veloren/world/src/sim/mod.rs

718 lines
28 KiB
Rust
Raw Normal View History

2019-06-10 16:28:02 +00:00
mod location;
2019-06-25 15:59:09 +00:00
mod settlement;
2019-06-10 16:28:02 +00:00
2019-06-18 21:22:31 +00:00
// Reexports
pub use self::location::Location;
2019-06-25 15:59:09 +00:00
pub use self::settlement::Settlement;
2019-06-18 21:22:31 +00:00
2019-06-22 21:44:27 +00:00
use crate::{
all::ForestKind,
2019-08-05 16:46:28 +00:00
util::{seed_expan, Sampler, StructureGen2d},
2019-06-22 21:44:27 +00:00
CONFIG,
};
2019-06-18 21:22:31 +00:00
use common::{
terrain::{BiomeKind, TerrainChunkSize},
vol::VolSize,
};
2019-08-18 16:35:27 +00:00
use noise::{BasicMulti, Billow, HybridMulti, MultiFractal, NoiseFn, RidgedMulti, Seedable, SuperSimplex};
2019-07-30 14:10:59 +00:00
use rand::{Rng, SeedableRng};
use rand_chacha::ChaChaRng;
2019-08-18 16:35:27 +00:00
use std::{
f32,
ops::{Add, Div, Mul, Neg, Sub},
};
2019-06-09 10:24:18 +00:00
use vek::*;
pub const WORLD_SIZE: Vec2<usize> = Vec2 { x: 1024, y: 1024 };
pub(crate) struct GenCtx {
2019-06-21 00:53:11 +00:00
pub turb_x_nz: SuperSimplex,
pub turb_y_nz: SuperSimplex,
pub chaos_nz: RidgedMulti,
pub alt_nz: HybridMulti,
pub hill_nz: SuperSimplex,
pub temp_nz: SuperSimplex,
2019-08-18 16:35:27 +00:00
// Fresh groundwater (currently has no effect, but should influence humidity)
2019-06-19 19:58:56 +00:00
pub dry_nz: BasicMulti,
2019-08-18 16:35:27 +00:00
// Humidity noise
pub humid_nz : Billow,
2019-08-19 17:20:54 +00:00
// Small amounts of noise for simulating rough terrain.
pub small_nz: BasicMulti,
pub rock_nz: HybridMulti,
2019-06-10 14:22:59 +00:00
pub cliff_nz: HybridMulti,
pub warp_nz: BasicMulti,
pub tree_nz: BasicMulti,
pub cave_0_nz: SuperSimplex,
pub cave_1_nz: SuperSimplex,
2019-06-09 10:24:18 +00:00
2019-07-09 23:51:54 +00:00
pub structure_gen: StructureGen2d,
pub region_gen: StructureGen2d,
2019-06-21 00:53:11 +00:00
pub cliff_gen: StructureGen2d,
}
pub struct WorldSim {
pub seed: u32,
pub(crate) chunks: Vec<SimChunk>,
2019-06-25 15:59:09 +00:00
pub(crate) locations: Vec<Location>,
pub(crate) gen_ctx: GenCtx,
2019-07-30 14:10:59 +00:00
pub rng: ChaChaRng,
}
impl WorldSim {
pub fn generate(mut seed: u32) -> Self {
2019-08-18 22:46:24 +00:00
let mut seed = &mut seed;
let mut gen_seed = || {
*seed = seed_expan::diffuse(*seed);
*seed
};
let mut gen_ctx = GenCtx {
2019-08-18 22:46:24 +00:00
turb_x_nz: SuperSimplex::new().set_seed(gen_seed()),
turb_y_nz: SuperSimplex::new().set_seed(gen_seed()),
chaos_nz: RidgedMulti::new().set_octaves(7).set_seed(gen_seed()),
hill_nz: SuperSimplex::new().set_seed(gen_seed()),
alt_nz: HybridMulti::new()
2019-06-04 17:27:58 +00:00
.set_octaves(8)
.set_persistence(0.1)
2019-08-18 22:46:24 +00:00
.set_seed(gen_seed()),
temp_nz: SuperSimplex::new().set_seed(gen_seed()),
dry_nz: BasicMulti::new().set_seed(gen_seed()),
small_nz: BasicMulti::new().set_octaves(2).set_seed(gen_seed()),
rock_nz: HybridMulti::new().set_persistence(0.3).set_seed(gen_seed()),
