This flag acts as a proxy for the `get_config()` function to determine if the full application is running.
If it was, the config will set the root, do HF login, etc.
If not (e.g. it's called by an external script), all that stuff will be skipped.
HF login, legacy yaml confs, and default init file are all handled during app setup.
All directories are created as they are needed by the app.
No need to check for a valid root dir - we will make it if it doesn't exist.
This provides a simple way to provide a HF token. If HF reports no valid token, one is prompted for until a valid token is provided, or the user presses Ctrl + C to cancel.
Use the util function to calculate ram cache size on startup. This way, the `ram` setting will always be optimized for a system, even if they add or remove RAM. In other words, the default value is now dynamic.
When running the configurator, the `legacy_models_conf_path` was stripped when saving the config file. Then the migration logic didn't fire correctly, and the custom models.yaml paths weren't migrated into the db.
- Rework the logic to migrate this path by adding it to the config object as a normal field that is not excluded from serialization.
- Rearrange the models.yaml migration logic to remove the legacy path after migrating, then write the config file. This way, the legacy path doesn't stick around.
- Move the schema version into the config object.
- Back up the config file before attempting migration.
- Add tests to cover this edge case
Hold onto `conf_path` temporarily while migrating `invokeai.yaml` so that it gets migrated correctly as the model installer starts up. Stashed as `legacy_models_yaml_path` in the config, excluded from serialization.
We have two problems with how argparse is being utilized:
- We parse CLI args as the `api_app.py` file is read. This causes a problem pytest, which has an incompatible set of CLI args. Some tests import the FastAPI app, which triggers the config to parse CLI args, which receives the pytest args and fails.
- We've repeatedly had problems when something that uses the config is imported before the CLI args are parsed. When this happens, the root dir may not be set correctly, so we attempt to operate on incorrect paths.
To resolve these issues, we need to lift CLI arg parsing outside of the application code, but still let the application access the CLI args. We can create a external app entrypoint to do this.
- `InvokeAIArgs` is a simple helper class that parses CLI args and stores the result.
- `run_app()` is the new entrypoint. It first parses CLI args, then runs `invoke_api` to start the app.
The `invokeai-web` project script and `invokeai-web.py` dev script now call `run_app()` instead of `invoke_api()`.
The first time `get_config()` is called to get the singleton config object, it retrieves the args from `InvokeAIArgs`, sets the root dir if provided, then merges settings in from `invokeai.yaml`.
CLI arg parsing is now safely insulated from application code, but still accessible. And we don't need to worry about import order having an impact on anything, because by the time the app is running, we have already parsed CLI args. Whew!
This fixes an issue with `test_images.py`, which tests the bulk images routers and imports the whole FastAPI app. This triggers the config logic which fails on the test runner, because it has no `invokeai.yaml`.
Also probably just good for graceful fallback.
- `write_file` requires an destination file path
- `read_config` -> `merge_from_file`, if no path is provided, reads from `self.init_file_path`
- update app, tests to use new methods
- fix configurator, was overwriting config file data unexpectedly
Tweak the name of it so that incoming configs with the old default value of 6 have the setting stripped out. The result is all configs will now have the new, much better default value of 1.
Having this all in the `get_config` function makes testing hard. Move these two functions to their own methods, and call them on app startup explicitly.
- Remove OmegaConf. It functioned as an intermediary data format, between YAML/argparse and pydantic. It's not necessary - we can parse YAML or CLI args directly with pydantic.
- Remove dynamic CLI args. Only `root` is explicitly supported. This greatly simplifies config handling. Configuration is done by editing the YAML file. Frequently-used args can be added if there is a demand.
- A separate arg parser is created to handle the slimmed-down CLI args. It's run immediately in the `invokeai-web` script to handle `--version` and `--help`. It is also used inside the singleton config getter (see below).
- Remove categories from the config. Our settings model is mostly flat. Handling categories adds complexity for both us and users - we have to handle transforming a flat config to categorized config (and vice-versa), while users have to be careful with indentation in their YAML file.
- Add a `meta` key to the config file. Currently, this holds the config schema version only. It is not a part of the config object itself.
- Remove legacy settings that are no longer referenced, or were effectively no-op settings when referenced in code.
- Implement simple migration logic to for v3 configs. If migration is successful, the v3 config file is backed up to `invokeai.yaml.bak` and the new config written to `invokeai.yaml`.
- Previously, the singleton config was accessed by calling `InvokeAIAppConfig.get_config()`. This returned an instance of `InvokeAIAppConfig`, which _also_ has the `get_config` function. This created to a confusing situation where you weren't sure if you needed to call `get_config` or just use the config object. This method is replaced by a standalone `get_config` function which returns a singleton config object.
- Wrap CLI arg parsing (for `root`) and loading/migrating `invokeai.yaml` into the new `get_config()` function.
- Move `generate_config_docstrings` into standalone utility function.
- Make `root` a private attr (`_root`). This reduces the temptation to directly modify and or use this sensitive field and ensures it is neither serialized nor read from input data. Use `root_path` to access the resolved root path, or `set_root` to set the root to something.
- No longer install core conversion models. Use the HuggingFace cache to load
them if and when needed.
- Call directly into the diffusers library to perform conversions with only shallow
wrappers around them to massage arguments, etc.
- At root configuration time, do not create all the possible model subdirectories,
but let them be created and populated at model install time.
- Remove checks for missing core conversion files, since they are no
longer installed.
In the client, a controlnet or t2i adapter has two images:
- The source control image: the image the user selected (required)
- The processed control image: the user's image after we've processed it (optional)
The processed image is optional because a user may provide a pre-processed image.
We only actually use one of these images when building the graph, and until this change, we only stored one of the in image metadata. This created a situation where only a processed image was stored in metadata - say, a canny edge map - and the user-selected image wasn't provided.
By adding the processed image to metadata, we can recall both the control image and optional processed image.
This commit is followed by a UI-facing changes to support the change.
BLAKE3 has poor performance on spinning disks when parallelized. See https://github.com/BLAKE3-team/BLAKE3/issues/31
- Replace `skip_model_hash` setting with `hashing_algorithm`. Any algorithm we support is accepted.
- Add `random` algorithm: hashes a UUID with BLAKE3 to create a random "hash". Equivalent to the previous skip functionality.
