* new route to clear intermediates
* UI to clear intermediates from settings modal
* cleanup
* PR feedback
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
- add `RealESRGAN_x2plus.pth` model to installer
- add `RealESRGAN_x2plus.pth` to `realesrgan` node
- rename `RealESRGAN` to `ESRGAN` in nodes
- make `scale_factor` optional in `img_scale` node
- filename -> file_path
- pre and post prompt changed to optional
- clearer pre and post prompt descriptions
- handle pre and post prompt passed as None
- max_prompts defaults to 1 isted of 0 to avoid accidentally processing large prompt files with it set to 0 when adding a new node.
- remove dependency on having access to a `node` during emits, would need a bit of additional args passed through the system and I don't think its necessary at this point. this also allowed us to drop an extraneous fetching/parsing of the session from db.
- provide the invocation context to all `get_model()` calls, so the events are able to be emitted
- test all model loading events in the app and confirm socket events are received
1. add a /sync route for synchronizing the in-memory model lists to
models.yaml, the models directory, and the autoimport directories.
2. add optional destination_directories to convert_model and merge_model
operations.
3. add /ckpt_confs route for retrieving known legacy checkpoint configuration
files.
4. add /search route for finding all models in a directory located in the server
filesystem
Metadata for the Linear UI is now sneakily provided via a `MetadataAccumulator` node, which the client populates / hooks up while building the graph.
Additionally, we provide the unexpanded graph with the metadata API response.
Both of these are embedded into the PNGs.
- Remove `metadata` from `ImageDTO`
- Split up the `images/` routes to accomodate this; metadata is only retrieved per-image
- `images/{image_name}` now gets the DTO
- `images/{image_name}/metadata` gets the new metadata
- `images/{image_name}/full` gets the full-sized image file
- Remove old metadata service
- Add `MetadataAccumulator` node, `CoreMetadataField`, hook up to `LatentsToImage` node
- Add `get_raw()` method to `ItemStorage`, retrieves the row from DB as a string, no pydantic parsing
- Update `images`related services to handle storing and retrieving the new metadata
- Add `get_metadata_graph_from_raw_session` which extracts the `graph` from `session` without needing to hydrate the session in pydantic, in preparation for providing it as metadata; also removes all references to the `MetadataAccumulator` node
To be consistent with max_cache_size, the amount of memory to hold in
VRAM for model caching is now controlled by the max_vram_cache_size
configuration parameter.
Image files are immutable and we expect deletion to result in no further requests for a given image, so we can set the max-age to something thicc.
Resolves#3426
This PR is to allow FP16 precision to work on Macs with MPS. In
addition, it centralizes the torch fixes/workarounds required for MPS
into a new backend utility `mps_fixes.py`. This is conditionally
imported in `api_app.py`/`cli_app.py`.
Many MANY thanks to @StAlKeR7779 for patiently working to debug and fix
these issues.
- No longer fail root directory probing if invokeai.yaml is missing
(test is now whether a `models/core` directory exists).
- Migrate script does not overwrite previously-installed models.
- Can run migrate script on an existing 2.3 version directory
with --from and --to pointing to same 2.3 root.
The list models route should just be the base route path, and should use query parameters as opposed to path parameters (which cannot be optional)
Removed defaults for update model route - for the purposes of the API, we should always be explicit with this
This PR is to allow FP16 precision to work on Macs with MPS. In addition, it centralizes the torch fixes/workarounds
required for MPS into a new backend utility file `mps_fixes.py`. This is conditionally imported in `api_app.py`/`cli_app.py`.
Many MANY thanks to StAlKeR7779 for patiently working to debug and fix these issues.
Only "real" conflicts were in:
invokeai/frontend/web/src/features/controlNet/components/ControlNet.tsx
invokeai/frontend/web/src/features/controlNet/store/controlNetSlice.ts
- remove `image_origin` from most places where we interact with images
- consolidate image file storage into a single `images/` dir
Images have an `image_origin` attribute but it is not actually used when retrieving images, nor will it ever be. It is still used when creating images and helps to differentiate between internally generated images and uploads.
