2019-11-19 18:34:52 +00:00
|
|
|
|
mod diffusion;
|
2019-10-16 11:39:41 +00:00
|
|
|
|
mod erosion;
|
2019-06-10 16:28:02 +00:00
|
|
|
|
mod location;
|
2020-01-13 07:10:38 +00:00
|
|
|
|
mod map;
|
2019-06-25 15:59:09 +00:00
|
|
|
|
mod settlement;
|
2019-08-22 23:31:27 +00:00
|
|
|
|
mod util;
|
2019-06-10 16:28:02 +00:00
|
|
|
|
|
2019-06-18 21:22:31 +00:00
|
|
|
|
// Reexports
|
2019-11-19 18:34:52 +00:00
|
|
|
|
pub use self::diffusion::diffusion;
|
2020-01-11 21:05:22 +00:00
|
|
|
|
use self::erosion::Compute;
|
2019-10-16 11:39:41 +00:00
|
|
|
|
pub use self::erosion::{
|
2020-01-11 21:05:22 +00:00
|
|
|
|
do_erosion, fill_sinks, get_drainage, get_lakes, get_multi_drainage, get_multi_rec, get_rivers,
|
|
|
|
|
mrec_downhill, Alt, RiverData, RiverKind,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
};
|
2019-06-18 21:22:31 +00:00
|
|
|
|
pub use self::location::Location;
|
2020-01-13 07:10:38 +00:00
|
|
|
|
pub use self::map::{MapConfig, MapDebug};
|
2019-06-25 15:59:09 +00:00
|
|
|
|
pub use self::settlement::Settlement;
|
2019-10-16 11:39:41 +00:00
|
|
|
|
pub use self::util::{
|
2020-01-11 20:38:30 +00:00
|
|
|
|
cdf_irwin_hall, downhill, get_oceans, local_cells, map_edge_factor, neighbors,
|
2020-01-24 02:45:29 +00:00
|
|
|
|
uniform_idx_as_vec2, uniform_noise, uphill, vec2_as_uniform_idx, InverseCdf, ScaleBias,
|
|
|
|
|
NEIGHBOR_DELTA,
|
2019-08-25 15:49:33 +00:00
|
|
|
|
};
|
2019-06-18 21:22:31 +00:00
|
|
|
|
|
2019-06-22 21:44:27 +00:00
|
|
|
|
use crate::{
|
|
|
|
|
all::ForestKind,
|
2020-01-13 04:12:56 +00:00
|
|
|
|
block::BlockGen,
|
2019-08-24 22:57:55 +00:00
|
|
|
|
column::ColumnGen,
|
2019-08-23 21:33:14 +00:00
|
|
|
|
generator::TownState,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
util::{seed_expan, FastNoise, RandomField, Sampler, StructureGen2d},
|
2019-06-22 21:44:27 +00:00
|
|
|
|
CONFIG,
|
|
|
|
|
};
|
2019-06-18 21:22:31 +00:00
|
|
|
|
use common::{
|
2020-01-18 18:41:37 +00:00
|
|
|
|
assets,
|
2019-06-18 21:22:31 +00:00
|
|
|
|
terrain::{BiomeKind, TerrainChunkSize},
|
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
|
|
|
|
vol::RectVolSize,
|
2019-06-18 21:22:31 +00:00
|
|
|
|
};
|
2020-01-13 04:12:56 +00:00
|
|
|
|
use hashbrown::HashMap;
|
2019-08-22 21:25:17 +00:00
|
|
|
|
use noise::{
|
2020-01-11 20:38:30 +00:00
|
|
|
|
BasicMulti, Billow, Fbm, HybridMulti, MultiFractal, NoiseFn, RangeFunction, RidgedMulti,
|
|
|
|
|
Seedable, SuperSimplex, Worley,
|
2019-08-22 21:25:17 +00:00
|
|
|
|
};
|
2019-10-16 11:39:41 +00:00
|
|
|
|
use num::{Float, Signed};
|
2019-07-30 14:10:59 +00:00
|
|
|
|
use rand::{Rng, SeedableRng};
|
|
|
|
|
use rand_chacha::ChaChaRng;
|
2019-10-16 11:39:41 +00:00
|
|
|
|
use rayon::prelude::*;
|
2019-12-11 09:14:50 +00:00
|
|
|
|
use serde_derive::{Deserialize, Serialize};
|
2019-08-18 16:35:27 +00:00
|
|
|
|
use std::{
|
2019-10-16 11:39:41 +00:00
|
|
|
|
f32, f64,
|
2019-12-11 09:14:50 +00:00
|
|
|
|
fs::File,
|
2020-01-11 20:38:30 +00:00
|
|
|
|
io::{BufReader, BufWriter},
|
2019-08-18 16:35:27 +00:00
|
|
|
|
ops::{Add, Div, Mul, Neg, Sub},
|
2019-12-11 09:14:50 +00:00
|
|
|
|
path::PathBuf,
|
2019-08-23 21:33:14 +00:00
|
|
|
|
sync::Arc,
|
2019-08-18 16:35:27 +00:00
|
|
|
|
};
|
2019-06-09 10:24:18 +00:00
|
|
|
|
use vek::*;
|
2019-05-20 02:53:04 +00:00
|
|
|
|
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// NOTE: I suspect this is too small (1024 * 16 * 1024 * 16 * 8 doesn't fit in an i32), but we'll see
|
|
|
|
|
// what happens, I guess! We could always store sizes >> 3. I think 32 or 64 is the absolute
|
|
|
|
|
// limit though, and would require substantial changes. Also, 1024 * 16 * 1024 * 16 is no longer
|
|
|
|
|
// cleanly representable in f32 (that stops around 1024 * 4 * 1024 * 4, for signed floats anyway)
|
|
|
|
|
// but I think that is probably less important since I don't think we actually cast a chunk id to
|
|
|
|
|
// float, just coordinates... could be wrong though!
|
2020-01-22 09:41:10 +00:00
|
|
|
|
pub const WORLD_SIZE: Vec2<usize> = Vec2 {
|
|
|
|
|
x: 1024 * 1,
|
|
|
|
|
y: 1024 * 1,
|
|
|
|
|
};
|
2019-05-18 08:59:58 +00:00
|
|
|
|
|
2019-08-22 21:48:13 +00:00
|
|
|
|
/// A structure that holds cached noise values and cumulative distribution functions for the input
|
|
|
|
|
/// that led to those values. See the definition of InverseCdf for a description of how to
|
|
|
|
|
/// interpret the types of its fields.
|
2019-08-21 18:41:32 +00:00
|
|
|
|
struct GenCdf {
|
|
|
|
|
humid_base: InverseCdf,
|
|
|
|
|
temp_base: InverseCdf,
|
2019-08-22 19:03:42 +00:00
|
|
|
|
chaos: InverseCdf,
|
2019-12-03 18:14:29 +00:00
|
|
|
|
alt: Box<[Alt]>,
|
|
|
|
|
basement: Box<[Alt]>,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
water_alt: Box<[f32]>,
|
|
|
|
|
dh: Box<[isize]>,
|
|
|
|
|
/// NOTE: Until we hit 4096 × 4096, this should suffice since integers with an absolute value
|
|
|
|
|
/// under 2^24 can be exactly represented in an f32.
|
2020-01-11 21:05:22 +00:00
|
|
|
|
flux: Box<[Compute]>,
|
|
|
|
|
pure_flux: InverseCdf<Compute>,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
alt_no_water: InverseCdf,
|
|
|
|
|
rivers: Box<[RiverData]>,
|
2019-08-21 18:41:32 +00:00
|
|
|
|
}
|
|
|
|
|
|
2019-11-11 17:14:58 +00:00
|
|
|
|
pub(crate) struct GenCtx {
|
2019-06-21 00:53:11 +00:00
|
|
|
|
pub turb_x_nz: SuperSimplex,
|
|
|
|
|
pub turb_y_nz: SuperSimplex,
|
2019-06-06 14:52:29 +00:00
|
|
|
|
pub chaos_nz: RidgedMulti,
|
2020-01-24 02:45:29 +00:00
|
|
|
|
pub alt_nz: util::HybridMulti,
|
2019-06-06 14:52:29 +00:00
|
|
|
|
pub hill_nz: SuperSimplex,
|
2019-11-06 11:19:50 +00:00
|
|
|
|
pub temp_nz: Fbm,
|
2019-08-18 16:35:27 +00:00
|
|
|
|
// Humidity noise
|
2019-08-22 21:25:17 +00:00
|
|
|
|
pub humid_nz: Billow,
|
2019-08-19 17:20:54 +00:00
|
|
|
|
// Small amounts of noise for simulating rough terrain.
|
2019-06-06 14:52:29 +00:00
|
|
|
|
pub small_nz: BasicMulti,
|
|
|
|
|
pub rock_nz: HybridMulti,
|
2019-06-10 14:22:59 +00:00
|
|
|
|
pub cliff_nz: HybridMulti,
|
2019-08-23 23:25:01 +00:00
|
|
|
|
pub warp_nz: FastNoise,
|
2019-06-06 14:52:29 +00:00
|
|
|
|
pub tree_nz: BasicMulti,
|
|
|
|
|
|
|
|
|
|
pub cave_0_nz: SuperSimplex,
|
|
|
|
|
pub cave_1_nz: SuperSimplex,
|
2019-06-09 10:24:18 +00:00
|
|
|
|
|
2019-07-09 23:51:54 +00:00
|
|
|
|
pub structure_gen: StructureGen2d,
|
|
|
|
|
pub region_gen: StructureGen2d,
|
2019-06-21 00:53:11 +00:00
|
|
|
|
pub cliff_gen: StructureGen2d,
|
2019-08-23 23:25:01 +00:00
|
|
|
|
|
|
|
|
|
pub fast_turb_x_nz: FastNoise,
|
|
|
|
|
pub fast_turb_y_nz: FastNoise,
|
2019-08-24 13:23:42 +00:00
|
|
|
|
|
|
|
|
|
pub town_gen: StructureGen2d,
|
2019-11-22 02:55:19 +00:00
|
|
|
|
pub river_seed: RandomField,
|
2020-01-11 20:38:30 +00:00
|
|
|
|
pub rock_strength_nz: Fbm,
|
2019-11-25 03:47:33 +00:00
|
|
|
|
pub uplift_nz: Worley,
|
2019-05-29 13:49:27 +00:00
|
|
|
|
}
|
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
#[derive(Clone, Debug, Deserialize, Serialize)]
|
2019-12-11 09:14:50 +00:00
|
|
|
|
pub enum FileOpts {
|
|
|
|
|
/// If set, generate the world map and do not try to save to or load from file
|
|
|
|
|
/// (default).
|
|
|
|
|
Generate,
|
|
|
|
|
/// If set, generate the world map and save the world file (path is created
|
|
|
|
|
/// the same way screenshot paths are).
|
|
|
|
|
Save,
|
2020-01-18 18:41:37 +00:00
|
|
|
|
/// If set, load the world file from this path in legacy format (errors if
|
|
|
|
|
/// path not found). This option may be removed at some point, since it only applies to maps
|
|
|
|
|
/// generated before map saving was merged into master.
|
|
|
|
|
LoadLegacy(PathBuf),
|
2019-12-11 09:14:50 +00:00
|
|
|
|
/// If set, load the world file from this path (errors if path not found).
|
|
|
|
|
Load(PathBuf),
|
2020-01-18 18:41:37 +00:00
|
|
|
|
/// If set, look for the world file at this asset specifier (errors if asset is not found).
|
|
|
|
|
///
|
|
|
|
|
/// NOTE: Could stand to merge this with `Load` and construct an enum that can handle either a
|
|
|
|
|
/// PathBuf or an asset specifier, at some point.
|
|
|
|
|
LoadAsset(String),
|
2019-12-11 09:14:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Default for FileOpts {
|
|
|
|
|
fn default() -> Self {
|
|
|
|
|
Self::Generate
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2019-12-03 01:07:44 +00:00
|
|
|
|
pub struct WorldOpts {
|
|
|
|
|
/// Set to false to disable seeding elements during worldgen.
|
|
|
|
|
pub seed_elements: bool,
|
2019-12-11 09:14:50 +00:00
|
|
|
|
pub world_file: FileOpts,
|
2019-12-03 01:07:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Default for WorldOpts {
|
|
|
|
|
fn default() -> Self {
|
|
|
|
|
Self {
|
|
|
|
|
seed_elements: true,
|
2019-12-11 09:14:50 +00:00
|
|
|
|
world_file: Default::default(),
|
2019-12-03 01:07:44 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
/// LEGACY: Remove when people stop caring.
|
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
|
|
|
#[repr(C)]
|
|
|
|
|
pub struct WorldFileLegacy {
|
|
|
|
|
/// Saved altitude height map.
|
|
|
|
|
pub alt: Box<[Alt]>,
|
|
|
|
|
/// Saved basement height map.
|
|
|
|
|
pub basement: Box<[Alt]>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Version of the world map intended for use in Veloren 0.5.0.
|
2020-01-11 20:38:30 +00:00
|
|
|
|
#[derive(Serialize, Deserialize)]
|
2020-01-18 18:41:37 +00:00
|
|
|
|
#[repr(C)]
|
|
|
|
|
pub struct WorldMap_0_5_0 {
|
2019-12-11 09:14:50 +00:00
|
|
|
|
/// Saved altitude height map.
|
|
|
|
|
pub alt: Box<[Alt]>,
|
|
|
|
|
/// Saved basement height map.
|
|
|
|
|
pub basement: Box<[Alt]>,
|
|
|
|
|
}
|
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
/// Errors when converting a map to the most recent type (currently,
|
|
|
|
|
/// shared by the various map types, but at some point we might switch to
|
|
|
|
|
/// version-specific errors if it feels worthwhile).
|
|
|
|
|
#[derive(Debug)]
|
|
|
|
|
pub enum WorldFileError {
|
|
|
|
|
/// Map size was invalid, and it can't be converted to a valid one.
|
|
|
|
|
WorldSizeInvalid,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// WORLD MAP.
|
|
|
|
|
///
|
|
|
|
|
/// A way to store certain components between runs of map generation. Only intended for
|
|
|
|
|
/// development purposes--no attempt is made to detect map invalidation or make sure that the map
|
|
|
|
|
/// is synchronized with updates to noise-rs, changes to other parameters, etc.
|
|
|
|
|
///
|
|
|
|
|
/// The map is verisoned to enable format detection between versions of Veloren, so that when we
|
|
|
|
|
/// update the map format we don't break existing maps (or at least, we will try hard not to break
|
|
|
|
|
/// maps between versions; if we can't avoid it, we can at least give a reasonable error message).
|
|
|
|
|
///
|
|
|
|
|
/// NOTE: We rely somemwhat heavily on the implementation specifics of bincode to make sure this is
|
|
|
|
|
/// backwards compatible. When adding new variants here, Be very careful to make sure tha the old
|
|
|
|
|
/// variants are preserved in the correct order and with the correct names and indices, and make
|
|
|
|
|
/// sure to keep the #[repr(u32)]!
|
|
|
|
|
///
|
|
|
|
|
/// All non-legacy versions of world files should (ideally) fit in this format. Since the format
|
|
|
|
|
/// contains a version and is designed to be extensible backwards-compatibly, the only
|
|
|
|
|
/// reason not to use this forever would be if we decided to move away from BinCode, or
|
|
|
|
|
/// store data across multiple files (or something else weird I guess).
|
|
|
|
|
///
|
|
|
|
|
/// Update this when you add a new map version.
|
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
|
|
|
#[repr(u32)]
|
|
|
|
|
pub enum WorldFile {
|
2020-01-20 16:16:41 +00:00
|
|
|
|
Veloren0_5_0(WorldMap_0_5_0) = 0,
|
2020-01-18 18:41:37 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Data for the most recent map type. Update this when you add a new map verson.
|
|
|
|
|
pub type ModernMap = WorldMap_0_5_0;
|
|
|
|
|
|
2020-01-20 18:19:06 +00:00
|
|
|
|
/// The default world map.
|
|
|
|
|
///
|
|
|
|
|
/// TODO: Consider using some naming convention to automatically change this
|
|
|
|
|
/// with changing versions, or at least keep it in a constant somewhere that's
|
|
|
|
|
/// easy to change.
|
|
|
|
|
pub const DEFAULT_WORLD_MAP: &'static str = "world.map.veloren_0_5_0_0";
|
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
impl WorldFileLegacy {
|
|
|
|
|
#[inline]
|
|
|
|
|
/// Idea: each map type except the latest knows how to transform
|
|
|
|
|
/// into the the subsequent map version, and each map type including the
|
|
|
|
|
/// latest exposes an "into_modern()" method that converts this map type
|
|
|
|
|
/// to the modern map type. Thus, to migrate a map from an old format to a new
|
|
|
|
|
/// format, we just need to transform the old format to the subsequent map
|
|
|
|
|
/// version, and then call .into_modern() on that--this should construct a call chain that
|
|
|
|
|
/// ultimately ends up with a modern version.
