
noise = context.tensors.load(noise_field.latents_name)
if latents_field is not None:
latents = context.tensors.load(latents_field.latents_name)
elif noise is not None:
latents = torch.zeros_like(noise)
else:
raise ValueError("'latents' or 'noise' must be provided!")
if noise is not None and noise.shape[1:] != latents.shape[1:]:
raise ValueError(f"Incompatible 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
# The seed comes from (in order of priority): the noise field, the latents field, or 0.
seed = 0
if noise_field is not None and noise_field.seed is not None:
seed = noise_field.seed
elif latents_field is not None and latents_field.seed is not None:
seed = latents_field.seed
else:
seed = 0
return seed, noise, latents
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def invoke(self, context: InvocationContext) -> LatentsOutput:
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
t2i_adapter_data = self.run_t2i_adapters(
context,
self.t2i_adapter,
latents.shape,
do_classifier_free_guidance=True,
)
ip_adapters: List[IPAdapterField] = []
if self.ip_adapter is not None:
# ip_adapter could be a list or a single IPAdapterField. Normalize to a list here.
if isinstance(self.ip_adapter, list):
ip_adapters = self.ip_adapter
else:
ip_adapters = [self.ip_adapter]
# If there are IP adapters, the following line runs the adapters' CLIPVision image encoders to return
# a series of image conditioning embeddings. This is being done here rather than in the
# big model context below in order to use less VRAM on low-VRAM systems.
# The image prompts are then passed to prep_ip_adapter_data().
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info.model_on_device() as (model_state_dict, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
set_seamless(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(
unet,
loras=_lora_loader(),
model_state_dict=model_state_dict,
),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
if mask is not None:
mask = mask.to(device=unet.device, dtype=unet.dtype)
if masked_latents is not None:
masked_latents = masked_latents.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = self.create_pipeline(unet, scheduler)
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=latent_height,
latent_width=latent_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
controlnet_data = self.prep_control_data(
context=context,
control_input=self.control,
latents_shape=latents.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
ip_adapter_data = self.prep_ip_adapter_data(
context=context,
ip_adapters=ip_adapters,
image_prompts=image_prompts,
exit_stack=exit_stack,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
result_latents = pipeline.latents_from_embeddings(
latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise,
seed=seed,
mask=mask,
masked_latents=masked_latents,
is_gradient_mask=gradient_mask,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=controlnet_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)

View File

@ -160,6 +160,7 @@ class FieldDescriptions:
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
vae_tile_size = "The tile size for VAE tiling in pixels (image space). If set to 0, the default tile size for the model will be used. Larger tile sizes generally produce better results at the cost of higher memory usage."
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"

View File

@ -0,0 +1,65 @@
import math
from typing import Tuple
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField
from invokeai.app.invocations.model import UNetField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType
@invocation_output("ideal_size_output")
class IdealSizeOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
width: int = OutputField(description="The ideal width of the image (in pixels)")
height: int = OutputField(description="The ideal height of the image (in pixels)")
@invocation(
"ideal_size",
title="Ideal Size",
tags=["latents", "math", "ideal_size"],
version="1.0.3",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
width: int = InputField(default=1024, description="Final image width")
height: int = InputField(default=576, description="Final image height")
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
multiplier: float = InputField(
default=1.0,
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in "
"initial generation artifacts if too large)",
)
def trim_to_multiple_of(self, *args: int, multiple_of: int = LATENT_SCALE_FACTOR) -> Tuple[int, ...]:
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
unet_config = context.models.get_config(self.unet.unet.key)
aspect = self.width / self.height
dimension: float = 512
if unet_config.base == BaseModelType.StableDiffusion2:
dimension = 768
elif unet_config.base == BaseModelType.StableDiffusionXL:
dimension = 1024
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = self.trim_to_multiple_of(
math.floor(init_width),
math.floor(init_height),
)
return IdealSizeOutput(width=scaled_width, height=scaled_height)

View File

@ -6,6 +6,7 @@ import cv2
import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import IMAGE_MODES
from invokeai.app.invocations.fields import (
ColorField,
@ -21,8 +22,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker
from .baseinvocation import BaseInvocation, Classification, invocation
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.1")
class ShowImageInvocation(BaseInvocation):

View File

@ -0,0 +1,143 @@
from contextlib import nullcontext
from functools import singledispatchmethod
import einops
import torch
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
@invocation(
"i2l",
title="Image to Latents",
tags=["latents", "image", "vae", "i2l"],
category="latents",
version="1.1.0",
)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
image: ImageField = InputField(
description="The image to encode",
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
# offer a way to directly set None values.
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@staticmethod
def vae_encode(
vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor, tile_size: int = 0
) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
orig_dtype = vae.dtype
if upcast:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
vae.post_quant_conv.to(orig_dtype)
vae.decoder.conv_in.to(orig_dtype)
vae.decoder.mid_block.to(orig_dtype)
# else:
# latents = latents.float()
else:
vae.to(dtype=torch.float16)
# latents = latents.half()
if tiled:
vae.enable_tiling()
else:
vae.disable_tiling()
tiling_context = nullcontext()
if tile_size > 0:
tiling_context = patch_vae_tiling_params(
vae,
tile_sample_min_size=tile_size,
tile_latent_min_size=tile_size // LATENT_SCALE_FACTOR,
tile_overlap_factor=0.25,
)
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode(), tiling_context:
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
latents = vae.config.scaling_factor * latents
latents = latents.to(dtype=orig_dtype)
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(self.vae.vae)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = self.vae_encode(
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
@singledispatchmethod
@staticmethod
def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
assert isinstance(vae, torch.nn.Module)
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents: torch.Tensor = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
return latents
@_encode_to_tensor.register
@staticmethod
def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
assert isinstance(vae, torch.nn.Module)
latents: torch.FloatTensor = vae.encode(image_tensor).latents
return latents

View File

@ -3,7 +3,9 @@ from typing import Literal, get_args
from PIL import Image
from invokeai.app.invocations.fields import ColorField, ImageField
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ColorField, ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
@ -14,10 +16,6 @@ from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch, in
from invokeai.backend.image_util.infill_methods.tile import infill_tile
from invokeai.backend.util.logging import InvokeAILogger
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
logger = InvokeAILogger.get_logger()
@ -42,15 +40,16 @@ class InfillImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Infill the image with the specified method"""
pass
def load_image(self, context: InvocationContext) -> tuple[Image.Image, bool]:
def load_image(self) -> tuple[Image.Image, bool]:
"""Process the image to have an alpha channel before being infilled"""
image = context.images.get_pil(self.image.image_name)
image = self._context.images.get_pil(self.image.image_name)
has_alpha = True if image.mode == "RGBA" else False
return image, has_alpha
def invoke(self, context: InvocationContext) -> ImageOutput:
self._context = context
# Retrieve and process image to be infilled
input_image, has_alpha = self.load_image(context)
input_image, has_alpha = self.load_image()
# If the input image has no alpha channel, return it
if has_alpha is False:
@ -133,8 +132,12 @@ class LaMaInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the LaMa model"""
def infill(self, image: Image.Image):
lama = LaMA()
return lama(image)
with self._context.models.load_remote_model(
source="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
loader=LaMA.load_jit_model,
) as model:
lama = LaMA(model)
return lama(image)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,121 @@
from contextlib import nullcontext
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion import set_seamless
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
@invocation(
"l2i",
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.3.0",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
# offer a way to directly set None values.
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
if self.fp32:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
vae.post_quant_conv.to(latents.dtype)
vae.decoder.conv_in.to(latents.dtype)
vae.decoder.mid_block.to(latents.dtype)
else:
latents = latents.float()
else:
vae.to(dtype=torch.float16)
latents = latents.half()
if self.tiled or context.config.get().force_tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
tiling_context = nullcontext()
if self.tile_size > 0:
tiling_context = patch_vae_tiling_params(
vae,
tile_sample_min_size=self.tile_size,
tile_latent_min_size=self.tile_size // LATENT_SCALE_FACTOR,
tile_overlap_factor=0.25,
)
# clear memory as vae decode can request a lot
TorchDevice.empty_cache()
with torch.inference_mode(), tiling_context:
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
image = vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
TorchDevice.empty_cache()
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)

View File

@ -5,12 +5,11 @@ from typing import Literal
import numpy as np
from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import FieldDescriptions, InputField
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.1")
class AddInvocation(BaseInvocation):

View File

@ -14,8 +14,7 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
from ...version import __version__
from invokeai.version.invokeai_version import __version__
class MetadataItemField(BaseModel):

View File

@ -3,18 +3,17 @@ from typing import List, Optional
from pydantic import BaseModel, Field
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from .baseinvocation import (
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
class ModelIdentifierField(BaseModel):

View File

@ -4,18 +4,12 @@
import torch
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import FieldDescriptions, InputField, LatentsField, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from ...backend.util.devices import TorchDevice
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.backend.util.devices import TorchDevice
"""
Utilities

View File

@ -39,12 +39,11 @@ from easing_functions import (
)
from matplotlib.ticker import MaxNLocator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField
from invokeai.app.invocations.primitives import FloatCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField
@invocation(
"float_range",

View File

@ -4,6 +4,7 @@ from typing import Optional
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
ColorField,
@ -21,13 +22,6 @@ from invokeai.app.invocations.fields import (
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
"""
Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color
- primitive nodes

View File

@ -5,12 +5,11 @@ import numpy as np
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import InputField, UIComponent
from invokeai.app.invocations.primitives import StringCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, UIComponent
@invocation(
"dynamic_prompt",

View File

@ -0,0 +1,103 @@
from typing import Literal
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
)
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.util.devices import TorchDevice
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
@invocation(
"lresize",
title="Resize Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.2",
)
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
width: int = InputField(
ge=64,
multiple_of=LATENT_SCALE_FACTOR,
description=FieldDescriptions.width,
)
height: int = InputField(
ge=64,
multiple_of=LATENT_SCALE_FACTOR,
description=FieldDescriptions.width,
)
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
device = TorchDevice.choose_torch_device()
resized_latents = torch.nn.functional.interpolate(
latents.to(device),
size=(self.height // LATENT_SCALE_FACTOR, self.width // LATENT_SCALE_FACTOR),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation(
"lscale",
title="Scale Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.2",
)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
scale_factor: float = InputField(gt=0, description=FieldDescriptions.scale_factor)
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
device = TorchDevice.choose_torch_device()
# resizing
resized_latents = torch.nn.functional.interpolate(
latents.to(device),
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)

View File

@ -0,0 +1,34 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import (
FieldDescriptions,
InputField,
OutputField,
UIType,
)
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
@invocation_output("scheduler_output")
class SchedulerOutput(BaseInvocationOutput):
scheduler: SCHEDULER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
@invocation(
"scheduler",
title="Scheduler",
tags=["scheduler"],
category="latents",
version="1.0.0",
)
class SchedulerInvocation(BaseInvocation):
"""Selects a scheduler."""
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
def invoke(self, context: InvocationContext) -> SchedulerOutput:
return SchedulerOutput(scheduler=self.scheduler)

View File

@ -1,15 +1,9 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from .model import CLIPField, ModelIdentifierField, UNetField, VAEField
@invocation_output("sdxl_model_loader_output")
class SDXLModelLoaderOutput(BaseInvocationOutput):

View File

@ -2,17 +2,11 @@
import re
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import InputField, OutputField, UIComponent
from invokeai.app.invocations.primitives import StringOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from .fields import InputField, OutputField, UIComponent
from .primitives import StringOutput
@invocation_output("string_pos_neg_output")
class StringPosNegOutput(BaseInvocationOutput):