It was included in eg API routes and image service methods as a holdover from the previous app implementation where images were not managed in a database. Now that we have images in a db, we can do away with this and simplify basically everything that touches images.
The one potentially controversial change is to no longer separate internal and external images on disk. If we retain this separation, we have to keep `image_origin` around in a number of spots and it getting image paths on disk painful.
So, I am have gotten rid of this organisation. Images are now all stored in `images`, regardless of their origin. As we improve the image management features, this change will hopefully become transparent.
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.
* Adding first attempt at float param easing node, using Penner easing functions.
* Core implementation of ControlNet and MultiControlNet.
* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.
* Added example of using ControlNet with legacy Txt2Img generator
* Resolving rebase conflict
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* More rebase repair.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Fixed lint-ish formatting error
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Added dependency on controlnet-aux v0.0.3
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): add value to conditioning field
* fix(ui): add control field type
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Switching to ControlField for output from controlnet nodes.
* Resolving conflicts in rebase to origin/main
* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())
* changes to base class for controlnet nodes
* Added HED, LineArt, and OpenPose ControlNet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...
* Fixed use of ControlNet control_weight parameter
* Core implementation of ControlNet and MultiControlNet.
* Added first controlnet preprocessor node for canny edge detection.
* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
* Switching to ControlField for output from controlnet nodes.
* Refactored controlnet node to output ControlField that bundles control info.
* changes to base class for controlnet nodes
* Added more preprocessor nodes for:
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
* Prep for splitting pre-processor and controlnet nodes
* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.
* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.
* Cleaning up TextToLatent arg testing
* Cleaning up mistakes after rebase.
* Removed last bits of dtype and and device hardwiring from controlnet section
* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.
* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.
* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.
* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.
* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.
* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.
* Cleaning up after ControlNet refactor in TextToLatentsInvocation
* Extended node-based ControlNet support to LatentsToLatentsInvocation.
* chore(ui): regen api client
* fix(ui): fix node ui type hints
* fix(nodes): controlnet input accepts list or single controlnet
* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.
* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.
* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.
* Added float to FIELD_TYPE_MAP ins constants.ts
* Progress toward improvement in fieldTemplateBuilder.ts getFieldType()
* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.
* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP
* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale
* Fixed math for per-step param easing.
* Added option to show plot of param value at each step
* Just cleaning up after adding param easing plot option, removing vestigial code.
* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.
* Added more informative error message when _validat_edge() throws an error.
* Just improving parm easing bar chart title to include easing type.
* Added requirement for easing-functions package
* Taking out some diagnostic prints.
* Added option to use both easing function and mirror of easing function together.
* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
There was an issue where for graphs w/ iterations, your images were output all at once, at the very end of processing. So if you canceled halfway through an execution of 10 nodes, you wouldn't get any images - even though you'd completed 5 images' worth of inference.
## Cause
Because graphs executed breadth-first (i.e. depth-by-depth), leaf nodes were necessarily processed last. For image generation graphs, your `LatentsToImage` will be leaf nodes, and be the last depth to be executed.
For example, a `TextToLatents` graph w/ 3 iterations would execute all 3 `TextToLatents` nodes fully before moving to the next depth, where the `LatentsToImage` nodes produce output images, resulting in a node execution order like this:
1. TextToLatents
2. TextToLatents
3. TextToLatents
4. LatentsToImage
5. LatentsToImage
6. LatentsToImage
## Solution
This PR makes a two changes to graph execution to execute as deeply as it can along each branch of the graph.
### Eager node preparation
We now prepare as many nodes as possible, instead of just a single node at a time.
We also need to change the conditions in which nodes are prepared. Previously, nodes were prepared only when all of their direct ancestors were executed.
The updated logic prepares nodes that:
- are *not* `Iterate` nodes whose inputs have *not* been executed
- do *not* have any unexecuted `Iterate` ancestor nodes
This results in graphs always being maximally prepared.
### Always execute the deepest prepared node
We now choose the next node to execute by traversing from the bottom of the graph instead of the top, choosing the first node whose inputs are all executed.
