2019-11-19 18:34:52 +00:00
mod diffusion ;
2019-10-16 11:39:41 +00:00
mod erosion ;
2019-06-10 16:28:02 +00:00
mod location ;
2019-06-25 15:59:09 +00:00
mod settlement ;
2019-08-22 23:31:27 +00:00
mod util ;
2019-06-10 16:28:02 +00:00
2019-06-18 21:22:31 +00:00
// Reexports
2019-11-19 18:34:52 +00:00
pub use self ::diffusion ::diffusion ;
2019-10-16 11:39:41 +00:00
pub use self ::erosion ::{
2019-12-03 18:14:29 +00:00
Alt , do_erosion , fill_sinks , get_drainage , get_lakes , get_rivers , RiverData , RiverKind ,
2019-10-16 11:39:41 +00:00
} ;
2019-06-18 21:22:31 +00:00
pub use self ::location ::Location ;
2019-06-25 15:59:09 +00:00
pub use self ::settlement ::Settlement ;
2019-10-16 11:39:41 +00:00
pub use self ::util ::{
2019-11-19 18:34:52 +00:00
cdf_irwin_hall , downhill , get_oceans , HybridMulti as HybridMulti_ , local_cells , map_edge_factor , neighbors ,
ScaleBias ,
2019-10-16 11:39:41 +00:00
uniform_idx_as_vec2 , uniform_noise , uphill , vec2_as_uniform_idx , InverseCdf ,
2019-08-25 15:49:33 +00:00
} ;
2019-06-18 21:22:31 +00:00
2019-06-22 21:44:27 +00:00
use crate ::{
all ::ForestKind ,
2019-08-24 22:57:55 +00:00
column ::ColumnGen ,
2019-08-23 21:33:14 +00:00
generator ::TownState ,
2019-10-16 11:39:41 +00:00
util ::{ seed_expan , FastNoise , RandomField , Sampler , StructureGen2d } ,
2019-06-22 21:44:27 +00:00
CONFIG ,
} ;
2019-06-18 21:22:31 +00:00
use common ::{
terrain ::{ BiomeKind , TerrainChunkSize } ,
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
vol ::RectVolSize ,
2019-06-18 21:22:31 +00:00
} ;
2019-08-22 21:25:17 +00:00
use noise ::{
2019-11-25 03:47:33 +00:00
BasicMulti , Billow , Fbm , HybridMulti , MultiFractal , NoiseFn , RangeFunction ,
RidgedMulti , Seedable , SuperSimplex , Worley ,
2019-08-22 21:25:17 +00:00
} ;
2019-10-16 11:39:41 +00:00
use num ::{ Float , Signed } ;
2019-07-30 14:10:59 +00:00
use rand ::{ Rng , SeedableRng } ;
use rand_chacha ::ChaChaRng ;
2019-10-16 11:39:41 +00:00
use rayon ::prelude ::* ;
2019-08-18 16:35:27 +00:00
use std ::{
2019-08-24 13:23:42 +00:00
collections ::HashMap ,
2019-10-16 11:39:41 +00:00
f32 , f64 ,
2019-08-18 16:35:27 +00:00
ops ::{ Add , Div , Mul , Neg , Sub } ,
2019-08-23 21:33:14 +00:00
sync ::Arc ,
2019-08-18 16:35:27 +00:00
} ;
2019-06-09 10:24:18 +00:00
use vek ::* ;
2019-05-20 02:53:04 +00:00
2019-10-16 11:39:41 +00:00
// NOTE: I suspect this is too small (1024 * 16 * 1024 * 16 * 8 doesn't fit in an i32), but we'll see
// what happens, I guess! We could always store sizes >> 3. I think 32 or 64 is the absolute
// limit though, and would require substantial changes. Also, 1024 * 16 * 1024 * 16 is no longer
// cleanly representable in f32 (that stops around 1024 * 4 * 1024 * 4, for signed floats anyway)
// but I think that is probably less important since I don't think we actually cast a chunk id to
// float, just coordinates... could be wrong though!
2019-11-11 17:14:58 +00:00
pub const WORLD_SIZE : Vec2 < usize > = Vec2 {
2019-12-03 01:07:44 +00:00
x : 1024 ,
y : 1024 ,
2019-11-11 17:14:58 +00:00
} ;
2019-05-18 08:59:58 +00:00
2019-08-22 21:48:13 +00:00
/// A structure that holds cached noise values and cumulative distribution functions for the input
/// that led to those values. See the definition of InverseCdf for a description of how to
/// interpret the types of its fields.
2019-08-21 18:41:32 +00:00
struct GenCdf {
humid_base : InverseCdf ,
temp_base : InverseCdf ,
2019-08-22 19:03:42 +00:00
chaos : InverseCdf ,
2019-12-03 18:14:29 +00:00
alt : Box < [ Alt ] > ,
basement : Box < [ Alt ] > ,
2019-10-16 11:39:41 +00:00
water_alt : Box < [ f32 ] > ,
dh : Box < [ isize ] > ,
/// NOTE: Until we hit 4096 × 4096, this should suffice since integers with an absolute value
/// under 2^24 can be exactly represented in an f32.
flux : Box < [ f32 ] > ,
pure_flux : InverseCdf ,
alt_no_water : InverseCdf ,
rivers : Box < [ RiverData ] > ,
2019-08-21 18:41:32 +00:00
}
2019-11-11 17:14:58 +00:00
pub ( crate ) struct GenCtx {
2019-06-21 00:53:11 +00:00
pub turb_x_nz : SuperSimplex ,
pub turb_y_nz : SuperSimplex ,
2019-06-06 14:52:29 +00:00
pub chaos_nz : RidgedMulti ,
2019-11-19 18:34:52 +00:00
pub alt_nz : HybridMulti_ ,
2019-06-06 14:52:29 +00:00
pub hill_nz : SuperSimplex ,
2019-11-06 11:19:50 +00:00
pub temp_nz : Fbm ,
2019-08-18 16:35:27 +00:00
// Humidity noise
2019-08-22 21:25:17 +00:00
pub humid_nz : Billow ,
2019-08-19 17:20:54 +00:00
// Small amounts of noise for simulating rough terrain.
2019-06-06 14:52:29 +00:00
pub small_nz : BasicMulti ,
pub rock_nz : HybridMulti ,
2019-06-10 14:22:59 +00:00
pub cliff_nz : HybridMulti ,
2019-08-23 23:25:01 +00:00
pub warp_nz : FastNoise ,
2019-06-06 14:52:29 +00:00
pub tree_nz : BasicMulti ,
pub cave_0_nz : SuperSimplex ,
pub cave_1_nz : SuperSimplex ,
2019-06-09 10:24:18 +00:00
2019-07-09 23:51:54 +00:00
pub structure_gen : StructureGen2d ,
pub region_gen : StructureGen2d ,
2019-06-21 00:53:11 +00:00
pub cliff_gen : StructureGen2d ,
2019-08-23 23:25:01 +00:00
pub fast_turb_x_nz : FastNoise ,
pub fast_turb_y_nz : FastNoise ,
2019-08-24 13:23:42 +00:00
pub town_gen : StructureGen2d ,
2019-11-22 02:55:19 +00:00
pub river_seed : RandomField ,
pub rock_strength_nz : HybridMulti_ ,
2019-11-25 03:47:33 +00:00
pub uplift_nz : Worley ,
2019-05-29 13:49:27 +00:00
}
2019-12-03 01:07:44 +00:00
pub struct WorldOpts {
/// Set to false to disable seeding elements during worldgen.
pub seed_elements : bool ,
}
impl Default for WorldOpts {
fn default ( ) -> Self {
Self {
seed_elements : true ,
}
}
}
2019-05-18 08:59:58 +00:00
pub struct WorldSim {
2019-05-20 02:53:04 +00:00
pub seed : u32 ,
2019-06-06 14:52:29 +00:00
pub ( crate ) chunks : Vec < SimChunk > ,
2019-06-25 15:59:09 +00:00
pub ( crate ) locations : Vec < Location > ,
2019-06-06 14:52:29 +00:00
pub ( crate ) gen_ctx : GenCtx ,
2019-07-30 14:10:59 +00:00
pub rng : ChaChaRng ,
2019-05-18 08:59:58 +00:00
}
impl WorldSim {
2019-12-03 01:07:44 +00:00
pub fn generate ( seed : u32 , opts : WorldOpts ) -> Self {
2019-09-17 14:05:08 +00:00
let mut rng = ChaChaRng ::from_seed ( seed_expan ::rng_state ( seed ) ) ;
2019-11-19 18:34:52 +00:00
let continent_scale = 5_000.0 f64 /* 32768.0 */ . div ( 32.0 ) . mul ( TerrainChunkSize ::RECT_SIZE . x as f64 ) ;
2019-12-03 01:07:44 +00:00
let rock_lacunarity = 0.5 /* 2.0 */ /* HybridMulti::DEFAULT_LACUNARITY */ ;
2019-08-11 11:35:04 +00:00
2019-10-16 11:39:41 +00:00
let gen_ctx = GenCtx {
2019-09-17 14:05:08 +00:00
turb_x_nz : SuperSimplex ::new ( ) . set_seed ( rng . gen ( ) ) ,
turb_y_nz : SuperSimplex ::new ( ) . set_seed ( rng . gen ( ) ) ,
2019-11-11 17:14:58 +00:00
chaos_nz : RidgedMulti ::new ( )
2019-11-19 18:34:52 +00:00
. set_octaves ( /* 7 */ /* 3 */ /* 7 */ /* 3 */ 7 )
2019-11-11 17:14:58 +00:00
. set_frequency (
2019-12-03 01:07:44 +00:00
// RidgedMulti::DEFAULT_FREQUENCY * (5_000.0 / continent_scale)
2019-11-11 17:14:58 +00:00
/* RidgedMulti::DEFAULT_FREQUENCY * */ 3_000.0 * 8.0 / continent_scale ,
)
2019-11-19 18:34:52 +00:00
// .set_persistence(RidgedMulti::DEFAULT_LACUNARITY.powf(-(1.0 - 0.5)))
2019-11-11 17:14:58 +00:00
. set_seed ( rng . gen ( ) ) ,
2019-09-17 14:05:08 +00:00
hill_nz : SuperSimplex ::new ( ) . set_seed ( rng . gen ( ) ) ,
2019-11-19 18:34:52 +00:00
alt_nz : HybridMulti_ ::new ( )
. set_octaves ( /* 3 */ /* 2 */ /* 8 */ /* 3 */ 8 )
2019-11-11 17:14:58 +00:00
// 1/2048*32*1024 = 16
. set_frequency (
/* HybridMulti::DEFAULT_FREQUENCY */
2019-11-19 18:34:52 +00:00
// (2^8*(10000/5000/10000))*32 = per-chunk
2019-11-11 17:14:58 +00:00
( 10_000.0 /* * 2.0 */ / continent_scale ) as f64 ,
)
// .set_frequency(1.0 / ((1 << 0) as f64))
// .set_lacunarity(1.0)
2019-11-19 18:34:52 +00:00
// persistence = lacunarity^(-(1.0 - fractal increment))
2019-12-03 01:07:44 +00:00
. set_lacunarity ( HybridMulti_ ::DEFAULT_LACUNARITY )
. set_persistence ( HybridMulti_ ::DEFAULT_LACUNARITY . powf ( - ( 1.0 - /* 0.75 */ 0.0 ) ) )
2019-11-19 18:34:52 +00:00
// .set_persistence(/*0.5*//*0.5*/0.5 + 1.0 / ((1 << 6) as f64))
// .set_offset(/*0.7*//*0.5*//*0.75*/0.7)
2019-12-03 01:07:44 +00:00
. set_offset ( /* 0.7 */ /* 0.5 */ /* 0.75 */ 0.0 )
2019-09-17 14:05:08 +00:00
. set_seed ( rng . gen ( ) ) ,
2019-11-06 11:19:50 +00:00
//temp_nz: SuperSimplex::new().set_seed(rng.gen()),
2019-11-11 17:14:58 +00:00
temp_nz : Fbm ::new ( )
. set_octaves ( 6 )
. set_persistence ( 0.5 )
// 1/2^14*1024*32 = 2
// 1/(2^14-2^12)*1024*32 = 8/3 ~= 3
. set_frequency (
/* 4.0 / /* (1024.0 * 4.0 /* * 8.0 */ ) */ /* 32.0 */ ((1 << 6) * (WORLD_SIZE.x)) as f64 */
1.0 / ( ( ( 1 < < 6 ) * 64 ) as f64 ) ,
)
// .set_frequency(1.0 / 1024.0)
// .set_frequency(1.0 / (1024.0 * 8.0))
. set_lacunarity ( 2.0 )
. set_seed ( rng . gen ( ) ) ,
2019-11-06 11:19:50 +00:00
2019-11-07 20:25:30 +00:00
small_nz : BasicMulti ::new ( ) . set_octaves ( 2 ) . set_seed ( rng . gen ( ) ) ,
2019-09-17 14:05:08 +00:00
rock_nz : HybridMulti ::new ( ) . set_persistence ( 0.3 ) . set_seed ( rng . gen ( ) ) ,
2019-11-07 20:25:30 +00:00
cliff_nz : HybridMulti ::new ( ) . set_persistence ( 0.3 ) . set_seed ( rng . gen ( ) ) ,
warp_nz : FastNoise ::new ( rng . gen ( ) ) , //BasicMulti::new().set_octaves(3).set_seed(gen_seed()),
2019-05-25 07:36:11 +00:00
tree_nz : BasicMulti ::new ( )
2019-11-07 20:25:30 +00:00
. set_octaves ( 12 )
. set_persistence ( 0.75 )
2019-09-17 14:05:08 +00:00
. set_seed ( rng . gen ( ) ) ,
cave_0_nz : SuperSimplex ::new ( ) . set_seed ( rng . gen ( ) ) ,
cave_1_nz : SuperSimplex ::new ( ) . set_seed ( rng . gen ( ) ) ,
2019-06-09 10:24:18 +00:00
2019-09-25 22:53:43 +00:00
structure_gen : StructureGen2d ::new ( rng . gen ( ) , 32 , 16 ) ,
2019-09-17 14:05:08 +00:00
region_gen : StructureGen2d ::new ( rng . gen ( ) , 400 , 96 ) ,
cliff_gen : StructureGen2d ::new ( rng . gen ( ) , 80 , 56 ) ,
2019-08-18 23:52:26 +00:00
humid_nz : Billow ::new ( )
2019-11-06 11:19:50 +00:00
. set_octaves ( 9 )
2019-11-07 20:25:30 +00:00
. set_persistence ( 0.4 )
2019-11-06 11:19:50 +00:00
. set_frequency ( 0.2 )
2019-08-18 23:52:26 +00:00
// .set_octaves(6)
// .set_persistence(0.5)
2019-09-17 14:05:08 +00:00
. set_seed ( rng . gen ( ) ) ,
2019-08-23 23:25:01 +00:00
2019-09-17 14:05:08 +00:00
fast_turb_x_nz : FastNoise ::new ( rng . gen ( ) ) ,
fast_turb_y_nz : FastNoise ::new ( rng . gen ( ) ) ,
2019-08-24 13:23:42 +00:00
2019-09-17 14:05:08 +00:00
town_gen : StructureGen2d ::new ( rng . gen ( ) , 2048 , 1024 ) ,
2019-11-22 02:55:19 +00:00
river_seed : RandomField ::new ( rng . gen ( ) ) ,
rock_strength_nz : /* Fbm */ HybridMulti_ /* BasicMulti */ /* Fbm */ ::new ( )
2019-12-03 01:07:44 +00:00
. set_octaves ( /* 6 */ /* 5 */ /* 4 */ /* 5 */ /* 4 */ /* 6 */ 10 )
. set_lacunarity ( rock_lacunarity )
2019-11-19 18:34:52 +00:00
// persistence = lacunarity^(-(1.0 - fractal increment))
2019-11-22 02:55:19 +00:00
// NOTE: In paper, fractal increment is roughly 0.25.
