veloren/world/src/sim/mod.rs

835 lines
33 KiB
Rust
Raw Normal View History

2019-06-10 16:28:02 +00:00
mod location;
2019-06-25 15:59:09 +00:00
mod settlement;
2019-06-10 16:28:02 +00:00
2019-06-18 21:22:31 +00:00
// Reexports
pub use self::location::Location;
2019-06-25 15:59:09 +00:00
pub use self::settlement::Settlement;
2019-06-18 21:22:31 +00:00
2019-06-22 21:44:27 +00:00
use crate::{
all::ForestKind,
2019-08-05 16:46:28 +00:00
util::{seed_expan, Sampler, StructureGen2d},
2019-06-22 21:44:27 +00:00
CONFIG,
};
2019-06-18 21:22:31 +00:00
use common::{
terrain::{BiomeKind, TerrainChunkSize},
vol::VolSize,
};
2019-08-22 21:25:17 +00:00
use noise::{
BasicMulti, Billow, HybridMulti, MultiFractal, NoiseFn, RidgedMulti, Seedable, SuperSimplex,
};
2019-07-30 14:10:59 +00:00
use rand::{Rng, SeedableRng};
use rand_chacha::ChaChaRng;
2019-08-18 16:35:27 +00:00
use std::{
f32,
ops::{Add, Div, Mul, Neg, Sub},
};
2019-06-09 10:24:18 +00:00
use vek::*;
pub const WORLD_SIZE: Vec2<usize> = Vec2 { x: 1024, y: 1024 };
2019-08-20 20:48:22 +00:00
/// Computes the cumulative distribution function of the weighted sum of k independent,
/// uniformly distributed random variables between 0 and 1. For each variable i, we use weights[i]
/// as the weight to give samples[i] (the weights should all be positive).
///
/// If the precondition is met, the distribution of the result of calling this function will be
/// uniformly distributed while preserving the same information that was in the original average.
///
2019-08-21 18:41:32 +00:00
/// For N > 33 the function will no longer return correct results since we will overflow u32.
///
/// NOTE:
///
/// Per [1], the problem of determing the CDF of
/// the sum of uniformly distributed random variables over *different* ranges is considerably more
/// complicated than it is for the same-range case. Fortunately, it also provides a reference to
/// [2], which contains a complete derivation of an exact rule for the density function for
/// this case. The CDF is just the integral of the cumulative distribution function [3],
/// which we use to convert this into a CDF formula.
///
/// This allows us to sum weighted, uniform, independent random variables.
///
/// At some point, we should probably contribute this back to stats-rs.
///
/// 1. https://www.r-bloggers.com/sums-of-random-variables/,
/// 2. Sadooghi-Alvandi, S., A. Nematollahi, & R. Habibi, 2009.
/// On the Distribution of the Sum of Independent Uniform Random Variables.
/// Statistical Papers, 50, 171-175.
/// 3. hhttps://en.wikipedia.org/wiki/Cumulative_distribution_function
2019-08-22 21:25:17 +00:00
fn cdf_irwin_hall<const N: usize>(weights: &[f32; N], samples: [f32; N]) -> f32 {
2019-08-21 18:41:32 +00:00
// Let J_k = {(j_1, ... , j_k) : 1 ≤ j_1 < j_2 < ··· < j_k ≤ N }.
//
// Let A_N = Π{k = 1 to n}a_k.
//
// The density function for N ≥ 2 is:
//
// 1/(A_N * (N - 1)!) * (x^(N-1) + Σ{k = 1 to N}((-1)^k *
// Σ{(j_1, ..., j_k) ∈ J_k}(max(0, x - Σ{l = 1 to k}(a_(j_l)))^(N - 1))))
//
// So the cumulative distribution function is its integral, i.e. (I think)
//
// 1/(product{k in A}(k) * N!) * (x^N + sum(k in 1 to N)((-1)^k *
// sum{j in Subsets[A, {k}]}(max(0, x - sum{l in j}(l))^N)))
//
// which is also equivalent to
//
// (letting B_k = { a in Subsets[A, {k}] : sum {l in a} l }, B_(0,1) = 0 and
// H_k = { i : 1 ≤ 1 ≤ N! / (k! * (N - k)!) })
//
// 1/(product{k in A}(k) * N!) * sum(k in 0 to N)((-1)^k *
// sum{l in H_k}(max(0, x - B_(k,l))^N))
//
// We should be able to iterate through the whole power set
// instead, and figure out K by calling count_ones(), so we can compute the result in O(2^N)
// iterations.