|
|
|
|
|
pub fn into_modern(self) -> Result<ModernMap, WorldFileError> {
|
|
|
|
|
if self.alt.len() != self.basement.len()
|
|
|
|
|
|| self.alt.len() != WORLD_SIZE.x as usize * WORLD_SIZE.y as usize
|
|
|
|
|
{
|
|
|
|
|
return Err(WorldFileError::WorldSizeInvalid);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let map = WorldMap_0_5_0 {
|
|
|
|
|
alt: self.alt,
|
|
|
|
|
basement: self.basement,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
map.into_modern()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl WorldMap_0_5_0 {
|
|
|
|
|
#[inline]
|
|
|
|
|
pub fn into_modern(self) -> Result<ModernMap, WorldFileError> {
|
|
|
|
|
if self.alt.len() != self.basement.len()
|
|
|
|
|
|| self.alt.len() != WORLD_SIZE.x as usize * WORLD_SIZE.y as usize
|
|
|
|
|
{
|
|
|
|
|
return Err(WorldFileError::WorldSizeInvalid);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Ok(self)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl WorldFile {
|
|
|
|
|
/// Turns map data from the latest version into a versioned WorldFile ready for serialization.
|
|
|
|
|
/// Whenever a new map is updated, just change the variant we construct here to make sure we're
|
|
|
|
|
/// using the latest map version.
|
|
|
|
|
|
|
|
|
|
pub fn new(map: ModernMap) -> Self {
|
2020-01-20 16:16:41 +00:00
|
|
|
|
WorldFile::Veloren0_5_0(map)
|
2020-01-18 18:41:37 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
/// Turns a WorldFile into the latest version. Whenever a new map version is added, just add
|
|
|
|
|
/// it to this match statement.
|
2020-01-20 16:16:41 +00:00
|
|
|
|
pub fn into_modern(self) -> Result<ModernMap, WorldFileError> {
|
2020-01-18 18:41:37 +00:00
|
|
|
|
match self {
|
2020-01-20 16:16:41 +00:00
|
|
|
|
WorldFile::Veloren0_5_0(map) => map.into_modern(),
|
2020-01-18 18:41:37 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2019-05-18 08:59:58 +00:00
|
|
|
|
pub struct WorldSim {
|
2019-05-20 02:53:04 +00:00
|
|
|
|
pub seed: u32,
|
2019-06-06 14:52:29 +00:00
|
|
|
|
pub(crate) chunks: Vec<SimChunk>,
|
2019-06-25 15:59:09 +00:00
|
|
|
|
pub(crate) locations: Vec<Location>,
|
|
|
|
|
|
2019-06-06 14:52:29 +00:00
|
|
|
|
pub(crate) gen_ctx: GenCtx,
|
2019-07-30 14:10:59 +00:00
|
|
|
|
pub rng: ChaChaRng,
|
2019-05-18 08:59:58 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl WorldSim {
|
2019-12-03 01:07:44 +00:00
|
|
|
|
pub fn generate(seed: u32, opts: WorldOpts) -> Self {
|
2019-09-17 14:05:08 +00:00
|
|
|
|
let mut rng = ChaChaRng::from_seed(seed_expan::rng_state(seed));
|
2020-01-22 14:31:10 +00:00
|
|
|
|
// NOTE: Change 1.0 to 4.0, while multiplying grid_size by 4, for a 4x
|
|
|
|
|
// improvement in world detail. You may also want to set mins_per_sec to 1 / (4.0 * 4.0)
|
|
|
|
|
// in ./erosion.rs, in order to get a similar rate of river formation.
|
2020-01-22 09:41:10 +00:00
|
|
|
|
let continent_scale = 1.0/*4.0*/
|
2020-01-22 14:31:10 +00:00
|
|
|
|
* 5_000.0f64
|
2020-01-22 09:41:10 +00:00
|
|
|
|
.div(32.0)
|
|
|
|
|
.mul(TerrainChunkSize::RECT_SIZE.x as f64);
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let rock_lacunarity = 2.0;
|
|
|
|
|
let uplift_scale = 128.0;
|
|
|
|
|
let uplift_turb_scale = uplift_scale / 4.0;
|
2019-08-11 11:35:04 +00:00
|
|
|
|
|
2020-01-16 21:42:51 +00:00
|
|
|
|
// NOTE: Changing order will significantly change WorldGen, so try not to!
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let gen_ctx = GenCtx {
|
2019-09-17 14:05:08 +00:00
|
|
|
|
turb_x_nz: SuperSimplex::new().set_seed(rng.gen()),
|
|
|
|
|
turb_y_nz: SuperSimplex::new().set_seed(rng.gen()),
|
2019-11-11 17:14:58 +00:00
|
|
|
|
chaos_nz: RidgedMulti::new()
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.set_octaves(7)
|
|
|
|
|
.set_frequency(RidgedMulti::DEFAULT_FREQUENCY * (5_000.0 / continent_scale))
|
2019-11-11 17:14:58 +00:00
|
|
|
|
.set_seed(rng.gen()),
|
2019-09-17 14:05:08 +00:00
|
|
|
|
hill_nz: SuperSimplex::new().set_seed(rng.gen()),
|
2020-01-24 02:45:29 +00:00
|
|
|
|
alt_nz: util::HybridMulti::new()
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.set_octaves(8)
|
|
|
|
|
.set_frequency((10_000.0 / continent_scale) as f64)
|
2019-11-19 18:34:52 +00:00
|
|
|
|
// persistence = lacunarity^(-(1.0 - fractal increment))
|
2020-01-24 02:45:29 +00:00
|
|
|
|
.set_lacunarity(util::HybridMulti::DEFAULT_LACUNARITY)
|
|
|
|
|
.set_persistence(util::HybridMulti::DEFAULT_LACUNARITY.powf(-(1.0 - 0.0)))
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.set_offset(0.0)
|
2019-09-17 14:05:08 +00:00
|
|
|
|
.set_seed(rng.gen()),
|
2019-11-11 17:14:58 +00:00
|
|
|
|
temp_nz: Fbm::new()
|
|
|
|
|
.set_octaves(6)
|
|
|
|
|
.set_persistence(0.5)
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.set_frequency(1.0 / (((1 << 6) * 64) as f64))
|
2019-11-11 17:14:58 +00:00
|
|
|
|
.set_lacunarity(2.0)
|
|
|
|
|
.set_seed(rng.gen()),
|
2019-11-06 11:19:50 +00:00
|
|
|
|
|
2019-11-07 20:25:30 +00:00
|
|
|
|
small_nz: BasicMulti::new().set_octaves(2).set_seed(rng.gen()),
|
2019-09-17 14:05:08 +00:00
|
|
|
|
rock_nz: HybridMulti::new().set_persistence(0.3).set_seed(rng.gen()),
|
2019-11-07 20:25:30 +00:00
|
|
|
|
cliff_nz: HybridMulti::new().set_persistence(0.3).set_seed(rng.gen()),
|
2020-01-22 14:31:10 +00:00
|
|
|
|
warp_nz: FastNoise::new(rng.gen()),
|
2019-05-25 07:36:11 +00:00
|
|
|
|
tree_nz: BasicMulti::new()
|
2019-11-07 20:25:30 +00:00
|
|
|
|
.set_octaves(12)
|
|
|
|
|
.set_persistence(0.75)
|
2019-09-17 14:05:08 +00:00
|
|
|
|
.set_seed(rng.gen()),
|
|
|
|
|
cave_0_nz: SuperSimplex::new().set_seed(rng.gen()),
|
|
|
|
|
cave_1_nz: SuperSimplex::new().set_seed(rng.gen()),
|
2019-06-09 10:24:18 +00:00
|
|
|
|
|
2019-09-25 22:53:43 +00:00
|
|
|
|
structure_gen: StructureGen2d::new(rng.gen(), 32, 16),
|
2019-09-17 14:05:08 +00:00
|
|
|
|
region_gen: StructureGen2d::new(rng.gen(), 400, 96),
|
|
|
|
|
cliff_gen: StructureGen2d::new(rng.gen(), 80, 56),
|
2019-08-18 23:52:26 +00:00
|
|
|
|
humid_nz: Billow::new()
|
2019-11-06 11:19:50 +00:00
|
|
|
|
.set_octaves(9)
|
2019-11-07 20:25:30 +00:00
|
|
|
|
.set_persistence(0.4)
|
2019-11-06 11:19:50 +00:00
|
|
|
|
.set_frequency(0.2)
|
2019-09-17 14:05:08 +00:00
|
|
|
|
.set_seed(rng.gen()),
|
2019-08-23 23:25:01 +00:00
|
|
|
|
|
2019-09-17 14:05:08 +00:00
|
|
|
|
fast_turb_x_nz: FastNoise::new(rng.gen()),
|
|
|
|
|
fast_turb_y_nz: FastNoise::new(rng.gen()),
|
2019-08-24 13:23:42 +00:00
|
|
|
|
|
2019-09-17 14:05:08 +00:00
|
|
|
|
town_gen: StructureGen2d::new(rng.gen(), 2048, 1024),
|
2019-11-22 02:55:19 +00:00
|
|
|
|
river_seed: RandomField::new(rng.gen()),
|
2020-01-22 14:31:10 +00:00
|
|
|
|
rock_strength_nz: Fbm::new()
|
|
|
|
|
.set_octaves(10)
|
|
|
|
|
.set_lacunarity(rock_lacunarity)
|
|
|
|
|
// persistence = lacunarity^(-(1.0 - fractal increment))
|
|
|
|
|
// NOTE: In paper, fractal increment is roughly 0.25.
|
|
|
|
|
.set_persistence(rock_lacunarity.powf(-(1.0 - 0.25)))
|
|
|
|
|
.set_frequency(
|
|
|
|
|
1.0 * (5_000.0 / continent_scale)
|
|
|
|
|
/ (2.0 * TerrainChunkSize::RECT_SIZE.x as f64 * 2.0.powi(10 - 1)),
|
|
|
|
|
)
|
|
|
|
|
.set_seed(rng.gen()),
|
2019-11-25 03:47:33 +00:00
|
|
|
|
uplift_nz: Worley::new()
|
|
|
|
|
.set_seed(rng.gen())
|
2020-01-11 19:53:58 +00:00
|
|
|
|
.set_frequency(1.0 / (TerrainChunkSize::RECT_SIZE.x as f64 * uplift_scale))
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.set_displacement(1.0)
|
2020-01-16 21:42:51 +00:00
|
|
|
|
.set_range_function(RangeFunction::Euclidean),
|
2019-11-22 02:55:19 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let river_seed = &gen_ctx.river_seed;
|
|
|
|
|
let rock_strength_nz = &gen_ctx.rock_strength_nz;
|
2019-11-19 18:34:52 +00:00
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// Suppose the old world has grid spacing Δx' = Δy', new Δx = Δy.
|
|
|
|
|
// We define grid_scale such that Δx = height_scale * Δx' ⇒
|
|
|
|
|
// grid_scale = Δx / Δx'.
|
|
|
|
|
let grid_scale = 1.0f64 / 4.0/*1.0*/;
|
2020-01-22 09:41:10 +00:00
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// Now, suppose we want to generate a world with "similar" topography, defined in this case
|
|
|
|
|
// as having roughly equal slopes at steady state, with the simulation taking roughly as
|
|
|
|
|
// many steps to get to the point the previous world was at when it finished being
|
|
|
|
|
// simulated.
|
|
|
|
|
//
|
|
|
|
|
// Some computations with our coupled SPL/debris flow give us (for slope S constant) the following
|
|
|
|
|
// suggested scaling parameters to make this work:
|
|
|
|
|
// k_fs_scale ≡ (K𝑓 / K𝑓') = grid_scale^(-2m) = grid_scale^(-2θn)
|
|
|
|
|
let k_fs_scale = |theta, n| grid_scale.powf(-2.0 * (theta * n) as f64);
|
|
|
|
|
|
|
|
|
|
// k_da_scale ≡ (K_da / K_da') = grid_scale^(-2q)
|
|
|
|
|
let k_da_scale = |q| grid_scale.powf(-2.0 * q);
|
|
|
|
|
//
|
|
|
|
|
// Some other estimated parameters are harder to come by and *much* more dubious, not being accurate
|
|
|
|
|
// for the coupled equation. But for the SPL only one we roughly find, for h the height at steady
|
|
|
|
|
// state and time τ = time to steady state, with Hack's Law estimated b = 2.0 and various other
|
|
|
|
|
// simplifying assumptions, the estimate:
|
|
|
|
|
// height_scale ≡ (h / h') = grid_scale^(n)
|
|
|
|
|
let height_scale = |n: f32| grid_scale.powf(n as f64) as Alt;
|
|
|
|
|
// time_scale ≡ (τ / τ') = grid_scale^(n)
|
|
|
|
|
let time_scale = |n: f32| grid_scale.powf(n as f64);
|
|
|
|
|
//
|
|
|
|
|
// Based on this estimate, we have:
|
|
|
|
|
// delta_t_scale ≡ (Δt / Δt') = time_scale
|
|
|
|
|
let delta_t_scale = |n: f32| time_scale(n);
|
|
|
|
|
// alpha_scale ≡ (α / α') = height_scale^(-1)
|
|
|
|
|
let alpha_scale = |n: f32| height_scale(n).recip() as f32;
|
|
|
|
|
//
|
|
|
|
|
// Slightly more dubiously (need to work out the math better) we find:
|
2020-01-22 14:31:10 +00:00
|
|
|
|
// k_d_scale ≡ (K_d / K_d') = grid_scale^2 / (/*height_scale * */ time_scale)
|
|
|
|
|
let k_d_scale = |n: f32| grid_scale.powi(2) / (/*height_scale(n) * */time_scale(n));
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// epsilon_0_scale ≡ (ε₀ / ε₀') = height_scale(n) / time_scale(n)
|
2020-01-22 14:45:05 +00:00
|
|
|
|
let epsilon_0_scale = |n| (height_scale(n) / time_scale(n) as Alt) as f32;
|
2020-01-18 18:41:37 +00:00
|
|
|
|
|
|
|
|
|
// Approximate n for purposes of computation of parameters above over the whole grid (when
|
|
|
|
|
// a chunk isn't available).
|
|
|
|
|
let n_approx = 1.0;
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let max_erosion_per_delta_t = 64.0 * delta_t_scale(n_approx);
|
|
|
|
|
let n_steps = 100;
|
|
|
|
|
let n_small_steps = 0;
|
|
|
|
|
let n_post_load_steps = 0;
|
2019-12-03 01:07:44 +00:00
|
|
|
|
|
|
|
|
|
// Logistic regression. Make sure x ∈ (0, 1).
|
|
|
|
|
let logit = |x: f64| x.ln() - (-x).ln_1p();
|
|
|
|
|
// 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
|
|
|
|
|
let logistic_2_base = 3.0f64.sqrt() * f64::consts::FRAC_2_PI;
|
|
|
|
|
// Assumes μ = 0, σ = 1
|
|
|
|
|
let logistic_cdf = |x: f64| (x / logistic_2_base).tanh() * 0.5 + 0.5;
|
|
|
|
|
|
|
|
|
|
let min_epsilon =
|
|
|
|
|
1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64).max(f64::EPSILON as f64 * 0.5);
|
|
|
|
|
let max_epsilon = (1.0 - 1.0 / (WORLD_SIZE.x as f64 * WORLD_SIZE.y as f64))
|
|
|
|
|
.min(1.0 - f64::EPSILON as f64 * 0.5);
|
2019-11-19 18:34:52 +00:00
|
|
|
|
|
2019-11-07 20:25:30 +00:00
|
|
|
|
// No NaNs in these uniform vectors, since the original noise value always returns Some.
