Compare commits

..

1516 Commits

Author SHA1 Message Date
bd82c4ace0 model installer confirms deletion of models 2023-07-05 09:57:23 -04:00
9edf78dd2e merge with main 2023-07-05 09:12:54 -04:00
5d31703224 Merge branch 'release/invokeai-3-0-alpha' of github.com:invoke-ai/InvokeAI into release/invokeai-3-0-alpha 2023-07-05 09:05:59 -04:00
44d5bef7e4 bump version number 2023-07-05 09:02:35 -04:00
818616a0c5 fix(ui): fix prompt resize & style resizer (#3652) 2023-07-05 23:42:23 +12:00
3b324a7d0a Merge branch 'main' into fix/ui/fix-prompt-resize 2023-07-05 23:40:47 +12:00
c8cb43ff2d Fix clip path in migrate script (#3651)
Update path for clip model according to path used in ckpt conversion and
invokeai-configure
2023-07-05 23:38:45 +12:00
596c791844 fix(ui): fix prompt resize & style resizer 2023-07-05 21:02:31 +10:00
780e77d2ae Merge branch 'main' into fix/clip_path 2023-07-05 22:45:52 +12:00
e3fc1b3816 Fix clip path in migrate script 2023-07-05 13:43:09 +03:00
9ad9e91a06 Detect invalid model names when migrating 2.3->3.0 (#3623)
A user discovered that 2.3 models whose symbolic names contain the "/"
character are not imported properly by the `migrate-models-3` script.
This fixes the issue by changing "/" to underscore at import time.
2023-07-05 06:35:54 -04:00
307a01d604 when migrating models, changes / to _ in model names to avoid breaking model name keys 2023-07-05 20:27:03 +10:00
0981a7d049 fix(ui): fix dnd on nodes (#3649)
I had broken this earlier today
2023-07-05 21:09:36 +12:00
2a7dee17be fix(ui): fix dnd on nodes
I had broken this earlier today
2023-07-05 19:06:40 +10:00
6c6d600cea fix(ui): deleting image selects first image (#3648)
@mickr777
2023-07-05 21:00:01 +12:00
1c7166d2c6 Merge branch 'main' into fix/ui/delete-image-select 2023-07-05 20:57:34 +12:00
07d7959dc0 feat(ui): improve accordion ux (#3647)
- Accordions now may be opened or closed regardless of whether or not
their contents are enabled or active
- Accordions have a short text indicator alerting the user if their
contents are enabled, either a simple `Enabled` or, for accordions like
LoRA or ControlNet, `X Active` if any are active



https://github.com/invoke-ai/InvokeAI/assets/4822129/43db63bd-7ef3-43f2-8dad-59fc7200af2e
2023-07-05 20:57:23 +12:00
9ebab013c1 fix(ui): deleting image selects first image 2023-07-05 18:21:46 +10:00
e41e8606b5 feat(ui): improve accordion ux
- Accordions now may be opened or closed regardless of whether or not their contents are enabled or active
- Accordions have a short text indicator alerting the user if their contents are enabled, either a simple `Enabled` or, for accordions like LoRA or ControlNet, `X Active` if any are active
2023-07-05 17:33:03 +10:00
6ce867feb4 Fix model detection (#3646) 2023-07-05 19:00:31 +12:00
bc8cfc2baa Merge branch 'main' into fix/model_detect 2023-07-05 18:52:11 +12:00
7170e82f73 expose max_cache_size in config 2023-07-05 02:44:15 -04:00
2beb8f049e Fix model detection 2023-07-05 09:43:46 +03:00
66c10cc2f7 fix: Change Lora weight bounds to -1 to 2 (#3645) 2023-07-05 18:23:06 +12:00
1fb317243d fix: Change Lora weight bounds to -1 to 2 2023-07-05 18:12:45 +12:00
71310a180d feat: Add Lora to Canvas (#3643)
- Add Loras to Canvas
- Revert inference_mode to no_grad coz inference tensors fail with
latent to latent.
2023-07-05 17:15:28 +12:00
1a29a3fe39 feat: Add Lora to Canvas 2023-07-05 16:39:28 +12:00
639d88afd6 revert: inference_mode to no_grad 2023-07-05 16:39:15 +12:00
f155887b7d fix(ui): change multi image drop to not have selection as payload
This caused a lot of re-rendering whenever the selection changed, which caused a huge performance hit. It also made changing the current image lag a bit.

Instead of providing an array of image names as a multi-select dnd payload, there is now no multi-select dnd payload at all - instead, the payload types are used by the `imageDropped` listener to pull the selection out of redux.

Now, the only big re-renders are when the selectionCount changes. In the future I'll figure out a good way to do image names as payload without incurring re-renders.
2023-07-05 13:25:07 +10:00
1358c5eb7d fix(ui): fix selector memoization
Every `GalleryImage` was rerendering any time the app rerendered bc the selector function itself was not memoized. This resulted in the memoization cache inside the selector constantly being reset.

Same for `BatchImage`.

Also updated memoization for a few other selectors.
2023-07-05 13:25:07 +10:00
c0501ed5c2 fix: Slow loading of Loras
Co-Authored-By: StAlKeR7779 <7768370+StAlKeR7779@users.noreply.github.com>
2023-07-05 12:47:34 +10:00
0f0336b6ef fix(ui): fix incorrect lora id processing 2023-07-05 12:47:34 +10:00
52a09422c7 feat(ui): create rtk-query hooks for individual model types
Eg `useGetMainModelsQuery()`, `useGetLoRAModelsQuery()` instead of `useListModelsQuery({base_type})`.

Add specific adapters for each model type. Just more organised and easier to consume models now.

Also updated LoRA UI to use the model name.
2023-07-05 12:47:34 +10:00
c21b56ba31 fix(ui): fix mantine disabled styles 2023-07-05 12:47:34 +10:00
bf895221c2 fix: Tab index not being correct
This probably needs to be updated to an object over an array so the index of item in the array doesnt break the rest of it.
2023-07-05 12:47:34 +10:00
db8862d860 feat(ui): add LoRA ui & update graphs 2023-07-05 12:47:34 +10:00
d537b9f0cb chore(ui): regen types 2023-07-05 12:47:34 +10:00
08d428a5e7 feat(nodes): add lora field, update lora loader 2023-07-05 12:47:34 +10:00
92b163e95c (wip) Model Manager 3.0 UI (#3586)
...
2023-07-04 17:34:06 +12:00
af728b4b1d chore(ui): regen types 2023-07-04 15:04:01 +10:00
099082abc1 feat(ui): model manager tab naming tweaks 2023-07-04 14:52:00 +10:00
96bf92ead4 add the import model router 2023-07-04 14:35:47 +10:00
0988725c1b fix: Floating gallery button showing up in Model Manager 2023-07-04 14:35:47 +10:00
089d95baeb fix: Change graph id vals to constants 2023-07-04 14:35:47 +10:00
511978979e feat: Add Custom VAE Support to Linear UI 2023-07-04 14:35:47 +10:00
7e18814dd0 Add standard names for Model Loader Nodes 2023-07-04 14:35:06 +10:00
bd5a764988 Remove 'automatic' from VAE Loader in Nodes 2023-07-04 14:35:06 +10:00
a8a2209560 VAE loader is loading proper VAE. Unclear if it is changing the image 2023-07-04 14:35:06 +10:00
fa8a5838d3 add vae lodaer 2023-07-04 14:35:06 +10:00
630f3c8b0b fix: Missing VAE Loader stuff 2023-07-04 14:34:41 +10:00
6c6299ce49 fix: Style fixes to the MM edit forms 2023-07-04 14:34:41 +10:00
6684e00f0a wip: Move Merge Models to new panel & use new model fetch 2023-07-04 14:34:41 +10:00
2f8f558df3 wip: Move Add Model from Modal to new Panel 2023-07-04 14:34:41 +10:00
de7b059e67 feat: Port Checkpoint Edit to Mantine Form 2023-07-04 14:34:41 +10:00
33db4e27a0 feat: Update DiffusersEdit Component to use Mantine Form 2023-07-04 14:34:41 +10:00
009c20bfea feat: Add Mantine Form 2023-07-04 14:34:41 +10:00
d61b3818fe feat: Add VAE Select to Linea UI Panels (non func) 2023-07-04 14:34:41 +10:00
51db4d1269 fix: Minor fixes to the VAESelect components 2023-07-04 14:34:41 +10:00
38660a2162 feat: Addvae_model input type front end 2023-07-04 14:34:41 +10:00
5ad6b64721 cleanup: merge conflicts 2023-07-04 14:34:22 +10:00
0da4f4bb6f fix: Add missing Unet, Clip, VAE Field Template types 2023-07-04 14:34:22 +10:00
8d5a953dcb feat: Add VAESelect Component 2023-07-04 14:33:56 +10:00
6c62f41f2e chore: Change PipelineModels to MainModels 2023-07-04 14:33:56 +10:00
2ad5a4ea46 feat: Initial port of Model Manager to new tab 2023-07-04 14:31:48 +10:00
9e35643911 feat: Make new tab for Model Manager 2023-07-04 14:31:24 +10:00
0bb668b8a8 feat: hook up model edit forms 2023-07-04 14:29:42 +10:00
e73f774920 fix: Restore Model display and select functionality 2023-07-04 14:29:42 +10:00
b4b760d9e9 Quash memory leak when compel invocation called (#3633)
This commit prevents each image generation from leaking ~160 MB of VRAM.
Thanks to @damian0815 and @StAlKeR7779 for helping to sort this out.
2023-07-04 06:33:56 +12:00
4d2c7806fc quash memory leak when compel invocation called 2023-07-03 14:12:35 -04:00
3937428563 Merge branch 'release/invokeai-3-0-alpha' of github.com:invoke-ai/InvokeAI into release/invokeai-3-0-alpha 2023-07-03 14:11:28 -04:00
252c790969 Add runtime root path to relative vaes and other submodels (#3631)
This PR fixes a crash that would occur when VAEs and other submodels
have a relative path in the config file.
2023-07-03 14:10:33 -04:00
cfd09214d3 Merge branch 'main' into lstein/fix-vae-conversion-crash 2023-07-03 14:03:13 -04:00
78857bf5ad Make unit tests work again (#3575)
This PR is for adjusting the unit tests in the `tests` directory so that
they no longer throw errors.

I've removed two tests that were obsoleted by the shift to latent nodes,
but `test_graph_execution_state.py` and `test_invoker.py` are throwing
this validation error:

```
TypeError: InvocationServices.__init__() missing 2 required positional arguments: 'boards' and 'board_images'
```
2023-07-03 12:53:04 -04:00
9c83a4eada Merge branch 'main' into dev/fix-unit-tests 2023-07-03 12:44:02 -04:00
c314b17f5c Add missing k-* legacy sampler names to init file migrate list (#3625)
The `invokeai-configure` script migrates the old invokeai.init file to
the new invokeai.yaml format. However, the parser for the invokeai.init
file was missing the names of the k* samplers and was giving a parser
error on any invokeai.init file that referred to one of these samplers.
This PR fixes the problem.

Ironically, there is no longer the concept of the preferred scheduler in
3.0, and so these sampler names are simply ignored and not written into
`invokeai.yaml`
2023-07-03 12:41:33 -04:00
27088610ed Merge branch 'main' into dev/fix-unit-tests 2023-07-03 12:38:42 -04:00
ebcbfc8a12 Merge branch 'main' into lstein/recognize-legacy-sampler-names 2023-07-03 12:36:00 -04:00
d6de11bd56 resolve merge conflict 2023-07-03 12:19:11 -04:00
ed86d0b708 Union[foo, None]=>Optional[foo] 2023-07-03 12:17:45 -04:00
fb2b2a371d Merge branch 'lstein/fix-vae-conversion-crash' into release/invokeai-3-0-alpha 2023-07-03 11:21:16 -04:00
10d513c5f7 add runtime root path to relative vaes and other submodels 2023-07-03 11:19:33 -04:00
877b187a1b Merge branch 'lstein/restore-3.9-compatibility' into release/invokeai-3-0-alpha 2023-07-03 11:01:34 -04:00
ac9ec4e75a restore 3.9 compatibility by replacing | with Union[] 2023-07-03 10:57:40 -04:00
2465c7987b Revert "restore 3.9 compatibility by replacing | with Union[]"
This reverts commit 76bafeb99e.
2023-07-03 10:56:41 -04:00
73a27918c6 Merge branch 'main' of github.com:invoke-ai/InvokeAI into main 2023-07-03 10:55:12 -04:00
76bafeb99e restore 3.9 compatibility by replacing | with Union[] 2023-07-03 10:55:04 -04:00
c33f0ae055 feat(ui): hide batch ui pending logic implementation 2023-07-04 00:26:58 +10:00
90aa97edd4 feat(ui): add multi-select and batch capabilities
This introduces the core functionality for batch operations on images and multiple selection in the gallery/batch manager.

A number of other substantial changes are included:
- `imagesSlice` is consolidated into `gallerySlice`, allowing for simpler selection of filtered images
- `batchSlice` is added to manage the batch
- The wonky context pattern for image deletion has been changed, much simpler now using a `imageDeletionSlice` and redux listeners; this needs to be implemented still for the other image modals
- Minimum gallery size in px implemented as a hook
- Many style fixes & several bug fixes

TODO:
- The UI and UX need to be figured out, especially for controlnet
- Batch processing is not hooked up; generation does not do anything with batch
- Routes to support batch image operations, specifically delete and add/remove to/from boards
2023-07-04 00:18:27 +10:00
fa169b5517 feat(nodes): add ImageCollection node in prep for batch processing 2023-07-04 00:18:27 +10:00
aae60b6142 quash memory leak when compel invocation called 2023-07-03 10:08:10 -04:00
b79740d61d back out torch.no_grad() 2023-07-02 23:03:24 -04:00
8c93c8dda8 add web dist files to enable network pip install 2023-07-02 22:02:53 -04:00
176504a475 add .js, .woff2 and .css files to web/dist/assets 2023-07-02 21:50:29 -04:00
fa8ccd2a94 add no_grad() to compel node invoke() method 2023-07-02 18:20:16 -04:00
6935858ef3 add debugging messages to aid in memory leak tracking 2023-07-02 13:34:53 -04:00
2b67509061 bump version; rebuild frontend 2023-07-02 13:02:31 -04:00
fa1f9939cc adjust invokeai-configure TUI vertical height to show NEXT button on Mac 2023-07-02 09:44:16 -04:00
2d314d2b3d another fix to repo_id loading 2023-07-02 09:18:11 -04:00
42f537f655 Fix Invoke Progress Bar (#3626)
@blessedcoolant it looks like with the new theme buttons not being
transparent the progress bar was completely hidden, I moved to be on
top, however it was not transparent so it hid the invoke text, after
trying for a while couldn't get it to be transparent, so I just made the
height 15%,
2023-07-02 19:12:23 +12:00
f399b36ae6 fix: Progress Bar being broken 2023-07-02 18:49:24 +12:00
a6334750cb Update InvokeButton.tsx 2023-07-02 15:07:01 +10:00
45a551125d Update NodeInvokeButton.tsx 2023-07-02 15:06:32 +10:00
72d64513d0 add borderBottomRadius: '5px', 2023-07-02 15:05:32 +10:00
0e50005643 fix(ui): show skeletons only for currently loading images 2023-07-02 11:55:51 +10:00
19c632e793 remove width 2023-07-02 11:55:51 +10:00
85a4d37883 remove long loading state, introduce loading to gallery and model list 2023-07-02 11:55:51 +10:00
b2775d6b4c Merge branch 'lstein/recognize-legacy-sampler-names' into release/invokeai-3-0-alpha 2023-07-01 21:45:39 -04:00
06694d465d add missing k-* legacy sampler names to init file migrate list 2023-07-01 21:45:14 -04:00
3c2ce51f10 Merge branch 'lstein/remove-hardcoded-cuda-device' into release/invokeai-3-0-alpha 2023-07-01 21:15:58 -04:00
0f02915012 remove hardcoded cuda device in model manager init 2023-07-01 21:15:42 -04:00
0016236889 Merge branch 'lstein/fix-imported-model-names' into release/invokeai-3-0-alpha 2023-07-01 21:09:29 -04:00
f4bd5bb986 when migrating models, changes / to _ in model names to avoid breaking model name keys 2023-07-01 21:08:59 -04:00
1cf61feead print GPU device at startup 2023-07-01 20:47:11 -04:00
5de820f2dc fix updater and model installer 2023-07-01 20:13:28 -04:00
f1fb1c9a60 Merge branch 'lstein/fix-update-script' into release/invokeai-3-0-alpha 2023-07-01 20:13:04 -04:00
9724143ab7 rolled back changes to package.json 2023-07-01 20:05:00 -04:00
ecc5b6eec5 change single to double quotes so that pip install works on windows 2023-07-01 19:56:18 -04:00
4ac9be115e rebuild frontend 2023-07-01 14:48:23 -04:00
7d64a5849f merge draft docs 2023-07-01 14:45:00 -04:00
054b5f484a resolve conflicts with main 2023-07-01 14:42:48 -04:00
3458f45a2b Merge branch 'lstein/improve-model-install-stability' into release/invokeai-3-0-alpha 2023-07-01 14:35:35 -04:00
6c80620c25 Merge branch 'main' into release/invokeai-3-0-alpha 2023-07-01 14:34:38 -04:00
f1928d2588 prevent crashes on malformed models 2023-07-01 14:32:58 -04:00
96212bb35f feat(ui): gallery minSize tweak (#3618)
- Set min size for floating gallery panel
- Correct the default pinned width (it cannot be less than the min width
and this was sometimes happening during window resize)
2023-07-01 22:37:08 +12:00
f46c50f69a feat(ui): gallery minSize tweak
- Set min size for floating gallery panel
- Correct the default pinned width (it cannot be less than the min width and this was sometimes happening during window resize)
2023-07-01 20:27:52 +10:00
3aa6a7e7df feat(ui): minimum gallery size
Add `useMinimumPanelSize()` hook to provide minimum resizable panel sizes (in pixels).

The library we are using for the gallery panel uses percentages only. To provide a minimum size in pixels, we need to do some math to calculate the percentage of window size that corresponds to the desired min width in pixels.
2023-07-01 18:29:55 +10:00
d9ac36df1d fix incorrect VAE config file path during conversion of ckpts (#3616)
This fixes a "config file not found" error when loading VAE checkpoints.
2023-07-01 11:26:36 +12:00
c74bb5cdbf Merge branch 'main' into lstein/fix-vae-convert 2023-07-01 11:18:21 +12:00
1347fc2f00 fix incorrect VAE config file path during conversion of ckpts 2023-06-30 19:14:06 -04:00
d0834cfa19 export new ColorModeButton component (#3614)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-06-30 09:07:36 -04:00
2b6c9c93e0 fix(ui): fix canvas crash by rolling back swagger-parser (#3611)
The node polyfills needed to run the `swagger-parser` library (used to
dereference the OpenAPI schema) cause the canvas tab to immediately
crash when the package build is used in another react application.

I'm sure this is fixable but it's not clear what is causing the issue
and troubleshooting is very time consuming.

Selectively rolling back the implementation of `swagger-parser`.
2023-06-30 23:34:06 +12:00
9a123ed662 Merge branch 'main' into fix/ui/fix-canvas-crash 2023-06-30 23:31:42 +12:00
a9bc45b8af feat(ui): tweak light mode colors, buttons pop (#3612)
the light mode button colors were way off, much improved
2023-06-30 23:31:30 +12:00
d6cfbe982f feat(ui): tweak light mode colors, buttons pop 2023-06-30 13:15:58 +10:00
30464f4fe1 fix(ui): fix canvas crash by rolling back swagger-parser
The node polyfills needed to run the `swagger-parser` library (used to dereference the OpenAPI schema) cause the canvas tab to immediately crash when the package build is used in another react application.

I'm sure this is fixable but it's not clear what is causing the issue and troubleshooting is very time consuming.

Selectively rolling back the implementation of `swagger-parser`.
2023-06-30 12:24:28 +10:00
877483093a ui: support dark mode (#3592)
[feat(ui): remove themes, add hand-crafted dark and light
modes](032c7e68d0)

[032c7e6](032c7e68d0)

Themes are very fun but due to the differences in perceived saturation
and lightness across the
the color spectrum, it's impossible to have have multiple themes that
look great without hand-
crafting *every* shade for *every* theme. We've ended up with 4 OK
themes (well, 3, because the
light theme was pretty bad).

I've removed the themes and added color mode support. There is now a
single dark and light mode,
each with their own color palette and the classic grey / purple / yellow
invoke colors that
@blessedcoolant first designed.

I've re-styled almost everything except the model manager and lightbox,
which I keep forgetting
to work on.

One new concept is the Chakra `layerStyle`. This lets us define "layers"
- think body, first layer,
second layer, etc - that can be applied on various components. By
defining layers, we can be more
consistent about the z-axis and its relationship to color and lightness.
2023-06-30 06:13:43 +12:00
295444c730 cleanup: Minor theme related cleanup 2023-06-30 06:09:14 +12:00
fb015332f2 feat: Add tooltips to color mode switcher 2023-06-30 06:05:08 +12:00
6e917dcbb0 chore: More colors to own files + small color tweaks 2023-06-30 06:04:42 +12:00
032c7e68d0 feat(ui): remove themes, add hand-crafted dark and light modes
Themes are very fun but due to the differences in perceived saturation and lightness across the
the color spectrum, it's impossible to have have multiple themes that look great without hand-
crafting *every* shade for *every* theme. We've ended up with 4 OK themes (well, 3, because the
light theme was pretty bad).

I've removed the themes and added color mode support. There is now a single dark and light mode,
each with their own color palette and the classic grey / purple / yellow invoke colors that
@blessedcoolant first designed.

I've re-styled almost everything except the model manager and lightbox, which I keep forgetting
to work on.

One new concept is the Chakra `layerStyle`. This lets us define "layers" - think body, first layer,
second layer, etc - that can be applied on various components. By defining layers, we can be more
consistent about the z-axis and its relationship to color and lightness.
2023-06-30 03:24:36 +10:00
c00aea7a6c tests(nodes): fix nodes tests 2023-06-29 23:11:48 +10:00
28d78a8fb4 Add image board support to invokeai-node-cli (#3594)
This PR corrects a crash during startup of `invokeai-node-cli` due to
failure to initialize the image board service.
2023-06-29 08:20:07 -04:00
2c5b050d82 add image board support to invokeai-node-cli 2023-06-29 22:12:34 +10:00
723d68e496 add image usage for board images and listener to handle actual deletion 2023-06-29 21:14:53 +10:00
ba67e57a7e (wip) delete images along with board 2023-06-29 21:14:53 +10:00
45935caf1d fix query 2023-06-29 21:14:53 +10:00
73f2092ec5 (api) add option to board delete route and logic to services 2023-06-29 21:14:53 +10:00
8297b7e1ae Fix duplicate model key addition when root directory is a relative path (#3607)
This fixes model directory scanning so that it works properly when the
root is a relative path (e.g. ".").
2023-06-29 18:01:22 +12:00
5be1e71d1b Merge branch 'main' into lstein/fix-model-scan-on-rel-root 2023-06-29 17:54:12 +12:00
e65e635944 Fix Typo in migrate_to_3.py (#3610)
this caused the vae in the models.yaml to point to the wrong folder
2023-06-29 17:53:50 +12:00
30a917f70c Fix Typo in migrate_to_3.py 2023-06-29 14:45:55 +10:00
4308d593c3 fix(ui): improve IDE TS performance by not resolving JSON
The TS Language Server slows down immensely with our translation JSON, which is used to provide kinda-type-safe translation keys. I say "kinda", because you don't get autocomplete - you only get red squigglies when the key is incorrect.

To improve the performance, we can opt out of this process entirely, at the cost of no red squigglies for translation keys. Hopefully we can resolve this in the future.

It's not clear why this became an issue only recently (like past couple weeks). We've tried rolling back the app dependencies, VSCode extensions, VSCode itself, and the TS version to before the time when the issue started, but nothing seems to improve the performance.

1. Disable `resolveJsonModule` in `tsconfig.json`
2. Ignore TS in `i18n.ts` when importing the JSON
3. Comment out the custom types in `i18.d.ts` entirely

It's possible that only `3` is needed to fix the issue.

I've tested building the app and running the build - it works fine, and translation works fine.
2023-06-28 23:55:44 -04:00
8f6b3660c5 Set use-credentials on commercial deployment if authToken is set on canvas image calls, comment out the UpdateImageUrls on connect listener 2023-06-29 13:55:03 +10:00
fe5e0b103f update README; chnage default root directory to invokeai-3 2023-06-28 17:47:04 -04:00
218eb8522f tweak launcher option wording 2023-06-28 17:10:07 -04:00
1e97ba3628 merge with fix needed to run installer 2023-06-28 17:04:44 -04:00
ace4f6d586 fix duplicate model key addition when root directory is a relative path 2023-06-28 17:02:03 -04:00
261ca823c0 bump version number 2023-06-28 17:00:38 -04:00
8a90e51408 Apply lora by model patching (#3583)
Rewrite lora to be applied by model patching as it gives us benefits:
1) On model execution calculates result only on model weight, while with
hooks we need to calculate on model and each lora
2) As lora now patched in model weights, there no need to store lora in
vram

Results:
Speed:
| loras count | hook | patch |
| --- | --- | --- |
| 0 | ~4.92 it/s | ~4.92 it/s |
| 1 | ~3.51 it/s | ~4.89 it/s |
| 2 | ~2.76 it/s | ~4.92 it/s |

VRAM:
| loras count | hook | patch |
| --- | --- | --- |
| 0 | ~3.6 gb | ~3.6 gb |
| 1 | ~4.0 gb | ~3.6 gb |
| 2 | ~4.4 gb | ~3.7 gb |

As based on #3547 wait to merge.
2023-06-28 15:48:57 -04:00
ac46b129bf Merge branch 'main' into feat/lora_model_patch 2023-06-28 22:43:58 +03:00
ff2ae683d1 Update 060_INSTALL_PATCHMATCH.md (#3591)
installing the package 'blas' is needed in Archlinux, otherwise
patchmatch fails initializing with a "libblas.so.3 missing" error.
2023-06-28 15:40:45 -04:00
2714138af2 Merge branch 'main' into patch-1 2023-06-28 15:40:22 -04:00
2d85f9a123 Configuration and model installer for new model layout (#3547)
# Restore invokeai-configure and invokeai-model-install

This PR updates invokeai-configure and invokeai-model-install to work
with the new model manager file layout. It addresses a naming issue for
`ModelType.Main` (was `ModelType.Pipeline`) requested by
@blessedcoolant, and adds back the feature that allows users to dump
models into an `autoimport` directory for discovery at startup time.
2023-06-28 15:31:46 -04:00
79fc708580 warn but do not crash when model scan finds random cruft in models directory 2023-06-28 15:26:42 -04:00
72209d0cc3 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-28 14:49:37 -04:00
fffeb6f7f5 nodes: default to CPU noise (#3598)
this provides reproducible results across platforms.
we can expose this in the app.
2023-06-28 18:24:47 +12:00
75614bbba3 Merge branch 'main' into feat/nodes/cpu-noise 2023-06-28 18:22:08 +12:00
201b8430e4 Feat/controlnet extras (#3596)
Trying to get a few ControlNet extras in before 3.0 release:

- SegmentAnything ControlNet preprocessor node
- LeResDepth ControlNet preprocessor node (but commented out till
controlnet_aux v0.0.6 is released & required by InvokeAI)
- TileResampler ControlNet preprocessor node (should be equivalent to
Mikubill/sd-webui-controlnet extension tile_resampler)
- fix for Midas ControlNet preprocessor error with images that have
alpha channel

Example usage of SegmentAnything preprocessor node:
![Screenshot from 2023-06-26
16-53-44](https://github.com/invoke-ai/InvokeAI/assets/303100/c6278f9a-5f6b-44bd-98b1-fcaf77251a76)
2023-06-28 17:56:24 +12:00
32883adf6e Merge branch 'main' into feat/controlnet_extras 2023-06-28 17:36:21 +12:00
00c78b1cbc feat(ui): use max prompts for combinatorial, iterations for non-combi… (#3600)
…natorial
2023-06-28 17:35:45 +12:00
1ea3160594 Merge branch 'main' into feat/ui/dynamic-prompts-ux 2023-06-28 17:34:36 +12:00
fc322aa9f7 Update controlnet-aux to 0.0.6 and add LeReS 2023-06-27 23:45:47 -04:00
e12dbef18f fix(nodes): use context for logger in param_easing (#3529) 2023-06-27 23:36:01 -04:00
73f63853ba fix(nodes): use context for logger in param_easing 2023-06-27 23:30:10 -04:00
e8ed0fad6c autoimport from embedding/controlnet/lora folders designated in startup file 2023-06-27 12:30:53 -04:00
1f3e5582f4 feat(ui): add type extraction helpers 2023-06-28 01:17:34 +10:00
642db657c2 feat(ui): use max prompts for combinatorial, iterations for non-combinatorial 2023-06-27 20:29:41 +10:00
246298d1d6 chore(ui): regen types 2023-06-27 13:57:41 +10:00
2e14528e4c feat(nodes): default to CPU noise 2023-06-27 13:57:31 +10:00
f15d28d141 improved wording of v2 selection prompt 2023-06-26 20:30:08 -04:00
862bfa2c36 Merge branch 'main' of github.com:invoke-ai/InvokeAI into feat/controlnet_extras 2023-06-26 16:39:31 -07:00
044fe6bb20 remove dangling debug statement 2023-06-26 17:48:06 -04:00
8c74f49a18 Merge branch 'lstein/installer-for-new-model-layout' of github.com:invoke-ai/InvokeAI into lstein/installer-for-new-model-layout 2023-06-26 16:31:00 -04:00
823e098b7c prompt user for prediction type when autoimporting a v2 model without .yaml file
don't ask user for prediction type of a config.yaml provided
2023-06-26 16:30:34 -04:00
b7e9d09537 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-26 16:22:23 -04:00
3c30368c62 Configure and model install TUI tweaks (#3519)
The installer TUI requires a minimum window width and height to provide
a satisfactory user experience. If, after trying and exhausting all
means of enlarging the window (on Linux, Mac and Windows) the window is
still too small, this PR generates a message telling the user to enlarge
the window and pausing until they do so. If the user fails to enlarge
the window the program will proceed, and either issue an error message
that it can't continue (on Windows), or show a clipped display that the
user can remedy by enlarging the window.
2023-06-26 16:08:56 -04:00
ea15d037f9 Merge branch 'main' into lstein/tweak-installer-ui 2023-06-26 15:05:16 -04:00
f67dec7f0c Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-26 15:03:22 -04:00
10d2d85c83 Started to add ControlNet resize_crop and resize_fill options, but commented out, not ready to deploy yet. 2023-06-26 12:03:05 -07:00
4208766e19 Merge branch 'main' into patch-1 2023-06-26 15:00:50 -04:00
bf1f2eb128 Bypass failing tests (#3593)
"Fixes" the test suite generally so it doesn't fail CI, but some tests
needed to be skipped/xfailed due to recent refactor.