- Add `blake3_single` algorithm: hashes on a single thread using BLAKE3, fixes the aforementioned performance issue
- Update model probe to accept the algorithm to hash with as an optional arg, defaulting to `blake3`
- Update all calls of the probe to use the app's configured hashing algorithm
- Update an external script that probes models
- Update tests
- Move ModelHash into its own module to avoid circuclar import issues
We were stripping the file extension from file models when moving them in `_sync_model_path`. For example, `some_model.safetensors` would be moved to `some_model`, which of course breaks things.
Instead of using the model's name as the new path, use the model's path's last segment. This is the same behaviour for directories, but for files, it retains the file extension.
- If the metadata yaml has an invalid version, exist the app. If we don't, the app will crawl the models dir and add models to the db without having first parsed `models.yaml`. This should not happen often, as the vast majority of users are on v3.0.0 models.yaml files.
- Fix off-by-one error with models count (need to pop the `__metadata__` stanza
- After a successful migration, rename `models.yaml` to `models.yaml.bak` to prevent the migration logic from re-running on subsequent app startups.
The old logic to check if a model needed to be moved relied on the model path being a relative path. Paths are now absolute, causing this check to fail. We then assumed the paths were different and moved the model from its current location to, well, its current location.
Use more resilient method to check if a model should be moved.
mkdocs can autogenerate python class docs from its docstrings. Our config is a pydantic model.
It's tedious and error-prone to duplicate docstrings from the pydantic field descriptions to the class docstrings.
- Add helper function to generate a mkdocs-compatible docstring from the InvokeAIAppConfig class fields
Recently the schema for models was changed to a generic `ModelField`, and the UI was unable to derive the type of those fields. This didn't affect functionality, but it did break the styling of handles.
Add `ui_type` to the affected fields and update the UI to use the correct capitalizations.
A list of regex and token pairs is accepted. As a file is downloaded by the model installer, the URL is tested against the provided regex/token pairs. The token for the first matching regex is used during download, added as a bearer token.
When we change a model image, its URL remains the same. The browser will aggressively cache the image. The easiest way to fix this is to append a random query parameter to the URL whenever we build a model config in the API.
- All models are identified by a key and optionally a submodel type via new model `ModelField`. Previously, a few model types had their own class, but not all of them. This inconsistency just added complexity without any benefit.
- Update all invocation to use the new format.
- In the node API, models are loaded by key or an instance of `ModelField` as a convenience.
- Add an enriched model schema for metadata. It includes key, hash, name, base and type.
In order for delete by match to work, we need the whole invocation output to be stringified.
For some reason, the serialization of the output was set to only include the `type` field. It should instead include the whole output.
I don't understand how this ever worked unless pydantic had different serialization behaviour in v1 (though it appears to have been the same).
Closes#5805
Rename MM routes to be consistent:
- "import" -> "install"
- "model_record" -> "model"
Comment several unused routes while I work (may end up removing them?):
- list model summary (we use the search route instead)
- add model record
- convert model
- merge models
- Metadata is merged with the config. We can simplify the MM substantially and remove the handling for metadata.
- Per discussion, we don't have an ETA for frontend implementation of tags, and with the realization that the tags from CivitAI are largely useless, there's no reason to keep tags in the MM right now. When we are ready to implement tags on the frontend, we can refer back to the implementation here and use it if it supports the design.
- Fix all tests.
* UI in MM to create trigger phrases
* add scheduler and vaePrecision to config
* UI for configuring default settings for models'
* hook MM default model settings up to API
* add button to set default settings in parameters
* pull out trigger phrases
* back-end for default settings
* lint
* remove log;
gi
* ruff
* ruff format
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
- When installing, model keys are now calculated from the model contents.
- .safetensors, .ckpt and other single file models are hashed with sha1
- The contents of diffusers directories are hashed using imohash (faster)
fixup yaml->sql db migration script to assign deterministic key
- this commit also detects and assigns the correct image encoder for
ip adapter models.
Gets the first model that matches the given name, base and type. Raises 404 if there isn't one.
This will be used for backwards compatibility with old metadata.
This was done in the frontend before but it's something the backend should handle.
The logic compares the found model paths to the path and source of all installed models. It excludes core models.
- Support extended HF repoid syntax in TUI. This allows
installation of subfolders and safetensors files, as in
`XpucT/Deliberate::Deliberate_v5.safetensors`
- Add `error` and `error_traceback` properties to the install
job objects.
- Rename the `heuristic_import` route to `heuristic_install`.
- Fix the example `config` input in the `heuristic_install` route.
Double underscores are used in the app but it doesn't actually do or convey anything that single underscores don't already do. Considered unpythonic except for actual dunder/magic methods.
Consolidate graph processing logic into session processor.
With graphs as the unit of work, and the session queue distributing graphs, we no longer need the invocation queue or processor.
Instead, the session processor dequeues the next session and processes it in a simple loop, greatly simplifying the app.
- Remove `graph_execution_manager` service.
- Remove `queue` (invocation queue) service.
- Remove `processor` (invocation processor) service.
- Remove queue-related logic from `Invoker`. It now only starts and stops the services, providing them with access to other services.
- Remove unused `invocation_retrieval_error` and `session_retrieval_error` events, these are no longer needed.
- Clean up stats service now that it is less coupled to the rest of the app.
- Refactor cancellation logic - cancellations now originate from session queue (i.e. HTTP cancel endpoint) and are emitted as events. Processor gets the events and sets the canceled event. Access to this event is provided to the invocation context for e.g. the step callback.
- Remove `sessions` router; it provided access to `graph_executions` but that no longer exists.
`GraphInvocation` is a node that can contain a whole graph. It is removed for a number of reasons:
1. This feature was unused (the UI doesn't support it) and there is no plan for it to be used.
The use-case it served is known in other node execution engines as "node groups" or "blocks" - a self-contained group of nodes, which has group inputs and outputs. This is a planned feature that will be handled client-side.
2. It adds substantial complexity to the graph processing logic. It's probably not enough to have a measurable performance impact but it does make it harder to work in the graph logic.
3. It allows for graphs to be recursive, and the improved invocations union handling does not play well with it. Actually, it works fine within `graph.py` but not in the tests for some reason. I do not understand why. There's probably a workaround, but I took this as encouragement to remove `GraphInvocation` from the app since we don't use it.