2019-12-03 01:07:44 +00:00
. set_offset ( 0.0 )
2019-11-22 02:55:19 +00:00
. set_persistence ( /* 0.9 */ /* 2.0 */ /* 1.5 */ /* HybridMulti::DEFAULT_LACUNARITY */ rock_lacunarity . powf ( - ( 1.0 - 0.25 /* 0.9 */ ) ) )
2019-11-19 18:34:52 +00:00
// 256*32/2^4
// (0.5^(-(1.0-0.9)))^4/256/32*2^4*16*32
// (0.5^(-(1.0-0.9)))^4/256/32*2^4*256*4
// (0.5^(-(1.0-0.9)))^1/256/32*2^4*256*4
// (2^(-(1.0-0.9)))^4
// 16.0
2019-12-03 01:07:44 +00:00
. set_frequency ( /* 0.9 */ /* Fbm */ /* HybridMulti_::DEFAULT_FREQUENCY */ 1.0 / ( 8.0 /* 8.0 */ /* 256.0 */ /* 1.0 */ /* 16.0 */ * 32.0 /* TerrainChunkSize::RECT_SIZE.x as f64 */ ) )
2019-11-19 18:34:52 +00:00
// .set_persistence(/*0.9*/ /*2.0*/0.67)
// .set_frequency(/*0.9*/ Fbm::DEFAULT_FREQUENCY / (2.0 * 32.0))
// .set_lacunarity(0.5)
2019-11-22 02:55:19 +00:00
. set_seed ( rng . gen ( ) ) ,
2019-11-25 03:47:33 +00:00
uplift_nz : Worley ::new ( )
. set_seed ( rng . gen ( ) )
. set_frequency ( 1.0 / ( TerrainChunkSize ::RECT_SIZE . x as f64 * 256.0 ) )
2019-12-03 01:07:44 +00:00
// .set_displacement(/*0.5*/0.0)
. set_displacement ( /* 0.5 */ 1.0 )
. set_range_function ( RangeFunction ::Euclidean )
// .enable_range(true),
2019-12-03 18:14:29 +00:00
// g_nz: RidgedMulti::new()
2019-11-22 02:55:19 +00:00
} ;
let river_seed = & gen_ctx . river_seed ;
let rock_strength_nz = & gen_ctx . rock_strength_nz ;
2019-11-19 18:34:52 +00:00
// NOTE: octaves should definitely fit into i32, but we should check anyway to make
// sure.
/* assert!(rock_strength_nz.persistence > 0.0);
let rock_strength_scale = ( 1 .. rock_strength_nz . octaves as i32 )
. map ( | octave | rock_strength_nz . persistence . powi ( octave + 1 ) )
. sum ::< f64 > ( )
// For some reason, this is "scaled" by 3.0.
. mul ( 3.0 ) ;
let rock_strength_nz = ScaleBias ::new ( & rock_strength_nz )
. set_scale ( 1.0 / rock_strength_scale ) ; * /
let height_scale = 1.0 f64 ; // 1.0 / CONFIG.mountain_scale as f64;
2019-12-03 18:14:29 +00:00
let max_erosion_per_delta_t = /* 8.0 */ 64.0 /* 128.0 */ /* 32.0 */ * height_scale ;
2019-11-11 17:14:58 +00:00
let erosion_pow_low = /* 0.25 */ /* 1.5 */ /* 2.0 */ /* 0.5 */ /* 4.0 */ /* 0.25 */ /* 1.0 */ /* 2.0 */ /* 1.5 */ /* 1.5 */ /* 0.35 */ /* 0.43 */ /* 0.5 */ /* 0.45 */ /* 0.37 */ 1.002 ;
let erosion_pow_high = /* 1.5 */ /* 1.0 */ /* 0.55 */ /* 0.51 */ /* 2.0 */ 1.002 ;
let erosion_center = /* 0.45 */ /* 0.75 */ /* 0.75 */ /* 0.5 */ /* 0.75 */ 0.5 ;
2019-12-03 18:14:29 +00:00
let n_steps = 50 ; // /*100*//*50*//*100*//*100*//*50*//*25*/25/*100*//*37*/;//150;//37/*100*/;//50;//50;//37;//50;//37; // /*37*//*29*//*40*//*150*/37; //150;//200;
let n_small_steps = 25 ; //50;//8;//8;//8;//8;//8; // 8
2019-12-03 01:07:44 +00:00
// Logistic regression. Make sure x ∈ (0, 1).
let logit = | x : f64 | x . ln ( ) - ( - x ) . ln_1p ( ) ;
// 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
let logistic_2_base = 3.0 f64 . sqrt ( ) * f64 ::consts ::FRAC_2_PI ;
let logistic_base = /* 3.0f64.sqrt() * f64::consts::FRAC_1_PI */ 1.0 f64 ;
// Assumes μ = 0, σ = 1
let logistic_cdf = | x : f64 | ( x / logistic_2_base ) . tanh ( ) * 0.5 + 0.5 ;
let exp_inverse_cdf = | x : f64 /* , pow: f64 */ | - ( - x ) . ln_1p ( ) /* / ln(pow) */ ;
// 2 / pi * ln(tan(pi/2 * p))
let hypsec_inverse_cdf = | x : f64 | f64 ::consts ::FRAC_2_PI * ( ( x * f64 ::consts ::FRAC_PI_2 ) . tan ( ) . ln ( ) ) ;
let min_epsilon =
1.0 / ( WORLD_SIZE . x as f64 * WORLD_SIZE . y as f64 ) . max ( f64 ::EPSILON as f64 * 0.5 ) ;
let max_epsilon = ( 1.0 - 1.0 / ( WORLD_SIZE . x as f64 * WORLD_SIZE . y as f64 ) )
. min ( 1.0 - f64 ::EPSILON as f64 * 0.5 ) ;
2019-11-19 18:34:52 +00:00
// fractal dimension should be between 0 and 0.9999...
// (lacunarity^octaves)^(-H) = persistence^(octaves)
// lacunarity^(octaves*-H) = persistence^(octaves)
// e^(-octaves*H*ln(lacunarity)) = e^(octaves * ln(persistence))
// -octaves * H * ln(lacunarity) = octaves * ln(persistence)
// -H = ln(persistence) / ln(lacunarity)
// H = -ln(persistence) / ln(lacunarity)
// ln(persistence) = -H * ln(lacunarity)
// persistence = lacunarity^(-H)
//
// -ln(2^(-0.25))/ln(2) = 0.25
//
// -ln(2^(-0.1))/ln(2)
//
// 0 = -ln(persistence) / ln(lacunarity)
// 0 = ln(persistence) => persistence = e^0 = 1
//
// 1 = -ln(persistence) / ln(lacunarity)
// -ln(lacunarity) = ln(persistence)
// e^(-ln(lacunarity)) = e^(ln(persistence))
// 1 / lacunarity = persistence
//
// Ergo, we should not set fractal dimension to anything not between 1 / lacunarity and 1.
//
// dimension = -ln(0.25)/ln(2*pi/3) = 1.875
//
// (2*pi/3^1)^(-(-ln(0.25)/ln(2*pi/3))) = 0.25
//
// Default should be at most 1 / lacunarity.
//
// (2 * pi / 3)^(-ln(0.25)/ln(2*pi/3))
//
// -ln(0.25)/ln(2*pi/3) = 1.88
//
// (2 * pi / 3)^(-ln(0.25)/ln(2*pi/3))
//
// 2 * pi / 3
//
// 2.0^(2(-ln(1.5)/ln(2)))
// (1 / 1.5)^(2)
2019-11-11 17:14:58 +00:00
2019-11-07 20:25:30 +00:00
// No NaNs in these uniform vectors, since the original noise value always returns Some.
2019-10-16 11:39:41 +00:00
let ( ( alt_base , _ ) , ( chaos , _ ) ) = rayon ::join (
| | {
uniform_noise ( | _ , wposf | {
// "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied value
// is from -0.35 * (CONFIG.mountain_scale * 1.05) to
// 0.35 * (CONFIG.mountain_scale * 0.95), but value here is from -0.3675 to 0.3325).
Some (
( gen_ctx
. alt_nz
. get ( ( wposf . div ( 10_000.0 ) ) . into_array ( ) )
. min ( 1.0 )
2019-11-19 18:34:52 +00:00
. max ( - 1.0 )
/* .mul(0.25)
. add ( 0.125 ) * / )
// .add(0.5)
2019-12-03 01:07:44 +00:00
. sub ( 0.05 )
2019-11-19 18:34:52 +00:00
// .add(0.05)
2019-12-03 01:07:44 +00:00
// .add(0.075)
2019-11-11 17:14:58 +00:00
. mul ( 0.35 ) , /* -0.0175 */
2019-10-16 11:39:41 +00:00
)
} )
} ,
| | {
uniform_noise ( | _ , wposf | {
2019-11-11 17:14:58 +00:00
// From 0 to 1.6, but the distribution before the max is from -1 and 1.6, so there is
// a 50% chance that hill will end up at 0.3 or lower, and probably a very high
// change it will be exactly 0.
let hill = ( 0.0 f64
//.add(0.0)
2019-10-16 11:39:41 +00:00
+ gen_ctx
. hill_nz
2019-11-19 18:34:52 +00:00
. get ( ( wposf . mul ( 32.0 ) . div ( TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ) . div ( 1_500.0 ) ) . into_array ( ) )
2019-10-16 11:39:41 +00:00
. min ( 1.0 )
. max ( - 1.0 )
. mul ( 1.0 )
+ gen_ctx
. hill_nz
2019-11-19 18:34:52 +00:00
. get ( ( wposf . mul ( 32.0 ) . div ( TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ) . div ( 400.0 ) ) . into_array ( ) )
2019-10-16 11:39:41 +00:00
. min ( 1.0 )
. max ( - 1.0 )
2019-11-07 20:25:30 +00:00
. mul ( 0.3 ) )
2019-10-16 11:39:41 +00:00
. add ( 0.3 )
. max ( 0.0 ) ;
// chaos produces a value in [0.12, 1.24]. It is a meta-level factor intended to
// reflect how "chaotic" the region is--how much weird stuff is going on on this
// terrain.
Some (
( ( gen_ctx
. chaos_nz
. get ( ( wposf . div ( 3_000.0 ) ) . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 ) )
. add ( 1.0 )
. mul ( 0.5 )
// [0, 1] * [0.4, 1] = [0, 1] (but probably towards the lower end)
2019-11-11 17:14:58 +00:00
//.mul(1.0)
2019-10-16 11:39:41 +00:00
. mul (
( gen_ctx
. chaos_nz
. get ( ( wposf . div ( 6_000.0 ) ) . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 ) )
2019-08-24 19:32:07 +00:00
. abs ( )
2019-09-24 17:56:51 +00:00
. max ( 0.4 )
2019-08-24 19:32:07 +00:00
. min ( 1.0 ) ,
2019-10-16 11:39:41 +00:00
)
// Chaos is always increased by a little when we're on a hill (but remember
2019-11-11 17:14:58 +00:00
// that hill is 0.3 or less about 50% of the time).
2019-10-16 11:39:41 +00:00
// [0, 1] + 0.15 * [0, 1.6] = [0, 1.24]
. add ( 0.2 * hill )
// We can't have *no* chaos!
. max ( 0.12 ) ) as f32 ,
2019-08-24 19:32:07 +00:00
)
2019-10-16 11:39:41 +00:00
} )
} ,
) ;
2019-08-21 18:41:32 +00:00
// We ignore sea level because we actually want to be relative to sea level here and want
2019-08-22 22:57:42 +00:00
// things in CONFIG.mountain_scale units, but otherwise this is a correct altitude
// calculation. Note that this is using the "unadjusted" temperature.
2019-11-07 20:25:30 +00:00
//
// No NaNs in these uniform vectors, since the original noise value always returns Some.