2019-08-22 21:25:17 +00:00
let x: f32 = weights
.iter()
.zip(samples.iter())
.map(|(weight, sample)| weight * sample)
.sum();
2019-08-21 18:41:32 +00:00
let mut y = 0.0f32;
2019-08-21 18:48:51 +00:00
for subset in 0u32..(1 << N) {
2019-08-21 18:41:32 +00:00
// Number of set elements
let k = subset.count_ones();
// Add together exactly the set elements to get B_subset
2019-08-22 21:25:17 +00:00
let z = weights
.iter()
2019-08-21 18:41:32 +00:00
.enumerate()
2019-08-22 21:25:17 +00:00
.filter(|(i, _)| subset & (1 << i) as u32 != 0)
2019-08-21 18:41:32 +00:00
.map(|(_, k)| k)
.sum::<f32>();
// Compute max(0, x - B_subset)^N
let z = (x - z).max(0.0).powi(N as i32);
// The parity of k determines whether the sum is negated.
y += if k & 1 == 0 { z } else { -z };
2019-08-20 20:48:22 +00:00
}
2019-08-21 18:41:32 +00:00
// Divide by the product of the weights.
y /= weights.iter().product::<f32>();
2019-08-20 20:48:22 +00:00
// Remember to multiply by 1 / N! at the end.
y / (1..=N as i32).product::<i32>() as f32
}
2019-08-21 18:41:32 +00:00
/// First component of each element of the vector is the computed CDF of the noise function at this
/// index (i.e. its position in a sorted list of value returned by the noise function applied to
/// every chunk in the game). Second component is the cached value of the noise function that
/// generated the index.
type InverseCdf = Box<[(f32, f32); WORLD_SIZE.x * WORLD_SIZE.y]>;
/// Computes the position Vec2 of a SimChunk from an index, where the index was generated by
/// uniform_noise.
fn uniform_idx_as_vec2(idx: usize) -> Vec2<i32> {
Vec2::new((idx / WORLD_SIZE.x) as i32, (idx % WORLD_SIZE.x) as i32)
}
/// Compute inverse cumulative distribution function for arbitrary function f, the hard way. We
/// pre-generate noise values prior to worldgen, then sort them in order to determine the correct
/// position in the sorted order. That lets us use `(index + 1) / (WORLDSIZE.y * WORLDSIZE.x)` as
/// a uniformly distributed (from almost-0 to 1) regularization of the chunks. That is, if we
/// apply the computed "function" F⁻¹(x, y) to (x, y) and get out p, it means that approximately
/// (100 * p)% of chunks have a lower value for F⁻¹ than p. The main purpose of doing this is to
/// make sure we are using the entire range we want, and to allow us to apply the numerous results
/// about distributions on uniform functions to the procedural noise we generate, which lets us
/// much more reliably control the *number* of features in the world while still letting us play
/// with the *shape* of those features, without having arbitrary cutoff points / discontinuities
/// (which tend to produce ugly-looking / unnatural terrain).
///
/// As a concrete example, before doing this it was very hard to tweak humidity so that either most
/// of the world wasn't dry, or most of it wasn't wet, by combining the billow noise function and
/// the computed altitude. This is because the billow noise function has a very unusual
/// distribution that is heavily skewed towards 0. By correcting for this tendency, we can start
/// with uniformly distributed billow noise and altitudes and combine them to get uniformly
/// distributed humidity, while still preserving the existing shapes that the billow noise and
/// altitude functions produce.
///
/// f takes an index, which represents the index corresponding to this chunk in any any SimChunk
/// vector returned by uniform_noise, and (for convenience) the float-translated version of those
/// coordinates.
/// f should return a value with no NaNs. If there is a NaN, it will panic. There are no other
/// conditions on f.
///
/// Returns a vec of (f32, f32) pairs consisting of the percentage of chunks with a value lower than
/// this one, and the actual noise value (we don't need to cache it, but it makes ensuring that
/// subsequent code that needs the noise value actually uses the same one we were using here
/// easier).
fn uniform_noise(f: impl Fn(usize, Vec2<f64>) -> f32) -> InverseCdf {
let mut noise = (0..WORLD_SIZE.x * WORLD_SIZE.y)
2019-08-22 21:25:17 +00:00
.map(|i| {
(
i,
f(
i,
(uniform_idx_as_vec2(i) * TerrainChunkSize::SIZE.map(|e| e as i32))
.map(|e| e as f64),
),
)
})
2019-08-21 18:41:32 +00:00
.collect::<Vec<_>>();
// sort_unstable_by is equivalent to sort_by here since we include the index in the
// comparison. We could leave out the index, but this might make the order not
// reproduce the same way between different versions of Rust (for example).
noise.sort_unstable_by(|f, g| (f.1, f.0).partial_cmp(&(g.1, g.0)).unwrap());
// Construct a vector that associates each chunk position with the 1-indexed
// position of the noise in the sorted vector (divided by the vector length).
// This guarantees a uniform distribution among the samples.
let mut uniform_noise = box [(0.0, 0.0); WORLD_SIZE.x * WORLD_SIZE.y];
let total = (WORLD_SIZE.x * WORLD_SIZE.y) as f32;
for (noise_idx, (chunk_idx, noise_val)) in noise.into_iter().enumerate() {
uniform_noise[chunk_idx] = ((1 + noise_idx) as f32 / total, noise_val);
}
uniform_noise
}
/// Calculates the smallest distance along an axis (x, y) from an edge of
/// the world. This value is maximal at WORLD_SIZE / 2 and minimized at the extremes
/// (0 or WORLD_SIZE on one or more axes). It then divides the quantity by cell_size,
/// so the final result is 1 when we are not in a cell along the edge of the world, and
/// ranges between 0 and 1 otherwise (lower when the chunk is closer to the edge).