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let ((alt_base, _), (chaos, _)) = rayon::join(
|
|
|
|
|
|| {
|
|
|
|
|
uniform_noise(|_, wposf| {
|
|
|
|
|
// "Base" of the chunk, to be multiplied by CONFIG.mountain_scale (multiplied value
|
|
|
|
|
// is from -0.35 * (CONFIG.mountain_scale * 1.05) to
|
|
|
|
|
// 0.35 * (CONFIG.mountain_scale * 0.95), but value here is from -0.3675 to 0.3325).
|
|
|
|
|
Some(
|
|
|
|
|
(gen_ctx
|
|
|
|
|
.alt_nz
|
|
|
|
|
.get((wposf.div(10_000.0)).into_array())
|
|
|
|
|
.min(1.0)
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.max(-1.0))
|
2019-12-03 01:07:44 +00:00
|
|
|
|
.sub(0.05)
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.mul(0.35),
|
2019-10-16 11:39:41 +00:00
|
|
|
|
)
|
|
|
|
|
})
|
|
|
|
|
},
|
|
|
|
|
|| {
|
|
|
|
|
uniform_noise(|_, wposf| {
|
2019-11-11 17:14:58 +00:00
|
|
|
|
// From 0 to 1.6, but the distribution before the max is from -1 and 1.6, so there is
|
|
|
|
|
// a 50% chance that hill will end up at 0.3 or lower, and probably a very high
|
|
|
|
|
// change it will be exactly 0.
|
|
|
|
|
let hill = (0.0f64
|
2019-10-16 11:39:41 +00:00
|
|
|
|
+ gen_ctx
|
|
|
|
|
.hill_nz
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.get(
|
|
|
|
|
(wposf
|
|
|
|
|
.mul(32.0)
|
|
|
|
|
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
|
|
|
|
.div(1_500.0))
|
|
|
|
|
.into_array(),
|
|
|
|
|
)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0)
|
|
|
|
|
.mul(1.0)
|
|
|
|
|
+ gen_ctx
|
|
|
|
|
.hill_nz
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.get(
|
|
|
|
|
(wposf
|
|
|
|
|
.mul(32.0)
|
|
|
|
|
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
|
|
|
|
.div(400.0))
|
|
|
|
|
.into_array(),
|
|
|
|
|
)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0)
|
2019-11-07 20:25:30 +00:00
|
|
|
|
.mul(0.3))
|
2019-10-16 11:39:41 +00:00
|
|
|
|
.add(0.3)
|
|
|
|
|
.max(0.0);
|
|
|
|
|
|
2019-12-11 09:14:50 +00:00
|
|
|
|
// chaos produces a value in [0.12, 1.32]. It is a meta-level factor intended to
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// reflect how "chaotic" the region is--how much weird stuff is going on on this
|
|
|
|
|
// terrain.
|
|
|
|
|
Some(
|
|
|
|
|
((gen_ctx
|
|
|
|
|
.chaos_nz
|
|
|
|
|
.get((wposf.div(3_000.0)).into_array())
|
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0))
|
|
|
|
|
.add(1.0)
|
|
|
|
|
.mul(0.5)
|
|
|
|
|
// [0, 1] * [0.4, 1] = [0, 1] (but probably towards the lower end)
|
|
|
|
|
.mul(
|
|
|
|
|
(gen_ctx
|
|
|
|
|
.chaos_nz
|
|
|
|
|
.get((wposf.div(6_000.0)).into_array())
|
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0))
|
2019-08-24 19:32:07 +00:00
|
|
|
|
.abs()
|
2019-09-24 17:56:51 +00:00
|
|
|
|
.max(0.4)
|
2019-08-24 19:32:07 +00:00
|
|
|
|
.min(1.0),
|
2019-10-16 11:39:41 +00:00
|
|
|
|
)
|
|
|
|
|
// Chaos is always increased by a little when we're on a hill (but remember
|
2019-11-11 17:14:58 +00:00
|
|
|
|
// that hill is 0.3 or less about 50% of the time).
|
2019-12-11 09:14:50 +00:00
|
|
|
|
// [0, 1] + 0.2 * [0, 1.6] = [0, 1.32]
|
2019-10-16 11:39:41 +00:00
|
|
|
|
.add(0.2 * hill)
|
|
|
|
|
// We can't have *no* chaos!
|
|
|
|
|
.max(0.12)) as f32,
|
2019-08-24 19:32:07 +00:00
|
|
|
|
)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
})
|
|
|
|
|
},
|
|
|
|
|
);
|
2019-08-21 18:41:32 +00:00
|
|
|
|
|
|
|
|
|
// We ignore sea level because we actually want to be relative to sea level here and want
|
2019-08-22 22:57:42 +00:00
|
|
|
|
// things in CONFIG.mountain_scale units, but otherwise this is a correct altitude
|
|
|
|
|
// calculation. Note that this is using the "unadjusted" temperature.
|
2019-11-07 20:25:30 +00:00
|
|
|
|
//
|
|
|
|
|
// No NaNs in these uniform vectors, since the original noise value always returns Some.
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let (alt_old, _) = uniform_noise(|posi, wposf| {
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// This is the extension upwards from the base added to some extra noise from -1 to
|
|
|
|
|
// 1.
|
|
|
|
|
//
|
2019-08-22 22:57:42 +00:00
|
|
|
|
// The extra noise is multiplied by alt_main (the mountain part of the extension)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// powered to 0.8 and clamped to [0.15, 1], to get a value between [-1, 1] again.
|
|
|
|
|
//
|
|
|
|
|
// The sides then receive the sequence (y * 0.3 + 1.0) * 0.4, so we have
|
|
|
|
|
// [-1*1*(1*0.3+1)*0.4, 1*(1*0.3+1)*0.4] = [-0.52, 0.52].
|
|
|
|
|
//
|
2019-08-22 22:57:42 +00:00
|
|
|
|
// Adding this to alt_main thus yields a value between -0.4 (if alt_main = 0 and
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// gen_ctx = -1, 0+-1*(0*.3+1)*0.4) and 1.52 (if alt_main = 1 and gen_ctx = 1).
|
|
|
|
|
// Most of the points are above 0.
|
2019-08-22 22:57:42 +00:00
|
|
|
|
//
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// Next, we add again by a sin of alt_main (between [-1, 1])^pow, getting
|
|
|
|
|
// us (after adjusting for sign) another value between [-1, 1], and then this is
|
|
|
|
|
// multiplied by 0.045 to get [-0.045, 0.045], which is added to [-0.4, 0.52] to get
|
|
|
|
|
// [-0.445, 0.565].
|
2019-08-22 22:57:42 +00:00
|
|
|
|
let alt_main = {
|
|
|
|
|
// Extension upwards from the base. A positive number from 0 to 1 curved to be
|
|
|
|
|
// maximal at 0. Also to be multiplied by CONFIG.mountain_scale.
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let alt_main = (gen_ctx
|
|
|
|
|
.alt_nz
|
|
|
|
|
.get((wposf.div(2_000.0)).into_array())
|
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0))
|
|
|
|
|
.abs()
|
|
|
|
|
.powf(1.35);
|
|
|
|
|
|
|
|
|
|
fn spring(x: f64, pow: f64) -> f64 {
|
2019-09-24 17:56:51 +00:00
|
|
|
|
x.abs().powf(pow) * x.signum()
|
|
|
|
|
}
|
|
|
|
|
|
2020-01-22 14:31:10 +00:00
|
|
|
|
(0.0 + alt_main
|
2019-10-16 11:39:41 +00:00
|
|
|
|
+ (gen_ctx
|
|
|
|
|
.small_nz
|
2020-01-22 14:31:10 +00:00
|
|
|
|
.get(
|
|
|
|
|
(wposf
|
|
|
|
|
.mul(32.0)
|
|
|
|
|
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
|
|
|
|
.div(300.0))
|
|
|
|
|
.into_array(),
|
|
|
|
|
)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0))
|
|
|
|
|
.mul(alt_main.powf(0.8).max(/*0.25*/ 0.15))
|
|
|
|
|
.mul(0.3)
|
|
|
|
|
.add(1.0)
|
|
|
|
|
.mul(0.4)
|
2019-09-24 17:56:51 +00:00
|
|
|
|
+ spring(alt_main.abs().powf(0.5).min(0.75).mul(60.0).sin(), 4.0).mul(0.045))
|
2019-08-22 22:57:42 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Now we can compute the final altitude using chaos.
|
2019-12-11 09:14:50 +00:00
|
|
|
|
// We multiply by chaos clamped to [0.1, 1.32] to get a value between [0.03, 2.232]
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// for alt_pre, then multiply by CONFIG.mountain_scale and add to the base and sea
|
|
|
|
|
// level to get an adjusted value, then multiply the whole thing by map_edge_factor
|
2019-08-22 22:57:42 +00:00
|
|
|
|
// (TODO: compute final bounds).
|
2019-10-16 11:39:41 +00:00
|
|
|
|
//
|
2019-12-11 09:14:50 +00:00
|
|
|
|
// [-.3675, .3325] + [-0.445, 0.565] * [0.12, 1.32]^1.2
|
|
|
|
|
// ~ [-.3675, .3325] + [-0.445, 0.565] * [0.07, 1.40]
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// = [-.3675, .3325] + ([-0.5785, 0.7345])
|
|
|
|
|
// = [-0.946, 1.067]
|
2019-09-24 17:56:51 +00:00
|
|
|
|
Some(
|
2020-01-22 14:31:10 +00:00
|
|
|
|
((alt_base[posi].1 + alt_main.mul((chaos[posi].1 as f64).powf(1.2)))
|
2019-10-16 11:39:41 +00:00
|
|
|
|
.mul(map_edge_factor(posi) as f64)
|
|
|
|
|
.add(
|
|
|
|
|
(CONFIG.sea_level as f64)
|
|
|
|
|
.div(CONFIG.mountain_scale as f64)
|
|
|
|
|
.mul(map_edge_factor(posi) as f64),
|
|
|
|
|
)
|
|
|
|
|
.sub((CONFIG.sea_level as f64).div(CONFIG.mountain_scale as f64)))
|
|
|
|
|
as f32,
|
2020-01-22 14:31:10 +00:00
|
|
|
|
)
|
2019-08-24 19:13:32 +00:00
|
|
|
|
});
|
|
|
|
|
|
2019-11-07 20:25:30 +00:00
|
|
|
|
// Calculate oceans.
|
2020-01-18 18:41:37 +00:00
|
|
|
|
let is_ocean = get_oceans(|posi: usize| alt_old[posi].1);
|
2020-01-22 14:31:10 +00:00
|
|
|
|
// NOTE: Uncomment if you want oceans to exclusively be on the border of the map.
|
2019-11-19 18:34:52 +00:00
|
|
|
|
/* let is_ocean = (0..WORLD_SIZE.x * WORLD_SIZE.y)
|
2020-01-11 20:38:30 +00:00
|
|
|
|
.into_par_iter()
|
|
|
|
|
.map(|i| map_edge_factor(i) == 0.0)
|
|
|
|
|
.collect::<Vec<_>>(); */
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let is_ocean_fn = |posi: usize| is_ocean[posi];
|
2020-01-18 18:41:37 +00:00
|
|
|
|
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let turb_wposf_div = 8.0;
|
2020-01-18 18:41:37 +00:00
|
|
|
|
let n_func = |posi| {
|
|
|
|
|
if is_ocean_fn(posi) {
|
|
|
|
|
return 1.0;
|
|
|
|
|
}
|
|
|
|
|
1.0
|
|
|
|
|
};
|
|
|
|
|
let old_height = |posi: usize| {
|
|
|
|
|
alt_old[posi].1 * CONFIG.mountain_scale * height_scale(n_func(posi)) as f32
|
|
|
|
|
};
|
2019-11-07 20:25:30 +00:00
|
|
|
|
|
2020-01-22 14:31:10 +00:00
|
|
|
|
// NOTE: Needed if you wish to use the distance to the point defining the Worley cell, not
|
|
|
|
|
// just the value within that cell.
|
2020-01-20 16:16:41 +00:00
|
|
|
|
// let uplift_nz_dist = gen_ctx.uplift_nz.clone().enable_range(true);
|
2020-01-22 14:31:10 +00:00
|
|
|
|
|
2019-11-11 17:14:58 +00:00
|
|
|
|
// Recalculate altitudes without oceans.
|
2019-12-11 09:14:50 +00:00
|
|
|
|
// NaNs in these uniform vectors wherever is_ocean_fn returns true.
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let (alt_old_no_ocean, _) = uniform_noise(|posi, _| {
|
2020-01-11 20:38:30 +00:00
|
|
|
|
if is_ocean_fn(posi) {
|
|
|
|
|
None
|
|
|
|
|
} else {
|
2020-01-22 14:31:10 +00:00
|
|
|
|
Some(old_height(posi))
|
2020-01-11 20:38:30 +00:00
|
|
|
|
}
|
|
|
|
|
});
|
2020-01-20 16:16:41 +00:00
|
|
|
|
let (uplift_uniform, _) = uniform_noise(|posi, _wposf| {
|
2020-01-11 20:38:30 +00:00
|
|
|
|
if is_ocean_fn(posi) {
|
|
|
|
|
None
|
|
|
|
|
} else {
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let oheight = alt_old_no_ocean[posi].0 as f64 - 0.5;
|
2020-01-11 20:38:30 +00:00
|
|
|
|
let height = (oheight + 0.5).powf(2.0);
|
|
|
|
|
Some(height)
|
|
|
|
|
}
|
|
|
|
|
});
|
2019-11-07 20:25:30 +00:00
|
|
|
|
|
|
|
|
|
let alt_old_min_uniform = 0.0;
|
2019-11-11 17:14:58 +00:00
|
|
|
|
let alt_old_max_uniform = 1.0;
|
2019-10-16 11:39:41 +00:00
|
|
|
|
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let inv_func = |x: f64| x;
|
|
|
|
|
let alt_exp_min_uniform = inv_func(min_epsilon);
|
|
|
|
|
let alt_exp_max_uniform = inv_func(max_epsilon);
|
2019-10-16 11:39:41 +00:00
|
|
|
|
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let erosion_factor = |x: f64| {
|
|
|
|
|
((inv_func(x) - alt_exp_min_uniform) / (alt_exp_max_uniform - alt_exp_min_uniform))
|
|
|
|
|
};
|
|
|
|
|
let rock_strength_div_factor = (2.0 * TerrainChunkSize::RECT_SIZE.x as f64) / 8.0;
|
2020-01-20 16:16:41 +00:00
|
|
|
|
let theta_func = |_posi| 0.4;
|
2019-12-03 01:07:44 +00:00
|
|
|
|
let kf_func = {
|
|
|
|
|
|posi| {
|
2020-01-18 18:41:37 +00:00
|
|
|
|
let kf_scale_i = k_fs_scale(theta_func(posi), n_func(posi)) as f64;
|
2019-12-03 01:07:44 +00:00
|
|
|
|
if is_ocean_fn(posi) {
|
2020-01-22 14:31:10 +00:00
|
|
|
|
return 1.0e-4 * kf_scale_i;
|
2019-12-03 01:07:44 +00:00
|
|
|
|
}
|
2020-01-11 19:53:58 +00:00
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
let kf_i = // kf = 1.5e-4: high-high (plateau [fan sediment])
|
2019-12-03 01:07:44 +00:00
|
|
|
|
// kf = 1e-4: high (plateau)
|
2019-12-03 18:14:29 +00:00
|
|
|
|
// kf = 2e-5: normal (dike [unexposed])
|
|
|
|
|
// kf = 1e-6: normal-low (dike [exposed])
|
2019-12-03 01:07:44 +00:00
|
|
|
|
// kf = 2e-6: low (mountain)
|
2019-12-11 09:14:50 +00:00
|
|
|
|
// --
|
|
|
|
|
// kf = 2.5e-7 to 8e-7: very low (Cordonnier papers on plate tectonics)
|
|
|
|
|
// ((1.0 - uheight) * (1.5e-4 - 2.0e-6) + 2.0e-6) as f32
|
|
|
|
|
//
|
|
|
|
|
// ACTUAL recorded values worldwide: much lower...
|
2020-01-18 18:41:37 +00:00
|
|
|
|
1.0e-6
|
|
|
|
|
;
|
|
|
|
|
kf_i * kf_scale_i
|
2019-12-03 01:07:44 +00:00
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
let kd_func = {
|
|
|
|
|
|posi| {
|
2020-01-18 18:41:37 +00:00
|
|
|
|
let n = n_func(posi);
|
|
|
|
|
let kd_scale_i = k_d_scale(n);
|
2019-12-03 01:07:44 +00:00
|
|
|
|
if is_ocean_fn(posi) {
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let kd_i = 1.0e-2 / 4.0;
|
2020-01-20 16:16:41 +00:00
|
|
|
|
return kd_i * kd_scale_i;
|
2019-12-03 01:07:44 +00:00
|
|
|
|
}
|
2019-12-03 18:14:29 +00:00
|
|
|
|
// kd = 1e-1: high (mountain, dike)
|
2019-12-03 01:07:44 +00:00
|
|
|
|
// kd = 1.5e-2: normal-high (plateau [fan sediment])
|
|
|
|
|
// kd = 1e-2: normal (plateau)
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let kd_i = 1.0e-2 / 4.0;
|
2020-01-18 18:41:37 +00:00
|
|
|
|
kd_i * kd_scale_i
|
2019-12-03 01:07:44 +00:00
|
|
|
|
}
|
|
|
|
|
};
|
2020-01-11 20:38:30 +00:00
|
|
|
|
let g_func = |posi| {
|
2020-01-22 14:31:10 +00:00
|
|
|
|
if map_edge_factor(posi) == 0.0 {
|
2020-01-11 20:38:30 +00:00
|
|
|
|
return 0.0;
|
|
|
|
|
}
|
|
|
|
|
// G = d* v_s / p_0, where
|
|
|
|
|
// v_s is the settling velocity of sediment grains
|
|
|
|
|
// p_0 is the mean precipitation rate
|
|
|
|
|
// d* is the sediment concentration ratio (between concentration near riverbed
|
|
|
|
|
// interface, and average concentration over the water column).
|
|
|
|
|
// d* varies with Rouse number which defines relative contribution of bed, suspended,
|
|
|
|
|
// and washed loads.
|
|
|
|
|
//
|
|
|
|
|
// G is typically on the order of 1 or greater. However, we are only guaranteed to
|
|
|
|
|
// converge for G ≤ 1, so we keep it in the chaos range of [0.12, 1.32].
|
|
|
|
|
1.0
|
|
|
|
|
};
|
2020-01-11 21:05:22 +00:00
|
|
|
|
let epsilon_0_func = |posi| {
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// epsilon_0_scale is roughly [using Hack's Law with b = 2 and SPL without debris flow or
|
2020-01-16 21:42:51 +00:00
|
|
|
|
// hillslopes] equal to the ratio of the old to new area, to the power of -n_i.