The change to `Graph.nodes` and `GraphExecutionState.results` validation requires some fanagling to get the OpenAPI schema generation to work. See new comments for a details.
We use pydantic to validate a union of valid invocations when instantiating a graph.
Previously, we constructed the union while creating the `Graph` class. This introduces a dependency on the order of imports.
For example, consider a setup where we have 3 invocations in the app:
- Python executes the module where `FirstInvocation` is defined, registering `FirstInvocation`.
- Python executes the module where `SecondInvocation` is defined, registering `SecondInvocation`.
- Python executes the module where `Graph` is defined. A union of invocations is created and used to define the `Graph.nodes` field. The union contains `FirstInvocation` and `SecondInvocation`.
- Python executes the module where `ThirdInvocation` is defined, registering `ThirdInvocation`.
- A graph is created that includes `ThirdInvocation`. Pydantic validates the graph using the union, which does not know about `ThirdInvocation`, raising a `ValidationError` about an unknown invocation type.
This scenario has been particularly problematic in tests, where we may create invocations dynamically. The test files have to be structured in such a way that the imports happen in the right order. It's a major pain.
This PR refactors the validation of graph nodes to resolve this issue:
- `BaseInvocation` gets a new method `get_typeadapter`. This builds a pydantic `TypeAdapter` for the union of all registered invocations, caching it after the first call.
- `Graph.nodes`'s type is widened to `dict[str, BaseInvocation]`. This actually is a nice bonus, because we get better type hints whenever we reference `some_graph.nodes`.
- A "plain" field validator takes over the validation logic for `Graph.nodes`. "Plain" validators totally override pydantic's own validation logic. The validator grabs the `TypeAdapter` from `BaseInvocation`, then validates each node with it. The validation is identical to the previous implementation - we get the same errors.
`BaseInvocationOutput` gets the same treatment.
- Replace AnyModelLoader with ModelLoaderRegistry
- Fix type check errors in multiple files
- Remove apparently unneeded `get_model_config_enum()` method from model manager
- Remove last vestiges of old model manager
- Updated tests and documentation
resolve conflict with seamless.py
- Rename old "model_management" directory to "model_management_OLD" in order to catch
dangling references to original model manager.
- Caught and fixed most dangling references (still checking)
- Rename lora, textual_inversion and model_patcher modules
- Introduce a RawModel base class to simplfy the Union returned by the
model loaders.
- Tidy up the model manager 2-related tests. Add useful fixtures, and
a finalizer to the queue and installer fixtures that will stop the
services and release threads.
- ModelMetadataStoreService is now injected into ModelRecordStoreService
(these two services are really joined at the hip, and should someday be merged)
- ModelRecordStoreService is now injected into ModelManagerService
- Reduced timeout value for the various installer and download wait*() methods
- Introduced a Mock modelmanager for testing
- Removed bare print() statement with _logger in the install helper backend.
- Removed unused code from model loader init file
- Made `locker` a private variable in the `LoadedModel` object.
- Fixed up model merge frontend (will be deprecated anyway!)
- Replace legacy model manager service with the v2 manager.
- Update invocations to use new load interface.
- Fixed many but not all type checking errors in the invocations. Most
were unrelated to model manager
- Updated routes. All the new routes live under the route tag
`model_manager_v2`. To avoid confusion with the old routes,
they have the URL prefix `/api/v2/models`. The old routes
have been de-registered.
- Added a pytest for the loader.
- Updated documentation in contributing/MODEL_MANAGER.md
- Implement new model loader and modify invocations and embeddings
- Finish implementation loaders for all models currently supported by
InvokeAI.
- Move lora, textual_inversion, and model patching support into
backend/embeddings.
- Restore support for model cache statistics collection (a little ugly,
needs work).
- Fixed up invocations that load and patch models.
- Move seamless and silencewarnings utils into better location
- Cache stat collection enabled.
- Implemented ONNX loading.
- Add ability to specify the repo version variant in installer CLI.
- If caller asks for a repo version that doesn't exist, will fall back
to empty version rather than raising an error.
We have two different classes named `ModelInfo` which might need to be used by API consumers. We need to export both but have to deal with this naming collision.
The `ModelInfo` I've renamed here is the one that is returned when a model is loaded. It's the object least likely to be used by API consumers.
Replace `delete_on_startup: bool` & associated logic with `ephemeral: bool` and `TemporaryDirectory`.
The temp dir is created inside of `output_dir`. For example, if `output_dir` is `invokeai/outputs/tensors/`, then the temp dir might be `invokeai/outputs/tensors/tmpvj35ht7b/`.
The temp dir is cleaned up when the service is stopped, or when it is GC'd if not properly stopped.
In the event of a catastrophic crash where the temp files are not cleaned up, the user can delete the tempdir themselves.
This situation may not occur in normal use, but if you kill the process, python cannot clean up the temp dir itself. This includes running the app in a debugger and killing the debugger process - something I do relatively often.
Tests updated.
- The default is to not delete on startup - feels safer.
- The two services using this class _do_ delete on startup.
- The class has "ephemeral" removed from its name.
- Tests & app updated for this change.
`_delete_all` logged how many items it deleted, and had to be called _after_ service start bc it needed access to logger.
Move the logger call to the startup method and return the the deleted stats from `_delete_all`. This lets `_delete_all` be called at any time.
Turns out they are just different enough in purpose that the implementations would be rather unintuitive. I've made a separate ObjectSerializer service to handle tensors and conditioning.
Refined the class a bit too.
Turns out `ItemStorageABC` was almost identical to `PickleStorageBase`. Instead of maintaining separate classes, we can use `ItemStorageABC` for both.
There's only one change needed - the `ItemStorageABC.set` method must return the newly stored item's ID. This allows us to let the service handle the responsibility of naming the item, but still create the requisite output objects during node execution.
The naming implementation is improved here. It extracts the name of the generic and appends a UUID to that string when saving items.
- New generic class `PickleStorageBase`, implements the same API as `LatentsStorageBase`, use for storing non-serializable data via pickling
- Implementation `PickleStorageTorch` uses `torch.save` and `torch.load`, same as `LatentsStorageDisk`
- Add `tensors: PickleStorageBase[torch.Tensor]` to `InvocationServices`
- Add `conditioning: PickleStorageBase[ConditioningFieldData]` to `InvocationServices`
- Remove `latents` service and all `LatentsStorage` classes
- Update `InvocationContext` and all usage of old `latents` service to use the new services/context wrapper methods
This class works the same way as `WithMetadata` - it simply adds a `board` field to the node. The context wrapper function is able to pull the board id from this. This allows image-outputting nodes to get a board field "for free", and have their outputs automatically saved to it.