View File

@ -0,0 +1,282 @@
import copy
from contextlib import ExitStack
from typing import Iterator, Tuple
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
Input,
InputField,
LatentsField,
UIType,
)
from invokeai.app.invocations.model import UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
MultiDiffusionPipeline,
MultiDiffusionRegionConditioning,
)
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
from invokeai.backend.tiles.tiles import (
calc_tiles_min_overlap,
)
from invokeai.backend.tiles.utils import TBLR
from invokeai.backend.util.devices import TorchDevice
def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> ControlNetData:
"""Crop a ControlNetData object to a region."""
# Create a shallow copy of the control_data object.
control_data_copy = copy.copy(control_data)
# The ControlNet reference image is the only attribute that needs to be cropped.
control_data_copy.image_tensor = control_data.image_tensor[
:,
:,
latent_region.top * LATENT_SCALE_FACTOR : latent_region.bottom * LATENT_SCALE_FACTOR,
latent_region.left * LATENT_SCALE_FACTOR : latent_region.right * LATENT_SCALE_FACTOR,
]
return control_data_copy
@invocation(
"tiled_multi_diffusion_denoise_latents",
title="Tiled Multi-Diffusion Denoise Latents",
tags=["upscale", "denoise"],
category="latents",
classification=Classification.Beta,
version="1.0.0",
)
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
"""Tiled Multi-Diffusion denoising.
This node handles automatically tiling the input image, and is primarily intended for global refinement of images
in tiled upscaling workflows. Future Multi-Diffusion nodes should allow the user to specify custom regions with
different parameters for each region to harness the full power of Multi-Diffusion.
This node has a similar interface to the `DenoiseLatents` node, but it has a reduced feature set (no IP-Adapter,
T2I-Adapter, masking, etc.).
"""
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
noise: LatentsField | None = InputField(
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
)
latents: LatentsField | None = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
)
tile_height: int = InputField(
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Height of the tiles in image space."
)
tile_width: int = InputField(
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Width of the tiles in image space."
)
tile_overlap: int = InputField(
default=32,
multiple_of=LATENT_SCALE_FACTOR,
gt=0,
description="The overlap between adjacent tiles in pixel space. (Of course, tile merging is applied in latent "
"space.) Tiles will be cropped during merging (if necessary) to ensure that they overlap by exactly this "
"amount.",
)
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
control: ControlField | list[ControlField] | None = InputField(
default=None,
input=Input.Connection,
)
@field_validator("cfg_scale")
def ge_one(cls, v: list[float] | float) -> list[float] | float:
"""Validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def create_pipeline(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
) -> MultiDiffusionPipeline:
# TODO(ryand): Get rid of this FakeVae hack.
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:
self.block_out_channels = [0]
def __init__(self) -> None:
self.config = FakeVae.FakeVaeConfig()
return MultiDiffusionPipeline(
vae=FakeVae(),
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
# Convert tile image-space dimensions to latent-space dimensions.
latent_tile_height = self.tile_height // LATENT_SCALE_FACTOR
latent_tile_width = self.tile_width // LATENT_SCALE_FACTOR
latent_tile_overlap = self.tile_overlap // LATENT_SCALE_FACTOR
seed, noise, latents = DenoiseLatentsInvocation.prepare_noise_and_latents(context, self.noise, self.latents)
_, _, latent_height, latent_width = latents.shape
# Calculate the tile locations to cover the latent-space image.
tiles = calc_tiles_min_overlap(
image_height=latent_height,
image_width=latent_width,
tile_height=latent_tile_height,
tile_width=latent_tile_width,
min_overlap=latent_tile_overlap,
)
# Get the unet's config so that we can pass the base to sd_step_callback().
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=latent_tile_height,
latent_width=latent_tile_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
controlnet_data = DenoiseLatentsInvocation.prep_control_data(
context=context,
control_input=self.control,
latents_shape=list(latents.shape),
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
# Split the controlnet_data into tiles.
# controlnet_data_tiles[t][c] is the c'th control data for the t'th tile.
controlnet_data_tiles: list[list[ControlNetData]] = []
for tile in tiles:
tile_controlnet_data = [crop_controlnet_data(cn, tile.coords) for cn in controlnet_data or []]
controlnet_data_tiles.append(tile_controlnet_data)
# Prepare the MultiDiffusionRegionConditioning list.
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning] = []
for tile, tile_controlnet_data in zip(tiles, controlnet_data_tiles, strict=True):
multi_diffusion_conditioning.append(
MultiDiffusionRegionConditioning(
region=tile,
text_conditioning_data=conditioning_data,
control_data=tile_controlnet_data,
)
)
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
# Run Multi-Diffusion denoising.
result_latents = pipeline.multi_diffusion_denoise(
multi_diffusion_conditioning=multi_diffusion_conditioning,
target_overlap=latent_tile_overlap,
latents=latents,
scheduler_step_kwargs=scheduler_step_kwargs,
noise=noise,
timesteps=timesteps,
init_timestep=init_timestep,
callback=step_callback,
)
result_latents = result_latents.to("cpu")
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
TorchDevice.empty_cache()
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)

View File

@ -1,5 +1,4 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
from pathlib import Path
from typing import Literal
import cv2
@ -7,16 +6,12 @@ import numpy as np
from PIL import Image
from pydantic import ConfigDict
from invokeai.app.invocations.fields import ImageField
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
# TODO: Populate this from disk?
# TODO: Use model manager to load?
@ -52,7 +47,6 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
rrdbnet_model = None
netscale = None
esrgan_model_path = None
if self.model_name in [
"RealESRGAN_x4plus.pth",
@ -95,28 +89,25 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
context.logger.error(msg)
raise ValueError(msg)
esrgan_model_path = Path(context.config.get().models_path, f"core/upscaling/realesrgan/{self.model_name}")
# Downloads the ESRGAN model if it doesn't already exist
download_with_progress_bar(
name=self.model_name, url=ESRGAN_MODEL_URLS[self.model_name], dest_path=esrgan_model_path
loadnet = context.models.load_remote_model(
source=ESRGAN_MODEL_URLS[self.model_name],
)
upscaler = RealESRGAN(
scale=netscale,
model_path=esrgan_model_path,
model=rrdbnet_model,
half=False,
tile=self.tile_size,
)
with loadnet as loadnet_model:
upscaler = RealESRGAN(
scale=netscale,
loadnet=loadnet_model,
model=rrdbnet_model,
half=False,
tile=self.tile_size,
)
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
# TODO: This strips the alpha... is that okay?
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
upscaled_image = upscaler.upscale(cv2_image)
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
# TODO: This strips the alpha... is that okay?
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
upscaled_image = upscaler.upscale(cv2_image)
TorchDevice.empty_cache()
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
image_dto = context.images.save(image=pil_image)

View File

@ -2,12 +2,11 @@ import sqlite3
import threading
from typing import Optional, cast
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from .board_image_records_base import BoardImageRecordStorageBase
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
_conn: sqlite3.Connection

View File

@ -1,9 +1,8 @@
from typing import Optional
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
from invokeai.app.services.invoker import Invoker
from .board_images_base import BoardImagesServiceABC
class BoardImagesService(BoardImagesServiceABC):
__invoker: Invoker

View File

@ -1,9 +1,8 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .board_records_common import BoardChanges, BoardRecord
class BoardRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the board record store."""
@ -40,16 +39,12 @@ class BoardRecordStorageBase(ABC):
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
self, offset: int = 0, limit: int = 10, include_archived: bool = False
) -> OffsetPaginatedResults[BoardRecord]:
"""Gets many board records."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardRecord]:
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
"""Gets all board records."""
pass

View File

@ -22,6 +22,10 @@ class BoardRecord(BaseModelExcludeNull):
"""The updated timestamp of the image."""
cover_image_name: Optional[str] = Field(default=None, description="The name of the cover image of the board.")
"""The name of the cover image of the board."""
archived: bool = Field(description="Whether or not the board is archived.")
"""Whether or not the board is archived."""
is_private: Optional[bool] = Field(default=None, description="Whether the board is private.")
"""Whether the board is private."""
def deserialize_board_record(board_dict: dict) -> BoardRecord:
@ -35,6 +39,8 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
created_at = board_dict.get("created_at", get_iso_timestamp())
updated_at = board_dict.get("updated_at", get_iso_timestamp())
deleted_at = board_dict.get("deleted_at", get_iso_timestamp())
archived = board_dict.get("archived", False)
is_private = board_dict.get("is_private", False)
return BoardRecord(
board_id=board_id,
@ -43,12 +49,15 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
created_at=created_at,
updated_at=updated_at,
deleted_at=deleted_at,
archived=archived,
is_private=is_private,
)
class BoardChanges(BaseModel, extra="forbid"):
board_name: Optional[str] = Field(default=None, description="The board's new name.")
cover_image_name: Optional[str] = Field(default=None, description="The name of the board's new cover image.")
archived: Optional[bool] = Field(default=None, description="Whether or not the board is archived")
class BoardRecordNotFoundException(Exception):

View File

@ -2,12 +2,8 @@ import sqlite3
import threading
from typing import Union, cast
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.util.misc import uuid_string
from .board_records_base import BoardRecordStorageBase
from .board_records_common import (
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
from invokeai.app.services.board_records.board_records_common import (
BoardChanges,
BoardRecord,
BoardRecordDeleteException,
@ -15,6 +11,9 @@ from .board_records_common import (
BoardRecordSaveException,
deserialize_board_record,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.util.misc import uuid_string
class SqliteBoardRecordStorage(BoardRecordStorageBase):
@ -125,6 +124,17 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
(changes.cover_image_name, board_id),
)
# Change the archived status of a board
if changes.archived is not None:
self._cursor.execute(
"""--sql
UPDATE boards
SET archived = ?
WHERE board_id = ?;
""",
(changes.archived, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
@ -134,35 +144,49 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
return self.get(board_id)
def get_many(
self,
offset: int = 0,
limit: int = 10,
self, offset: int = 0, limit: int = 10, include_archived: bool = False
) -> OffsetPaginatedResults[BoardRecord]:
try:
self._lock.acquire()
# Get all the boards
self._cursor.execute(
"""--sql
# Build base query
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
LIMIT ? OFFSET ?;
""",
(limit, offset),
)
"""
# Determine archived filter condition
if include_archived:
archived_filter = ""
else:
archived_filter = "WHERE archived = 0"
final_query = base_query.format(archived_filter=archived_filter)
# Execute query to fetch boards
self._cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
# Get the total number of boards
self._cursor.execute(
"""--sql
SELECT COUNT(*)
FROM boards
WHERE 1=1;
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
)
else:
count_query = """
SELECT COUNT(*)
FROM boards
WHERE archived = 0;
"""
# Execute count query
self._cursor.execute(count_query)
count = cast(int, self._cursor.fetchone()[0])
@ -174,20 +198,25 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
finally:
self._lock.release()
def get_all(
self,
) -> list[BoardRecord]:
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
try:
self._lock.acquire()
# Get all the boards
self._cursor.execute(
"""--sql
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY created_at DESC
"""
)
"""
if include_archived:
archived_filter = ""
else:
archived_filter = "WHERE archived = 0"
final_query = base_query.format(archived_filter=archived_filter)
self._cursor.execute(final_query)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]

View File

@ -1,10 +1,9 @@
from abc import ABC, abstractmethod
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .boards_common import BoardDTO
class BoardServiceABC(ABC):
"""High-level service for board management."""
@ -44,16 +43,12 @@ class BoardServiceABC(ABC):
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
self, offset: int = 0, limit: int = 10, include_archived: bool = False
) -> OffsetPaginatedResults[BoardDTO]:
"""Gets many boards."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardDTO]:
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
"""Gets all boards."""
pass

View File

@ -2,7 +2,7 @@ from typing import Optional
from pydantic import Field
from ..board_records.board_records_common import BoardRecord
from invokeai.app.services.board_records.board_records_common import BoardRecord
class BoardDTO(BoardRecord):

View File

@ -1,11 +1,9 @@
from invokeai.app.services.board_records.board_records_common import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.boards.boards_base import BoardServiceABC
from invokeai.app.services.boards.boards_common import BoardDTO, board_record_to_dto
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .boards_base import BoardServiceABC
from .boards_common import board_record_to_dto
class BoardService(BoardServiceABC):
__invoker: Invoker
@ -48,8 +46,10 @@ class BoardService(BoardServiceABC):
def delete(self, board_id: str) -> None:
self.__invoker.services.board_records.delete(board_id)
def get_many(self, offset: int = 0, limit: int = 10) -> OffsetPaginatedResults[BoardDTO]:
board_records = self.__invoker.services.board_records.get_many(offset, limit)
def get_many(
self, offset: int = 0, limit: int = 10, include_archived: bool = False
) -> OffsetPaginatedResults[BoardDTO]:
board_records = self.__invoker.services.board_records.get_many(offset, limit, include_archived)
board_dtos = []
for r in board_records.items:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
@ -63,8 +63,8 @@ class BoardService(BoardServiceABC):
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
def get_all(self) -> list[BoardDTO]:
board_records = self.__invoker.services.board_records.get_all()
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
board_records = self.__invoker.services.board_records.get_all(include_archived)
board_dtos = []
for r in board_records:
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)

View File

@ -4,6 +4,7 @@ from typing import Optional, Union
from zipfile import ZipFile
from invokeai.app.services.board_records.board_records_common import BoardRecordNotFoundException
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
from invokeai.app.services.bulk_download.bulk_download_common import (
DEFAULT_BULK_DOWNLOAD_ID,
BulkDownloadException,
@ -15,8 +16,6 @@ from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.misc import uuid_string
from .bulk_download_base import BulkDownloadBase
class BulkDownloadService(BulkDownloadBase):
def start(self, invoker: Invoker) -> None:

View File

@ -1,7 +1,6 @@
"""Init file for InvokeAI configure package."""
from invokeai.app.services.config.config_common import PagingArgumentParser
from .config_default import InvokeAIAppConfig, get_config
from invokeai.app.services.config.config_default import InvokeAIAppConfig, get_config
__all__ = ["InvokeAIAppConfig", "get_config", "PagingArgumentParser"]