|
2020-01-18 18:41:37 +00:00
|
|
|
|
let epsilon_0_scale_i = epsilon_0_scale(n_func(posi));
|
2020-01-11 21:05:22 +00:00
|
|
|
|
if is_ocean_fn(posi) {
|
|
|
|
|
// marine: ε₀ = 2.078e-3
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let epsilon_0_i = 2.078e-3 / 4.0;
|
|
|
|
|
return epsilon_0_i * epsilon_0_scale_i;
|
2020-01-11 21:05:22 +00:00
|
|
|
|
}
|
|
|
|
|
let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
|
|
|
|
.map(|e| e as f64);
|
|
|
|
|
let turb_wposf = wposf
|
2020-01-20 01:59:28 +00:00
|
|
|
|
.mul(5_000.0 / continent_scale)
|
2020-01-11 21:05:22 +00:00
|
|
|
|
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
|
|
|
|
.div(turb_wposf_div);
|
|
|
|
|
let turb = Vec2::new(
|
|
|
|
|
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
|
|
|
|
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
|
|
|
|
) * uplift_turb_scale
|
|
|
|
|
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
|
|
|
|
let turb_wposf = wposf + turb;
|
|
|
|
|
let uheight = gen_ctx
|
|
|
|
|
.uplift_nz
|
|
|
|
|
.get(turb_wposf.into_array())
|
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0)
|
|
|
|
|
.mul(0.5)
|
|
|
|
|
.add(0.5);
|
|
|
|
|
let wposf3 = Vec3::new(
|
|
|
|
|
wposf.x,
|
|
|
|
|
wposf.y,
|
|
|
|
|
uheight * CONFIG.mountain_scale as f64 * rock_strength_div_factor,
|
|
|
|
|
);
|
|
|
|
|
let rock_strength = gen_ctx
|
|
|
|
|
.rock_strength_nz
|
|
|
|
|
.get(wposf3.into_array())
|
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0)
|
|
|
|
|
.mul(0.5)
|
|
|
|
|
.add(0.5);
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let center = 0.4;
|
|
|
|
|
let dmin = center - 0.05;
|
|
|
|
|
let dmax = center + 0.05;
|
2020-01-11 21:05:22 +00:00
|
|
|
|
let log_odds = |x: f64| logit(x) - logit(center);
|
|
|
|
|
let ustrength = logistic_cdf(
|
|
|
|
|
1.0 * logit(rock_strength.min(1.0f64 - 1e-7).max(1e-7))
|
|
|
|
|
+ 1.0 * log_odds(uheight.min(dmax).max(dmin)),
|
|
|
|
|
);
|
|
|
|
|
// marine: ε₀ = 2.078e-3
|
|
|
|
|
// San Gabriel Mountains: ε₀ = 3.18e-4
|
|
|
|
|
// Oregon Coast Range: ε₀ = 2.68e-4
|
|
|
|
|
// Frogs Hollow (peak production = 0.25): ε₀ = 1.41e-4
|
|
|
|
|
// Point Reyes: ε₀ = 8.1e-5
|
|
|
|
|
// Nunnock River (fractured granite, least weathered?): ε₀ = 5.3e-5
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let epsilon_0_i = ((1.0 - ustrength) * (2.078e-3 - 5.3e-5) + 5.3e-5) as f32 / 4.0;
|
2020-01-18 18:41:37 +00:00
|
|
|
|
epsilon_0_i * epsilon_0_scale_i
|
2020-01-11 21:05:22 +00:00
|
|
|
|
};
|
|
|
|
|
let alpha_func = |posi| {
|
2020-01-18 18:41:37 +00:00
|
|
|
|
let alpha_scale_i = alpha_scale(n_func(posi));
|
2020-01-11 21:05:22 +00:00
|
|
|
|
if is_ocean_fn(posi) {
|
|
|
|
|
// marine: α = 3.7e-2
|
2020-01-18 18:41:37 +00:00
|
|
|
|
return 3.7e-2 * alpha_scale_i;
|
2020-01-11 21:05:22 +00:00
|
|
|
|
}
|
|
|
|
|
let wposf = (uniform_idx_as_vec2(posi) * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
|
|
|
|
|
.map(|e| e as f64);
|
|
|
|
|
let turb_wposf = wposf
|
2020-01-20 01:59:28 +00:00
|
|
|
|
.mul(5_000.0 / continent_scale)
|
2020-01-11 21:05:22 +00:00
|
|
|
|
.div(TerrainChunkSize::RECT_SIZE.map(|e| e as f64))
|
|
|
|
|
.div(turb_wposf_div);
|
|
|
|
|
let turb = Vec2::new(
|
|
|
|
|
gen_ctx.turb_x_nz.get(turb_wposf.into_array()),
|
|
|
|
|
gen_ctx.turb_y_nz.get(turb_wposf.into_array()),
|
|
|
|
|
) * uplift_turb_scale
|
|
|
|
|
* TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
|
|
|
|
|
let turb_wposf = wposf + turb;
|
|
|
|
|
let uheight = gen_ctx
|
|
|
|
|
.uplift_nz
|
|
|
|
|
.get(turb_wposf.into_array())
|
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0)
|
|
|
|
|
.mul(0.5)
|
|
|
|
|
.add(0.5);
|
|
|
|
|
let wposf3 = Vec3::new(
|
|
|
|
|
wposf.x,
|
|
|
|
|
wposf.y,
|
|
|
|
|
uheight * CONFIG.mountain_scale as f64 * rock_strength_div_factor,
|
|
|
|
|
);
|
|
|
|
|
let rock_strength = gen_ctx
|
|
|
|
|
.rock_strength_nz
|
|
|
|
|
.get(wposf3.into_array())
|
|
|
|
|
.min(1.0)
|
|
|
|
|
.max(-1.0)
|
|
|
|
|
.mul(0.5)
|
|
|
|
|
.add(0.5);
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let center = 0.4;
|
|
|
|
|
let dmin = center - 0.05;
|
|
|
|
|
let dmax = center + 0.05;
|
2020-01-11 21:05:22 +00:00
|
|
|
|
let log_odds = |x: f64| logit(x) - logit(center);
|
|
|
|
|
let ustrength = logistic_cdf(
|
|
|
|
|
1.0 * logit(rock_strength.min(1.0f64 - 1e-7).max(1e-7))
|
|
|
|
|
+ 1.0 * log_odds(uheight.min(dmax).max(dmin)),
|
|
|
|
|
);
|
|
|
|
|
// Frog Hollow (peak production = 0.25): α = 4.2e-2
|
|
|
|
|
// San Gabriel Mountains: α = 3.8e-2
|
|
|
|
|
// marine: α = 3.7e-2
|
|
|
|
|
// Oregon Coast Range: α = 3e-2
|
|
|
|
|
// Nunnock river (fractured granite, least weathered?): α = 2e-3
|
|
|
|
|
// Point Reyes: α = 1.6e-2
|
|
|
|
|
// The stronger the rock, the faster the decline in soil production.
|
2020-01-18 18:41:37 +00:00
|
|
|
|
let alpha_i = (ustrength * (4.2e-2 - 1.6e-2) + 1.6e-2) as f32;
|
|
|
|
|
alpha_i * alpha_scale_i
|
2020-01-11 21:05:22 +00:00
|
|
|
|
};
|
2020-01-11 20:38:30 +00:00
|
|
|
|
let uplift_fn = |posi| {
|
|
|
|
|
if is_ocean_fn(posi) {
|
|
|
|
|
return 0.0;
|
|
|
|
|
}
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let height = (uplift_uniform[posi].1 - alt_old_min_uniform) as f64
|
|
|
|
|
/ (alt_old_max_uniform - alt_old_min_uniform) as f64;
|
2019-11-11 17:14:58 +00:00
|
|
|
|
|
2020-01-11 20:38:30 +00:00
|
|
|
|
let height = height.mul(max_epsilon - min_epsilon).add(min_epsilon);
|
|
|
|
|
let height = erosion_factor(height);
|
|
|
|
|
assert!(height >= 0.0);
|
|
|
|
|
assert!(height <= 1.0);
|
2020-01-22 14:31:10 +00:00
|
|
|
|
|
2020-01-11 20:38:30 +00:00
|
|
|
|
// u = 1e-3: normal-high (dike, mountain)
|
|
|
|
|
// u = 5e-4: normal (mid example in Yuan, average mountain uplift)
|
|
|
|
|
// u = 2e-4: low (low example in Yuan; known that lagoons etc. may have u ~ 0.05).
|
|
|
|
|
// u = 0: low (plateau [fan, altitude = 0.0])
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let height = height.mul(max_erosion_per_delta_t);
|
2020-01-11 21:05:22 +00:00
|
|
|
|
height as f64
|
2020-01-11 20:38:30 +00:00
|
|
|
|
};
|
2019-11-19 18:34:52 +00:00
|
|
|
|
let alt_func = |posi| {
|
|
|
|
|
if is_ocean_fn(posi) {
|
2020-01-22 14:31:10 +00:00
|
|
|
|
old_height(posi)
|
2019-11-19 18:34:52 +00:00
|
|
|
|
} else {
|
2020-01-11 19:53:58 +00:00
|
|
|
|
(old_height(posi) as f64 / CONFIG.mountain_scale as f64) as f32 - 0.5
|
2019-11-19 18:34:52 +00:00
|
|
|
|
}
|
|
|
|
|
};
|
2019-12-11 09:14:50 +00:00
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// Parse out the contents of various map formats into the values we need.
|
2019-12-11 09:14:50 +00:00
|
|
|
|
let parsed_world_file = (|| {
|
2020-01-18 18:41:37 +00:00
|
|
|
|
let map = match opts.world_file {
|
|
|
|
|
FileOpts::LoadLegacy(ref path) => {
|
|
|
|
|
let file = match File::open(path) {
|
|
|
|
|
Ok(file) => file,
|
|
|
|
|
Err(err) => {
|
|
|
|
|
log::warn!("Couldn't read path for maps: {:?}", err);
|
|
|
|
|
return None;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let reader = BufReader::new(file);
|
|
|
|
|
let map: WorldFileLegacy = match bincode::deserialize_from(reader) {
|
|
|
|
|
Ok(map) => map,
|
|
|
|
|
Err(err) => {
|
|
|
|
|
log::warn!("Couldn't parse legacy map: {:?}). Maybe you meant to try a regular load?", err);
|
|
|
|
|
return None;
|
|
|
|
|
}
|
|
|
|
|
};
|
2019-12-11 09:14:50 +00:00
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
map.into_modern()
|
|
|
|
|
}
|
|
|
|
|
FileOpts::Load(ref path) => {
|
|
|
|
|
let file = match File::open(path) {
|
|
|
|
|
Ok(file) => file,
|
|
|
|
|
Err(err) => {
|
|
|
|
|
log::warn!("Couldn't read path for maps: {:?}", err);
|
|
|
|
|
return None;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let reader = BufReader::new(file);
|
|
|
|
|
let map: WorldFile = match bincode::deserialize_from(reader) {
|
|
|
|
|
Ok(map) => map,
|
|
|
|
|
Err(err) => {
|
|
|
|
|
log::warn!("Couldn't parse modern map: {:?}). Maybe you meant to try a legacy load?", err);
|
|
|
|
|
return None;
|
|
|
|
|
}
|
|
|
|
|
};
|
2019-12-11 09:14:50 +00:00
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
map.into_modern()
|
2019-12-11 09:14:50 +00:00
|
|
|
|
}
|
2020-01-18 18:41:37 +00:00
|
|
|
|
FileOpts::LoadAsset(ref specifier) => {
|
|
|
|
|
let reader = match assets::load_file(specifier, &["bin"]) {
|
|
|
|
|
Ok(reader) => reader,
|
|
|
|
|
Err(err) => {
|
|
|
|
|
log::warn!(
|
|
|
|
|
"Couldn't read asset specifier {:?} for maps: {:?}",
|
|
|
|
|
specifier,
|
|
|
|
|
err
|
|
|
|
|
);
|
|
|
|
|
return None;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let map: WorldFile = match bincode::deserialize_from(reader) {
|
|
|
|
|
Ok(map) => map,
|
|
|
|
|
Err(err) => {
|
|
|
|
|
log::warn!("Couldn't parse modern map: {:?}). Maybe you meant to try a legacy load?", err);
|
|
|
|
|
return None;
|
|
|
|
|
}
|
|
|
|
|
};
|
2019-12-11 09:14:50 +00:00
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
map.into_modern()
|
|
|
|
|
}
|
|
|
|
|
FileOpts::Generate | FileOpts::Save => return None,
|
|
|
|
|
};
|
2020-01-11 19:53:58 +00:00
|
|
|
|
|
2020-01-18 18:41:37 +00:00
|
|
|
|
match map {
|
|
|
|
|
Ok(map) => Some(map),
|
|
|
|
|
Err(e) => {
|
|
|
|
|
match e {
|
|
|
|
|
WorldFileError::WorldSizeInvalid => {
|
|
|
|
|
log::warn!("World size of map is invalid.");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
None
|
|
|
|
|
}
|
2019-12-11 09:14:50 +00:00
|
|
|
|
}
|
|
|
|
|
})();
|
|
|
|
|
|
2020-01-22 14:31:10 +00:00
|
|
|
|
// Perform some erosion.
|
|
|
|
|
|
|
|
|
|
let (alt, basement) = if let Some(map) = parsed_world_file {
|
|
|
|
|
(map.alt, map.basement)
|
2019-12-11 09:14:50 +00:00
|
|
|
|
} else {
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let (alt, basement) = do_erosion(
|
2019-12-11 09:14:50 +00:00
|
|
|
|
max_erosion_per_delta_t as f32,
|
|
|
|
|
n_steps,
|
|
|
|
|
&river_seed,
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// varying conditions
|
2019-12-11 09:14:50 +00:00
|
|
|
|
&rock_strength_nz,
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// initial conditions
|
2020-01-22 14:31:10 +00:00
|
|
|
|
|posi| alt_func(posi),
|
|
|
|
|
|posi| alt_func(posi) - if is_ocean_fn(posi) { 0.0 } else { 0.0 },
|
2019-12-11 09:14:50 +00:00
|
|
|
|
is_ocean_fn,
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// empirical constants
|
2019-12-11 09:14:50 +00:00
|
|
|
|
uplift_fn,
|
|
|
|
|
|posi| n_func(posi),
|
|
|
|
|
|posi| theta_func(posi),
|
|
|
|
|
|posi| kf_func(posi),
|
|
|
|
|
|posi| kd_func(posi),
|
|
|
|
|
|posi| g_func(posi),
|
2020-01-11 21:05:22 +00:00
|
|
|
|
|posi| epsilon_0_func(posi),
|
|
|
|
|
|posi| alpha_func(posi),
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// scaling factors
|
|
|
|
|
|n| height_scale(n),
|
|
|
|
|
k_d_scale(n_approx),
|
|
|
|
|
|q| k_da_scale(q),
|
2019-12-11 09:14:50 +00:00
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
// Quick "small scale" erosion cycle in order to lower extreme angles.
|
|
|
|
|
do_erosion(
|
2020-01-22 14:31:10 +00:00
|
|
|
|
1.0f32,
|
2019-12-11 09:14:50 +00:00
|
|
|
|
n_small_steps,
|
|
|
|
|
&river_seed,
|
|
|
|
|
&rock_strength_nz,
|
2020-01-22 14:31:10 +00:00
|
|
|
|
|posi| alt[posi] as f32,
|
2019-12-11 09:14:50 +00:00
|
|
|
|
|posi| basement[posi] as f32,
|
|
|
|
|
is_ocean_fn,
|
2020-01-22 14:31:10 +00:00
|
|
|
|
|posi| uplift_fn(posi) * (1.0 / max_erosion_per_delta_t),
|
2019-12-11 09:14:50 +00:00
|
|
|
|
|posi| n_func(posi),
|
|
|
|
|
|posi| theta_func(posi),
|
|
|
|
|
|posi| kf_func(posi),
|
|
|
|
|
|posi| kd_func(posi),
|
|
|
|
|
|posi| g_func(posi),
|
2020-01-11 21:05:22 +00:00
|
|
|
|
|posi| epsilon_0_func(posi),
|
|
|
|
|
|posi| alpha_func(posi),
|
2020-01-18 18:41:37 +00:00
|
|
|
|
|n| height_scale(n),
|
|
|
|
|
k_d_scale(n_approx),
|
|
|
|
|
|q| k_da_scale(q),
|
2019-12-11 09:14:50 +00:00
|
|
|
|
)
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Save map, if necessary.
|
2020-01-18 18:41:37 +00:00
|
|
|
|
// NOTE: We wll always save a map with latest version.
|
|
|
|
|
let map = WorldFile::new(ModernMap { alt, basement });
|
2019-12-11 09:14:50 +00:00
|
|
|
|
(|| {
|
|
|
|
|
if let FileOpts::Save = opts.world_file {
|
2020-01-11 20:38:30 +00:00
|
|
|
|
use std::time::SystemTime;
|
2019-12-11 09:14:50 +00:00
|
|
|
|
// Check if folder exists and create it if it does not
|
|
|
|
|
let mut path = PathBuf::from("./maps");
|
|
|
|
|
if !path.exists() {
|
|
|
|
|
if let Err(err) = std::fs::create_dir(&path) {
|
|
|
|
|
log::warn!("Couldn't create folder for map: {:?}", err);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
path.push(format!(
|
|
|
|
|
// TODO: Work out a nice bincode file extension.
|
|
|
|
|
"map_{}.bin",
|
|
|
|
|
SystemTime::now()
|
|
|
|
|
.duration_since(SystemTime::UNIX_EPOCH)
|
|
|
|
|
.map(|d| d.as_millis())
|
|
|
|
|
.unwrap_or(0)
|
|
|
|
|
));
|
|
|
|
|
let file = match File::create(path) {
|
|
|
|
|
Ok(file) => file,
|
|
|
|
|
Err(err) => {
|
|
|
|
|
log::warn!("Couldn't create file for maps: {:?}", err);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let writer = BufWriter::new(file);
|
|
|
|
|
if let Err(err) = bincode::serialize_into(writer, &map) {
|
|
|
|
|
log::warn!("Couldn't write map: {:?}", err);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
})();
|
2020-01-18 18:41:37 +00:00
|
|
|
|
|
|
|
|
|
// Skip validation--we just performed a no-op conversion for this map, so it had better be
|
|
|
|
|
// valid!
|
|
|
|
|
let ModernMap { alt, basement } = map.into_modern().unwrap();
|
2019-12-11 09:14:50 +00:00
|
|
|
|
|
|
|
|
|
// Additional small-scale eroson after map load, only used during testing.