This is a breaking change for node authors who may have a field called `board`, because it makes `board` a reserved field name. I'll look into how to avoid this - maybe by naming this invoke-managed field `_board` to avoid collisions?
Supporting changes:
- `WithBoard` is added to all image-outputting nodes, giving them the ability to save to board.
- Unused, duplicate `WithMetadata` and `WithWorkflow` classes are deleted from `baseinvocation.py`. The "real" versions are in `fields.py`.
- Remove `LinearUIOutputInvocation`. Now that all nodes that output images also have a `board` field by default, this node is no longer necessary. See comment here for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629
- Without `LinearUIOutputInvocation`, the `ImagesInferface.update` method is no longer needed, and removed.
Note: This commit does not bump all node versions. I will ensure that is done correctly before merging the PR of which this commit is a part.
Note: A followup commit will implement the frontend changes to support this change.
- The config is already cached by the config class's `get_config()` method.
- The config mutates itself in its `root_path` property getter. Freezing the class makes any attempt to grab a path from the config error. Unfortunately this means we cannot easily freeze the class without fiddling with the inner workings of `InvokeAIAppConfig`, which is outside the scope here.
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.
Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
Methods `get_node` and `complete` were typed as returning a dynamically created unions `InvocationsUnion` and `InvocationOutputsUnion`, respectively.
Static type analysers cannot work with dynamic objects, so these methods end up as effectively un-annotated, returning `Unknown`.
They now return `BaseInvocation` and `BaseInvocationOutput`, respectively, which are the superclasses of all members of each union. This gives us the best type annotation that is possible.
Note: the return types of these methods are never introspected, so it doesn't really matter what they are at runtime.
The change to memory session storage brings a subtle behaviour change.
Previously, we serialized and deserialized everything (e.g. field state, invocation outputs, etc) constantly. The meant we were effectively working with deep-copied objects at all time. We could mutate objects freely without worrying about other references to the object.
With memory storage, objects are now passed around by reference, and we cannot handle them in the same way.
This is problematic for nodes that mutate their own inputs. There are two ways this causes a problem:
- An output is used as input for multiple nodes. If the first node mutates the output object while `invoke`ing, the next node will get the mutated object.
- The invocation cache stores live python objects. When a node mutates an output pulled from the cache, the next node that uses the cached object will get the mutated object.
The solution is to deep-copy a node's inputs as they are set, effectively reproducing the same behaviour as we had with the SQLite session storage. Nodes can safely mutate their inputs and those changes never leave the node's scope.
Closes #5665
The stats service was logging error messages when attempting to retrieve stats for a graph that it wasn't tracking. This was rather noisy.
Instead of logging these errors within the service, we now will just raise the error and let the consumer of the service decide whether or not to log. Our usage of the service at this time is to suppress errors - we don't want to log anything to the console.
Note: With the improvements in the previous two commits, we shouldn't get these errors moving forward, but I still think this change is correct.
When an invocation is canceled, we consider the graph canceled. Log its graph's stats before resetting its graph's stats. No reason to not log these stats.
We also should stop the profiler at this point, because this graph is finished. If we don't stop it manually, it will stop itself and write the profile to disk when it is next started, but the resultant profile will include more than just its target graph.
Now we get both stats and profiles for canceled graphs.
When an invocation errored, we clear the stats for the whole graph. Later on, we check the graph for errors and see the failed invocation, and we consider the graph failed. We then attempts to log the stats for the failed graph.
Except now the failed graph has no stats, and the stats raises an error.
The user sees, in the terminal:
- An invocation error
- A stats error (scary!)
- No stats for the failed graph (uninformative!)
What the user should see:
- An invocation error
- Graph stats
The fix is simple - don't reset the graph stats when an invocation has an error.
- `ItemStorageMemory.get` now throws an `ItemNotFoundError` when the requested `item_id` is not found.
- Update docstrings in ABC and tests.
The new memory item storage implementation implemented the `get` method incorrectly, by returning `None` if the item didn't exist.
The ABC typed `get` as returning `T`, while the SQLite implementation typed `get` as returning `Optional[T]`. The SQLite implementation was referenced when writing the memory implementation.
This mismatched typing is a violation of the Liskov substitution principle, because the signature of the implementation of `get` in the implementation is wider than the abstract class's definition. Using `pyright` in strict mode catches this.
In `invocation_stats_default`, this introduced an error. The `_prune_stats` method calls `get`, expecting the method to throw if the item is not found. If the graph is no longer stored in the bounded item storage, we will call `is_complete()` on `None`, causing the error.
Note: This error condition never arose the SQLite implementation because it parsed the item with pydantic before returning it, which would throw if the item was not found. It implicitly threw, while the memory implementation did not.
* Port the command-line tools to use model_manager2
1.Reimplement the following:
- invokeai-model-install
- invokeai-merge
- invokeai-ti
To avoid breaking the original modeal manager, the udpated tools
have been renamed invokeai-model-install2 and invokeai-merge2. The
textual inversion training script should continue to work with
existing installations. The "starter" models now live in
`invokeai/configs/INITIAL_MODELS2.yaml`.
When the full model manager 2 is in place and working, I'll rename
these files and commands.
2. Add the `merge` route to the web API. This will merge two or three models,
resulting a new one.
- Note that because the model installer selectively installs the `fp16` variant
of models (rather than both 16- and 32-bit versions as previous),
the diffusers merge script will choke on any huggingface diffuserse models
that were downloaded with the new installer. Previously-downloaded models
should continue to merge correctly. I have a PR
upstream https://github.com/huggingface/diffusers/pull/6670 to fix
this.
3. (more important!)
During implementation of the CLI tools, found and fixed a number of small
runtime bugs in the model_manager2 implementation:
- During model database migration, if a registered models file was
not found on disk, the migration would be aborted. Now the
offending model is skipped with a log warning.
- Caught and fixed a condition in which the installer would download the
entire diffusers repo when the user provided a single `.safetensors`
file URL.