2019-11-11 17:14:58 +00:00
let ( alt_old , /* alt_old_inverse */ _ ) = uniform_noise ( | posi , wposf | {
2019-10-16 11:39:41 +00:00
// This is the extension upwards from the base added to some extra noise from -1 to
// 1.
//
2019-08-22 22:57:42 +00:00
// The extra noise is multiplied by alt_main (the mountain part of the extension)
2019-10-16 11:39:41 +00:00
// powered to 0.8 and clamped to [0.15, 1], to get a value between [-1, 1] again.
//
// The sides then receive the sequence (y * 0.3 + 1.0) * 0.4, so we have
// [-1*1*(1*0.3+1)*0.4, 1*(1*0.3+1)*0.4] = [-0.52, 0.52].
//
2019-08-22 22:57:42 +00:00
// Adding this to alt_main thus yields a value between -0.4 (if alt_main = 0 and
2019-10-16 11:39:41 +00:00
// gen_ctx = -1, 0+-1*(0*.3+1)*0.4) and 1.52 (if alt_main = 1 and gen_ctx = 1).
// Most of the points are above 0.
2019-08-22 22:57:42 +00:00
//
2019-10-16 11:39:41 +00:00
// Next, we add again by a sin of alt_main (between [-1, 1])^pow, getting
// us (after adjusting for sign) another value between [-1, 1], and then this is
// multiplied by 0.045 to get [-0.045, 0.045], which is added to [-0.4, 0.52] to get
// [-0.445, 0.565].
2019-08-22 22:57:42 +00:00
let alt_main = {
// Extension upwards from the base. A positive number from 0 to 1 curved to be
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
2019-10-16 11:39:41 +00:00
let alt_main = ( gen_ctx
. alt_nz
. get ( ( wposf . div ( 2_000.0 ) ) . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 ) )
. abs ( )
2019-11-19 18:34:52 +00:00
// 0.5
2019-10-16 11:39:41 +00:00
. powf ( 1.35 ) ;
fn spring ( x : f64 , pow : f64 ) -> f64 {
2019-09-24 17:56:51 +00:00
x . abs ( ) . powf ( pow ) * x . signum ( )
}
2019-11-11 17:14:58 +00:00
( 0.0 + alt_main /* 0.4 */
2019-10-16 11:39:41 +00:00
+ ( gen_ctx
. small_nz
2019-11-19 18:34:52 +00:00
. get ( ( wposf . mul ( 32.0 ) . div ( TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ) . div ( 300.0 ) ) . into_array ( ) )
2019-10-16 11:39:41 +00:00
. min ( 1.0 )
. max ( - 1.0 ) )
. mul ( alt_main . powf ( 0.8 ) . max ( /* 0.25 */ 0.15 ) )
. mul ( 0.3 )
. add ( 1.0 )
. mul ( 0.4 )
2019-11-19 18:34:52 +00:00
// 0.52
2019-09-24 17:56:51 +00:00
+ spring ( alt_main . abs ( ) . powf ( 0.5 ) . min ( 0.75 ) . mul ( 60.0 ) . sin ( ) , 4.0 ) . mul ( 0.045 ) )
2019-08-22 22:57:42 +00:00
} ;
// Now we can compute the final altitude using chaos.
2019-10-16 11:39:41 +00:00
// We multiply by chaos clamped to [0.1, 1.24] to get a value between [0.03, 2.232]
// for alt_pre, then multiply by CONFIG.mountain_scale and add to the base and sea
// level to get an adjusted value, then multiply the whole thing by map_edge_factor
2019-08-22 22:57:42 +00:00
// (TODO: compute final bounds).
2019-10-16 11:39:41 +00:00
//
// [-.3675, .3325] + [-0.445, 0.565] * [0.12, 1.24]^1.2
// ~ [-.3675, .3325] + [-0.445, 0.565] * [_, 1.30]
// = [-.3675, .3325] + ([-0.5785, 0.7345])
// = [-0.946, 1.067]
2019-09-24 17:56:51 +00:00
Some (
2019-11-11 17:14:58 +00:00
( ( alt_base [ posi ] . 1
+ alt_main /* 1.0 */
. mul (
( chaos [ posi ] . 1 as f64 ) /* .mul(2.0).sub(1.0).max(0.0) */
. powf ( 1.2 ) , /* 0.25) */ /* 0.285 */
) /* 0.1425 */ )
. mul ( map_edge_factor ( posi ) as f64 )
. add (
( CONFIG . sea_level as f64 )
. div ( CONFIG . mountain_scale as f64 )
. mul ( map_edge_factor ( posi ) as f64 ) ,
)
. sub ( ( CONFIG . sea_level as f64 ) . div ( CONFIG . mountain_scale as f64 ) ) )
as f32 ,
)
/* Some(
// FIXME: May fail on big-endian platforms.
( ( alt_base [ posi ] . 1 as f64 + 0.5 + ( /* alt_main. /* to_le_bytes()[7] */ to_bits() & 1) as f64 * ((1.0 / CONFIG.mountain_scale as f64).powf(1.0 / erosion_pow_low)) + */ alt_main / CONFIG . mountain_scale as f64 * 128.0 ) . mul ( 0.1 ) . powf ( 1.2 ) )
2019-10-16 11:39:41 +00:00
. mul ( map_edge_factor ( posi ) as f64 )
. add (
( CONFIG . sea_level as f64 )
. div ( CONFIG . mountain_scale as f64 )
. mul ( map_edge_factor ( posi ) as f64 ) ,
)
. sub ( ( CONFIG . sea_level as f64 ) . div ( CONFIG . mountain_scale as f64 ) ) )
as f32 ,
2019-11-11 17:14:58 +00:00
) * /
2019-08-24 19:13:32 +00:00
} ) ;
2019-11-07 20:25:30 +00:00
// Calculate oceans.
2019-11-19 18:34:52 +00:00
let old_height = | posi : usize | alt_old [ posi ] . 1 * CONFIG . mountain_scale * height_scale as f32 ;
/* let is_ocean = (0..WORLD_SIZE.x * WORLD_SIZE.y)
. into_par_iter ( )
. map ( | i | map_edge_factor ( i ) = = 0.0 )
. collect ::< Vec < _ > > ( ) ; * /
2019-11-07 20:25:30 +00:00
let is_ocean = get_oceans ( old_height ) ;
let is_ocean_fn = | posi : usize | is_ocean [ posi ] ;
2019-12-03 01:07:44 +00:00
let uplift_nz_dist = gen_ctx . uplift_nz
. clone ( )
. enable_range ( true ) ;
2019-11-11 17:14:58 +00:00
// Recalculate altitudes without oceans.
2019-11-07 20:25:30 +00:00
// NaNs in these uniform vectors wherever pure_water() returns true.
2019-12-03 01:07:44 +00:00
let ( ( alt_old_no_ocean , alt_old_inverse ) , ( uplift_uniform , _ ) ) = rayon ::join (
| | {
uniform_noise ( | posi , _ | {
if is_ocean_fn ( posi ) {
None
} else {
Some ( old_height ( posi ) /* .abs() */ )
}
} )
} ,
| | {
uniform_noise ( | posi , wposf | {
if is_ocean_fn ( posi ) {
None
} else {
let turb_wposf =
wposf . div ( TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ) . div ( 64.0 ) ;
let turb = Vec2 ::new (
gen_ctx . turb_x_nz . get ( turb_wposf . into_array ( ) ) ,
gen_ctx . turb_y_nz . get ( turb_wposf . into_array ( ) ) ,
) * /* 64.0 */ 32.0 * TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ;
// let turb = Vec2::zero();
let turb_wposf = wposf + turb ;
let turb_wposi = turb_wposf
. map2 ( TerrainChunkSize ::RECT_SIZE , | e , f | e / f as f64 )
. map2 ( WORLD_SIZE , | e , f | ( e as i32 ) . max ( f as i32 - 1 ) . min ( 0 ) ) ;
let turb_posi = vec2_as_uniform_idx ( turb_wposi ) ;
let udist = uplift_nz_dist . get ( turb_wposf . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 )
. mul ( 0.5 )
. add ( 0.5 ) ;
let uheight = gen_ctx . uplift_nz . get ( turb_wposf . into_array ( ) )
/* .min(0.5)
. max ( - 0.5 ) * /
. min ( 1.0 )
. max ( - 1.0 )
. mul ( 0.5 )
. add ( 0.5 ) ;
let oheight = alt_old [ /* (turb_posi / 64) * 64 */ posi ] . 0 as f64 - 0.5 ;
assert! ( udist > = 0.0 ) ;
assert! ( udist < = 1.0 ) ;
let uheight_1 = uheight ; //.powf(2.0);
let udist_1 = ( 0.5 - udist ) . mul ( 2.0 ) . max ( 0.0 ) ;
let udist_2 = udist . mul ( 2.0 ) . min ( 1.0 ) ;
let height =
// uheight_1;
// uheight_1 * (/*udist_2*/udist.powf(2.0) * (f64::consts::PI * 2.0 * (1.0 / (1.0 - udist).max(f64::EPSILON)).min(2.5)/*udist * 5.0*/ * 2.0).cos().mul(0.5).add(0.5));
// uheight * udist_ * (udist_ * 4.0 * 2 * f64::consts::PI).sin()
2019-12-03 18:14:29 +00:00
/* (uheight /* * 0.8 */ /* * udist_1.powf(2.0) */ +
/* exp_inverse_cdf */ ( oheight . /* max(0.0).min(max_epsilon).abs() */ ) /* .powf(2.0) */ * 0.2 /* * udist_2.powf(2.0) */ ; * /
( uheight + oheight . powf ( 2.0 ) * 0.2 ) . max ( 0.0 ) . min ( 1.0 ) ;
2019-12-03 01:07:44 +00:00
// * (1.0 - udist);// uheight * (1.0 - udist)/*oheight*//* * udist*/ + oheight * udist;/*uheight * (1.0 - udist);*/
// let height = uheight * (0.5 - udist) * 0.8 + (oheight.signum() * oheight.max(0.0).abs().powf(2.0)) * 0.2;// * (1.0 - udist);// uheight * (1.0 - udist)/*oheight*//* * udist*/ + oheight * udist;/*uheight * (1.0 - udist);*/
Some ( height )
}
} )
} ,
) ;
2019-11-07 20:25:30 +00:00
let old_height_uniform = | posi : usize | alt_old_no_ocean [ posi ] . 0 ;
let alt_old_min_uniform = 0.0 ;
2019-11-11 17:14:58 +00:00
let alt_old_max_uniform = 1.0 ;
let alt_old_center_uniform = erosion_center ;
let ( _alt_old_min_index , alt_old_min ) = alt_old_inverse . first ( ) . unwrap ( ) ;
let ( _alt_old_max_index , alt_old_max ) = alt_old_inverse . last ( ) . unwrap ( ) ;
let ( _alt_old_mid_index , alt_old_mid ) =
alt_old_inverse [ ( alt_old_inverse . len ( ) as f64 * erosion_center ) as usize ] ;
let alt_old_center =
( ( alt_old_mid - alt_old_min ) as f64 / ( alt_old_max - alt_old_min ) as f64 ) ;
/* / / Find the minimum and maximum original altitudes.
2019-10-16 11:39:41 +00:00
// NOTE: Will panic if there is no land, and will not work properly if the minimum and
// maximum land altitude are identical (will most likely panic later).
2019-11-07 20:25:30 +00:00
let old_height_uniform = | posi : usize | alt_old [ posi ] . 0 ;
2019-10-16 11:39:41 +00:00
let ( alt_old_min_index , _alt_old_min ) = alt_old_inverse
. iter ( )
. copied ( )
. find ( | & ( _ , h ) | h > 0.0 )
. unwrap ( ) ;
let & ( alt_old_max_index , _alt_old_max ) = alt_old_inverse . last ( ) . unwrap ( ) ;
let alt_old_min_uniform = alt_old [ alt_old_min_index ] . 0 ;
2019-11-11 17:14:58 +00:00
let alt_old_max_uniform = alt_old [ alt_old_max_index ] . 0 ; * /
2019-10-16 11:39:41 +00:00
// Perform some erosion.
2019-11-11 17:14:58 +00:00
// 2^((2^10-2)/256) = 15.91...