- ignore three test suites that broke following the model manager
refactor
- move `InvocationServices` fixture to `conftest.py`
- add `boards` items to the `InvocationServices`  fixture

This PR makes the unit tests work, but end-to-end tests are temporarily
commented out due to `invokeai-configure` being broken in `main` -
pending #3547

Looks like a lot of the tests need to be rewritten as they reference
`TextToImageInvocation` / `ImageToImageInvocation`
2023-06-26 14:41:56 -04:00
16829682c8 Merge branch 'main' into ebr/make-tests-pass 2023-06-26 14:27:31 -04:00
011adfc958 merge with main 2023-06-26 13:53:59 -04:00
befd95eb19 rename root_dir to root_path attributes to emphasize return of a Path 2023-06-26 13:52:25 -04:00
a2ddb3823b fix add_model() logic 2023-06-26 13:33:38 -04:00
cc400c9fa5 (ci) temporarily comment out end-to-end tests 2023-06-26 13:08:43 -04:00
4eb7a5fc60 (ci) clean up pip tests 2023-06-26 13:08:43 -04:00
587203d589 (tests) make fixture reusable; support boards
fixes the test suite generally, but some tests needed to be
skipped/xfailed due to recent refactor

- ignore three test suites that broke following the model manager
  refactor
- move InvocationServices fixture to conftest.py
- add `boards` InvocationServices to the fixture
2023-06-26 13:08:34 -04:00
e3f136cdda Update 060_INSTALL_PATCHMATCH.md
installing the packaged 'blas' is needed in Archlinux, otherwise patchmatch fails initializing with a "libblas.so.3 missing" error.
2023-06-26 14:23:10 +02:00
af566adf56 For MediapipeFace ControlNet preprocessor, if input image is RGBA format then convert to RGB (otherwise MediapipeFace image processing throws an error) 2023-06-26 04:29:43 -07:00
873c18bc4b Added TileResampler ControlNet preprocessor node.
Also fixes to SegmentAnything ControlNet preprocessor node.
2023-06-26 04:27:26 -07:00
d905d0e42a feat(ui): only show canvas image fallback on loading error (#3589) 2023-06-26 21:40:10 +12:00
6ccf62a863 feat(ui): only show canvas image fallback on loading error 2023-06-26 19:20:05 +10:00
6390af229d feat(ui): add dynamic prompts to t2i tab
- add param accordion for dynamic prompts
- update graphs
2023-06-26 19:15:54 +10:00
47e651225d query for 'main' model type when populating UI lists
to support renaming of 'pipeline' models to 'main'
2023-06-26 01:39:46 -04:00
9cfac4175f feat(ui): improved node parsing (#3584)
- use `swagger-parser` to dereference openapi schema
- tidy vite plugins
- use mantine select for node add menu
2023-06-26 17:38:23 +12:00
3a19be1606 fix: Add missing IAIMantineSelect disabled styles 2023-06-26 17:37:47 +12:00
b51ab056f2 Merge branch 'main' into feat/ui/update-node-parsing 2023-06-26 17:32:44 +12:00
e206fad22a fix(ui): fix controlnet image size (#3585) 2023-06-26 17:32:07 +12:00
7b97639961 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-26 01:24:30 -04:00
60780e990d fix(ui): fix controlnet image size 2023-06-26 12:03:11 +10:00
8d43cf92f6 feat(ui): update action santizer for schema actions 2023-06-26 12:00:38 +10:00
862bf7546c feat(ui): improved node parsing
- use `swagger-parser` to dereference openapi schema
- tidy vite plugins
- use mantine select for node add menu
2023-06-26 11:53:54 +10:00
91c3a58fb6 Fix lycoris layers init 2023-06-26 04:33:37 +03:00
5cebf67ee4 Apply lora by patching lora instead of hooks 2023-06-26 03:57:33 +03:00
1ba94a92b3 Fixes 2023-06-26 03:54:42 +03:00
23c22ac933 Refactor logic/small fixes 2023-06-26 03:07:54 +03:00
160b5d7992 add support for an autoimport models directory scanned at startup time 2023-06-25 18:50:15 -04:00
10e8389fa4 Commenting out LeReS ControlNet image preprocessor until release of controlnet_aux v0.0.6 (supported on controlnet_aux current main, but not on latest release v0.0.5) 2023-06-25 14:25:14 -07:00
45aa338a98 Changed pyproject.toml to require controlnet_aux >= 0.0.5 (to enable use of SAM ControlNet preprocessor) 2023-06-25 14:22:34 -07:00
414a04774c Added LeReS ControlNet image preprocessor. 2023-06-25 14:19:55 -07:00
c91d1eacba Merge branch 'lstein/installer-for-new-model-layout' of github.com:invoke-ai/InvokeAI into lstein/installer-for-new-model-layout 2023-06-25 16:04:48 -04:00
60b37b7ff4 fix model manager documentation 2023-06-25 16:04:43 -04:00
b872e7a5e0 Simplifying ControlNet SAM preprocessor segmentation color mapping. 2023-06-25 12:54:48 -07:00
de4064bdac Fixed problem with with non-reproducible results from ControlNet SegmentAnything preprocessor. Cause was controlnet_aux randomization of segmentation coloring, which seems to lead to some randomization of resulting images using ControlNet seg model. Switched to using deterministic ADE20K color palette instead, which solved the problem. 2023-06-25 12:38:17 -07:00
10c3753d7f Added SAM preprocessor 2023-06-25 11:16:39 -07:00
a3c22b5fe6 Remove upcast_attention and prediction_type from stable diffusion model logic, fix ckpt conversion according to this 2023-06-25 21:06:22 +03:00
922468b836 Add control_mode parameter to ControlNet (#3535)
This PR adds the "control_mode" option to ControlNet implementation. 
Possible control_mode options are: 

- balanced -- this is the default, same as previous implementation
without control_mode
- more_prompt -- pays more attention to the prompt
- more _control -- pays more attention to the ControlNet (in earlier
implementations this was called "guess_mode")
- unbalanced -- pays even more attention to the ControlNet 

balanced, more_prompt, and more_control should be nearly identical to
the equivalent options in the [auto1111 sd-webui-controlnet
extension](https://github.com/Mikubill/sd-webui-controlnet#more-control-modes-previously-called-guess-mode)

The changes to enable balanced, more_prompt, and more_control are
managed deeper in the code by two booleans, "soft_injection" and
"cfg_injection". The three control mode options in sd-webui-controlnet
map to these booleans like:
 
!soft_injection && !cfg_injection ⇒  BALANCED            
 soft_injection &&  cfg_injection ⇒  MORE_CONTROL 
 soft_injection && !cfg_injection ⇒  MORE_PROMPT   
 
The "unbalanced" option simply exposes the fourth possible combination
of these two booleans:
!soft_injection &&  cfg_injection ⇒ UNBALANCED

With "unbalanced" mode it is very easy to overdrive the controlnet
inputs. It's recommended to use a cfg_scale between 2 and 4 to mitigate
this, along with lowering controlnet weight and possibly lowering "end
step percent". With those caveats, "unbalanced" can yield interesting
results.

Example of all four modes using Canny edge detection ControlNet with
prompt "old man", identical params except for control_mode:

![Screenshot from 2023-06-11
23-53-00](https://github.com/invoke-ai/InvokeAI/assets/303100/c9e31e7f-50de-4d85-94f2-b5a4af3d067b)
Top middle:       BALANCED
Top right:          MORE_CONTROL
Bottom middle: MORE_PROMPT
Bottom right :    UNBALANCED

I kind of chose this seed because it shows pretty rough results with
BALANCED (the default), but in my opinion better results with both
MORE_CONTROL and MORE_PROMPT. And you can definitely see how MORE_PROMPT
pays more attention to the prompt, and MORE_CONTROL pays more attention
to the control image. And shows that UNBALANCED with default cfg_scale
etc is unusable.

But here are four examples from same series (same seed etc), all have
control_mode = UNBALANCED but now cfg_scale is set to 3.
![Screenshot from 2023-06-11
23-48-44](https://github.com/invoke-ai/InvokeAI/assets/303100/5a495306-2164-40aa-9cc8-ce737d7671e7)
And param differences are:
Top middle: prompt="old man", control_weight=0.3, end_step_percent=0.5
Top right: prompt="old man", control_weight=0.4, end_step_percent=1.0
Bottom middle: prompt=None, control_weight=0.3, end_step_percent=0.5
Bottom right: prompt=None, control_weight=0.4, end_step_percent=1.0

So with the right settings UNBALANCED seems useful.
2023-06-25 16:09:26 +12:00
57e719702d fix(ui): add missing ControlNetInvocation type; tidy schema-derived types 2023-06-25 14:04:53 +10:00
11378a9236 chore(ui): regen api schema 2023-06-25 14:04:16 +10:00
132829c88f fix(ui): fix path of generated schema types 2023-06-25 14:04:00 +10:00
4d4b5b56dc Merge branch 'main' into feat/controlnet-control-modes 2023-06-25 15:48:07 +12:00
a9334128c9 chore(ui): bump all packages (#3579)
Everything seems to be working.

- Due to a change to `reactflow`, I regenerated `yarn.lock`
- New chakra CLI fixes issue I had made a patch for; removed the patch
- Change to fontsource changed how we import that font
- Change to fontawesome means we lost the txt2img tab icon, just chose a
similar one
2023-06-25 15:45:39 +12:00
6b276587d8 chore(ui): bump all packages
Everything seems to be working.

- Due to a change to `reactflow`, I regenerated `yarn.lock`
- New chakra CLI fixes issue I had made a patch for; removed the patch
- Change to fontsource changed how we import that font
- Change to fontawesome means we lost the txt2img tab icon, just chose a similar one
2023-06-25 13:44:10 +10:00
c5faffc18b Merge branch 'main' of github.com:invoke-ai/InvokeAI into feat/controlnet-control-modes
Only "real" conflicts were in:
     invokeai/frontend/web/src/features/controlNet/components/ControlNet.tsx
     invokeai/frontend/web/src/features/controlNet/store/controlNetSlice.ts
2023-06-24 17:05:57 -07:00
c3c4a71173 implemented Stalker's suggested improvements 2023-06-24 12:37:26 -04:00
d5f742620f Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-24 11:58:06 -04:00
ba1371a88f rename ModelType.Pipeline to ModelType.Main 2023-06-24 11:45:49 -04:00
3ae996ebcb fix(ui): fix metadata viewer too stronk 2023-06-24 18:15:49 +10:00
3d16605762 fix(ui): fix controlnet upload button 2023-06-24 18:15:49 +10:00
b6dec2b826 fix(ui): fix controlnet dnd overlay not showing on dragover 2023-06-24 18:15:49 +10:00
013e2aa2a1 fix(ui): fix control image sizes
they were all weird
2023-06-24 18:15:49 +10:00
8f9fa15fc8 fix(ui): fix image fetching query string 2023-06-24 18:15:49 +10:00
dde497404b fix(ui): fix init image display buttons
- Reset and Upload buttons along top of initial image
- Also had to mess around with the control net & DnD image stuff after changing the styles
- Abstract image upload logic into hook - does not handle native HTML drag and drop upload - only the button click upload
2023-06-24 18:15:49 +10:00
0472b33164 fix(ui): fix duplicate is_intermediate query param when fetching images 2023-06-24 17:57:39 +10:00
a6c615a98c fix(ui): fix canvas staging area
Missed some of the `imageUpdated` stuff
2023-06-24 17:57:39 +10:00
bab3a9504e fix(nodes): fix LatentsToImage not using is_intermediate when creating images
Appears this was removed during a merge conflict resolution.
2023-06-24 17:57:39 +10:00
13f25edb1e fix(ui): fix incorrect boards endpoint matchers being used
Should fix some stale-data issues with the auto-adding of images to selected boards, and deleting images from boards.
2023-06-24 17:57:39 +10:00
8bacee115a fix(ui): fix thunks not using configured api client 2023-06-24 17:57:39 +10:00
3619c86f07 fix(ui): fix deleting image does not refresh board
I had some some wonkiness in the thunks
2023-06-24 17:57:39 +10:00
8e724b5abe fix(ui): fix image upload
`openapi-fetch` does not handle non-JSON `body`s, always stringifying them, and sets the `content-type` to `application/json`.

The patch here does two things:
- Do not stringify `body` if it is one of the types that should not be stringified (https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch#body)
- Do not add `content-type: application/json` unless it really is stringified JSON.

Upstream issue: https://github.com/drwpow/openapi-typescript/issues/1123

I'm not a bit lost on fixing the types and adding tests, so not raising a PR upstream.
2023-06-24 17:57:39 +10:00
e076231398 fix(ui): fix node editor image fields
I had broken this when converting to rtk-query
2023-06-24 17:57:39 +10:00
e386b5dc53 feat(ui): api layer refactor
*migrate from `openapi-typescript-codegen` to `openapi-typescript` and `openapi-fetch`*

`openapi-typescript-codegen` is not very actively maintained - it's been over a year since the last update.
`openapi-typescript` and `openapi-fetch` are part of the actively maintained repo. key differences:

- provides a `fetch` client instead of `axios`, which means we need to be a bit more verbose with typing thunks
- fetch client is created at runtime and has a very nice typescript DX
- generates a single file with all types in it, from which we then extract individual types. i don't like how verbose this is, but i do like how it is more explicit.
- removed npm api generation scripts - now we have a single `typegen` script

overall i have more confidence in this new library.

*use nanostores for api base and token*

very simple reactive store for api base url and token. this was suggested in the `openapi-fetch` docs and i quite like the strategy.

*organise rtk-query api*

split out each endpoint (models, images, boards, boardImages) into their own api extensions. tidy!
2023-06-24 17:57:39 +10:00
8137a99981 simplify 2023-06-24 17:57:39 +10:00
878847defd use BASE and TOKEN from OpenAPI if they are set 2023-06-24 17:57:39 +10:00
539d1f3bde remove redundant prediction_type and attention_upscaling flags 2023-06-23 16:54:52 -04:00
466ec3ab5e add router API support for model manager heuristic_import()` 2023-06-23 16:35:39 -04:00
54b74427f4 adjust for change in list_models() API 2023-06-23 14:13:37 -04:00
58d1857ab6 merge with main 2023-06-23 13:57:25 -04:00
3043af4620 implement vae passthru 2023-06-23 13:56:30 -04:00
9de54b2266 Fix vae conversion (#3555)
Unsure at which moment it broke, but now I can't convert vae(and model
as vae it's part) without this fix.
Need further research - maybe it's breaking change in `transformers`?
2023-06-23 15:55:26 +01:00
afd19ab61a merge 2023-06-23 10:53:48 -04:00
56bd873d7a make relative model paths work in model manager 2023-06-23 10:52:59 -04:00
5aaaaf64a1 Fix ckpt conversion 2023-06-23 17:29:54 +03:00
9140e2c0f2 Merge branch 'main' into fix/vae_conversion 2023-06-23 15:03:59 +03:00
65d0e80e96 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-23 02:18:34 +01:00
83e2b7578b fix(linux): installer script prints maximum python version usable (#3546)
Changes:
* Linux `install.sh` now prints the maximum python version to use in
case no installed python version matches

Commits:
fix(linux): installer script prints maximum python version usable
2023-06-23 02:16:01 +01:00
df1907e849 Merge branch 'main' into install-script-python-version-error-prompt-fix 2023-06-23 02:15:36 +01:00
a910403003 correctly migrate models that have relative paths 2023-06-22 21:10:31 -04:00
c7b7e087e4 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-23 01:45:05 +01:00
d65c833b90 migration now integrated into invokeai-configure 2023-06-22 16:44:55 -04:00
33b04f6386 migration script working well 2023-06-22 15:47:12 -04:00
22c337b1aa Update UI To Use New Model Manager (#3548)
PR for the Model Manager UI work related to 3.0

[DONE]

- Update ModelType Config names to be specific so that the front end can
parse them correctly.
- Rebuild frontend schema to reflect these changes.
- Update Linear UI Text To Image and Image to Image to work with the new
model loader.
- Updated the ModelInput component in the Node Editor to work with the
new changes.

[TODO REMEMBER]

- Add proper types for ModelLoaderType in `ModelSelect.tsx`

[TODO] 

- Everything else.
2023-06-22 22:06:26 +12:00
339e7ce213 feat(ui): initial implementation of model loading
- Update model listing code to use `rtk-query`
- Update all graph generation to use new `pipeline_model_loader` node
2023-06-22 17:48:57 +10:00
2a178f5a25 chore(ui): regen api client 2023-06-22 17:48:13 +10:00
1bc170727b tidy(nodes): rename sd_model_loader to pipeline_model_loader
this is more accurate bc it can do eg kandinsky also
2023-06-22 17:47:58 +10:00
3722cdf5d6 chore(ui): regen api client 2023-06-22 17:36:20 +10:00
42a59aa147 feat(nodes): add sd_model_loader node
Loads any pipeline model.

Also introduced is `PipelineModelField`, which includes a model name and base model.
2023-06-22 17:36:05 +10:00
b937b7da01 feat(models): update model manager service & route to return list of models 2023-06-22 17:34:12 +10:00
21245a0fb2 Set model type to const value in openapi schema, add model format enums to model schema(as they not not referenced in case of Literal definition) 2023-06-22 16:51:53 +10:00
da566b59e8 Update model format field to use enums 2023-06-22 16:51:53 +10:00
e4dc9c5a04 Rename format to model_format(still named format when work with config) 2023-06-22 16:51:53 +10:00
aceadacad4 Remove default model logic 2023-06-22 16:51:53 +10:00
d3dec59cc3 tweal: UI colors 2023-06-22 16:51:53 +10:00
6c98700740 fix: Adjust the Schedular select width
So the long names do not get cut off.
2023-06-22 16:51:53 +10:00
c4c3c96062 Revert "feat: Port Schedulers to Mantine"
This reverts commit e0c105f413.
2023-06-22 16:51:35 +10:00
6256be480c fix: Remove type from Model type name 2023-06-22 16:48:35 +10:00
7033071934 fix: Unserialization key issue 2023-06-22 16:48:35 +10:00
e48528bbef revert: getModels to receivedModels 2023-06-22 16:48:35 +10:00
6bdf68dd4c feat: Port Schedulers to Mantine 2023-06-22 16:48:35 +10:00
0c3616229e cleanup: Updated model slice names to be more descriptive
Basically updated all slices to be more descriptive in their names. Did so in order to make sure theres good naming scheme available for secondary models.
2023-06-22 16:43:14 +10:00
604cc1adcd wip: Move Model Selector to own file 2023-06-22 16:43:14 +10:00
4847212d5b feat: Enable 2.x Model Generation in Linear UI 2023-06-22 16:43:14 +10:00
727293d722 fix: 2.1 models breaking generation
Co-Authored-By: StAlKeR7779 <7768370+StAlKeR7779@users.noreply.github.com>
2023-06-22 16:42:59 +10:00
d2f3500e1b chore: Rebuild API - base_model and type added 2023-06-22 16:42:59 +10:00
ef83a2fffe Add name, base_mode, type fields to model info 2023-06-22 16:42:51 +10:00
f8d7477c7a wip: Add 2.x Models to the Model List 2023-06-22 16:42:51 +10:00
e374211313 chore: Rebuild API with new Model API names 2023-06-22 16:41:31 +10:00
01d17601b8 Generate config names for openapi 2023-06-22 16:41:19 +10:00
bf0d5f4cfc fix: Update missing name types to new names 2023-06-22 16:41:02 +10:00
663f4935f5 chore: Rebuild API 2023-06-22 16:41:02 +10:00
9838dda1b7 chore: Update model config type names 2023-06-22 16:40:40 +10:00
2d889e133d chore(ui): regen api client 2023-06-22 16:25:49 +10:00
6779f1a5ad fix(db): update models for boards w/ nullable deleted_at 2023-06-22 16:25:49 +10:00
19a6e5dad8 chore(ui): regen api client 2023-06-22 16:25:49 +10:00
285195bf72 feat(api): add get_board route 2023-06-22 16:25:49 +10:00
10008859a4 tidy(ui): remove all refs to boards thunks 2023-06-22 16:25:49 +10:00
3c04340f3f tidy(ui): tidy up update image board modal 2023-06-22 16:25:49 +10:00
79f0c4d3c4 feat(ui): add remove from board to image context menu 2023-06-22 16:25:49 +10:00
37d4e05838 fix(ui): fix board's image list not updating when image removed from board 2023-06-22 16:25:49 +10:00
a00ad6ac03 feat(ui): dropping image on All Images board removes it from board 2023-06-22 16:25:49 +10:00
2ffead000c tidy(ui): remove console.log() 2023-06-22 16:25:49 +10:00
922319cb84 fix(ui): fix first added board doesn't show until refresh
Had incorrect `invalidatesTags` array for the mutation.
2023-06-22 16:25:49 +10:00
6ee0e197bb feat(db): add deleted_at to board_images 2023-06-22 16:25:49 +10:00
d3e6f0130c fix(ui): fix issue with gallery not letting you load more images
To determine whether the Load More button should work, we need to keep track of how many images are left to load for a given board or category.

The Assets tab doesn't work, though. Need to figure out a better way to handle this.
2023-06-22 16:25:49 +10:00
421c23d3ea fix(ui): fix gallery image fetching for board categories 2023-06-22 16:25:49 +10:00
4545f3209f fix(ui): fix bug with image deletion not removing image from gallery 2023-06-22 16:25:49 +10:00
e2ee8102c2 tidy(db): tidy image_record_storage.py 2023-06-22 16:25:49 +10:00
083a0fc4cf tidy(ui): remove references to boardsAdapter 2023-06-22 16:25:49 +10:00
26b75b85f7 fix(ui): if deleting selected board, deselect it 2023-06-22 16:25:49 +10:00
f560a462a0 feat(ui): rudimentary categorized gallery image fetching 2023-06-22 16:25:49 +10:00
d501986610 chore(ui): regen api client 2023-06-22 16:25:49 +10:00
67a75f6895 feat(api, db): support board_id filter on images service get_many() 2023-06-22 16:25:49 +10:00
3c032c0767 feat(ui): only auto-add image to board if is not intermediate 2023-06-22 16:25:49 +10:00
abd6561140 feat(ui): just fetch all boards instead of paginating them 2023-06-22 16:25:49 +10:00
bd533426fc feat(ui): first pass at boards styling 2023-06-22 16:25:49 +10:00
2489d5459f chore(ui): regen api client 2023-06-22 16:25:49 +10:00
ac477cf5d6 fix(ui): improve image deletion handling 2023-06-22 16:25:49 +10:00
be3bdae847 fix: resolve rebase conflicts 2023-06-22 16:25:49 +10:00
3e0ee838cf fix(ui): add initial image dimensions to state
We need to access the initial image dimensions during the creation of the `ImageToImage` graph to determine if we need to resize the image.

Because the `initialImage` is now just an image name, we need to either store (easy) or dynamically retrieve its dimensions during graph creation (a bit less easy).

Took the easiest path. May need to revise this in the future.
2023-06-22 16:25:49 +10:00
8d3bec57d5 feat(ui): store only image name in parameters
Images that are used as parameters (e.g. init image, canvas images) are stored as full `ImageDTO` objects in state, separate from and duplicating any object representing those same objects in the `imagesSlice`.

We cannot store only image names as parameters, then pull the full `ImageDTO` from `imagesSlice`, because if an image is not on a loaded page, it doesn't exist in `imagesSlice`. For example, if you scroll down a few pages in the gallery and send that image to canvas, on reloading the app, the canvas will be unable to load that image.

We solved this temporarily by storing the full `ImageDTO` object wherever it was needed, but this is both inefficient and allows for stale `ImageDTO`s across the app.

One other possible solution was to just fetch the `ImageDTO` for all images at startup, and insert them into the `imagesSlice`, but then we run into an issue where we are displaying images in the gallery totally out of context.

For example, if an image from several pages into the gallery was sent to canvas, and the user refreshes, we'd display the first 20 images in gallery. Then to populate the canvas, we'd fetch that image we sent to canvas and add it to `imagesSlice`. Now we'd have 21 images in the gallery: 1 to 20 and whichever image we sent to canvas. Weird.

Using `rtk-query` solves this by allowing us to very easily fetch individual images in the components that need them, and not directly interact with `imagesSlice`.

This commit changes all references to images-as-parameters to store only the name of the image, and not the full `ImageDTO` object. Then, we use an `rtk-query` generated `useGetImageDTOQuery()` hook in each of those components to fetch the image.

We can use cache invalidation when we mutate any image to trigger automated re-running of the query and all the images are automatically kept up to date.