cliff_nz: HybridMulti::new().set_persistence(0.3).set_seed(gen_seed()),
warp_nz: BasicMulti::new().set_octaves(3).set_seed(gen_seed()),
tree_nz: BasicMulti::new()
.set_octaves(12)
.set_persistence(0.75)
2019-08-18 22:46:24 +00:00
.set_seed(gen_seed()),
cave_0_nz: SuperSimplex::new().set_seed(gen_seed()),
cave_1_nz: SuperSimplex::new().set_seed(gen_seed()),
2019-06-09 10:24:18 +00:00
2019-08-18 22:46:24 +00:00
structure_gen: StructureGen2d::new(gen_seed(), 32, 24),
region_gen: StructureGen2d::new(gen_seed(), 400, 96),
cliff_gen: StructureGen2d::new(gen_seed(), 80, 56),
2019-08-18 23:52:26 +00:00
humid_nz: Billow::new()
2019-08-19 01:41:32 +00:00
.set_octaves(12)
2019-08-19 03:22:39 +00:00
.set_persistence(0.125)
2019-08-19 17:20:54 +00:00
.set_frequency(1.0)
2019-08-18 23:52:26 +00:00
// .set_octaves(6)
// .set_persistence(0.5)
.set_seed(gen_seed()),
};
let mut chunks = Vec::new();
2019-06-18 21:22:31 +00:00
for x in 0..WORLD_SIZE.x as i32 {
for y in 0..WORLD_SIZE.y as i32 {
chunks.push(SimChunk::generate(Vec2::new(x, y), &mut gen_ctx));
}
}
2019-06-10 16:28:02 +00:00
let mut this = Self {
2019-08-18 22:46:24 +00:00
seed: *seed,
chunks,
2019-06-25 15:59:09 +00:00
locations: Vec::new(),
gen_ctx,
2019-08-18 22:46:24 +00:00
rng: ChaChaRng::from_seed(seed_expan::rng_state(*seed)),
2019-06-10 16:28:02 +00:00
};
2019-06-18 21:22:31 +00:00
this.seed_elements();
2019-06-10 16:28:02 +00:00
this
}
2019-06-18 21:22:31 +00:00
/// Prepare the world for simulation
pub fn seed_elements(&mut self) {
let mut rng = self.rng.clone();
2019-07-03 19:58:09 +00:00
let cell_size = 16;
2019-06-22 21:44:27 +00:00
let grid_size = WORLD_SIZE / cell_size;
2019-07-03 19:58:09 +00:00
let loc_count = 100;
2019-06-22 21:44:27 +00:00
2019-06-25 15:59:09 +00:00
let mut loc_grid = vec![None; grid_size.product()];
let mut locations = Vec::new();
2019-06-22 21:44:27 +00:00
// Seed the world with some locations
for _ in 0..loc_count {
let cell_pos = Vec2::new(
self.rng.gen::<usize>() % grid_size.x,
self.rng.gen::<usize>() % grid_size.y,
2019-06-18 21:22:31 +00:00
);
2019-06-25 15:59:09 +00:00
let wpos = (cell_pos * cell_size + cell_size / 2)
2019-06-23 19:43:02 +00:00
.map2(Vec2::from(TerrainChunkSize::SIZE), |e, sz: u32| {
2019-06-25 15:59:09 +00:00
e as i32 * sz as i32 + sz as i32 / 2
2019-06-23 19:43:02 +00:00
});
2019-06-22 21:44:27 +00:00
2019-06-25 15:59:09 +00:00
locations.push(Location::generate(wpos, &mut rng));
loc_grid[cell_pos.y * grid_size.x + cell_pos.x] = Some(locations.len() - 1);
}
// Find neighbours
let mut loc_clone = locations
.iter()
.map(|l| l.center)
.enumerate()
.collect::<Vec<_>>();
for i in 0..locations.len() {
let pos = locations[i].center;
loc_clone.sort_by_key(|(_, l)| l.distance_squared(pos));
2019-06-26 00:27:41 +00:00
loc_clone.iter().skip(1).take(2).for_each(|(j, _)| {
locations[i].neighbours.insert(*j);
locations[*j].neighbours.insert(i);
});
2019-06-22 21:44:27 +00:00
}
2019-06-18 21:22:31 +00:00
2019-06-22 21:44:27 +00:00
// Simulate invasion!