// -ln(1-(1-(2^(-22)*0.5)))
// -ln(1-(1-(2^(-53)*0.5)))
// ((-ln(1-((1-2^(-53)*0.5))))/ln(e))/((-ln(1-((2^(-53)*0.5))))/ln(e))
// ((-ln(1-((0.5))))/ln(2))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(2))
// ((-ln(1-((0.5))))/ln(e))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(e))
// ((-ln(1-((0.5))))/ln(e))/((-ln(1-((2^(-53)*0.5))))/ln(e))
// ((-ln(1-((1-2^(-53)))))/ln(1.002))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(1+2^(-10*2)*0.5))
// ((-ln(1-((0.9999999999999999))))/ln(e))/((-ln(1-((1 - 2^(-53)*0.5))))/ln(1+2^(-53)*0.5))
//
// ((-ln(1-((1-2^(-10*2)))))/ln(1.002))/((-ln(1-((1 - 2^(-10*2)))))/ln(1+2^(-9)))
// ((-ln(1-((2^(-10*2)))))/ln(1.002))/((-ln(1-((1 - 2^(-10*2)))))/ln(1+2^(-9)))
// ((-ln(1-((1-2^(-10*2)))))/ln(1.002))/((-ln(1-((1 - 2^(-10*2)))))/ln(1.002))
2019-11-22 02:55:19 +00:00
// ((ln(0.6)-ln(1-0.6)) - (ln(1/(2048*2048))-ln((1-1/(2048*2048)))))/((ln(1-1/(2048*2048))-ln(1-(1-1/(2048*2048)))) - (ln(1/(2048*2048))-ln((1-1/(2048*2048)))))
2019-12-03 01:07:44 +00:00
let inv_func = | x : f64 | x /* exp_inverse_cdf */ /* logit */ /* hypsec_inverse_cdf */ ;
2019-11-19 18:34:52 +00:00
let alt_exp_min_uniform = /* exp_inverse_cdf */ /* logit */ inv_func ( min_epsilon ) ;
let alt_exp_max_uniform = /* exp_inverse_cdf */ /* logit */ inv_func ( max_epsilon ) ;
2019-11-11 17:14:58 +00:00
// let erosion_pow = 2.0;
// let n_steps = 100;//150;
// let erosion_factor = |x: f64| logistic_cdf(erosion_pow * logit(x));
let log_odds = | x : f64 | {
logit ( x )
- logit (
/* erosion_center */ alt_old_center_uniform , /* alt_old_center */
)
} ;
/* let erosion_factor = |x: f64| logistic_cdf(logistic_base * if x <= /* erosion_center */ alt_old_center_uniform /* alt_old_center */ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * log_odds(x)) /* 0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs(
) . powf ( erosion_pow ) . mul ( 0.5 ) ) * / ; * /
2019-11-19 18:34:52 +00:00
let erosion_factor = | x : f64 | ( /* if x <= /* erosion_center */ alt_old_center_uniform /* alt_old_center */ { erosion_pow_low.ln() } else { erosion_pow_high.ln() } * */ ( /* exp_inverse_cdf */ /* logit */ inv_func ( x ) - alt_exp_min_uniform ) / ( alt_exp_max_uniform - alt_exp_min_uniform ) ) /* 0.5 + (x - 0.5).signum() * ((x - 0.5).mul(2.0).abs(
2019-11-25 03:47:33 +00:00
) . powf ( erosion_pow ) . mul ( 0.5 ) ) * //*.powf(0.5)*//*.powf(1.5)*//*.powf(2.0)*/;
2019-12-03 01:07:44 +00:00
let kf_func = {
| posi | {
if is_ocean_fn ( posi ) {
return 1.0e-4 ;
}
let wposf = ( uniform_idx_as_vec2 ( posi )
* TerrainChunkSize ::RECT_SIZE . map ( | e | e as i32 ) )
. map ( | e | e as f64 ) ;
let turb_wposf =
wposf . div ( TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ) . div ( 64.0 ) ;
let turb = Vec2 ::new (
gen_ctx . turb_x_nz . get ( turb_wposf . into_array ( ) ) ,
gen_ctx . turb_y_nz . get ( turb_wposf . into_array ( ) ) ,
) * /* 64.0 */ 32.0 * TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ;
// let turb = Vec2::zero();
let turb_wposf = wposf + turb ;
let turb_wposi = turb_wposf
. map2 ( TerrainChunkSize ::RECT_SIZE , | e , f | e / f as f64 )
. map2 ( WORLD_SIZE , | e , f | ( e as i32 ) . max ( f as i32 - 1 ) . min ( 0 ) ) ;
let turb_posi = vec2_as_uniform_idx ( turb_wposi ) ;
let uheight = gen_ctx . uplift_nz . get ( turb_wposf . into_array ( ) )
/* .min(0.5)
. max ( - 0.5 ) * /
. min ( 1.0 )
. max ( - 1.0 )
. mul ( 0.5 )
. add ( 0.5 ) ;
// kf = 1.5e-4: high-high (plateau [fan sediment])
// kf = 1e-4: high (plateau)
2019-12-03 18:14:29 +00:00
// kf = 2e-5: normal (dike [unexposed])
// kf = 1e-6: normal-low (dike [exposed])
2019-12-03 01:07:44 +00:00
// kf = 2e-6: low (mountain)
( ( 1.0 - uheight ) * ( 1.5e-4 - 2.0e-6 ) + 2.0e-6 ) as f32
}
} ;
let kd_func = {
| posi | {
if is_ocean_fn ( posi ) {
return 1.0e-2 ;
}
let wposf = ( uniform_idx_as_vec2 ( posi )
* TerrainChunkSize ::RECT_SIZE . map ( | e | e as i32 ) )
. map ( | e | e as f64 ) ;
let turb_wposf =
wposf . div ( TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ) . div ( 64.0 ) ;
let turb = Vec2 ::new (
gen_ctx . turb_x_nz . get ( turb_wposf . into_array ( ) ) ,
gen_ctx . turb_y_nz . get ( turb_wposf . into_array ( ) ) ,
) * /* 64.0 */ 32.0 * TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ;
// let turb = Vec2::zero();
let turb_wposf = wposf + turb ;
let turb_wposi = turb_wposf
. map2 ( TerrainChunkSize ::RECT_SIZE , | e , f | e / f as f64 )
. map2 ( WORLD_SIZE , | e , f | ( e as i32 ) . max ( f as i32 - 1 ) . min ( 0 ) ) ;
let turb_posi = vec2_as_uniform_idx ( turb_wposi ) ;
let uheight = gen_ctx . uplift_nz . get ( turb_wposf . into_array ( ) )
/* .min(0.5)
. max ( - 0.5 ) * /
. min ( 1.0 )
. max ( - 1.0 )
. mul ( 0.5 )
. add ( 0.5 ) ;
2019-12-03 18:14:29 +00:00
// kd = 1e-1: high (mountain, dike)
2019-12-03 01:07:44 +00:00
// kd = 1.5e-2: normal-high (plateau [fan sediment])
// kd = 1e-2: normal (plateau)
1.0e-2
// (uheight * (1.0e-1 - 1.0e-2) + 1.0e-2) as f32
}
} ;
let g_func =
| posi | {
if /* is_ocean_fn(posi) */ map_edge_factor ( posi ) = = 0.0 {
return 0.0 ;
}
2019-12-03 18:14:29 +00:00
let wposf = ( uniform_idx_as_vec2 ( posi )
* TerrainChunkSize ::RECT_SIZE . map ( | e | e as i32 ) )
. map ( | e | e as f64 ) ;
/* let turb_wposf =
wposf . div ( TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ) . div ( 64.0 ) ;
let turb = Vec2 ::new (
gen_ctx . turb_x_nz . get ( turb_wposf . into_array ( ) ) ,
gen_ctx . turb_y_nz . get ( turb_wposf . into_array ( ) ) ,
) * /* 64.0 */ 32.0 * TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ;
// let turb = Vec2::zero();
let turb_wposf = wposf + turb ; * /
let turb_wposf = wposf ;
let uchaos = /* gen_ctx.chaos_nz.get((wposf.div(3_000.0)).into_array())
. min ( 1.0 )
. max ( - 1.0 )
. mul ( 0.5 )
. add ( 0.5 ) ; * /
chaos [ posi ] . 1 ;
assert! ( uchaos < = 1.24 ) ;
// G = d* v_s / p_0, where
// v_s is the settling velocity of sediment grains
// p_0 is the mean precipitation rate
// d* is the sediment concentration ratio (between concentration near riverbed
// interface, and average concentration over the water column).
// d* varies with Rouse number which defines relative contribution of bed, suspended,
// and washed loads.
//
// G is typically on the order of 1 or greater. However, we are only guaranteed to
// converge for G ≤ 1, so we keep it in the chaos range of [0.12, 1.24].
( ( 1.24 - uchaos ) / 1.24 ) . powf ( 0.75 ) * 1.24
// 1.0
// 1.0
// 1.5
2019-12-03 01:07:44 +00:00
} ;
2019-11-19 18:34:52 +00:00
let uplift_fn =
2019-10-16 11:39:41 +00:00
| posi | {
2019-11-11 17:14:58 +00:00
if is_ocean_fn ( posi ) {
return 0.0 ;
}
let wposf = ( uniform_idx_as_vec2 ( posi )
* TerrainChunkSize ::RECT_SIZE . map ( | e | e as i32 ) )
. map ( | e | e as f64 ) ;
let alt_main = {
// Extension upwards from the base. A positive number from 0 to 1 curved to be
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
let alt_main = ( gen_ctx
. alt_nz
. get ( ( wposf . div ( 2_000.0 ) ) . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 ) )
. abs ( )
. powf ( 1.35 ) ;
fn spring ( x : f64 , pow : f64 ) -> f64 {
x . abs ( ) . powf ( pow ) * x . signum ( )
}
( 0.0 + alt_main
+ ( gen_ctx
. small_nz
. get ( ( wposf . div ( 300.0 ) ) . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 ) )
. mul ( alt_main . powf ( 0.8 ) . max ( /* 0.25 */ 0.15 ) )
. mul ( 0.3 )
. add ( 1.0 )
. mul ( 0.4 )
2019-11-19 18:34:52 +00:00
/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
. mul ( 0.045 ) * / )
2019-11-11 17:14:58 +00:00
} ;
let height =
2019-12-03 18:14:29 +00:00
( ( /* old_height_uniform */ uplift_uniform [ posi ] . /* 0 */ 1 - alt_old_min_uniform ) as f64
2019-10-16 11:39:41 +00:00
/ ( alt_old_max_uniform - alt_old_min_uniform ) as f64 )
2019-11-11 17:14:58 +00:00
/* ((old_height(posi) - alt_old_min) as f64
/ ( alt_old_max - alt_old_min ) as f64 ) * /
;
let height = height . mul ( max_epsilon - min_epsilon ) . add ( min_epsilon ) ;
/* .max(1e-7 / CONFIG.mountain_scale as f64)
. min ( 1.0 f64 - 1e-7 ) ; * /
/* let alt_main = {
// Extension upwards from the base. A positive number from 0 to 1 curved to be
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
let alt_main = ( gen_ctx
. alt_nz
. get ( ( wposf . div ( 2_000.0 ) ) . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 ) )
. abs ( )
. powf ( 1.35 ) ;
fn spring ( x : f64 , pow : f64 ) -> f64 {
x . abs ( ) . powf ( pow ) * x . signum ( )
}
( 0.0 + alt_main
+ ( gen_ctx
. small_nz
. get ( ( wposf . div ( 300.0 ) ) . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 ) )
. mul ( alt_main . powf ( 0.8 ) . max ( /* 0.25 */ 0.15 ) )
. mul ( 0.3 )
. add ( 1.0 )
. mul ( 0.4 )
+ spring ( alt_main . abs ( ) . powf ( 0.5 ) . min ( 0.75 ) . mul ( 60.0 ) . sin ( ) , 4.0 ) . mul ( 0.045 ) )
} ; * /
// let height = height + (alt_main./*to_le_bytes()[7]*/to_bits() & 1) as f64 * ((1.0 / CONFIG.mountain_scale as f64).powf(1.0 / erosion_pow_low));
2019-10-16 11:39:41 +00:00
let height = erosion_factor ( height ) ;
2019-11-07 20:25:30 +00:00
assert! ( height > = 0.0 ) ;
2019-11-11 17:14:58 +00:00
assert! ( height < = 1.0 ) ;
// assert!(alt_main >= 0.0);
let ( bump_factor , bump_max ) = if
2019-12-03 01:07:44 +00:00
/* height < f32::EPSILON as f64 * 0.5 */ /* false */
/* true */ false {
2019-11-11 17:14:58 +00:00
(
/* (alt_main. /* to_le_bytes()[7] */ to_bits() & 1) as f64 */
( alt_main / CONFIG . mountain_scale as f64 * 128.0 ) . mul ( 0.1 ) . powf ( 1.2 ) * /* (1.0 / CONFIG.mountain_scale as f64) */ ( f32 ::EPSILON * 0.5 ) as f64 ,
( f32 ::EPSILON * 0.5 ) as f64 ,
)
} else {
( 0.0 , 0.0 )
} ;
2019-11-22 02:55:19 +00:00
// tan(6/360*2*pi)*32 ~ 3.4
// 3.4/32*512 ~ 54
// 18/32*512 ~ 288
// tan(pi/6)*32 ~ 18
// tan(54/360*2*pi)*32
2019-11-20 10:33:53 +00:00
// let height = 1.0f64;
2019-12-03 18:14:29 +00:00
let turb_wposf =
2019-12-03 01:07:44 +00:00
wposf . div ( TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ) . div ( 64.0 ) ;
let turb = Vec2 ::new (
gen_ctx . turb_x_nz . get ( turb_wposf . into_array ( ) ) ,
gen_ctx . turb_y_nz . get ( turb_wposf . into_array ( ) ) ,
2019-12-03 18:14:29 +00:00
) * /* 64.0 */ 32.0 * TerrainChunkSize ::RECT_SIZE . map ( | e | e as f64 ) ;
2019-12-03 01:07:44 +00:00
let turb_wposf = wposf + turb ;
2019-12-03 18:14:29 +00:00
let uheight = gen_ctx . uplift_nz . get ( turb_wposf . into_array ( ) )
2019-12-03 01:07:44 +00:00
/* .min(0.5)
. max ( - 0.5 ) * /
. min ( 1.0 )
. max ( - 1.0 )
. mul ( 0.5 )
2019-12-03 18:14:29 +00:00
. add ( 0.5 ) ;
// u = 1e-3: normal-high (dike, mountain)
// u = 0.5: normal (mid example in Yuan, average mountain uplift)
// u = 0.2: low (low example in Yuan; known that lagoons etc. may have u ~ 0.05).