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let (alt, basement) = if n_post_load_steps == 0 {
|
|
|
|
|
(alt, basement)
|
2019-12-11 09:14:50 +00:00
|
|
|
|
} else {
|
|
|
|
|
do_erosion(
|
2020-01-22 14:31:10 +00:00
|
|
|
|
1.0f32,
|
2019-12-11 09:14:50 +00:00
|
|
|
|
n_post_load_steps,
|
|
|
|
|
&river_seed,
|
|
|
|
|
&rock_strength_nz,
|
2020-01-22 14:31:10 +00:00
|
|
|
|
|posi| alt[posi] as f32,
|
2019-12-11 09:14:50 +00:00
|
|
|
|
|posi| basement[posi] as f32,
|
|
|
|
|
is_ocean_fn,
|
2020-01-22 14:31:10 +00:00
|
|
|
|
|posi| uplift_fn(posi) * (1.0 / max_erosion_per_delta_t),
|
2019-12-11 09:14:50 +00:00
|
|
|
|
|posi| n_func(posi),
|
|
|
|
|
|posi| theta_func(posi),
|
|
|
|
|
|posi| kf_func(posi),
|
|
|
|
|
|posi| kd_func(posi),
|
|
|
|
|
|posi| g_func(posi),
|
2020-01-11 21:05:22 +00:00
|
|
|
|
|posi| epsilon_0_func(posi),
|
|
|
|
|
|posi| alpha_func(posi),
|
2020-01-18 18:41:37 +00:00
|
|
|
|
|n| height_scale(n),
|
|
|
|
|
k_d_scale(n_approx),
|
|
|
|
|
|q| k_da_scale(q),
|
2019-12-11 09:14:50 +00:00
|
|
|
|
)
|
|
|
|
|
};
|
2019-11-19 18:34:52 +00:00
|
|
|
|
|
2020-01-11 19:53:58 +00:00
|
|
|
|
let is_ocean = get_oceans(|posi| alt[posi]);
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let is_ocean_fn = |posi: usize| is_ocean[posi];
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let mut dh = downhill(|posi| alt[posi], is_ocean_fn);
|
|
|
|
|
let (boundary_len, indirection, water_alt_pos, maxh) = get_lakes(|posi| alt[posi], &mut dh);
|
2020-01-11 21:05:22 +00:00
|
|
|
|
log::debug!("Max height: {:?}", maxh);
|
|
|
|
|
let (mrec, mstack, mwrec) = {
|
|
|
|
|
let mut wh = vec![0.0; WORLD_SIZE.x * WORLD_SIZE.y];
|
|
|
|
|
get_multi_rec(
|
|
|
|
|
|posi| alt[posi],
|
|
|
|
|
&dh,
|
|
|
|
|
&water_alt_pos,
|
|
|
|
|
&mut wh,
|
|
|
|
|
WORLD_SIZE.x,
|
|
|
|
|
WORLD_SIZE.y,
|
|
|
|
|
TerrainChunkSize::RECT_SIZE.x as Compute,
|
|
|
|
|
TerrainChunkSize::RECT_SIZE.y as Compute,
|
|
|
|
|
maxh,
|
|
|
|
|
)
|
|
|
|
|
};
|
|
|
|
|
let flux_old = get_multi_drainage(&mstack, &mrec, &*mwrec, boundary_len);
|
|
|
|
|
let flux_rivers = get_drainage(&water_alt_pos, &dh, boundary_len);
|
2020-01-22 14:31:10 +00:00
|
|
|
|
// TODO: Make rivers work with multi-direction flux as well.
|
2020-01-11 21:05:22 +00:00
|
|
|
|
// let flux_rivers = flux_old.clone();
|
2019-10-16 11:39:41 +00:00
|
|
|
|
|
|
|
|
|
let water_height_initial = |chunk_idx| {
|
|
|
|
|
let indirection_idx = indirection[chunk_idx];
|
|
|
|
|
// Find the lake this point is flowing into.
|
|
|
|
|
let lake_idx = if indirection_idx < 0 {
|
|
|
|
|
chunk_idx
|
|
|
|
|
} else {
|
|
|
|
|
indirection_idx as usize
|
|
|
|
|
};
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let chunk_water_alt = if dh[lake_idx] < 0 {
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level)
|
|
|
|
|
// or part of a lake that flows directly into the ocean. In the former case, water
|
|
|
|
|
// is at sea level so we just return 0.0. In the latter case, the lake bottom must
|
|
|
|
|
// have been a boundary node in the first place--meaning this node flows directly
|
|
|
|
|
// into the ocean. In that case, its lake bottom is ocean, meaning its water is
|
|
|
|
|
// also at sea level. Thus, we return 0.0 in both cases.
|
|
|
|
|
0.0
|
|
|
|
|
} else {
|
|
|
|
|
// This chunk is draining into a body of water that isn't the ocean (i.e., a lake).
|
|
|
|
|
// Then we just need to find the pass height of the surrounding lake in order to
|
|
|
|
|
// figure out the initial water height (which fill_sinks will then extend to make
|
|
|
|
|
// sure it fills the entire basin).
|
|
|
|
|
|
|
|
|
|
// Find the height of "our" side of the pass (the part of it that drains into this
|
|
|
|
|
// chunk's lake).
|
2019-11-22 02:55:19 +00:00
|
|
|
|
let pass_idx = -indirection[lake_idx] as usize;
|
|
|
|
|
let pass_height_i = alt[pass_idx];
|
|
|
|
|
// Find the pass this lake is flowing into (i.e. water at the lake bottom gets
|
|
|
|
|
// pushed towards the point identified by pass_idx).
|
|
|
|
|
let neighbor_pass_idx = dh[pass_idx/*lake_idx*/];
|
|
|
|
|
// Find the height of the pass into which our lake is flowing.
|
|
|
|
|
let pass_height_j = alt[neighbor_pass_idx as usize];
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// Find the maximum of these two heights.
|
|
|
|
|
let pass_height = pass_height_i.max(pass_height_j);
|
|
|
|
|
// Use the pass height as the initial water altitude.
|
|
|
|
|
pass_height
|
|
|
|
|
};
|
|
|
|
|
// Use the maximum of the pass height and chunk height as the parameter to fill_sinks.
|
|
|
|
|
let chunk_alt = alt[chunk_idx];
|
2020-01-11 21:05:22 +00:00
|
|
|
|
chunk_alt.max(chunk_water_alt)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
};
|
|
|
|
|
|
2020-01-22 14:31:10 +00:00
|
|
|
|
// NOTE: If for for some reason you need to avoid the expensive `fill_sinks` step here, and
|
|
|
|
|
// we haven't yet replaced it with a faster version, you may comment out this line and
|
|
|
|
|
// replace it with the commented-out code below; however, there are no guarantees that this
|
|
|
|
|
// will work correctly.
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let water_alt = fill_sinks(water_height_initial, is_ocean_fn);
|
2019-12-03 01:07:44 +00:00
|
|
|
|
/* let water_alt = (0..WORLD_SIZE.x * WORLD_SIZE.y)
|
2020-01-11 20:38:30 +00:00
|
|
|
|
.into_par_iter()
|
|
|
|
|
.map(|posi| water_height_initial(posi))
|
|
|
|
|
.collect::<Vec<_>>(); */
|
2019-12-03 01:07:44 +00:00
|
|
|
|
|
2020-01-11 21:05:22 +00:00
|
|
|
|
let rivers = get_rivers(&water_alt_pos, &water_alt, &dh, &indirection, &flux_rivers);
|
2019-10-16 11:39:41 +00:00
|
|
|
|
|
|
|
|
|
let water_alt = indirection
|
|
|
|
|
.par_iter()
|
|
|
|
|
.enumerate()
|
|
|
|
|
.map(|(chunk_idx, &indirection_idx)| {
|
|
|
|
|
// Find the lake this point is flowing into.
|
|
|
|
|
let lake_idx = if indirection_idx < 0 {
|
|
|
|
|
chunk_idx
|
|
|
|
|
} else {
|
|
|
|
|
indirection_idx as usize
|
|
|
|
|
};
|
2020-01-22 14:31:10 +00:00
|
|
|
|
if dh[lake_idx] < 0 {
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// This is either a boundary node (dh[chunk_idx] == -2, i.e. water is at sea level)
|
|
|
|
|
// or part of a lake that flows directly into the ocean. In the former case, water
|
|
|
|
|
// is at sea level so we just return 0.0. In the latter case, the lake bottom must
|
|
|
|
|
// have been a boundary node in the first place--meaning this node flows directly
|
|
|
|
|
// into the ocean. In that case, its lake bottom is ocean, meaning its water is
|
|
|
|
|
// also at sea level. Thus, we return 0.0 in both cases.
|
|
|
|
|
0.0
|
|
|
|
|
} else {
|
|
|
|
|
// This is not flowing into the ocean, so we can use the existing water_alt.
|
2020-01-11 21:05:22 +00:00
|
|
|
|
water_alt[chunk_idx] as f32
|
2019-10-16 11:39:41 +00:00
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
.collect::<Vec<_>>()
|
|
|
|
|
.into_boxed_slice();
|
|
|
|
|
|
|
|
|
|
let is_underwater = |chunk_idx: usize| match rivers[chunk_idx].river_kind {
|
|
|
|
|
Some(RiverKind::Ocean) | Some(RiverKind::Lake { .. }) => true,
|
|
|
|
|
Some(RiverKind::River { .. }) => false, // TODO: inspect width
|
|
|
|
|
None => false,
|
|
|
|
|
};
|
|
|
|
|
|
2019-08-25 15:49:33 +00:00
|
|
|
|
// Check whether any tiles around this tile are not water (since Lerp will ensure that they
|
|
|
|
|
// are included).
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let pure_water = |posi: usize| {
|
2019-08-25 15:49:33 +00:00
|
|
|
|
let pos = uniform_idx_as_vec2(posi);
|
2020-01-12 14:45:20 +00:00
|
|
|
|
for x in pos.x - 1..(pos.x + 1) + 1 {
|
|
|
|
|
for y in pos.y - 1..(pos.y + 1) + 1 {
|
2019-08-25 15:49:33 +00:00
|
|
|
|
if x >= 0 && y >= 0 && x < WORLD_SIZE.x as i32 && y < WORLD_SIZE.y as i32 {
|
|
|
|
|
let posi = vec2_as_uniform_idx(Vec2::new(x, y));
|
2019-10-16 11:39:41 +00:00
|
|
|
|
if !is_underwater(posi) {
|
2019-08-25 16:17:51 +00:00
|
|
|
|
return false;
|
2019-08-25 15:49:33 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
true
|
|
|
|
|
};
|
|
|
|
|
|
2019-11-07 20:25:30 +00:00
|
|
|
|
// NaNs in these uniform vectors wherever pure_water() returns true.
|
|
|
|
|
let (((alt_no_water, _), (pure_flux, _)), ((temp_base, _), (humid_base, _))) = rayon::join(
|
2019-10-16 11:39:41 +00:00
|
|
|
|
|| {
|
2019-11-07 20:25:30 +00:00
|
|
|
|
rayon::join(
|
|
|
|
|
|| {
|
|
|
|
|
uniform_noise(|posi, _| {
|
|
|
|
|
if pure_water(posi) {
|
|
|
|
|
None
|
|
|
|
|
} else {
|
|
|
|
|
// A version of alt that is uniform over *non-water* (or land-adjacent water)
|
|
|
|
|
// chunks.
|
2019-12-03 18:14:29 +00:00
|
|
|
|
Some(alt[posi] as f32)
|
2019-11-07 20:25:30 +00:00
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
},
|
|
|
|
|
|| {
|
|
|
|
|
uniform_noise(|posi, _| {
|
|
|
|
|
if pure_water(posi) {
|
|
|
|
|
None
|
|
|
|
|
} else {
|
|
|
|
|
Some(flux_old[posi])
|
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
},
|
|
|
|
|
)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
},
|
|
|
|
|
|| {
|
|
|
|
|
rayon::join(
|
|
|
|
|
|| {
|
|
|
|
|
uniform_noise(|posi, wposf| {
|
|
|
|
|
if pure_water(posi) {
|
|
|
|
|
None
|
|
|
|
|
} else {
|
|
|
|
|
// -1 to 1.
|
2020-01-22 14:31:10 +00:00
|
|
|
|
Some(gen_ctx.temp_nz.get((wposf).into_array()) as f32)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
},
|
|
|
|
|
|| {
|
|
|
|
|
uniform_noise(|posi, wposf| {
|
|
|
|
|
// Check whether any tiles around this tile are water.
|
|
|
|
|
if pure_water(posi) {
|
|
|
|
|
None
|
|
|
|
|
} else {
|
|
|
|
|
// 0 to 1, hopefully.
|
|
|
|
|
Some(
|
|
|
|
|
(gen_ctx.humid_nz.get(wposf.div(1024.0).into_array()) as f32)
|
|
|
|
|
.add(1.0)
|
|
|
|
|
.mul(0.5),
|
|
|
|
|
)
|
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
},
|
2019-08-24 19:32:07 +00:00
|
|
|
|
)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
},
|
|
|
|
|
);
|
2019-08-21 18:41:32 +00:00
|
|
|
|
|
|
|
|
|
let gen_cdf = GenCdf {
|
|
|
|
|
humid_base,
|
|
|
|
|
temp_base,
|
2019-08-22 19:03:42 +00:00
|
|
|
|
chaos,
|
2019-08-22 22:57:42 +00:00
|
|
|
|
alt,
|
2019-11-19 18:34:52 +00:00
|
|
|
|
basement,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
water_alt,
|
|
|
|
|
dh,
|
|
|
|
|
flux: flux_old,
|
|
|
|
|
pure_flux,
|
|
|
|
|
alt_no_water,
|
|
|
|
|
rivers,
|
2019-08-21 18:41:32 +00:00
|
|
|
|
};
|
|
|
|
|
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let chunks = (0..WORLD_SIZE.x * WORLD_SIZE.y)
|
|
|
|
|
.into_par_iter()
|
|
|
|
|
.map(|i| SimChunk::generate(i, &gen_ctx, &gen_cdf))
|
|
|
|
|
.collect::<Vec<_>>();
|
2019-05-18 08:59:58 +00:00
|
|
|
|
|
2019-06-10 16:28:02 +00:00
|
|
|
|
let mut this = Self {
|
2019-09-17 14:05:08 +00:00
|
|
|
|
seed: seed,
|
2019-05-18 08:59:58 +00:00
|
|
|
|
chunks,
|
2019-06-25 15:59:09 +00:00
|
|
|
|
locations: Vec::new(),
|
2019-05-21 00:57:16 +00:00
|
|
|
|
gen_ctx,
|
2019-09-17 14:05:08 +00:00
|
|
|
|
rng,
|
2019-06-10 16:28:02 +00:00
|
|
|
|
};
|
|
|
|
|
|
2019-12-03 01:07:44 +00:00
|
|
|
|
if opts.seed_elements {
|
|
|
|
|
this.seed_elements();
|
|
|
|
|
}
|
2019-06-10 16:28:02 +00:00
|
|
|
|
|
|
|
|
|
this
|
|
|
|
|
}
|
|
|
|
|
|
2019-10-16 11:39:41 +00:00
|
|
|
|
/// Draw a map of the world based on chunk information. Returns a buffer of u32s.
|
|
|
|
|
pub fn get_map(&self) -> Vec<u32> {
|
2020-01-13 07:10:38 +00:00
|
|
|
|
let mut v = vec![0u32; WORLD_SIZE.x * WORLD_SIZE.y];
|
|
|
|
|
// TODO: Parallelize again.