let invasion_cycles = 25;
for _ in 0..invasion_cycles {
for i in 0..grid_size.x {
for j in 0..grid_size.y {
2019-06-25 15:59:09 +00:00
if loc_grid[j * grid_size.x + i].is_none() {
2019-06-22 21:44:27 +00:00
const R_COORDS: [i32; 5] = [-1, 0, 1, 0, -1];
let idx = self.rng.gen::<usize>() % 4;
2019-06-23 19:43:02 +00:00
let loc = Vec2::new(i as i32 + R_COORDS[idx], j as i32 + R_COORDS[idx + 1])
.map(|e| e as usize);
2019-06-22 21:44:27 +00:00
2019-06-26 00:27:41 +00:00
loc_grid[j * grid_size.x + i] =
loc_grid.get(loc.y * grid_size.x + loc.x).cloned().flatten();
2019-06-22 21:44:27 +00:00
}
}
}
}
// Place the locations onto the world
let gen = StructureGen2d::new(self.seed, cell_size as u32, cell_size as u32 / 2);
for i in 0..WORLD_SIZE.x {
for j in 0..WORLD_SIZE.y {
let chunk_pos = Vec2::new(i as i32, j as i32);
2019-06-26 00:27:41 +00:00
let block_pos = Vec2::new(
chunk_pos.x * TerrainChunkSize::SIZE.x as i32,
chunk_pos.y * TerrainChunkSize::SIZE.y as i32,
);
2019-07-01 18:40:41 +00:00
let _cell_pos = Vec2::new(i / cell_size, j / cell_size);
2019-06-22 21:44:27 +00:00
// Find the distance to each region
let near = gen.get(chunk_pos);
let mut near = near
.iter()
.map(|(pos, seed)| RegionInfo {
chunk_pos: *pos,
2019-06-23 19:43:02 +00:00
block_pos: pos.map2(Vec2::from(TerrainChunkSize::SIZE), |e, sz: u32| {
e * sz as i32
}),
2019-06-22 21:44:27 +00:00
dist: (pos - chunk_pos).map(|e| e as f32).magnitude(),
seed: *seed,
})
.collect::<Vec<_>>();
// Sort regions based on distance
near.sort_by(|a, b| a.dist.partial_cmp(&b.dist).unwrap());
let nearest_cell_pos = near[0].chunk_pos.map(|e| e as usize) / cell_size;
2019-06-25 15:59:09 +00:00
self.get_mut(chunk_pos).unwrap().location = loc_grid
2019-06-22 21:44:27 +00:00
.get(nearest_cell_pos.y * grid_size.x + nearest_cell_pos.x)
.cloned()
.unwrap_or(None)
2019-06-25 15:59:09 +00:00
.map(|loc_idx| LocationInfo { loc_idx, near });
let town_size = 200;
let in_town = self
.get(chunk_pos)
.unwrap()
.location
.as_ref()
2019-06-26 00:27:41 +00:00
.map(|l| {
locations[l.loc_idx].center.distance_squared(block_pos)
< town_size * town_size
})
2019-06-25 15:59:09 +00:00
.unwrap_or(false);
if in_town {
self.get_mut(chunk_pos).unwrap().spawn_rate = 0.0;
2019-06-18 21:22:31 +00:00
}
}
}
self.rng = rng;
2019-06-25 15:59:09 +00:00
self.locations = locations;
}
2019-06-18 21:22:31 +00:00
pub fn get(&self, chunk_pos: Vec2<i32>) -> Option<&SimChunk> {
if chunk_pos
2019-06-18 21:22:31 +00:00
.map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32)
.reduce_and()
{
Some(&self.chunks[chunk_pos.y as usize * WORLD_SIZE.x + chunk_pos.x as usize])
} else {
None
}
}
2019-06-18 21:22:31 +00:00
pub fn get_mut(&mut self, chunk_pos: Vec2<i32>) -> Option<&mut SimChunk> {
if chunk_pos
.map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32)
.reduce_and()
{
Some(&mut self.chunks[chunk_pos.y as usize * WORLD_SIZE.x + chunk_pos.x as usize])
} else {
None
}
}
pub fn get_base_z(&self, chunk_pos: Vec2<i32>) -> Option<f32> {
self.get(chunk_pos).and_then(|_| {
(0..2)