This also obviates the need for the convoluted URL fetching scheme for images that are used as parameters. The `imagesSlice` still need this handling unfortunately.
2023-06-22 16:25:49 +10:00
cfda128e06 feat(ui): wip boards via rtk-query 2023-06-22 16:25:49 +10:00
661a94b3de feat(db): add get_all() method for boards
This is needed to show the full list of boards in the update boards modal.
2023-06-22 16:25:49 +10:00
9ef64016c7 feat(db): sort board by created_at 2023-06-22 16:25:49 +10:00
21f0d0b0c1 fix(db): fix deserialize_board_record()
It was not adding `cover_image_name`
2023-06-22 16:25:49 +10:00
8bce234542 feat(db): update image-board relationships on add
Functionally, `add_image_to_board()` now moves images between boards.
2023-06-22 16:25:49 +10:00
daadf6ebfd feat(ui): add board image count badge 2023-06-22 16:25:49 +10:00
fe10a9f747 render cover image based on URL in image entities 2023-06-22 16:25:49 +10:00
7a2d3f628a add boardToAddTo state so that result can be added to board when generation is complete 2023-06-22 16:25:49 +10:00
4defb92105 handle long board names 2023-06-22 16:25:49 +10:00
f9f3c91a83 drag and drop to move image to board, a bit of board list UI 2023-06-22 16:25:49 +10:00
95b9c8e505 return cover_image_name since urls change, override one from db for now 2023-06-22 16:25:49 +10:00
49a02c157b feat(ui): fix UpdateImageBoardModal select 2023-06-22 16:25:49 +10:00
d604d986f9 feat(db, api): update get_board_for_image & service dependencies
- previously was `get_boards_for_image`, returning a list of `BoardDTO`, now returns a single `board_id`
2023-06-22 16:25:49 +10:00
70cc037a9c fix(ui): do not persist boards 2023-06-22 16:25:49 +10:00
e4893e4031 fix(db): return board records from CRUD methods 2023-06-22 16:25:49 +10:00
4a0a718b96 foiled by a comma 2023-06-22 16:25:49 +10:00
ca8f1a7828 (api) use most recently generated image for cover photo 2023-06-22 16:25:49 +10:00
2e41af2109 [half-baked] adding image to board modal 2023-06-22 16:25:49 +10:00
bd29e5e655 UI tweaks 2023-06-22 16:25:49 +10:00
dcfee2e1e4 add searching to boards list 2023-06-22 16:25:49 +10:00
8aac683319 can delete and rename boards 2023-06-22 16:25:49 +10:00
d306a84447 feat(ui): rough out boards UI 2023-06-22 16:25:49 +10:00
5865ecd530 feat(db): add FK for boards.cover_image_name 2023-06-22 16:25:49 +10:00
e1f9685b02 feat(db): add index for boards 2023-06-22 16:25:49 +10:00
498bf0d0ba feat(db): add indices for board_images 2023-06-22 16:25:49 +10:00
163ef2c941 feat(ui): remove refs to BoardRecord in UI
UI should only work w/ BoardDTO
2023-06-22 16:25:49 +10:00
48193b7fa7 chore(ui): regen api client 2023-06-22 16:25:49 +10:00
dd1b3c9f35 fix(api): update API models to use BoardDTOs 2023-06-22 16:25:49 +10:00
4b32322a58 feat(nodes): make board <> images a one-to-many relationship
we can extend this to many-to-many in the future if desired.
2023-06-22 16:25:49 +10:00
e06c43adc8 lint fix 2023-06-22 16:25:49 +10:00
c009f46b00 regenerate api schema 2023-06-22 16:25:49 +10:00
748016bdab routes working 2023-06-22 16:25:49 +10:00
72e9ced889 feat(nodes): add boards and board_images services 2023-06-22 16:25:49 +10:00
3833304f57 [WIP] board list endpoint w cover photos 2023-06-22 16:25:49 +10:00
4bfaae6617 fix type 2023-06-22 16:25:49 +10:00
499a174832 some more 2023-06-22 16:25:49 +10:00
6ca5ad9075 filter images by board_id 2023-06-22 16:25:49 +10:00
a121e6b3a0 add board_id association to image 2023-06-22 16:25:49 +10:00
207602f425 remove unused 2023-06-22 16:25:49 +10:00
a1671519d5 board CRUD 2023-06-22 16:25:49 +10:00
1c31efa57c punctuation fix in user message 2023-06-21 09:37:24 -04:00
b727442f84 better window size behavior under alacritty & terminator 2023-06-21 09:32:58 -04:00
90df316835 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-20 22:50:41 +01:00
257e972599 fix failing pytest for config module 2023-06-20 13:26:01 -04:00
8639794c12 Merge branch 'main' into install-script-python-version-error-prompt-fix 2023-06-20 18:24:54 +01:00
2fc19d9afa suppress description in "other models" tab for space reasons 2023-06-20 11:45:37 -04:00
ac6403f877 address some of ebr issues 2023-06-20 11:08:27 -04:00
678bb4fe10 Merge branch 'lstein/installer-for-new-model-layout' of github.com:invoke-ai/InvokeAI into lstein/installer-for-new-model-layout 2023-06-20 09:42:21 -04:00
294b1e83e6 test and fix edge cases 2023-06-20 09:42:10 -04:00
d339c8627f feat: Upgrade to Diffusers 0.17.1 (#3545)
Just syncing up with diffusers upstream.
2023-06-19 23:25:22 +12:00
a53e0dce6c Merge branch 'upgrade-diffusers' of https://github.com/blessedcoolant/InvokeAI into upgrade-diffusers 2023-06-19 23:21:06 +12:00
0ae6325353 chore: Add torchsde as a dependency for the SDE schedulers 2023-06-19 23:20:53 +12:00
12299120ab Merge branch 'main' into upgrade-diffusers 2023-06-19 23:16:39 +12:00
1a7fe172ca Fix inpaint node to new manager (#3550)
Inpaint node still used by canvas, so fixed it to new model manager api.
Other old generation code deleted.
2023-06-19 23:01:05 +12:00
4f5693040e Merge branch 'main' into fix/inpaint_new_manager 2023-06-19 22:55:00 +12:00
bb2df88c06 Add dpmpp_sde and dpmpp_2m_sde schedulers(with karras) (#3554)
Added sde schedulers.
Problem - they add random on each step, to get consistent image we need
to provide seed or generator.
I done it, but if you think that it better do in other way - feel free
to change.

Also made ancestral schedulers reproducible, this done same way as for
sde scheduler.
2023-06-19 22:52:33 +12:00
41442eb7f6 feat(ui): convert canvas txt2img & img2img to latents
- Add graph builders for canvas txt2img & img2img - they are mostly copy and paste from the linear graph builders but different in a few ways that are very tricky to work around. Just made totally new functions for them.
- Canvas txt2img and img2img support ControlNet (not inpaint/outpaint). There's no way to determine in real-time which mode the canvas is in just yet, so we cannot disable the ControlNet UI when the mode will be inpaint/outpaint - it will always display. It's possible to determine this in near-real-time, will add this at some point.
- Canvas inpaint/outpaint migrated to use model loader, though inpaint/outpaint are still using the non-latents nodes.
2023-06-19 15:57:28 +10:00
223a679ac1 chore(ui): regen api client 2023-06-19 15:57:28 +10:00
3c60616b4d feat(ui): simplify linear graph creation logic
Instead of manually creating every node and edge, we can simply copy/paste the base graph from node editor, then sub in parameters.

This is a much more intelligible process. We still need to handle seed, img2img fit and controlnet separately.
2023-06-19 15:57:28 +10:00
a01998d095 Remove more old logic 2023-06-19 15:57:28 +10:00
7b35162b9e Remove old logic except for inpaint, add support for lora and ti to inpaint node 2023-06-19 15:57:28 +10:00
c26e1a9271 Rewrite inpaint node to new model manager, remove TextToImage and ImageToImage nodes 2023-06-19 15:57:28 +10:00
9b32407744 Provide generator to all schedulers step function to make both ancestral and sde schedulers reproducible 2023-06-19 00:34:01 +03:00
82091b9a66 Fix vae conversion 2023-06-18 23:46:07 +03:00
f3d9797ebe Add dpmpp_sde and dpmpp_2m_sde schedulers(with karras) 2023-06-18 23:38:15 +03:00
f312e1448f Update index.md
fixed typo
2023-06-18 10:39:02 -04:00
a11946f0ad feat: Port Schedulers to Mantine (#3552)
- Ports Schedulers to use IAIMantineSelect.
- Adds ability to favorite schedulers in Settings. Favorited schedulers
show up at the top of the list.
- Adds IAIMantineMultiSelect component.
- Change SettingsSchedulers component to use IAIMantineMultiSelect
instead of Chakra Menus.
2023-06-18 22:22:03 +12:00
80a8d3ef28 style: Theme placeholder style for IAIMantineMultiSelect 2023-06-18 22:17:09 +12:00
f4ca9d0e09 Merge branch 'scheduler-select' of https://github.com/blessedcoolant/InvokeAI into scheduler-select 2023-06-18 22:05:12 +12:00
a960fa009d fix: Fix some styling issues with IAIMantineMultiSelect 2023-06-18 22:04:12 +12:00
b96b95bc95 feat(ui): enabledSchedulers -> favoriteSchedulers 2023-06-18 20:01:05 +10:00
450641c414 fix(ui): enable all schedulers by default 2023-06-18 19:39:31 +10:00
94cfcdc411 feat(ui): improve scheduler selection logic
- remove UI-specific state (the enabled schedulers) from redux, instead derive it in a selector
- simplify logic by putting schedulers in an object instead of an array
- rename `activeSchedulers` to `enabledSchedulers`
- remove need for `useEffect()` when `enabledSchedulers` changes by adding a listener for the `enabledSchedulersChanged` action/event to `generationSlice`
- increase type safety by making `enabledSchedulers` an array of `SchedulerParam`, which is created by the zod schema for scheduler
2023-06-18 19:34:37 +10:00
150059f704 fix(ui): create all scheduler constants up-front 2023-06-18 18:49:10 +10:00
f1a8b9daee fix(ui): clarify scheduler logic
- use full conditional syntax with `{}`
- do not mutate `action.payload` in a reducer
2023-06-18 18:47:59 +10:00
be8c0bb952 feat: Use Labels for Schedulers 2023-06-18 20:17:51 +12:00
dae5b9b259 fix: Minor styling fix to the IAIMantineMultiSelect component 2023-06-18 20:06:56 +12:00
06428fac67 fix: Revert scheduler back to zod validation 2023-06-18 20:02:36 +12:00
59b5dfc3e0 feat: Port Schedulers to Mantine 2023-06-18 19:47:27 +12:00
fd981a90be Add lms and dpmpp2_s karras scheduler (#3551)
Karras sigmas support added to lms and dpmpp2_s schedulers in 0.17.0
diffusers.
2023-06-18 17:36:47 +12:00
e1d53b86f3 Merge branch 'main' into lstein/installer-for-new-model-layout 2023-06-17 16:26:56 -07:00
ddb3f4b02b make configure script work properly on empty rootdir 2023-06-17 19:26:35 -04:00
6b7cf3f3be Add lms and dpmpp2_s karras scheduler 2023-06-17 21:00:16 +03:00
15f8132e17 add direct-call script for model installer 2023-06-16 22:57:53 -04:00
f28d50070e configure/install basically working; needs edge case testing 2023-06-16 22:54:36 -04:00
f6f66307fc WIP README.md Updates 2023-06-16 17:27:02 -04:00
469dae8c88 fix(linux): installer script prints maximum python version usable 2023-06-16 15:18:23 +02:00
9d4b84ef68 feat: Upgrade to Diffusers 0.17.1 2023-06-16 23:57:57 +12:00
ada7399753 rewrite of widget display - marshalling needs rewrite 2023-06-15 23:32:33 -04:00
4cbc802e36 Model manager fixes (#3541)
Fix lora import
Fix sd2 config - `variant` field not added
Fix list models api - `base_model` arg not provided, redundant assert
check
2023-06-16 06:43:00 +12:00
5f2d07917d Fix lora import, fix sd2 config, fix list models api 2023-06-15 21:30:15 +03:00
5c740452f6 Model Manager rewrite (#3335) 2023-06-14 08:44:04 -07:00
82c2498043 Merge branch 'main' into lstein/new-model-manager 2023-06-14 08:41:40 -07:00
4ca325e8e6 chore: Rebuild API 2023-06-15 03:20:49 +12:00
6b8e88ad7f Merge branch 'main' into feat/controlnet-control-modes 2023-06-15 03:18:41 +12:00
0497bea264 fix: add dynamicprompts to pyproject.toml 2023-06-15 01:05:16 +10:00
b8e32fa459 chore(ui): regen api client 2023-06-15 01:05:16 +10:00
34ebee67b7 fix(nodes): fix revert conflict 2023-06-15 01:05:16 +10:00
e0c998d192 Revert "feat(ui): add warning socket event handling"
This reverts commit e7a61e631a42190e4b64e0d5e22771c669c5b30c.
2023-06-15 01:05:16 +10:00
b51e9a6bdb Revert "feat(nodes): add warning socket event"
This reverts commit cefdd9d634e515239bd85666c872a0d64bb9d772.
2023-06-15 01:05:16 +10:00
09f396ce84 feat(ui): add warning socket event handling 2023-06-15 01:05:16 +10:00
abee37eab3 feat(nodes): add warning socket event 2023-06-15 01:05:16 +10:00
42e48b2bef feat(nodes): add dynamic prompt node 2023-06-15 01:05:16 +10:00
70ece4364c refactor(minor): Image & Latent File Storage (#3538)
- `DiskImageStorage` and `DiskLatentsStorage` have now both been updated
to exclusively work with `Path` objects and not rely on the `os` lib to
handle pathing related functions.
- We now also validate the existence of the required image output
folders and latent output folders to ensure that the app does not break
in case the required folders get tampered with mid-session.
- Just overall general cleanup.

Tested it. Don't seem to be any thing breaking.
2023-06-15 02:43:27 +12:00
f9d5f9d52c fix(nodes): minor fixes for folder validation
- fix type for `__output_folder`
- prefix `validate_storage_folders()` with `__` to indicate private method
2023-06-15 00:40:39 +10:00
d0ee3558d1 Merge branch 'main' into lstein/new-model-manager 2023-06-14 17:29:01 +03:00
587297878a refactor(minor): Latent Disk Storage 2023-06-15 02:21:49 +12:00
b4c998a9ae refactor(minor): Image File Storage 2023-06-15 01:58:58 +12:00
88e8e3977b feat(ui): update UI to not use image_origin
see commit `8ad8de8: feat(nodes): remove `image_origin` from most places` for details.
2023-06-14 23:08:27 +10:00
24b86cffe9 chore(ui): regen api client & types 2023-06-14 23:08:27 +10:00
a1773197e9 feat(nodes): remove image_origin from most places
- remove `image_origin` from most places where we interact with images
- consolidate image file storage into a single `images/` dir

Images have an `image_origin` attribute but it is not actually used when retrieving images, nor will it ever be. It is still used when creating images and helps to differentiate between internally generated images and uploads.

It was included in eg API routes and image service methods as a holdover from the previous app implementation where images were not managed in a database. Now that we have images in a db, we can do away with this and simplify basically everything that touches images.

The one potentially controversial change is to no longer separate internal and external images on disk. If we retain this separation, we have to keep `image_origin` around in a number of spots and it getting image paths on disk painful.

So, I am have gotten rid of this organisation. Images are now all stored in `images`, regardless of their origin. As we improve the image management features, this change will hopefully become transparent.
2023-06-14 23:08:27 +10:00
6c53abc034 feat: Add ControlMode to Linear UI 2023-06-14 20:01:17 +12:00
eb7047b21d chore: Rebuild WebAPI 2023-06-14 19:26:02 +12:00
43419ac761 Merge branch 'main' into feat/controlnet-control-modes 2023-06-14 19:04:42 +12:00
5cd0e90816 Renamed ControlNet control_mode option "even_more_control" to "unbalanced" 2023-06-13 22:30:17 -07:00
cfd49e3921 Removing vestigial comments. 2023-06-13 21:33:15 -07:00
a8e0490133 Merge branch 'feat/controlnet-control-modes' of https://github.com/invoke-ai/InvokeAI into feat/controlnet-control-modes 2023-06-13 21:21:13 -07:00
1e08d865c9 chore: dummy commit to trigger actions 2023-06-14 14:14:24 +10:00
f8bb650cc1 revert: IAIScrollArea 2023-06-14 14:14:24 +10:00
2cee8bebb2 fix(ui): revert offset scrollbars
The wonky padding is too janky. Just overlay for now.
2023-06-14 14:14:24 +10:00
ade4ec5fd8 fix(ui): fix crash when toggling pinned parameters panel 2023-06-14 14:14:24 +10:00
70ffd6b03f fix(ui): fix controlnet selects data types 2023-06-14 14:14:24 +10:00
6c551df311 fix(ui): fix rebase conflicts 2023-06-14 14:14:24 +10:00
24f605629e cleanup: Remove OverlayScrollable component 2023-06-14 14:14:24 +10:00
2af1ec9d02 fix: Minor padding issue in unpinned drawer 2023-06-14 14:14:24 +10:00
79d53341de fix: Stretch scroll area so it retains parent width 2023-06-14 14:14:24 +10:00
e40b3506c4 fix: Options squishing on accordion collapse 2023-06-14 14:14:24 +10:00
33912382e3 feat: Introduce Mantine's ScrollArea 2023-06-14 14:14:24 +10:00
d282810e53 cleanup: Remove IAICustomSelect and port types 2023-06-14 14:14:24 +10:00
9df502fc77 fix(ui): fix mantine select props 2023-06-14 14:14:24 +10:00
705573f0a8 feat(ui): even more pedantic mantine select theming 2023-06-14 14:14:24 +10:00
1878ea94f6 feat: Port Canvas Layer Select to IAIMantineSelect 2023-06-14 14:14:24 +10:00
4ba5086b9a feat(ui): add tooltip to IAIMantineSelect 2023-06-14 14:14:24 +10:00
4a991b4daa feat(ui): more pedantic mantine select theming 2023-06-14 14:14:24 +10:00
80474d26f9 feat(ui): mantine scrollbar theming 2023-06-14 14:14:24 +10:00
9a77bd9140 feat: Port IAISelect's to IAIMantineSelect's
Ported everything except Model Manager selects and the Canvas Layer Select (this needs tooltip support)
2023-06-14 14:14:24 +10:00
14cdc800c3 feat(ui): pedantic mantine select theming 2023-06-14 14:14:24 +10:00
9cfbea4c25 feat: Match styling of Mantine Select with InvokeAI 2023-06-14 14:14:24 +10:00
5fe674e223 feat: Standardize IAIMantineSelect Component 2023-06-14 14:14:24 +10:00
32200efce8 feat: Change default font to Inter 2023-06-14 14:14:24 +10:00
68a02da990 feat: Use Mantine Select for Scheduler 2023-06-14 14:14:24 +10:00
5b20766ea3 chore: Move Mantine Theme Override to own file 2023-06-14 14:14:24 +10:00
9a914250a0 feat: Change Model Select To Mantine 2023-06-14 14:14:24 +10:00
0e3106f631 feat: Add Mantine Support 2023-06-14 14:14:24 +10:00
de3e6cdb02 Switched over to ControlNet control_mode with 4 options: balanced, more_prompt, more_control, even_more_control. Based on True/False combinations of internal booleans cfg_injection and soft_injection 2023-06-13 21:08:34 -07:00
6c5954f9d1 Add controlnet to model manager, fixes 2023-06-14 04:26:21 +03:00
740c05a0bb Save models on rescan, uncache model on edit/delete, fixes 2023-06-14 03:12:12 +03:00
26090011c4 Fix conflict resolve, add model configs to type annotation 2023-06-14 00:26:37 +03:00
0ee0c16a3b Update CONTROLNET.md 2023-06-13 16:46:58 -04:00
c9ae26a176 Merge branch 'main' into lstein/new-model-manager 2023-06-13 23:37:52 +03:00
e7db6d8120 Fix ckpt and vae conversion, migrate script, remove sd2-base 2023-06-13 18:05:12 +03:00
8495764d45 Moving from ControlNet guess_mode to separate booleans for cfg_injection and soft_injection for testing control modes 2023-06-13 00:41:36 -07:00
8b7fac75ed First pass at ControlNet "guess mode" implementation. 2023-06-13 00:41:36 -07:00
9e0e26f4c4 Moving from ControlNet guess_mode to separate booleans for cfg_injection and soft_injection for testing control modes 2023-06-12 23:57:57 -07:00
a6af7e8824 use format "diffusers" rather than format "folder" in models.yaml 2023-06-13 01:43:05 -04:00
87ba17a1f5 add migration script and update convert and face restoration paths 2023-06-13 01:27:51 -04:00
c7ea46a5da use latest version of transformers to avoid deprecation warnings 2023-06-12 16:07:39 -04:00
1439dc7712 Add SchedulerPredictionType and ModelVariantType enums 2023-06-12 16:07:04 -04:00
46cac6468e Upgrade to Diffusers 0.17.0 (#3514)
Diffusers is due for an update soon. #3512

Opening up a PR now with the required changes for when the new version
is live.

I've tested it out on Windows and nothing has broken from what I could
tell. I'd like someone to run some tests on Linux / Mac just to make
sure. Refer to the PR above on how to test it or install the release
branch.

```
pip install diffusers[torch]==0.17.0
```

Feel free to push any other changes to this PR you see fit.
2023-06-13 07:11:02 +12:00
2a814d886b Merge branch 'main' into diffusers-upgrade 2023-06-13 05:29:15 +12:00
60a2fbec41 feat(ui): improve controlnet-related config types 2023-06-13 00:04:21 +10:00
f15a328b80 fix(ui): allow controlnet with preprocessed control image 2023-06-13 00:04:21 +10:00
811d9ab55a fix(ui): disable shouldAutoConfig switch while processing 2023-06-13 00:04:21 +10:00
e00fed5c46 feat(ui): support disabling controlnet models & processors 2023-06-13 00:04:21 +10:00
a3fa38b353 fix(ui): revert IAICustomSelect usage to IAISelect
There are some bugs with it that I cannot figure out related to `floating-ui` and `downshift`'s handling of refs.

Will need to revisit this component in the future.
2023-06-13 00:04:21 +10:00
2e42a4bdd9 feat(ui): disable controlnets during processing 2023-06-13 00:04:21 +10:00
36f72b5a49 fix(ui): check for valid controlnets before adding to graph 2023-06-13 00:04:21 +10:00
af42d7d347 feat(ui): support negative controlnet weights 2023-06-13 00:04:21 +10:00
8607b1994c fix(ui): fix crash when controlnet enabled but no controlnets added 2023-06-13 00:04:21 +10:00
36eb1bd893 Fixes 2023-06-12 16:14:09 +03:00
9fa78443de Fixes, add sd variant detection 2023-06-12 05:52:30 +03:00
893f776f1d model_probe working; model_install incomplete 2023-06-11 19:51:53 -04:00
e051c450ed fix: git stash (#3528) 2023-06-12 08:55:36 +12:00
50135b726e fix: git stash 2023-06-12 08:53:09 +12:00
085ab54124 remove modified models.py and migrate code to models/base.py 2023-06-11 16:10:15 -04:00
8e1a56875e remove defunct code 2023-06-11 12:57:06 -04:00
000626ab2e move all installation code out of model_manager 2023-06-11 12:51:50 -04:00
694fd0c92f Fixes, first runable version 2023-06-11 16:42:40 +03:00
fd715026a7 First pass at ControlNet "guess mode" implementation. 2023-06-11 02:00:39 -07:00
c647056287 Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.

* Adding first attempt at float param easing node, using Penner easing functions.

* Core implementation of ControlNet and MultiControlNet.

* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.

* Added example of using ControlNet with legacy Txt2Img generator

* Resolving rebase conflict

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Resolving conflicts in rebase to origin/main

* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())

* changes to base class for controlnet nodes

* Added HED, LineArt, and OpenPose ControlNet nodes

* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* More rebase repair.

* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port  ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...

* Fixed use of ControlNet control_weight parameter

* Fixed lint-ish formatting error

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Refactored controlnet node to output ControlField that bundles control info.

* changes to base class for controlnet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Cleaning up TextToLatent arg testing

* Cleaning up mistakes after rebase.

* Removed last bits of dtype and and device hardwiring from controlnet section

* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.

* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)

* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.

* Added dependency on controlnet-aux v0.0.3

* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.

* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.

* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.

* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.

* Cleaning up after ControlNet refactor in TextToLatentsInvocation

* Extended node-based ControlNet support to LatentsToLatentsInvocation.

* chore(ui): regen api client

* fix(ui): add value to conditioning field

* fix(ui): add control field type

* fix(ui): fix node ui type hints

* fix(nodes): controlnet input accepts list or single controlnet

* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml  had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Switching to ControlField for output from controlnet nodes.

* Resolving conflicts in rebase to origin/main

* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())

* changes to base class for controlnet nodes

* Added HED, LineArt, and OpenPose ControlNet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port  ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...

* Fixed use of ControlNet control_weight parameter

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Refactored controlnet node to output ControlField that bundles control info.

* changes to base class for controlnet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Cleaning up TextToLatent arg testing

* Cleaning up mistakes after rebase.

* Removed last bits of dtype and and device hardwiring from controlnet section

* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.

* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)

* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.

* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.

* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.

* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.

* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.

* Cleaning up after ControlNet refactor in TextToLatentsInvocation

* Extended node-based ControlNet support to LatentsToLatentsInvocation.

* chore(ui): regen api client

* fix(ui): fix node ui type hints

* fix(nodes): controlnet input accepts list or single controlnet

* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.

* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.

* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.

* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.

* Added float to FIELD_TYPE_MAP ins constants.ts

* Progress toward improvement in fieldTemplateBuilder.ts  getFieldType()

* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.

* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP

* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale

* Fixed math for per-step param easing.

* Added option to show plot of param value at each step

* Just cleaning up after adding param easing plot option, removing vestigial code.

* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.

* Added more informative error message when _validat_edge() throws an error.

* Just improving parm easing bar chart title to include easing type.

* Added requirement for easing-functions package

* Taking out some diagnostic prints.

* Added option to use both easing function and mirror of easing function together.

* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 16:27:44 +10:00
738ba40f51 Fixes 2023-06-11 06:12:21 +03:00
3ce3a7ee72 Rewrite model configs, separate models 2023-06-11 04:49:09 +03:00
74b43c9bdf fix incorrect variable/typenames in model_cache 2023-06-10 10:41:48 -04:00
3d2ff7755e resolve conflicts 2023-06-10 10:13:54 -04:00
a87d52a389 resolve conflicts between lstein & sttalker changes 2023-06-10 09:59:19 -04:00
959e64c9b3 start removing repo_id support 2023-06-10 09:57:23 -04:00
2c056ead42 New models structure draft 2023-06-10 03:14:10 +03:00
30f20b55d5 fix logger behavior so that it is initialized after command line parsed (#3509)
In some cases the command-line was getting parsed before the logger was
initialized, causing the logger not to pick up custom logging
instructions from `--log_handlers`. This PR fixes the issue.
2023-06-09 08:24:47 -07:00
1bca32ed16 Merge branch 'main' into lstein/fix-logger-reconfiguration 2023-06-09 06:27:26 -07:00
7f91139e21 fix(ui): fix crash when using dropdown on certain device resolutions 2023-06-09 22:19:30 +10:00
c53b7c7389 ui: misc fixes (#3525)
[fix(ui): blur tab on
click](93f3658a4a)

Fixes issue where after clicking a tab, using the arrow keys changes tab
instead of changing selected image

[fix(ui): fix canvas not filling screen on first
load](68be95acbb)

[feat(ui): remove clear temp folder canvas
button](813f79f0f9)

This button is nonfunctional.

Soon we will introduce a different way to handle clearing out
intermediate images (likely automated).
2023-06-09 23:44:21 +12:00
93f3658a4a fix(ui): blur tab on click
Fixes issue where after clicking a tab, using the arrow keys changes tab instead of changing selected image
2023-06-09 18:20:52 +10:00
68be95acbb fix(ui): fix canvas not filling screen on first load 2023-06-09 17:55:11 +10:00
813f79f0f9 feat(ui): remove clear temp folder canvas button
This button is nonfunctional.

Soon we will introduce a different way to handle clearing out intermediate images (likely automated).
2023-06-09 17:33:17 +10:00
c3ec86bc70 feat(ui): enhance IAICustomSelect (#3523)
Now accepts an array of strings or array of `IAICustomSelectOption`s.
This supports custom labels and tooltips within the select component.
2023-06-09 18:26:20 +12:00
05a19753c6 feat(ui): remove controlnet model descriptions
These are not yet exposed on the UI - somebody who understands what they do better can add them when we have a place to expose them
2023-06-09 16:20:30 +10:00
a33327c651 feat(ui): enhance IAICustomSelect
Now accepts an array of strings or array of `IAICustomSelectOption`s. This supports custom labels and tooltips within the select component.
2023-06-09 16:00:17 +10:00
6ad7cc4f2a feat(ui): decrease delay on dnd to 150ms (#3522) 2023-06-09 17:54:24 +12:00
c506355b8b feat(ui): decrease delay on dnd to 150ms 2023-06-09 15:53:17 +10:00
d54168b8fb feat(nodes): add tests for depth-first execution 2023-06-09 14:53:45 +10:00
c91b071c47 fix(nodes): use DFS with preorder traversal 2023-06-09 14:53:45 +10:00
9c57b18008 fix(nodes): update Invoker.invoke() docstring 2023-06-09 14:53:45 +10:00
69539a0472 feat(nodes): depth-first execution
There was an issue where for graphs w/ iterations, your images were output all at once, at the very end of processing. So if you canceled halfway through an execution of 10 nodes, you wouldn't get any images - even though you'd completed 5 images' worth of inference.

## Cause

Because graphs executed breadth-first (i.e. depth-by-depth), leaf nodes were necessarily processed last. For image generation graphs, your `LatentsToImage` will be leaf nodes, and be the last depth to be executed.

For example, a `TextToLatents` graph w/ 3 iterations would execute all 3 `TextToLatents` nodes fully before moving to the next depth, where the `LatentsToImage` nodes produce output images, resulting in a node execution order like this:

1. TextToLatents
2. TextToLatents
3. TextToLatents
4. LatentsToImage
5. LatentsToImage
6. LatentsToImage

## Solution

This PR makes a two changes to graph execution to execute as deeply as it can along each branch of the graph.

### Eager node preparation

We now prepare as many nodes as possible, instead of just a single node at a time.

We also need to change the conditions in which nodes are prepared. Previously, nodes were prepared only when all of their direct ancestors were executed.

The updated logic prepares nodes that:
- are *not* `Iterate` nodes whose inputs have *not* been executed
- do *not* have any unexecuted `Iterate` ancestor nodes

This results in graphs always being maximally prepared.