- Caught and fixed a condition in which the installer would raise an
exception and stop the app when a request for an unknown model's metadata
was passed to Civitai. Now an error is logged and the installer continues.
- Replaced the LoWRA starter LoRA with FlatColor. The former has been removed
from Civitai.
* fix ruff issue
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Initially I wanted to show how many sessions were being deleted. In hindsight, this is not great:
- It requires extra logic in the migrator, which should be as simple as possible.
- It may be alarming to see "Clearing 224591 old sessions".
The app still reports on freed space during the DB startup logic.
This substantially reduces the time spent encoding PNGs. In workflows with many image outputs, this is a drastic improvement.
For a tiled upscaling workflow going from 512x512 to a scale factor of 4, this can provide over 15% speed increase.
This allows the stats to be written to disk as JSON and analyzed.
- Add dataclasses to hold stats.
- Move stats pretty-print logic to `__str__` of the new `InvocationStatsSummary` class.
- Add `get_stats` and `dump_stats` methods to `InvocationStatsServiceBase`.
- `InvocationStatsService` now throws if stats are requested for a session it doesn't know about. This avoids needing to do a lot of messy null checks.
- Update `DefaultInvocationProcessor` to use the new stats methods and suppresses the new errors.
The Ideal Size node is useful for High-Res Optimization as it gives the optimum size for creating an initial generation with minimal artifacts (duplication and other strangeness) from today's models.
After inclusion, front end graph generation can be simplified by offloading calculations for HRO initial generation to this node.
The previous method wasn't totally foolproof, and locales/assets were cached.
To solve this once and for all (famous last words, I know), we can subclass `StaticFiles` and use maximally strict no-caching headers to disable caching on all static files.
* add basic functionality for model metadata fetching from hf and civitai
* add storage
* start unit tests
* add unit tests and documentation
* add missing dependency for pytests
* remove redundant fetch; add modified/published dates; updated docs
* add code to select diffusers files based on the variant type
* implement Civitai installs
* make huggingface parallel downloading work
* add unit tests for model installation manager
- Fixed race condition on selection of download destination path
- Add fixtures common to several model_manager_2 unit tests
- Added dummy model files for testing diffusers and safetensors downloading/probing
- Refactored code for selecting proper variant from list of huggingface repo files
- Regrouped ordering of methods in model_install_default.py
* improve Civitai model downloading
- Provide a better error message when Civitai requires an access token (doesn't give a 403 forbidden, but redirects
to the HTML of an authorization page -- arrgh)
- Handle case of Civitai providing a primary download link plus additional links for VAEs, config files, etc
* add routes for retrieving metadata and tags
* code tidying and documentation
* fix ruff errors
* add file needed to maintain test root diretory in repo for unit tests
* fix self->cls in classmethod
* add pydantic plugin for mypy
* use TestSession instead of requests.Session to prevent any internet activity
improve logging
fix error message formatting
fix logging again
fix forward vs reverse slash issue in Windows install tests
* Several fixes of problems detected during PR review:
- Implement cancel_model_install_job and get_model_install_job routes
to allow for better control of model download and install.
- Fix thread deadlock that occurred after cancelling an install.
- Remove unneeded pytest_plugins section from tests/conftest.py
- Remove unused _in_terminal_state() from model_install_default.
- Remove outdated documentation from several spots.
- Add workaround for Civitai API results which don't return correct
URL for the default model.
* fix docs and tests to match get_job_by_source() rather than get_job()
* Update invokeai/backend/model_manager/metadata/fetch/huggingface.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
* Call CivitaiMetadata.model_validate_json() directly
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
* Second round of revisions suggested by @ryanjdick:
- Fix type mismatch in `list_all_metadata()` route.
- Do not have a default value for the model install job id
- Remove static class variable declarations from non Pydantic classes
- Change `id` field to `model_id` for the sqlite3 `model_tags` table.
- Changed AFTER DELETE triggers to ON DELETE CASCADE for the metadata and tags tables.
- Made the `id` field of the `model_metadata` table into a primary key to achieve uniqueness.
* Code cleanup suggested in PR review:
- Narrowed the declaration of the `parts` attribute of the download progress event
- Removed auto-conversion of str to Url in Url-containing sources
- Fixed handling of `InvalidModelConfigException`
- Made unknown sources raise `NotImplementedError` rather than `Exception`
- Improved status reporting on cached HuggingFace access tokens
* Multiple fixes:
- `job.total_size` returns a valid size for locally installed models
- new route `list_models` returns a paged summary of model, name,
description, tags and other essential info
- fix a few type errors
* consolidated all invokeai root pytest fixtures into a single location
* Update invokeai/backend/model_manager/metadata/metadata_store.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* Small tweaks in response to review comments:
- Remove flake8 configuration from pyproject.toml
- Use `id` rather than `modelId` for huggingface `ModelInfo` object
- Use `last_modified` rather than `LastModified` for huggingface `ModelInfo` object
- Add `sha256` field to file metadata downloaded from huggingface
- Add `Invoker` argument to the model installer `start()` and `stop()` routines
(but made it optional in order to facilitate use of the service outside the API)
- Removed redundant `PRAGMA foreign_keys` from metadata store initialization code.
* Additional tweaks and minor bug fixes
- Fix calculation of aggregate diffusers model size to only count the
size of files, not files + directories (which gives different unit test
results on different filesystems).
- Refactor _get_metadata() and _get_download_urls() to have distinct code paths
for Civitai, HuggingFace and URL sources.
- Forward the `inplace` flag from the source to the job and added unit test for this.
- Attach cached model metadata to the job rather than to the model install service.
* fix unit test that was breaking on windows due to CR/LF changing size of test json files
* fix ruff formatting
* a few last minor fixes before merging:
- Turn job `error` and `error_type` into properties derived from the exception.
- Add TODO comment about the reason for handling temporary directory destruction
manually rather than using tempfile.tmpdir().