fn map_edge_factor(posi: usize) -> f32 {
uniform_idx_as_vec2(posi)
.map2(WORLD_SIZE.map(|e| e as i32), |e, sz| {
(sz / 2 - (e - sz / 2).abs()) as f32 / 16.0
})
.reduce_partial_min()
.max(0.0)
.min(1.0)
}
struct GenCdf {
humid_base: InverseCdf,
temp_base: InverseCdf,
alt_base: InverseCdf,
2019-08-22 19:03:42 +00:00
chaos: InverseCdf,
2019-08-21 18:41:32 +00:00
alt_main: InverseCdf,
alt_pre: InverseCdf,
}
pub(crate) struct GenCtx {
2019-06-21 00:53:11 +00:00
pub turb_x_nz: SuperSimplex,
pub turb_y_nz: SuperSimplex,
pub chaos_nz: RidgedMulti,
pub alt_nz: HybridMulti,
pub hill_nz: SuperSimplex,
pub temp_nz: SuperSimplex,
2019-08-18 16:35:27 +00:00
// Fresh groundwater (currently has no effect, but should influence humidity)
2019-06-19 19:58:56 +00:00
pub dry_nz: BasicMulti,
2019-08-18 16:35:27 +00:00
// Humidity noise
2019-08-22 21:25:17 +00:00
pub humid_nz: Billow,
2019-08-19 17:20:54 +00:00
// Small amounts of noise for simulating rough terrain.
pub small_nz: BasicMulti,
pub rock_nz: HybridMulti,
2019-06-10 14:22:59 +00:00
pub cliff_nz: HybridMulti,
pub warp_nz: BasicMulti,
pub tree_nz: BasicMulti,
pub cave_0_nz: SuperSimplex,
pub cave_1_nz: SuperSimplex,
2019-06-09 10:24:18 +00:00
2019-07-09 23:51:54 +00:00
pub structure_gen: StructureGen2d,
pub region_gen: StructureGen2d,
2019-06-21 00:53:11 +00:00
pub cliff_gen: StructureGen2d,
}
pub struct WorldSim {
pub seed: u32,
pub(crate) chunks: Vec<SimChunk>,
2019-06-25 15:59:09 +00:00
pub(crate) locations: Vec<Location>,
pub(crate) gen_ctx: GenCtx,
2019-07-30 14:10:59 +00:00
pub rng: ChaChaRng,
}
impl WorldSim {
pub fn generate(mut seed: u32) -> Self {
2019-08-18 22:46:24 +00:00
let mut seed = &mut seed;
let mut gen_seed = || {
*seed = seed_expan::diffuse(*seed);
*seed
};
let mut gen_ctx = GenCtx {
2019-08-18 22:46:24 +00:00
turb_x_nz: SuperSimplex::new().set_seed(gen_seed()),
turb_y_nz: SuperSimplex::new().set_seed(gen_seed()),
chaos_nz: RidgedMulti::new().set_octaves(7).set_seed(gen_seed()),
hill_nz: SuperSimplex::new().set_seed(gen_seed()),
alt_nz: HybridMulti::new()
2019-06-04 17:27:58 +00:00
.set_octaves(8)
.set_persistence(0.1)
2019-08-18 22:46:24 +00:00
.set_seed(gen_seed()),
temp_nz: SuperSimplex::new().set_seed(gen_seed()),
dry_nz: BasicMulti::new().set_seed(gen_seed()),
small_nz: BasicMulti::new().set_octaves(2).set_seed(gen_seed()),
rock_nz: HybridMulti::new().set_persistence(0.3).set_seed(gen_seed()),
cliff_nz: HybridMulti::new().set_persistence(0.3).set_seed(gen_seed()),
warp_nz: BasicMulti::new().set_octaves(3).set_seed(gen_seed()),
tree_nz: BasicMulti::new()
.set_octaves(12)
.set_persistence(0.75)
2019-08-18 22:46:24 +00:00
.set_seed(gen_seed()),
cave_0_nz: SuperSimplex::new().set_seed(gen_seed()),
cave_1_nz: SuperSimplex::new().set_seed(gen_seed()),
2019-06-09 10:24:18 +00:00
2019-08-18 22:46:24 +00:00
structure_gen: StructureGen2d::new(gen_seed(), 32, 24),
region_gen: StructureGen2d::new(gen_seed(), 400, 96),
cliff_gen: StructureGen2d::new(gen_seed(), 80, 56),
2019-08-18 23:52:26 +00:00
humid_nz: Billow::new()
2019-08-19 01:41:32 +00:00
.set_octaves(12)
2019-08-19 03:22:39 +00:00
.set_persistence(0.125)
2019-08-19 17:20:54 +00:00
.set_frequency(1.0)
2019-08-18 23:52:26 +00:00
// .set_octaves(6)
// .set_persistence(0.5)
.set_seed(gen_seed()),
};
2019-08-21 18:41:32 +00:00
// From 0 to 1.6, but the distribution before the max is from -1 and 1, so there is a 50%
// chance that hill will end up at 0.
2019-08-22 21:25:17 +00:00
let hill = uniform_noise(|_, wposf| {
(0.0 + gen_ctx
2019-08-21 18:41:32 +00:00
.hill_nz
.get((wposf.div(1_500.0)).into_array())
.mul(1.0) as f32
2019-08-22 21:25:17 +00:00
+ gen_ctx
.hill_nz
.get((wposf.div(500.0)).into_array())
.mul(0.3) as f32)
.add(0.3)
.max(0.0)
});
2019-08-21 18:41:32 +00:00
// 0 to 1, hopefully.