### Always execute the deepest prepared node

We now choose the next node to execute by traversing from the bottom of the graph instead of the top, choosing the first node whose inputs are all executed.

This means we always execute the deepest node possible.

## Result

Graphs now execute depth-first, so instead of an execution order like this:

1. TextToLatents
2. TextToLatents
3. TextToLatents
4. LatentsToImage
5. LatentsToImage
6. LatentsToImage

... we get an execution order like this:

1. TextToLatents
2. LatentsToImage
3. TextToLatents
4. LatentsToImage
5. TextToLatents
6. LatentsToImage

Immediately after inference, the image is decoded and sent to the gallery.

fixes #3400
2023-06-09 14:53:45 +10:00
7bce455d16 Merge branch 'main' into diffusers-upgrade 2023-06-09 16:27:52 +12:00
3f45294c61 feat(ui): restore reset button for init image (#3521) 2023-06-09 16:02:26 +12:00
fd03c7eebe feat(ui): restore reset button for init image 2023-06-09 14:00:23 +10:00
07c49a5726 feat(ui): skip resize on img2img if not needed (#3520) 2023-06-09 15:56:22 +12:00
8c688f8e29 feat(ui): skip resize on img2img if not needed 2023-06-09 13:54:23 +10:00
887576d217 add directory scanning for loras, controlnets and textual_inversions 2023-06-08 23:11:53 -04:00
6652f3405b merge with main 2023-06-08 21:08:43 -04:00
3d13167d32 Merge branch 'main' into lstein/fix-logger-reconfiguration 2023-06-08 13:41:24 -07:00
27b5e43ea4 add messages to the user to tell them to enlarge window 2023-06-08 16:37:10 -04:00
f2bb507ebb allow logger to be reconfigured after startup 2023-06-08 09:23:11 -04:00
fe8f3381fc create databases directory on startup (#3518)
This PR creates the databases directory at app startup time. It also
removes a couple of debugging statements that were inadvertently left in
the model manager.
2023-06-08 23:40:32 +12:00
2a6d11e645 create databases directory on startup 2023-06-08 07:17:54 -04:00
01f46d3c7d Merge branch 'main' into lstein/fix-logger-reconfiguration 2023-06-07 19:50:44 -07:00
5f76b62553 Update installer support for main (#3448)
#  Make InvokeAI package installable by mere mortals
    
This commit makes InvokeAI 3.0 to be installable via PyPi.org and/or the
installer script. The install process is now pretty much identical to
the 2.3 process, including creating launcher scripts `invoke.sh` and
`invoke.bat`.
    
Main changes:
    
1. Moved static web pages into `invokeai/frontend/web` and modified the
API to look for them there. This allows pip to copy the files into the
distribution directory so that user no longer has to be in repo root to
launch, and enables PyPi installations with `pip install invokeai`
    
2. Update invoke.sh and invoke.bat to launch the new web application
properly. This also changes the wording for launching the CLI from
"generate images" to "explore the InvokeAI node system," since I would
not recommend using the CLI to generate images routinely.
    
3. Fix a bug in the checkpoint converter script that was identified
during testing.
    
4. Better error reporting when checkpoint converter fails.
    
5. Rebuild front end.

# Major improvements to the model installer.

1. The text user interface for `invokeai-model-install` has been
expanded to allow the user to install controlnet, LoRA, textual
inversion, diffusers and checkpoint models. The user can install
interactively (without leaving the TUI), or in batch mode after exiting
the application.
 

![image](https://github.com/invoke-ai/InvokeAI/assets/111189/f8f7ac23-3e18-4973-b7fe-729864c703a0)

2. The `invokeai-model-install` command now lets you list, add and
delete models from the command line:

## Listing models
```
$ invokeai-model-install --list diffusers
Diffuser models:
analog-diffusion-1.0      not loaded  diffusers  An SD-1.5 model trained on diverse analog photographs (2.13 GB)
d&d-diffusion-1.0         not loaded  diffusers  Dungeons & Dragons characters (2.13 GB)
deliberate-1.0            not loaded  diffusers  Versatile model that produces detailed images up to 768px (4.27 GB)
DreamShaper               not loaded  diffusers  Imported diffusers model DreamShaper
sd-inpainting-1.5         not loaded  diffusers  RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
sd-inpainting-2.0         not loaded  diffusers  Stable Diffusion version 2.0 inpainting model (5.21 GB)
stable-diffusion-1.5      not loaded  diffusers  Stable Diffusion version 1.5 diffusers model (4.27 GB)
stable-diffusion-2.1      not loaded  diffusers  Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
```

```
$ invokeai-model-install --list tis
Loading Python libraries...

Installed Textual Inversion Embeddings:
   EasyNegative
   ahx-beta-453407d
```

## Installing models

(this example shows correct handling of a server side error at Civitai)
```
$ invokeai-model-install --diffusers https://civitai.com/api/download/models/46259 Linaqruf/anything-v3.0
Loading Python libraries...

[2023-06-05 22:17:23,556]::[InvokeAI]::INFO --> INSTALLING EXTERNAL MODELS
[2023-06-05 22:17:23,557]::[InvokeAI]::INFO --> Probing https://civitai.com/api/download/models/46259 for import
[2023-06-05 22:17:23,557]::[InvokeAI]::INFO --> https://civitai.com/api/download/models/46259 appears to be a URL
[2023-06-05 22:17:23,763]::[InvokeAI]::ERROR --> An error occurred during downloading /home/lstein/invokeai-test/models/ldm/stable-diffusion-v1/46259: Internal Server Error
[2023-06-05 22:17:23,763]::[InvokeAI]::ERROR --> ERROR DOWNLOADING https://civitai.com/api/download/models/46259: {"error":"Invalid database operation","cause":{"clientVersion":"4.12.0"}}
[2023-06-05 22:17:23,764]::[InvokeAI]::INFO --> Probing Linaqruf/anything-v3.0 for import
[2023-06-05 22:17:23,764]::[InvokeAI]::DEBUG --> Linaqruf/anything-v3.0 appears to be a HuggingFace diffusers repo_id
[2023-06-05 22:17:23,768]::[InvokeAI]::INFO --> Loading diffusers model from Linaqruf/anything-v3.0
[2023-06-05 22:17:23,769]::[InvokeAI]::DEBUG --> Using faster float16 precision
[2023-06-05 22:17:23,883]::[InvokeAI]::ERROR --> An unexpected error occurred while downloading the model: 404 Client Error. (Request ID: Root=1-647e9733-1b0ee3af67d6ac3456b1ebfc)

Revision Not Found for url: https://huggingface.co/Linaqruf/anything-v3.0/resolve/fp16/model_index.json.
Invalid rev id: fp16)
Downloading (…)ain/model_index.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 511/511 [00:00<00:00, 2.57MB/s]
Downloading (…)cial_tokens_map.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 472/472 [00:00<00:00, 6.13MB/s]
Downloading (…)cheduler_config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 341/341 [00:00<00:00, 3.30MB/s]
Downloading (…)okenizer_config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 807/807 [00:00<00:00, 11.3MB/s]
```

## Deleting models

```
 invokeai-model-install --delete --diffusers anything-v3
Loading Python libraries...

[2023-06-05 22:19:45,927]::[InvokeAI]::INFO --> Processing requested deletions
[2023-06-05 22:19:45,927]::[InvokeAI]::INFO --> anything-v3...
[2023-06-05 22:19:45,927]::[InvokeAI]::INFO --> Deleting the cached model directory for Linaqruf/anything-v3.0
[2023-06-05 22:19:45,948]::[InvokeAI]::WARNING --> Deletion of this model is expected to free 4.3G

```
2023-06-07 19:25:07 -07:00
4bbe3b0d00 Merge branch 'main' into release/make-web-dist-startable 2023-06-07 19:21:01 -07:00
9ed86a08f1 multiple small fixes
1. Contents of autoscan directory field are restored after doing an installation.
2. Activate dialogue to choose V2 parameterization when importing from a directory.
3. Remove autoscan directory from init file when its checkbox is unselected.
4. Add widget cycling behavior to install models form.
2023-06-07 17:32:00 -04:00
68405910ba Upgrade to Diffusers 0.17.0 2023-06-08 04:42:52 +12:00
0a50e2638c fix(ui): default controlnet autoprocess to true (#3513)
I had accidentally defaulted it to false
2023-06-08 01:56:53 +12:00
fc7c5da4dd fix(ui): default controlnet autoprocess to true
I had accidentally defaulted it to false
2023-06-07 23:55:24 +10:00
a3357e073c refactor exception handling 2023-06-07 07:35:34 -04:00
d114833a12 pause after printing exception 2023-06-07 07:26:14 -04:00
96038bd075 print exception on TUI crash 2023-06-07 07:23:14 -04:00
2f383c2598 docs(nodes): update INVOCATIONS.md (#3511) 2023-06-07 20:47:57 +12:00
702a8d1f72 docs(nodes): update INVOCATIONS.md 2023-06-07 18:44:43 +10:00
0a8390356f feat(ui): enhance autoprocessing
The processor is automatically selected when model is changed.

But if the user manually changes the processor, processor settings, or disables the new `Auto configure processor` switch, auto processing is disabled.

The user can enable auto configure by turning the switch back on.

When auto configure is enabled, a small dot is overlaid on the expand button to remind the user that the system is not auto configuring the processor for them.

If auto configure is enabled, the processor settings are reset to the default for the selected model.
2023-06-07 18:25:30 +10:00
844058c0a5 feat(ui): make prompt not required
- also change the placeholder text
2023-06-07 18:25:30 +10:00
7d74cbe29c fix(ui): make progress image not draggable 2023-06-07 18:25:30 +10:00
62ac0ed2dc feat(ui): tweak cnet model change
If there is no control image, and the model does not have a default processor, set the processor to `none`.
2023-06-07 18:25:30 +10:00
ae14adec2a feat(ui): add reset button for control image 2023-06-07 18:25:30 +10:00
6c2b39d1df feat(ui): improve controlnet image style
css is terrible
2023-06-07 18:25:30 +10:00
0843028e6e fix(ui): improve dragging activation
- delay of 250ms
- prevent gallery images from accidentally activating native drag and drop
2023-06-07 18:25:30 +10:00
de0fd87035 fix(ui): when a session errors, reset controlnet processing spinner 2023-06-07 18:25:30 +10:00
8b6c0be259 feat(ui): fix IAIDndImage button styles when upload disabled 2023-06-07 18:25:30 +10:00
58fec84858 feat(ui): add upload to IAIDndImage
Add uploading to IAIDndImage
- add `postUploadAction` arg to `imageUploaded` thunk, with several current valid options (set control image, set init, set nodes image, set canvas, or toast)
- updated IAIDndImage to optionally allow click to upload
2023-06-07 18:25:30 +10:00
f223ad7776 fix(ui): only show loading indicator on processing control images 2023-06-07 18:25:30 +10:00
00eabf630d fix(ui): fix control image not used if processor type is none 2023-06-07 18:25:30 +10:00
6245a27650 feat(ui): auto-select controlnet processor
- when the controlnet model is changed, if there is a default processor for the model set, the processor is changed.
- once a control image is selected (and processed), changing the model does not change the processor - must be manually changed
2023-06-07 18:25:30 +10:00
fa1ac57c90 Graph overlay was expanding off the screen to the size of the prompt line (#3510)
sure this isn't really important at the moment

just limited the size of the width and gave it a shadow

![image](https://github.com/invoke-ai/InvokeAI/assets/115216705/96e2db0a-9edb-48b8-9040-56ce054b5ecf)
2023-06-07 18:01:35 +12:00
0f16b1c98d Remove Shadow 2023-06-07 15:51:37 +10:00
08e66c5451 Update NodeGraphOverlay.tsx
Graph overlay was expanding off the screen to the size of the prompt
2023-06-07 14:49:03 +10:00
563bf70c95 fix CI failure in configure non-interactive mode; merged with main 2023-06-06 23:24:40 -04:00
49d29420c4 Merge branch 'main' into release/make-web-dist-startable 2023-06-06 23:24:16 -04:00
ae9d0c6c1b fix logger behavior so that it is initialized after command line parsed 2023-06-06 23:19:10 -04:00
04f9757f8d prevent crash when trying to calculate size of missing safety_checker
- Also fixed up order in which logger is created in invokeai-web
  so that handlers are installed after command-line options are
  parsed (and not before!)
2023-06-06 22:57:49 -04:00
1f9e1eb964 merge with main 2023-06-06 22:18:41 -04:00
d8d11f9bbb quench fp16 rev id not found warning 2023-06-06 22:01:05 -04:00
13fa0d3bc0 make log message textbox deeper 2023-06-06 17:23:13 -04:00
5eeb4b8e06 allow user to abort conversion of V2 models from within TUI 2023-06-06 17:21:50 -04:00
f5044c290d fix crash during model conversion 2023-06-06 17:05:29 -04:00
1b43276e5d make widget selection wrap around 2023-06-06 13:53:11 -07:00
294f086857 configure/install working correctly on windows11 2023-06-06 12:51:34 -07:00
e5024bf5e9 fix conhost launch-with args 2023-06-06 15:17:15 -04:00
79198b4bba feat(ui): fix bugs with image deletion (#3506)
- `imageUsage` object was always stale due to react component lifecycle,
fixed this
- cleaned up the deletion listener and context
2023-06-07 05:33:05 +12:00
1a2f0984db Merge branch 'main' into feat/ui/fix-stale-imageUsage 2023-06-07 04:35:16 +12:00
454683e6eb feat(ui): update image urls on connect (#3507)
* feat(ui): update image urls on connect

Add `updateImageUrlsOnConnect` RTK listener:
- requests URLs for *every* image the app knows about, on connect: gallery, selectedImage, initialImage, canvas images, nodes images, controlnet images
- only fires when `shouldUpdateImagesOnConnect` config is enabled

* remove prop

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-06-06 10:23:51 -04:00
bbb2a08e8f feat(ui): fix bugs with image deletion
- `imageUsage` object was always stale due to react component lifecycle, fixed this
- cleaned up the deletion listener and context
2023-06-06 20:01:27 +10:00
bf116927e1 feat(ui): clear features if image used by them is deleted
This handles the case when an image is deleted but is still in use in as eg an init image on canvas, or a control image. If we just delete the image, canvas/controlnet/etc may break (the image would just fail to load).

When an image is deleted, the app checks to see if it is in use in:
- Image to Image
- ControlNet
- Unified Canvas
- Node Editor

The delete dialog will always open if the image is in use anywhere, and the user is advised that deleting the image will reset the feature(s).

Even if the user has ticked the box to not confirm on delete, the dialog will still show if the image is in use somewhere.
2023-06-06 14:35:07 +10:00
3d249c4fa3 feat(ui): refactor image deletion
Add `DeleteImageContext`:
- provide a single function to delete an image
- opens the modal or immediately deletes, if confirm is off
2023-06-06 14:35:07 +10:00
fa338ddb6a feat(ui): add useGetIsImageInUse
Checks if an image is currently being used eg in canvas, nodes, controlnet, init image.
2023-06-06 14:35:07 +10:00
b200451330 feat(ui): add nodesSelector 2023-06-06 14:35:07 +10:00
8283d23b74 feat(ui): remove shouldTransformUrls
This is no longer used.
2023-06-06 14:35:07 +10:00
2fc0a4d53b feat(ui): improve handling for urls/metadata received
Update images everywhere when urls or metadata is received:
- control images
- init images
- canvas
- nodes
- init image

Also renamed the variable.
2023-06-06 14:35:07 +10:00
3ff732d583 feat(ui): clear controlnet image when image deleted 2023-06-06 14:35:07 +10:00
840c632c0a feat(ui): sort images by updated_at instead of created_at
fixes issue where saved staging area images are sorted as expected in gallery.
2023-06-06 14:30:53 +10:00
40d6e4f287 fix(ui): fix canvas auto-save not working 2023-06-06 14:30:53 +10:00
fc5f9c30a6 fix(ui): fix metadata viewer not working for canvas images 2023-06-06 14:30:53 +10:00
229de2dbb8 feat(ui): fix canvas saving
- fix "bounding box region only" not being respected when saving
- add toasts for each action
- improve workflow `take()` predicates to use the requestId
2023-06-06 14:30:53 +10:00
cc22427f25 feat(ui): improve UI on smaller screens
- responsive changes were causing a lot of weird layout issues, had to remove the rest of them
- canvas (non-beta) toolbar now wraps
- reduces minH for prompt boxes a bit
2023-06-06 14:29:57 +10:00
90333c0074 merge with main 2023-06-05 22:03:44 -04:00
54e5301b35 Multiple fixes
1. Model installer works correctly under Windows 11 Terminal
2. Fixed crash when configure script hands control off to installer
3. Kill install subprocess on keyboard interrupt
4. Command-line functionality for --yes configuration and model installation
   restored.
5. New command-line features:
   - install/delete lists of diffusers, LoRAS, controlnets and textual inversions
     using repo ids, paths or URLs.

Help:

```
usage: invokeai-model-install [-h] [--diffusers [DIFFUSERS ...]] [--loras [LORAS ...]] [--controlnets [CONTROLNETS ...]] [--textual-inversions [TEXTUAL_INVERSIONS ...]] [--delete] [--full-precision | --no-full-precision]
                              [--yes] [--default_only] [--list-models {diffusers,loras,controlnets,tis}] [--config_file CONFIG_FILE] [--root_dir ROOT]

InvokeAI model downloader

options:
  -h, --help            show this help message and exit
  --diffusers [DIFFUSERS ...]
                        List of URLs or repo_ids of diffusers to install/delete
  --loras [LORAS ...]   List of URLs or repo_ids of LoRA/LyCORIS models to install/delete
  --controlnets [CONTROLNETS ...]
                        List of URLs or repo_ids of controlnet models to install/delete
  --textual-inversions [TEXTUAL_INVERSIONS ...]
                        List of URLs or repo_ids of textual inversion embeddings to install/delete
  --delete              Delete models listed on command line rather than installing them
  --full-precision, --no-full-precision
                        use 32-bit weights instead of faster 16-bit weights (default: False)
  --yes, -y             answer "yes" to all prompts
  --default_only        only install the default model
  --list-models {diffusers,loras,controlnets,tis}
                        list installed models
  --config_file CONFIG_FILE, -c CONFIG_FILE
                        path to configuration file to create
  --root_dir ROOT       path to root of install directory
```
2023-06-05 21:45:35 -04:00
b31fc43bfa Fix potential race condition in config system (#3466)
There was a potential gotcha in the config system that was previously
merged with main. The `InvokeAIAppConfig` object was configuring itself
from the command line and configuration file within its initialization
routine. However, this could cause it to read `argv` from the command
line at unexpected times. This PR fixes the object so that it only reads
from the init file and command line when its `parse_args()` method is
explicitly called, which should be done at startup time in any top level
script that uses it.

In addition, using the `get_invokeai_config()` function to get a global
version of the config object didn't feel pythonic to me, so I have
changed this to `InvokeAIAppConfig.get_config()` throughout.

## Updated Usage

In the main script, at startup time, do the following:

```
from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig.get_config()
config.parse_args()
```

In non-main scripts, it is not necessary (or recommended) to call
`parse_args()`:
```
from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig.get_config()
```

The configuration object properties can be overridden when
`get_config()` is called by passing initialization values in the usual
way. If a property is set this way, then it will not be changed by
subsequent calls to `parse_args()`, but can only be changed by
explicitly setting the property.

```
config = InvokeAIAppConfig.get_config(nsfw_checker=True)
config.parse_args(argv=['--no-nsfw_checker'])
config.nsfw_checker
# True
```

You may specify alternative argv lists and configuration files in
`parse_args()`:

```
config.parse_args(argv=['--no-nsfw_checker'],
                             conf = OmegaConf.load('/tmp/test.yaml')
)
```

For backward compatibility, the `get_invokeai_config()` function is
still available from the module, but has been removed from the rest of
the source tree.
2023-06-05 15:26:50 -07:00
9bcf0b2251 Merge branch 'main' into lstein/config-management-fixes 2023-06-05 15:10:33 -07:00
d4bc98c383 revert to conhost method 2023-06-05 11:46:01 -07:00
bc892c535c feat(ui): fix image fit (#3501)
- Prevent init, current & control images from overflowing
2023-06-05 20:48:55 +12:00
099e1e7c08 feat(ui): fix image fit
- Prevent init, current & control images from overflowing
2023-06-05 17:16:30 +10:00
b1000e30c1 feat(ui): disable keyboard dnd
Need to fix a bug w/ collision detection before enabling it. Will pursue later.
2023-06-05 15:24:24 +10:00
7bd94eac0e feat(ui): support image dnd to canvas 2023-06-05 15:24:24 +10:00
2c77563dcc feat(ui): move DropOverlay into its own IAIDropOverlay component 2023-06-05 15:24:24 +10:00
603c9a587e open Windows Terminal maximized 2023-06-05 00:24:13 -04:00
1a5a2dfda9 increased window size 2023-06-04 23:54:52 -04:00
090b7eeaf3 workaround to get adequate window size on Windows Terminal 2023-06-04 23:44:07 -04:00
117536324c the "restore" env variable in .bat launcher confuses pydantic 2023-06-04 22:53:46 -04:00
999c092b6a fix mouse and window resizing issues 2023-06-04 22:00:11 -04:00
9e31b1f387 Merge branch 'main' into lstein/config-management-fixes 2023-06-04 18:17:43 -04:00
cb157ea530 fix crash when install-models launched from config script 2023-06-04 14:55:51 -04:00
5f6f38074d merge with main 2023-06-04 13:59:31 -04:00
25b8dd340a Prompting: enable long prompts and compel's new .and() concatenating feature (#3497)
this PR adds long prompt support and enables compel's new `.and()`
concatenation feature which improves image quality especially with SD2.1

example of a long prompt:
> a moist sloppy pindlesackboy sloppy hamblin' bogomadong, Clem Fandango
is pissed-off, Wario's Woods in background, making a noise like
ga-woink-a
![000075 6dfd7adf
466129594](https://github.com/invoke-ai/InvokeAI/assets/144366/051608b6-8d52-463b-af10-04b695cda9c1)

the same prompt broken into fragments and concatenated using `.and()`
(syntax works like `.blend()`):
```
("a moist sloppy pindlesackboy sloppy hamblin' bogomadong", 
"Clem Fandango is pissed-off", 
"Wario's Woods in background", 
"making a noise like ga-woink-a").and()
```
![000076 68b1c320
466129594](https://github.com/invoke-ai/InvokeAI/assets/144366/3fee291f-5562-40f9-9c3c-a73765fc893a)


and a less silly example:

> A dream of a distant galaxy, by Caspar David Friedrich, matte
painting, trending on artstation, HQ
![000129 1b33b559
2793529321](https://github.com/invoke-ai/InvokeAI/assets/144366/d4113756-ed0d-49cd-bb2e-a2fc4a09e0af)

the same prompt broken into two fragments and concatenated:
```
("A dream of a distant galaxy, by Caspar David Friedrich, matte painting", 
"trending on artstation, HQ").and()
```
![000128 b5d5cd62
2793529321](https://github.com/invoke-ai/InvokeAI/assets/144366/c373c009-05db-4c42-8a1d-c89fbdb334ec)

as with `.blend()` you can also weight the parts eg `("a man eating an
apple", "sitting on the roof of a car", "high quality, trending on
artstation, 8K UHD").and(1, 0.5, 0.5)` which will assign weight `1` to
`a man eating an apple` and `0.5` to `sitting on the roof of a car` and
`high quality, trending on artstation, 8K UHD`.
2023-06-05 04:53:08 +12:00
fb06f5b892 Merge branch 'main' into feat_compel_longprompts_and_concat 2023-06-05 04:34:39 +12:00
1a7fb601dc ask user for v2 variant when model manager can't infer it 2023-06-04 11:27:44 -04:00
cdcfda164d enable long prompts, upgrade compel to enable .and() (concatenating prompts) 2023-06-04 15:30:54 +02:00
966b154a1f Update web README.md (#3496) 2023-06-05 00:56:00 +12:00
95fa66661c dummy commit to make github actions run 2023-06-04 22:55:35 +10:00
6247b79111 docs(ui): update API_CLIENT 2023-06-04 22:46:53 +10:00
5831364f9c Update web README.md 2023-06-04 22:44:18 +10:00
919b81cff1 fix(ui): fix rebase issue 2023-06-04 22:34:58 +10:00
065fff7db5 fix(ui): fix wonkiness with image dnd 2023-06-04 22:34:58 +10:00
a664ee30a2 feat(ui): do not change images if the dropped image is the same image 2023-06-04 22:34:58 +10:00
03f3ad435a feat(ui): updated controlnet logic/ui 2023-06-04 22:34:58 +10:00
2270c270ef feat(ui): add tooltip to IAISwitch 2023-06-04 22:34:58 +10:00
4f7820719b feat(ui): add ellipsis direction to IAICustomSelect 2023-06-04 22:34:58 +10:00
fa285883ad feat(ui): make OverlayDragImage translucent 2023-06-04 22:34:58 +10:00
474fca8e6a feat(ui): add controlNetDenylist 2023-06-04 22:34:58 +10:00
5dc0250b00 feat(ui): ControlNet layout tweaks 2023-06-04 22:34:58 +10:00
f269377a01 feat(ui): "ProcessorOptionsContainer" -> "ProcessorWrapper", organise 2023-06-04 22:34:58 +10:00
d0406024e3 feat(ui): IAICustomSelect tweak styles 2023-06-04 22:34:58 +10:00
aa3a969bd2 feat: Update ControlNet Model List & Map 2023-06-04 22:34:58 +10:00
73a95973a8 wip: Add Wrapper Container for Preprocessor Options
For fast altering of the layout across all pre-preocessors.
2023-06-04 22:34:58 +10:00
bf4fe3c1ac wip: Fixing layout shifts with the ControlNet tab 2023-06-04 22:34:58 +10:00
d6c08ba469 feat(ui): add mini/advanced controlnet ui 2023-06-04 22:34:58 +10:00
69f0ba65f1 chore(ui): bump react-icons 2023-06-04 22:34:58 +10:00
828c86964d feat(ui): IAICustomSelect prevent label wrap 2023-06-04 22:34:58 +10:00
54b7ddd63f feat(ui): IAIDndImage cursor: 'grab' 2023-06-04 22:34:58 +10:00
a0dde66b5d feat(ui): more work on controlnet mini 2023-06-04 22:34:58 +10:00
b6b3b9f99c feat(ui): make scrollbar less bright 2023-06-04 22:34:58 +10:00
faa69f8a47 feat(ui): add alpha colors 2023-06-04 22:34:58 +10:00
d92c7f5483 feat(ui): organize IAIDndImage component 2023-06-04 22:34:58 +10:00
6b824eb112 feat(ui): initial mini controlnet UI, dnd improvements 2023-06-04 22:34:58 +10:00
72b4371804 feat(ui): control image auto-process 2023-06-04 22:34:58 +10:00
fa290aff8d feat(ui): add defaults for all processors 2023-06-04 22:34:58 +10:00
3d99d7ae8b feat(ui): update handling of inProgess, do not allow cnet process when processing 2023-06-04 22:34:58 +10:00
2eb367969c feat(ui): do not autoprocess control if invocation in progress 2023-06-04 22:34:58 +10:00
9cdad95f48 feat(ui): add rest of controlnet processors 2023-06-04 22:34:58 +10:00
707ed39300 chore(ui): regen api client 2023-06-04 22:34:58 +10:00
6bbb5f061a feat(nodes): update controlnet names/descriptions 2023-06-04 22:34:58 +10:00
6896e69e95 fix(ui): fix multiple controlnets 2023-06-04 22:34:58 +10:00
b17f4c1650 feat(ui): more tweaking controlnet ui 2023-06-04 22:34:58 +10:00
98493ed9e2 feat(ui): reorg parameter panel to make room for controlnet 2023-06-04 22:34:58 +10:00
94c953deab feat(ui): get processed images back into controlnet ui 2023-06-04 22:34:58 +10:00
fa4d88e163 feat(ui): improve drag and drop ux 2023-06-04 22:34:58 +10:00
b1e1e3efc7 fix(ui): fix IAISelectableImage fallback 2023-06-04 22:34:58 +10:00
3b9426eb72 feat(ui): controlnet/image dnd wip
Implement `dnd-kit` for image drag and drop
- vastly simplifies logic bc we can drag and drop non-serializable data (like an `ImageDTO`)
- also much prettier
- also will fix conflicts with file upload via OS drag and drop, bc `dnd-kit` does not use native HTML drag and drop API
- Implemented for Init image, controlnet, and node editor so far

More progress on the ControlNet UI
2023-06-04 22:34:58 +10:00
e2e07696fc feat(ui): wip controlnet ui 2023-06-04 22:34:58 +10:00
d6a959b000 feat(nodes): tidy controlnet processor nodes & improve descriptions 2023-06-04 22:34:58 +10:00
c3935d3849 feat(nodes): add separate scripts to launch cli and web (#3495) 2023-06-04 08:13:14 -04:00
383e3d77cb feat(nodes): add separate scripts to launch cli and web 2023-06-04 22:02:47 +10:00
31e97ead2a move invokeai.db to ~/invokeai/databases
- The invokeai.db database file has now been moved into
  `INVOKEAIROOT/databases`. Using plural here for possible
  future with more than one database file.