View File

@ -3,6 +3,7 @@
from __future__ import annotations
import copy
import locale
import os
import re
@ -25,14 +26,13 @@ DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_RAM_CACHE = 10.0
DEFAULT_VRAM_CACHE = 0.25
DEFAULT_CONVERT_CACHE = 20.0
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8]
LOG_FORMAT = Literal["plain", "color", "syslog", "legacy"]
LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
CONFIG_SCHEMA_VERSION = "4.0.1"
CONFIG_SCHEMA_VERSION = "4.0.2"
def get_default_ram_cache_size() -> float:
@ -85,7 +85,8 @@ class InvokeAIAppConfig(BaseSettings):
log_tokenization: Enable logging of parsed prompt tokens.
patchmatch: Enable patchmatch inpaint code.
models_dir: Path to the models directory.
convert_cache_dir: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.
convert_cache_dir: Path to the converted models cache directory (DEPRECATED, but do not delete because it is needed for migration from previous versions).
download_cache_dir: Path to the directory that contains dynamically downloaded models.
legacy_conf_dir: Path to directory of legacy checkpoint config files.
db_dir: Path to InvokeAI databases directory.
outputs_dir: Path to directory for outputs.
@ -101,7 +102,6 @@ class InvokeAIAppConfig(BaseSettings):
profiles_dir: Path to profiles output directory.
ram: Maximum memory amount used by memory model cache for rapid switching (GB).
vram: Amount of VRAM reserved for model storage (GB).
convert_cache: Maximum size of on-disk converted models cache (GB).
lazy_offload: Keep models in VRAM until their space is needed.
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
@ -112,6 +112,7 @@ class InvokeAIAppConfig(BaseSettings):
force_tiled_decode: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
pil_compress_level: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
max_queue_size: Maximum number of items in the session queue.
clear_queue_on_startup: Empties session queue on startup.
allow_nodes: List of nodes to allow. Omit to allow all.
deny_nodes: List of nodes to deny. Omit to deny none.
node_cache_size: How many cached nodes to keep in memory.
@ -146,7 +147,8 @@ class InvokeAIAppConfig(BaseSettings):
# PATHS
models_dir: Path = Field(default=Path("models"), description="Path to the models directory.")
convert_cache_dir: Path = Field(default=Path("models/.cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
convert_cache_dir: Path = Field(default=Path("models/.convert_cache"), description="Path to the converted models cache directory (DEPRECATED, but do not delete because it is needed for migration from previous versions).")
download_cache_dir: Path = Field(default=Path("models/.download_cache"), description="Path to the directory that contains dynamically downloaded models.")
legacy_conf_dir: Path = Field(default=Path("configs"), description="Path to directory of legacy checkpoint config files.")
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
@ -167,9 +169,8 @@ class InvokeAIAppConfig(BaseSettings):
profiles_dir: Path = Field(default=Path("profiles"), description="Path to profiles output directory.")
# CACHE
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
convert_cache: float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB).")
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
lazy_offload: bool = Field(default=True, description="Keep models in VRAM until their space is needed.")
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
@ -184,6 +185,7 @@ class InvokeAIAppConfig(BaseSettings):
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).")
pil_compress_level: int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.")
max_queue_size: int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.")
clear_queue_on_startup: bool = Field(default=False, description="Empties session queue on startup.")
# NODES
allow_nodes: Optional[list[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.")
@ -303,6 +305,11 @@ class InvokeAIAppConfig(BaseSettings):
"""Path to the converted cache models directory, resolved to an absolute path.."""
return self._resolve(self.convert_cache_dir)
@property
def download_cache_path(self) -> Path:
"""Path to the downloaded models directory, resolved to an absolute path.."""
return self._resolve(self.download_cache_dir)
@property
def custom_nodes_path(self) -> Path:
"""Path to the custom nodes directory, resolved to an absolute path.."""
@ -348,14 +355,14 @@ class DefaultInvokeAIAppConfig(InvokeAIAppConfig):
return (init_settings,)
def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
"""Migrate a v3 config dictionary to a current config object.
def migrate_v3_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
"""Migrate a v3 config dictionary to a v4.0.0.
Args:
config_dict: A dictionary of settings from a v3 config file.
Returns:
An instance of `InvokeAIAppConfig` with the migrated settings.
An `InvokeAIAppConfig` config dict.
"""
parsed_config_dict: dict[str, Any] = {}
@ -389,32 +396,41 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
elif k in InvokeAIAppConfig.model_fields:
# skip unknown fields
parsed_config_dict[k] = v
# When migrating the config file, we should not include currently-set environment variables.
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
return config
parsed_config_dict["schema_version"] = "4.0.0"
return parsed_config_dict
def migrate_v4_0_0_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
"""Migrate v4.0.0 config dictionary to a current config object.
def migrate_v4_0_0_to_4_0_1_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
"""Migrate v4.0.0 config dictionary to a v4.0.1 config dictionary
Args:
config_dict: A dictionary of settings from a v4.0.0 config file.
Returns:
An instance of `InvokeAIAppConfig` with the migrated settings.
A config dict with the settings migrated to v4.0.1.
"""
parsed_config_dict: dict[str, Any] = {}
for k, v in config_dict.items():
# autocast was removed from precision in v4.0.1
if k == "precision" and v == "autocast":
parsed_config_dict["precision"] = "auto"
else:
parsed_config_dict[k] = v
if k == "schema_version":
parsed_config_dict[k] = CONFIG_SCHEMA_VERSION
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
return config
parsed_config_dict: dict[str, Any] = copy.deepcopy(config_dict)
# precision "autocast" was replaced by "auto" in v4.0.1
if parsed_config_dict.get("precision") == "autocast":
parsed_config_dict["precision"] = "auto"
parsed_config_dict["schema_version"] = "4.0.1"
return parsed_config_dict
def migrate_v4_0_1_to_4_0_2_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
"""Migrate v4.0.1 config dictionary to a v4.0.2 config dictionary.
Args:
config_dict: A dictionary of settings from a v4.0.1 config file.
Returns:
An config dict with the settings migrated to v4.0.2.
"""
parsed_config_dict: dict[str, Any] = copy.deepcopy(config_dict)
# convert_cache was removed in 4.0.2
parsed_config_dict.pop("convert_cache", None)
parsed_config_dict["schema_version"] = "4.0.2"
return parsed_config_dict
def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
@ -428,27 +444,31 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
"""
assert config_path.suffix == ".yaml"
with open(config_path, "rt", encoding=locale.getpreferredencoding()) as file:
loaded_config_dict = yaml.safe_load(file)
loaded_config_dict: dict[str, Any] = yaml.safe_load(file)
assert isinstance(loaded_config_dict, dict)
migrated = False
if "InvokeAI" in loaded_config_dict:
# This is a v3 config file, attempt to migrate it
migrated = True
loaded_config_dict = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
if loaded_config_dict["schema_version"] == "4.0.0":
migrated = True
loaded_config_dict = migrate_v4_0_0_to_4_0_1_config_dict(loaded_config_dict)
if loaded_config_dict["schema_version"] == "4.0.1":
migrated = True
loaded_config_dict = migrate_v4_0_1_to_4_0_2_config_dict(loaded_config_dict)
if migrated:
shutil.copy(config_path, config_path.with_suffix(".yaml.bak"))
try:
# loaded_config_dict could be the wrong shape, but we will catch all exceptions below
migrated_config = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
# load and write without environment variables
migrated_config = DefaultInvokeAIAppConfig.model_validate(loaded_config_dict)
migrated_config.write_file(config_path)
except Exception as e:
shutil.copy(config_path.with_suffix(".yaml.bak"), config_path)
raise RuntimeError(f"Failed to load and migrate v3 config file {config_path}: {e}") from e
migrated_config.write_file(config_path)
return migrated_config
if loaded_config_dict["schema_version"] == "4.0.0":
loaded_config_dict = migrate_v4_0_0_config_dict(loaded_config_dict)
loaded_config_dict.write_file(config_path)
# Attempt to load as a v4 config file
try:
# Meta is not included in the model fields, so we need to validate it separately
config = InvokeAIAppConfig.model_validate(loaded_config_dict)

View File

@ -1,10 +1,17 @@
"""Init file for download queue."""
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
from .download_default import DownloadQueueService, TqdmProgress
from invokeai.app.services.download.download_base import (
DownloadJob,
DownloadJobStatus,
DownloadQueueServiceBase,
MultiFileDownloadJob,
UnknownJobIDException,
)
from invokeai.app.services.download.download_default import DownloadQueueService, TqdmProgress
__all__ = [
"DownloadJob",
"MultiFileDownloadJob",
"DownloadQueueServiceBase",
"DownloadQueueService",
"TqdmProgress",

View File

@ -5,11 +5,13 @@ from abc import ABC, abstractmethod
from enum import Enum
from functools import total_ordering
from pathlib import Path
from typing import Any, Callable, List, Optional
from typing import Any, Callable, List, Optional, Set, Union
from pydantic import BaseModel, Field, PrivateAttr
from pydantic.networks import AnyHttpUrl
from invokeai.backend.model_manager.metadata import RemoteModelFile
class DownloadJobStatus(str, Enum):
"""State of a download job."""
@ -33,30 +35,23 @@ class ServiceInactiveException(Exception):
"""This exception is raised when user attempts to initiate a download before the service is started."""
DownloadEventHandler = Callable[["DownloadJob"], None]
DownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
SingleFileDownloadEventHandler = Callable[["DownloadJob"], None]
SingleFileDownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
MultiFileDownloadEventHandler = Callable[["MultiFileDownloadJob"], None]
MultiFileDownloadExceptionHandler = Callable[["MultiFileDownloadJob", Optional[Exception]], None]
DownloadEventHandler = Union[SingleFileDownloadEventHandler, MultiFileDownloadEventHandler]
DownloadExceptionHandler = Union[SingleFileDownloadExceptionHandler, MultiFileDownloadExceptionHandler]
@total_ordering
class DownloadJob(BaseModel):
"""Class to monitor and control a model download request."""
class DownloadJobBase(BaseModel):
"""Base of classes to monitor and control downloads."""
# required variables to be passed in on creation
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
dest: Path = Field(description="Destination of downloaded model on local disk; a directory or file path")
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
# automatically assigned on creation
id: int = Field(description="Numeric ID of this job", default=-1) # default id is a sentinel
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
# set internally during download process
dest: Path = Field(description="Initial destination of downloaded model on local disk; a directory or file path")
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file or directory")
status: DownloadJobStatus = Field(default=DownloadJobStatus.WAITING, description="Status of the download")
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file")
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
job_ended: Optional[str] = Field(
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
)
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
bytes: int = Field(default=0, description="Bytes downloaded so far")
total_bytes: int = Field(default=0, description="Total file size (bytes)")
@ -74,14 +69,6 @@ class DownloadJob(BaseModel):
_on_cancelled: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_error: Optional[DownloadExceptionHandler] = PrivateAttr(default=None)
def __hash__(self) -> int:
"""Return hash of the string representation of this object, for indexing."""
return hash(str(self))
def __le__(self, other: "DownloadJob") -> bool:
"""Return True if this job's priority is less than another's."""
return self.priority <= other.priority
def cancel(self) -> None:
"""Call to cancel the job."""
self._cancelled = True
@ -98,6 +85,11 @@ class DownloadJob(BaseModel):
"""Return true if job completed without errors."""
return self.status == DownloadJobStatus.COMPLETED
@property
def waiting(self) -> bool:
"""Return true if the job is waiting to run."""
return self.status == DownloadJobStatus.WAITING
@property
def running(self) -> bool:
"""Return true if the job is running."""
@ -154,6 +146,37 @@ class DownloadJob(BaseModel):
self._on_cancelled = on_cancelled
@total_ordering
class DownloadJob(DownloadJobBase):
"""Class to monitor and control a model download request."""
# required variables to be passed in on creation
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
# set internally during download process
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
job_ended: Optional[str] = Field(
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
)
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
def __hash__(self) -> int:
"""Return hash of the string representation of this object, for indexing."""
return hash(str(self))
def __le__(self, other: "DownloadJob") -> bool:
"""Return True if this job's priority is less than another's."""
return self.priority <= other.priority
class MultiFileDownloadJob(DownloadJobBase):
"""Class to monitor and control multifile downloads."""
download_parts: Set[DownloadJob] = Field(default_factory=set, description="List of download parts.")
class DownloadQueueServiceBase(ABC):
"""Multithreaded queue for downloading models via URL."""
@ -201,6 +224,48 @@ class DownloadQueueServiceBase(ABC):
"""
pass
@abstractmethod
def multifile_download(
self,
parts: List[RemoteModelFile],
dest: Path,
access_token: Optional[str] = None,
submit_job: bool = True,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> MultiFileDownloadJob:
"""
Create and enqueue a multifile download job.
:param parts: Set of URL / filename pairs
:param dest: Path to download to. See below.
:param access_token: Access token to download the indicated files. If not provided,
each file's URL may be matched to an access token using the config file matching
system.
:param submit_job: If true [default] then submit the job for execution. Otherwise,
you will need to pass the job to submit_multifile_download().
:param on_start, on_progress, on_complete, on_error: Callbacks for the indicated
events.
:returns: A MultiFileDownloadJob object for monitoring the state of the download.
The `dest` argument is a Path object pointing to a directory. All downloads
with be placed inside this directory. The callbacks will receive the
MultiFileDownloadJob.
"""
pass
@abstractmethod
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
"""
Enqueue a previously-created multi-file download job.
:param job: A MultiFileDownloadJob created with multifile_download()
"""
pass
@abstractmethod
def submit_download_job(
self,
@ -252,7 +317,7 @@ class DownloadQueueServiceBase(ABC):
pass
@abstractmethod
def cancel_job(self, job: DownloadJob) -> None:
def cancel_job(self, job: DownloadJobBase) -> None:
"""Cancel the job, clearing partial downloads and putting it into ERROR state."""
pass
@ -262,7 +327,7 @@ class DownloadQueueServiceBase(ABC):
pass
@abstractmethod
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
"""Wait until the indicated download job has reached a terminal state.
This will block until the indicated install job has completed,