2019-08-22 21:25:17 +00:00
let humid_base = uniform_noise(|_, wposf| {
(gen_ctx.humid_nz.get(wposf.div(1024.0).into_array()) as f32)
.add(1.0)
.mul(0.5)
});
2019-08-21 18:41:32 +00:00
// -1 to 1.
2019-08-22 21:25:17 +00:00
let temp_base = uniform_noise(|_, wposf| {
(gen_ctx.temp_nz.get((wposf.div(12000.0)).into_array()) as f32)
});
2019-08-21 18:41:32 +00:00
// "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied value is
// from -0.25 * (CONFIG.mountain_scale * 1.1) to 0.25 * (CONFIG.mountain_scale * 0.9),
// but value here is from -0.275 to 0.225).
2019-08-22 21:25:17 +00:00
let alt_base = uniform_noise(|_, wposf| {
(gen_ctx.alt_nz.get((wposf.div(12_000.0)).into_array()) as f32)
.sub(0.1)
.mul(0.25)
});
2019-08-21 18:41:32 +00:00
// chaos produces a value in [0.1, 1.24]. It is a meta-level factor intended to reflect how
// "chaotic" the region is--how much weird stuff is going on on this terrain.
2019-08-22 21:25:17 +00:00
let chaos = uniform_noise(|posi, wposf| {
(gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array()) as f32)
.add(1.0)
.mul(0.5)
// [0, 1] * [0.25, 1] = [0, 1] (but probably towards the lower end)
.mul(
(gen_ctx.chaos_nz.get((wposf.div(6_000.0)).into_array()) as f32)
.abs()
.max(0.25)
.min(1.0),
)
// Chaos is always increased by a little when we're on a hill (but remember that
// hill is 0 about 50% of the time).
// [0, 1] + 0.15 * [0, 1.6] = [0, 1.24]
.add(0.2 * hill[posi].1)
// [0, 1.24] * [0.35, 1.0] = [0, 1.24].
// Sharply decreases (towards 0.35) when temperature is near desert_temp (from below),
// then saturates just before it actually becomes desert. Otherwise stays at 1.
.mul(
temp_base[posi]
.1
.sub(0.45)
.neg()
.mul(12.0)
.max(0.35)
.min(1.0),
)
// We can't have *no* chaos!
.max(0.1)
});
2019-08-21 18:41:32 +00:00
// This is the extension upwards from the base added to some extra noise from -1 to 1.
// The extra noise is multiplied by alt_main (the mountain part of the extension) clamped to
// be between 0.25 and 1, and made 60% larger (so the extra noise is between -1.6 and 1.6,
// and the final noise is never more than 160% or less than 40% of the original noise,
// depending on altitude).
// Adding this to alt_main thus yields a value between -0.4 (if alt_main = 0 and
// gen_ctx = -1) and 2.6 (if alt_main = 1 and gen_ctx = 1). When the generated small_nz
// value hits -0.625 the value crosses 0, so most of the points are above 0.
//
// Then, we add 1 and divide by 2 to get a value between 0.3 and 1.8.
2019-08-21 18:48:51 +00:00
let alt_main = uniform_noise(|_, wposf| {
2019-08-21 18:41:32 +00:00
// Extension upwards from the base. A positive number from 0 to 1 curved to be maximal
// at 0. Also to be multiplied by CONFIG.mountain_scale.
let alt_main = (gen_ctx.alt_nz.get((wposf.div(2_000.0)).into_array()) as f32)
.abs()
2019-08-22 21:25:17 +00:00
.powf(1.45);
2019-08-21 18:41:32 +00:00
2019-08-22 21:25:17 +00:00
(0.0 + alt_main
+ (gen_ctx.small_nz.get((wposf.div(300.0)).into_array()) as f32)
.mul(alt_main.max(0.25))
.mul(0.2))
2019-08-21 18:41:32 +00:00
.add(1.0)
.mul(0.5)
});
// We ignore sea level because we actually want to be relative to sea level here and want
// things in CONFIG.mountain_scale units, and we are using the version of chaos that doesn't
// know about temperature. Otherwise, this is a correct altitude calculation.