* add unit tests for reporting HTTP download errors
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* feat: allow bfloat16 to be configurable in invoke.yaml
* fix: `torch_dtype()` util
- Use `choose_precision` to get the precision string
- Do not reference deprecated `config.full_precision` flat (why does this still exist?), if a user had this enabled it would override their actual precision setting and potentially cause a lot of confusion.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
- Add various brand images, organise images
- Create favicon for docs pages (light blue version of key logo)
- Rename app title to `Invoke - Community Edition`
- Fix `weight` and `begin_step_percent`, the constraints were mixed up
- Add model validatort to ensure `begin_step_percent < end_step_percent`
- Bump version
* add base definition of download manager
* basic functionality working
* add unit tests for download queue
* add documentation and FastAPI route
* fix docs
* add missing test dependency; fix import ordering
* fix file path length checking on windows
* fix ruff check error
* move release() into the __del__ method
* disable testing of stderr messages due to issues with pytest capsys fixture
* fix unsorted imports
* harmonized implementation of start() and stop() calls in download and & install modules
* Update invokeai/app/services/download/download_base.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
* replace test datadir fixture with tmp_path
* replace DownloadJobBase->DownloadJob in download manager documentation
* make source and dest arguments to download_queue.download() an AnyHttpURL and Path respectively
* fix pydantic typecheck errors in the download unit test
* ruff formatting
* add "job cancelled" as an event rather than an exception
* fix ruff errors
* Update invokeai/app/services/download/download_default.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* use threading.Event to stop service worker threads; handle unfinished job edge cases
* remove dangling STOP job definition
* fix ruff complaint
* fix ruff check again
* avoid race condition when start() and stop() are called simultaneously from different threads
* avoid race condition in stop() when a job becomes active while shutting down
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
The graph library occasionally causes issues when the default graph changes substantially between versions and pydantic validation fails. See #5289 for an example.
We are not currently using the graph library, so we can disable it until we are ready to use it. It's possible that the workflow library will supersede it anyways.
* add code to repopulate model config records after schema update
* reformat for ruff
* migrate model records using db cursor rather than the ModelRecordConfigService
* ruff fixes
* tweak exception reporting
* fix: build frontend in pypi-release workflow
This was missing, resulting in the 3.5.0rc1 having no frontend.
* fix: use node 18, set working directory
- Node 20 has a problem with `pnpm`; set it to Node 18
- Set the working directory for the frontend commands
* Don't copy extraneous paths into installer .zip
* feat(installer): delete frontend build after creating installer
This prevents an empty `dist/` from breaking the app on startup.
* feat: add python dist as release artifact, as input to enable publish to pypi
- The release workflow never runs automatically. It must be manually kicked off.
- The release workflow has an input. When running it from the GH actions UI, you will see a "Publish build on PyPi" prompt. If this value is "true", the workflow will upload the build to PyPi, releasing it. If this is anything else (e.g. "false", the default), the workflow will build but not upload to PyPi.
- The `dist/` folder (where the python package is built) is uploaded as a workflow artifact as a zip file. This can be downloaded and inspected. This allows "dry" runs of the workflow.
- The workflow job and some steps have been renamed to clarify what they do
* translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
* freeze yaml migration logic at upgrade to 3.5
* moved migration code to migration_3
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
This model was a bit too strict, and raised validation errors when workflows we expect to *not* have an ID (eg, an embedded workflow) have one.
Now it strips unknown attributes, allowing those workflows to load.
- Handle an image file not existing despite being in the database.
- Add a simple pydantic model that tests only for the existence of a workflow's version.
- Check against this new model when migrating workflows, skipping if the workflow fails validation. If it succeeds, the frontend should be able to handle the workflow.
- use simpler pattern for migration dependencies
- move SqliteDatabase & migration to utility method `init_db`, use this in both the app and tests, ensuring the same db schema is used in both
This fixes a problem with `Annotated` which prevented us from using pydantic's `Field` to specify a discriminator for a union. We had to use FastAPI's `Body` as a workaround.
Invocations now have a classification:
- Stable: LTS
- Beta: LTS planned, API may change
- Prototype: No LTS planned, API may change, may be removed entirely
The `@invocation` decorator has a new arg `classification`, and an enum `Classification` is added to `baseinvocation.py`.
The default is Stable; this is a non-breaking change.
The classification is presented in the node header as a hammer icon (Beta) or flask icon (prototype).
The icon has a tooltip briefly describing the classification.
Simplifies a couple things:
- Init is more straightforward
- It's clear in the migrator that the connection we are working with is related to the SqliteDatabase
- Simplify init args to path (None means use memory), logger, and verbose
- Add docstrings to SqliteDatabase (it had almost none)
- Update all usages of the class
- min_overlap removed * restrictions and round_to_8
- min_overlap handles tile size > image size by clipping the num tiles to 1.
- Updated assert test on min_overlap.
Calling `inspect.getmembers()` on a pydantic field results in `getattr` being called on all members of the field. Pydantic has some attrs that are marked deprecated.
In our test suite, we do not filter deprecation warnings, so this is surfaced.
Use a context manager to ignore deprecation warnings when calling the function.
Using default_factory to autogenerate UUIDs doesn't make sense here, and results awkward typescript types.
Remove the default factory and instead manually create a UUID for workflow id. There are only two places where this needs to happen so it's not a big change.
* chore: bump pydantic to 2.5.2
This release fixespydantic/pydantic#8175 and allows us to use `JsonValue`
* fix(ui): exclude public/en.json from prettier config
* fix(workflow_records): fix SQLite workflow insertion to ignore duplicates
* feat(backend): update workflows handling
Update workflows handling for Workflow Library.
**Updated Workflow Storage**
"Embedded Workflows" are workflows associated with images, and are now only stored in the image files. "Library Workflows" are not associated with images, and are stored only in DB.
This works out nicely. We have always saved workflows to files, but recently began saving them to the DB in addition to in image files. When that happened, we stopped reading workflows from files, so all the workflows that only existed in images were inaccessible. With this change, access to those workflows is restored, and no workflows are lost.
**Updated Workflow Handling in Nodes**
Prior to this change, workflows were embedded in images by passing the whole workflow JSON to a special workflow field on a node. In the node's `invoke()` function, the node was able to access this workflow and save it with the image. This (inaccurately) models workflows as a property of an image and is rather awkward technically.
A workflow is now a property of a batch/session queue item. It is available in the InvocationContext and therefore available to all nodes during `invoke()`.
**Database Migrations**
Added a `SQLiteMigrator` class to handle database migrations. Migrations were needed to accomodate the DB-related changes in this PR. See the code for details.