- Removed a few dangling debug messages that appeared during
  testing.

- Rebuilt frontend to test web.
2023-06-03 20:25:34 -04:00
0b49995659 merge with main 2023-06-03 20:06:27 -04:00
ff204db6b2 Add logging configuration (#3460)
This PR provides a number of options for controlling how InvokeAI logs
messages, including options to log to a file, syslog and a web server.
Several logging handlers can be configured simultaneously.

## Controlling How InvokeAI Logs Status Messages

InvokeAI logs status messages using a configurable logging system. You
can log to the terminal window, to a designated file on the local
machine, to the syslog facility on a Linux or Mac, or to a properly
configured web server. You can configure several logs at the same time,
and control the level of message logged and the logging format (to a
limited extent).

Three command-line options control logging:

### `--log_handlers <handler1> <handler2> ...`

This option activates one or more log handlers. Options are "console",
"file", "syslog" and "http". To specify more than one, separate them by
spaces:

```bash
invokeai-web --log_handlers console syslog=/dev/log file=C:\Users\fred\invokeai.log
```

The format of these options is described below.

### `--log_format {plain|color|legacy|syslog}`

This controls the format of log messages written to the console. Only
the "console" log handler is currently affected by this setting.

* "plain" provides formatted messages like this:

```bash

[2023-05-24 23:18:2[2023-05-24 23:18:50,352]::[InvokeAI]::DEBUG --> this is a debug message
[2023-05-24 23:18:50,352]::[InvokeAI]::INFO --> this is an informational messages
[2023-05-24 23:18:50,352]::[InvokeAI]::WARNING --> this is a warning
[2023-05-24 23:18:50,352]::[InvokeAI]::ERROR --> this is an error
[2023-05-24 23:18:50,352]::[InvokeAI]::CRITICAL --> this is a critical error
```

* "color" produces similar output, but the text will be color coded to
indicate the severity of the message.

* "legacy" produces output similar to InvokeAI versions 2.3 and earlier:

```bash
### this is a critical error
*** this is an error
** this is a warning
>> this is an informational messages
   | this is a debug message
```

* "syslog" produces messages suitable for syslog entries:

```bash
InvokeAI [2691178] <CRITICAL> this is a critical error
InvokeAI [2691178] <ERROR> this is an error
InvokeAI [2691178] <WARNING> this is a warning
InvokeAI [2691178] <INFO> this is an informational messages
InvokeAI [2691178] <DEBUG> this is a debug message
```

(note that the date, time and hostname will be added by the syslog
system)

### `--log_level {debug|info|warning|error|critical}`

Providing this command-line option will cause only messages at the
specified level or above to be emitted.

## Console logging

When "console" is provided to `--log_handlers`, messages will be written
to the command line window in which InvokeAI was launched. By default,
the color formatter will be used unless overridden by `--log_format`.

## File logging

When "file" is provided to `--log_handlers`, entries will be written to
the file indicated in the path argument. By default, the "plain" format
will be used:

```bash
invokeai-web --log_handlers file=/var/log/invokeai.log
```

## Syslog logging

When "syslog" is requested, entries will be sent to the syslog system.
There are a variety of ways to control where the log message is sent:

* Send to the local machine using the `/dev/log` socket:

```
invokeai-web --log_handlers syslog=/dev/log
```

* Send to the local machine using a UDP message:

```
invokeai-web --log_handlers syslog=localhost
```

* Send to the local machine using a UDP message on a nonstandard port:

```
invokeai-web --log_handlers syslog=localhost:512
```

* Send to a remote machine named "loghost" on the local LAN using
facility LOG_USER and UDP packets:

```
invokeai-web --log_handlers syslog=loghost,facility=LOG_USER,socktype=SOCK_DGRAM
```

This can be abbreviated `syslog=loghost`, as LOG_USER and SOCK_DGRAM are
defaults.

* Send to a remote machine named "loghost" using the facility LOCAL0 and
using a TCP socket:

```
invokeai-web --log_handlers syslog=loghost,facility=LOG_LOCAL0,socktype=SOCK_STREAM
```

If no arguments are specified (just a bare "syslog"), then the logging
system will look for a UNIX socket named `/dev/log`, and if not found
try to send a UDP message to `localhost`. The Macintosh OS used to
support logging to a socket named `/var/run/syslog`, but this feature
has since been disabled.

## Web logging

If you have access to a web server that is configured to log messages
when a particular URL is requested, you can log using the "http" method:

```
invokeai-web --log_handlers http=http://my.server/path/to/logger,method=POST
```

The optional [,method=] part can be used to specify whether the URL
accepts GET (default) or POST messages.

Currently password authentication and SSL are not supported.

## Using the configuration file

You can set and forget logging options by adding a "Logging" section to
`invokeai.yaml`:

```
InvokeAI:
  [... other settings...]
  Logging:
    log_handlers:
       - console
       - syslog=/dev/log
    log_level: info
    log_format: color
```
2023-06-03 20:03:40 -04:00
f74f3d6a3a many TUI improvements:
1. Separated the "starter models" and "more models" sections. This
   gives us room to list all installed diffuserse models, not just
   those that are on the starter list.

2. Support mouse-based paste into the textboxes with either middle
   or right mouse buttons.

3. Support terminal-style cursor movement:
     ^A to move to beginning of line
     ^E to move to end of line
     ^K kill text to right and put in killring
     ^Y yank text back

4. Internal code cleanup.
2023-06-03 16:17:53 -04:00
713fb061e8 Merge branch 'main' into release/make-web-dist-startable 2023-06-02 23:19:33 -04:00
77b7680b32 slight refactoring of code; configure --yes should work now 2023-06-02 23:19:14 -04:00
ff63433591 Merge branch 'main' into lstein/config-management-fixes 2023-06-02 22:56:43 -04:00
31281d7181 Merge branch 'main' into lstein/logging-improvements 2023-06-02 22:56:13 -04:00
8285fbb0b1 Merge branch 'lstein/new-model-manager' of github.com:invoke-ai/InvokeAI into lstein/new-model-manager 2023-06-02 22:48:00 -04:00
951e6b746c remove model cache test; should be replaced with something else 2023-06-02 22:47:48 -04:00
44a6623094 Merge branch 'main' into lstein/new-model-manager 2023-06-02 22:40:51 -04:00
72d1e4e404 fix bug in model_manager that prevented import of inpainting models 2023-06-02 22:39:26 -04:00
91918e648b dynamic display of log messages now working 2023-06-02 22:24:46 -04:00
1390b65a9c new TUI is fully functional; needs some polishing 2023-06-02 17:20:50 -04:00
82231369d3 Make Invoke Button also the progress bar (#3492)
Find on some screens the progress bar at top is hard to see, Bar should
only show when in progress


![Animation](https://github.com/invoke-ai/InvokeAI/assets/115216705/04f945d3-377b-4646-b125-1355e74b6b09)
2023-06-02 19:30:45 +12:00
7620bacc01 feat: Add temporary NodeInvokeButton 2023-06-02 17:55:15 +12:00
ea9cf04765 fix: Remove progress bg instead of altering button bg 2023-06-02 17:36:14 +12:00
47301e6f85 fix: Do the same without zIndex 2023-06-02 17:33:38 +12:00
f143fb7254 feat: Make Invoke Button also the progress bar 2023-06-02 17:24:40 +12:00
2bdb655375 Change to absolute 2023-06-02 14:59:10 +10:00
41f7758977 listing, downloading and deleting LoRAs working; TI support pending 2023-06-02 00:40:15 -04:00
8ae1eaaccc Add Progress bar under invoke Button
Find on some screens the progress bar at top of screen gets cut off
2023-06-02 14:19:02 +10:00
98773b20ac merge with main 2023-06-01 18:09:49 -04:00
d66979073b add optional config for settings modal 2023-06-02 00:36:45 +10:00
c9e621093e fix(ui): fix looping gallery images fetch
The gallery could get in a state where it thought it had just reached the end of the list and endlessly fetches more images, if there are no more images to fetch (weird I know).

Add some logic to remove the `end reached` handler when there are no more images to load.
2023-06-02 00:34:03 +10:00
e06ba40795 fix(ui): do not allow dpmpp_2s to be used ever
it doesn't work for the img2img pipelines, but the implemented conditional display could break the scheduler selection dropdown.

simple fix until diffusers merges the fix - never use this scheduler.
2023-06-02 00:30:01 +10:00
6571e4c2fd feat(ui): refactor parameter recall
- use zod to validate parameters before recalling
- update recall params hook to handle all validation and UI feedback
2023-06-02 00:30:01 +10:00
ff9240b51d slight code cleanup 2023-06-01 00:45:07 -04:00
18466e01fd tab selection seems very natural; not wired to backend yet 2023-06-01 00:43:28 -04:00
e9821ab711 implemented tabbed model selection; not wired to backend yet 2023-06-01 00:31:46 -04:00
d6530df635 rename invokeai.backend.config to invokeai.backend.install 2023-05-31 21:34:20 -04:00
3c40e7fc1c most (all?) references to CLI deprecated 2023-05-31 21:29:52 -04:00
b47786e846 First working TI draft 2023-05-31 02:12:27 +03:00
062b2cf46f fix(ui): fix width and height not working on txt2img tab
I missed a spot when working on the graph logic yesterday.
2023-05-30 18:41:09 -04:00
082ecf6f25 minor formatting improvements 2023-05-30 13:59:32 -04:00
1632ac6b9f add controlnet model downloading 2023-05-30 13:49:43 -04:00
69ccd3a0b5 Fixes for checkpoint models 2023-05-30 19:12:47 +03:00
877959b413 fix(ui): ensure download image opens in new tab 2023-05-30 09:22:54 -04:00
6e60f7517b feat(ui): add model description tooltips 2023-05-30 09:06:13 -04:00
296ee6b7ea feat(ui): tidy ParamScheduler component 2023-05-30 09:06:13 -04:00
7c7ffddb2b feat(ui): upgrade IAICustomSelect to optionally display tooltips for each item 2023-05-30 09:06:13 -04:00
e1ae7842ff feat(ui): add defaultModel to config 2023-05-30 09:06:13 -04:00
9687fe7bac fix(ui): set default model to first model (alpha sort) 2023-05-30 09:06:13 -04:00
a9a2bd90c2 fix(nodes): set min and max for l2l strength 2023-05-30 09:06:13 -04:00
47ca71a7eb fix(nodes): set cfg_scale min to 1 in latents 2023-05-30 09:06:13 -04:00
a9c47237b1 fix(ui): mark img2img resize node intermediate 2023-05-30 09:06:13 -04:00
33bbae2f47 fix(ui): fix missing init image when fit disabled 2023-05-30 09:06:13 -04:00
fab7a1d337 fix(ui): fix bug with staging bbox not resetting 2023-05-30 09:06:13 -04:00
cffcf80977 fix(ui): remove w/h from canvas params, add bbox w/h 2023-05-30 09:06:13 -04:00
1a3fd05b81 fix(ui): fix canvas bbox autoscale 2023-05-30 09:06:13 -04:00
c22c6ca135 fix(ui): fix img2img fit 2023-05-30 09:06:13 -04:00
3afb6a387f chore(ui): regen api 2023-05-30 09:06:13 -04:00
33e5ed7180 fix(ui): fix edge case in nodes graph building
Inputs with explicit values are validated by pydantic even if they also
have a connection (which is the actual value that is used).

Fix this by omitting explicit values for inputs that have a connection.
2023-05-30 09:06:13 -04:00
2067757fab feat(ui): enable progress images by default 2023-05-30 09:06:13 -04:00
b1b94a3d56 Fixed problem with inpainting after controlnet support added to main.
Problem was that controlnet support involved adding **kwargs to method calls down in denoising loop, and AddsMaskLatents didn't accept **kwarg arg. So just changed to accept and pass on **kwargs.
2023-05-30 08:01:21 -04:00
c9ee42450e added controlnet models to frontend; backend needs to be done 2023-05-30 00:38:37 -04:00
10fe31c2a1 Merge branch 'main' into lstein/config-management-fixes 2023-05-29 21:03:03 -04:00
420a76ecdd Add lora loader node 2023-05-30 02:12:33 +03:00
79de9047b5 First working lora implementation 2023-05-30 01:11:00 +03:00
dc54cbb1fc Merge branch 'main' into release/make-web-dist-startable 2023-05-29 14:16:10 -04:00
a0b6654f6a updated postprocessing, prompts, img2img and web docs 2023-05-29 10:55:57 -04:00
070218aba7 feat(ui): add progress image toggle to current image buttons 2023-05-29 09:07:46 -04:00
f1c226b171 fix(ui): remove console.log() 2023-05-29 09:07:46 -04:00
7004430380 feat(ui): gallery filter dropdown -> Images/Assets toggle 2023-05-29 09:07:46 -04:00
1ddc620192 feat(ui): only cancel on staging commit if processing 2023-05-29 09:07:46 -04:00
a7cebbd970 feat(ui): cancel session when staging image accepted 2023-05-29 09:07:46 -04:00
d97438b0b3 fix(ui): fix typo in actionsDenylist 2023-05-29 09:07:46 -04:00
4522f3f4c9 fix(ui): fix progress images in canvas 2023-05-29 09:07:46 -04:00
6fe28980b0 feat(ui): revert in-gallery progress
wasn't fully baked. will revisist in the future.
2023-05-29 09:07:46 -04:00
4aec5d8ffc fix(ui): typo 2023-05-29 09:07:46 -04:00
bbb4e8f5ef feat(nodes): add resize image and scale image nodes 2023-05-29 09:07:46 -04:00
bce33ea62e fix(ui): when session is complete, null out progress image
This may cause minor gallery jumpiness at the very end of processing, but is necessary to prevent the progress image from sticking around if the last node in a session did not have an image output.
2023-05-29 09:07:46 -04:00
e4705d5ce7 fix(ui): add additional socket event layer to gate handling socket events
Some socket events should not be handled by the slice reducers. For example generation progress should not be handled for a canceled session.

Added another layer of socket actions.

Example:
- `socketGeneratorProgress` is dispatched when the actual socket event is received
- Listener middleware exclusively handles this event and determines if the application should also handle it
- If so, it dispatches `appSocketGeneratorProgress`, which the slices can handle

Needed to fix issues related to canceling invocations.
2023-05-29 09:07:46 -04:00
6764b2a854 fix(ui): fix save to gallery without bounding box 2023-05-29 09:07:46 -04:00
970340cf62 fix(ui): infill and scaling options label 2023-05-29 09:07:46 -04:00
043f9d9ba4 fix(ui): fix auto-switch to new images 2023-05-29 09:07:46 -04:00
00cb8a0c64 Merge branch 'main' into doc_updates_23 2023-05-29 08:13:12 -04:00
6f82801d07 fix(ui): fix canvas save to gallery incorrect is_intermediate flag 2023-05-28 20:19:56 -04:00
3e3dd39ae4 fix(nodes): fix images service update() for is_intermediate 2023-05-28 20:19:56 -04:00
89aa06e014 feat(ui): consolidate images slice
Now that images are in a database and we can make filtered queries, we can do away with the cumbersome `resultsSlice` and `uploadsSlice`.

- Remove `resultsSlice` and `uploadsSlice` entirely
- Add `imagesSlice` fills the same role
- Convert the application to use `imagesSlice`, reducing a lot of messy logic where we had to check which category was selected
- Add a simple filter popover to the gallery, which lets you select any number of image categories
2023-05-28 20:19:56 -04:00
6cc00ef4b7 chore(ui): regen api client 2023-05-28 20:19:56 -04:00
f31e62afad feat(nodes): make list images route use offset pagination
Because we dynamically insert images into the DB and UI's images state, `page`/`per_page` pagination makes loading the images awkward.

Using `offset`/`limit` pagination lets us query for images with an offset equal to the number of images already loaded (which match the query parameters).

The result is that we always get the correct next page of images when loading more.
2023-05-28 20:19:56 -04:00
38fd2ad45d fix(ui): fix metadata viewer crash 2023-05-28 20:19:56 -04:00
05b99b5377 fix(ui): fix erroneously displays is_intermediate field on nodes 2023-05-28 20:19:56 -04:00
08a14ee6d5 fix(nodes): fix conflicts with controlnet 2023-05-28 20:19:56 -04:00
29fcc92da9 feat(ui): handle new image origin/category setup
- Update all thunks & network related things
- Update gallery

What I have not done yet is rename the gallery tabs and the relevant slices, but I believe the functionality is all there.

Also I fixed several bugs along the way but couldn't really commit them separately bc I was refactoring. Can't remember what they were, but related to the gallery image switching.
2023-05-28 20:19:56 -04:00
d78e3572e3 chore(ui): regen api client 2023-05-28 20:19:56 -04:00
160267c71a feat(nodes): refactor image types
- Remove `ImageType` entirely, it is confusing
- Create `ResourceOrigin`, may be `internal` or `external`
- Revamp `ImageCategory`, may be `general`, `mask`, `control`, `user`, `other`. Expect to add more as time goes on
- Update images `list` route to accept `include_categories` OR `exclude_categories` query parameters to afford finer-grained querying. All services are updated to accomodate this change.

The new setup should account for our types of images, including the combinations we couldn't really handle until now:
- Canvas init and masks
- Canvas when saved-to-gallery or merged
2023-05-28 20:19:56 -04:00
fd47e70c92 feat(nodes): use higher precision timestamps in db 2023-05-28 20:19:56 -04:00
9317b42e5f feat(nodes, ui): wip image types 2023-05-28 20:19:56 -04:00
bdab73701f fix(ui): canvas images not added to staging 2023-05-28 20:19:56 -04:00
3ea5e78322 fix(nodes): fix list images route param descriptions 2023-05-28 20:19:56 -04:00
f609ee21a2 fix(ui): handle intermediates when fetching gallery 2023-05-28 20:19:56 -04:00
f51defeeb3 chore(ui): regen api client 2023-05-28 20:19:56 -04:00
ee0225f4ba fix(nodes): handle intermediates during images.get_many() 2023-05-28 20:19:56 -04:00
33a0af4637 feat(nodes): add nameservice
Currenly only used to make names for images, but when latents, conditioning, etc are managed in DB, will do the same for them.

Intended to eventually support custom naming schemes.
2023-05-28 20:19:56 -04:00
10c55310c0 index.md, features and concepts documents updated 2023-05-28 19:51:18 -04:00
d37b08a7dd Merge branch 'main' into release/make-web-dist-startable 2023-05-28 19:46:09 -04:00
9a796364da Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services. 2023-05-26 21:44:00 -04:00
1ad4eb3a7b Progress toward improvement in fieldTemplateBuilder.ts getFieldType() 2023-05-26 21:44:00 -04:00
3767a453bb Added float to FIELD_TYPE_MAP ins constants.ts 2023-05-26 21:44:00 -04:00
b0892d30a4 Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements. 2023-05-26 21:44:00 -04:00
d9b1e4a98c Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput. 2023-05-26 21:44:00 -04:00
a4dec8c1d6 Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params. 2023-05-26 21:44:00 -04:00
8960ceb98b Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.
2023-05-26 21:44:00 -04:00
be79d088c0 fix(nodes): controlnet input accepts list or single controlnet 2023-05-26 21:44:00 -04:00
009407ea3f fix(ui): fix node ui type hints 2023-05-26 21:44:00 -04:00
6999d28c7f chore(ui): regen api client 2023-05-26 21:44:00 -04:00
324e9eb74b Extended node-based ControlNet support to LatentsToLatentsInvocation. 2023-05-26 21:44:00 -04:00
56cff40362 Cleaning up after ControlNet refactor in TextToLatentsInvocation 2023-05-26 21:44:00 -04:00
2ba40c5e52 Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. 2023-05-26 21:44:00 -04:00
3ab147204c Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. 2023-05-26 21:44:00 -04:00
e4c89cba9c Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. 2023-05-26 21:44:00 -04:00
322ea84c4e Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. 2023-05-26 21:44:00 -04:00
f2b41c60ff Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. 2023-05-26 21:44:00 -04:00
754acec92f Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
2023-05-26 21:44:00 -04:00
11fc7e40a5 Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. 2023-05-26 21:44:00 -04:00
d15bb88eb2 Removed last bits of dtype and and device hardwiring from controlnet section 2023-05-26 21:44:00 -04:00
70ba36eefc Cleaning up mistakes after rebase. 2023-05-26 21:44:00 -04:00
7e70391c2b Cleaning up TextToLatent arg testing 2023-05-26 21:44:00 -04:00
e2a94be336 Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. 2023-05-26 21:44:00 -04:00
63a86eefb4 Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. 2023-05-26 21:44:00 -04:00
b0727b9d47 Prep for splitting pre-processor and controlnet nodes 2023-05-26 21:44:00 -04:00
d96e727dd5 Added more preprocessor nodes for:
MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
2023-05-26 21:44:00 -04:00
fe480886dc changes to base class for controlnet nodes 2023-05-26 21:44:00 -04:00
8031d1827b Refactored controlnet node to output ControlField that bundles control info. 2023-05-26 21:44:00 -04:00
b5acdb322d Switching to ControlField for output from controlnet nodes. 2023-05-26 21:44:00 -04:00
a4d1fe8819 Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node 2023-05-26 21:44:00 -04:00
10b7a58887 Added first controlnet preprocessor node for canny edge detection. 2023-05-26 21:44:00 -04:00
901a277959 Core implementation of ControlNet and MultiControlNet. 2023-05-26 21:44:00 -04:00
aaa093bef1 Fixed use of ControlNet control_weight parameter 2023-05-26 21:44:00 -04:00
bb96543d66 Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... 2023-05-26 21:44:00 -04:00
a2a2cfa765 Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. 2023-05-26 21:44:00 -04:00
18e6a2b410 Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. 2023-05-26 21:44:00 -04:00
db27263bc2 Prep for splitting pre-processor and controlnet nodes 2023-05-26 21:44:00 -04:00
0e027ec3ef Added more preprocessor nodes for:
MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
2023-05-26 21:44:00 -04:00
5acbbeecaa Added HED, LineArt, and OpenPose ControlNet nodes 2023-05-26 21:44:00 -04:00
6ef2168b67 changes to base class for controlnet nodes 2023-05-26 21:44:00 -04:00
6d958a214c Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) 2023-05-26 21:44:00 -04:00
4ae4bf4ff9 Resolving conflicts in rebase to origin/main 2023-05-26 21:44:00 -04:00
fdef53b2de Switching to ControlField for output from controlnet nodes. 2023-05-26 21:44:00 -04:00
11bd038b9d Added first controlnet preprocessor node for canny edge detection. 2023-05-26 21:44:00 -04:00
768cfe3aab Core implementation of ControlNet and MultiControlNet. 2023-05-26 21:44:00 -04:00
c4277b0662 Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor. 2023-05-26 21:44:00 -04:00
020f3ccf07 fix(nodes): controlnet input accepts list or single controlnet 2023-05-26 21:44:00 -04:00
7467fa5e57 fix(ui): fix node ui type hints 2023-05-26 21:44:00 -04:00
e19ef7ed2f fix(ui): add control field type 2023-05-26 21:44:00 -04:00
71003be6b8 fix(ui): add value to conditioning field 2023-05-26 21:44:00 -04:00
c1dbafc2df chore(ui): regen api client 2023-05-26 21:44:00 -04:00
dcebd71381 Extended node-based ControlNet support to LatentsToLatentsInvocation. 2023-05-26 21:44:00 -04:00
d855a65e73 Cleaning up after ControlNet refactor in TextToLatentsInvocation 2023-05-26 21:44:00 -04:00
a9007c7e0f Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier. 2023-05-26 21:44:00 -04:00
af60304f97 Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle. 2023-05-26 21:44:00 -04:00
6de241eead Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names. 2023-05-26 21:44:00 -04:00
51032dc0b2 Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it. 2023-05-26 21:44:00 -04:00
9ec3d2bc0c Added dependency on controlnet-aux v0.0.3 2023-05-26 21:44:00 -04:00
297931f5d9 Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input. 2023-05-26 21:44:00 -04:00
f613c073c1 Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)
2023-05-26 21:44:00 -04:00
63d248622c Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled. 2023-05-26 21:44:00 -04:00
48485fe92f Removed last bits of dtype and and device hardwiring from controlnet section 2023-05-26 21:44:00 -04:00
07726af703 Cleaning up mistakes after rebase. 2023-05-26 21:44:00 -04:00
ad1004b485 Cleaning up TextToLatent arg testing 2023-05-26 21:44:00 -04:00
0096fb2790 Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. 2023-05-26 21:44:00 -04:00
9c8c2e49d6 Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. 2023-05-26 21:44:00 -04:00
2005a96847 Prep for splitting pre-processor and controlnet nodes 2023-05-26 21:44:00 -04:00
00a8d60c1b Added more preprocessor nodes for:
MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
2023-05-26 21:44:00 -04:00
3aa182390a changes to base class for controlnet nodes 2023-05-26 21:44:00 -04:00
e44f1d6d4e Refactored controlnet node to output ControlField that bundles control info. 2023-05-26 21:44:00 -04:00
dfdf8e2ead Switching to ControlField for output from controlnet nodes. 2023-05-26 21:44:00 -04:00
3a645c4e80 Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node 2023-05-26 21:44:00 -04:00
113129daf9 Added first controlnet preprocessor node for canny edge detection. 2023-05-26 21:44:00 -04:00
940e3b6635 Core implementation of ControlNet and MultiControlNet. 2023-05-26 21:44:00 -04:00
7fb29dabff Fixed lint-ish formatting error 2023-05-26 21:44:00 -04:00
714ad6dbb8 Fixed use of ControlNet control_weight parameter 2023-05-26 21:44:00 -04:00
c0863fa20f Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this... 2023-05-26 21:44:00 -04:00
78b0b37ba6 More rebase repair. 2023-05-26 21:44:00 -04:00
5d5cdc7716 Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue. 2023-05-26 21:44:00 -04:00
93cd818f6a Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes. 2023-05-26 21:44:00 -04:00
598a628790 Prep for splitting pre-processor and controlnet nodes 2023-05-26 21:44:00 -04:00
f3666eda63 Added more preprocessor nodes for:
MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
2023-05-26 21:44:00 -04:00
754017b59e Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node 2023-05-26 21:44:00 -04:00
21251ce12c Added HED, LineArt, and OpenPose ControlNet nodes 2023-05-26 21:44:00 -04:00
dc12fa6cd6 changes to base class for controlnet nodes 2023-05-26 21:44:00 -04:00
f2f4c37f19 Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke()) 2023-05-26 21:44:00 -04:00
0864fca641 Resolving conflicts in rebase to origin/main 2023-05-26 21:44:00 -04:00
5e4c0217c7 Switching to ControlField for output from controlnet nodes. 2023-05-26 21:44:00 -04:00
78cd106c23 Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node 2023-05-26 21:44:00 -04:00
6ed0efa938 Added first controlnet preprocessor node for canny edge detection. 2023-05-26 21:44:00 -04:00
ca0669c337 Resolving rebase conflict 2023-05-26 21:44:00 -04:00
b59a749627 Added example of using ControlNet with legacy Txt2Img generator 2023-05-26 21:44:00 -04:00
a91dee87d0 Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. 2023-05-26 21:44:00 -04:00
5ff98a4179 Core implementation of ControlNet and MultiControlNet. 2023-05-26 21:44:00 -04:00
36b2f12219 Merge branch 'main' into release/make-web-dist-startable 2023-05-26 12:56:24 -04:00
5569f205ee Update CODEOWNERS 2023-05-26 08:59:10 -04:00
a76cf8aab2 Update CODEOWNERS 2023-05-26 08:59:10 -04:00
5c0f0d1808 Merge branch 'main' into lstein/logging-improvements 2023-05-26 08:57:17 -04:00
951900a86a Merge branch 'main' into lstein/config-management-fixes 2023-05-26 08:56:41 -04:00
582f516fef Merge branch 'main' into release/make-web-dist-startable 2023-05-26 18:06:38 +10:00
a25bae2545 fix(ui): tweak log levels 2023-05-26 18:06:08 +10:00
0ea35b1e3d feat(ui): improve session canceled handling 2023-05-26 18:06:08 +10:00
c6f935bf1a feat(ui): improve gallery page handling 2023-05-26 18:06:08 +10:00
96b4d35d43 fix(ui): fix uploads not loading more images correctly after generation 2023-05-26 18:06:08 +10:00
7b0938e7e4 feat(ui): add comments for weird stuff 2023-05-26 18:06:08 +10:00
249522b568 fix(ui): fix gallery not loading more images correctly after generation 2023-05-26 18:06:08 +10:00
39088e42cc fix(ui): remove console logs 2023-05-26 18:06:08 +10:00
30e0033ebe fix(ui): fix results not added to gallery 2023-05-26 18:06:08 +10:00
b599c40099 feat(ui): improve session invoked handling 2023-05-26 18:06:08 +10:00
8f190169db feat(ui): improve session creation handling 2023-05-26 18:06:08 +10:00
1d4d705795 feat(ui): improve image urls handling 2023-05-26 18:06:08 +10:00
b3f71b3078 feat(ui): improve image metadata handling 2023-05-26 18:06:08 +10:00
6059db4f15 feat(ui): improve image delete handling 2023-05-26 18:06:08 +10:00
0d5f44b153 feat(ui): improve image upload handling 2023-05-26 18:06:08 +10:00
17164a37a8 fix(ui): fix gallery auto switch 2023-05-26 18:06:08 +10:00
f88ccabe30 fix(ui): gallery not loading on page load 2023-05-26 18:06:08 +10:00
e1c85f1234 Merge branch 'main' into release/make-web-dist-startable 2023-05-26 18:04:09 +10:00
f50293920e correct typo in tiled_vae field definition 2023-05-25 23:29:16 -04:00
1e2db3a17f hook tiled_decode up to configuration 2023-05-25 23:28:15 -04:00
57a3eb3652 feat(ui): unset progress image inside invocationComplete listener 2023-05-26 13:25:50 +10:00
82a8972bde create listener for imageMetdataReceived to swap our progressImage 2023-05-26 13:25:50 +10:00
497a885c85 Merge branch 'main' into release/make-web-dist-startable 2023-05-25 22:49:18 -04:00
4d9f55d0f6 replace deleted get_root() 2023-05-25 22:48:50 -04:00
5f8f51436a merge with main; fix conflicts 2023-05-25 22:40:45 -04:00
0c3b4bb70d chore(ui): regen api client 2023-05-25 22:17:14 -04:00
33e13820fc feat(nodes): remove meta node field; use individual is_intermediate field instead
as suggested by @Kyle0654
2023-05-25 22:17:14 -04:00
43d991cfdb fix(ui): fix incorrect comment 2023-05-25 22:17:14 -04:00
291e9cf14b fix(nodes): add is_intermediate to all image-outputting nodes 2023-05-25 22:17:14 -04:00
a2de5c9963 feat(ui): change intermediates handling
- Update the canvas graph generation to flag its uploaded init and mask images as `intermediate`.
- During canvas setup, hit the update route to associate the uploaded images with the session id.
- Organize the socketio and RTK listener middlware better. Needed to facilitate the updated canvas logic.
- Add a new action `sessionReadyToInvoke`. The `sessionInvoked` action is *only* ever run in response to this event. This lets us do whatever complicated setup (eg canvas) and explicitly invoking. Previously, invoking was tied to the socket subscribe events.
- Some minor tidying.
2023-05-25 22:17:14 -04:00
5025f84627 chore(ui): regen api client 2023-05-25 22:17:14 -04:00
d2c8a53c55 feat(nodes): change intermediates handling
- `ImageType` is now restricted to `results` and `uploads`.
- Add a reserved `meta` field to nodes to hold the `is_intermediate` boolean. We can extend it in the future to support other node `meta`.
- Add a `is_intermediate` column to the `images` table to hold this. (When `latents`, `conditioning` etc are added to the DB, they will also have this column.)
- All nodes default to `*not* intermediate`. Nodes must explicitly be marked `intermediate` for their outputs to be `intermediate`.
- When building a graph, you can set `node.meta.is_intermediate=True` and it will be handled as an intermediate.
- Add a new `update()` method to the `ImageService`, and a route to call it. Updates have a strict model, currently only `session_id` and `image_category` may be updated.
- Add a new `update()` method to the `ImageRecordStorageService` to update the image record using the model.
2023-05-25 22:17:14 -04:00
5659d10778 remove unused function get_root() 2023-05-25 22:06:37 -04:00
46cab81d6f fix missing web_dir 2023-05-25 22:01:48 -04:00
dd157bce85 Merge branch 'main' into release/make-web-dist-startable 2023-05-25 21:52:05 -04:00
2f25dd7d0d Merge branch 'main' into lstein/config-management-fixes 2023-05-25 21:10:12 -04:00
e56965ad76 documentation tweaks; fixed initialization in a couple more places 2023-05-25 21:10:00 -04:00
2273b3a8c8 fix potential race condition in config system 2023-05-25 20:41:26 -04:00
05fb0ac2b2 Update latent.py 2023-05-26 10:27:33 +10:00
d4acd49ee3 Update generate.py 2023-05-26 10:27:33 +10:00
d98868e524 Update generationSlice.ts to change Default Scheduler 2023-05-26 10:27:33 +10:00
93bb27f2c7 fix gallery navigation 2023-05-26 10:01:06 +10:00
a4c44edf8d more use parameter fixes 2023-05-26 10:01:06 +10:00
1e94d7739a fix metadata references, add support for negative_conditioning syntax 2023-05-26 10:01:06 +10:00
9110838fe4 Merge branch 'main' into release/make-web-dist-startable 2023-05-25 19:06:09 -04:00
ca7b267326 raise error if syslogging requested and syslog lib not available 2023-05-25 10:10:46 -04:00
7f5992d6a5 Merge branch 'lstein/logging-improvements' of github.com:invoke-ai/InvokeAI into lstein/logging-improvements 2023-05-25 09:39:56 -04:00
88776fb2de get invokeai_configure working again 2023-05-25 09:39:45 -04:00
34f567abd4 Merge branch 'main' into lstein/logging-improvements 2023-05-25 08:48:47 -04:00
b87f3043ae add logging configuration 2023-05-24 23:57:15 -04:00
3829ffbe66 fix(tests): add --use_memory_db flag; use it in tests 2023-05-25 12:12:31 +10:00
ad619ae880 fix(tests): log db_location 2023-05-25 12:12:31 +10:00
d22ebe08be fix(tests): log db_location 2023-05-25 12:12:31 +10:00
ee0c6ad86e fix(cli): fix invocation services for cli 2023-05-25 12:12:31 +10:00
96adb56633 fix(tests): fix missing services in tests; fix ImageField instantiation 2023-05-25 12:12:31 +10:00
3000436121 chore(nodes): remove unused imports 2023-05-25 12:12:31 +10:00
37cdd91f5d fix(nodes): use forward declarations for InvocationServices
Also use `TYPE_CHECKING` to get IDE hints.
2023-05-25 12:12:31 +10:00
cf12c7b1d9 Rename contributing.md to CONTRIBUTING.md 2023-05-24 16:33:25 -04:00
1f4a9365a0 Create contributing.md 2023-05-24 16:33:10 -04:00
bf94a48a6c Update CHANGELOG.md 2023-05-24 16:29:06 -04:00
6f3c6ddf3f Update 020_INSTALL_MANUAL.md
Corrected a markdown formatting error (missing backtick).
2023-05-24 11:33:32 -04:00
0bfbda512d build(nodes): remove references to metadata service in tests 2023-05-24 11:30:47 -04:00
295b98a13c build(nodes): remove outdated metadata test
I will add tests for the new service soon
2023-05-24 11:30:47 -04:00
ff6b345d45 fix(nodes): rebase fixes 2023-05-24 11:30:47 -04:00
1fb307abf4 feat(nodes): restore canvas functionality (non-latents) 2023-05-24 11:30:47 -04:00
29c952dcf6 feat(ui): restore canvas functionality 2023-05-24 11:30:47 -04:00
010f63a50d feat(ui): misc tidy 2023-05-24 11:30:47 -04:00
068bbe3a39 fix(ui): fix uploads tab in gallery 2023-05-24 11:30:47 -04:00
ad39680feb feat(nodes): wip inpainting nodes prep 2023-05-24 11:30:47 -04:00
1e0ae8404c feat(nodes): comment out seamless
this will be a model config feature when model manager is ready
2023-05-24 11:30:47 -04:00
460d555a3d feat(nodes): add image mul, channel, convert nodes
also make img node names consistent
2023-05-24 11:30:47 -04:00
66ad04fcfc feat(nodes): add mask image category 2023-05-24 11:30:47 -04:00
c7c0836721 feat(ui): migrate linear workflows to latents 2023-05-24 11:30:47 -04:00
d2c223de8f feat(nodes): move fully* to new images service
* except i haven't rebuilt inpaint in latents
2023-05-24 11:30:47 -04:00
dd16f788ed fix(nodes): fix RangeOfSizeInvocation off-by-one error 2023-05-24 11:30:47 -04:00
b25c1af018 feat(nodes): add RangeOfSizeInvocation
The `RangeInvocation` is a simple wrapper around `range()`, but you must provide `stop > start`.