|
|
|
|
|
MapConfig::default().generate(&self, |pos, (r, g, b, a)| {
|
|
|
|
|
v[pos.y * WORLD_SIZE.x + pos.x] = u32::from_le_bytes([r, g, b, a]);
|
|
|
|
|
});
|
|
|
|
|
v
|
2019-10-16 11:39:41 +00:00
|
|
|
|
}
|
|
|
|
|
|
2019-06-18 21:22:31 +00:00
|
|
|
|
/// Prepare the world for simulation
|
|
|
|
|
pub fn seed_elements(&mut self) {
|
|
|
|
|
let mut rng = self.rng.clone();
|
|
|
|
|
|
2019-07-03 19:58:09 +00:00
|
|
|
|
let cell_size = 16;
|
2019-06-22 21:44:27 +00:00
|
|
|
|
let grid_size = WORLD_SIZE / cell_size;
|
2019-07-03 19:58:09 +00:00
|
|
|
|
let loc_count = 100;
|
2019-06-22 21:44:27 +00:00
|
|
|
|
|
2019-06-25 15:59:09 +00:00
|
|
|
|
let mut loc_grid = vec![None; grid_size.product()];
|
|
|
|
|
let mut locations = Vec::new();
|
2019-06-22 21:44:27 +00:00
|
|
|
|
|
|
|
|
|
// Seed the world with some locations
|
2020-01-13 04:12:56 +00:00
|
|
|
|
(0..loc_count).for_each(|_| {
|
2019-06-22 21:44:27 +00:00
|
|
|
|
let cell_pos = Vec2::new(
|
|
|
|
|
self.rng.gen::<usize>() % grid_size.x,
|
|
|
|
|
self.rng.gen::<usize>() % grid_size.y,
|
2019-06-18 21:22:31 +00:00
|
|
|
|
);
|
2019-06-25 15:59:09 +00:00
|
|
|
|
let wpos = (cell_pos * cell_size + cell_size / 2)
|
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
|
|
|
|
.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
2019-06-25 15:59:09 +00:00
|
|
|
|
e as i32 * sz as i32 + sz as i32 / 2
|
2019-06-23 19:43:02 +00:00
|
|
|
|
});
|
2019-06-22 21:44:27 +00:00
|
|
|
|
|
2019-06-25 15:59:09 +00:00
|
|
|
|
locations.push(Location::generate(wpos, &mut rng));
|
|
|
|
|
|
|
|
|
|
loc_grid[cell_pos.y * grid_size.x + cell_pos.x] = Some(locations.len() - 1);
|
2020-01-13 04:12:56 +00:00
|
|
|
|
});
|
2019-06-25 15:59:09 +00:00
|
|
|
|
|
|
|
|
|
// Find neighbours
|
|
|
|
|
let mut loc_clone = locations
|
|
|
|
|
.iter()
|
|
|
|
|
.map(|l| l.center)
|
|
|
|
|
.enumerate()
|
|
|
|
|
.collect::<Vec<_>>();
|
2020-01-13 04:12:56 +00:00
|
|
|
|
(0..locations.len()).for_each(|i| {
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let pos = locations[i].center.map(|e| e as i64);
|
2019-06-25 15:59:09 +00:00
|
|
|
|
|
2019-10-16 11:39:41 +00:00
|
|
|
|
loc_clone.sort_by_key(|(_, l)| l.map(|e| e as i64).distance_squared(pos));
|
2019-06-25 15:59:09 +00:00
|
|
|
|
|
2019-06-26 00:27:41 +00:00
|
|
|
|
loc_clone.iter().skip(1).take(2).for_each(|(j, _)| {
|
|
|
|
|
locations[i].neighbours.insert(*j);
|
|
|
|
|
locations[*j].neighbours.insert(i);
|
|
|
|
|
});
|
2020-01-13 04:12:56 +00:00
|
|
|
|
});
|
2019-06-18 21:22:31 +00:00
|
|
|
|
|
2019-06-22 21:44:27 +00:00
|
|
|
|
// Simulate invasion!
|
|
|
|
|
let invasion_cycles = 25;
|
2020-01-13 04:12:56 +00:00
|
|
|
|
(0..invasion_cycles).for_each(|_| {
|
|
|
|
|
(0..grid_size.y).for_each(|j| {
|
|
|
|
|
(0..grid_size.x).for_each(|i| {
|
2019-06-25 15:59:09 +00:00
|
|
|
|
if loc_grid[j * grid_size.x + i].is_none() {
|
2019-06-22 21:44:27 +00:00
|
|
|
|
const R_COORDS: [i32; 5] = [-1, 0, 1, 0, -1];
|
|
|
|
|
let idx = self.rng.gen::<usize>() % 4;
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let new_i = i as i32 + R_COORDS[idx];
|
|
|
|
|
let new_j = j as i32 + R_COORDS[idx + 1];
|
|
|
|
|
if new_i >= 0 && new_j >= 0 {
|
|
|
|
|
let loc = Vec2::new(new_i as usize, new_j as usize);
|
|
|
|
|
loc_grid[j * grid_size.x + i] =
|
|
|
|
|
loc_grid.get(loc.y * grid_size.x + loc.x).cloned().flatten();
|
|
|
|
|
}
|
2019-06-22 21:44:27 +00:00
|
|
|
|
}
|
2020-01-13 04:12:56 +00:00
|
|
|
|
});
|
|
|
|
|
});
|
|
|
|
|
});
|
2019-06-22 21:44:27 +00:00
|
|
|
|
|
|
|
|
|
// Place the locations onto the world
|
|
|
|
|
let gen = StructureGen2d::new(self.seed, cell_size as u32, cell_size as u32 / 2);
|
2020-01-13 04:12:56 +00:00
|
|
|
|
|
|
|
|
|
self.chunks
|
|
|
|
|
.par_iter_mut()
|
|
|
|
|
.enumerate()
|
|
|
|
|
.for_each(|(ij, chunk)| {
|
|
|
|
|
let chunk_pos = uniform_idx_as_vec2(ij);
|
|
|
|
|
let i = chunk_pos.x as usize;
|
|
|
|
|
let j = chunk_pos.y as usize;
|
2019-06-26 00:27:41 +00:00
|
|
|
|
let block_pos = Vec2::new(
|
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
|
|
|
|
chunk_pos.x * TerrainChunkSize::RECT_SIZE.x as i32,
|
|
|
|
|
chunk_pos.y * TerrainChunkSize::RECT_SIZE.y as i32,
|
2019-06-26 00:27:41 +00:00
|
|
|
|
);
|
2019-07-01 18:40:41 +00:00
|
|
|
|
let _cell_pos = Vec2::new(i / cell_size, j / cell_size);
|
2019-06-22 21:44:27 +00:00
|
|
|
|
|
|
|
|
|
// Find the distance to each region
|
|
|
|
|
let near = gen.get(chunk_pos);
|
|
|
|
|
let mut near = near
|
|
|
|
|
.iter()
|
|
|
|
|
.map(|(pos, seed)| RegionInfo {
|
|
|
|
|
chunk_pos: *pos,
|
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
|
|
|
|
block_pos: pos
|
|
|
|
|
.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| e * sz as i32),
|
2019-06-22 21:44:27 +00:00
|
|
|
|
dist: (pos - chunk_pos).map(|e| e as f32).magnitude(),
|
|
|
|
|
seed: *seed,
|
|
|
|
|
})
|
|
|
|
|
.collect::<Vec<_>>();
|
|
|
|
|
|
|
|
|
|
// Sort regions based on distance
|
|
|
|
|
near.sort_by(|a, b| a.dist.partial_cmp(&b.dist).unwrap());
|
|
|
|
|
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let nearest_cell_pos = near[0].chunk_pos;
|
|
|
|
|
if nearest_cell_pos.x >= 0 && nearest_cell_pos.y >= 0 {
|
|
|
|
|
let nearest_cell_pos = nearest_cell_pos.map(|e| e as usize) / cell_size;
|
2020-01-13 04:12:56 +00:00
|
|
|
|
chunk.location = loc_grid
|
2019-10-16 11:39:41 +00:00
|
|
|
|
.get(nearest_cell_pos.y * grid_size.x + nearest_cell_pos.x)
|
|
|
|
|
.cloned()
|
|
|
|
|
.unwrap_or(None)
|
|
|
|
|
.map(|loc_idx| LocationInfo { loc_idx, near });
|
|
|
|
|
|
|
|
|
|
let town_size = 200;
|
2020-01-13 04:12:56 +00:00
|
|
|
|
let in_town = chunk
|
2019-10-16 11:39:41 +00:00
|
|
|
|
.location
|
|
|
|
|
.as_ref()
|
|
|
|
|
.map(|l| {
|
|
|
|
|
locations[l.loc_idx]
|
|
|
|
|
.center
|
|
|
|
|
.map(|e| e as i64)
|
|
|
|
|
.distance_squared(block_pos.map(|e| e as i64))
|
|
|
|
|
< town_size * town_size
|
|
|
|
|
})
|
|
|
|
|
.unwrap_or(false);
|
2020-01-13 04:12:56 +00:00
|
|
|
|
|
2019-10-16 11:39:41 +00:00
|
|
|
|
if in_town {
|
2020-01-13 04:12:56 +00:00
|
|
|
|
chunk.spawn_rate = 0.0;
|
2019-10-16 11:39:41 +00:00
|
|
|
|
}
|
2019-06-18 21:22:31 +00:00
|
|
|
|
}
|
2020-01-13 04:12:56 +00:00
|
|
|
|
});
|
2019-06-18 21:22:31 +00:00
|
|
|
|
|
2019-08-24 13:23:42 +00:00
|
|
|
|
// Stage 2 - towns!
|
2020-01-13 04:12:56 +00:00
|
|
|
|
let chunk_idx_center = |e: Vec2<i32>| {
|
|
|
|
|
e.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
|
|
|
|
e * sz as i32 + sz as i32 / 2
|
|
|
|
|
})
|
|
|
|
|
};
|
|
|
|
|
let maybe_towns = self
|
|
|
|
|
.gen_ctx
|
|
|
|
|
.town_gen
|
|
|
|
|
.par_iter(
|
|
|
|
|
chunk_idx_center(Vec2::zero()),
|
|
|
|
|
chunk_idx_center(WORLD_SIZE.map(|e| e as i32)),
|
|
|
|
|
)
|
|
|
|
|
.map_init(
|
2020-01-13 07:10:38 +00:00
|
|
|
|
|| Box::new(BlockGen::new(ColumnGen::new(self))),
|
2020-01-13 04:12:56 +00:00
|
|
|
|
|mut block_gen, (pos, seed)| {
|
|
|
|
|
let mut rng = ChaChaRng::from_seed(seed_expan::rng_state(seed));
|
|
|
|
|
// println!("Town: {:?}", town);
|
|
|
|
|
TownState::generate(pos, &mut block_gen, &mut rng).map(|t| (pos, Arc::new(t)))
|
|
|
|
|
},
|
|
|
|
|
)
|
|
|
|
|
.filter_map(|x| x)
|
|
|
|
|
.collect::<HashMap<_, _>>();
|
|
|
|
|
|
|
|
|
|
let gen_ctx = &self.gen_ctx;
|
|
|
|
|
self.chunks
|
|
|
|
|
.par_iter_mut()
|
|
|
|
|
.enumerate()
|
|
|
|
|
.for_each(|(ij, chunk)| {
|
|
|
|
|
let chunk_pos = uniform_idx_as_vec2(ij);
|
|
|
|
|
let wpos = chunk_idx_center(chunk_pos);
|
2019-08-24 13:23:42 +00:00
|
|
|
|
|
2020-01-13 04:12:56 +00:00
|
|
|
|
let near_towns = gen_ctx.town_gen.get(wpos);
|
2019-08-24 13:23:42 +00:00
|
|
|
|
let town = near_towns
|
|
|
|
|
.iter()
|
2019-09-04 23:03:49 +00:00
|
|
|
|
.min_by_key(|(pos, _seed)| wpos.distance_squared(*pos));
|
2019-08-24 13:23:42 +00:00
|
|
|
|
|
2020-01-13 04:12:56 +00:00
|
|
|
|
let maybe_town = town
|
|
|
|
|
.and_then(|(pos, _seed)| maybe_towns.get(pos))
|
|
|
|
|
// Only care if we're close to the town
|
|
|
|
|
.filter(|town| {
|
|
|
|
|
Vec2::from(town.center()).distance_squared(wpos)
|
|
|
|
|
< town.radius().add(64).pow(2)
|
|
|
|
|
})
|
|
|
|
|
.cloned();
|
|
|
|
|
|
|
|
|
|
chunk.structures.town = maybe_town;
|
|
|
|
|
});
|
2019-08-24 13:23:42 +00:00
|
|
|
|
|
2020-01-25 20:43:34 +00:00
|
|
|
|
// Create waypoints
|
2020-01-26 00:06:03 +00:00
|
|
|
|
const WAYPOINT_EVERY: usize = 16;
|
2020-01-25 20:43:34 +00:00
|
|
|
|
let this = &self;
|
|
|
|
|
let waypoints = (0..WORLD_SIZE.x)
|
|
|
|
|
.step_by(WAYPOINT_EVERY)
|
|
|
|
|
.map(|i| {
|
|
|
|
|
(0..WORLD_SIZE.y)
|
|
|
|
|
.step_by(WAYPOINT_EVERY)
|
2020-01-26 12:47:41 +00:00
|
|
|
|
.map(move |j| (i, j))
|
|
|
|
|
})
|
|
|
|
|
.flatten()
|
|
|
|
|
.collect::<Vec<_>>()
|
|
|
|
|
.into_par_iter()
|
|
|
|
|
.filter_map(|(i, j)| {
|
|
|
|
|
let mut pos = Vec2::new(i as i32, j as i32);
|
2020-01-26 14:27:11 +00:00
|
|
|
|
let mut chunk = this.get(pos)?;
|
2020-01-26 12:47:41 +00:00
|
|
|
|
// Slide the waypoints down hills
|
2020-01-26 13:05:28 +00:00
|
|
|
|
const MAX_ITERS: usize = 64;
|
|
|
|
|
for _ in 0..MAX_ITERS {
|
2020-01-26 14:27:11 +00:00
|
|
|
|
let downhill_pos = match chunk.downhill {
|
|
|
|
|
Some(downhill) => downhill
|
|
|
|
|
.map2(Vec2::from(TerrainChunkSize::RECT_SIZE), |e, sz: u32| {
|
|
|
|
|
e / (sz as i32)
|
|
|
|
|
}),
|
2020-01-26 13:05:28 +00:00
|
|
|
|
None => return Some(pos),
|
2020-01-26 14:27:11 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let new_chunk = this.get(downhill_pos)?;
|
|
|
|
|
const SLIDE_THRESHOLD: f32 = 5.0;
|
|
|
|
|
if new_chunk.is_underwater || new_chunk.alt + SLIDE_THRESHOLD < chunk.alt {
|
|
|
|
|
break;
|
|
|
|
|
} else {
|
|
|
|
|
chunk = new_chunk;
|
|
|
|
|
pos = downhill_pos;
|
2020-01-26 12:47:41 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
Some(pos)
|
2020-01-25 20:43:34 +00:00
|
|
|
|
})
|
|
|
|
|
.collect::<Vec<_>>();
|
|
|
|
|
|
|
|
|
|
for waypoint in waypoints {
|
|
|
|
|
self.get_mut(waypoint).map(|sc| sc.contains_waypoint = true);
|
|
|
|
|
}
|
|
|
|
|
|
2019-06-18 21:22:31 +00:00
|
|
|
|
self.rng = rng;
|
2019-06-25 15:59:09 +00:00
|
|
|
|
self.locations = locations;
|
2019-05-18 08:59:58 +00:00
|
|
|
|
}
|
2019-05-16 17:40:32 +00:00
|
|
|
|
|
2019-06-18 21:22:31 +00:00
|
|
|
|
pub fn get(&self, chunk_pos: Vec2<i32>) -> Option<&SimChunk> {
|
2019-05-21 22:31:38 +00:00
|
|
|
|
if chunk_pos
|
2019-06-18 21:22:31 +00:00
|
|
|
|
.map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32)
|
2019-05-21 22:31:38 +00:00
|
|
|
|
.reduce_and()
|
|
|
|
|
{
|
2019-08-25 15:49:33 +00:00
|
|
|
|
Some(&self.chunks[vec2_as_uniform_idx(chunk_pos)])
|
2019-05-16 17:40:32 +00:00
|
|
|
|
} else {
|
|
|
|
|
None
|
|
|
|
|
}
|
|
|
|
|
}
|
2019-05-20 02:53:04 +00:00
|
|
|
|
|
2019-08-24 13:23:42 +00:00
|
|
|
|
pub fn get_wpos(&self, wpos: Vec2<i32>) -> Option<&SimChunk> {
|
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
|
|
|
|
self.get(
|
|
|
|
|
wpos.map2(Vec2::from(TerrainChunkSize::RECT_SIZE), |e, sz: u32| {
|
|
|
|
|
e / sz as i32
|
|
|
|
|
}),
|
|
|
|
|
)
|
2019-08-24 13:23:42 +00:00
|
|
|
|
}
|
|
|
|
|
|
2019-06-18 21:22:31 +00:00
|
|
|
|
pub fn get_mut(&mut self, chunk_pos: Vec2<i32>) -> Option<&mut SimChunk> {
|
|
|
|
|
if chunk_pos
|
|
|
|
|
.map2(WORLD_SIZE, |e, sz| e >= 0 && e < sz as i32)
|
|
|
|
|
.reduce_and()
|
|
|
|
|
{
|
2019-08-25 15:49:33 +00:00
|
|
|
|
Some(&mut self.chunks[vec2_as_uniform_idx(chunk_pos)])
|
2019-06-18 21:22:31 +00:00
|
|
|
|
} else {
|
|
|
|
|
None
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn get_base_z(&self, chunk_pos: Vec2<i32>) -> Option<f32> {
|
2019-10-16 11:39:41 +00:00
|
|
|
|
if !chunk_pos
|
|
|
|
|
.map2(WORLD_SIZE, |e, sz| e > 0 && e < sz as i32 - 2)
|
|
|
|
|
.reduce_and()
|
|
|
|
|
{
|
|
|
|
|
return None;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let chunk_idx = vec2_as_uniform_idx(chunk_pos);
|
|
|
|
|
local_cells(chunk_idx)
|
|
|
|
|
.flat_map(|neighbor_idx| {
|
|
|
|
|
let neighbor_pos = uniform_idx_as_vec2(neighbor_idx);
|
|
|
|
|
let neighbor_chunk = self.get(neighbor_pos);
|
|
|
|
|
let river_kind = neighbor_chunk.and_then(|c| c.river.river_kind);
|
|
|
|
|
let has_water = river_kind.is_some() && river_kind != Some(RiverKind::Ocean);
|
|
|
|
|
if (neighbor_pos - chunk_pos).reduce_partial_max() <= 1 || has_water {
|
|
|
|
|
neighbor_chunk.map(|c| c.get_base_z())
|
|
|
|
|
} else {
|
|
|
|
|
None
|
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
.fold(None, |a: Option<f32>, x| a.map(|a| a.min(x)).or(Some(x)))
|
2019-05-20 02:53:04 +00:00
|
|
|
|
}
|
|
|
|
|
|
2019-05-20 15:01:27 +00:00
|
|
|
|
pub fn get_interpolated<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
|
2019-05-21 22:31:38 +00:00
|
|
|
|
where
|
|
|
|
|
T: Copy + Default + Add<Output = T> + Mul<f32, Output = T>,
|
|
|
|
|
F: FnMut(&SimChunk) -> T,
|
2019-05-20 15:01:27 +00:00
|
|
|
|
{
|
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
|
|
|
|
let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
2019-05-21 22:31:38 +00:00
|
|
|
|
e as f64 / sz as f64
|
|
|
|
|
});
|
2019-05-20 02:53:04 +00:00
|
|
|
|
|
2019-05-20 15:01:27 +00:00
|
|
|
|
let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T {
|
2019-05-20 02:53:04 +00:00
|
|
|
|
let x2 = x * x;
|
|
|
|
|
|
|
|
|
|
// Catmull-Rom splines
|
2019-05-20 15:01:27 +00:00
|
|
|
|
let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5;
|
|
|
|
|
let co1 = a + b * -2.5 + c * 2.0 + d * -0.5;
|
|
|
|
|
let co2 = a * -0.5 + c * 0.5;
|
2019-05-20 02:53:04 +00:00
|
|
|
|
let co3 = b;
|
|
|
|
|
|
|
|
|
|
co0 * x2 * x + co1 * x2 + co2 * x + co3
|
2019-05-20 15:01:27 +00:00
|
|
|
|
};
|
2019-05-20 02:53:04 +00:00
|
|
|
|
|
2019-05-22 09:42:19 +00:00
|
|
|
|
let mut x = [T::default(); 4];
|
2019-05-20 02:53:04 +00:00
|
|
|
|
|
2019-05-22 09:42:19 +00:00
|
|
|
|
for (x_idx, j) in (-1..3).enumerate() {
|
2019-06-19 14:55:26 +00:00
|
|
|
|
let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?);
|
2019-06-18 21:22:31 +00:00
|
|
|
|
let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?);
|
|
|
|
|
let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?);
|
|
|
|
|
let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?);
|
2019-05-20 02:53:04 +00:00
|
|
|
|
|
2019-05-22 09:42:19 +00:00
|
|
|
|
x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32);
|
2019-05-20 02:53:04 +00:00
|
|
|
|
}
|
|
|
|
|
|
2019-05-22 09:42:19 +00:00
|
|
|
|
Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32))
|
2019-05-20 02:53:04 +00:00
|
|
|
|
}
|
2019-10-16 11:39:41 +00:00
|
|
|
|
|
|
|
|
|
/// M. Steffen splines.