.map(|i| (0..2).map(move |j| (i, j)))
.flatten()
.map(|(i, j)| {
self.get(chunk_pos + Vec2::new(i, j))
.map(|c| c.get_base_z())
})
.flatten()
.fold(None, |a: Option<f32>, x| a.map(|a| a.min(x)).or(Some(x)))
})
}
pub fn get_interpolated<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
where
T: Copy + Default + Add<Output = T> + Mul<f32, Output = T>,
F: FnMut(&SimChunk) -> T,
{
let pos = pos.map2(TerrainChunkSize::SIZE.into(), |e, sz: u32| {
e as f64 / sz as f64
});
let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T {
let x2 = x * x;
// Catmull-Rom splines
let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5;
let co1 = a + b * -2.5 + c * 2.0 + d * -0.5;
let co2 = a * -0.5 + c * 0.5;
let co3 = b;
co0 * x2 * x + co1 * x2 + co2 * x + co3
};
let mut x = [T::default(); 4];
for (x_idx, j) in (-1..3).enumerate() {
2019-06-19 14:55:26 +00:00
let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?);
2019-06-18 21:22:31 +00:00
let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?);
let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?);
let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?);
x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32);
}
Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32))
}
}
2019-06-04 17:19:40 +00:00
pub struct SimChunk {
pub chaos: f32,
pub alt_base: f32,
pub alt: f32,
pub temp: f32,
2019-06-19 16:18:56 +00:00
pub dryness: f32,
2019-08-18 16:35:27 +00:00
pub humidity: f32,
2019-06-04 17:19:40 +00:00
pub rockiness: f32,
pub is_cliffs: bool,
2019-06-21 00:53:11 +00:00
pub near_cliffs: bool,
2019-06-04 17:19:40 +00:00
pub tree_density: f32,
2019-06-11 18:39:25 +00:00
pub forest_kind: ForestKind,
2019-06-25 15:59:09 +00:00
pub spawn_rate: f32,
2019-06-22 21:44:27 +00:00
pub location: Option<LocationInfo>,
}
#[derive(Copy, Clone)]
pub struct RegionInfo {
pub chunk_pos: Vec2<i32>,
pub block_pos: Vec2<i32>,
pub dist: f32,
pub seed: u32,
}
#[derive(Clone)]
pub struct LocationInfo {
2019-06-25 15:59:09 +00:00
pub loc_idx: usize,
2019-06-22 21:44:27 +00:00
pub near: Vec<RegionInfo>,
2019-06-04 17:19:40 +00:00
}
impl SimChunk {
2019-06-18 21:22:31 +00:00
fn generate(pos: Vec2<i32>, gen_ctx: &mut GenCtx) -> Self {
let wposf = (pos * TerrainChunkSize::SIZE.map(|e| e as i32)).map(|e| e as f64);
2019-06-04 17:19:40 +00:00
2019-08-19 17:20:54 +00:00
// From 0 to 1.6, but the distribution before the max is from -1 and 1, so there is a 50%
// chance that hill will end up at 0.
2019-06-04 17:19:40 +00:00
let hill = (0.0
+ gen_ctx
.hill_nz
2019-06-09 21:58:09 +00:00
.get((wposf.div(1_500.0)).into_array())
2019-06-04 17:19:40 +00:00
.mul(1.0) as f32
+ gen_ctx
.hill_nz
2019-06-09 21:58:09 +00:00
.get((wposf.div(500.0)).into_array())
2019-06-04 17:19:40 +00:00
.mul(0.3) as f32)
.add(0.3)
.max(0.0);
2019-08-18 16:35:27 +00:00
// FIXME: Currently unused, but should represent fresh groundwater level.
// Should be correlated a little with humidity, somewhat negatively with altitude,
// and very negatively with difference in temperature from zero.