View File

@ -8,29 +8,30 @@ import time
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set
from typing import Any, Dict, List, Literal, Optional, Set
import requests
from pydantic.networks import AnyHttpUrl
from requests import HTTPError
from tqdm import tqdm
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.util.logging import InvokeAILogger
from .download_base import (
from invokeai.app.services.config import InvokeAIAppConfig, get_config
from invokeai.app.services.download.download_base import (
DownloadEventHandler,
DownloadExceptionHandler,
DownloadJob,
DownloadJobBase,
DownloadJobCancelledException,
DownloadJobStatus,
DownloadQueueServiceBase,
MultiFileDownloadJob,
ServiceInactiveException,
UnknownJobIDException,
)
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.model_manager.metadata import RemoteModelFile
from invokeai.backend.util.logging import InvokeAILogger
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000
@ -42,20 +43,24 @@ class DownloadQueueService(DownloadQueueServiceBase):
def __init__(
self,
max_parallel_dl: int = 5,
app_config: Optional[InvokeAIAppConfig] = None,
event_bus: Optional["EventServiceBase"] = None,
requests_session: Optional[requests.sessions.Session] = None,
):
"""
Initialize DownloadQueue.
:param app_config: InvokeAIAppConfig object
:param max_parallel_dl: Number of simultaneous downloads allowed [5].
:param requests_session: Optional requests.sessions.Session object, for unit tests.
"""
self._app_config = app_config or get_config()
self._jobs: Dict[int, DownloadJob] = {}
self._download_part2parent: Dict[AnyHttpUrl, MultiFileDownloadJob] = {}
self._next_job_id = 0
self._queue: PriorityQueue[DownloadJob] = PriorityQueue()
self._stop_event = threading.Event()
self._job_completed_event = threading.Event()
self._job_terminated_event = threading.Event()
self._worker_pool: Set[threading.Thread] = set()
self._lock = threading.Lock()
self._logger = InvokeAILogger.get_logger("DownloadQueueService")
@ -107,18 +112,16 @@ class DownloadQueueService(DownloadQueueServiceBase):
raise ServiceInactiveException(
"The download service is not currently accepting requests. Please call start() to initialize the service."
)
with self._lock:
job.id = self._next_job_id
self._next_job_id += 1
job.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
self._jobs[job.id] = job
self._queue.put(job)
job.id = self._next_id()
job.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
self._jobs[job.id] = job
self._queue.put(job)
def download(
self,
@ -141,7 +144,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
source=source,
dest=dest,
priority=priority,
access_token=access_token,
access_token=access_token or self._lookup_access_token(source),
)
self.submit_download_job(
job,
@ -153,10 +156,63 @@ class DownloadQueueService(DownloadQueueServiceBase):
)
return job
def multifile_download(
self,
parts: List[RemoteModelFile],
dest: Path,
access_token: Optional[str] = None,
submit_job: bool = True,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> MultiFileDownloadJob:
mfdj = MultiFileDownloadJob(dest=dest, id=self._next_id())
mfdj.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
for part in parts:
url = part.url
path = dest / part.path
assert path.is_relative_to(dest), "only relative download paths accepted"
job = DownloadJob(
source=url,
dest=path,
access_token=access_token or self._lookup_access_token(url),
)
mfdj.download_parts.add(job)
self._download_part2parent[job.source] = mfdj
if submit_job:
self.submit_multifile_download(mfdj)
return mfdj
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
for download_job in job.download_parts:
self.submit_download_job(
download_job,
on_start=self._mfd_started,
on_progress=self._mfd_progress,
on_complete=self._mfd_complete,
on_cancelled=self._mfd_cancelled,
on_error=self._mfd_error,
)
def join(self) -> None:
"""Wait for all jobs to complete."""
self._queue.join()
def _next_id(self) -> int:
with self._lock:
id = self._next_job_id
self._next_job_id += 1
return id
def list_jobs(self) -> List[DownloadJob]:
"""List all the jobs."""
return list(self._jobs.values())
@ -178,14 +234,14 @@ class DownloadQueueService(DownloadQueueServiceBase):
except KeyError as excp:
raise UnknownJobIDException("Unrecognized job") from excp
def cancel_job(self, job: DownloadJob) -> None:
def cancel_job(self, job: DownloadJobBase) -> None:
"""
Cancel the indicated job.
If it is running it will be stopped.
job.status will be set to DownloadJobStatus.CANCELLED
"""
with self._lock:
if job.status in [DownloadJobStatus.WAITING, DownloadJobStatus.RUNNING]:
job.cancel()
def cancel_all_jobs(self) -> None:
@ -194,12 +250,12 @@ class DownloadQueueService(DownloadQueueServiceBase):
if not job.in_terminal_state:
self.cancel_job(job)
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
"""Block until the indicated job has reached terminal state, or when timeout limit reached."""
start = time.time()
while not job.in_terminal_state:
if self._job_completed_event.wait(timeout=0.25): # in case we miss an event
self._job_completed_event.clear()
if self._job_terminated_event.wait(timeout=0.25): # in case we miss an event
self._job_terminated_event.clear()
if timeout > 0 and time.time() - start > timeout:
raise TimeoutError("Timeout exceeded")
return job
@ -228,22 +284,25 @@ class DownloadQueueService(DownloadQueueServiceBase):
job.job_started = get_iso_timestamp()
self._do_download(job)
self._signal_job_complete(job)
except (OSError, HTTPError) as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()
self._signal_job_error(job, excp)
except DownloadJobCancelledException:
self._signal_job_cancelled(job)
self._cleanup_cancelled_job(job)
except Exception as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()
self._signal_job_error(job, excp)
finally:
job.job_ended = get_iso_timestamp()
self._job_completed_event.set() # signal a change to terminal state
self._job_terminated_event.set() # signal a change to terminal state
self._download_part2parent.pop(job.source, None) # if this is a subpart of a multipart job, remove it
self._job_terminated_event.set()
self._queue.task_done()
self._logger.debug(f"Download queue worker thread {threading.current_thread().name} exiting.")
def _do_download(self, job: DownloadJob) -> None:
"""Do the actual download."""
url = job.source
header = {"Authorization": f"Bearer {job.access_token}"} if job.access_token else {}
open_mode = "wb"
@ -335,38 +394,29 @@ class DownloadQueueService(DownloadQueueServiceBase):
def _in_progress_path(self, path: Path) -> Path:
return path.with_name(path.name + ".downloading")
def _lookup_access_token(self, source: AnyHttpUrl) -> Optional[str]:
# Pull the token from config if it exists and matches the URL
token = None
for pair in self._app_config.remote_api_tokens or []:
if re.search(pair.url_regex, str(source)):
token = pair.token
break
return token
def _signal_job_started(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.RUNNING
if job.on_start:
try:
job.on_start(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_start callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_start")
if self._event_bus:
self._event_bus.emit_download_started(job)
def _signal_job_progress(self, job: DownloadJob) -> None:
if job.on_progress:
try:
job.on_progress(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_progress callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_progress")
if self._event_bus:
self._event_bus.emit_download_progress(job)
def _signal_job_complete(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.COMPLETED
if job.on_complete:
try:
job.on_complete(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_complete callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_complete")
if self._event_bus:
self._event_bus.emit_download_complete(job)
@ -374,26 +424,21 @@ class DownloadQueueService(DownloadQueueServiceBase):
if job.status not in [DownloadJobStatus.RUNNING, DownloadJobStatus.WAITING]:
return
job.status = DownloadJobStatus.CANCELLED
if job.on_cancelled:
try:
job.on_cancelled(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_cancelled callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_cancelled")
if self._event_bus:
self._event_bus.emit_download_cancelled(job)
# if multifile download, then signal the parent
if parent_job := self._download_part2parent.get(job.source, None):
if not parent_job.in_terminal_state:
parent_job.status = DownloadJobStatus.CANCELLED
self._execute_cb(parent_job, "on_cancelled")
def _signal_job_error(self, job: DownloadJob, excp: Optional[Exception] = None) -> None:
job.status = DownloadJobStatus.ERROR
self._logger.error(f"{str(job.source)}: {traceback.format_exception(excp)}")
if job.on_error:
try:
job.on_error(job, excp)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_error callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_error", excp)
if self._event_bus:
self._event_bus.emit_download_error(job)
@ -406,6 +451,97 @@ class DownloadQueueService(DownloadQueueServiceBase):
except OSError as excp:
self._logger.warning(excp)
########################################
# callbacks used for multifile downloads
########################################
def _mfd_started(self, download_job: DownloadJob) -> None:
self._logger.info(f"File download started: {download_job.source}")
with self._lock:
mf_job = self._download_part2parent[download_job.source]
if mf_job.waiting:
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
mf_job.status = DownloadJobStatus.RUNNING
assert download_job.download_path is not None
path_relative_to_destdir = download_job.download_path.relative_to(mf_job.dest)
mf_job.download_path = (
mf_job.dest / path_relative_to_destdir.parts[0]
) # keep just the first component of the path
self._execute_cb(mf_job, "on_start")
def _mfd_progress(self, download_job: DownloadJob) -> None:
with self._lock:
mf_job = self._download_part2parent[download_job.source]
if mf_job.cancelled:
for part in mf_job.download_parts:
self.cancel_job(part)
elif mf_job.running:
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
mf_job.bytes = sum(x.total_bytes for x in mf_job.download_parts)
self._execute_cb(mf_job, "on_progress")
def _mfd_complete(self, download_job: DownloadJob) -> None:
self._logger.info(f"Download complete: {download_job.source}")
with self._lock:
mf_job = self._download_part2parent[download_job.source]
# are there any more active jobs left in this task?
if mf_job.running and all(x.complete for x in mf_job.download_parts):
mf_job.status = DownloadJobStatus.COMPLETED
self._execute_cb(mf_job, "on_complete")
# we're done with this sub-job
self._job_terminated_event.set()
def _mfd_cancelled(self, download_job: DownloadJob) -> None:
with self._lock:
mf_job = self._download_part2parent[download_job.source]
assert mf_job is not None
if not mf_job.in_terminal_state:
self._logger.warning(f"Download cancelled: {download_job.source}")
mf_job.cancel()
for s in mf_job.download_parts:
self.cancel_job(s)
def _mfd_error(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
with self._lock:
mf_job = self._download_part2parent[download_job.source]
assert mf_job is not None
if not mf_job.in_terminal_state:
mf_job.status = download_job.status
mf_job.error = download_job.error
mf_job.error_type = download_job.error_type
self._execute_cb(mf_job, "on_error", excp)
self._logger.error(
f"Cancelling {mf_job.dest} due to an error while downloading {download_job.source}: {str(excp)}"
)
for s in [x for x in mf_job.download_parts if x.running]:
self.cancel_job(s)
self._download_part2parent.pop(download_job.source)
self._job_terminated_event.set()
def _execute_cb(
self,
job: DownloadJob | MultiFileDownloadJob,
callback_name: Literal[
"on_start",
"on_progress",
"on_complete",
"on_cancelled",
"on_error",
],
excp: Optional[Exception] = None,
) -> None:
if callback := getattr(job, callback_name, None):
args = [job, excp] if excp else [job]
try:
callback(*args)
except Exception as e:
self._logger.error(
f"An error occurred while processing the {callback_name} callback: {traceback.format_exception(e)}"
)
def get_pc_name_max(directory: str) -> int:
if hasattr(os, "pathconf"):

View File

@ -22,6 +22,7 @@ from invokeai.app.services.events.events_common import (
ModelInstallCompleteEvent,
ModelInstallDownloadProgressEvent,
ModelInstallDownloadsCompleteEvent,
ModelInstallDownloadStartedEvent,
ModelInstallErrorEvent,
ModelInstallStartedEvent,
ModelLoadCompleteEvent,
@ -34,7 +35,6 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineInterme
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
from invokeai.app.services.download.download_base import DownloadJob
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
@ -145,6 +145,10 @@ class EventServiceBase:
# region Model install
def emit_model_install_download_started(self, job: "ModelInstallJob") -> None:
"""Emitted at intervals while the install job is started (remote models only)."""
self.dispatch(ModelInstallDownloadStartedEvent.build(job))
def emit_model_install_download_progress(self, job: "ModelInstallJob") -> None:
"""Emitted at intervals while the install job is in progress (remote models only)."""
self.dispatch(ModelInstallDownloadProgressEvent.build(job))

View File

@ -3,9 +3,8 @@ from typing import TYPE_CHECKING, Any, ClassVar, Coroutine, Generic, Optional, P
from fastapi_events.handlers.local import local_handler
from fastapi_events.registry.payload_schema import registry as payload_schema
from pydantic import BaseModel, ConfigDict, Field, SerializeAsAny, field_validator
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
QUEUE_ITEM_STATUS,
@ -14,6 +13,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
SessionQueueItem,
SessionQueueStatus,
)
from invokeai.app.services.shared.graph import AnyInvocation, AnyInvocationOutput
from invokeai.app.util.misc import get_timestamp
from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
@ -98,17 +98,9 @@ class InvocationEventBase(QueueItemEventBase):
item_id: int = Field(description="The ID of the queue item")
batch_id: str = Field(description="The ID of the queue batch")
session_id: str = Field(description="The ID of the session (aka graph execution state)")
invocation: SerializeAsAny[BaseInvocation] = Field(description="The ID of the invocation")
invocation: AnyInvocation = Field(description="The ID of the invocation")
invocation_source_id: str = Field(description="The ID of the prepared invocation's source node")
@field_validator("invocation", mode="plain")
@classmethod
def validate_invocation(cls, v: Any):
"""Validates the invocation using the dynamic type adapter."""
invocation = BaseInvocation.get_typeadapter().validate_python(v)
return invocation
@payload_schema.register
class InvocationStartedEvent(InvocationEventBase):
@ -117,7 +109,7 @@ class InvocationStartedEvent(InvocationEventBase):
__event_name__ = "invocation_started"
@classmethod
def build(cls, queue_item: SessionQueueItem, invocation: BaseInvocation) -> "InvocationStartedEvent":
def build(cls, queue_item: SessionQueueItem, invocation: AnyInvocation) -> "InvocationStartedEvent":
return cls(
queue_id=queue_item.queue_id,
item_id=queue_item.item_id,
@ -144,7 +136,7 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
def build(
cls,
queue_item: SessionQueueItem,
invocation: BaseInvocation,
invocation: AnyInvocation,
intermediate_state: PipelineIntermediateState,
progress_image: ProgressImage,
) -> "InvocationDenoiseProgressEvent":
@ -182,19 +174,11 @@ class InvocationCompleteEvent(InvocationEventBase):
__event_name__ = "invocation_complete"
result: SerializeAsAny[BaseInvocationOutput] = Field(description="The result of the invocation")
@field_validator("result", mode="plain")
@classmethod
def validate_results(cls, v: Any):
"""Validates the invocation result using the dynamic type adapter."""
result = BaseInvocationOutput.get_typeadapter().validate_python(v)
return result
result: AnyInvocationOutput = Field(description="The result of the invocation")
@classmethod
def build(
cls, queue_item: SessionQueueItem, invocation: BaseInvocation, result: BaseInvocationOutput
cls, queue_item: SessionQueueItem, invocation: AnyInvocation, result: AnyInvocationOutput
) -> "InvocationCompleteEvent":
return cls(
queue_id=queue_item.queue_id,
@ -223,7 +207,7 @@ class InvocationErrorEvent(InvocationEventBase):
def build(
cls,
queue_item: SessionQueueItem,
invocation: BaseInvocation,
invocation: AnyInvocation,
error_type: str,
error_message: str,
error_traceback: str,
@ -433,6 +417,42 @@ class ModelLoadCompleteEvent(ModelEventBase):
return cls(config=config, submodel_type=submodel_type)
@payload_schema.register
class ModelInstallDownloadStartedEvent(ModelEventBase):
"""Event model for model_install_download_started"""
__event_name__ = "model_install_download_started"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
parts: list[dict[str, int | str]] = Field(
description="Progress of downloading URLs that comprise the model, if any"
)
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadStartedEvent":
parts: list[dict[str, str | int]] = [
{
"url": str(x.source),
"local_path": str(x.download_path),
"bytes": x.bytes,
"total_bytes": x.total_bytes,
}
for x in job.download_parts
]
return cls(
id=job.id,
source=str(job.source),
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
total_bytes=job.total_bytes,
)
@payload_schema.register
class ModelInstallDownloadProgressEvent(ModelEventBase):
"""Event model for model_install_download_progress"""