// u = 0: low (plateau [fan, altitude = 0.0])
// let height = uheight;
// let height = 1.0f64;
2019-12-03 01:07:44 +00:00
2019-11-19 18:34:52 +00:00
// let height = 1.0 / 7.0f64;
2019-12-03 01:07:44 +00:00
// let height = 0.0 / 31.0f64;
2019-11-25 03:47:33 +00:00
let bfrac = /* erosion_factor(0.5); */ 0.0 ;
2019-11-22 02:55:19 +00:00
let height = ( height - bfrac ) . abs ( ) . div ( 1.0 - bfrac ) ;
2019-10-16 11:39:41 +00:00
let height = height
2019-12-03 01:07:44 +00:00
. mul ( 31.0 / 32.0 )
. add ( 1.0 / 32.0 )
2019-11-19 18:34:52 +00:00
/* .mul(15.0 / 16.0)
. add ( 1.0 / 16.0 ) * /
2019-11-20 10:33:53 +00:00
/* .mul(5.0 / 8.0)
. add ( 3.0 / 8.0 ) * /
2019-12-03 01:07:44 +00:00
/* .mul(7.0 / 8.0)
. add ( 1.0 / 8.0 ) * /
2019-11-19 18:34:52 +00:00
. mul ( max_erosion_per_delta_t )
2019-11-11 17:14:58 +00:00
. sub ( /* 1.0 / CONFIG.mountain_scale as f64 */ bump_max )
. add ( bump_factor ) ;
/* .sub( /* 1.0 / CONFIG.mountain_scale as f64 */ (f32::EPSILON * 0.5) as f64)
. add ( bump_factor ) ; * /
2019-10-16 11:39:41 +00:00
height as f32
2019-11-19 18:34:52 +00:00
} ;
let alt_func = | posi | {
if is_ocean_fn ( posi ) {
// -max_erosion_per_delta_t as f32
// -1.0 / CONFIG.mountain_scale
// -0.75
// -CONFIG.sea_level / CONFIG.mountain_scale
// 0.0
2019-11-22 02:55:19 +00:00
// 0.0
2019-11-19 18:34:52 +00:00
old_height ( posi ) // 0.0
} else {
// uplift_fn(posi)
let wposf = ( uniform_idx_as_vec2 ( posi )
* TerrainChunkSize ::RECT_SIZE . map ( | e | e as i32 ) )
. map ( | e | e as f64 ) ;
let alt_main = {
// Extension upwards from the base. A positive number from 0 to 1 curved to be
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
let alt_main = ( gen_ctx
. alt_nz
. get ( ( wposf . div ( 2_000.0 ) ) . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 ) )
. abs ( )
. powf ( 1.35 ) ;
fn spring ( x : f64 , pow : f64 ) -> f64 {
x . abs ( ) . powf ( pow ) * x . signum ( )
}
( 0.0 + alt_main
+ ( gen_ctx
. small_nz
. get ( ( wposf . div ( 300.0 ) ) . into_array ( ) )
. min ( 1.0 )
. max ( - 1.0 ) )
. mul ( alt_main . powf ( 0.8 ) . max ( /* 0.25 */ 0.15 ) )
. mul ( 0.3 )
. add ( 1.0 )
. mul ( 0.4 )
/* + spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0)
. mul ( 0.045 ) * / )
} ;
2019-12-03 01:07:44 +00:00
/* 0.0 */
2019-12-03 18:14:29 +00:00
( old_height_uniform ( posi ) /* .powf(2.0) */ - 0.5 ) /* * CONFIG.mountain_scale as f32 */
2019-12-03 01:07:44 +00:00
// uplift_fn(posi) * (CONFIG.mountain_scale / max_erosion_per_delta_t as f32)
2019-11-22 02:55:19 +00:00
// 0.0
2019-11-19 18:34:52 +00:00
/* / / 0.0
// -/*CONFIG.sea_level / CONFIG.mountain_scale*//* 0.75 */1.0
// ((old_height(posi) - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64) as f32
// uplift_fn(posi) / max_erosion_per_delta_t as f32
// old_height_uniform(posi) *
( /* ((old_height(posi) - alt_old_min) as f64 / (alt_old_max - alt_old_min) as f64) * */ ( ( ( 6.0 / 360.0 * 2.0 * f64 ::consts ::PI ) . tan ( )
* TerrainChunkSize ::RECT_SIZE . reduce_partial_min ( ) as f64 )
. floor ( )
* height_scale ) ) as f32
// 5.0 / CONFIG.mountain_scale */
}
} ;
let ( alt , basement ) = do_erosion (
0.0 ,
max_erosion_per_delta_t as f32 ,
n_steps ,
& river_seed ,
& rock_strength_nz ,
2019-12-03 18:14:29 +00:00
| posi | alt_func ( posi ) , // + if is_ocean_fn(posi) { 0.0 } else { 128.0 },
| posi | alt_func ( posi ) - if is_ocean_fn ( posi ) { 0.0 } else { 1400.0 } , // if is_ocean_fn(posi) { old_height(posi) } else { 0.0 },
2019-11-19 18:34:52 +00:00
is_ocean_fn ,
uplift_fn ,
2019-12-03 01:07:44 +00:00
| posi | kf_func ( posi ) ,
| posi | kd_func ( posi ) ,
| posi | g_func ( posi ) ,
2019-11-19 18:34:52 +00:00
) ;
// Quick "small scale" erosion cycle in order to lower extreme angles.
let ( alt , basement ) = do_erosion (
0.0 ,
( 1.0 * height_scale ) as f32 ,
n_small_steps ,
& river_seed ,
& rock_strength_nz ,
2019-12-03 18:14:29 +00:00
| posi | /* if is_ocean_fn(posi) { old_height(posi) } else { alt[posi] } */ alt [ posi ] as f32 ,
| posi | basement [ posi ] as f32 ,
2019-11-19 18:34:52 +00:00
is_ocean_fn ,
| posi | uplift_fn ( posi ) * ( 1.0 * height_scale / max_erosion_per_delta_t ) as f32 ,
2019-12-03 01:07:44 +00:00
| posi | kf_func ( posi ) ,
| posi | kd_func ( posi ) ,
| posi | g_func ( posi ) ,
2019-10-16 11:39:41 +00:00
) ;
2019-11-19 18:34:52 +00:00
2019-12-03 18:14:29 +00:00
let is_ocean = get_oceans ( | posi | alt [ posi ] as f32 ) ;
2019-10-16 11:39:41 +00:00
let is_ocean_fn = | posi : usize | is_ocean [ posi ] ;
2019-12-03 18:14:29 +00:00
let mut dh = downhill ( | posi | alt [ posi ] as f32 /* &alt */ , /* old_height */ is_ocean_fn ) ;
let ( boundary_len , indirection , water_alt_pos , _ ) = get_lakes ( /* & /* water_alt */ alt */ | posi | alt [ posi ] as f32 , & mut dh ) ;
2019-10-16 11:39:41 +00:00
let flux_old = get_drainage ( & water_alt_pos , & dh , boundary_len ) ;
let water_height_initial = | chunk_idx | {
let indirection_idx = indirection [ chunk_idx ] ;
// Find the lake this point is flowing into.
let lake_idx = if indirection_idx < 0 {
chunk_idx
} else {
indirection_idx as usize
} ;
2019-11-22 02:55:19 +00:00
/* / / Find the pass this lake is flowing into (i.e. water at the lake bottom gets
2019-10-16 11:39:41 +00:00
// pushed towards the point identified by pass_idx).
2019-11-22 02:55:19 +00:00
let neighbor_pass_idx = dh [ lake_idx ] ; * /
let chunk_water_alt = if /* neighbor_pass_idx */ dh [ lake_idx ] < 0 {
2019-10-16 11:39:41 +00:00
// This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level)
// or part of a lake that flows directly into the ocean. In the former case, water
// is at sea level so we just return 0.0. In the latter case, the lake bottom must
// have been a boundary node in the first place--meaning this node flows directly
// into the ocean. In that case, its lake bottom is ocean, meaning its water is
// also at sea level. Thus, we return 0.0 in both cases.
0.0
} else {
// This chunk is draining into a body of water that isn't the ocean (i.e., a lake).
// Then we just need to find the pass height of the surrounding lake in order to
// figure out the initial water height (which fill_sinks will then extend to make
// sure it fills the entire basin).
// Find the height of "our" side of the pass (the part of it that drains into this
// chunk's lake).
2019-11-22 02:55:19 +00:00
let pass_idx = - indirection [ lake_idx ] as usize ;
let pass_height_i = alt [ pass_idx ] ;
// Find the pass this lake is flowing into (i.e. water at the lake bottom gets
// pushed towards the point identified by pass_idx).
let neighbor_pass_idx = dh [ pass_idx /* lake_idx */ ] ;
// Find the height of the pass into which our lake is flowing.
let pass_height_j = alt [ neighbor_pass_idx as usize ] ;
2019-10-16 11:39:41 +00:00
// Find the maximum of these two heights.
let pass_height = pass_height_i . max ( pass_height_j ) ;
// Use the pass height as the initial water altitude.
pass_height
} ;
// Use the maximum of the pass height and chunk height as the parameter to fill_sinks.
let chunk_alt = alt [ chunk_idx ] ;
2019-12-03 18:14:29 +00:00
chunk_alt . max ( chunk_water_alt ) as f32
2019-10-16 11:39:41 +00:00
} ;
let water_alt = fill_sinks ( water_height_initial , is_ocean_fn ) ;
2019-12-03 01:07:44 +00:00
/* let water_alt = (0..WORLD_SIZE.x * WORLD_SIZE.y)
. into_par_iter ( )
. map ( | posi | water_height_initial ( posi ) )
. collect ::< Vec < _ > > ( ) ; * /
2019-10-16 11:39:41 +00:00
let rivers = get_rivers ( & water_alt_pos , & water_alt , & dh , & indirection , & flux_old ) ;
let water_alt = indirection
. par_iter ( )
. enumerate ( )
. map ( | ( chunk_idx , & indirection_idx ) | {
// Find the lake this point is flowing into.
let lake_idx = if indirection_idx < 0 {
chunk_idx
} else {
indirection_idx as usize
} ;
2019-11-22 02:55:19 +00:00
/* / / Find the pass this lake is flowing into (i.e. water at the lake bottom gets
2019-10-16 11:39:41 +00:00
// pushed towards the point identified by pass_idx).
2019-11-22 02:55:19 +00:00
let neighbor_pass_idx = dh [ lake_idx ] ; * /
if /* neighbor_pass_idx */ dh [ lake_idx ] < 0 {
2019-10-16 11:39:41 +00:00
// This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level)
// or part of a lake that flows directly into the ocean. In the former case, water
// is at sea level so we just return 0.0. In the latter case, the lake bottom must
// have been a boundary node in the first place--meaning this node flows directly
// into the ocean. In that case, its lake bottom is ocean, meaning its water is
// also at sea level. Thus, we return 0.0 in both cases.
0.0
} else {
// This is not flowing into the ocean, so we can use the existing water_alt.
water_alt [ chunk_idx ]
}
} )
. collect ::< Vec < _ > > ( )
. into_boxed_slice ( ) ;
let is_underwater = | chunk_idx : usize | match rivers [ chunk_idx ] . river_kind {
Some ( RiverKind ::Ocean ) | Some ( RiverKind ::Lake { .. } ) = > true ,
Some ( RiverKind ::River { .. } ) = > false , // TODO: inspect width
None = > false ,
} ;
2019-08-25 15:49:33 +00:00
// Check whether any tiles around this tile are not water (since Lerp will ensure that they
// are included).
2019-10-16 11:39:41 +00:00
let pure_water = | posi : usize | {
/* let river_data = &rivers[posi];
match river_data . river_kind {
Some ( RiverKind ::Lake { .. } ) = > {
// Lakes are always completely submerged.
return true ;
} ,
/* Some(RiverKind::River { cross_section }) if cross_section.x >= TerrainChunkSize::RECT_SIZE.x as f32 => {
// Rivers that are wide enough are considered completely submerged (not a
// completely fair approximation).
return true ;
} , * /
_ = > { }
} * /
2019-08-25 15:49:33 +00:00
let pos = uniform_idx_as_vec2 ( posi ) ;
2020-01-12 14:45:20 +00:00
for x in pos . x - 1 .. ( pos . x + 1 ) + 1 {
for y in pos . y - 1 .. ( pos . y + 1 ) + 1 {
2019-08-25 15:49:33 +00:00
if x > = 0 & & y > = 0 & & x < WORLD_SIZE . x as i32 & & y < WORLD_SIZE . y as i32 {
let posi = vec2_as_uniform_idx ( Vec2 ::new ( x , y ) ) ;
2019-10-16 11:39:41 +00:00
if ! is_underwater ( posi ) {
2019-08-25 16:17:51 +00:00
return false ;
2019-08-25 15:49:33 +00:00
}
}
}
}
true
} ;
2019-11-07 20:25:30 +00:00
// NaNs in these uniform vectors wherever pure_water() returns true.
let ( ( ( alt_no_water , _ ) , ( pure_flux , _ ) ) , ( ( temp_base , _ ) , ( humid_base , _ ) ) ) = rayon ::join (
2019-10-16 11:39:41 +00:00
| | {
2019-11-07 20:25:30 +00:00
rayon ::join (
| | {
uniform_noise ( | posi , _ | {
if pure_water ( posi ) {
None
} else {
// A version of alt that is uniform over *non-water* (or land-adjacent water)
// chunks.
2019-12-03 18:14:29 +00:00
Some ( alt [ posi ] as f32 )
2019-11-07 20:25:30 +00:00
}
} )
} ,
| | {
uniform_noise ( | posi , _ | {
if pure_water ( posi ) {
None
} else {
Some ( flux_old [ posi ] )
}
} )
} ,
)
2019-10-16 11:39:41 +00:00
} ,
| | {
rayon ::join (
| | {
uniform_noise ( | posi , wposf | {
if pure_water ( posi ) {
None
} else {
// -1 to 1.
2019-11-11 17:14:58 +00:00
Some ( gen_ctx . temp_nz . get ( ( wposf /* .div(12000.0) */ ) . into_array ( ) )
as f32 )
2019-10-16 11:39:41 +00:00
}
} )
} ,
| | {
uniform_noise ( | posi , wposf | {
// Check whether any tiles around this tile are water.
if pure_water ( posi ) {
None
} else {
// 0 to 1, hopefully.