2019-07-01 18:40:41 +00:00
let dryness = gen_ctx.dry_nz.get(
2019-06-19 19:58:56 +00:00
(wposf
.add(Vec2::new(
gen_ctx
.dry_nz
.get((wposf.add(10000.0).div(500.0)).into_array())
* 150.0,
gen_ctx.dry_nz.get((wposf.add(0.0).div(500.0)).into_array()) * 150.0,
))
.div(2_000.0))
.into_array(),
2019-07-01 18:40:41 +00:00
) as f32;
2019-06-19 16:18:56 +00:00
2019-08-19 17:20:54 +00:00
// "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied value is
// from -0.25 * (CONFIG.mountain_scale * 1.1) to 0.25 * (CONFIG.mountain_scale * 0.9),
// but value here is from -0.275 to 0.225).
2019-07-08 19:08:08 +00:00
let alt_base = (gen_ctx.alt_nz.get((wposf.div(12_000.0)).into_array()) as f32)
2019-08-19 17:20:54 +00:00
.sub(0.1)
.mul(0.25);
2019-06-04 17:19:40 +00:00
2019-08-19 17:20:54 +00:00
// Extension upwards from the base. A positive number from 0 to 1 curved to be maximal at
// 0.
2019-06-21 00:53:11 +00:00
let alt_main = (gen_ctx.alt_nz.get((wposf.div(2_000.0)).into_array()) as f32)
2019-06-09 18:46:30 +00:00
.abs()
2019-07-07 23:50:23 +00:00
.powf(1.35);
2019-06-04 17:19:40 +00:00
2019-08-19 17:20:54 +00:00
// Calculates the smallest distance along an axis (x, y) from an edge of
// the world. This value is maximal at WORLD_SIZE / 2 and minimized at the extremes
// (0 or WORLD_SIZE on one or more axes). It then divides the quantity by cell_size,
// so the final result is 1 when we are not in a cell along the edge of the world, and
// ranges between 0 and 1 otherwise (lower when the chunk is closer to the edge).
2019-07-09 20:42:27 +00:00
let map_edge_factor = pos
.map2(WORLD_SIZE.map(|e| e as i32), |e, sz| {
(sz / 2 - (e - sz / 2).abs()) as f32 / 16.0
})
.reduce_partial_min()
.max(0.0)
.min(1.0);
2019-08-19 17:20:54 +00:00
// chaos produces a value in [0.1, 1.24]. It is a meta-level factor intended to reflect how
// "chaotic" the region is--how much weird stuff is going on on this terrain.
//
// First, we calculate chaos_pre, which is chaos with no filter and no temperature
// flattening (so it is between [0, 1.24] instead of [0.1, 1.24]. This is used to break
// the cyclic dependency between temperature and altitude (altitude relies on chaos, which
// relies on temperature, but we also want temperature to rely on altitude. We recompute
// altitude with the temperature incorporated after we figure out temperature).
let chaos_pre = (gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) as f32)
.add(1.0)
.mul(0.5)
// [0, 1] * [0.25, 1] = [0, 1] (but probably towards the lower end)
.mul(
(gen_ctx.chaos_nz.get((wposf.div(6_000.0)).into_array()) as f32)
.abs()
.max(0.25)
.min(1.0),
)
// Chaos is always increased by a little when we're on a hill (but remember that hill
// is 0 about 50% of the time).
// [0, 1] + 0.15 * [0, 1.6] = [0, 1.24]
.add(0.15 * hill);
// This is the extension upwards from the base added to some extra noise from -1 to 1.
// The extra noise is multiplied by alt_main (the base part of the extension) clamped to
// be between 0.25 and 1, and made 60% larger (so the extra noise is between -1.6 and 1.6,
// and the final noise is never more than 160% or less than 40% of the original noise,
// depending on altitude).
// Adding this to alt_main thus yields a value between -0.4 (if alt_main = 0 and
// gen_ctx = -1) and 2.6 (if alt_main = 1 and gen_ctx = 1). When the generated small_nz
// value hits -0.625 the value crosses 0, so most of the points are above 0.
//
// Then, we add 1 and divide by 2 to get a value between 0.3 and 1.8.