View File

@ -6,12 +6,11 @@ from queue import Empty, Queue
from fastapi_events.dispatcher import dispatch
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.events.events_common import (
EventBase,
)
from .events_base import EventServiceBase
class FastAPIEventService(EventServiceBase):
def __init__(self, event_handler_id: int) -> None:

View File

@ -7,12 +7,15 @@ from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_files.image_files_common import (
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
)
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
from .image_files_base import ImageFileStorageBase
from .image_files_common import ImageFileDeleteException, ImageFileNotFoundException, ImageFileSaveException
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""

View File

@ -3,9 +3,14 @@ from datetime import datetime
from typing import Optional
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,
ImageRecordChanges,
ResourceOrigin,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from .image_records_common import ImageCategory, ImageRecord, ImageRecordChanges, ResourceOrigin
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
class ImageRecordStorageBase(ABC):
@ -37,10 +42,13 @@ class ImageRecordStorageBase(ABC):
self,
offset: int = 0,
limit: int = 10,
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets a page of image records."""
pass

View File

@ -4,11 +4,8 @@ from datetime import datetime
from typing import Optional, Union, cast
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from .image_records_base import ImageRecordStorageBase
from .image_records_common import (
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
from invokeai.app.services.image_records.image_records_common import (
IMAGE_DTO_COLS,
ImageCategory,
ImageRecord,
@ -19,6 +16,9 @@ from .image_records_common import (
ResourceOrigin,
deserialize_image_record,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteImageRecordStorage(ImageRecordStorageBase):
@ -144,10 +144,13 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
self,
offset: int = 0,
limit: int = 10,
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
try:
self._lock.acquire()
@ -208,9 +211,21 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
"""
query_params.append(board_id)
query_pagination = """--sql
ORDER BY images.starred DESC, images.created_at DESC LIMIT ? OFFSET ?
"""
# Search term condition
if search_term:
query_conditions += """--sql
AND images.metadata LIKE ?
"""
query_params.append(f"%{search_term.lower()}%")
if starred_first:
query_pagination = f"""--sql
ORDER BY images.starred DESC, images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
else:
query_pagination = f"""--sql
ORDER BY images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
# Final images query with pagination
images_query += query_conditions + query_pagination + ";"

View File

@ -12,6 +12,7 @@ from invokeai.app.services.image_records.image_records_common import (
)
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
class ImageServiceABC(ABC):
@ -116,10 +117,13 @@ class ImageServiceABC(ABC):
self,
offset: int = 0,
limit: int = 10,
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
pass

View File

@ -3,15 +3,12 @@ from typing import Optional
from PIL.Image import Image as PILImageType
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from ..image_files.image_files_common import (
from invokeai.app.services.image_files.image_files_common import (
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
)
from ..image_records.image_records_common import (
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageRecord,
ImageRecordChanges,
@ -22,8 +19,11 @@ from ..image_records.image_records_common import (
InvalidOriginException,
ResourceOrigin,
)
from .images_base import ImageServiceABC
from .images_common import ImageDTO, image_record_to_dto
from invokeai.app.services.images.images_base import ImageServiceABC
from invokeai.app.services.images.images_common import ImageDTO, image_record_to_dto
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
class ImageService(ImageServiceABC):
@ -73,7 +73,12 @@ class ImageService(ImageServiceABC):
session_id=session_id,
)
if board_id is not None:
self.__invoker.services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
try:
self.__invoker.services.board_image_records.add_image_to_board(
board_id=board_id, image_name=image_name
)
except Exception as e:
self.__invoker.services.logger.warn(f"Failed to add image to board {board_id}: {str(e)}")
self.__invoker.services.image_files.save(
image_name=image_name, image=image, metadata=metadata, workflow=workflow, graph=graph
)
@ -202,19 +207,25 @@ class ImageService(ImageServiceABC):
self,
offset: int = 0,
limit: int = 10,
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
try:
results = self.__invoker.services.image_records.get_many(
offset,
limit,
starred_first,
order_dir,
image_origin,
categories,
is_intermediate,
board_id,
search_term,
)
image_dtos = [

View File

@ -10,29 +10,28 @@ if TYPE_CHECKING:
import torch
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
from invokeai.app.services.boards.boards_base import BoardServiceABC
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
from invokeai.app.services.images.images_base import ImageServiceABC
from invokeai.app.services.invocation_cache.invocation_cache_base import InvocationCacheBase
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.names.names_base import NameServiceBase
from invokeai.app.services.session_processor.session_processor_base import SessionProcessorBase
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
from invokeai.app.services.urls.urls_base import UrlServiceBase
from invokeai.app.services.workflow_records.workflow_records_base import WorkflowRecordsStorageBase
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from .board_image_records.board_image_records_base import BoardImageRecordStorageBase
from .board_images.board_images_base import BoardImagesServiceABC
from .board_records.board_records_base import BoardRecordStorageBase
from .boards.boards_base import BoardServiceABC
from .bulk_download.bulk_download_base import BulkDownloadBase
from .config import InvokeAIAppConfig
from .download import DownloadQueueServiceBase
from .events.events_base import EventServiceBase
from .image_files.image_files_base import ImageFileStorageBase
from .image_records.image_records_base import ImageRecordStorageBase
from .images.images_base import ImageServiceABC
from .invocation_cache.invocation_cache_base import InvocationCacheBase
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from .model_images.model_images_base import ModelImageFileStorageBase
from .model_manager.model_manager_base import ModelManagerServiceBase
from .names.names_base import NameServiceBase
from .session_processor.session_processor_base import SessionProcessorBase
from .session_queue.session_queue_base import SessionQueueBase
from .urls.urls_base import UrlServiceBase
from .workflow_records.workflow_records_base import WorkflowRecordsStorageBase
class InvocationServices:
"""Services that can be used by invocations"""

View File

@ -9,11 +9,8 @@ import torch
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load.model_cache import CacheStats
from .invocation_stats_base import InvocationStatsServiceBase
from .invocation_stats_common import (
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
from invokeai.app.services.invocation_stats.invocation_stats_common import (
GESStatsNotFoundError,
GraphExecutionStats,
GraphExecutionStatsSummary,
@ -22,6 +19,8 @@ from .invocation_stats_common import (
NodeExecutionStats,
NodeExecutionStatsSummary,
)
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load.model_cache import CacheStats
# Size of 1GB in bytes.
GB = 2**30

View File

@ -1,7 +1,7 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from .invocation_services import InvocationServices
from invokeai.app.services.invocation_services import InvocationServices
class Invoker:

View File

@ -5,15 +5,14 @@ from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
from .model_images_base import ModelImageFileStorageBase
from .model_images_common import (
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
from invokeai.app.services.model_images.model_images_common import (
ModelImageFileDeleteException,
ModelImageFileNotFoundException,
ModelImageFileSaveException,
)
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
class ModelImageFileStorageDisk(ModelImageFileStorageBase):

View File

@ -1,9 +1,7 @@
"""Initialization file for model install service package."""
from .model_install_base import (
ModelInstallServiceBase,
)
from .model_install_common import (
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_install.model_install_common import (
HFModelSource,
InstallStatus,
LocalModelSource,
@ -12,7 +10,7 @@ from .model_install_common import (
UnknownInstallJobException,
URLModelSource,
)
from .model_install_default import ModelInstallService
from invokeai.app.services.model_install.model_install_default import ModelInstallService
__all__ = [
"ModelInstallServiceBase",

View File

@ -13,7 +13,7 @@ from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager import AnyModelConfig
class ModelInstallServiceBase(ABC):
@ -243,12 +243,11 @@ class ModelInstallServiceBase(ABC):
"""
@abstractmethod
def download_and_cache(self, source: Union[str, AnyHttpUrl], access_token: Optional[str] = None) -> Path:
def download_and_cache_model(self, source: str | AnyHttpUrl) -> Path:
"""
Download the model file located at source to the models cache and return its Path.
:param source: A Url or a string that can be converted into one.
:param access_token: Optional access token to access restricted resources.
:param source: A string representing a URL or repo_id.
The model file will be downloaded into the system-wide model cache
(`models/.cache`) if it isn't already there. Note that the model cache

View File

@ -8,7 +8,7 @@ from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic.networks import AnyHttpUrl
from typing_extensions import Annotated
from invokeai.app.services.download import DownloadJob
from invokeai.app.services.download import DownloadJob, MultiFileDownloadJob
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
@ -26,13 +26,6 @@ class InstallStatus(str, Enum):
CANCELLED = "cancelled" # terminated with an error message
class ModelInstallPart(BaseModel):
url: AnyHttpUrl
path: Path
bytes: int = 0
total_bytes: int = 0
class UnknownInstallJobException(Exception):
"""Raised when the status of an unknown job is requested."""
@ -169,6 +162,7 @@ class ModelInstallJob(BaseModel):
)
# internal flags and transitory settings
_install_tmpdir: Optional[Path] = PrivateAttr(default=None)
_multifile_job: Optional[MultiFileDownloadJob] = PrivateAttr(default=None)
_exception: Optional[Exception] = PrivateAttr(default=None)
def set_error(self, e: Exception) -> None:

View File

@ -5,23 +5,34 @@ import os
import re
import threading
import time
from hashlib import sha256
from pathlib import Path
from queue import Empty, Queue
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional, Tuple, Type, Union
import torch
import yaml
from huggingface_hub import HfFolder
from pydantic.networks import AnyHttpUrl
from pydantic_core import Url
from requests import Session
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase, TqdmProgress
from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDownloadJob
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_install.model_install_common import (
MODEL_SOURCE_TO_TYPE_MAP,
HFModelSource,
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelSource,
StringLikeSource,
URLModelSource,
)
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.backend.model_manager.config import (
@ -44,23 +55,10 @@ from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import InvokeAILogger
from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
from .model_install_common import (
MODEL_SOURCE_TO_TYPE_MAP,
HFModelSource,
InstallStatus,
LocalModelSource,
ModelInstallJob,
ModelSource,
StringLikeSource,
URLModelSource,
)
from invokeai.backend.util.util import slugify
TMPDIR_PREFIX = "tmpinstall_"
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
class ModelInstallService(ModelInstallServiceBase):
"""class for InvokeAI model installation."""
@ -91,7 +89,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._downloads_changed_event = threading.Event()
self._install_completed_event = threading.Event()
self._download_queue = download_queue
self._download_cache: Dict[AnyHttpUrl, ModelInstallJob] = {}
self._download_cache: Dict[int, ModelInstallJob] = {}
self._running = False
self._session = session
self._install_thread: Optional[threading.Thread] = None
@ -210,33 +208,12 @@ class ModelInstallService(ModelInstallServiceBase):
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source), inplace=inplace)
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),
variant=match.group(2) if match.group(2) else None, # pass None rather than ''
subfolder=Path(match.group(3)) if match.group(3) else None,
access_token=access_token,
)
elif re.match(r"^https?://[^/]+", source):
# Pull the token from config if it exists and matches the URL
_token = access_token
if _token is None:
for pair in self.app_config.remote_api_tokens or []:
if re.search(pair.url_regex, source):
_token = pair.token
break
source_obj = URLModelSource(
url=AnyHttpUrl(source),
access_token=_token,
)
else:
raise ValueError(f"Unsupported model source: '{source}'")
"""Install a model using pattern matching to infer the type of source."""
source_obj = self._guess_source(source)
if isinstance(source_obj, LocalModelSource):
source_obj.inplace = inplace
elif isinstance(source_obj, HFModelSource) or isinstance(source_obj, URLModelSource):
source_obj.access_token = access_token
return self.import_model(source_obj, config)
def import_model(self, source: ModelSource, config: Optional[Dict[str, Any]] = None) -> ModelInstallJob: # noqa D102
@ -297,8 +274,9 @@ class ModelInstallService(ModelInstallServiceBase):
def cancel_job(self, job: ModelInstallJob) -> None:
"""Cancel the indicated job."""
job.cancel()
with self._lock:
self._cancel_download_parts(job)
self._logger.warning(f"Cancelling {job.source}")
if dj := job._multifile_job:
self._download_queue.cancel_job(dj)
def prune_jobs(self) -> None:
"""Prune all completed and errored jobs."""
@ -346,7 +324,7 @@ class ModelInstallService(ModelInstallServiceBase):
legacy_config_path = stanza.get("config")
if legacy_config_path:
# In v3, these paths were relative to the root. Migrate them to be relative to the legacy_conf_dir.
legacy_config_path: Path = self._app_config.root_path / legacy_config_path
legacy_config_path = self._app_config.root_path / legacy_config_path
if legacy_config_path.is_relative_to(self._app_config.legacy_conf_path):
legacy_config_path = legacy_config_path.relative_to(self._app_config.legacy_conf_path)
config["config_path"] = str(legacy_config_path)
@ -386,38 +364,95 @@ class ModelInstallService(ModelInstallServiceBase):
rmtree(model_path)
self.unregister(key)
def download_and_cache(
@classmethod
def _download_cache_path(cls, source: Union[str, AnyHttpUrl], app_config: InvokeAIAppConfig) -> Path:
escaped_source = slugify(str(source))
return app_config.download_cache_path / escaped_source
def download_and_cache_model(
self,
source: Union[str, AnyHttpUrl],
access_token: Optional[str] = None,
timeout: int = 0,
source: str | AnyHttpUrl,
) -> Path:
"""Download the model file located at source to the models cache and return its Path."""
model_hash = sha256(str(source).encode("utf-8")).hexdigest()[0:32]
model_path = self._app_config.convert_cache_path / model_hash
model_path = self._download_cache_path(str(source), self._app_config)
# We expect the cache directory to contain one and only one downloaded file.
# We expect the cache directory to contain one and only one downloaded file or directory.
# We don't know the file's name in advance, as it is set by the download
# content-disposition header.
if model_path.exists():
contents = [x for x in model_path.iterdir() if x.is_file()]
contents: List[Path] = list(model_path.iterdir())
if len(contents) > 0:
return contents[0]
model_path.mkdir(parents=True, exist_ok=True)
job = self._download_queue.download(
source=AnyHttpUrl(str(source)),
model_source = self._guess_source(str(source))
remote_files, _ = self._remote_files_from_source(model_source)
job = self._multifile_download(
dest=model_path,
access_token=access_token,
on_progress=TqdmProgress().update,
remote_files=remote_files,
subfolder=model_source.subfolder if isinstance(model_source, HFModelSource) else None,
)
self._download_queue.wait_for_job(job, timeout)
files_string = "file" if len(remote_files) == 1 else "files"
self._logger.info(f"Queuing model download: {source} ({len(remote_files)} {files_string})")
self._download_queue.wait_for_job(job)
if job.complete:
assert job.download_path is not None
return job.download_path
else:
raise Exception(job.error)
def _remote_files_from_source(
self, source: ModelSource
) -> Tuple[List[RemoteModelFile], Optional[AnyModelRepoMetadata]]:
metadata = None
if isinstance(source, HFModelSource):
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
assert isinstance(metadata, ModelMetadataWithFiles)
return (
metadata.download_urls(
variant=source.variant or self._guess_variant(),
subfolder=source.subfolder,
session=self._session,
),
metadata,
)
if isinstance(source, URLModelSource):
try:
fetcher = self.get_fetcher_from_url(str(source.url))
kwargs: dict[str, Any] = {"session": self._session}
metadata = fetcher(**kwargs).from_url(source.url)
assert isinstance(metadata, ModelMetadataWithFiles)
return metadata.download_urls(session=self._session), metadata
except ValueError:
pass
return [RemoteModelFile(url=source.url, path=Path("."), size=0)], None
raise Exception(f"No files associated with {source}")
def _guess_source(self, source: str) -> ModelSource:
"""Turn a source string into a ModelSource object."""
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source))
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),
variant=ModelRepoVariant(match.group(2)) if match.group(2) else None, # pass None rather than ''
subfolder=Path(match.group(3)) if match.group(3) else None,
)
elif re.match(r"^https?://[^/]+", source):
source_obj = URLModelSource(
url=Url(source),
)
else:
raise ValueError(f"Unsupported model source: '{source}'")
return source_obj
# --------------------------------------------------------------------------------------------
# Internal functions that manage the installer threads
# --------------------------------------------------------------------------------------------
@ -478,16 +513,19 @@ class ModelInstallService(ModelInstallServiceBase):
job.config_out = self.record_store.get_model(key)
self._signal_job_completed(job)
def _set_error(self, job: ModelInstallJob, excp: Exception) -> None:
if any(x.content_type is not None and "text/html" in x.content_type for x in job.download_parts):
job.set_error(
def _set_error(self, install_job: ModelInstallJob, excp: Exception) -> None:
multifile_download_job = install_job._multifile_job
if multifile_download_job and any(
x.content_type is not None and "text/html" in x.content_type for x in multifile_download_job.download_parts
):
install_job.set_error(
InvalidModelConfigException(
f"At least one file in {job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
f"At least one file in {install_job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
)
)
else:
job.set_error(excp)
self._signal_job_errored(job)
install_job.set_error(excp)
self._signal_job_errored(install_job)
# --------------------------------------------------------------------------------------------
# Internal functions that manage the models directory
@ -513,7 +551,6 @@ class ModelInstallService(ModelInstallServiceBase):
This is typically only used during testing with a new DB or when using the memory DB, because those are the
only situations in which we may have orphaned models in the models directory.
"""
installed_model_paths = {
(self._app_config.models_path / x.path).resolve() for x in self.record_store.all_models()
}
@ -525,8 +562,13 @@ class ModelInstallService(ModelInstallServiceBase):
if resolved_path in installed_model_paths:
return True
# Skip core models entirely - these aren't registered with the model manager.
if str(resolved_path).startswith(str(self.app_config.models_path / "core")):
return False
for special_directory in [
self.app_config.models_path / "core",
self.app_config.convert_cache_dir,
self.app_config.download_cache_dir,
]:
if resolved_path.is_relative_to(special_directory):
return False
try:
model_id = self.register_path(model_path)
self._logger.info(f"Registered {model_path.name} with id {model_id}")
@ -641,20 +683,15 @@ class ModelInstallService(ModelInstallServiceBase):
inplace=source.inplace or False,
)
def _import_from_hf(self, source: HFModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
def _import_from_hf(
self,
source: HFModelSource,
config: Optional[Dict[str, Any]] = None,
) -> ModelInstallJob:
# Add user's cached access token to HuggingFace requests
source.access_token = source.access_token or HfFolder.get_token()
if not source.access_token:
self._logger.info("No HuggingFace access token present; some models may not be downloadable.")
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
assert isinstance(metadata, ModelMetadataWithFiles)
remote_files = metadata.download_urls(
variant=source.variant or self._guess_variant(),
subfolder=source.subfolder,
session=self._session,
)
if source.access_token is None:
source.access_token = HfFolder.get_token()
remote_files, metadata = self._remote_files_from_source(source)
return self._import_remote_model(
source=source,
config=config,
@ -662,22 +699,12 @@ class ModelInstallService(ModelInstallServiceBase):
metadata=metadata,
)
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# URLs from HuggingFace will be handled specially
metadata = None
fetcher = None
try:
fetcher = self.get_fetcher_from_url(str(source.url))
except ValueError:
pass
kwargs: dict[str, Any] = {"session": self._session}
if fetcher is not None:
metadata = fetcher(**kwargs).from_url(source.url)
self._logger.debug(f"metadata={metadata}")
if metadata and isinstance(metadata, ModelMetadataWithFiles):
remote_files = metadata.download_urls(session=self._session)
else:
remote_files = [RemoteModelFile(url=source.url, path=Path("."), size=0)]
def _import_from_url(
self,
source: URLModelSource,
config: Optional[Dict[str, Any]],
) -> ModelInstallJob:
remote_files, metadata = self._remote_files_from_source(source)
return self._import_remote_model(
source=source,
config=config,
@ -692,12 +719,9 @@ class ModelInstallService(ModelInstallServiceBase):
metadata: Optional[AnyModelRepoMetadata],
config: Optional[Dict[str, Any]],
) -> ModelInstallJob:
# TODO: Replace with tempfile.tmpdir() when multithreading is cleaned up.
# Currently the tmpdir isn't automatically removed at exit because it is
# being held in a daemon thread.
if len(remote_files) == 0:
raise ValueError(f"{source}: No downloadable files found")
tmpdir = Path(
destdir = Path(
mkdtemp(
dir=self._app_config.models_path,
prefix=TMPDIR_PREFIX,
@ -708,55 +732,28 @@ class ModelInstallService(ModelInstallServiceBase):
source=source,
config_in=config or {},
source_metadata=metadata,
local_path=tmpdir, # local path may change once the download has started due to content-disposition handling
local_path=destdir, # local path may change once the download has started due to content-disposition handling
bytes=0,
total_bytes=0,
)
# In the event that there is a subfolder specified in the source,
# we need to remove it from the destination path in order to avoid
# creating unwanted subfolders
if isinstance(source, HFModelSource) and source.subfolder:
root = Path(remote_files[0].path.parts[0])
subfolder = root / source.subfolder
else:
root = Path(".")
subfolder = Path(".")
# remember the temporary directory for later removal
install_job._install_tmpdir = destdir
install_job.total_bytes = sum((x.size or 0) for x in remote_files)
# we remember the path up to the top of the tmpdir so that it may be
# removed safely at the end of the install process.
install_job._install_tmpdir = tmpdir
assert install_job.total_bytes is not None # to avoid type checking complaints in the loop below
multifile_job = self._multifile_download(
remote_files=remote_files,
dest=destdir,
subfolder=source.subfolder if isinstance(source, HFModelSource) else None,
access_token=source.access_token,
submit_job=False, # Important! Don't submit the job until we have set our _download_cache dict
)
self._download_cache[multifile_job.id] = install_job
install_job._multifile_job = multifile_job
files_string = "file" if len(remote_files) == 1 else "file"
self._logger.info(f"Queuing model install: {source} ({len(remote_files)} {files_string})")
files_string = "file" if len(remote_files) == 1 else "files"
self._logger.info(f"Queueing model install: {source} ({len(remote_files)} {files_string})")
self._logger.debug(f"remote_files={remote_files}")
for model_file in remote_files:
url = model_file.url
path = root / model_file.path.relative_to(subfolder)
self._logger.debug(f"Downloading {url} => {path}")
install_job.total_bytes += model_file.size
assert hasattr(source, "access_token")
dest = tmpdir / path.parent
dest.mkdir(parents=True, exist_ok=True)
download_job = DownloadJob(
source=url,
dest=dest,
access_token=source.access_token,
)
self._download_cache[download_job.source] = install_job # matches a download job to an install job
install_job.download_parts.add(download_job)
# only start the jobs once install_job.download_parts is fully populated
for download_job in install_job.download_parts:
self._download_queue.submit_download_job(
download_job,
on_start=self._download_started_callback,
on_progress=self._download_progress_callback,
on_complete=self._download_complete_callback,
on_error=self._download_error_callback,
on_cancelled=self._download_cancelled_callback,
)
self._download_queue.submit_multifile_download(multifile_job)
return install_job
def _stat_size(self, path: Path) -> int:
@ -768,87 +765,104 @@ class ModelInstallService(ModelInstallServiceBase):
size += sum(self._stat_size(Path(root, x)) for x in files)
return size
def _multifile_download(
self,
remote_files: List[RemoteModelFile],
dest: Path,
subfolder: Optional[Path] = None,
access_token: Optional[str] = None,
submit_job: bool = True,
) -> MultiFileDownloadJob:
# HuggingFace repo subfolders are a little tricky. If the name of the model is "sdxl-turbo", and
# we are installing the "vae" subfolder, we do not want to create an additional folder level, such
# as "sdxl-turbo/vae", nor do we want to put the contents of the vae folder directly into "sdxl-turbo".
# So what we do is to synthesize a folder named "sdxl-turbo_vae" here.
if subfolder:
top = Path(remote_files[0].path.parts[0]) # e.g. "sdxl-turbo/"
path_to_remove = top / subfolder.parts[-1] # sdxl-turbo/vae/
path_to_add = Path(f"{top}_{subfolder}")
else:
path_to_remove = Path(".")
path_to_add = Path(".")
parts: List[RemoteModelFile] = []
for model_file in remote_files:
assert model_file.size is not None
parts.append(
RemoteModelFile(
url=model_file.url, # if a subfolder, then sdxl-turbo_vae/config.json
path=path_to_add / model_file.path.relative_to(path_to_remove),
)
)
return self._download_queue.multifile_download(
parts=parts,
dest=dest,
access_token=access_token,
submit_job=submit_job,
on_start=self._download_started_callback,
on_progress=self._download_progress_callback,
on_complete=self._download_complete_callback,
on_error=self._download_error_callback,
on_cancelled=self._download_cancelled_callback,
)
# ------------------------------------------------------------------
# Callbacks are executed by the download queue in a separate thread
# ------------------------------------------------------------------
def _download_started_callback(self, download_job: DownloadJob) -> None:
self._logger.info(f"Model download started: {download_job.source}")
def _download_started_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache[download_job.source]
install_job.status = InstallStatus.DOWNLOADING
if install_job := self._download_cache.get(download_job.id, None):
install_job.status = InstallStatus.DOWNLOADING
assert download_job.download_path
if install_job.local_path == install_job._install_tmpdir:
partial_path = download_job.download_path.relative_to(install_job._install_tmpdir)
dest_name = partial_path.parts[0]
install_job.local_path = install_job._install_tmpdir / dest_name
if install_job.local_path == install_job._install_tmpdir: # first time
assert download_job.download_path
install_job.local_path = download_job.download_path
install_job.download_parts = download_job.download_parts
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
install_job.total_bytes = download_job.total_bytes
self._signal_job_download_started(install_job)
# Update the total bytes count for remote sources.
if not install_job.total_bytes:
install_job.total_bytes = sum(x.total_bytes for x in install_job.download_parts)
def _download_progress_callback(self, download_job: DownloadJob) -> None:
def _download_progress_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache[download_job.source]
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
self._cancel_download_parts(install_job)
else:
# update sizes
install_job.bytes = sum(x.bytes for x in install_job.download_parts)
self._signal_job_downloading(install_job)
if install_job := self._download_cache.get(download_job.id, None):
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
self._download_queue.cancel_job(download_job)
else:
# update sizes
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
install_job.total_bytes = sum(x.total_bytes for x in download_job.download_parts)
self._signal_job_downloading(install_job)
def _download_complete_callback(self, download_job: DownloadJob) -> None:
self._logger.info(f"Model download complete: {download_job.source}")
def _download_complete_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache[download_job.source]
# are there any more active jobs left in this task?
if install_job.downloading and all(x.complete for x in install_job.download_parts):
if install_job := self._download_cache.pop(download_job.id, None):
self._signal_job_downloads_done(install_job)
self._put_in_queue(install_job)
self._put_in_queue(install_job) # this starts the installation and registration
# Let other threads know that the number of downloads has changed
self._download_cache.pop(download_job.source, None)
self._downloads_changed_event.set()
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
def _download_error_callback(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
def _download_error_callback(self, download_job: MultiFileDownloadJob, excp: Optional[Exception] = None) -> None:
with self._lock:
install_job = self._download_cache.pop(download_job.source, None)
assert install_job is not None
assert excp is not None
install_job.set_error(excp)
self._logger.error(
f"Cancelling {install_job.source} due to an error while downloading {download_job.source}: {str(excp)}"
)
self._cancel_download_parts(install_job)
if install_job := self._download_cache.pop(download_job.id, None):
assert excp is not None
self._set_error(install_job, excp)
self._download_queue.cancel_job(download_job)
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
def _download_cancelled_callback(self, download_job: DownloadJob) -> None:
def _download_cancelled_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache.pop(download_job.source, None)
if not install_job:
return
self._downloads_changed_event.set()
self._logger.warning(f"Model download canceled: {download_job.source}")
# if install job has already registered an error, then do not replace its status with cancelled
if not install_job.errored:
install_job.cancel()
self._cancel_download_parts(install_job)
if install_job := self._download_cache.pop(download_job.id, None):
self._downloads_changed_event.set()
# if install job has already registered an error, then do not replace its status with cancelled
if not install_job.errored:
install_job.cancel()
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
def _cancel_download_parts(self, install_job: ModelInstallJob) -> None:
# on multipart downloads, _cancel_components() will get called repeatedly from the download callbacks
# do not lock here because it gets called within a locked context
for s in install_job.download_parts:
self._download_queue.cancel_job(s)
if all(x.in_terminal_state for x in install_job.download_parts):
# When all parts have reached their terminal state, we finalize the job to clean up the temporary directory and other resources
self._put_in_queue(install_job)
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
# ------------------------------------------------------------------------------------------------
# Internal methods that put events on the event bus
@ -859,8 +873,18 @@ class ModelInstallService(ModelInstallServiceBase):
if self._event_bus:
self._event_bus.emit_model_install_started(job)
def _signal_job_download_started(self, job: ModelInstallJob) -> None:
if self._event_bus:
assert job._multifile_job is not None
assert job.bytes is not None
assert job.total_bytes is not None
self._event_bus.emit_model_install_download_started(job)
def _signal_job_downloading(self, job: ModelInstallJob) -> None:
if self._event_bus:
assert job._multifile_job is not None
assert job.bytes is not None
assert job.total_bytes is not None
self._event_bus.emit_model_install_download_progress(job)
def _signal_job_downloads_done(self, job: ModelInstallJob) -> None:
@ -875,6 +899,8 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"Model install complete: {job.source}")
self._logger.debug(f"{job.local_path} registered key {job.config_out.key}")
if self._event_bus:
assert job.local_path is not None
assert job.config_out is not None
self._event_bus.emit_model_install_complete(job)
def _signal_job_errored(self, job: ModelInstallJob) -> None:
@ -890,7 +916,13 @@ class ModelInstallService(ModelInstallServiceBase):
self._event_bus.emit_model_install_cancelled(job)
@staticmethod
def get_fetcher_from_url(url: str) -> ModelMetadataFetchBase:
def get_fetcher_from_url(url: str) -> Type[ModelMetadataFetchBase]:
"""
Return a metadata fetcher appropriate for provided url.
This used to be more useful, but the number of supported model
sources has been reduced to HuggingFace alone.
"""
if re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
return HuggingFaceMetadataFetch
raise ValueError(f"Unsupported model source: '{url}'")