Some (
( gen_ctx . humid_nz . get ( wposf . div ( 1024.0 ) . into_array ( ) ) as f32 )
. add ( 1.0 )
. mul ( 0.5 ) ,
)
}
} )
} ,
2019-08-24 19:32:07 +00:00
)
2019-10-16 11:39:41 +00:00
} ,
) ;
2019-08-21 18:41:32 +00:00
let gen_cdf = GenCdf {
humid_base ,
temp_base ,
2019-08-22 19:03:42 +00:00
chaos ,
2019-08-22 22:57:42 +00:00
alt ,
2019-11-19 18:34:52 +00:00
basement ,
2019-10-16 11:39:41 +00:00
water_alt ,
dh ,
flux : flux_old ,
pure_flux ,
alt_no_water ,
rivers ,
2019-08-21 18:41:32 +00:00
} ;
2019-10-16 11:39:41 +00:00
let chunks = ( 0 .. WORLD_SIZE . x * WORLD_SIZE . y )
. into_par_iter ( )
. map ( | i | SimChunk ::generate ( i , & gen_ctx , & gen_cdf ) )
. collect ::< Vec < _ > > ( ) ;
2019-05-18 08:59:58 +00:00
2019-06-10 16:28:02 +00:00
let mut this = Self {
2019-09-17 14:05:08 +00:00
seed : seed ,
2019-05-18 08:59:58 +00:00
chunks ,
2019-06-25 15:59:09 +00:00
locations : Vec ::new ( ) ,
2019-05-21 00:57:16 +00:00
gen_ctx ,
2019-09-17 14:05:08 +00:00
rng ,
2019-06-10 16:28:02 +00:00
} ;
2019-12-03 01:07:44 +00:00
if opts . seed_elements {
this . seed_elements ( ) ;
}
2019-06-10 16:28:02 +00:00
this
}
2019-10-16 11:39:41 +00:00
/// Draw a map of the world based on chunk information. Returns a buffer of u32s.
pub fn get_map ( & self ) -> Vec < u32 > {
( 0 .. WORLD_SIZE . x * WORLD_SIZE . y )
. into_par_iter ( )
. map ( | chunk_idx | {
let pos = uniform_idx_as_vec2 ( chunk_idx ) ;
let ( alt , water_alt , river_kind ) = self
. get ( pos )
. map ( | sample | ( sample . alt , sample . water_alt , sample . river . river_kind ) )
. unwrap_or ( ( CONFIG . sea_level , CONFIG . sea_level , None ) ) ;
let alt = ( ( alt - CONFIG . sea_level ) / CONFIG . mountain_scale )
. min ( 1.0 )
. max ( 0.0 ) ;
let water_alt = ( ( alt . max ( water_alt ) - CONFIG . sea_level ) / CONFIG . mountain_scale )
. min ( 1.0 )
. max ( 0.0 ) ;
match river_kind {
Some ( RiverKind ::Ocean ) = > u32 ::from_le_bytes ( [ 64 , 32 , 0 , 255 ] ) ,
Some ( RiverKind ::Lake { .. } ) = > u32 ::from_le_bytes ( [
64 + ( water_alt * 191.0 ) as u8 ,
32 + ( water_alt * 95.0 ) as u8 ,
0 ,
255 ,
] ) ,
Some ( RiverKind ::River { .. } ) = > u32 ::from_le_bytes ( [
64 + ( alt * 191.0 ) as u8 ,
32 + ( alt * 95.0 ) as u8 ,
0 ,
255 ,
] ) ,
None = > u32 ::from_le_bytes ( [ 0 , ( alt * 255.0 ) as u8 , 0 , 255 ] ) ,
}
} )
. collect ( )
}
2019-06-18 21:22:31 +00:00
/// Prepare the world for simulation
pub fn seed_elements ( & mut self ) {
let mut rng = self . rng . clone ( ) ;
2019-07-03 19:58:09 +00:00
let cell_size = 16 ;
2019-06-22 21:44:27 +00:00
let grid_size = WORLD_SIZE / cell_size ;
2019-07-03 19:58:09 +00:00
let loc_count = 100 ;
2019-06-22 21:44:27 +00:00
2019-06-25 15:59:09 +00:00
let mut loc_grid = vec! [ None ; grid_size . product ( ) ] ;
let mut locations = Vec ::new ( ) ;
2019-06-22 21:44:27 +00:00
// Seed the world with some locations
for _ in 0 .. loc_count {
let cell_pos = Vec2 ::new (
self . rng . gen ::< usize > ( ) % grid_size . x ,
self . rng . gen ::< usize > ( ) % grid_size . y ,
2019-06-18 21:22:31 +00:00
) ;
2019-06-25 15:59:09 +00:00
let wpos = ( cell_pos * cell_size + cell_size / 2 )
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
. map2 ( TerrainChunkSize ::RECT_SIZE , | e , sz : u32 | {
2019-06-25 15:59:09 +00:00
e as i32 * sz as i32 + sz as i32 / 2
2019-06-23 19:43:02 +00:00
} ) ;
2019-06-22 21:44:27 +00:00
2019-06-25 15:59:09 +00:00
locations . push ( Location ::generate ( wpos , & mut rng ) ) ;
loc_grid [ cell_pos . y * grid_size . x + cell_pos . x ] = Some ( locations . len ( ) - 1 ) ;
}
// Find neighbours
let mut loc_clone = locations
. iter ( )
. map ( | l | l . center )
. enumerate ( )
. collect ::< Vec < _ > > ( ) ;
for i in 0 .. locations . len ( ) {
2019-10-16 11:39:41 +00:00
let pos = locations [ i ] . center . map ( | e | e as i64 ) ;
2019-06-25 15:59:09 +00:00
2019-10-16 11:39:41 +00:00
loc_clone . sort_by_key ( | ( _ , l ) | l . map ( | e | e as i64 ) . distance_squared ( pos ) ) ;
2019-06-25 15:59:09 +00:00
2019-06-26 00:27:41 +00:00
loc_clone . iter ( ) . skip ( 1 ) . take ( 2 ) . for_each ( | ( j , _ ) | {
locations [ i ] . neighbours . insert ( * j ) ;
locations [ * j ] . neighbours . insert ( i ) ;
} ) ;
2019-06-22 21:44:27 +00:00
}
2019-06-18 21:22:31 +00:00
2019-06-22 21:44:27 +00:00
// Simulate invasion!
let invasion_cycles = 25 ;
for _ in 0 .. invasion_cycles {
for i in 0 .. grid_size . x {
for j in 0 .. grid_size . y {
2019-06-25 15:59:09 +00:00
if loc_grid [ j * grid_size . x + i ] . is_none ( ) {
2019-06-22 21:44:27 +00:00
const R_COORDS : [ i32 ; 5 ] = [ - 1 , 0 , 1 , 0 , - 1 ] ;
let idx = self . rng . gen ::< usize > ( ) % 4 ;
2019-10-16 11:39:41 +00:00
let new_i = i as i32 + R_COORDS [ idx ] ;
let new_j = j as i32 + R_COORDS [ idx + 1 ] ;
if new_i > = 0 & & new_j > = 0 {
let loc = Vec2 ::new ( new_i as usize , new_j as usize ) ;
loc_grid [ j * grid_size . x + i ] =
loc_grid . get ( loc . y * grid_size . x + loc . x ) . cloned ( ) . flatten ( ) ;
}
2019-06-22 21:44:27 +00:00
}
}
}
}
// Place the locations onto the world
let gen = StructureGen2d ::new ( self . seed , cell_size as u32 , cell_size as u32 / 2 ) ;
for i in 0 .. WORLD_SIZE . x {
for j in 0 .. WORLD_SIZE . y {
let chunk_pos = Vec2 ::new ( i as i32 , j as i32 ) ;
2019-06-26 00:27:41 +00:00
let block_pos = Vec2 ::new (
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
chunk_pos . x * TerrainChunkSize ::RECT_SIZE . x as i32 ,
chunk_pos . y * TerrainChunkSize ::RECT_SIZE . y as i32 ,
2019-06-26 00:27:41 +00:00
) ;
2019-07-01 18:40:41 +00:00
let _cell_pos = Vec2 ::new ( i / cell_size , j / cell_size ) ;
2019-06-22 21:44:27 +00:00
// Find the distance to each region
let near = gen . get ( chunk_pos ) ;
let mut near = near
. iter ( )
. map ( | ( pos , seed ) | RegionInfo {
chunk_pos : * pos ,
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
block_pos : pos
. map2 ( TerrainChunkSize ::RECT_SIZE , | e , sz : u32 | e * sz as i32 ) ,
2019-06-22 21:44:27 +00:00
dist : ( pos - chunk_pos ) . map ( | e | e as f32 ) . magnitude ( ) ,
seed : * seed ,
} )
. collect ::< Vec < _ > > ( ) ;
// Sort regions based on distance
near . sort_by ( | a , b | a . dist . partial_cmp ( & b . dist ) . unwrap ( ) ) ;
2019-10-16 11:39:41 +00:00
let nearest_cell_pos = near [ 0 ] . chunk_pos ;
if nearest_cell_pos . x > = 0 & & nearest_cell_pos . y > = 0 {
let nearest_cell_pos = nearest_cell_pos . map ( | e | e as usize ) / cell_size ;
self . get_mut ( chunk_pos ) . unwrap ( ) . location = loc_grid
. get ( nearest_cell_pos . y * grid_size . x + nearest_cell_pos . x )
. cloned ( )
. unwrap_or ( None )
. map ( | loc_idx | LocationInfo { loc_idx , near } ) ;
let town_size = 200 ;
let in_town = self
. get ( chunk_pos )
. unwrap ( )
. location
. as_ref ( )
. map ( | l | {
locations [ l . loc_idx ]
. center
. map ( | e | e as i64 )
. distance_squared ( block_pos . map ( | e | e as i64 ) )
< town_size * town_size
} )
. unwrap_or ( false ) ;
if in_town {
self . get_mut ( chunk_pos ) . unwrap ( ) . spawn_rate = 0.0 ;
}
2019-06-18 21:22:31 +00:00
}
}
}
2019-08-24 13:23:42 +00:00
// Stage 2 - towns!
let mut maybe_towns = HashMap ::new ( ) ;
for i in 0 .. WORLD_SIZE . x {
for j in 0 .. WORLD_SIZE . y {
let chunk_pos = Vec2 ::new ( i as i32 , j as i32 ) ;
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
let wpos = chunk_pos . map2 ( Vec2 ::from ( TerrainChunkSize ::RECT_SIZE ) , | e , sz : u32 | {
2019-08-24 13:23:42 +00:00
e * sz as i32 + sz as i32 / 2
} ) ;
let near_towns = self . gen_ctx . town_gen . get ( wpos ) ;
let town = near_towns
. iter ( )
2019-09-04 23:03:49 +00:00
. min_by_key ( | ( pos , _seed ) | wpos . distance_squared ( * pos ) ) ;
2019-08-24 13:23:42 +00:00
2019-08-28 18:32:44 +00:00
if let Some ( ( pos , _ ) ) = town {
2019-08-24 13:23:42 +00:00
let maybe_town = maybe_towns
. entry ( * pos )
. or_insert_with ( | | {
2019-10-16 11:39:41 +00:00
// println!("Town: {:?}", town);
2019-08-28 18:32:44 +00:00
TownState ::generate ( * pos , & mut ColumnGen ::new ( self ) , & mut rng )
2019-08-24 22:57:55 +00:00
. map ( | t | Arc ::new ( t ) )
2019-08-24 13:23:42 +00:00
} )
. as_mut ( )
// Only care if we're close to the town
. filter ( | town | {
2019-08-28 18:32:44 +00:00
Vec2 ::from ( town . center ( ) ) . distance_squared ( wpos )
< town . radius ( ) . add ( 64 ) . pow ( 2 )
2019-08-24 13:23:42 +00:00
} )
. cloned ( ) ;
self . get_mut ( chunk_pos ) . unwrap ( ) . structures . town = maybe_town ;
}
}
}
2019-06-18 21:22:31 +00:00
self . rng = rng ;
2019-06-25 15:59:09 +00:00
self . locations = locations ;
2019-05-18 08:59:58 +00:00
}
2019-05-16 17:40:32 +00:00
2019-06-18 21:22:31 +00:00
pub fn get ( & self , chunk_pos : Vec2 < i32 > ) -> Option < & SimChunk > {
2019-05-21 22:31:38 +00:00
if chunk_pos
2019-06-18 21:22:31 +00:00
. map2 ( WORLD_SIZE , | e , sz | e > = 0 & & e < sz as i32 )
2019-05-21 22:31:38 +00:00
. reduce_and ( )
{
2019-08-25 15:49:33 +00:00
Some ( & self . chunks [ vec2_as_uniform_idx ( chunk_pos ) ] )
2019-05-16 17:40:32 +00:00
} else {
None
}
}
2019-05-20 02:53:04 +00:00
2019-08-24 13:23:42 +00:00
pub fn get_wpos ( & self , wpos : Vec2 < i32 > ) -> Option < & SimChunk > {
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
self . get (
wpos . map2 ( Vec2 ::from ( TerrainChunkSize ::RECT_SIZE ) , | e , sz : u32 | {
e / sz as i32
} ) ,
)
2019-08-24 13:23:42 +00:00
}
2019-06-18 21:22:31 +00:00
pub fn get_mut ( & mut self , chunk_pos : Vec2 < i32 > ) -> Option < & mut SimChunk > {
if chunk_pos
. map2 ( WORLD_SIZE , | e , sz | e > = 0 & & e < sz as i32 )
. reduce_and ( )
{
2019-08-25 15:49:33 +00:00
Some ( & mut self . chunks [ vec2_as_uniform_idx ( chunk_pos ) ] )
2019-06-18 21:22:31 +00:00
} else {
None
}
}
pub fn get_base_z ( & self , chunk_pos : Vec2 < i32 > ) -> Option < f32 > {
2019-10-16 11:39:41 +00:00
if ! chunk_pos
. map2 ( WORLD_SIZE , | e , sz | e > 0 & & e < sz as i32 - 2 )
. reduce_and ( )
{
return None ;
}
let chunk_idx = vec2_as_uniform_idx ( chunk_pos ) ;
local_cells ( chunk_idx )
. flat_map ( | neighbor_idx | {
let neighbor_pos = uniform_idx_as_vec2 ( neighbor_idx ) ;
let neighbor_chunk = self . get ( neighbor_pos ) ;
let river_kind = neighbor_chunk . and_then ( | c | c . river . river_kind ) ;
let has_water = river_kind . is_some ( ) & & river_kind ! = Some ( RiverKind ::Ocean ) ;
if ( neighbor_pos - chunk_pos ) . reduce_partial_max ( ) < = 1 | | has_water {
neighbor_chunk . map ( | c | c . get_base_z ( ) )
} else {
None
}
} )
. fold ( None , | a : Option < f32 > , x | a . map ( | a | a . min ( x ) ) . or ( Some ( x ) ) )
2019-05-20 02:53:04 +00:00
}
2019-05-20 15:01:27 +00:00
pub fn get_interpolated < T , F > ( & self , pos : Vec2 < i32 > , mut f : F ) -> Option < T >
2019-05-21 22:31:38 +00:00
where
T : Copy + Default + Add < Output = T > + Mul < f32 , Output = T > ,
F : FnMut ( & SimChunk ) -> T ,
2019-05-20 15:01:27 +00:00
{
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
let pos = pos . map2 ( TerrainChunkSize ::RECT_SIZE , | e , sz : u32 | {
2019-05-21 22:31:38 +00:00
e as f64 / sz as f64
} ) ;
2019-05-20 02:53:04 +00:00
2019-05-20 15:01:27 +00:00
let cubic = | a : T , b : T , c : T , d : T , x : f32 | -> T {
2019-05-20 02:53:04 +00:00
let x2 = x * x ;
// Catmull-Rom splines
2019-05-20 15:01:27 +00:00
let co0 = a * - 0.5 + b * 1.5 + c * - 1.5 + d * 0.5 ;
let co1 = a + b * - 2.5 + c * 2.0 + d * - 0.5 ;
let co2 = a * - 0.5 + c * 0.5 ;
2019-05-20 02:53:04 +00:00
let co3 = b ;
co0 * x2 * x + co1 * x2 + co2 * x + co3
2019-05-20 15:01:27 +00:00
} ;
2019-05-20 02:53:04 +00:00
2019-05-22 09:42:19 +00:00
let mut x = [ T ::default ( ) ; 4 ] ;
2019-05-20 02:53:04 +00:00
2019-05-22 09:42:19 +00:00
for ( x_idx , j ) in ( - 1 .. 3 ) . enumerate ( ) {
2019-06-19 14:55:26 +00:00
let y0 = f ( self . get ( pos . map2 ( Vec2 ::new ( j , - 1 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ) ? ) ;
2019-06-18 21:22:31 +00:00
let y1 = f ( self . get ( pos . map2 ( Vec2 ::new ( j , 0 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ) ? ) ;
let y2 = f ( self . get ( pos . map2 ( Vec2 ::new ( j , 1 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ) ? ) ;
let y3 = f ( self . get ( pos . map2 ( Vec2 ::new ( j , 2 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ) ? ) ;
2019-05-20 02:53:04 +00:00
2019-05-22 09:42:19 +00:00
x [ x_idx ] = cubic ( y0 , y1 , y2 , y3 , pos . y . fract ( ) as f32 ) ;
2019-05-20 02:53:04 +00:00
}
2019-05-22 09:42:19 +00:00
Some ( cubic ( x [ 0 ] , x [ 1 ] , x [ 2 ] , x [ 3 ] , pos . x . fract ( ) as f32 ) )
2019-05-20 02:53:04 +00:00
}
2019-10-16 11:39:41 +00:00
/// M. Steffen splines.