`RangeOfSizeInvocation` replaces the `stop` parameter with `size`, so that you can just provide the `start` and `step` and get a range of `size` length.
2023-05-24 11:30:47 -04:00
8f393b64b8 feat(nodes): add seed validator
If `seed>SEED_MAX`, we can still continue if we parse the seed as `seed % SEED_MAX`.
2023-05-24 11:30:47 -04:00
55b3193629 fix(nodes): add RangeInvocation validator
`stop` must be greater than `start`.
2023-05-24 11:30:47 -04:00
6f78c073ed fix(ui): fix uploads & other bugs 2023-05-24 11:30:47 -04:00
c406be6f4f fix(ui): fix image deletion 2023-05-24 11:30:47 -04:00
aeaf3737aa fix(ui): fix gallery bugs 2023-05-24 11:30:47 -04:00
23d9d58c08 fix(nodes): fix bugs with serving images
When returning a `FileResponse`, we must provide a valid path, else an exception is raised outside the route handler.

Add the `validate_path` method back to the service so we can validate paths before returning the file.

I don't like this but apparently this is just how `starlette` and `fastapi` works with `FileResponse`.
2023-05-24 11:30:47 -04:00
4c331a5d7e chore(ui): regen api client 2023-05-24 11:30:47 -04:00
035425ef24 feat(nodes): address feedback
- Address database feedback:
  - Remove all the extraneous tables. Only an `images` table now:
  - `image_type` and `image_category` are unrestricted strings. When creating images, the provided values are checked to ensure they are a valid type and category.
  - Add `updated_at` and `deleted_at` columns. `deleted_at` is currently unused.
  - Use SQLite's built-in timestamp features to populate these. Add a trigger to update `updated_at` when the row is updated. Currently no way to update a row.
  - Rename the `id` column in `images` to `image_name`
- Rename `ImageCategory.IMAGE` to `ImageCategory.GENERAL`
- Move all exceptions outside their base classes to make them more portable.
- Add `width` and `height` columns to the database. These store the actual dimensions of the image file, whereas the metadata's `width` and `height` refer to the respective generation parameters and are nullable.
- Make `deserialize_image_record` take a `dict` instead of `sqlite3.Row`
- Improve comments throughout
- Tidy up unused code/files and some minor organisation
2023-05-24 11:30:47 -04:00
021e5a2aa3 feat(nodes): improve metadata service comments 2023-05-24 11:30:47 -04:00
7a1de3887e feat(ui): wip update UI for migration 2023-05-24 11:30:47 -04:00
4a7a5234df fix(ui): fix image nodes losing image 2023-05-24 11:30:47 -04:00
6aebe1614d feat(ui): wip use new images service 2023-05-24 11:30:47 -04:00
74292eba28 chore(ui): regen api client 2023-05-24 11:30:47 -04:00
c31ff364ab fix(nodes): tidy images service 2023-05-24 11:30:47 -04:00
f310a39381 feat(nodes): finalize image routes 2023-05-24 11:30:47 -04:00
5a7e611e0a fix(nodes): fix image url 2023-05-24 11:30:47 -04:00
4e29a751d8 feat(ui): add POC image record fetching 2023-05-24 11:30:47 -04:00
3f94f81acd chore(ui): regen api client 2023-05-24 11:30:47 -04:00
5de3c41d19 feat(nodes): add metadata handling 2023-05-24 11:30:47 -04:00
f071b03ceb chore(ui): regen api client 2023-05-24 11:30:47 -04:00
b9375186a5 feat(nodes): consolidate image routers 2023-05-24 11:30:47 -04:00
11bd932cba feat(nodes): revert invocation_complete url hack 2023-05-24 11:30:47 -04:00
b77ccfaf32 chore(ui): regen api client 2023-05-24 11:30:47 -04:00
96653eebb6 build(ui): do not export schemas on api client generation 2023-05-24 11:30:47 -04:00
60d25f105f fix(nodes): restore metadata traverser 2023-05-24 11:30:47 -04:00
734b653a5f fix(nodes): add base images router 2023-05-24 11:30:47 -04:00
52c9e6ec91 feat(nodes): organise/tidy 2023-05-24 11:30:47 -04:00
c0f132e41a hack(nodes): hack to get image urls in the invocation complete event 2023-05-24 11:30:47 -04:00
cc1160a43a feat(nodes): streamline urlservice 2023-05-24 11:30:47 -04:00
adde8450bc fix(nodes): remove bad import 2023-05-24 11:30:47 -04:00
5bf9891553 feat(nodes): it works 2023-05-24 11:30:47 -04:00
22c34c343a feat(nodes): fix types for InvocationServices 2023-05-24 11:30:47 -04:00
f7804f6126 feat(nodes): add logger to images service 2023-05-24 11:30:47 -04:00
d14b02e93f feat(logger): fix logger type issues 2023-05-24 11:30:47 -04:00
1b75d899ae feat(nodes): wip image storage implementation 2023-05-24 11:30:47 -04:00
d4aa79acd7 fix(nodes): use save instead of set
`set` is a python builtin
2023-05-24 11:30:47 -04:00
33d199c007 feat(nodes): image records router 2023-05-24 11:30:47 -04:00
9c89d3452c feat(nodes): add high-level images service
feat(nodes): add ResultsServiceABC & SqliteResultsService

**Doesn't actually work bc of circular imports. Can't even test it.**

- add a base class for ResultsService and SQLite implementation
- use `graph_execution_manager` `on_changed` callback to keep `results` table in sync

fix(nodes): fix results service bugs

chore(ui): regen api

fix(ui): fix type guards

feat(nodes): add `result_type` to results table, fix types

fix(nodes): do not shadow `list` builtin

feat(nodes): add results router

It doesn't work due to circular imports still

fix(nodes): Result class should use outputs classes, not fields

feat(ui): crude results router

fix(ui): send to canvas in currentimagebuttons not working

feat(nodes): add core metadata builder

feat(nodes): add design doc

feat(nodes): wip latents db stuff

feat(nodes): images_db_service and resources router

feat(nodes): wip images db & router

feat(nodes): update image related names

feat(nodes): update urlservice

feat(nodes): add high-level images service
2023-05-24 11:30:47 -04:00
fb0b63c580 fix(nodes): fix seam painting
The problem was the same seed was getting used for the seam painting pass, causing the fried look.

Same issue as if you do img2img on a txt2img with the same seed/prompt.

Thanks to @hipsterusername for teaming up to debug this. We got pretty deep into the weeds.
2023-05-25 00:58:03 +10:00
bb2c6e5925 Merge branch 'main' into release/make-web-dist-startable 2023-05-24 10:55:51 -04:00
928caff2a6 fix: attempt to fix actions (#3454)
i think this conditional needs to be removed.
2023-05-25 02:37:39 +12:00
670c79f2c7 fix: attempt to fix actions
i think this conditional needs to be removed.
2023-05-25 00:31:48 +10:00
d6efb98953 build: fix test-invoke-pip.yml
- Restore conditional which ensures tests are only run on `main`
- Fix `yaml` syntax error
2023-05-24 21:48:12 +10:00
19da795274 fix(ui): send to canvas in currentimagebuttons not working 2023-05-24 21:46:58 +10:00
454ba9b893 add crossOrigin = anonymous attribute to konva image 2023-05-24 10:32:41 +10:00
8e419a4f97 Revert weak references as can be done without it 2023-05-23 04:29:40 +03:00
2533209326 Rewrite cache to weak references 2023-05-23 03:48:22 +03:00
d2dc1ed26f make InvokeAI package installable
This commit makes InvokeAI 3.0 to be installable via PyPi.org and the
installer script.

Main changes.

1. Move static web pages into `invokeai/frontend/web` and modify the
API to look for them there. This allows pip to copy the files into the
distribution directory so that user no longer has to be in repo root
to launch.

2. Update invoke.sh and invoke.bat to launch the new web application
properly. This also changes the wording for launching the CLI from
"generate images" to "explore the InvokeAI node system," since I would
not recommend using the CLI to generate images routinely.

3. Fix a bug in the checkpoint converter script that was identified
during testing.

4. Better error reporting when checkpoint converter fails.

5. Rebuild front end.
2023-05-22 17:51:47 -04:00
d4fb16825e move static into invokeai.frontend.web directory for dist install 2023-05-22 16:48:17 -04:00
165c1adcf8 Merge branch 'main' into lstein/new-model-manager 2023-05-22 21:51:07 +03:00
650d69ef5b added optional middleware prop and new actions needed (#3437)
* added optional middleware prop and new actions needed

* accidental import

* make middleware an array

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-05-22 08:16:11 -04:00
ff0e79fa9a add id for invoke button 2023-05-19 21:44:31 +10:00
127b54f812 add some IDs 2023-05-19 21:44:31 +10:00
bdf33f13b3 fix bad merge in compel 2023-05-18 18:08:45 -04:00
27241cdde1 port more globals changes over 2023-05-18 17:17:45 -04:00
259d6ec90d fixup cachedir call 2023-05-18 14:52:16 -04:00
a77c4c87b2 fixed logic error in resolution of model path 2023-05-18 14:35:34 -04:00
d96175d127 resolve some undefined symbols in model_cache 2023-05-18 14:31:47 -04:00
7025c00581 Add configuration system, remove legacy globals, args, generate and CLI (#3340)
# Application-wide configuration service

This PR creates a new `InvokeAIAppConfig` object that reads
application-wide settings from an init file, the environment, and the
command line.

Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has a top-level key of "InvokeAI" and subheadings for each of the
categories returned by `invokeai --help`.

The file looks like this:

[file: invokeai.yaml]
```
InvokeAI:
  Paths:
    root: /home/lstein/invokeai-main
    conf_path: configs/models.yaml
    legacy_conf_dir: configs/stable-diffusion
    outdir: outputs
    embedding_dir: embeddings
    lora_dir: loras
    autoconvert_dir: null
    gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth
  Models:
    model: stable-diffusion-1.5
    embeddings: true
  Memory/Performance:
    xformers_enabled: false
    sequential_guidance: false
    precision: float16
    max_loaded_models: 4
    always_use_cpu: false
    free_gpu_mem: false
  Features:
    nsfw_checker: true
    restore: true
    esrgan: true
    patchmatch: true
    internet_available: true
    log_tokenization: false
  Cross-Origin Resource Sharing:
    allow_origins: []
    allow_credentials: true
    allow_methods:
    - '*'
    allow_headers:
    - '*'
  Web Server:
    host: 127.0.0.1
    port: 8081

```

The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can use any OmegaConf dictionary by passing it to
the config object at initialization time:

```
 omegaconf = OmegaConf.load('/tmp/init.yaml')
 conf = InvokeAIAppConfig(conf=omegaconf)
```
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing
anyOmegaConf dictionary object initialization time:

```
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig(conf=omegaconf)
```

By default, InvokeAIAppConfig will parse the contents of `sys.argv` at
initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv:

```
conf = InvokeAIAppConfig(arg=['--xformers_enabled'])
```

It is also possible to set a value at initialization time. This value
has highest priority.
```
conf = InvokeAIAppConfig(xformers_enabled=True)
```
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<setting>", as in:

```
export INVOKEAI_port=8080
```

Order of precedence (from highest):
   1) initialization options
   2) command line options
   3) environment variable options
   4) config file options
   5) pydantic defaults

Typical usage:

```
from invokeai.app.services.config import InvokeAIAppConfig

# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig()
print(conf.nsfw_checker)
```
Finally, the configuration object is able to recreate its (modified)
yaml file, by calling its `to_yaml()` method:

```
conf = InvokeAIAppConfig(outdir='/tmp', port=8080)
print(conf.to_yaml())
```

# Legacy code removal and porting

This PR replaces Globals with the InvokeAIAppConfig system throughout,
and therefore removes the `globals.py` and `args.py` modules. It also
removes `generate` and the legacy CLI. ***The old CLI and web servers
are now gone.***

I have ported the functionality of the configuration script, the model
installer, and the merge and textual inversion scripts. The `invokeai`
command will now launch `invokeai-node-cli`, and `invokeai-web` will
launch the web server.

I have changed the continuous invocation tests to accommodate the new
command syntax in `invokeai-node-cli`. As a convenience function, you
can also pass invocations to `invokeai-node-cli` (or its alias
`invokeai`) on the command line as as standard input:

```
invokeai-node-cli "t2i --positive_prompt 'banana sushi' --seed 42"
invokeai < invocation_commands.txt
```
2023-05-18 13:37:09 -04:00
b1a99d772c added method to convert vaes 2023-05-18 13:31:11 -04:00
7ea995149e fixes to env parsing, textual inversion & help text
- Make environment variable settings case InSenSiTive:
  INVOKEAI_MAX_LOADED_MODELS and InvokeAI_Max_Loaded_Models
  environment variables will both set `max_loaded_models`

- Updated realesrgan to use new config system.

- Updated textual_inversion_training to use new config system.

- Discovered a race condition when InvokeAIAppConfig is created
  at module load time, which makes it impossible to customize
  or replace the help message produced with --help on the command
  line. To fix this, moved all instances of get_invokeai_config()
  from module load time to object initialization time. Makes code
  cleaner, too.

- Added `--from_file` argument to `invokeai-node-cli` and changed
  github action to match. CI tests will hopefully work now.
2023-05-18 10:48:23 -04:00
fd82763412 Model manager draft 2023-05-18 03:56:52 +03:00
f9710dd6ed remove reference to legacy opt.hf_token, clean up whitespace in invokeai_configure 2023-05-17 20:39:00 -04:00
4e7dd7d3f6 ci: remove reference to Globals in a workflow 2023-05-17 20:26:26 -04:00
20ca9e1fc1 config: move 'CORS' settings to 'Web Server' in the docstring to match the actual category 2023-05-17 19:45:51 -04:00
8a8b09a953 api_app: rename web_config to app_config for consistency 2023-05-17 19:42:13 -04:00
9e4e386c9b web and formatting fixes
- remove non-existent import InvokeAIWebConfig
- fix workflow file formatting
- clean up whitespace
2023-05-17 19:12:03 -04:00
eca1e449a8 Merge branch 'lstein/global-configuration' of github.com:invoke-ai/InvokeAI into lstein/global-configuration 2023-05-17 15:23:21 -04:00
ffaadb9d05 reorder options in help text 2023-05-17 15:22:58 -04:00
8adff96e29 Merge branch 'main' into lstein/global-configuration 2023-05-17 14:37:09 -04:00
7593dc19d6 complete several steps needed to make 3.0 installable
- invokeai-configure updated to work with new config system
- migrate invokeai.init to invokeai.yaml during configure
- replace legacy invokeai with invokeai-node-cli
- add ability to run an invocation directly from invokeai-node-cli command line
- update CI tests to work with new invokeai syntax
2023-05-17 14:13:27 -04:00
b7c5a39685 make invokeai.yaml more hierarchical; fix list configuration bug 2023-05-17 12:19:19 -04:00
bd1b84f7d0 tell user to refresh page on image load error (#3425)
* refetch images list if error loading

* tell user to refresh instead of refetching

* unused import

* feat(ui): use `useAppToaster` to make toast

* fix(ui): clear selected/initial image on error

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-05-17 11:52:37 -04:00
eadfd239a8 update config script to work with new config system 2023-05-17 00:18:19 -04:00
e971a7f35c when migrating models.yaml, rename original models.yaml.orig 2023-05-16 22:37:53 -04:00
8d75e50435 partial port of invokeai-configure 2023-05-16 01:50:01 -04:00
6ab84741a0 fix(nodes): make ModelsList an enum-keyed dict
The `ModelsList` OpenAPI schema is generated as being keyed by plain strings. This means that API consumers do not know the shape of the dict. It _should_ be keyed by the `SDModelType` enum.

Unfortunately, `fastapi` does not actually handle this correctly yet; it still generates the schema with plain string keys.

Adding this anyways though in hopes that it will be resolved upstream and we can get the correct schema. Until then, I'll implement the (simple but annoying) logic on the frontend.

https://github.com/pydantic/pydantic/issues/4393
2023-05-16 15:02:58 +10:00
cd16857f38 fix None in model_type 2023-05-16 00:13:44 -04:00
1442f1cb8d change model filter to None in second place 2023-05-16 00:03:57 -04:00
eea0d6f7bc default to no filter in list_models() 2023-05-15 23:52:29 -04:00
1d9c115225 feat(nodes): add low and high to RandomIntInvocation 2023-05-16 13:50:52 +10:00
4fe94a9315 list_models() now returns a dict of {type,{name: info}} 2023-05-15 23:44:08 -04:00
30af20a056 ui: cleanup (#3418)
- tidy up a lot of cruft
- `sampler` --> `scheduler`
2023-05-16 15:27:12 +12:00
cc21fb216c chore(ui): clean up GalleryPanel 2023-05-16 10:43:26 +10:00
6fe62a2705 feat(ui): sampler --> scheduler 2023-05-16 10:40:26 +10:00
da87378713 chore(ui): regen api client 2023-05-16 10:39:40 +10:00
b6f5267385 chore(ui): clean up generationSlice 2023-05-16 10:21:18 +10:00
f9e78d3c64 chore(ui): clean up gallerySlice 2023-05-16 10:16:36 +10:00
b7b5bd1b46 chore(ui): clean up uiSlice 2023-05-16 09:57:19 +10:00
9a3727d3ad chore(ui): clean up systemSlice 2023-05-16 09:48:58 +10:00
d68c14516c chore(ui): clean up persist denylists 2023-05-16 09:46:03 +10:00
9f4d39aa42 chore(ui): clean up modelSlice 2023-05-16 09:45:49 +10:00
84b801d88f ui: restore canvas and upload functionality (#3414)
- refactor image uploading, fix init image upload button 
- refactor toast and hotkey hooks into logical components
- restore canvas save/download/copy/merge functionality
- clean up unused files and packages
- fix canvas rendering issue resulting from fractional stage coords
2023-05-16 02:23:39 +12:00
2fc70c509b Merge branch 'main' into feat/ui/fix-uploading 2023-05-16 02:20:59 +12:00
34fb1c4b19 make conditioning.py work with compel 1.1.5 (#3383)
This PR fixes the ValueError issue that was preventing all prompts from
working.
2023-05-15 09:46:04 -04:00
80bdd550cf Merge branch 'main' into lstein/bugfix/compel 2023-05-15 09:25:21 -04:00
7ef0d2aa35 merge with main 2023-05-15 09:07:17 -04:00
2359b92b46 chore(ui): tidy unused component ref 2023-05-15 22:58:15 +10:00
a404fb2d32 docs(ui): update PACKAGE_SCRIPTS.md 2023-05-15 22:49:28 +10:00
513eb11616 chore(ui): clean up unused files/packages 2023-05-15 22:48:06 +10:00
d2c9140e69 feat(ui): restore save/copy/download/merge functionality 2023-05-15 22:21:03 +10:00
d95fe5925a feat(ui): restore image post-upload actions
eg set init image if on img2img when uploading
2023-05-15 18:52:48 +10:00
835922ea8f fix(ui): floor canvas coords to prevent partial pixel offset rendering issues 2023-05-15 18:50:34 +10:00
e1e5266fc3 feat(ui): refactor base image uploading logic 2023-05-15 17:45:05 +10:00
5e4457445f feat(ui): make toast/hotkey into logical components 2023-05-15 15:25:27 +10:00
0221ca8f49 fix(ui): use cloned canvas for retrieving dataURL/Blobs 2023-05-15 13:54:30 +10:00
c8f765cc06 improve debugging messages 2023-05-14 18:29:55 -04:00
cf36e4029e fix(ui): fix syntax error in the logo component flexbox 2023-05-15 08:24:33 +10:00
b9e9087dbe do not manage GPU for pipelines if sequential_offloading is True 2023-05-14 18:09:38 -04:00
63e465eb5c tweaks to get_model() behavior
1. If an external VAE is specified in config file, then
   get_model(submodel=vae) will return the external VAE, not the one
   burnt into the parent diffusers pipeline.

2. The mechanism in (1) is generalized such that you can now have
   "unet:", "text_encoder:" and similar stanzas in the config file.
   Valid formats of these subsections:

       unet:
          repo_id: foo/bar

       unet:
          path: /path/to/local/folder

       unet:
          repo_id: foo/bar
	  subfolder: unet

    In the near future, these will also be used to attach external
    parts to the pipeline, generalizing VAE behavior.