2019-08-22 21:25:17 +00:00
let alt_pre = uniform_noise(|posi, _| {
2019-08-22 19:03:42 +00:00
(alt_base[posi].1 + alt_main[posi].1.mul(chaos[posi].1.max(0.1)))
2019-08-22 21:25:17 +00:00
.mul(map_edge_factor(posi))
});
2019-08-21 18:41:32 +00:00
let gen_cdf = GenCdf {
humid_base,
temp_base,
alt_base,
2019-08-22 19:03:42 +00:00
chaos,
2019-08-21 18:41:32 +00:00
alt_main,
alt_pre,
};
let mut chunks = Vec::new();
2019-08-21 18:41:32 +00:00
for i in 0..WORLD_SIZE.x * WORLD_SIZE.y {
chunks.push(SimChunk::generate(i, &mut gen_ctx, &gen_cdf));
}
2019-06-10 16:28:02 +00:00
let mut this = Self {
2019-08-18 22:46:24 +00:00
seed: *seed,
chunks,
2019-06-25 15:59:09 +00:00
locations: Vec::new(),
gen_ctx,
2019-08-18 22:46:24 +00:00
rng: ChaChaRng::from_seed(seed_expan::rng_state(*seed)),
2019-06-10 16:28:02 +00:00
};
2019-06-18 21:22:31 +00:00
this.seed_elements();
2019-06-10 16:28:02 +00:00
this
}
2019-06-18 21:22:31 +00:00
/// Prepare the world for simulation
pub fn seed_elements(&mut self) {
let mut rng = self.rng.clone();
2019-07-03 19:58:09 +00:00
let cell_size = 16;
2019-06-22 21:44:27 +00:00
let grid_size = WORLD_SIZE / cell_size;
2019-07-03 19:58:09 +00:00
let loc_count = 100;
2019-06-22 21:44:27 +00:00
2019-06-25 15:59:09 +00:00
let mut loc_grid = vec![None; grid_size.product()];
let mut locations = Vec::new();
2019-06-22 21:44:27 +00:00
// Seed the world with some locations
for _ in 0..loc_count {
let cell_pos = Vec2::new(
self.rng.gen::<usize>() % grid_size.x,
self.rng.gen::<usize>() % grid_size.y,
2019-06-18 21:22:31 +00:00
);
2019-06-25 15:59:09 +00:00
let wpos = (cell_pos * cell_size + cell_size / 2)
2019-06-23 19:43:02 +00:00
.map2(Vec2::from(TerrainChunkSize::SIZE), |e, sz: u32| {
2019-06-25 15:59:09 +00:00
e as i32 * sz as i32 + sz as i32 / 2
2019-06-23 19:43:02 +00:00
});
2019-06-22 21:44:27 +00:00
2019-06-25 15:59:09 +00:00
locations.push(Location::generate(wpos, &mut rng));
loc_grid[cell_pos.y * grid_size.x + cell_pos.x] = Some(locations.len() - 1);
}
// Find neighbours
let mut loc_clone = locations
.iter()
.map(|l| l.center)
.enumerate()
.collect::<Vec<_>>();
for i in 0..locations.len() {
let pos = locations[i].center;
loc_clone.sort_by_key(|(_, l)| l.distance_squared(pos));
2019-06-26 00:27:41 +00:00
loc_clone.iter().skip(1).take(2).for_each(|(j, _)| {
locations[i].neighbours.insert(*j);
locations[*j].neighbours.insert(i);
});
2019-06-22 21:44:27 +00:00
}
2019-06-18 21:22:31 +00:00
2019-06-22 21:44:27 +00:00
// Simulate invasion!
let invasion_cycles = 25;
for _ in 0..invasion_cycles {
for i in 0..grid_size.x {
for j in 0..grid_size.y {
2019-06-25 15:59:09 +00:00
if loc_grid[j * grid_size.x + i].is_none() {
2019-06-22 21:44:27 +00:00
const R_COORDS: [i32; 5] = [-1, 0, 1, 0, -1];
let idx = self.rng.gen::<usize>() % 4;
2019-06-23 19:43:02 +00:00
let loc = Vec2::new(i as i32 + R_COORDS[idx], j as i32 + R_COORDS[idx + 1])
.map(|e| e as usize);
2019-06-22 21:44:27 +00:00
2019-06-26 00:27:41 +00:00
loc_grid[j * grid_size.x + i] =
loc_grid.get(loc.y * grid_size.x + loc.x).cloned().flatten();
2019-06-22 21:44:27 +00:00
}
}
}
}
// Place the locations onto the world
let gen = StructureGen2d::new(self.seed, cell_size as u32, cell_size as u32 / 2);
for i in 0..WORLD_SIZE.x {
for j in 0..WORLD_SIZE.y {
let chunk_pos = Vec2::new(i as i32, j as i32);
2019-06-26 00:27:41 +00:00
let block_pos = Vec2::new(
chunk_pos.x * TerrainChunkSize::SIZE.x as i32,
chunk_pos.y * TerrainChunkSize::SIZE.y as i32,
);
2019-07-01 18:40:41 +00:00
let _cell_pos = Vec2::new(i / cell_size, j / cell_size);
2019-06-22 21:44:27 +00:00
// Find the distance to each region
let near = gen.get(chunk_pos);
let mut near = near
.iter()
.map(|(pos, seed)| RegionInfo {
chunk_pos: *pos,
2019-06-23 19:43:02 +00:00
block_pos: pos.map2(Vec2::from(TerrainChunkSize::SIZE), |e, sz: u32| {
e * sz as i32
}),
2019-06-22 21:44:27 +00:00
dist: (pos - chunk_pos).map(|e| e as f32).magnitude(),
seed: *seed,
})
.collect::<Vec<_>>();
// Sort regions based on distance
near.sort_by(|a, b| a.dist.partial_cmp(&b.dist).unwrap());