2019-08-18 23:52:26 +00:00
let alt_pre = (0.0
2019-06-04 17:19:40 +00:00
+ alt_main
+ (gen_ctx.small_nz.get((wposf.div(300.0)).into_array()) as f32)
2019-07-08 21:10:48 +00:00
.mul(alt_main.max(0.25))
.mul(1.6))
.add(1.0)
2019-08-19 17:20:54 +00:00
.mul(0.5);
2019-08-18 16:35:27 +00:00
// 0 to 1, hopefully.
let humid_base =
(gen_ctx.humid_nz.get(wposf.div(1024.0).into_array()) as f32)
.add(1.0)
.mul(0.5)
as f32;
// Ideally, humidity is correlated negatively with altitude and slightly positively with
// dryness. For now we just do "negatively with altitude." We currently opt not to have
// it affected by temperature. Negative humidity is lower, positive humidity is higher.
//
// Because we want to start at 0, rise, and then saturate at 1, we use a cumulative logistic
// distribution, calculated as:
2019-08-19 17:20:54 +00:00
//
2019-08-18 16:35:27 +00:00
// 1/2 + 1/2 * tanh((x - μ) / (2s))
//
// where x is the random variable (altitude relative to sea level without mountain
2019-08-18 23:52:26 +00:00
// scaling), μ is the altitude where humidity should be at its midpoint (currently set to 0.125),
2019-08-18 16:35:27 +00:00
// and s is the scale parameter proportional to the standard deviation σ of the humidity
2019-08-19 17:20:54 +00:00
// function of altitude (s = √3/π * σ). Currently we set σ to -0.0625, so we get ~ 68% of
// the variation due to altitude between .0625 * mountain_scale above sea level and
// 0.1875 * mountain_scale above sea level (it is negative to make the distribution higher when
// the altitude is lower).
let humid_alt_sigma = -0.0625;
2019-08-18 16:35:27 +00:00
let humid_alt_2s = 3.0f32.sqrt().mul(f32::consts::FRAC_2_PI).mul(humid_alt_sigma);
2019-08-18 23:52:26 +00:00
let humid_alt_mu = 0.125;
2019-08-19 17:20:54 +00:00
// We ignore sea level because we actually want to be relative to sea level here and want
// things in CONFIG.mountain_scale units, and we are using the version of chaos that doesn't
// know about temperature. Otherwise, this is a correct altitude calculation.
let humid_alt_pre = (alt_base + alt_pre.mul(chaos_pre.max(0.1))) * map_edge_factor;
let humid_alt = humid_alt_pre
2019-08-18 16:35:27 +00:00
.sub(humid_alt_mu)
.div(humid_alt_2s)
2019-08-19 17:20:54 +00:00
.tanh()
2019-08-18 16:35:27 +00:00
.mul(0.5)
.add(0.5);
2019-08-19 17:20:54 +00:00
// The log-logistic distribution (a variable whose logarithm has a logistic distribution) is often
// used to model stream flow rates and precipitation as a tractable analogue of a log-normal
// distribution. We use it here for humidity.
//
// Specifically, we treat altitude
//
// For a log-logistic distribution, you have
//
// X = e^
//
// where α is a scale parameter (the median of the distribution, where μ = ln(α)), β is a
// shape parameter related to the standard deviation (s = 1 / β)
//
// Start with e^(altitude difference) to get values in (0, 1) for low altitudes (-∞, e) and
// in [1, ∞) for high altitudes [e, ∞).
//
// The produced variable is in a log-normal distribution (that is, X's *logarithm* is
// normally distributed).
//
// https://en.wikipedia.org/wiki/Log-logistic_distribution
//
// A log-logistic distribution represents the probability distribution of a random variable
// whose logarithm has a logistic distribution.
//
// That is, ln X varies smoothly from 0 to 1 along an S-curve.
//
// Now we can
//
// 1 to
// for high.
// We want negative values for altitude to represent
//
// e^-2
//
// (alt mag)^(climate mag)
//
// (2)^(-1)
//
2019-08-18 16:35:27 +00:00
// Now we just take a (currently) unweighted average of our randomly generated base humidity
// (from scaled to be from 0 to 1) and our randomly generated "base" humidity. We can
// adjust this weighting factor as desired.
2019-08-18 23:52:26 +00:00
let humid_weight = 3.0;
2019-08-18 16:35:27 +00:00
let humid_alt_weight = 1.0;
let humidity =
humid_base.mul(humid_weight)
2019-08-19 17:20:54 +00:00
.add(humid_alt.mul(humid_alt_weight)
// Adds some noise to the humidity effect of altitude to dampen it.