This means we always execute the deepest node possible.
## Result
Graphs now execute depth-first, so instead of an execution order like this:
1. TextToLatents
2. TextToLatents
3. TextToLatents
4. LatentsToImage
5. LatentsToImage
6. LatentsToImage
... we get an execution order like this:
1. TextToLatents
2. LatentsToImage
3. TextToLatents
4. LatentsToImage
5. TextToLatents
6. LatentsToImage
Immediately after inference, the image is decoded and sent to the gallery.
fixes#3400
- Also fixed up order in which logger is created in invokeai-web
so that handlers are installed after command-line options are
parsed (and not before!)
- The invokeai.db database file has now been moved into
`INVOKEAIROOT/databases`. Using plural here for possible
future with more than one database file.
- Removed a few dangling debug messages that appeared during
testing.
- Rebuilt frontend to test web.
Because we dynamically insert images into the DB and UI's images state, `page`/`per_page` pagination makes loading the images awkward.
Using `offset`/`limit` pagination lets us query for images with an offset equal to the number of images already loaded (which match the query parameters).
The result is that we always get the correct next page of images when loading more.
- Remove `ImageType` entirely, it is confusing
- Create `ResourceOrigin`, may be `internal` or `external`
- Revamp `ImageCategory`, may be `general`, `mask`, `control`, `user`, `other`. Expect to add more as time goes on
- Update images `list` route to accept `include_categories` OR `exclude_categories` query parameters to afford finer-grained querying. All services are updated to accomodate this change.
The new setup should account for our types of images, including the combinations we couldn't really handle until now:
- Canvas init and masks
- Canvas when saved-to-gallery or merged
Currenly only used to make names for images, but when latents, conditioning, etc are managed in DB, will do the same for them.
Intended to eventually support custom naming schemes.
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
MidasDepth
ZoeDepth
MLSD
NormalBae
Pidi
LineartAnime
ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
- `ImageType` is now restricted to `results` and `uploads`.
- Add a reserved `meta` field to nodes to hold the `is_intermediate` boolean. We can extend it in the future to support other node `meta`.
- Add a `is_intermediate` column to the `images` table to hold this. (When `latents`, `conditioning` etc are added to the DB, they will also have this column.)
- All nodes default to `*not* intermediate`. Nodes must explicitly be marked `intermediate` for their outputs to be `intermediate`.
- When building a graph, you can set `node.meta.is_intermediate=True` and it will be handled as an intermediate.
- Add a new `update()` method to the `ImageService`, and a route to call it. Updates have a strict model, currently only `session_id` and `image_category` may be updated.
- Add a new `update()` method to the `ImageRecordStorageService` to update the image record using the model.
The `RangeInvocation` is a simple wrapper around `range()`, but you must provide `stop > start`.
`RangeOfSizeInvocation` replaces the `stop` parameter with `size`, so that you can just provide the `start` and `step` and get a range of `size` length.
When returning a `FileResponse`, we must provide a valid path, else an exception is raised outside the route handler.
Add the `validate_path` method back to the service so we can validate paths before returning the file.
I don't like this but apparently this is just how `starlette` and `fastapi` works with `FileResponse`.
- Address database feedback:
- Remove all the extraneous tables. Only an `images` table now:
- `image_type` and `image_category` are unrestricted strings. When creating images, the provided values are checked to ensure they are a valid type and category.
- Add `updated_at` and `deleted_at` columns. `deleted_at` is currently unused.
- Use SQLite's built-in timestamp features to populate these. Add a trigger to update `updated_at` when the row is updated. Currently no way to update a row.
- Rename the `id` column in `images` to `image_name`
- Rename `ImageCategory.IMAGE` to `ImageCategory.GENERAL`
- Move all exceptions outside their base classes to make them more portable.
- Add `width` and `height` columns to the database. These store the actual dimensions of the image file, whereas the metadata's `width` and `height` refer to the respective generation parameters and are nullable.
- Make `deserialize_image_record` take a `dict` instead of `sqlite3.Row`
- Improve comments throughout
- Tidy up unused code/files and some minor organisation