View File

@ -1,6 +1,6 @@
"""Initialization file for model load service module."""
from .model_load_base import ModelLoadServiceBase
from .model_load_default import ModelLoadService
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
from invokeai.app.services.model_load.model_load_default import ModelLoadService
__all__ = ["ModelLoadServiceBase", "ModelLoadService"]

View File

@ -2,11 +2,11 @@
"""Base class for model loader."""
from abc import ABC, abstractmethod
from typing import Optional
from pathlib import Path
from typing import Callable, Optional
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
@ -27,7 +27,25 @@ class ModelLoadServiceBase(ABC):
def ram_cache(self) -> ModelCacheBase[AnyModel]:
"""Return the RAM cache used by this loader."""
@property
@abstractmethod
def convert_cache(self) -> ModelConvertCacheBase:
"""Return the checkpoint convert cache used by this loader."""
def load_model_from_path(
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
"""
Load the model file or directory located at the indicated Path.
This will load an arbitrary model file into the RAM cache. If the optional loader
argument is provided, the loader will be invoked to load the model into
memory. Otherwise the method will call safetensors.torch.load_file() or
torch.load() as appropriate to the file suffix.
Be aware that this returns a LoadedModelWithoutConfig object, which is the same as
LoadedModel, but without the config attribute.
Args:
model_path: A pathlib.Path to a checkpoint-style models file
loader: A Callable that expects a Path and returns a Dict[str, Tensor]
Returns:
A LoadedModel object.
"""

View File

@ -1,22 +1,28 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Team
"""Implementation of model loader service."""
from typing import Optional, Type
from pathlib import Path
from typing import Callable, Optional, Type
from picklescan.scanner import scan_file_path
from safetensors.torch import load_file as safetensors_load_file
from torch import load as torch_load
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import (
LoadedModel,
LoadedModelWithoutConfig,
ModelLoaderRegistry,
ModelLoaderRegistryBase,
)
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from .model_load_base import ModelLoadServiceBase
class ModelLoadService(ModelLoadServiceBase):
"""Wrapper around ModelLoaderRegistry."""
@ -25,7 +31,6 @@ class ModelLoadService(ModelLoadServiceBase):
self,
app_config: InvokeAIAppConfig,
ram_cache: ModelCacheBase[AnyModel],
convert_cache: ModelConvertCacheBase,
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
):
"""Initialize the model load service."""
@ -34,7 +39,6 @@ class ModelLoadService(ModelLoadServiceBase):
self._logger = logger
self._app_config = app_config
self._ram_cache = ram_cache
self._convert_cache = convert_cache
self._registry = registry
def start(self, invoker: Invoker) -> None:
@ -45,11 +49,6 @@ class ModelLoadService(ModelLoadServiceBase):
"""Return the RAM cache used by this loader."""
return self._ram_cache
@property
def convert_cache(self) -> ModelConvertCacheBase:
"""Return the checkpoint convert cache used by this loader."""
return self._convert_cache
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
"""
Given a model's configuration, load it and return the LoadedModel object.
@ -68,10 +67,47 @@ class ModelLoadService(ModelLoadServiceBase):
app_config=self._app_config,
logger=self._logger,
ram_cache=self._ram_cache,
convert_cache=self._convert_cache,
).load_model(model_config, submodel_type)
if hasattr(self, "_invoker"):
self._invoker.services.events.emit_model_load_complete(model_config, submodel_type)
return loaded_model
def load_model_from_path(
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
cache_key = str(model_path)
ram_cache = self.ram_cache
try:
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
except IndexError:
pass
def torch_load_file(checkpoint: Path) -> AnyModel:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
result = torch_load(checkpoint, map_location="cpu")
return result
def diffusers_load_directory(directory: Path) -> AnyModel:
load_class = GenericDiffusersLoader(
app_config=self._app_config,
logger=self._logger,
ram_cache=self._ram_cache,
convert_cache=self.convert_cache,
).get_hf_load_class(directory)
return load_class.from_pretrained(model_path, torch_dtype=TorchDevice.choose_torch_dtype())
loader = loader or (
diffusers_load_directory
if model_path.is_dir()
else torch_load_file
if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin"))
else lambda path: safetensors_load_file(path, device="cpu")
)
assert loader is not None
raw_model = loader(model_path)
ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))

View File

@ -1,10 +1,9 @@
"""Initialization file for model manager service."""
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService, ModelManagerServiceBase
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
from invokeai.backend.model_manager.load import LoadedModel
from .model_manager_default import ModelManagerService, ModelManagerServiceBase
__all__ = [
"ModelManagerServiceBase",
"ModelManagerService",

View File

@ -5,14 +5,13 @@ from abc import ABC, abstractmethod
import torch
from typing_extensions import Self
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from ..config import InvokeAIAppConfig
from ..download import DownloadQueueServiceBase
from ..events.events_base import EventServiceBase
from ..model_install import ModelInstallServiceBase
from ..model_load import ModelLoadServiceBase
from ..model_records import ModelRecordServiceBase
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
class ModelManagerServiceBase(ABC):

View File

@ -6,19 +6,20 @@ from typing import Optional
import torch
from typing_extensions import Self
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_install.model_install_default import ModelInstallService
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
from invokeai.app.services.model_load.model_load_default import ModelLoadService
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
from invokeai.backend.model_manager.load import ModelCache, ModelLoaderRegistry
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from ..config import InvokeAIAppConfig
from ..download import DownloadQueueServiceBase
from ..events.events_base import EventServiceBase
from ..model_install import ModelInstallService, ModelInstallServiceBase
from ..model_load import ModelLoadService, ModelLoadServiceBase
from ..model_records import ModelRecordServiceBase
from .model_manager_base import ModelManagerServiceBase
class ModelManagerService(ModelManagerServiceBase):
"""
@ -86,11 +87,9 @@ class ModelManagerService(ModelManagerServiceBase):
logger=logger,
execution_device=execution_device or TorchDevice.choose_torch_device(),
)
convert_cache = ModelConvertCache(cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache)
loader = ModelLoadService(
app_config=app_config,
ram_cache=ram_cache,
convert_cache=convert_cache,
registry=ModelLoaderRegistry,
)
installer = ModelInstallService(

View File

@ -12,15 +12,13 @@ from pydantic import BaseModel, Field
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager import (
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import (
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelFormat,
ModelType,
ModelVariantType,
SchedulerPredictionType,
)

View File

@ -40,12 +40,24 @@ Typical usage:
"""
import json
import logging
import sqlite3
from math import ceil
from pathlib import Path
from typing import List, Optional, Union
import pydantic
from invokeai.app.services.model_records.model_records_base import (
DuplicateModelException,
ModelRecordChanges,
ModelRecordOrderBy,
ModelRecordServiceBase,
ModelSummary,
UnknownModelException,
)
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
@ -54,21 +66,11 @@ from invokeai.backend.model_manager.config import (
ModelType,
)
from ..shared.sqlite.sqlite_database import SqliteDatabase
from .model_records_base import (
DuplicateModelException,
ModelRecordChanges,
ModelRecordOrderBy,
ModelRecordServiceBase,
ModelSummary,
UnknownModelException,
)
class ModelRecordServiceSQL(ModelRecordServiceBase):
"""Implementation of the ModelConfigStore ABC using a SQL database."""
def __init__(self, db: SqliteDatabase):
def __init__(self, db: SqliteDatabase, logger: logging.Logger):
"""
Initialize a new object from preexisting sqlite3 connection and threading lock objects.
@ -77,6 +79,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
super().__init__()
self._db = db
self._cursor = db.conn.cursor()
self._logger = logger
@property
def db(self) -> SqliteDatabase:
@ -292,7 +295,20 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
tuple(bindings),
)
result = self._cursor.fetchall()
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in result]
# Parse the model configs.
results: list[AnyModelConfig] = []
for row in result:
try:
model_config = ModelConfigFactory.make_config(json.loads(row[0]), timestamp=row[1])
except pydantic.ValidationError:
# We catch this error so that the app can still run if there are invalid model configs in the database.
# One reason that an invalid model config might be in the database is if someone had to rollback from a
# newer version of the app that added a new model type.
self._logger.warning(f"Found an invalid model config in the database. Ignoring this model. ({row[0]})")
else:
results.append(model_config)
return results
def search_by_path(self, path: Union[str, Path]) -> List[AnyModelConfig]:

View File

@ -1,7 +1,6 @@
from invokeai.app.services.names.names_base import NameServiceBase
from invokeai.app.util.misc import uuid_string
from .names_base import NameServiceBase
class SimpleNameService(NameServiceBase):
"""Creates image names from UUIDs."""

View File

@ -13,24 +13,24 @@ from invokeai.app.services.events.events_common import (
register_events,
)
from invokeai.app.services.invocation_stats.invocation_stats_common import GESStatsNotFoundError
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.session_processor.session_processor_base import (
InvocationServices,
OnAfterRunNode,
OnAfterRunSession,
OnBeforeRunNode,
OnBeforeRunSession,
OnNodeError,
OnNonFatalProcessorError,
SessionProcessorBase,
SessionRunnerBase,
)
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.session_processor.session_processor_common import CanceledException, SessionProcessorStatus
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem, SessionQueueItemNotFoundError
from invokeai.app.services.shared.graph import NodeInputError
from invokeai.app.services.shared.invocation_context import InvocationContextData, build_invocation_context
from invokeai.app.util.profiler import Profiler
from ..invoker import Invoker
from .session_processor_base import InvocationServices, SessionProcessorBase, SessionRunnerBase
from .session_processor_common import SessionProcessorStatus
class DefaultSessionRunner(SessionRunnerBase):
"""Processes a single session's invocations."""