.mul(gen_ctx.small_nz.get((wposf.div(10240.0)).into_array()) as f32)
.mul(0.5)
.add(0.5))
2019-08-18 16:35:27 +00:00
.div(humid_weight + humid_alt_weight);
2019-06-04 17:19:40 +00:00
2019-08-19 17:20:54 +00:00
let temp_base =
gen_ctx.temp_nz.get((wposf.div(12000.0)).into_array()) as f32;
// We also correlate temperature negatively with altitude using a different computed factor
// that we use for humidity (and with different weighting). We could definitely make the
// distribution different for temperature as well.
let temp_alt_sigma = -0.0625;
let temp_alt_2s = 3.0f32.sqrt().mul(f32::consts::FRAC_2_PI).mul(temp_alt_sigma);
let temp_alt_mu = 0.0;
// Scaled to [-1, 1] already.
let temp_alt = humid_alt_pre
.sub(temp_alt_mu)
.div(temp_alt_2s)
.tanh();
let temp_weight = 4.0;
let temp_alt_weight = 1.0;
let temp =
temp_base.mul(temp_weight)
.add(temp_alt.mul(temp_alt_weight))
.div(temp_weight + temp_alt_weight);
// Now, we finish the computation of chaos incorporating temperature information, producing
// a value in [0.1, 1.24].
let chaos = chaos_pre
// [0, 1.24] * [0.35, 1.0] = [0, 1.24].
// Sharply decreases (towards 0.35) when temperature is near desert_temp (from below),
// then saturates just before it actually becomes desert. Otherwise stays at 1.
.mul(
temp.sub(CONFIG.desert_temp)
.neg()
.mul(12.0)
.max(0.35)
.min(1.0),
)
// We can't have *no* chaos!
.max(0.1);
// Now we can recompute altitude using the correct verison of chaos.
// We multiply by chaos clamped to [0.1, 1.24] to get a value between 0.03 and 2.232 for
// alt_pre, then multiply by CONFIG.mountain_scale and add to the base and sea level to get
// an adjusted value, then multiply the whole thing by map_edge_factor (TODO: compute final bounds).
let alt_base = alt_base.mul(CONFIG.mountain_scale);
let alt =
CONFIG.sea_level
.add(alt_base)
.add(alt_pre.mul(chaos).mul(CONFIG.mountain_scale))
.mul(map_edge_factor);
2019-06-21 00:53:11 +00:00
let cliff = gen_ctx.cliff_nz.get((wposf.div(2048.0)).into_array()) as f32 + chaos * 0.2;
2019-08-18 23:52:26 +00:00
let tree_density =
(gen_ctx.tree_nz.get((wposf.div(1024.0)).into_array()) as f32)
.mul(1.5)
.add(1.0)
.mul(0.5)
.mul(1.2 - chaos * 0.95)
.add(0.05)
.max(0.0)
.min(1.0)
.mul(0.5)
// Tree density should go (by a lot) with humidity.
.add(humidity.mul(0.5))
// No trees in the ocean (currently), no trees in true deserts.
.mul(if alt > CONFIG.sea_level + 5.0 && humidity > CONFIG.desert_hum {
1.0
} else {
0.0
})
.max(0.0);
2019-06-04 17:19:40 +00:00
Self {
chaos,
alt_base,
alt,
2019-06-11 18:39:25 +00:00
temp,
2019-06-19 16:18:56 +00:00
dryness,
2019-08-18 16:35:27 +00:00
humidity,
2019-06-04 17:19:40 +00:00
rockiness: (gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32)
.sub(0.1)
2019-06-11 18:39:25 +00:00
.mul(1.3)
2019-06-04 17:19:40 +00:00
.max(0.0),
is_cliffs: cliff > 0.5
2019-06-23 19:43:02 +00:00
&& dryness > 0.05
&& alt > CONFIG.sea_level + 5.0
&& dryness.abs() > 0.075,
2019-07-08 23:31:43 +00:00
near_cliffs: cliff > 0.25,
2019-08-18 23:52:26 +00:00
tree_density,
2019-06-11 18:39:25 +00:00
forest_kind: if temp > 0.0 {
if temp > CONFIG.desert_temp {
2019-08-19 17:20:54 +00:00
// println!("Any desert: {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density);
2019-08-18 16:35:27 +00:00
if humidity > CONFIG.jungle_hum {
// Forests in desert temperatures with extremely high humidity
// should probably be different from palm trees, but we use them
// for now.