///
/// A more expensive cubic interpolation function that can preserve monotonicity between
/// points. This is useful if you rely on relative differences between endpoints being
/// preserved at all interior points. For example, we use this with riverbeds (and water
/// height on along rivers) to maintain the invariant that the rivers always flow downhill at
/// interior points (not just endpoints), without needing to flatten out the river.
pub fn get_interpolated_monotone < T , F > ( & self , pos : Vec2 < i32 > , mut f : F ) -> Option < T >
where
T : Copy + Default + Signed + Float + Add < Output = T > + Mul < f32 , Output = T > ,
F : FnMut ( & SimChunk ) -> T ,
{
// See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf
//
// Note that these are only guaranteed monotone in one dimension; fortunately, that is
// sufficient for our purposes.
let pos = pos . map2 ( TerrainChunkSize ::RECT_SIZE , | e , sz : u32 | {
e as f64 / sz as f64
} ) ;
let secant = | b : T , c : T | c - b ;
let parabola = | a : T , c : T | - a * 0.5 + c * 0.5 ;
let slope = | _a : T , _b : T , _c : T , s_a : T , s_b : T , p_b : T | {
// ((b - a).signum() + (c - b).signum()) * s
( s_a . signum ( ) + s_b . signum ( ) ) * ( s_a . abs ( ) . min ( s_b . abs ( ) ) . min ( p_b . abs ( ) * 0.5 ) )
} ;
let cubic = | a : T , b : T , c : T , d : T , x : f32 | -> T {
// Compute secants.
let s_a = secant ( a , b ) ;
let s_b = secant ( b , c ) ;
let s_c = secant ( c , d ) ;
// Computing slopes from parabolas.
let p_b = parabola ( a , c ) ;
let p_c = parabola ( b , d ) ;
// Get slopes (setting distance between neighbors to 1.0).
let slope_b = slope ( a , b , c , s_a , s_b , p_b ) ;
let slope_c = slope ( b , c , d , s_b , s_c , p_c ) ;
let x2 = x * x ;
// Interpolating splines.
let co0 = slope_b + slope_c - s_b * 2.0 ;
// = a * -0.5 + c * 0.5 + b * -0.5 + d * 0.5 - 2 * (c - b)
// = a * -0.5 + b * 1.5 - c * 1.5 + d * 0.5;
let co1 = s_b * 3.0 - slope_b * 2.0 - slope_c ;
// = (3.0 * (c - b) - 2.0 * (a * -0.5 + c * 0.5) - (b * -0.5 + d * 0.5))
// = a + b * -2.5 + c * 2.0 + d * -0.5;
let co2 = slope_b ;
// = a * -0.5 + c * 0.5;
let co3 = b ;
co0 * x2 * x + co1 * x2 + co2 * x + co3
} ;
let mut x = [ T ::default ( ) ; 4 ] ;
for ( x_idx , j ) in ( - 1 .. 3 ) . enumerate ( ) {
let y0 = f ( self . get ( pos . map2 ( Vec2 ::new ( j , - 1 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ) ? ) ;
let y1 = f ( self . get ( pos . map2 ( Vec2 ::new ( j , 0 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ) ? ) ;
let y2 = f ( self . get ( pos . map2 ( Vec2 ::new ( j , 1 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ) ? ) ;
let y3 = f ( self . get ( pos . map2 ( Vec2 ::new ( j , 2 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ) ? ) ;
x [ x_idx ] = cubic ( y0 , y1 , y2 , y3 , pos . y . fract ( ) as f32 ) ;
}
Some ( cubic ( x [ 0 ] , x [ 1 ] , x [ 2 ] , x [ 3 ] , pos . x . fract ( ) as f32 ) )
}
/// Bilinear interpolation.
///
/// Linear interpolation in both directions (i.e. quadratic interpolation).
pub fn get_interpolated_bilinear < T , F > ( & self , pos : Vec2 < i32 > , mut f : F ) -> Option < T >
where
T : Copy + Default + Signed + Float + Add < Output = T > + Mul < f32 , Output = T > ,
F : FnMut ( & SimChunk ) -> T ,
{
// (i) Find downhill for all four points.
// (ii) Compute distance from each downhill point and do linear interpolation on their heights.
// (iii) Compute distance between each neighboring point and do linear interpolation on
// their distance-interpolated heights.
// See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf
//
// Note that these are only guaranteed monotone in one dimension; fortunately, that is
// sufficient for our purposes.
let pos = pos . map2 ( TerrainChunkSize ::RECT_SIZE , | e , sz : u32 | {
e as f64 / sz as f64
} ) ;
// Orient the chunk in the direction of the most downhill point of the four. If there is
// no "most downhill" point, then we don't care.
let x0 = pos . map2 ( Vec2 ::new ( 0 , 0 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ;
let p0 = self . get ( x0 ) ? ;
let y0 = f ( p0 ) ;
let x1 = pos . map2 ( Vec2 ::new ( 1 , 0 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ;
let p1 = self . get ( x1 ) ? ;
let y1 = f ( p1 ) ;
let x2 = pos . map2 ( Vec2 ::new ( 0 , 1 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ;
let p2 = self . get ( x2 ) ? ;
let y2 = f ( p2 ) ;
let x3 = pos . map2 ( Vec2 ::new ( 1 , 1 ) , | e , q | e . max ( 0.0 ) as i32 + q ) ;
let p3 = self . get ( x3 ) ? ;
let y3 = f ( p3 ) ;
let z0 = y0
. mul ( 1.0 - pos . x . fract ( ) as f32 )
. mul ( 1.0 - pos . y . fract ( ) as f32 ) ;
let z1 = y1 . mul ( pos . x . fract ( ) as f32 ) . mul ( 1.0 - pos . y . fract ( ) as f32 ) ;
let z2 = y2 . mul ( 1.0 - pos . x . fract ( ) as f32 ) . mul ( pos . y . fract ( ) as f32 ) ;
let z3 = y3 . mul ( pos . x . fract ( ) as f32 ) . mul ( pos . y . fract ( ) as f32 ) ;
Some ( z0 + z1 + z2 + z3 )
}
2019-05-21 00:57:16 +00:00
}
2019-06-04 17:19:40 +00:00
pub struct SimChunk {
pub chaos : f32 ,
pub alt : f32 ,
2019-11-19 18:34:52 +00:00
pub basement : f32 ,
2019-10-16 11:39:41 +00:00
pub water_alt : f32 ,
pub downhill : Option < Vec2 < i32 > > ,
pub flux : f32 ,
2019-06-04 17:19:40 +00:00
pub temp : f32 ,
2019-08-18 16:35:27 +00:00
pub humidity : f32 ,
2019-06-04 17:19:40 +00:00
pub rockiness : f32 ,
2019-07-08 14:51:38 +00:00
pub is_cliffs : bool ,
2019-06-21 00:53:11 +00:00
pub near_cliffs : bool ,
2019-06-04 17:19:40 +00:00
pub tree_density : f32 ,
2019-06-11 18:39:25 +00:00
pub forest_kind : ForestKind ,
2019-06-25 15:59:09 +00:00
pub spawn_rate : f32 ,
2019-06-22 21:44:27 +00:00
pub location : Option < LocationInfo > ,
2019-10-16 11:39:41 +00:00
pub river : RiverData ,
2020-01-08 12:48:00 +00:00
pub is_underwater : bool ,
2019-08-23 21:33:14 +00:00
pub structures : Structures ,
2019-06-22 21:44:27 +00:00
}
#[ derive(Copy, Clone) ]
pub struct RegionInfo {
pub chunk_pos : Vec2 < i32 > ,
pub block_pos : Vec2 < i32 > ,
pub dist : f32 ,
pub seed : u32 ,
}
#[ derive(Clone) ]
pub struct LocationInfo {
2019-06-25 15:59:09 +00:00
pub loc_idx : usize ,
2019-06-22 21:44:27 +00:00
pub near : Vec < RegionInfo > ,
2019-06-04 17:19:40 +00:00
}
2019-08-23 21:33:14 +00:00
#[ derive(Clone) ]
pub struct Structures {
pub town : Option < Arc < TownState > > ,
}
2019-06-04 17:19:40 +00:00
impl SimChunk {
2019-10-16 11:39:41 +00:00
fn generate ( posi : usize , gen_ctx : & GenCtx , gen_cdf : & GenCdf ) -> Self {
2019-08-21 18:41:32 +00:00
let pos = uniform_idx_as_vec2 ( posi ) ;
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
let wposf = ( pos * TerrainChunkSize ::RECT_SIZE . map ( | e | e as i32 ) ) . map ( | e | e as f64 ) ;
2019-06-04 17:19:40 +00:00
2019-10-16 11:39:41 +00:00
let _map_edge_factor = map_edge_factor ( posi ) ;
2019-08-22 19:03:42 +00:00
let ( _ , chaos ) = gen_cdf . chaos [ posi ] ;
2019-12-03 18:14:29 +00:00
let alt_pre = gen_cdf . alt [ posi ] as f32 ;
let basement_pre = gen_cdf . basement [ posi ] as f32 ;
2019-10-16 11:39:41 +00:00
let water_alt_pre = gen_cdf . water_alt [ posi ] ;
let downhill_pre = gen_cdf . dh [ posi ] ;
let flux = gen_cdf . flux [ posi ] ;
2019-11-07 20:25:30 +00:00
let river = gen_cdf . rivers [ posi ] . clone ( ) ;
// Can have NaNs in non-uniform part where pure_water returned true. We just test one of
// the four in order to find out whether this is the case.
2019-11-11 17:14:58 +00:00
let ( flux_uniform , /* flux_non_uniform */ _ ) = gen_cdf . pure_flux [ posi ] ;
2019-10-16 11:39:41 +00:00
let ( alt_uniform , _ ) = gen_cdf . alt_no_water [ posi ] ;
2019-08-22 22:57:42 +00:00
let ( temp_uniform , _ ) = gen_cdf . temp_base [ posi ] ;
2019-11-07 20:25:30 +00:00
let ( humid_uniform , _ ) = gen_cdf . humid_base [ posi ] ;
2019-10-16 11:39:41 +00:00
/* / / Vertical difference from the equator (NOTE: "uniform" with much lower granularity than
// other uniform quantities, but hopefully this doesn't matter *too* much--if it does, we
// can always add a small x component).