The `images`, `workflows` and `session_queue` tables required migrations for this PR, and are using the new migrator. Other tables/services are still creating tables themselves. A followup PR will adapt them to use the migrator.
**Other/Support Changes**
- Add a `has_workflow` column to `images` table to indicate that the image has an embedded workflow.
- Add handling for retrieving the workflow from an image in python. The image file must be fetched, the workflow extracted, and then sent to client, avoiding needing the browser to parse the image file. With the `has_workflow` column, the UI knows if there is a workflow to be fetched, and only fetches when the user requests to load the workflow.
- Add route to get the workflow from an image
- Add CRUD service/routes for the library workflows
- `workflow_images` table and services removed (no longer needed now that embedded workflows are not in the DB)
* feat(ui): updated workflow handling (WIP)
Clientside updates for the backend workflow changes.
Includes roughed-out workflow library UI.
* feat: revert SQLiteMigrator class
Will pursue this in a separate PR.
* feat(nodes): do not overwrite custom node module names
Use a different, simpler method to detect if a node is custom.
* feat(nodes): restore WithWorkflow as no-op class
This class is deprecated and no longer needed. Set its workflow attr value to None (meaning it is now a no-op), and issue a warning when an invocation subclasses it.
* fix(nodes): fix get_workflow from queue item dict func
* feat(backend): add WorkflowRecordListItemDTO
This is the id, name, description, created at and updated at workflow columns/attrs. Used to display lists of workflowsl
* chore(ui): typegen
* feat(ui): add workflow loading, deleting to workflow library UI
* feat(ui): workflow library pagination button styles
* wip
* feat: workflow library WIP
- Save to library
- Duplicate
- Filter/sort
- UI/queries
* feat: workflow library - system graphs - wip
* feat(backend): sync system workflows to db
* fix: merge conflicts
* feat: simplify default workflows
- Rename "system" -> "default"
- Simplify syncing logic
- Update UI to match
* feat(workflows): update default workflows
- Update TextToImage_SD15
- Add TextToImage_SDXL
- Add README
* feat(ui): refine workflow list UI
* fix(workflow_records): typo
* fix(tests): fix tests
* feat(ui): clean up workflow library hooks
* fix(db): fix mis-ordered db cleanup step
It was happening before pruning queue items - should happen afterwards, else you have to restart the app again to free disk space made available by the pruning.
* feat(ui): tweak reset workflow editor translations
* feat(ui): split out workflow redux state
The `nodes` slice is a rather complicated slice. Removing `workflow` makes it a bit more reasonable.
Also helps to flatten state out a bit.
* docs: update default workflows README
* fix: tidy up unused files, unrelated changes
* fix(backend): revert unrelated service organisational changes
* feat(backend): workflow_records.get_many arg "filter_text" -> "query"
* feat(ui): use custom hook in current image buttons
Already in use elsewhere, forgot to use it here.
* fix(ui): remove commented out property
* fix(ui): fix workflow loading
- Different handling for loading from library vs external
- Fix bug where only nodes and edges loaded
* fix(ui): fix save/save-as workflow naming
* fix(ui): fix circular dependency
* fix(db): fix bug with releasing without lock in db.clean()
* fix(db): remove extraneous lock
* chore: bump ruff
* fix(workflow_records): default `category` to `WorkflowCategory.User`
This allows old workflows to validate when reading them from the db or image files.
* hide workflow library buttons if feature is disabled
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Adds logic to `DiskLatentsStorage.start()` to empty the latents folder on startup.
Adds start and stop methods to `ForwardCacheLatentsStorage`. This is required for `DiskLatentsStorage.start()` to be called, due to how this particular service breaks the direct DI pattern, wrapping the underlying storage with a cache.
* add centerpadcrop node
- Allows users to add padding to or crop images from the center
- Also outputs a white mask with the dimensions of the output image for use with outpainting
* add CenterPadCrop to NODES.md
Updates NODES.md with CenterPadCrop entry.
* remove mask & output class
- Remove "ImageMaskOutput" where both image and mask are output
- Remove ability to output mask from node
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Use UTF-8 encoding on reading prompts from files to allow Unicode characters to load correctly.
The following examples currently will not load correctly from a file:
Hello, 世界!
😭🤮💔
Custom nodes have a new attribute `node_pack` indicating the node pack they came from.
- This is displayed in the UI in the icon icon tooltip.
- If a workflow is loaded and a node is unavailable, its node pack will be displayed (if it is known).
- If a workflow is migrated from v1 to v2, and the node is unknown, it falls back to "Unknown". If the missing node pack is installed and the node is updated, the node pack will be updated as expected.
Node authors may now create their own arbitrary/custom field types. Any pydantic model is supported.
Two notes:
1. Your field type's class name must be unique.
Suggest prefixing fields with something related to the node pack as a kind of namespace.
2. Custom field types function as connection-only fields.
For example, if your custom field has string attributes, you will not get a text input for that attribute when you give a node a field with your custom type.
This is the same behaviour as other complex fields that don't have custom UIs in the workflow editor - like, say, a string collection.
feat(ui): fix tooltips for custom types
We need to hold onto the original type of the field so they don't all just show up as "Unknown".
fix(ui): fix ts error with custom fields
feat(ui): custom field types connection validation
In the initial commit, a custom field's original type was added to the *field templates* only as `originalType`. Custom fields' `type` property was `"Custom"`*. This allowed for type safety throughout the UI logic.
*Actually, it was `"Unknown"`, but I changed it to custom for clarity.
Connection validation logic, however, uses the *field instance* of the node/field. Like the templates, *field instances* with custom types have their `type` set to `"Custom"`, but they didn't have an `originalType` property. As a result, all custom fields could be connected to all other custom fields.
To resolve this, we need to add `originalType` to the *field instances*, then switch the validation logic to use this instead of `type`.
This ended up needing a bit of fanagling:
- If we make `originalType` a required property on field instances, existing workflows will break during connection validation, because they won't have this property. We'd need a new layer of logic to migrate the workflows, adding the new `originalType` property.
While this layer is probably needed anyways, typing `originalType` as optional is much simpler. Workflow migration logic can come layer.
(Technically, we could remove all references to field types from the workflow files, and let the templates hold all this information. This feels like a significant change and I'm reluctant to do it now.)