3. Accommodate callers (i.e. the WebUI) that are passing the
   model key ("diffusers/stable-diffusion-1.5") to get_model()
   instead of the tuple of model_name and model_type.

4. Fixed bug in VAE model attaching code.

5. Rebuilt web front end.
2023-05-14 16:50:59 -04:00
c8a98a9a22 Merge branch 'main' into lstein/bugfix/compel 2023-05-14 14:43:18 -04:00
38ecca9362 Logging Improvements (#3401)
This PR improves the logging module a tad bit along with the
documentation.

**New Look:**


![WindowsTerminal_XaijwCqFpo](https://github.com/invoke-ai/InvokeAI/assets/54517381/49a97411-1927-4a49-80ff-f4d9665be55f)

## Usage

**General Logger**

InvokeAI has a module level logger. You can call it this way.

In this below example, you will use the default logger `InvokeAI` and
all your messages will be logged under that name.

```python

from invokeai.backend.util.logging import logger

logger.critical("CriticalMessage") // In Bold Red
logger.error("Info Message") // In Red
logger.warning("Info Message") // In Yellow
logger.info("Info Message") // In Grey 
logger.debug("Debug Message") // In Grey
```

Results:

```
[12-05-2023 20]::[InvokeAI]::CRITICAL --> This is an info message [In Bold Red]
[12-05-2023 20]::[InvokeAI]::ERROR --> This is an info message [In Red]
[12-05-2023 20]::[InvokeAI]::WARNING --> This is an info message [In Yellow]
[12-05-2023 20]::[InvokeAI]::INFO --> This is an info message [In Grey]
[12-05-2023 20]::[InvokeAI]::DEBUG --> This is an info message [In Grey]
```

**Custom Logger**

If you want to use a custom logger for your module, you can import it
the following way.

```python

from invokeai.backend.util.logging import logging
logger = logging.getLogger(name='Model Manager')

logger.critical("CriticalMessage") // In Bold Red
logger.error("Info Message") // In Red
logger.warning("Info Message") // In Yellow
logger.info("Info Message") // In Grey 
logger.debug("Debug Message") // In Grey
```

Results:

```
[12-05-2023 20]::[Model Manager]::CRITICAL --> This is an info message [In Bold Red]
[12-05-2023 20]::[Model Manager]::ERROR --> This is an info message [In Red]
[12-05-2023 20]::[Model Manager]::WARNING --> This is an info message [In Yellow]
[12-05-2023 20]::[Model Manager]::INFO --> This is an info message [In Grey]
[12-05-2023 20]::[Model Manager]::DEBUG --> This is an info message [In Grey]
```

**When to use custom logger?**

It is recommended to use a custom logger if your module is not a part of
base InvokeAI. For example: custom extensions / nodes.
2023-05-15 02:18:20 +12:00
c4681774a5 Merge branch 'main' into logging-facelift 2023-05-15 02:08:29 +12:00
050add58d2 fix getting conditionings 2023-05-14 12:20:54 +02:00
3d60c958c7 ui: commercial fixes (#3409)
minor commercial fixes
2023-05-14 20:44:06 +12:00
f5df150097 feat(ui): add callback to signal app is ready
needed for commercial
2023-05-14 18:42:15 +10:00
dac82adb5b fix(ui): make logo component non-selectable 2023-05-14 18:41:11 +10:00
b72c9787a9 Revert "comment out customer_attention_context"
This reverts commit 8f8cd90787.

Due to NameError: name 'options' is not defined
2023-05-14 00:37:55 -04:00
426f4eaf7e adjusted regression tests to work with new SDModelTypes 2023-05-13 22:29:33 -04:00
2623941d91 Merge branch 'main' into lstein/bugfix/compel 2023-05-13 22:23:59 -04:00
baf5451fa0 Merge branch 'main' into lstein/new-model-manager 2023-05-13 22:01:34 -04:00
d3a7fea939 Revert "fix: Rework the layout of the parameters scrollbar"
This reverts commit 6f1fc397f7.
2023-05-14 11:45:08 +10:00
5a7b687c84 fix(ui): add missing packages 2023-05-14 11:45:08 +10:00
0020457fc7 fix(ui): tweak settings scheduler styling 2023-05-14 11:45:08 +10:00
658b556544 feat(ui): IAICustomSelect v2, implement for scheduler & model 2023-05-14 11:45:08 +10:00
37da0fc075 feat(ui): IAICustomSelect v1 2023-05-14 11:45:08 +10:00
6d3e8507cc fix(ui): fix "no image" fallbacks 2023-05-14 11:45:08 +10:00
0e9470503f fix: Rework the layout of the parameters scrollbar 2023-05-14 11:45:08 +10:00
d2ebc6741b feat: Add setting to hide / display schedulers 2023-05-14 11:45:08 +10:00
026d3260b4 Add Heun Karras Scheduler 2023-05-14 11:45:08 +10:00
1103ab2844 merge with main 2023-05-13 21:35:19 -04:00
11b2076b46 implement change to web_config suggested by ebr 2023-05-13 21:33:19 -04:00
b31a6ff605 fix reversed args in _model_key() call 2023-05-13 21:11:06 -04:00
1f602e6143 Fix - apply precision to text_encoder 2023-05-14 03:46:13 +03:00
039fa73269 Change SDModelType enum to string, fixes(model unload negative locks count, scheduler load error, saftensors convert, wrong logic in del_model, wrong parse metadata in web) 2023-05-14 03:06:26 +03:00
78533714e3 Merge branch 'main' into logging-facelift 2023-05-14 09:07:51 +12:00
691e1bf829 Make debug messages cyan/blue 2023-05-14 09:06:57 +12:00
2204e47596 allow submodels to be fetched independent of parent pipeline 2023-05-13 16:54:47 -04:00
d8b1f29066 proxy SDModelInfo so that it can be used directly as context 2023-05-13 16:29:18 -04:00
b23c9f1da5 get Tuple type hint syntax right 2023-05-13 14:59:21 -04:00
5e8e3cf464 correct typos in model_manager_service 2023-05-13 14:55:59 -04:00
72967bf118 convert add_model(), del_model(), list_models() etc to use bifurcated names 2023-05-13 14:44:44 -04:00
bc96727cbe Rewrite latent nodes to new model manager 2023-05-13 16:08:03 +03:00
3b2a054f7a Add model loader node; unet, clip, vae fields; change compel node to clip field 2023-05-13 04:37:20 +03:00
47a088d685 rehydrate selectedImage URL when results and uploads are fetched 2023-05-13 09:48:38 +10:00
63db3fc22f reduce queue check interval to 0.5s 2023-05-12 17:54:26 -04:00
ad0bb3f61a fix: queue error should not crash InvocationProcessor
1. if retrieving an item from the queue raises an exception, the
   InvocationProcessor thread crashes, but the API continues running in
   a non-functional state. This fixes the issue
2. when there are no items in the queue, sleep 1 second before checking
   again.
3. Also ensures the thread isn't crashed if an exception is raised from
   invoker, and emits the error event

Intentionally using base Exceptions because for now we don't know which
specific exception to expect.

Fixes (sort of)? #3222
2023-05-12 17:54:26 -04:00
131145eab1 A big refactor of model manager(according to IMHO) 2023-05-12 23:13:34 +03:00
4492044d29 Redo compel node to separate model loading 2023-05-12 23:09:33 +03:00
5431dd5f50 Fix event args 2023-05-12 23:08:03 +03:00
79fecba274 Fix model manager initialization in web ui 2023-05-12 23:05:08 +03:00
8f8cd90787 comment out customer_attention_context 2023-05-12 13:59:00 -04:00
d796ea7bec feat: Logging Improvements 2023-05-13 02:13:49 +12:00
e5b7dd63e9 fix(nodes): temporarily disable librarygraphs
- Do not retrieve graph from DB until we resolve the issue of changing node schemas causing application to fail to start up due to invalid graphs
2023-05-12 22:33:49 +10:00
af060188bd Merge branch 'main' into lstein/bugfix/compel 2023-05-12 08:22:18 -04:00
4270e7ae25 Feat/ui/improve-language (#3399) 2023-05-12 23:32:50 +12:00
60a565d7de feat(ui): use chakra menu for theme changer 2023-05-12 20:04:29 +10:00
78cf70eaad fix(ui): tweak lang picker style 2023-05-12 20:04:10 +10:00
eebaa50710 fix(ui): fix language picker tooltip 2023-05-12 19:52:21 +10:00
7d582553f2 feat(ui): use chakra menu for language picker 2023-05-12 19:50:34 +10:00
4d6eea7e81 feat(ui): store language in redux 2023-05-12 19:35:03 +10:00
f44593331d ui: misc fixes (#3398)
- do not show canvas intermediates in gallery
- do not show progress image in uploads gallery category
- use custom dark mode `localStorage` key (prevents collision with
commercial)
- use variable font (reduce bundle size by factor of 10)
- change how custom headers are used
- use style injection for building package
- fix tab icon sizes
2023-05-12 21:00:47 +12:00
3d9ecbf3c7 fix(ui): add missing package 2023-05-12 18:55:59 +10:00
032aa1d59c fix(ui): excise most zIndexs
our stacking contexts are accurate, `zIndex` isn't needed
2023-05-12 18:50:54 +10:00
35e0863bdb fix(ui): fix tab icon sizes 2023-05-12 17:56:18 +10:00
14070d674e build(ui): add style injection plugin
when building for package, CSS is all in JS files. when used as a package, it is then injected into the page. bit of a hack to missing CSS in commercial product
2023-05-12 17:56:18 +10:00
108ce06c62 feat(ui): change custom header to be a prop instead of children 2023-05-12 17:56:18 +10:00
da364f3444 feat(ui): use variable font
reduces package build's CSS by an order of magnitude
2023-05-12 17:56:18 +10:00
df5ba75c14 feat(ui): use custom dark mode localStorage key 2023-05-12 17:56:18 +10:00
e4fb9cb33f chore(ui): regen api client 2023-05-12 17:56:18 +10:00
65b527eb20 fix(ui): do not show progress images in uploads gallery category 2023-05-12 17:56:18 +10:00
7dc9d18052 fix(ui): do not show intermediates uploads in gallery 2023-05-12 17:56:18 +10:00
2ef79b8bf3 fix bug in persistent model scheme 2023-05-12 00:14:56 -04:00
5013a4b9f3 feat(ui): expand config options (#3393)
now may disable individual SD features eg Noise, Variation, etc - stuff
which is not ready for consumption in commercial.
2023-05-12 16:10:17 +12:00
f929359322 Merge branch 'main' into feat/ui/expand-config 2023-05-12 16:06:31 +12:00
6522c71971 feat(nodes): add RandomIntInvocation (#3390)
just outputs a single random int
2023-05-12 16:06:06 +12:00
9c1e65f3a3 Merge branch 'main' into feat/nodes/add-randomintinvocation 2023-05-12 15:56:41 +12:00
ebec200ba6 Remove unused import 2023-05-12 13:56:02 +10:00
e559730b6e feat(nodes): add w/h to latents outputs (#3389)
This reduces the number of nodes needed when working with latents (ie
fewer plain integer value nodes)

Also correct a few mistakes in the fields
2023-05-12 15:40:46 +12:00
11ecf438f5 latents.py converted to use model manager service; events emitted 2023-05-11 23:33:24 -04:00
0acb8ed85d Merge branch 'main' into feat/nodes/add-w-h-latentsoutput 2023-05-12 15:23:29 +12:00
8c1c9cd702 Merge branch 'main' into feat/nodes/add-randomintinvocation 2023-05-12 15:21:49 +12:00
0ece4686aa fix(nodes): remove Optionals on ImageOutputs (#3392) 2023-05-12 15:21:42 +12:00
af95cef7f9 Merge branch 'main' into fix/nodes/fix-imageoutput-optionals 2023-05-12 15:08:19 +12:00
1eca7a918a feat(ui): make core parameters layout consistent (#3394) 2023-05-12 15:08:07 +12:00
9e6b958023 Merge branch 'main' into feat/ui/consistent-param-layout 2023-05-12 15:06:16 +12:00
f7b99d93ae docs(ui): update ui readme (#3396) 2023-05-12 15:05:55 +12:00
85d03dcd90 Merge branch 'main' into docs/ui/update-ui-readme 2023-05-12 15:04:12 +12:00
032555bcfe fix(model manager): fix string formatting error on model checksum timer (#3397)
The error occurs when loading a model for the first time. (or after
removing its checksum file, probably.)
2023-05-12 15:04:01 +12:00
4caa1f19b2 fix(model manager): fix string formatting error on model checksum timer 2023-05-11 19:06:02 -07:00
df5b968954 model manager now running as a service 2023-05-11 21:24:29 -04:00
95d4bd3012 Merge branch 'lstein/bugfix/compel' of github.com:invoke-ai/InvokeAI into lstein/bugfix/compel 2023-05-11 21:13:29 -04:00
037078c8ad make InvokeAIDiffuserComponent.custom_attention_control a classmethod 2023-05-11 21:13:18 -04:00
6de2f66b50 docs(ui): update ui readme 2023-05-12 11:11:59 +10:00
cd7b248eda Add UniPC / Euler Karras / DPMPP_2 Karras / DEIS / DDPM Schedulers (#3388)
**Features:**

- Add UniPC Scheduler
- Add Euler Karras Scheduler
- Add DPMPP_2 Karras Scheduler
- Add DEIS Scheduler
- Add DDPM Scheduler

**Other:**

- Renamed schedulers to their accurate names: _a = Ancestral, _k =
Karras
- Fix scheduler not defaulting correctly to DDIM.
- Code split SCHEDULER_MAP so its consistently loaded from the same
place.

**Known Bugs:**

- dpmpp_2s not working in img2img for denoising values < 0.8 ==> // This
seems to be an upstream bug. I've disabled it in img2img and canvas
until the upstream bug is fixed.
https://github.com/huggingface/diffusers/issues/1866
2023-05-12 09:06:22 +12:00
6d8c077f4e Merge branch 'main' into unipc-sched 2023-05-12 05:59:13 +12:00
97127e560e Disable dpmpp_2s in img2img & unifiedCanvas
... until upstream bug is fixed.
2023-05-12 04:51:58 +12:00
27dc07d95a Set zero eta by default(fix ddim scheduler error) 2023-05-11 18:49:27 +03:00
f7dc171c4f Rename default schedulers across the app 2023-05-12 03:44:20 +12:00
4b957edfec Add DDPM Scheduler 2023-05-12 03:18:34 +12:00
46ca7718d9 Add DEIS Scheduler 2023-05-12 03:10:30 +12:00
b928d7a6e6 Change scheduler names to be accurate
_a = Ancestral
_k = Karras
2023-05-12 02:59:43 +12:00
8a836247c8 Add DPMPP Single, Euler Karras and DPMPP2 Multi Karras Schedulers 2023-05-12 02:23:33 +12:00
95c3644564 fix it again 2023-05-12 00:10:39 +10:00
799cd07174 feat(ui): make core parameters layout consistent 2023-05-11 22:45:53 +10:00
9af385468d feat(ui): expand config options
now may disable individual SD features eg Noise, Variation, etc - stuff which is not ready for consumption in commercial.
2023-05-11 22:42:13 +10:00
3487388788 Merge branch 'unipc-sched' of https://github.com/blessedcoolant/InvokeAI into unipc-sched 2023-05-12 00:40:24 +12:00
9a383e456d Codesplit SCHEDULER_MAP for reusage 2023-05-12 00:40:03 +12:00
805f9f8f4a Merge branch 'main' into unipc-sched 2023-05-12 00:24:55 +12:00
52aa0c9bbd ui: miscellaneous fixes (#3386) 2023-05-12 00:21:29 +12:00
7f5f4689cc fix(ui): clear progress image on cancel 2023-05-11 22:20:37 +10:00
a3f81f4b98 fix(ui): fix results not displaying
- fix for commercial product
2023-05-11 22:20:37 +10:00
15c59e606f feat(ui): add spinner to gallery progress images
- otherwise you may think you can click it but you cannot
2023-05-11 22:20:37 +10:00
40d4cabecd feat(ui): improve image overlay 2023-05-11 22:20:37 +10:00
3493c8119b feat(ui): improve image preview css and fallback 2023-05-11 22:20:30 +10:00
c1e7460d39 Merge branch 'main' into unipc-sched 2023-05-12 00:11:09 +12:00
3ffff023b2 Add missing key to scheduler_map
It was breaking coz the sampler was not being reset. So needs a key on each. Will simplify this later.
2023-05-12 00:08:50 +12:00
f9384be59b fix(ui): fix init image causing overflow 2023-05-11 20:55:30 +10:00
6cf308004a fix(nodes): remove Optionals on ImageOutputs 2023-05-11 20:54:57 +10:00
d1029138d2 Default to DDIM if scheduler is missing 2023-05-11 22:54:35 +12:00
06b5800d28 Add UniPC Scheduler 2023-05-11 22:43:18 +12:00
483f2ccb56 feat(nodes): add RandomIntInvocation
just outputs a single random int
2023-05-11 20:33:32 +10:00
93ced0bec6 feat(nodes): add w/h to latents outputs
This reduces the number of nodes needed when working with latents (ie fewer plain integer value nodes)

Also correct a few mistakes in the fields
2023-05-11 20:32:55 +10:00
4333852c37 fix(nodes): fix missing context arg in LatentsToLatents 2023-05-11 19:28:42 +10:00
3baa230077 Merge branch 'main' into lstein/bugfix/compel 2023-05-11 00:50:45 -04:00
9e594f9018 pad conditioning tensors to same length
fixes crash when prompt length is greater than 75 tokens
2023-05-11 00:34:15 -04:00
8ad8c5c67a resolve conflicts with main 2023-05-11 00:19:20 -04:00
590942edd7 Merge branch 'main' into lstein/new-model-manager 2023-05-11 00:16:03 -04:00
4627910c5d added a wrapper model_manager_service and model events 2023-05-11 00:09:19 -04:00
b0c41b4828 filter our websocket errors (#3382)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-05-11 01:58:40 +00:00
e0d6946b6b fix(nodes): fix metadata test
- `progress_images` is no longer a parameter
- `seamless` needs to be reworked as a model config, removed as a param
2023-05-11 11:55:51 +10:00
bf7ea8309f fix(ui): change tab to img2img when selected initial image 2023-05-11 11:55:51 +10:00
54b65f725f fix(ui): rescale canvas on gallery resize 2023-05-11 11:55:51 +10:00
8ef49c2640 fix(ui): fix canvas img2img if no init image selected 2023-05-11 11:55:51 +10:00
f488b1a7f2 fix(nodes): fix usage of Optional 2023-05-11 11:55:51 +10:00
d2edb7c402 build(ui): add yalc to gitignore 2023-05-11 11:55:51 +10:00
f0a3f07b45 feat(ui): antialias progress images 2023-05-11 11:55:51 +10:00
b42b630583 fix(ui): h/w disabled bug 2023-05-11 11:55:51 +10:00
31a78d571b feat(ui): canvas antialiasing 2023-05-11 11:55:51 +10:00
fdc2232ea0 feat(ui): progress images in gallery and viewer 2023-05-11 11:55:51 +10:00
e94d0b2d40 fix(ui): fix janky gallery image delete 2023-05-11 11:55:51 +10:00
75ccbaee9c fix(ui): disable invoke button as soon as pressed 2023-05-11 11:55:51 +10:00
2848c8397c fix(ui): fix missing images on reload issue
- Mainly an issue for commercial due to incomplete metadata handling
2023-05-11 11:55:51 +10:00
fe8b5193de feat(ui): half-baked use all parameters
until we have a better system for metadata, this will remain half-baked
2023-05-11 11:55:51 +10:00
3d1470399c fix(ui): fix metadataviewer styling 2023-05-11 11:55:51 +10:00
fcf9c63049 fix(ui): fix copying image link 2023-05-11 11:55:51 +10:00
7bfb5640ad cleanup(ui): Remove unused vars + minor bug fixes 2023-05-11 11:55:51 +10:00
15e57e3a3d fix(ui): duplicate gallery in nodes editor 2023-05-11 11:55:51 +10:00
279468c0e8 feat(ui): restore tab names 2023-05-11 11:55:51 +10:00
c565812723 feat(ui): organize parameters panels 2023-05-11 11:55:51 +10:00
ec6c8e2a38 feat(ui): wip layout 2023-05-11 11:55:51 +10:00
77f2690711 fix(ui): remove duplicate gallery 2023-05-11 11:55:51 +10:00
c4b3a24ed7 feat(ui): revert tabs to txt2img/img2img 2023-05-11 11:55:51 +10:00
33c69359c2 feat(ui): add IAICollapse for parameters 2023-05-11 11:55:51 +10:00
864f4bb4af feat(ui): wip img2img layouting 2023-05-11 11:55:51 +10:00
5365f42a04 feat(ui): wip layouting 2023-05-11 11:55:51 +10:00
3dc60254b9 feat(ui): support collect nodes 2023-05-11 11:55:51 +10:00
027a8562d7 fix(ui): default node model selection 2023-05-11 11:55:51 +10:00
34f3a0f0e3 feat(nodes): improve default model choosing output 2023-05-11 11:55:51 +10:00
d0bac1675e fix(nodes): fix ImageOutput Config 2023-05-11 11:55:51 +10:00
4e56c962f4 fix(nodes): fix infill docstrings 2023-05-11 11:55:51 +10:00
4ef0e43759 fix(nodes): remove dataURL invocation 2023-05-11 11:55:51 +10:00
6945d10297 chore(ui): regen api client 2023-05-11 11:55:51 +10:00
4d6cef7ac8 fix(ui): fix types bug 2023-05-11 11:55:51 +10:00
a7786d5ff2 fix(nodes): restore seamless to TextToLatents 2023-05-11 11:55:51 +10:00
6c1de975d9 feat(nodes): add infill nodes 2023-05-11 11:55:51 +10:00
a1079e455a feat(nodes): cleanup unused params, seed generation 2023-05-11 11:55:51 +10:00
5457c7f069 fix(ui): use lodash-es instead of lodash 2023-05-11 11:55:51 +10:00
b8c1a3f96c chore(ui): remove unused babelrc & npm script 2023-05-11 11:55:51 +10:00
cee8e85f76 chore(ui): bump redux-remember 2023-05-11 11:55:51 +10:00
09f166577e feat(ui): migrate to redux-remember 2023-05-11 11:55:51 +10:00
bcc21531fb feat(ui): update for InfillInvocation 2023-05-11 11:55:51 +10:00
da4eacdffe feat(nodes): add InfillInvocation 2023-05-11 11:55:51 +10:00
6102e560ba feat(nodes): add LatentsToImage node (VAE encode) 2023-05-11 11:55:51 +10:00
ff3aa57117 feat(ui): fix endless gallery scroll for single col layout 2023-05-11 11:55:51 +10:00
49db6f4fac fix(nodes): fix trivial typing issues 2023-05-11 11:55:51 +10:00
20f6a597ab fix(nodes): add MetadataColorField 2023-05-11 11:55:51 +10:00
04c453721c feat(ui): tweak gallery loading indicator 2023-05-11 11:55:51 +10:00
350ffecc1f feat(ui): endless gallery scroll 2023-05-11 11:55:51 +10:00
b0557aa16b fix(ui): fix currentimagepreview not working for uploads 2023-05-11 11:55:51 +10:00
1c9429a6ea feat(ui): wip canvas 2023-05-11 11:55:51 +10:00
206e6b1730 feat(nodes): wip inpaint node 2023-05-11 11:55:51 +10:00
357cee2849 fix(nodes): fix cfg scale min value 2023-05-11 11:55:51 +10:00
0b49997bb6 feat(nodes): allow uploaded images to be any ImageType (eg intermediates) 2023-05-11 11:55:51 +10:00
5e09dd380d Revert "feat(nodes): free gpu mem after invocation"
This reverts commit 99cb33f477306d5dcc455efe04053ce41b8d85bd.
2023-05-11 11:55:51 +10:00
c7303adb0d feat(ui): fix generation mode logic 2023-05-11 11:55:51 +10:00
ed1f096a6f feat(ui): wip canvas migration 4 2023-05-11 11:55:51 +10:00
6ab5d28cf3 feat(ui): wip canvas migration, createListenerMiddleware 2023-05-11 11:55:51 +10:00
a75148cb16 feat(nodes): free gpu mem after invocation 2023-05-11 11:55:51 +10:00
f7bbc4004a feat(ui): wip canvas nodes migration 3 2023-05-11 11:55:51 +10:00
cee21ca082 feat(ui): wip canvas nodes migration 2 2023-05-11 11:55:51 +10:00
08ec12b391 feat(ui): wip canvas nodes migration 2023-05-11 11:55:51 +10:00
ff5e2a9a8c chore(ui): regen api client 2023-05-11 11:55:51 +10:00
e0b9b5cc6c feat(nodes): add dataURL to image node 2023-05-11 11:55:51 +10:00
aca4770481 fixed compel.py as requested 2023-05-10 21:40:44 -04:00
5d5157fc65 make conditioning.py work with compel 1.1.5 2023-05-10 18:08:33 -04:00
fb6ef61a4d change path for locale (#3381)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-05-10 10:30:17 -04:00
ee24ad7b13 fix(nodes): fix broken docs routes 2023-05-10 08:28:17 -04:00
f8e90ba3f0 feat(nodes): add ui build static route 2023-05-10 08:28:17 -04:00
ad0b70ca23 fix(nodes): fix #3306 (#3377)
Check if the cache has the object before deleting it.
2023-05-10 17:39:45 +12:00
7dfa135b2c fix(nodes): fix #3306
Check if the cache has the object before deleting it.
2023-05-10 15:29:10 +10:00
beeaa05658 Update dependencies to get deterministic image generation behavior (main branch) (#3354)
This PR updates to `xformers ~= 0.0.19` and `torch ~= 2.0.0`, which
together seem to solve the non-deterministic image generation issue that
was previously seen with earlier versions of `xformers`.
2023-05-10 00:10:51 -04:00
fa6a580452 merge with main 2023-05-10 00:03:32 -04:00
6b6d654f60 Merge branch 'main' into enhance/update-dependencies 2023-05-09 23:56:46 -04:00
99c692f397 check that model name matches format 2023-05-09 23:46:59 -04:00
3d85e769ce clean up ckpt handling
- remove legacy ckpt loading code from model_cache
- added placeholders for lora and textual inversion model loading
2023-05-09 22:44:58 -04:00
9cb962cad7 ckpt model conversion now done in ModelCache 2023-05-08 23:39:44 -04:00
853c83d0c2 surface detail field for 403 errors 2023-05-09 12:40:19 +10:00
a108155544 added StALKeR779's great model size calculating routine 2023-05-08 21:47:03 -04:00
1809990ed4 if backend returns an error, show it in toast 2023-05-09 11:09:36 +10:00
79d49853d2 use websocket transport first for socket.io 2023-05-09 11:01:02 +10:00
1f608d3743 add v2.3 branch to push trigger (#3363)
Update the push trigger with the branch which should deploy the docs,
also bring over the updates to the workflow from the v2.3 branch and:

- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method (`pip install ".[docs]"`)
2023-05-08 16:26:06 -04:00
df024dd982 bring changes from v2.3 branch over
- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method
2023-05-08 21:50:00 +02:00
45da85765c add v2.3 branch to push trigger 2023-05-08 21:10:20 +02:00
c15b49c805 implement StALKeR7779 requested API for fetching submodels 2023-05-07 23:18:17 -04:00
fd63e36822 optimize subfolder so that it returns submodel if parent is in RAM 2023-05-07 21:39:11 -04:00
4649920074 adjust t2i to work with new model structure 2023-05-07 19:06:49 -04:00
667171ed90 cap model cache size using bytes, not # models 2023-05-07 18:07:28 -04:00
bd0ad59c27 bump compel version 2023-05-07 15:22:46 -04:00
cce40acba5 Merge branch 'enhance/update-dependencies' of github.com:invoke-ai/InvokeAI into enhance/update-dependencies 2023-05-07 15:22:31 -04:00
bc9491ab69 bump compel version 2023-05-07 15:21:24 -04:00
f28632980d Merge branch 'main' into lstein/global-configuration 2023-05-07 07:52:46 -04:00
b909bac0dc Merge branch 'main' into enhance/update-dependencies 2023-05-07 21:44:43 +12:00
8618e41b32 Deploy documentation from v2.3 branch rather than main (#3356)
This PR instructs github to deploy documentation pages from the v2.3
branch.
2023-05-07 21:43:44 +12:00
4687f94141 Merge branch 'main' into actions/mkdocs-deploy 2023-05-07 21:43:18 +12:00
440912dcff feat(ui): make base log level debug 2023-05-07 15:36:37 +10:00
8b87a26e7e feat(ui): support collect nodes 2023-05-07 15:36:37 +10:00
44ae93df3e Deploy documentation from v2.3 branch rather than main 2023-05-06 23:56:04 -04:00
42d938fda5 remove debugging statement 2023-05-06 23:54:11 -04:00
8f80ba9520 update dependencies to get deterministic image generation 2023-05-06 23:09:24 -04:00
25ce47c44f remove reference to globals in compel.py 2023-05-06 22:49:35 -04:00
647ffb2a0f defined abstract baseclass for model manager service 2023-05-06 22:41:19 -04:00
afd2e32092 Merge branch 'main' into lstein/global-configuration 2023-05-06 21:20:25 -04:00
05a27bda5e generalize model loading support, include loras/embeds 2023-05-06 15:58:44 -04:00
2b213da967 add -y to the automated install instructions (#3349)
hi there, love the project! i noticed a small typo when going over the
install process.