//
// Not clear that we want this yet, let's see.
let latitude_uniform = ( pos . y as f32 / WORLD_SIZE . y as f32 ) . sub ( 0.5 ) . mul ( 2.0 ) ;
// Even less granular--if this matters we can make the sign affect the quantiy slightly.
let abs_lat_uniform = latitude_uniform . abs ( ) ; * /
2019-08-19 17:20:54 +00:00
2019-08-20 20:48:22 +00:00
// Take the weighted average of our randomly generated base humidity, the scaled
2019-10-16 11:39:41 +00:00
// negative altitude, and the calculated water flux over this point in order to compute
// humidity.
2019-11-07 20:25:30 +00:00
const HUMID_WEIGHTS : [ f32 ; /* 3 */ 2 ] = [ 4.0 , 1.0 /* , 1.0 */ ] ;
let humidity = /* if flux_non_uniform.is_nan() {
0.0
} else * / {
cdf_irwin_hall (
& HUMID_WEIGHTS ,
[ humid_uniform , flux_uniform /* , 1.0 - alt_uniform */ ] ,
)
} ;
2019-10-16 11:39:41 +00:00
// We also correlate temperature negatively with altitude and absolute latitude, using
// different weighting than we use for humidity.
2019-11-11 17:14:58 +00:00
const TEMP_WEIGHTS : [ f32 ; 2 ] = [ /* 1.5, */ 1.0 , 2.0 ] ;
2019-11-07 20:25:30 +00:00
let temp = /* if flux_non_uniform.is_nan() {
0.0
} else * / {
cdf_irwin_hall (
& TEMP_WEIGHTS ,
[
temp_uniform ,
1.0 - alt_uniform , /* 1.0 - abs_lat_uniform */
] ,
)
}
2019-10-16 11:39:41 +00:00
// Convert to [-1, 1]
. sub ( 0.5 )
. mul ( 2.0 ) ;
2019-11-07 20:25:30 +00:00
/* if (temp - (1.0 - alt_uniform).sub(0.5).mul(2.0)).abs() >= 1e-7 {
panic! ( " Halp! " ) ;
} * /
2019-08-19 17:20:54 +00:00
2019-11-19 18:34:52 +00:00
let height_scale = 1.0 ; // 1.0 / CONFIG.mountain_scale;
let mut alt = CONFIG . sea_level . add ( alt_pre . div ( height_scale ) ) ;
let mut basement = CONFIG . sea_level . add ( basement_pre . div ( height_scale ) ) ;
2019-10-16 11:39:41 +00:00
let water_alt = CONFIG
2019-08-22 23:31:27 +00:00
. sea_level
2019-11-19 18:34:52 +00:00
. add ( water_alt_pre . div ( height_scale ) ) ;
2019-10-16 11:39:41 +00:00
let downhill = if downhill_pre = = - 2 {
None
} else if downhill_pre < 0 {
panic! ( " Uh... shouldn't this never, ever happen? " ) ;
} else {
Some (
uniform_idx_as_vec2 ( downhill_pre as usize )
* TerrainChunkSize ::RECT_SIZE . map ( | e | e as i32 ) ,
)
} ;
2019-08-19 17:20:54 +00:00
2019-06-21 00:53:11 +00:00
let cliff = gen_ctx . cliff_nz . get ( ( wposf . div ( 2048.0 ) ) . into_array ( ) ) as f32 + chaos * 0.2 ;
2019-08-22 15:45:47 +00:00
// Logistic regression. Make sure x ∈ (0, 1).
2019-10-16 11:39:41 +00:00
let logit = | x : f64 | x . ln ( ) - x . neg ( ) . ln_1p ( ) ;
2019-08-22 15:45:47 +00:00
// 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
2019-10-16 11:39:41 +00:00
let logistic_2_base = 3.0 f64 . sqrt ( ) . mul ( f64 ::consts ::FRAC_2_PI ) ;
2019-08-22 15:45:47 +00:00
// Assumes μ = 0, σ = 1
2019-10-16 11:39:41 +00:00
let logistic_cdf = | x : f64 | x . div ( logistic_2_base ) . tanh ( ) . mul ( 0.5 ) . add ( 0.5 ) ;
let is_underwater = match river . river_kind {
Some ( RiverKind ::Ocean ) | Some ( RiverKind ::Lake { .. } ) = > true ,
Some ( RiverKind ::River { .. } ) = > false , // TODO: inspect width
None = > false ,
} ;
let river_xy = Vec2 ::new ( river . velocity . x , river . velocity . y ) . magnitude ( ) ;
let river_slope = river . velocity . z / river_xy ;
match river . river_kind {
Some ( RiverKind ::River { cross_section } ) = > {
if cross_section . x > = 0.5 & & cross_section . y > = CONFIG . river_min_height {
/* println!(
" Big area! Pos area: {:?}, River data: {:?}, slope: {:?} " ,
wposf , river , river_slope
) ; * /
}
if river_slope . abs ( ) > = 1.0 & & cross_section . x > = 1.0 {
2019-11-23 14:34:03 +00:00
log ::debug! (
2019-10-16 11:39:41 +00:00
" Big waterfall! Pos area: {:?}, River data: {:?}, slope: {:?} " ,
wposf ,
river ,
river_slope
) ;
}
}
Some ( RiverKind ::Lake { .. } ) = > {
// Forces lakes to be downhill from the land around them, and adds some noise to
// the lake bed to make sure it's not too flat.
let lake_bottom_nz = ( gen_ctx . small_nz . get ( ( wposf . div ( 20.0 ) ) . into_array ( ) ) as f32 )
. max ( - 1.0 )
. min ( 1.0 )
. mul ( 3.0 ) ;
alt = alt . min ( water_alt - 5.0 ) + lake_bottom_nz ;
}
_ = > { }
}
2019-08-22 15:45:47 +00:00
2019-11-20 10:33:53 +00:00
// No trees in the ocean, with zero humidity (currently), or directly on bedrock.
let tree_density = if is_underwater /* || alt - basement.min(alt) < 2.0 */ {
2019-08-22 21:25:17 +00:00
0.0
} else {
2019-10-16 11:39:41 +00:00
let tree_density = ( gen_ctx . tree_nz . get ( ( wposf . div ( 1024.0 ) ) . into_array ( ) ) )
2019-08-18 23:52:26 +00:00
. mul ( 1.5 )
. add ( 1.0 )
. mul ( 0.5 )
2019-10-16 11:39:41 +00:00
. mul ( 1.2 - chaos as f64 * 0.95 )
2019-08-18 23:52:26 +00:00
. add ( 0.05 )
. max ( 0.0 )
2019-08-22 15:45:47 +00:00
. min ( 1.0 ) ;
// Tree density should go (by a lot) with humidity.
if humidity < = 0.0 | | tree_density < = 0.0 {
0.0
} else if humidity > = 1.0 | | tree_density > = 1.0 {
1.0
} else {
2019-08-22 21:48:13 +00:00
// Weighted logit sum.
2019-10-16 11:39:41 +00:00
logistic_cdf ( logit ( humidity as f64 ) + 0.5 * logit ( tree_density ) )
2019-08-22 15:45:47 +00:00
}
2019-08-25 15:49:33 +00:00
// rescale to (-0.95, 0.95)
2019-08-22 21:25:17 +00:00
. sub ( 0.5 )
2019-08-25 15:49:33 +00:00
. mul ( 0.95 )
2019-08-22 21:25:17 +00:00
. add ( 0.5 )
2019-10-16 11:39:41 +00:00
} as f32 ;
2019-08-18 23:52:26 +00:00
2019-06-04 17:19:40 +00:00
Self {
chaos ,
2019-10-16 11:39:41 +00:00
flux ,
2019-06-04 17:19:40 +00:00
alt ,
2019-11-19 18:34:52 +00:00
basement : basement . min ( alt ) ,
2019-10-16 11:39:41 +00:00
water_alt ,
downhill ,
2019-06-11 18:39:25 +00:00
temp ,
2019-08-18 16:35:27 +00:00
humidity ,
2019-10-16 11:39:41 +00:00
rockiness : if true {
( gen_ctx . rock_nz . get ( ( wposf . div ( 1024.0 ) ) . into_array ( ) ) as f32 )
. sub ( 0.1 )
. mul ( 1.3 )
. max ( 0.0 )
} else {
0.0
} ,
2020-01-08 12:48:00 +00:00
is_underwater ,
2019-10-16 11:39:41 +00:00
is_cliffs : cliff > 0.5 & & ! is_underwater ,
2019-08-24 13:23:42 +00:00
near_cliffs : cliff > 0.2 ,
2019-08-18 23:52:26 +00:00
tree_density ,
2019-12-03 01:07:44 +00:00
forest_kind : if temp > CONFIG . temperate_temp {
2019-06-11 18:39:25 +00:00
if temp > CONFIG . desert_temp {
2019-08-18 16:35:27 +00:00
if humidity > CONFIG . jungle_hum {
// Forests in desert temperatures with extremely high humidity
// should probably be different from palm trees, but we use them
// for now.
ForestKind ::Palm
2019-08-22 21:25:17 +00:00
} else if humidity > CONFIG . forest_hum {
2019-08-18 16:35:27 +00:00
ForestKind ::Palm
2019-08-22 15:45:47 +00:00
} else if humidity > CONFIG . desert_hum {
2019-08-18 16:35:27 +00:00
// Low but not desert humidity, so we should really have some other
// terrain...
ForestKind ::Savannah
2019-08-22 15:45:47 +00:00
} else {
ForestKind ::Savannah
2019-08-18 16:35:27 +00:00
}
2019-07-08 16:41:20 +00:00
} else if temp > CONFIG . tropical_temp {
2019-08-18 16:35:27 +00:00
if humidity > CONFIG . jungle_hum {
2019-10-16 11:39:41 +00:00
if tree_density > 0.0 {
// println!("Mangrove: {:?}", wposf);
}
2019-08-18 16:35:27 +00:00
ForestKind ::Mangrove
} else if humidity > CONFIG . forest_hum {
2019-08-19 17:20:54 +00:00
// NOTE: Probably the wrong kind of tree for this climate.
2019-08-18 16:35:27 +00:00
ForestKind ::Oak
2019-08-22 15:45:47 +00:00
} else if humidity > CONFIG . desert_hum {
2019-08-19 17:20:54 +00:00
// Low but not desert... need something besides savannah.
2019-08-18 16:35:27 +00:00
ForestKind ::Savannah
2019-08-22 15:45:47 +00:00
} else {
ForestKind ::Savannah
2019-08-18 16:35:27 +00:00
}
2019-06-11 18:39:25 +00:00
} else {
2019-08-18 16:35:27 +00:00
if humidity > CONFIG . jungle_hum {
// Temperate climate with jungle humidity...
// https://en.wikipedia.org/wiki/Humid_subtropical_climates are often
// densely wooded and full of water. Semitropical rainforests, basically.
2019-08-19 17:20:54 +00:00
// For now we just treet them like other rainforests.
2019-08-21 18:41:32 +00:00
ForestKind ::Oak
2019-08-18 16:35:27 +00:00
} else if humidity > CONFIG . forest_hum {
// Moderate climate, moderate humidity.
ForestKind ::Oak
2019-08-22 15:45:47 +00:00
} else if humidity > CONFIG . desert_hum {
2019-08-18 16:35:27 +00:00
// With moderate temperature and low humidity, we should probably see
// something different from savannah, but oh well...
ForestKind ::Savannah
2019-08-22 15:45:47 +00:00
} else {
ForestKind ::Savannah
2019-08-18 16:35:27 +00:00
}
2019-06-11 18:39:25 +00:00
}
} else {
2019-08-18 16:35:27 +00:00
// For now we don't take humidity into account for cold climates (but we really
2019-08-19 01:01:11 +00:00
// should!) except that we make sure we only have snow pines when there is snow.
2019-09-24 17:56:51 +00:00
if temp < = CONFIG . snow_temp {
2019-06-11 18:39:25 +00:00
ForestKind ::SnowPine
2019-08-22 15:45:47 +00:00
} else if humidity > CONFIG . desert_hum {
ForestKind ::Pine
2019-08-19 01:01:11 +00:00
} else {
2019-08-22 15:45:47 +00:00
// Should really have something like tundra.
2019-08-19 01:01:11 +00:00
ForestKind ::Pine
2019-06-11 18:39:25 +00:00
}
} ,
2019-06-25 15:59:09 +00:00
spawn_rate : 1.0 ,
2019-06-10 16:28:02 +00:00
location : None ,
2019-10-16 11:39:41 +00:00
river ,
2019-08-23 21:33:14 +00:00
structures : Structures { town : None } ,
2019-06-04 17:19:40 +00:00
}
}
pub fn get_base_z ( & self ) -> f32 {
2019-07-08 16:00:50 +00:00
self . alt - self . chaos * 50.0 - 16.0
2019-06-04 17:19:40 +00:00
}
2019-06-18 21:22:31 +00:00
2019-06-25 15:59:09 +00:00
pub fn get_name ( & self , world : & WorldSim ) -> Option < String > {
if let Some ( loc ) = & self . location {
2019-06-26 00:27:41 +00:00
Some ( world . locations [ loc . loc_idx ] . name ( ) . to_string ( ) )
2019-06-25 15:59:09 +00:00
} else {
None
}
2019-06-18 21:22:31 +00:00
}
pub fn get_biome ( & self ) -> BiomeKind {
if self . alt < CONFIG . sea_level {
BiomeKind ::Ocean
} else if self . chaos > 0.6 {
BiomeKind ::Mountain
} else if self . temp > CONFIG . desert_temp {
BiomeKind ::Desert
} else if self . temp < CONFIG . snow_temp {
BiomeKind ::Snowlands
} else if self . tree_density > 0.65 {
BiomeKind ::Forest
} else {
BiomeKind ::Grassland
}
}
2019-06-04 17:19:40 +00:00
}