|
|
|
|
|
///
|
|
|
|
|
/// A more expensive cubic interpolation function that can preserve monotonicity between
|
|
|
|
|
/// points. This is useful if you rely on relative differences between endpoints being
|
|
|
|
|
/// preserved at all interior points. For example, we use this with riverbeds (and water
|
|
|
|
|
/// height on along rivers) to maintain the invariant that the rivers always flow downhill at
|
|
|
|
|
/// interior points (not just endpoints), without needing to flatten out the river.
|
|
|
|
|
pub fn get_interpolated_monotone<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
|
|
|
|
|
where
|
|
|
|
|
T: Copy + Default + Signed + Float + Add<Output = T> + Mul<f32, Output = T>,
|
|
|
|
|
F: FnMut(&SimChunk) -> T,
|
|
|
|
|
{
|
|
|
|
|
// See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf
|
|
|
|
|
//
|
|
|
|
|
// Note that these are only guaranteed monotone in one dimension; fortunately, that is
|
|
|
|
|
// sufficient for our purposes.
|
|
|
|
|
let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
|
|
|
|
e as f64 / sz as f64
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
let secant = |b: T, c: T| c - b;
|
|
|
|
|
|
|
|
|
|
let parabola = |a: T, c: T| -a * 0.5 + c * 0.5;
|
|
|
|
|
|
|
|
|
|
let slope = |_a: T, _b: T, _c: T, s_a: T, s_b: T, p_b: T| {
|
|
|
|
|
// ((b - a).signum() + (c - b).signum()) * s
|
|
|
|
|
(s_a.signum() + s_b.signum()) * (s_a.abs().min(s_b.abs()).min(p_b.abs() * 0.5))
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T {
|
|
|
|
|
// Compute secants.
|
|
|
|
|
let s_a = secant(a, b);
|
|
|
|
|
let s_b = secant(b, c);
|
|
|
|
|
let s_c = secant(c, d);
|
|
|
|
|
// Computing slopes from parabolas.
|
|
|
|
|
let p_b = parabola(a, c);
|
|
|
|
|
let p_c = parabola(b, d);
|
|
|
|
|
// Get slopes (setting distance between neighbors to 1.0).
|
|
|
|
|
let slope_b = slope(a, b, c, s_a, s_b, p_b);
|
|
|
|
|
let slope_c = slope(b, c, d, s_b, s_c, p_c);
|
|
|
|
|
let x2 = x * x;
|
|
|
|
|
|
|
|
|
|
// Interpolating splines.
|
|
|
|
|
let co0 = slope_b + slope_c - s_b * 2.0;
|
|
|
|
|
// = a * -0.5 + c * 0.5 + b * -0.5 + d * 0.5 - 2 * (c - b)
|
|
|
|
|
// = a * -0.5 + b * 1.5 - c * 1.5 + d * 0.5;
|
|
|
|
|
let co1 = s_b * 3.0 - slope_b * 2.0 - slope_c;
|
|
|
|
|
// = (3.0 * (c - b) - 2.0 * (a * -0.5 + c * 0.5) - (b * -0.5 + d * 0.5))
|
|
|
|
|
// = a + b * -2.5 + c * 2.0 + d * -0.5;
|
|
|
|
|
let co2 = slope_b;
|
|
|
|
|
// = a * -0.5 + c * 0.5;
|
|
|
|
|
let co3 = b;
|
|
|
|
|
|
|
|
|
|
co0 * x2 * x + co1 * x2 + co2 * x + co3
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
let mut x = [T::default(); 4];
|
|
|
|
|
|
|
|
|
|
for (x_idx, j) in (-1..3).enumerate() {
|
|
|
|
|
let y0 = f(self.get(pos.map2(Vec2::new(j, -1), |e, q| e.max(0.0) as i32 + q))?);
|
|
|
|
|
let y1 = f(self.get(pos.map2(Vec2::new(j, 0), |e, q| e.max(0.0) as i32 + q))?);
|
|
|
|
|
let y2 = f(self.get(pos.map2(Vec2::new(j, 1), |e, q| e.max(0.0) as i32 + q))?);
|
|
|
|
|
let y3 = f(self.get(pos.map2(Vec2::new(j, 2), |e, q| e.max(0.0) as i32 + q))?);
|
|
|
|
|
|
|
|
|
|
x[x_idx] = cubic(y0, y1, y2, y3, pos.y.fract() as f32);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Some(cubic(x[0], x[1], x[2], x[3], pos.x.fract() as f32))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Bilinear interpolation.
|
|
|
|
|
///
|
|
|
|
|
/// Linear interpolation in both directions (i.e. quadratic interpolation).
|
|
|
|
|
pub fn get_interpolated_bilinear<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
|
|
|
|
|
where
|
|
|
|
|
T: Copy + Default + Signed + Float + Add<Output = T> + Mul<f32, Output = T>,
|
|
|
|
|
F: FnMut(&SimChunk) -> T,
|
|
|
|
|
{
|
|
|
|
|
// (i) Find downhill for all four points.
|
|
|
|
|
// (ii) Compute distance from each downhill point and do linear interpolation on their heights.
|
|
|
|
|
// (iii) Compute distance between each neighboring point and do linear interpolation on
|
|
|
|
|
// their distance-interpolated heights.
|
|
|
|
|
|
|
|
|
|
// See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf
|
|
|
|
|
//
|
|
|
|
|
// Note that these are only guaranteed monotone in one dimension; fortunately, that is
|
|
|
|
|
// sufficient for our purposes.
|
|
|
|
|
let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
|
|
|
|
|
e as f64 / sz as f64
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
// Orient the chunk in the direction of the most downhill point of the four. If there is
|
|
|
|
|
// no "most downhill" point, then we don't care.
|
|
|
|
|
let x0 = pos.map2(Vec2::new(0, 0), |e, q| e.max(0.0) as i32 + q);
|
|
|
|
|
let p0 = self.get(x0)?;
|
|
|
|
|
let y0 = f(p0);
|
|
|
|
|
|
|
|
|
|
let x1 = pos.map2(Vec2::new(1, 0), |e, q| e.max(0.0) as i32 + q);
|
|
|
|
|
let p1 = self.get(x1)?;
|
|
|
|
|
let y1 = f(p1);
|
|
|
|
|
|
|
|
|
|
let x2 = pos.map2(Vec2::new(0, 1), |e, q| e.max(0.0) as i32 + q);
|
|
|
|
|
let p2 = self.get(x2)?;
|
|
|
|
|
let y2 = f(p2);
|
|
|
|
|
|
|
|
|
|
let x3 = pos.map2(Vec2::new(1, 1), |e, q| e.max(0.0) as i32 + q);
|
|
|
|
|
let p3 = self.get(x3)?;
|
|
|
|
|
let y3 = f(p3);
|
|
|
|
|
|
|
|
|
|
let z0 = y0
|
|
|
|
|
.mul(1.0 - pos.x.fract() as f32)
|
|
|
|
|
.mul(1.0 - pos.y.fract() as f32);
|
|
|
|
|
let z1 = y1.mul(pos.x.fract() as f32).mul(1.0 - pos.y.fract() as f32);
|
|
|
|
|
let z2 = y2.mul(1.0 - pos.x.fract() as f32).mul(pos.y.fract() as f32);
|
|
|
|
|
let z3 = y3.mul(pos.x.fract() as f32).mul(pos.y.fract() as f32);
|
|
|
|
|
|
|
|
|
|
Some(z0 + z1 + z2 + z3)
|
|
|
|
|
}
|
2019-05-21 00:57:16 +00:00
|
|
|
|
}
|
|
|
|
|
|
2019-06-04 17:19:40 +00:00
|
|
|
|
pub struct SimChunk {
|
|
|
|
|
pub chaos: f32,
|
|
|
|
|
pub alt: f32,
|
2019-11-19 18:34:52 +00:00
|
|
|
|
pub basement: f32,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
pub water_alt: f32,
|
|
|
|
|
pub downhill: Option<Vec2<i32>>,
|
|
|
|
|
pub flux: f32,
|
2019-06-04 17:19:40 +00:00
|
|
|
|
pub temp: f32,
|
2019-08-18 16:35:27 +00:00
|
|
|
|
pub humidity: f32,
|
2019-06-04 17:19:40 +00:00
|
|
|
|
pub rockiness: f32,
|
2019-07-08 14:51:38 +00:00
|
|
|
|
pub is_cliffs: bool,
|
2019-06-21 00:53:11 +00:00
|
|
|
|
pub near_cliffs: bool,
|
2019-06-04 17:19:40 +00:00
|
|
|
|
pub tree_density: f32,
|
2019-06-11 18:39:25 +00:00
|
|
|
|
pub forest_kind: ForestKind,
|
2019-06-25 15:59:09 +00:00
|
|
|
|
pub spawn_rate: f32,
|
2019-06-22 21:44:27 +00:00
|
|
|
|
pub location: Option<LocationInfo>,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
pub river: RiverData,
|
2020-01-08 12:48:00 +00:00
|
|
|
|
pub is_underwater: bool,
|
2019-08-23 21:33:14 +00:00
|
|
|
|
|
|
|
|
|
pub structures: Structures,
|
2020-01-25 20:43:34 +00:00
|
|
|
|
pub contains_waypoint: bool,
|
2019-06-22 21:44:27 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Copy, Clone)]
|
|
|
|
|
pub struct RegionInfo {
|
|
|
|
|
pub chunk_pos: Vec2<i32>,
|
|
|
|
|
pub block_pos: Vec2<i32>,
|
|
|
|
|
pub dist: f32,
|
|
|
|
|
pub seed: u32,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Clone)]
|
|
|
|
|
pub struct LocationInfo {
|
2019-06-25 15:59:09 +00:00
|
|
|
|
pub loc_idx: usize,
|
2019-06-22 21:44:27 +00:00
|
|
|
|
pub near: Vec<RegionInfo>,
|
2019-06-04 17:19:40 +00:00
|
|
|
|
}
|
|
|
|
|
|
2019-08-23 21:33:14 +00:00
|
|
|
|
#[derive(Clone)]
|
|
|
|
|
pub struct Structures {
|
|
|
|
|
pub town: Option<Arc<TownState>>,
|
|
|
|
|
}
|
|
|
|
|
|
2019-06-04 17:19:40 +00:00
|
|
|
|
impl SimChunk {
|
2019-10-16 11:39:41 +00:00
|
|
|
|
fn generate(posi: usize, gen_ctx: &GenCtx, gen_cdf: &GenCdf) -> Self {
|
2019-08-21 18:41:32 +00:00
|
|
|
|
let pos = uniform_idx_as_vec2(posi);
|
common: Rework volume API
See the doc comments in `common/src/vol.rs` for more information on
the API itself.
The changes include:
* Consistent `Err`/`Error` naming.
* Types are named `...Error`.
* `enum` variants are named `...Err`.
* Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation
to an upcoming change where a “map” in the game related sense will
be added.
* Add volume iterators. There are two types of them:
* _Position_ iterators obtained from the trait `IntoPosIterator`
using the method
`fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `Vec3<i32>`.
* _Volume_ iterators obtained from the trait `IntoVolIterator`
using the method
`fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...`
which returns an iterator over `(Vec3<i32>, &Self::Vox)`.
Those traits will usually be implemented by references to volume
types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some
type which usually implements several volume traits, such as `Chunk`).
* _Position_ iterators iterate over the positions valid for that
volume.
* _Volume_ iterators do the same but return not only the position
but also the voxel at that position, in each iteration.
* Introduce trait `RectSizedVol` for the use case which we have with
`Chonk`: A `Chonk` is sized only in x and y direction.
* Introduce traits `RasterableVol`, `RectRasterableVol`
* `RasterableVol` represents a volume that is compile-time sized and has
its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen
because such a volume can be used with `VolGrid3d`.
* `RectRasterableVol` represents a volume that is compile-time sized at
least in x and y direction and has its lower bound at `(0, 0, z)`.
There's no requirement on he lower bound or size in z direction.