ForestKind::Palm
} else if humidity > CONFIG.forest_hum {
ForestKind::Palm
} else {
// Low but not desert humidity, so we should really have some other
// terrain...
2019-08-19 17:20:54 +00:00
/* if humidity < CONFIG.desert_hum {
println!("True desert: {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density);
} */
2019-08-18 16:35:27 +00:00
ForestKind::Savannah
}
} else if temp > CONFIG.tropical_temp {
2019-08-18 16:35:27 +00:00
if humidity > CONFIG.jungle_hum {
2019-08-19 17:20:54 +00:00
/* if tree_density > 0.0 {
println!("Mangroves: {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density);
} */
2019-08-18 16:35:27 +00:00
ForestKind::Mangrove
} else if humidity > CONFIG.forest_hum {
2019-08-19 17:20:54 +00:00
// NOTE: Probably the wrong kind of tree for this climate.
2019-08-18 16:35:27 +00:00
ForestKind::Oak
} else {
2019-08-19 17:20:54 +00:00
// Low but not desert... need something besides savannah.
2019-08-18 16:35:27 +00:00
ForestKind::Savannah
}
2019-06-11 18:39:25 +00:00
} else {
2019-08-18 16:35:27 +00:00
if humidity > CONFIG.jungle_hum {
// Temperate climate with jungle humidity...
// https://en.wikipedia.org/wiki/Humid_subtropical_climates are often
// densely wooded and full of water. Semitropical rainforests, basically.
2019-08-19 17:20:54 +00:00
// For now we just treet them like other rainforests.
/* if tree_density > 0.0 {
println!("Mangroves (forest): {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density);
} */
2019-08-18 16:35:27 +00:00
ForestKind::Mangrove
} else if humidity > CONFIG.forest_hum {
// Moderate climate, moderate humidity.
ForestKind::Oak
} else {
// With moderate temperature and low humidity, we should probably see
// something different from savannah, but oh well...
ForestKind::Savannah
}
2019-06-11 18:39:25 +00:00
}
} else {
2019-08-18 16:35:27 +00:00
// For now we don't take humidity into account for cold climates (but we really
2019-08-19 01:01:11 +00:00
// should!) except that we make sure we only have snow pines when there is snow.
2019-08-19 17:20:54 +00:00
if temp <= CONFIG.snow_temp && humidity > CONFIG.forest_hum {
/* if tree_density > 0.0 {
println!("SnowPine: {:?}, altitude: {:?}, humidity: {:?}, temperature: {:?}, density: {:?}", wposf, alt, humidity, temp, tree_density);
} */
2019-06-11 18:39:25 +00:00
ForestKind::SnowPine
2019-08-19 01:01:11 +00:00
} else {
ForestKind::Pine
2019-06-11 18:39:25 +00:00
}
},
2019-06-25 15:59:09 +00:00
spawn_rate: 1.0,
2019-06-10 16:28:02 +00:00
location: None,
2019-06-04 17:19:40 +00:00
}
}
pub fn get_base_z(&self) -> f32 {
self.alt - self.chaos * 50.0 - 16.0
2019-06-04 17:19:40 +00:00
}
2019-06-18 21:22:31 +00:00
2019-06-25 15:59:09 +00:00
pub fn get_name(&self, world: &WorldSim) -> Option<String> {
if let Some(loc) = &self.location {
2019-06-26 00:27:41 +00:00
Some(world.locations[loc.loc_idx].name().to_string())
2019-06-25 15:59:09 +00:00
} else {
None
}
2019-06-18 21:22:31 +00:00
}
pub fn get_biome(&self) -> BiomeKind {
if self.alt < CONFIG.sea_level {
BiomeKind::Ocean
} else if self.chaos > 0.6 {
BiomeKind::Mountain
} else if self.temp > CONFIG.desert_temp {
BiomeKind::Desert
} else if self.temp < CONFIG.snow_temp {
BiomeKind::Snowlands
} else if self.tree_density > 0.65 {
BiomeKind::Forest
} else {
BiomeKind::Grassland
}
}
2019-06-04 17:19:40 +00:00
}