- Because `originalType` is optional, anywhere we care about the type of a field, we need to use it over `type`. So there are a number of `field.originalType ?? field.type` expressions. This is a bit of a gotcha, we'll need to remember this in the future.
- We use `Array.prototype.includes()` often in the workflow editor, e.g. `COLLECTION_TYPES.includes(type)`. In these cases, the const array is of type `FieldType[]`, and `type` is is `FieldType`.
Because we now support custom types, the arg `type` is now widened from `FieldType` to `string`.
This causes a TS error. This behaviour is somewhat controversial (see https://github.com/microsoft/TypeScript/issues/14520). These expressions are now rewritten as `COLLECTION_TYPES.some((t) => t === type)` to satisfy TS. It's logically equivalent.
fix(ui): typo
feat(ui): add CustomCollection and CustomPolymorphic field types
feat(ui): add validation for CustomCollection & CustomPolymorphic types
- Update connection validation for custom types
- Use simple string parsing to determine if a field is a collection or polymorphic type.
- No longer need to keep a list of collection and polymorphic types.
- Added runtime checks in `baseinvocation.py` to ensure no fields are named in such a way that it could mess up the new parsing
chore(ui): remove errant console.log
fix(ui): rename 'nodes.currentConnectionFieldType' -> 'nodes.connectionStartFieldType'
This was confusingly named and kept tripping me up. Renamed to be consistent with the `reactflow` `ConnectionStartParams` type.
fix(ui): fix ts error
feat(nodes): add runtime check for custom field names
"Custom", "CustomCollection" and "CustomPolymorphic" are reserved field names.
chore(ui): add TODO for revising field type names
wip refactor fieldtype structured
wip refactor field types
wip refactor types
wip refactor types
fix node layout
refactor field types
chore: mypy
organisation
organisation
organisation
fix(nodes): fix field orig_required, field_kind and input statuses
feat(nodes): remove broken implementation of default_factory on InputField
Use of this could break connection validation due to the difference in node schemas required fields and invoke() required args.
Removed entirely for now. It wasn't ever actually used by the system, because all graphs always had values provided for fields where default_factory was used.
Also, pydantic is smart enough to not reuse the same object when specifying a default value - it clones the object first. So, the common pattern of `default_factory=list` is extraneous. It can just be `default=[]`.
fix(nodes): fix InputField name validation
workflow validation
validation
chore: ruff
feat(nodes): fix up baseinvocation comments
fix(ui): improve typing & logic of buildFieldInputTemplate
improved error handling in parseFieldType
fix: back compat for deprecated default_factory and UIType
feat(nodes): do not show node packs loaded log if none loaded
chore(ui): typegen
We used the `RealESRGANer` utility class from the repo. It handled model loading and tiled upscaling logic.
Unfortunately, it hasn't been updated in over a year, had no types, and annoyingly printed to console.
I've adapted the class, cleaning it up a bit and removing the bits that are not relevant for us.
Upscaling functionality is identical.
Resolves two bugs introduced in #5106:
1. Linear UI images sometimes didn't make it to the gallery.
This was a race condition. The VAE decode nodes were handled by the socketInvocationComplete listener. At that moment, the image was marked as intermediate. Immediately after this node was handled, a LinearUIOutputInvocation, introduced in #5106, was handled by socketInvocationComplete. This node internally sets changed the image to not intermediate.
During the handling of that socketInvocationComplete, RTK Query would sometimes use its cache instead of retrieving the image DTO again. The result is that the UI never got the message that the image was not intermediate, so it wasn't added to the gallery.
This is resolved by refactoring the socketInvocationComplete listener. We now skip the gallery processing for linear UI events, except for the LinearUIOutputInvocation. Images now always make it to the gallery, and network requests to get image DTOs are substantially reduced.
2. Canvas temp images always went into the gallery
The LinearUIOutputInvocation was always setting its image's is_intermediate to false. This included all canvas images and resulted in all canvas temp images going to gallery.
This is resolved by making LinearUIOutputInvocation set is_intermediate based on `self.is_intermediate`. The behaviour now more or less mirroring the behaviour of is_intermediate on other image-outputting nodes, except it doesn't save the image again - only changes it.
One extra minor change - LinearUIOutputInvocation only changes is_intermediate if it differs from the image's current setting. Very minor optimisation.
Add a LinearUIOutputInvocation node to be the new terminal node for Linear UI graphs. This node is private and hidden from the Workflow Editor, as it is an implementation detail.
The Linear UI was using the Save Image node for this purpose. It allowed every linear graph to end a single node type, which handled saving metadata and board. This substantially reduced the complexity of the linear graphs.
This caused two related issues:
- Images were saved to disk twice
- Noticeable delay between when an image was decoded and showed up in the UI
To resolve this, the new LinearUIOutputInvocation node will handle adding an image to a board if one is provided.
Metadata is no longer provided in this unified node. Instead, the metadata graph helpers now need to know the node to add metadata to and provide it to the last node that actually outputs an image. This is a `l2i` node for txt2img & img2img graphs, and a different image-outputting node for canvas graphs.
HRF poses another complication, in that it changes the terminal node. To handle this, a new metadata util is added called `setMetadataReceivingNode()`. HRF calls this to change the node that should receive the graph's metadata.
This resolves the duplicate images issue and improves perf without otherwise changing the user experience.
* working
* added selector for method
* refactoring graph
* added ersgan method
* fixing yarn build
* add tooltips
* a conjuction
* rephrase
* removed manual sliders, set HRF to calculate dimensions automatically to match 512^2 pixels
* working
* working
* working
* fixed tooltip
* add hrf to use all parameters
* adding hrf method to parameters
* working on parameter recall
* working on parameter recall
* cleaning
* fix(ui): fix unnecessary casts in addHrfToGraph
* chore(ui): use camelCase in addHrfToGraph
* fix(ui): do not add HRF metadata unless HRF is added to graph
* fix(ui): remove unused imports in addHrfToGraph
* feat(ui): do not hide HRF params when disabled, only disable them
* fix(ui): remove unused vars in addHrfToGraph
* feat(ui): default HRF str to 0.35, method ESRGAN
* fix(ui): use isValidBoolean to check hrfEnabled param
* fix(nodes): update CoreMetadataInvocation fields for HRF
* feat(ui): set hrf strength default to 0.45
* fix(ui): set default hrf strength in configSlice
* feat(ui): use translations for HRF features
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>