The name `RectRasterableVol` was chosen because such a volume can be
used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
|
|
|
|
let wposf = (pos * TerrainChunkSize::RECT_SIZE.map(|e| e as i32)).map(|e| e as f64);
|
2019-06-04 17:19:40 +00:00
|
|
|
|
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let _map_edge_factor = map_edge_factor(posi);
|
2019-08-22 19:03:42 +00:00
|
|
|
|
let (_, chaos) = gen_cdf.chaos[posi];
|
2019-12-03 18:14:29 +00:00
|
|
|
|
let alt_pre = gen_cdf.alt[posi] as f32;
|
|
|
|
|
let basement_pre = gen_cdf.basement[posi] as f32;
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let water_alt_pre = gen_cdf.water_alt[posi];
|
|
|
|
|
let downhill_pre = gen_cdf.dh[posi];
|
2020-01-11 21:05:22 +00:00
|
|
|
|
let flux = gen_cdf.flux[posi] as f32;
|
2019-11-07 20:25:30 +00:00
|
|
|
|
let river = gen_cdf.rivers[posi].clone();
|
|
|
|
|
|
|
|
|
|
// Can have NaNs in non-uniform part where pure_water returned true. We just test one of
|
|
|
|
|
// the four in order to find out whether this is the case.
|
2019-11-11 17:14:58 +00:00
|
|
|
|
let (flux_uniform, /*flux_non_uniform*/ _) = gen_cdf.pure_flux[posi];
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let (alt_uniform, _) = gen_cdf.alt_no_water[posi];
|
2019-08-22 22:57:42 +00:00
|
|
|
|
let (temp_uniform, _) = gen_cdf.temp_base[posi];
|
2019-11-07 20:25:30 +00:00
|
|
|
|
let (humid_uniform, _) = gen_cdf.humid_base[posi];
|
2019-10-16 11:39:41 +00:00
|
|
|
|
|
|
|
|
|
/* // Vertical difference from the equator (NOTE: "uniform" with much lower granularity than
|
|
|
|
|
// other uniform quantities, but hopefully this doesn't matter *too* much--if it does, we
|
|
|
|
|
// can always add a small x component).
|
|
|
|
|
//
|
|
|
|
|
// Not clear that we want this yet, let's see.
|
|
|
|
|
let latitude_uniform = (pos.y as f32 / WORLD_SIZE.y as f32).sub(0.5).mul(2.0);
|
|
|
|
|
|
|
|
|
|
// Even less granular--if this matters we can make the sign affect the quantiy slightly.
|
|
|
|
|
let abs_lat_uniform = latitude_uniform.abs(); */
|
2019-08-19 17:20:54 +00:00
|
|
|
|
|
2020-01-22 14:31:10 +00:00
|
|
|
|
// Take the weighted average of our randomly generated base humidity, and the calculated
|
|
|
|
|
// water flux over this point in order to compute humidity.
|
|
|
|
|
const HUMID_WEIGHTS: [f32; 2] = [2.0, 1.0];
|
|
|
|
|
let humidity = cdf_irwin_hall(&HUMID_WEIGHTS, [humid_uniform, flux_uniform]);
|
2019-10-16 11:39:41 +00:00
|
|
|
|
|
|
|
|
|
// We also correlate temperature negatively with altitude and absolute latitude, using
|
|
|
|
|
// different weighting than we use for humidity.
|
2019-11-11 17:14:58 +00:00
|
|
|
|
const TEMP_WEIGHTS: [f32; 2] = [/*1.5, */ 1.0, 2.0];
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let temp = cdf_irwin_hall(
|
|
|
|
|
&TEMP_WEIGHTS,
|
|
|
|
|
[
|
|
|
|
|
temp_uniform,
|
|
|
|
|
1.0 - alt_uniform, /* 1.0 - abs_lat_uniform*/
|
|
|
|
|
],
|
|
|
|
|
)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
// Convert to [-1, 1]
|
|
|
|
|
.sub(0.5)
|
|
|
|
|
.mul(2.0);
|
2020-01-22 14:31:10 +00:00
|
|
|
|
|
|
|
|
|
let mut alt = CONFIG.sea_level.add(alt_pre);
|
|
|
|
|
let basement = CONFIG.sea_level.add(basement_pre);
|
|
|
|
|
let water_alt = CONFIG.sea_level.add(water_alt_pre);
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let downhill = if downhill_pre == -2 {
|
|
|
|
|
None
|
|
|
|
|
} else if downhill_pre < 0 {
|
|
|
|
|
panic!("Uh... shouldn't this never, ever happen?");
|
|
|
|
|
} else {
|
|
|
|
|
Some(
|
|
|
|
|
uniform_idx_as_vec2(downhill_pre as usize)
|
|
|
|
|
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32),
|
|
|
|
|
)
|
|
|
|
|
};
|
2019-08-19 17:20:54 +00:00
|
|
|
|
|
2019-06-21 00:53:11 +00:00
|
|
|
|
let cliff = gen_ctx.cliff_nz.get((wposf.div(2048.0)).into_array()) as f32 + chaos * 0.2;
|
|
|
|
|
|
2019-08-22 15:45:47 +00:00
|
|
|
|
// Logistic regression. Make sure x ∈ (0, 1).
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let logit = |x: f64| x.ln() - x.neg().ln_1p();
|
2019-08-22 15:45:47 +00:00
|
|
|
|
// 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let logistic_2_base = 3.0f64.sqrt().mul(f64::consts::FRAC_2_PI);
|
2019-08-22 15:45:47 +00:00
|
|
|
|
// Assumes μ = 0, σ = 1
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let logistic_cdf = |x: f64| x.div(logistic_2_base).tanh().mul(0.5).add(0.5);
|
|
|
|
|
|
|
|
|
|
let is_underwater = match river.river_kind {
|
|
|
|
|
Some(RiverKind::Ocean) | Some(RiverKind::Lake { .. }) => true,
|
|
|
|
|
Some(RiverKind::River { .. }) => false, // TODO: inspect width
|
|
|
|
|
None => false,
|
|
|
|
|
};
|
|
|
|
|
let river_xy = Vec2::new(river.velocity.x, river.velocity.y).magnitude();
|
|
|
|
|
let river_slope = river.velocity.z / river_xy;
|
|
|
|
|
match river.river_kind {
|
|
|
|
|
Some(RiverKind::River { cross_section }) => {
|
|
|
|
|
if cross_section.x >= 0.5 && cross_section.y >= CONFIG.river_min_height {
|
|
|
|
|
/* println!(
|
|
|
|
|
"Big area! Pos area: {:?}, River data: {:?}, slope: {:?}",
|
|
|
|
|
wposf, river, river_slope
|
|
|
|
|
); */
|
|
|
|
|
}
|
2020-01-22 14:31:10 +00:00
|
|
|
|
if river_slope.abs() >= 0.25 && cross_section.x >= 1.0 {
|
2019-11-23 14:34:03 +00:00
|
|
|
|
log::debug!(
|
2019-10-16 11:39:41 +00:00
|
|
|
|
"Big waterfall! Pos area: {:?}, River data: {:?}, slope: {:?}",
|
|
|
|
|
wposf,
|
|
|
|
|
river,
|
|
|
|
|
river_slope
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
Some(RiverKind::Lake { .. }) => {
|
|
|
|
|
// Forces lakes to be downhill from the land around them, and adds some noise to
|
|
|
|
|
// the lake bed to make sure it's not too flat.
|
|
|
|
|
let lake_bottom_nz = (gen_ctx.small_nz.get((wposf.div(20.0)).into_array()) as f32)
|
|
|
|
|
.max(-1.0)
|
|
|
|
|
.min(1.0)
|
|
|
|
|
.mul(3.0);
|
|
|
|
|
alt = alt.min(water_alt - 5.0) + lake_bottom_nz;
|
|
|
|
|
}
|
|
|
|
|
_ => {}
|
|
|
|
|
}
|
2019-08-22 15:45:47 +00:00
|
|
|
|
|
2019-11-20 10:33:53 +00:00
|
|
|
|
// No trees in the ocean, with zero humidity (currently), or directly on bedrock.
|
2020-01-22 14:31:10 +00:00
|
|
|
|
let tree_density = if is_underwater {
|
2019-08-22 21:25:17 +00:00
|
|
|
|
0.0
|
|
|
|
|
} else {
|
2019-10-16 11:39:41 +00:00
|
|
|
|
let tree_density = (gen_ctx.tree_nz.get((wposf.div(1024.0)).into_array()))
|
2019-08-18 23:52:26 +00:00
|
|
|
|
.mul(1.5)
|
|
|
|
|
.add(1.0)
|
|
|
|
|
.mul(0.5)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
.mul(1.2 - chaos as f64 * 0.95)
|
2019-08-18 23:52:26 +00:00
|
|
|
|
.add(0.05)
|
|
|
|
|
.max(0.0)
|
2019-08-22 15:45:47 +00:00
|
|
|
|
.min(1.0);
|
|
|
|
|
// Tree density should go (by a lot) with humidity.
|
|
|
|
|
if humidity <= 0.0 || tree_density <= 0.0 {
|
|
|
|
|
0.0
|
|
|
|
|
} else if humidity >= 1.0 || tree_density >= 1.0 {
|
|
|
|
|
1.0
|
|
|
|
|
} else {
|
2019-08-22 21:48:13 +00:00
|
|
|
|
// Weighted logit sum.
|
2019-10-16 11:39:41 +00:00
|
|
|
|
logistic_cdf(logit(humidity as f64) + 0.5 * logit(tree_density))
|
2019-08-22 15:45:47 +00:00
|
|
|
|
}
|
2019-08-25 15:49:33 +00:00
|
|
|
|
// rescale to (-0.95, 0.95)
|
2019-08-22 21:25:17 +00:00
|
|
|
|
.sub(0.5)
|
2019-08-25 15:49:33 +00:00
|
|
|
|
.mul(0.95)
|
2019-08-22 21:25:17 +00:00
|
|
|
|
.add(0.5)
|
2019-10-16 11:39:41 +00:00
|
|
|
|
} as f32;
|
2019-08-18 23:52:26 +00:00
|
|
|
|
|
2019-06-04 17:19:40 +00:00
|
|
|
|
Self {
|
|
|
|
|
chaos,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
flux,
|
2019-06-04 17:19:40 +00:00
|
|
|
|
alt,
|
2019-11-19 18:34:52 +00:00
|
|
|
|
basement: basement.min(alt),
|
2019-10-16 11:39:41 +00:00
|
|
|
|
water_alt,
|
|
|
|
|
downhill,
|
2019-06-11 18:39:25 +00:00
|
|
|
|
temp,
|
2019-08-18 16:35:27 +00:00
|
|
|
|
humidity,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
rockiness: if true {
|
|
|
|
|
(gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32)
|
|
|
|
|
.sub(0.1)
|
|
|
|
|
.mul(1.3)
|
|
|
|
|
.max(0.0)
|
|
|
|
|
} else {
|
|
|
|
|
0.0
|
|
|
|
|
},
|
2020-01-08 12:48:00 +00:00
|
|
|
|
is_underwater,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
is_cliffs: cliff > 0.5 && !is_underwater,
|
2019-08-24 13:23:42 +00:00
|
|
|
|
near_cliffs: cliff > 0.2,
|
2019-08-18 23:52:26 +00:00
|
|
|
|
tree_density,
|
2019-12-03 01:07:44 +00:00
|
|
|
|
forest_kind: if temp > CONFIG.temperate_temp {
|
2019-06-11 18:39:25 +00:00
|
|
|
|
if temp > CONFIG.desert_temp {
|
2019-08-18 16:35:27 +00:00
|
|
|
|
if humidity > CONFIG.jungle_hum {
|
|
|
|
|
// Forests in desert temperatures with extremely high humidity
|
|
|
|
|
// should probably be different from palm trees, but we use them
|
|
|
|
|
// for now.
|
|
|
|
|
ForestKind::Palm
|
2019-08-22 21:25:17 +00:00
|
|
|
|
} else if humidity > CONFIG.forest_hum {
|
2019-08-18 16:35:27 +00:00
|
|
|
|
ForestKind::Palm
|
2019-08-22 15:45:47 +00:00
|
|
|
|
} else if humidity > CONFIG.desert_hum {
|
2019-08-18 16:35:27 +00:00
|
|
|
|
// Low but not desert humidity, so we should really have some other
|
|
|
|
|
// terrain...
|
|
|
|
|
ForestKind::Savannah
|
2019-08-22 15:45:47 +00:00
|
|
|
|
} else {
|
|
|
|
|
ForestKind::Savannah
|
2019-08-18 16:35:27 +00:00
|
|
|
|
}
|
2019-07-08 16:41:20 +00:00
|
|
|
|
} else if temp > CONFIG.tropical_temp {
|
2019-08-18 16:35:27 +00:00
|
|
|
|
if humidity > CONFIG.jungle_hum {
|
2019-10-16 11:39:41 +00:00
|
|
|
|
if tree_density > 0.0 {
|
|
|
|
|
// println!("Mangrove: {:?}", wposf);
|
|
|
|
|
}
|
2019-08-18 16:35:27 +00:00
|
|
|
|
ForestKind::Mangrove
|
|
|
|
|
} else if humidity > CONFIG.forest_hum {
|
2019-08-19 17:20:54 +00:00
|
|
|
|
// NOTE: Probably the wrong kind of tree for this climate.
|
2019-08-18 16:35:27 +00:00
|
|
|
|
ForestKind::Oak
|
2019-08-22 15:45:47 +00:00
|
|
|
|
} else if humidity > CONFIG.desert_hum {
|
2019-08-19 17:20:54 +00:00
|
|
|
|
// Low but not desert... need something besides savannah.
|
2019-08-18 16:35:27 +00:00
|
|
|
|
ForestKind::Savannah
|
2019-08-22 15:45:47 +00:00
|
|
|
|
} else {
|
|
|
|
|
ForestKind::Savannah
|
2019-08-18 16:35:27 +00:00
|
|
|
|
}
|
2019-06-11 18:39:25 +00:00
|
|
|
|
} else {
|
2019-08-18 16:35:27 +00:00
|
|
|
|
if humidity > CONFIG.jungle_hum {
|
|
|
|
|
// Temperate climate with jungle humidity...
|
|
|
|
|
// https://en.wikipedia.org/wiki/Humid_subtropical_climates are often
|
|
|
|
|
// densely wooded and full of water. Semitropical rainforests, basically.
|
2019-08-19 17:20:54 +00:00
|
|
|
|
// For now we just treet them like other rainforests.
|
2019-08-21 18:41:32 +00:00
|
|
|
|
ForestKind::Oak
|
2019-08-18 16:35:27 +00:00
|
|
|
|
} else if humidity > CONFIG.forest_hum {
|
|
|
|
|
// Moderate climate, moderate humidity.
|
|
|
|
|
ForestKind::Oak
|
2019-08-22 15:45:47 +00:00
|
|
|
|
} else if humidity > CONFIG.desert_hum {
|
2019-08-18 16:35:27 +00:00
|
|
|
|
// With moderate temperature and low humidity, we should probably see
|
|
|
|
|
// something different from savannah, but oh well...
|
|
|
|
|
ForestKind::Savannah
|
2019-08-22 15:45:47 +00:00
|
|
|
|
} else {
|
|
|
|
|
ForestKind::Savannah
|
2019-08-18 16:35:27 +00:00
|
|
|
|
}
|
2019-06-11 18:39:25 +00:00
|
|
|
|
}
|
|
|
|
|
} else {
|
2019-08-18 16:35:27 +00:00
|
|
|
|
// For now we don't take humidity into account for cold climates (but we really
|
2019-08-19 01:01:11 +00:00
|
|
|
|
// should!) except that we make sure we only have snow pines when there is snow.
|
2019-09-24 17:56:51 +00:00
|
|
|
|
if temp <= CONFIG.snow_temp {
|
2019-06-11 18:39:25 +00:00
|
|
|
|
ForestKind::SnowPine
|
2019-08-22 15:45:47 +00:00
|
|
|
|
} else if humidity > CONFIG.desert_hum {
|
|
|
|
|
ForestKind::Pine
|
2019-08-19 01:01:11 +00:00
|
|
|
|
} else {
|
2019-08-22 15:45:47 +00:00
|
|
|
|
// Should really have something like tundra.
|
2019-08-19 01:01:11 +00:00
|
|
|
|
ForestKind::Pine
|
2019-06-11 18:39:25 +00:00
|
|
|
|
}
|
|
|
|
|
},
|
2019-06-25 15:59:09 +00:00
|
|
|
|
spawn_rate: 1.0,
|
2019-06-10 16:28:02 +00:00
|
|
|
|
location: None,
|
2019-10-16 11:39:41 +00:00
|
|
|
|
river,
|
2019-08-23 21:33:14 +00:00
|
|
|
|
structures: Structures { town: None },
|
2020-01-25 20:43:34 +00:00
|
|
|
|
contains_waypoint: false,
|
2019-06-04 17:19:40 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn get_base_z(&self) -> f32 {
|
2019-07-08 16:00:50 +00:00
|
|
|
|
self.alt - self.chaos * 50.0 - 16.0
|
2019-06-04 17:19:40 +00:00
|
|
|
|
}
|
2019-06-18 21:22:31 +00:00
|
|
|
|
|
2019-06-25 15:59:09 +00:00
|
|
|
|
pub fn get_name(&self, world: &WorldSim) -> Option<String> {
|
|
|
|
|
if let Some(loc) = &self.location {
|
2019-06-26 00:27:41 +00:00
|
|
|
|
Some(world.locations[loc.loc_idx].name().to_string())
|
2019-06-25 15:59:09 +00:00
|
|
|
|
} else {
|
|
|
|
|
None
|
|
|
|
|
}
|
2019-06-18 21:22:31 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn get_biome(&self) -> BiomeKind {
|
|
|
|
|
if self.alt < CONFIG.sea_level {
|
|
|
|
|
BiomeKind::Ocean
|
|
|
|
|
} else if self.chaos > 0.6 {
|
|
|
|
|
BiomeKind::Mountain
|
|
|
|
|
} else if self.temp > CONFIG.desert_temp {
|
|
|
|
|
BiomeKind::Desert
|
|
|
|
|
} else if self.temp < CONFIG.snow_temp {
|
|
|
|
|
BiomeKind::Snowlands
|
|
|
|
|
} else if self.tree_density > 0.65 {
|
|
|
|
|
BiomeKind::Forest
|
|
|
|
|
} else {
|
|
|
|
|
BiomeKind::Grassland
|
|
|
|
|
}
|
|
|
|
|
}
|
2019-06-04 17:19:40 +00:00
|
|
|
|
}
|