let nearest_cell_pos = near[0].chunk_pos.map(|e| e as usize) / cell_size;
2019-06-25 15:59:09 +00:00
self.get_mut(chunk_pos).unwrap().location = loc_grid
2019-06-22 21:44:27 +00:00
.get(nearest_cell_pos.y * grid_size.x + nearest_cell_pos.x)
.cloned()
.unwrap_or(None)
2019-06-25 15:59:09 +00:00
.map(|loc_idx| LocationInfo { loc_idx, near });
let town_size = 200;
let in_town = self
.get(chunk_pos)
.unwrap()
.location
.as_ref()
2019-06-26 00:27:41 +00:00
.map(|l| {
locations[l.loc_idx].center.distance_squared(block_pos)
< town_size * town_size
})
2019-06-25 15:59:09 +00:00
.unwrap_or(false);
if in_town {
self.get_mut(chunk_pos).unwrap().spawn_rate = 0.0;
2019-06-18 21:22:31 +00:00
}
}
}
self.rng = rng;
2019-06-25 15:59:09 +00:00
self.locations = locations;
}
2019-06-18 21:22:31 +00:00
pub fn get(&self, chunk_pos: Vec2<i32>) -> Option<&SimChunk> {
if chunk_pos
2019-06-18 21:22:31 +00:00
.map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32)
.reduce_and()
{
Some(&self.chunks[chunk_pos.y as usize * WORLD_SIZE.x + chunk_pos.x as usize])
} else {
None
}
}
2019-06-18 21:22:31 +00:00
pub fn get_mut(&mut self, chunk_pos: Vec2<i32>) -> Option<&mut SimChunk> {
if chunk_pos
.map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32)
.reduce_and()
{
Some(&mut self.chunks[chunk_pos.y as usize * WORLD_SIZE.x + chunk_pos.x as usize])
} else {
None
}
}
pub fn get_base_z(&self, chunk_pos: Vec2<i32>) -> Option<f32> {
self.get(chunk_pos).and_then(|_| {
(0..2)
.map(|i| (0..2).map(move |j| (i, j)))
.flatten()
.map(|(i, j)| {
self.get(chunk_pos + Vec2::new(i, j))
.map(|c| c.get_base_z())
})
.flatten()
.fold(None, |a: Option<f32>, x| a.map(|a| a.min(x)).or(Some(x)))
})
}
pub fn get_interpolated<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
where
T: Copy + Default + Add<Output = T> + Mul<f32, Output = T>,
F: FnMut(&SimChunk) -> T,
{
let pos = pos.map2(TerrainChunkSize::SIZE.into(), |e, sz: u32| {
e as f64 / sz as f64
});
let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T {
let x2 = x * x;
// Catmull-Rom splines
let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5;
let co1 = a + b * -2.5 + c * 2.0 + d * -0.5;
let co2 = a * -0.5 + c * 0.5;
let co3 = b;
co0 * x2 * x + co1 * x2 + co2 * x + co3
};
let mut x = [T::default(); 4];
for (x_idx, j) in (-1..3).enumerate() {
2019-06-19 14:55:26 +00:00
let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?);
2019-06-18 21:22:31 +00:00
let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?);
let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?);
let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?);
x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32);
}
Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32))
}
}
2019-06-04 17:19:40 +00:00
pub struct SimChunk {
pub chaos: f32,
pub alt_base: f32,
pub alt: f32,
pub temp: f32,
2019-06-19 16:18:56 +00:00
pub dryness: f32,
2019-08-18 16:35:27 +00:00
pub humidity: f32,
2019-06-04 17:19:40 +00:00
pub rockiness: f32,
pub is_cliffs: bool,
2019-06-21 00:53:11 +00:00
pub near_cliffs: bool,
2019-06-04 17:19:40 +00:00
pub tree_density: f32,
2019-06-11 18:39:25 +00:00
pub forest_kind: ForestKind,
2019-06-25 15:59:09 +00:00
pub spawn_rate: f32,
2019-06-22 21:44:27 +00:00
pub location: Option<LocationInfo>,
}
#[derive(Copy, Clone)]
pub struct RegionInfo {
pub chunk_pos: Vec2<i32>,
pub block_pos: Vec2<i32>,
pub dist: f32,
pub seed: u32,
}
#[derive(Clone)]
pub struct LocationInfo {
2019-06-25 15:59:09 +00:00
pub loc_idx: usize,
2019-06-22 21:44:27 +00:00
pub near: Vec<RegionInfo>,
2019-06-04 17:19:40 +00:00
}
impl SimChunk {
2019-08-21 18:41:32 +00:00
fn generate(posi: usize, gen_ctx: &mut GenCtx, gen_cdf: &GenCdf) -> Self {
let pos = uniform_idx_as_vec2(posi);
2019-06-18 21:22:31 +00:00
let wposf = (pos * TerrainChunkSize::SIZE.map(|e| e as i32)).map(|e| e as f64);
2019-06-04 17:19:40 +00:00
2019-08-18 16:35:27 +00:00
// FIXME: Currently unused, but should represent fresh groundwater level.
// Should be correlated a little with humidity, somewhat negatively with altitude,
// and very negatively with difference in temperature from zero.