View File

@ -37,10 +37,14 @@ class SqliteSessionQueue(SessionQueueBase):
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
self._set_in_progress_to_canceled()
prune_result = self.prune(DEFAULT_QUEUE_ID)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
if self.__invoker.services.configuration.clear_queue_on_startup:
clear_result = self.clear(DEFAULT_QUEUE_ID)
if clear_result.deleted > 0:
self.__invoker.services.logger.info(f"Cleared all {clear_result.deleted} queue items")
else:
prune_result = self.prune(DEFAULT_QUEUE_ID)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()

View File

@ -2,18 +2,19 @@
import copy
import itertools
from typing import Annotated, Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
from typing import Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
import networkx as nx
from pydantic import (
BaseModel,
GetCoreSchemaHandler,
GetJsonSchemaHandler,
ValidationError,
field_validator,
)
from pydantic.fields import Field
from pydantic.json_schema import JsonSchemaValue
from pydantic_core import CoreSchema
from pydantic_core import core_schema
# Importing * is bad karma but needed here for node detection
from invokeai.app.invocations import * # noqa: F401 F403
@ -277,73 +278,58 @@ class CollectInvocation(BaseInvocation):
return CollectInvocationOutput(collection=copy.copy(self.collection))
class AnyInvocation(BaseInvocation):
@classmethod
def __get_pydantic_core_schema__(cls, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
def validate_invocation(v: Any) -> "AnyInvocation":
return BaseInvocation.get_typeadapter().validate_python(v)
return core_schema.no_info_plain_validator_function(validate_invocation)
@classmethod
def __get_pydantic_json_schema__(
cls, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue:
# Nodes are too powerful, we have to make our own OpenAPI schema manually
# No but really, because the schema is dynamic depending on loaded nodes, we need to generate it manually
oneOf: list[dict[str, str]] = []
names = [i.__name__ for i in BaseInvocation.get_invocations()]
for name in sorted(names):
oneOf.append({"$ref": f"#/components/schemas/{name}"})
return {"oneOf": oneOf}
class AnyInvocationOutput(BaseInvocationOutput):
@classmethod
def __get_pydantic_core_schema__(cls, source_type: Any, handler: GetCoreSchemaHandler):
def validate_invocation_output(v: Any) -> "AnyInvocationOutput":
return BaseInvocationOutput.get_typeadapter().validate_python(v)
return core_schema.no_info_plain_validator_function(validate_invocation_output)
@classmethod
def __get_pydantic_json_schema__(
cls, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue:
# Nodes are too powerful, we have to make our own OpenAPI schema manually
# No but really, because the schema is dynamic depending on loaded nodes, we need to generate it manually
oneOf: list[dict[str, str]] = []
names = [i.__name__ for i in BaseInvocationOutput.get_outputs()]
for name in sorted(names):
oneOf.append({"$ref": f"#/components/schemas/{name}"})
return {"oneOf": oneOf}
class Graph(BaseModel):
id: str = Field(description="The id of this graph", default_factory=uuid_string)
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
nodes: dict[str, BaseInvocation] = Field(description="The nodes in this graph", default_factory=dict)
nodes: dict[str, AnyInvocation] = Field(description="The nodes in this graph", default_factory=dict)
edges: list[Edge] = Field(
description="The connections between nodes and their fields in this graph",
default_factory=list,
)
@field_validator("nodes", mode="plain")
@classmethod
def validate_nodes(cls, v: dict[str, Any]):
"""Validates the nodes in the graph by retrieving a union of all node types and validating each node."""
# Invocations register themselves as their python modules are executed. The union of all invocations is
# constructed at runtime. We use pydantic to validate `Graph.nodes` using that union.
#
# It's possible that when `graph.py` is executed, not all invocation-containing modules will have executed. If
# we construct the invocation union as `graph.py` is executed, we may miss some invocations. Those missing
# invocations will cause a graph to fail if they are used.
#
# We can get around this by validating the nodes in the graph using a "plain" validator, which overrides the
# pydantic validation entirely. This allows us to validate the nodes using the union of invocations at runtime.
#
# This same pattern is used in `GraphExecutionState`.
nodes: dict[str, BaseInvocation] = {}
typeadapter = BaseInvocation.get_typeadapter()
for node_id, node in v.items():
nodes[node_id] = typeadapter.validate_python(node)
return nodes
@classmethod
def __get_pydantic_json_schema__(cls, core_schema: CoreSchema, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
# We use a "plain" validator to validate the nodes in the graph. Pydantic is unable to create a JSON Schema for
# fields that use "plain" validators, so we have to hack around this. Also, we need to add all invocations to
# the generated schema as options for the `nodes` field.
#
# The workaround is to create a new BaseModel that has the same fields as `Graph` but without the validator and
# with the invocation union as the type for the `nodes` field. Pydantic then generates the JSON Schema as
# expected.
#
# You might be tempted to do something like this:
#
# ```py
# cloned_model = create_model(cls.__name__, __base__=cls, nodes=...)
# delattr(cloned_model, "validate_nodes")
# cloned_model.model_rebuild(force=True)
# json_schema = handler(cloned_model.__pydantic_core_schema__)
# ```
#
# Unfortunately, this does not work. Calling `handler` here results in infinite recursion as pydantic attempts
# to build the JSON Schema for the cloned model. Instead, we have to manually clone the model.
#
# This same pattern is used in `GraphExecutionState`.
class Graph(BaseModel):
id: Optional[str] = Field(default=None, description="The id of this graph")
nodes: dict[
str, Annotated[Union[tuple(BaseInvocation._invocation_classes)], Field(discriminator="type")]
] = Field(description="The nodes in this graph")
edges: list[Edge] = Field(description="The connections between nodes and their fields in this graph")
json_schema = handler(Graph.__pydantic_core_schema__)
json_schema = handler.resolve_ref_schema(json_schema)
return json_schema
def add_node(self, node: BaseInvocation) -> None:
"""Adds a node to a graph
@ -666,7 +652,7 @@ class Graph(BaseModel):
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
# Input type must be a list
if get_origin(input_field) != list:
if get_origin(input_field) is not list:
return False
# Validate that all outputs match the input type
@ -774,7 +760,7 @@ class GraphExecutionState(BaseModel):
)
# The results of executed nodes
results: dict[str, BaseInvocationOutput] = Field(description="The results of node executions", default_factory=dict)
results: dict[str, AnyInvocationOutput] = Field(description="The results of node executions", default_factory=dict)
# Errors raised when executing nodes
errors: dict[str, str] = Field(description="Errors raised when executing nodes", default_factory=dict)
@ -791,52 +777,12 @@ class GraphExecutionState(BaseModel):
default_factory=dict,
)
@field_validator("results", mode="plain")
@classmethod
def validate_results(cls, v: dict[str, BaseInvocationOutput]):
"""Validates the results in the GES by retrieving a union of all output types and validating each result."""
# See the comment in `Graph.validate_nodes` for an explanation of this logic.
results: dict[str, BaseInvocationOutput] = {}
typeadapter = BaseInvocationOutput.get_typeadapter()
for result_id, result in v.items():
results[result_id] = typeadapter.validate_python(result)
return results
@field_validator("graph")
def graph_is_valid(cls, v: Graph):
"""Validates that the graph is valid"""
v.validate_self()
return v
@classmethod
def __get_pydantic_json_schema__(cls, core_schema: CoreSchema, handler: GetJsonSchemaHandler) -> JsonSchemaValue:
# See the comment in `Graph.__get_pydantic_json_schema__` for an explanation of this logic.
class GraphExecutionState(BaseModel):
"""Tracks the state of a graph execution"""
id: str = Field(description="The id of the execution state")
graph: Graph = Field(description="The graph being executed")
execution_graph: Graph = Field(description="The expanded graph of activated and executed nodes")
executed: set[str] = Field(description="The set of node ids that have been executed")
executed_history: list[str] = Field(
description="The list of node ids that have been executed, in order of execution"
)
results: dict[
str, Annotated[Union[tuple(BaseInvocationOutput._output_classes)], Field(discriminator="type")]
] = Field(description="The results of node executions")
errors: dict[str, str] = Field(description="Errors raised when executing nodes")
prepared_source_mapping: dict[str, str] = Field(
description="The map of prepared nodes to original graph nodes"
)
source_prepared_mapping: dict[str, set[str]] = Field(
description="The map of original graph nodes to prepared nodes"
)
json_schema = handler(GraphExecutionState.__pydantic_core_schema__)
json_schema = handler.resolve_ref_schema(json_schema)
return json_schema
def next(self) -> Optional[BaseInvocation]:
"""Gets the next node ready to execute."""

View File

@ -3,6 +3,7 @@ from pathlib import Path
from typing import TYPE_CHECKING, Callable, Optional, Union
from PIL.Image import Image
from pydantic.networks import AnyHttpUrl
from torch import Tensor
from invokeai.app.invocations.constants import IMAGE_MODES
@ -14,8 +15,15 @@ from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.model_records.model_records_base import UnknownModelException
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.model_manager.config import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
@ -320,8 +328,10 @@ class ConditioningInterface(InvocationContextInterface):
class ModelsInterface(InvocationContextInterface):
"""Common API for loading, downloading and managing models."""
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
"""Checks if a model exists.
"""Check if a model exists.
Args:
identifier: The key or ModelField representing the model.
@ -331,13 +341,13 @@ class ModelsInterface(InvocationContextInterface):
"""
if isinstance(identifier, str):
return self._services.model_manager.store.exists(identifier)
return self._services.model_manager.store.exists(identifier.key)
else:
return self._services.model_manager.store.exists(identifier.key)
def load(
self, identifier: Union[str, "ModelIdentifierField"], submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model.
"""Load a model.
Args:
identifier: The key or ModelField representing the model.
@ -361,7 +371,7 @@ class ModelsInterface(InvocationContextInterface):
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model by its attributes.
"""Load a model by its attributes.
Args:
name: Name of the model.
@ -384,7 +394,7 @@ class ModelsInterface(InvocationContextInterface):
return self._services.model_manager.load.load_model(configs[0], submodel_type)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
"""Gets a model's config.
"""Get a model's config.
Args:
identifier: The key or ModelField representing the model.
@ -394,11 +404,11 @@ class ModelsInterface(InvocationContextInterface):
"""
if isinstance(identifier, str):
return self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.store.get_model(identifier.key)
else:
return self._services.model_manager.store.get_model(identifier.key)
def search_by_path(self, path: Path) -> list[AnyModelConfig]:
"""Searches for models by path.
"""Search for models by path.
Args:
path: The path to search for.
@ -415,7 +425,7 @@ class ModelsInterface(InvocationContextInterface):
type: Optional[ModelType] = None,
format: Optional[ModelFormat] = None,
) -> list[AnyModelConfig]:
"""Searches for models by attributes.
"""Search for models by attributes.
Args:
name: The name to search for (exact match).
@ -434,6 +444,72 @@ class ModelsInterface(InvocationContextInterface):
model_format=format,
)
def download_and_cache_model(
self,
source: str | AnyHttpUrl,
) -> Path:
"""
Download the model file located at source to the models cache and return its Path.
This can be used to single-file install models and other resources of arbitrary types
which should not get registered with the database. If the model is already
installed, the cached path will be returned. Otherwise it will be downloaded.
Args:
source: A URL that points to the model, or a huggingface repo_id.
Returns:
Path to the downloaded model
"""
return self._services.model_manager.install.download_and_cache_model(source=source)
def load_local_model(
self,
model_path: Path,
loader: Optional[Callable[[Path], AnyModel]] = None,
) -> LoadedModelWithoutConfig:
"""
Load the model file located at the indicated path
If a loader callable is provided, it will be invoked to load the model. Otherwise,
`safetensors.torch.load_file()` or `torch.load()` will be called to load the model.
Be aware that the LoadedModelWithoutConfig object has no `config` attribute
Args:
path: A model Path
loader: A Callable that expects a Path and returns a dict[str|int, Any]
Returns:
A LoadedModelWithoutConfig object.
"""
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
def load_remote_model(
self,
source: str | AnyHttpUrl,
loader: Optional[Callable[[Path], AnyModel]] = None,
) -> LoadedModelWithoutConfig:
"""
Download, cache, and load the model file located at the indicated URL or repo_id.
If the model is already downloaded, it will be loaded from the cache.
If the a loader callable is provided, it will be invoked to load the model. Otherwise,
`safetensors.torch.load_file()` or `torch.load()` will be called to load the model.
Be aware that the LoadedModelWithoutConfig object has no `config` attribute
Args:
source: A URL or huggingface repoid.
loader: A Callable that expects a Path and returns a dict[str|int, Any]
Returns:
A LoadedModelWithoutConfig object.
"""
model_path = self._services.model_manager.install.download_and_cache_model(source=str(source))
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
class ConfigInterface(InvocationContextInterface):
def get(self) -> InvokeAIAppConfig:

View File

@ -13,6 +13,9 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import build_migration_8
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_9 import build_migration_9
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import build_migration_10
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@ -43,6 +46,9 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_8(app_config=config))
migrator.register_migration(build_migration_9())
migrator.register_migration(build_migration_10())
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
migrator.register_migration(build_migration_12(app_config=config))
migrator.register_migration(build_migration_13())
migrator.run_migrations()
return db

View File

@ -0,0 +1,75 @@
import shutil
import sqlite3
from logging import Logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
LEGACY_CORE_MODELS = [
# OpenPose
"any/annotators/dwpose/yolox_l.onnx",
"any/annotators/dwpose/dw-ll_ucoco_384.onnx",
# DepthAnything
"any/annotators/depth_anything/depth_anything_vitl14.pth",
"any/annotators/depth_anything/depth_anything_vitb14.pth",
"any/annotators/depth_anything/depth_anything_vits14.pth",
# Lama inpaint
"core/misc/lama/lama.pt",
# RealESRGAN upscale
"core/upscaling/realesrgan/RealESRGAN_x4plus.pth",
"core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth",
"core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
"core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
]
class Migration11Callback:
def __init__(self, app_config: InvokeAIAppConfig, logger: Logger) -> None:
self._app_config = app_config
self._logger = logger
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._remove_convert_cache()
self._remove_downloaded_models()
self._remove_unused_core_models()
def _remove_convert_cache(self) -> None:
"""Rename models/.cache to models/.convert_cache."""
self._logger.info("Removing .cache directory. Converted models will now be cached in .convert_cache.")
legacy_convert_path = self._app_config.root_path / "models" / ".cache"
shutil.rmtree(legacy_convert_path, ignore_errors=True)
def _remove_downloaded_models(self) -> None:
"""Remove models from their old locations; they will re-download when needed."""
self._logger.info(
"Removing legacy just-in-time models. Downloaded models will now be cached in .download_cache."
)
for model_path in LEGACY_CORE_MODELS:
legacy_dest_path = self._app_config.models_path / model_path
legacy_dest_path.unlink(missing_ok=True)
def _remove_unused_core_models(self) -> None:
"""Remove unused core models and their directories."""
self._logger.info("Removing defunct core models.")
for dir in ["face_restoration", "misc", "upscaling"]:
path_to_remove = self._app_config.models_path / "core" / dir
shutil.rmtree(path_to_remove, ignore_errors=True)
shutil.rmtree(self._app_config.models_path / "any" / "annotators", ignore_errors=True)
def build_migration_11(app_config: InvokeAIAppConfig, logger: Logger) -> Migration:
"""
Build the migration from database version 10 to 11.
This migration does the following:
- Moves "core" models previously downloaded with download_with_progress_bar() into new
"models/.download_cache" directory.
- Renames "models/.cache" to "models/.convert_cache".
"""
migration_11 = Migration(
from_version=10,
to_version=11,
callback=Migration11Callback(app_config=app_config, logger=logger),
)
return migration_11

Some files were not shown because too many files have changed in this diff Show More