2019-07-01 18:40:41 +00:00
let dryness = gen_ctx.dry_nz.get(
2019-06-19 19:58:56 +00:00
(wposf
.add(Vec2::new(
gen_ctx
.dry_nz
.get((wposf.add(10000.0).div(500.0)).into_array())
* 150.0,
gen_ctx.dry_nz.get((wposf.add(0.0).div(500.0)).into_array()) * 150.0,
))
.div(2_000.0))
.into_array(),
2019-07-01 18:40:41 +00:00
) as f32;
2019-06-19 16:18:56 +00:00
2019-08-21 18:41:32 +00:00
let (_, alt_base) = gen_cdf.alt_base[posi];
let map_edge_factor = map_edge_factor(posi);
2019-08-22 19:03:42 +00:00
let (_, chaos) = gen_cdf.chaos[posi];
2019-08-21 18:41:32 +00:00
let (_, alt_pre) = gen_cdf.alt_main[posi];
let (humid_base, _) = gen_cdf.humid_base[posi];
let (alt_uniform, _) = gen_cdf.alt_pre[posi];
2019-08-19 17:20:54 +00:00
2019-08-20 20:48:22 +00:00
// Take the weighted average of our randomly generated base humidity, the scaled
// negative altitude, and other random variable (to add some noise) to yield the
2019-08-21 18:41:32 +00:00
// final humidity. Note that we are using the "old" version of chaos here.
2019-08-22 21:25:17 +00:00
const HUMID_WEIGHTS: [f32; 2] = [1.0, 1.0];
let humidity = cdf_irwin_hall(&HUMID_WEIGHTS, [humid_base, 1.0 - alt_uniform]);
2019-08-21 18:41:32 +00:00
2019-08-21 21:36:43 +00:00
let (temp_base, temp_old) = gen_cdf.temp_base[posi];
2019-08-21 18:41:32 +00:00
// We also correlate temperature negatively with altitude using different weighting than we
// use for humidity.
const TEMP_WEIGHTS: [f32; 2] = [2.0, 1.0];
2019-08-22 21:25:17 +00:00
let temp = cdf_irwin_hall(&TEMP_WEIGHTS, [temp_base, 1.0 - alt_uniform])
2019-08-21 18:41:32 +00:00
// Convert to [-1, 1]
.sub(0.5)
.mul(2.0);
2019-08-19 17:20:54 +00:00
// Now we can recompute altitude using the correct verison of chaos.
// We multiply by chaos clamped to [0.1, 1.24] to get a value between 0.03 and 2.232 for
// alt_pre, then multiply by CONFIG.mountain_scale and add to the base and sea level to get
// an adjusted value, then multiply the whole thing by map_edge_factor (TODO: compute final bounds).
let alt_base = alt_base.mul(CONFIG.mountain_scale);
2019-08-22 21:25:17 +00:00
let alt = CONFIG
.sea_level
2019-08-19 17:20:54 +00:00
.add(alt_base)
.add(alt_pre.mul(chaos).mul(CONFIG.mountain_scale))
.mul(map_edge_factor);
2019-06-21 00:53:11 +00:00
let cliff = gen_ctx.cliff_nz.get((wposf.div(2048.0)).into_array()) as f32 + chaos * 0.2;
2019-08-22 15:45:47 +00:00
// Logistic regression. Make sure x ∈ (0, 1).
2019-08-22 21:25:17 +00:00
let logit = |x: f32| x.ln() - x.neg().ln_1p();
2019-08-22 15:45:47 +00:00
// 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
let logistic_2_base = 3.0f32.sqrt().mul(f32::consts::FRAC_2_PI);
// Assumes μ = 0, σ = 1
let logistic_cdf = |x: f32| x.div(logistic_2_base).tanh().mul(0.5).add(0.5);
// Weighted logit sum.
let f = |humidity, density| logistic_cdf(logit(humidity) + 0.5 * logit(density));
// No trees in the ocean or with zero humidity (currently)
2019-08-22 21:25:17 +00:00
let tree_density = if alt <= CONFIG.sea_level + 5.0 {
0.0
} else {
2019-08-22 15:45:47 +00:00
let tree_density = (gen_ctx.tree_nz.get((wposf.div(1024.0)).into_array()) as f32)
2019-08-18 23:52:26 +00:00
.mul(1.5)
.add(1.0)
.mul(0.5)
.mul(1.2 - chaos * 0.95)
.add(0.05)
.max(0.0)
2019-08-22 15:45:47 +00:00
.min(1.0);
// Tree density should go (by a lot) with humidity.
if humidity <= 0.0 || tree_density <= 0.0 {
0.0
} else if humidity >= 1.0 || tree_density >= 1.0 {
1.0
} else {
logistic_cdf(logit(humidity) + 0.5 * logit(tree_density))
}
2019-08-22 21:25:17 +00:00
// rescale to (-0.9, 0.9)
.sub(0.5)
.mul(0.9)
.add(0.5)
2019-08-22 15:45:47 +00:00
};
2019-08-18 23:52:26 +00:00
2019-06-04 17:19:40 +00:00
Self {
chaos,
alt_base,
alt,
2019-06-11 18:39:25 +00:00
temp,
2019-06-19 16:18:56 +00:00
dryness,
2019-08-18 16:35:27 +00:00
humidity,
2019-06-04 17:19:40 +00:00
rockiness: (gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32)
.sub(0.1)
2019-06-11 18:39:25 +00:00
.mul(1.3)
2019-06-04 17:19:40 +00:00
.max(0.0),
is_cliffs: cliff > 0.5
2019-06-23 19:43:02 +00:00
&& dryness > 0.05
&& alt > CONFIG.sea_level + 5.0
&& dryness.abs() > 0.075,
2019-07-08 23:31:43 +00:00
near_cliffs: cliff > 0.25,
2019-08-18 23:52:26 +00:00
tree_density,
2019-06-11 18:39:25 +00:00
forest_kind: if temp > 0.0 {
if temp > CONFIG.desert_temp {
2019-08-18 16:35:27 +00:00
if humidity > CONFIG.jungle_hum {
// Forests in desert temperatures with extremely high humidity
// should probably be different from palm trees, but we use them
// for now.
ForestKind::Palm
2019-08-22 21:25:17 +00:00
} else if humidity > CONFIG.forest_hum {
2019-08-18 16:35:27 +00:00
ForestKind::Palm
2019-08-22 15:45:47 +00:00
} else if humidity > CONFIG.desert_hum {
2019-08-18 16:35:27 +00:00
// Low but not desert humidity, so we should really have some other
// terrain...
ForestKind::Savannah
2019-08-22 15:45:47 +00:00
} else {
ForestKind::Savannah
2019-08-18 16:35:27 +00:00
}
} else if temp > CONFIG.tropical_temp {
2019-08-18 16:35:27 +00:00
if humidity > CONFIG.jungle_hum {
ForestKind::Mangrove
} else if humidity > CONFIG.forest_hum {
2019-08-19 17:20:54 +00:00
// NOTE: Probably the wrong kind of tree for this climate.
2019-08-18 16:35:27 +00:00
ForestKind::Oak
2019-08-22 15:45:47 +00:00
} else if humidity > CONFIG.desert_hum {
2019-08-19 17:20:54 +00:00
// Low but not desert... need something besides savannah.
2019-08-18 16:35:27 +00:00
ForestKind::Savannah
2019-08-22 15:45:47 +00:00
} else {
ForestKind::Savannah
2019-08-18 16:35:27 +00:00
}
2019-06-11 18:39:25 +00:00
} else {
2019-08-18 16:35:27 +00:00
if humidity > CONFIG.jungle_hum {
// Temperate climate with jungle humidity...
// https://en.wikipedia.org/wiki/Humid_subtropical_climates are often
// densely wooded and full of water. Semitropical rainforests, basically.
2019-08-19 17:20:54 +00:00
// For now we just treet them like other rainforests.
2019-08-21 18:41:32 +00:00
ForestKind::Oak
2019-08-18 16:35:27 +00:00
} else if humidity > CONFIG.forest_hum {
// Moderate climate, moderate humidity.
ForestKind::Oak
2019-08-22 15:45:47 +00:00
} else if humidity > CONFIG.desert_hum {
2019-08-18 16:35:27 +00:00
// With moderate temperature and low humidity, we should probably see
// something different from savannah, but oh well...
ForestKind::Savannah
2019-08-22 15:45:47 +00:00
} else {
ForestKind::Savannah
2019-08-18 16:35:27 +00:00
}
2019-06-11 18:39:25 +00:00
}
} else {
2019-08-18 16:35:27 +00:00
// For now we don't take humidity into account for cold climates (but we really
2019-08-19 01:01:11 +00:00
// should!) except that we make sure we only have snow pines when there is snow.
2019-08-19 17:20:54 +00:00
if temp <= CONFIG.snow_temp && humidity > CONFIG.forest_hum {
2019-06-11 18:39:25 +00:00
ForestKind::SnowPine
2019-08-22 15:45:47 +00:00
} else if humidity > CONFIG.desert_hum {
ForestKind::Pine
2019-08-19 01:01:11 +00:00
} else {
2019-08-22 15:45:47 +00:00
// Should really have something like tundra.
2019-08-19 01:01:11 +00:00
ForestKind::Pine
2019-06-11 18:39:25 +00:00
}
},
2019-06-25 15:59:09 +00:00
spawn_rate: 1.0,
2019-06-10 16:28:02 +00:00
location: None,
2019-06-04 17:19:40 +00:00
}
}
pub fn get_base_z(&self) -> f32 {
self.alt - self.chaos * 50.0 - 16.0
2019-06-04 17:19:40 +00:00
}
2019-06-18 21:22:31 +00:00
2019-06-25 15:59:09 +00:00
pub fn get_name(&self, world: &WorldSim) -> Option<String> {
if let Some(loc) = &self.location {
2019-06-26 00:27:41 +00:00
Some(world.locations[loc.loc_idx].name().to_string())
2019-06-25 15:59:09 +00:00
} else {
None
}
2019-06-18 21:22:31 +00:00
}
pub fn get_biome(&self) -> BiomeKind {
if self.alt < CONFIG.sea_level {
BiomeKind::Ocean
} else if self.chaos > 0.6 {
BiomeKind::Mountain
} else if self.temp > CONFIG.desert_temp {
BiomeKind::Desert
} else if self.temp < CONFIG.snow_temp {
BiomeKind::Snowlands
} else if self.tree_density > 0.65 {
BiomeKind::Forest
} else {
BiomeKind::Grassland
}
}
2019-06-04 17:19:40 +00:00
}