when copying the automated install instructions from the docs into a
terminal, the line to install the python packages failed as it was
missing the `-y` flag.
2023-05-06 13:34:37 -04:00
e91e1eb9aa Merge branch 'main' into patch-1 2023-05-06 13:34:12 -04:00
b24129fb3e Fix logger namespace clash in web server (#3344)
This PR fixes a bug that appeared in the legacy web server after the
logging PR was merged.

closes #3343
2023-05-06 08:35:13 -04:00
350b1421bb Merge branch 'main' into lstein/bugfix/logger-namespace 2023-05-06 08:14:44 -04:00
a8cfa3565c Merge branch 'lstein/new-model-manager' of github.com:invoke-ai/InvokeAI into lstein/new-model-manager 2023-05-06 08:14:15 -04:00
e0214a32bc mostly ported to new manager API; needs testing 2023-05-06 00:44:12 -04:00
f01c79a94f add -y to the automated install instructions
when copying the automated install instructions from the docs into a terminal, the line to install the python packages failed as it was missing the `-y` flag.
2023-05-05 21:28:00 -04:00
463f6352ce Add compel node and conditioning field type (#3265)
Done as I said in title, but need to test(and understand) how cli works,
as previously it uses single prompt and now it's positive and negative.
2023-05-06 13:05:04 +12:00
af8c7c7d29 model manager rewritten to use model_cache; API changed! 2023-05-05 19:32:28 -04:00
a80fe05e23 Rename compel node 2023-05-05 21:30:16 +03:00
58d7833c5c Review changes 2023-05-05 21:09:29 +03:00
5012f61599 Separate conditionings back to positive and negative 2023-05-05 15:47:51 +03:00
a4e36bc02a when model is forcibly moved into RAM update loaded_models set 2023-05-04 23:28:03 -04:00
2e9bec15e7 Merge branch 'main' into lstein/new-model-manager 2023-05-04 23:19:38 -04:00
68bc0112fa implement lazy GPU offloading and ref counting 2023-05-04 23:15:32 -04:00
85c33823c3 Merge branch 'main' into feat/compel_node 2023-05-05 14:41:45 +12:00
c83a112669 Fix inpaint node (#3284)
Seems like this is the only change needed for the existing inpaint code
to work as a node. Kyle said on Discord that inpaint shouldn't be a
node, so feel free to just reject this if this code is going to be gone
soon.
2023-05-05 14:41:13 +12:00
e04ada1319 Merge branch 'main' into patch-1 2023-05-05 10:38:45 +10:00
d866dcb3d2 close #3343 2023-05-04 20:30:59 -04:00
81ec476f3a Revert seed field addition 2023-05-04 21:50:40 +03:00
1e6adf0a06 Fix default graph and test 2023-05-04 21:14:31 +03:00
7d221e2518 Combine conditioning to one field(better fits for multiple type conditioning like perp-neg) 2023-05-04 20:14:22 +03:00
742ed19d66 add missing config module 2023-05-04 01:20:30 -04:00
29c2ada23c add test for the configuration module 2023-05-04 00:45:52 -04:00
e4196bbe5b adjust non-app modules to use new config system 2023-05-04 00:43:51 -04:00
15ffb53e59 remove globals, args, generate and the legacy CLI 2023-05-03 23:36:51 -04:00
90054ddf0d use InvokeAISettings for app-wide configuration 2023-05-03 22:30:30 -04:00
a273bdbdc1 Merge branch 'main' into lstein/new-model-manager 2023-05-03 18:09:29 -04:00
56d3cbead0 Merge branch 'main' into feat/compel_node 2023-05-04 00:28:33 +03:00
5e8c97f1ba [Enhancement] Regularize logging messages (#3176)
# Intro

This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions:

```
 ### A critical error
 *** A non-fatal error
 ** A warning
  >> Informational message
        | Debugging message
```

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add InvokeAI's
informational message decorations, while `ialog.error("foo")` will add
the decorations.
    
# Usage:

This is a thin wrapper around the standard Python logging module. It can
be used in several ways:


## Module-level logging style
 
This style logs everything through a single default logging object and
is identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus to
logging:
    
```
      import invokeai.backend.util.logging as logger
    
      logger.debug('this is a debugging message')
      logger.info('this is a informational message')
      logger.log(level=logging.CRITICAL, 'get out of dodge')

      logger.disable(level=logging.INFO)
      logger.basicConfig(filename='/var/log/invokeai.log')
      logger.error('this will be logged to console and to invokeai.log')
```    

Internally these functions all go through a custom logging object named
"invokeai". You can access it to perform additional customization in
either of these ways:

```
logger = logger.getLogger()
logger = logger.getLogger('invokeai')
```
    
## Object-oriented style

For more control, the logging module's object-oriented logging style is
also supported. The API is identical to the vanilla logging usage. In
fact, the only thing that has changed is that the getLogger() method
adds a custom formatter to the log messages.
    
```
     import logging
     from invokeai.backend.util.logging import InvokeAILogger
    
     logger = InvokeAILogger.getLogger(__name__)
     fh = logging.FileHandler('/var/invokeai.log')
     logger.addHandler(fh)
     logger.critical('this will be logged to both the console and the log file')
```

## Within the nodes API

From within the nodes API, the logger module is stored in the `logger`
slot of InvocationServices during dependency initialization. For
example, in a router, the idiom is:

```
from ..dependencies import ApiDependencies
logger = ApiDependencies.invoker.services.logger
logger.warning('uh oh')
```

Currently, to change the logger used by the API, one must change the
logging module passed to `ApiDependencies.initialize()` in `api_app.py`.
However, this will eventually be replaced with a method to select the
preferred logging module using the configuration file (dependent on
merging of PR #3221)
2023-05-03 15:00:05 -04:00
4687ad4ed6 Merge branch 'main' into enhance/invokeai-logs 2023-05-03 13:36:06 -04:00
8a0ec0fa0f Merge branch 'main' into lstein/new-model-manager 2023-05-03 13:30:50 -04:00
e1fed52c66 work on model cache and its regression test finished 2023-05-03 12:38:18 -04:00
994b247f8e feat(ui): do not persist gallery images
- I've sorted out the issues that make *not* persisting troublesome, these will be rolled out with canvas
- Also realized that persisting gallery images very quickly fills up localStorage, so we can't really do it anyways
2023-05-03 23:41:48 +10:00
bb959448c1 implement hashing for local & remote models 2023-05-02 16:52:27 -04:00
0419f50ab0 chore(ui): bump react-virtuoso
- Resolves an issue with gallery not rendering all items
2023-05-02 20:15:29 +10:00
f9f40adcdc fix(nodes): fix t2i graph
Removed width and height edges.
2023-05-02 13:11:28 +10:00
2e2abf6ea6 caching of subparts working 2023-05-01 22:57:30 -04:00
3264d30b44 feat(nodes): allow multiples of 8 for dimensions 2023-05-02 12:01:52 +10:00
4d885653e9 feat(ui): tidy 2023-05-02 11:27:08 +10:00
475b6bef53 feat(ui): use windowing for gallery
vastly improves the gallery performance when many images are loaded.

- `react-virtuoso` to do the virtualized list
- `overlayscrollbars` for a scrollbar
2023-05-02 11:27:08 +10:00
d39de0ad38 fix(nodes): fix duplicate Invoker start/stop events 2023-05-01 18:24:37 -04:00
d14a7d756e nodes-api: enforce single thread for the processor
On hyperthreaded CPUs we get two threads operating on the queue by
default on each core. This cases two threads to process queue items.
This results in pytorch errors and sometimes generates garbage.

Locking this to single thread makes sense because we are bound by the
number of GPUs in the system, not by CPU cores. And to parallelize
across GPUs we should just start multiple processors (and use async
instead of threading)

Fixes #3289
2023-05-01 18:24:37 -04:00
b050c1bb8f use logger in ApiDependencies 2023-05-01 16:27:44 -04:00
276dfc591b feat(ui): disable w/h when img2img & not fit 2023-05-01 17:28:22 +10:00
b49d76ebee feat(nodes): fix image to image fit param
it was ignored previously.
2023-05-01 17:28:22 +10:00
a6be44789b fix(ui): progress image rerender, checkbox 2023-05-01 11:16:49 +10:00
a4313c26cb fix: Do not hide Preview button & color code it 2023-05-01 11:16:49 +10:00
d4b250d509 feat(ui): Add auto show progress previews setting 2023-05-01 11:16:49 +10:00
29743a9e02 fix(ui): next/prev image buttons 2023-05-01 11:16:49 +10:00
fecb77e344 feat(ui): dndkit --> rnd for draggable 2023-05-01 11:16:49 +10:00
779671753d feat(ui): tweak floating preview 2023-05-01 11:16:49 +10:00
d5e152b35e fix(ui): ignore events after canceling session 2023-05-01 11:16:49 +10:00
270657a62c feat(ui): gallery & progress image refactor 2023-05-01 11:16:49 +10:00
3601b9c860 feat(ui): revamp status indicator 2023-05-01 11:16:49 +10:00
c8fe12cd91 feat(ui): init image tweaks 2023-05-01 11:16:49 +10:00
deae5fbaec fix(ui): socket event types 2023-05-01 11:16:49 +10:00
5b558af2b3 fix(ui): fix metadata viewer scroll 2023-05-01 11:16:49 +10:00
4150d5306f chore(ui): regen api client 2023-05-01 11:16:49 +10:00
8c2e4700f9 feat(ui): persist gallery state 2023-05-01 11:16:49 +10:00
adaecada20 fix(ui): fix current image seed button 2023-05-01 11:16:49 +10:00
258895bcc9 feat(ui): being dismantling old sio stuff, fix recall seed/prompt/init
- still need to fix up metadataviewer's recall features
2023-05-01 11:16:49 +10:00
2eb7c25bae feat(ui): clean up and simplify socketio middleware 2023-05-01 11:16:49 +10:00
2e4e9434c1 fix(ui): fix initial image for uploads 2023-05-01 11:16:49 +10:00
0cad204e74 feat(ui): add error handling for linear graph generation 2023-05-01 11:16:49 +10:00
0bc2edc044 Merge branch 'main' into enhance/invokeai-logs 2023-04-29 11:00:18 -04:00
16488e7db8 fix tests 2023-04-29 10:59:50 -04:00
974841926d logger is a interchangeable service 2023-04-29 10:48:50 -04:00
8db20e0d95 rename log to logger throughout 2023-04-29 09:43:40 -04:00
d00d29d6b5 feat(ui): update settings modal 2023-04-29 18:28:19 +10:00
dc976cd665 feat(ui): add switch for logging 2023-04-29 18:28:19 +10:00
6d6b986a66 feat(ui): remove Console and redux logging state 2023-04-29 18:28:19 +10:00
bffdede0fa feat(ui): improve log messages 2023-04-29 18:28:19 +10:00
a4c258e9ec feat(ui): add roarr logger 2023-04-29 18:28:19 +10:00
8d837558ac fix(ui): fix spelling of systemPersistDenylist.ts 2023-04-29 18:28:19 +10:00
e673ed08ec fix(ui): restore missing chakra-cli package
(amending to try and get the workflow to run)
2023-04-29 12:21:11 +10:00
f0e07bff5a fix bad logging path in config script 2023-04-28 15:39:00 -04:00
3ec06a1fc3 Merge branch 'main' into enhance/invokeai-logs 2023-04-28 10:10:33 -04:00
6b79e2b407 Merge branch 'main' into enhance/invokeai-logs
- resolve conflicts
- remove unused code identified by pyflakes
2023-04-28 10:09:46 -04:00
0eed9dbc44 fix(ui): fix packaging import issue (#3294)
I accidentally merged a broken #3292 (merge conflicts incorrectly
resolved). Fixing it
2023-04-29 00:39:56 +12:00
53c7832fd1 fix(ui): fix packaging import issue 2023-04-28 22:37:51 +10:00
ca1cc0e2c2 feat(ui): rerender mitigation sweep 2023-04-28 22:00:18 +10:00
5d8728c7ef feat(ui): persist socket session ids and re-sub on connect 2023-04-28 22:00:18 +10:00
a8cec4c7e6 fix(ui): improve schema parsing error handling 2023-04-28 22:00:18 +10:00
2b5ccdc55f build(ui): treeshake lodash via lodash-es 2023-04-28 21:56:43 +10:00
d92d5b5258 build(ui): fix types exports 2023-04-28 21:56:43 +10:00
a591184d2a build(ui): remove unneeded types file 2023-04-28 21:56:43 +10:00
ee881e4c78 build(ui): add react/react-dom peer deps 2023-04-28 21:56:43 +10:00
61fbb24e36 feat(ui): set up for packaging 2023-04-28 21:56:43 +10:00
d582949488 feat(ui): rename main app components 2023-04-28 21:56:43 +10:00
de574eb4d9 chore(ui): upgrade all packages 2023-04-28 21:56:43 +10:00
bfd90968f1 chore(ui): tidy npm structure 2023-04-28 21:56:43 +10:00
956ad6bcf5 add redesigned model cache for diffusers & transformers 2023-04-28 00:41:52 -04:00
4a924c9b54 feat(nodes): hardcode resize latents downsampling 2023-04-28 09:52:09 +10:00
0453d60c64 fix(nodes): fix slatents and rlatents bugs 2023-04-28 09:52:09 +10:00
c4f4f8b1b8 fix(nodes): remove unused width and height from t2l 2023-04-28 09:52:09 +10:00
3e80eaa342 feat(nodes): add resize and scale latents nodes
- this resize/scale latents is what is needed for hires fix
- also remove unused `seed` from t2l
2023-04-28 09:52:09 +10:00
00a0cb3403 fix(ui): update exported types 2023-04-28 09:20:09 +10:00
ea93cad5ff fix(ui): update to match change in route params 2023-04-28 09:19:03 +10:00
4453a0d20d feat(ui): remove toasts for network bc we have status to tell us 2023-04-28 09:18:19 +10:00
1e837e3c9d fix(ui): add formatted neg prompt for linear nodes (#3282)
* fix(ui): add formatted neg prompt for linear nodes

* remove conditional

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-27 15:05:35 -04:00
0f95f7cea3 Fix inpaint node
Seems like this is the only change needed for the existing inpaint node to work.
2023-04-27 11:03:07 -07:00
0b0068ab86 Merge branch 'main' into feat/compel_node 2023-04-27 14:53:10 +03:00
31c7fa833e feat(ui): simplify image display 2023-04-27 14:10:44 +10:00
db16ca0079 fix(ui): Current Image Buttons position 2023-04-27 14:10:44 +10:00
a824f47bc6 fix(nodes): use absolute path when deleting 2023-04-27 14:10:44 +10:00
99392debe8 feat(ui): refactor DeleteImageModal
- refactor the component
- use translations
- add config for systems where deleted images are not sent to bin (only changes the messaging)
2023-04-27 14:10:44 +10:00
0cc739afc8 feat(nodes): use send2trash to delete images, fix thumbnail_path 2023-04-27 14:10:44 +10:00
0ab62b0343 feat(ui): "blacklist" -> "denylist" 2023-04-27 14:10:44 +10:00
75d25dd5cc feat(ui): restore image deletion functionality 2023-04-27 14:10:44 +10:00
2e54da13d8 chore(ui): regen api client 2023-04-27 14:10:44 +10:00
f34f416bf5 fix(ui): handle floats in NumberInputFieldComponent 2023-04-27 14:10:44 +10:00
021c63891d fix(ui): fix config types and merging 2023-04-27 14:10:44 +10:00
a968862e6b feat(ui): Move img2img badge info to top right 2023-04-27 14:10:44 +10:00
a08189d457 ui: Match styling of img2img to the rest of the accordions 2023-04-27 14:10:44 +10:00
0a936696c3 feat(ui): add config slice, configuration default values 2023-04-27 14:10:44 +10:00
55e33eaf4c docs: add note on README about migration (#3277) 2023-04-27 13:17:43 +12:00
3da5fb223f docs: add note on README about migration 2023-04-27 11:05:32 +10:00
a3c5a664e5 fix(ui): update UI to handle uploads with alternate URLs (#3274) 2023-04-26 07:14:08 -07:00
b638fb2f30 fix(ui): use name in response instead of parsing out of URL to handle alternative URLs 2023-04-26 09:48:16 -04:00
c1b10b2222 feat(ui): open in new tab @ hoverable image 2023-04-26 12:40:10 +10:00
bee29714d9 fix(ui): fix templates not refreshing correctly 2023-04-26 12:40:10 +10:00
d40d5276dd feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
568f0aad71 feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
38474fa9d4 feat(ui): add lil spinner to loading 2023-04-26 12:17:01 +10:00
f7f974a28b fix(ui): fix inverted conditional 2023-04-26 12:17:01 +10:00
3c150b384c fix(ui): fix export of ApplicationFeature type 2023-04-26 12:17:01 +10:00
65816049ba feat(ui): add secret loading screen override button 2023-04-26 12:17:01 +10:00
c1c881ded5 feat(ui): support disabledFeatures, add nicer loading
- `disabledParametersPanels` -> `disabledFeatures`
- handle disabling `faceRestore`, `upscaling`, `lightbox`, `modelManager` and OSS header links/buttons
- wait until models are loaded to hide loading screen
- also wait until schema is parsed if `nodes` is an enabled tab
2023-04-26 12:17:01 +10:00
82c4dd8b86 fix(api): return same URL on location header 2023-04-26 06:29:30 +10:00
711d09a107 feat(nodes): add get_uri method to image storage
- gets the external URI of an image
2023-04-26 06:29:30 +10:00
74013b6611 fix(nodes): address feedback 2023-04-26 06:29:30 +10:00
790f399986 feat(nodes): tidy images routes 2023-04-26 06:29:30 +10:00
73cdd36594 feat(nodes): raise HTTPExceptions instead of returning Reponses 2023-04-26 06:29:30 +10:00
50ac3eb28d feat(nodes): add delete_image & delete_images routes 2023-04-26 06:29:30 +10:00
d753cff91a Undo debug message 2023-04-25 13:18:50 +03:00
89f1909e4b Update default graph 2023-04-25 13:11:50 +03:00
37916a22ad Use textual inversion manager from pipeline, remove extra conditioning info for uc 2023-04-25 12:53:13 +03:00
76e5d0595d fix(ui): fix no progress images when gallery is empty (#3268)
When gallery was empty (and there is therefore no selected image), no
progress images were displayed.

- fix by correcting the logic in CurrentImageDisplay
- also fix app crash introduced by fixing the first bug
2023-04-25 17:48:24 +12:00
f03cb8f134 fix(ui): fix no progress images when gallery is empty 2023-04-25 15:00:54 +10:00
c2a0e8afc3 [Bugfix] prevent cli crash (#3132)
Prevent legacy CLI crash caused by removal of convert option
    
- Compensatory change to the CLI that prevents it from crashing when it
tries to import a model.
- Bug introduced when the "convert" option removed from the model
manager.
2023-04-25 03:55:33 +01:00
31a904b903 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:28:45 +01:00
c174cab3ee [Bugfix] fixes and code cleanup to update and installation routines (#3101)
- Fix the update script to work again and fixes the ambiguity between
when a user wants to update to a tag vs updating to a branch, by making
these two operations explicitly separate.
- Remove dangling functions and arguments related to legacy checkpoint
conversion. These are no longer needed now that all legacy models are
either converted at import time, or on-the-fly in RAM.
2023-04-25 03:28:23 +01:00
fe12938c23 update to diffusers 0.15 and fix code for name changes (#3201)
- This is a port of #3184 to the main branch
2023-04-25 03:23:24 +01:00
4fa5c963a1 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:10:51 +01:00
48ce256ba2 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-25 02:49:59 +01:00
8cb2fa8600 Restore log_tokenization check 2023-04-25 04:29:17 +03:00
8f460b92f1 Make latent generation nodes use conditions instead of prompt 2023-04-25 04:21:03 +03:00
d99a08a441 Add compel node and conditioning field type 2023-04-25 03:48:44 +03:00
7555b1f876 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly (#3256)
I noticed that the current invokeai-new.py was using almost all of a CPU
core. After a bit of profileing I noticed that there were many thousands
of calls to epoll() which suggested to me that something wasn't sleeping
properly in asyncio's loop.

A bit of further investigation with Python profiling revealed that the
__dispatch_from_queue() method in FastAPIEventService
(app/api/events.py:33) was also being called thousands of times.

I believe the asyncio.sleep(0.001) in that method is too aggressive (it
means that the queue will be polled every 1ms) and that 0.1 (100ms) is
still entirely reasonable.
2023-04-24 19:35:27 +12:00
a537231f19 Merge branch 'main' into reduce-event-polling 2023-04-24 19:14:10 +12:00
8044d1b840 translationBot(ui): update translation (Turkish)
Currently translated at 11.3% (58 of 512 strings)

translationBot(ui): added translation (Turkish)

Co-authored-by: ismail ihsan bülbül <e-ben@msn.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/tr/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
2b58ce4ae4 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 75.0% (380 of 506 strings)

Co-authored-by: Patrick Tien <ivetien@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
ef605cd76c translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

Co-authored-by: Fabian Bahl <fabian98@bahl-netz.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
a84b5b168f translationBot(ui): update translation (Swedish)
Currently translated at 34.7% (176 of 506 strings)

translationBot(ui): added translation (Swedish)

Co-authored-by: figgefigge <qvintuz@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/sv/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
16f6ee04d0 translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

translationBot(ui): update translation (German)

Currently translated at 80.8% (409 of 506 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
44be057aa3 translationBot(ui): update translation (Ukrainian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (English)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Ukrainian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/en/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
422f6967b2 translationBot(ui): update translation (Ukrainian)
Currently translated at 75.8% (384 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 85.5% (433 of 506 strings)

Co-authored-by: mitien <mitien@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
4528cc8ba6 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
87e91ebc1d translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
fd00d111ea translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (504 of 504 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
b8dc9000bd translationBot(ui): update translation (German)
Currently translated at 73.4% (370 of 504 strings)

Co-authored-by: Jaulustus <jaulustus@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
58c1066765 translationBot(ui): update translation (Finnish)
Currently translated at 18.2% (92 of 504 strings)

translationBot(ui): added translation (Finnish)

Co-authored-by: Juuso V <juuso.vantola@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fi/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
37096a697b translationBot(ui): added translation (Mongolian)
Co-authored-by: Bouncyknighter <gebifirm@gmail.com>
2023-04-24 16:05:16 +10:00
17d0920186 translationBot(ui): update translation (Japanese)
Currently translated at 73.0% (368 of 504 strings)

Co-authored-by: 唐澤 克幸 <4ranci0ne@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
1e05538364 translationBot(ui): added translation (Vietnamese)
Co-authored-by: techybrain-dev <techybrain.dev@gmail.com>
2023-04-24 16:05:16 +10:00
cf28617cd6 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly 2023-04-23 21:27:02 +01:00
d0d8640711 feat(ui): add reload schema button (#3252) 2023-04-23 19:51:37 +12:00
e6158d1874 feat(ui): add reload schema button 2023-04-23 17:49:02 +10:00
2e9d1ea8a3 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL (#3250)
* if `shouldFetchImages` is passed in, UI will make an additional
request to get valid image URL when an invocation is complete
* this is necessary in order to have optional authorization for images
2023-04-23 16:00:13 +10:00
59b0153236 add to types 2023-04-23 15:59:55 +10:00
9f8ff912c4 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL 2023-04-23 15:59:55 +10:00
f0e4a2124a [Nodes UI] More Work (#3248)
- Style the Minimap
- Made the Node UI Legend Responsive
- Set Min Width for nodes on Spawn so resize doesn't snap.
- Initial Implementation of Node Search
- Added FuseJS to handle the node filtering
2023-04-23 17:51:40 +12:00
11ab5c7d56 fix(ui): Fix up arrow not working on unfiltered list 2023-04-23 15:18:35 +12:00
3f334d9e5e feat(ui): Add fusejs to NodeSearch 2023-04-23 15:14:44 +12:00
ff891b1ff2 feat(ui): Basic Node Search Component
Very buggy
2023-04-23 13:35:02 +12:00
2914ee10b0 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-22 20:21:59 +01:00
e29c2fb782 Merge branch 'more-nodes-work' of https://github.com/blessedcoolant/InvokeAI into more-nodes-work 2023-04-23 02:53:25 +12:00
b763f1809e feat(ui): Stylize Node Minimap 2023-04-23 02:52:32 +12:00
d26b44104a fix(ui): minor tidy 2023-04-23 00:45:03 +10:00
b73fd2a6d2 fix(ui): Set Min Width for Nodes 2023-04-23 00:55:43 +12:00
f258aba6d1 chore(ui): Make the Node UI Legend Responsive 2023-04-23 00:55:22 +12:00
2e70848aa0 Responsive Mobile Layout (#3207)
The first draft for a Responsive Mobile Layout for InvokeAI. Some basic
documentation to help contributors. // Notes from: @blessedcoolant

---

The whole rework needs to be done using the `mobile first` concept where
the base design will be catered to mobile and we add responsive changes
as we grow to larger screens.

**Added**

- Basic breakpoints have been added to the `theme.ts` file that indicate
at which values Chakra makes the responsive changes.
- A basic `useResolution` hook has been added that either returns
`mobile`, `tablet` or `desktop` based on the breakpoint. We can
customize this hook further to do more complex checks for us if need be.

**Syntax**

- Any Chakra component is directly capable of taking different values
for the different breakpoints set in our `theme.ts` file. These can be
passed in a few ways with the most descriptive being an object. For
example:

`flexDir={{ base: 'column', xl: 'row' }}` - This would set the `0em and
above` to be column for the flex direction but change to row
automatically when we hit `xl` and above resolutions which in our case
is `80em or 1280px`. This same format is applicable for any element in
Chakra.

`flexDir={['column', null, null, 'row', null]}` - The above syntax can
also be passed as an array to the property with each value in the array
corresponding to each breakpoint we have. Setting `null` just bypasses
it. This is a good short hand but I think we stick to the above syntax
for readability.

**Note**: I've modified a few elements here and there to give an idea on
how the responsive syntax works for reference.

---

**Problems to be solved** @SammCheese 

- Some issues you might run into are with the Resizable components.
We've decided we will get not use resizable components for smaller
resolutions. Doesn't make sense. So you'll need to make conditional
renderings around these.
- Some components that need custom layouts for different screens might
be better if ported over to `Grid` and use `gridTemplateAreas` to swap
out the design layout. I've demonstrated an example of this in a commit
I've made. I'll let you be the judge of where we might need this.
- The header will probably need to be converted to a burger menu of some
sort with the model changing being handled correctly UX wise. We'll
discuss this on discord.

---

Anyone willing to contribute to this PR can feel free to join the
discussion on discord.

https://discord.com/channels/1020123559063990373/1020839344170348605/threads/1097323866780606615
2023-04-22 22:34:30 +10:00
e973aeef0d Merge branch 'main' into responsive-ui 2023-04-22 14:31:19 +02:00
50e1ac731d fix(ui): make input/outputs renderfn callback 2023-04-22 22:25:17 +10:00
43addc1548 fix(ui): memoize everything nodes 2023-04-22 22:25:17 +10:00
4901911c1a fix(ui): improve nodes performance 2023-04-22 22:25:17 +10:00
44a653925a feat(ui): node styling, controls
- custom node controls
- fix some types
- fix badge colors via colorScheme
- style nodes
2023-04-22 22:25:17 +10:00
94a07a8da7 feat(ui): Make Nodes always spawn in center of work area 2023-04-22 22:25:17 +10:00
ad41afe65e feat(ui): Make Nodes Resizable 2023-04-22 22:25:17 +10:00
77fa7519c4 chore(ui): Cleanup Invocation Component 2023-04-22 22:25:17 +10:00
6e29148d4d delete ImageToImageContent.tsx 2023-04-22 08:43:14 +02:00
3044f3bfe5 fix(ui): adapt NodeEditor for smaller screens 2023-04-22 08:33:05 +02:00
67a8627cf6 add dev:host script 2023-04-22 08:30:09 +02:00
3fb433cb91 Merge branch 'main' of https://github.com/invoke-ai/InvokeAI into responsive-ui 2023-04-22 08:27:00 +02:00
5f498e10bd Partial migration of UI to nodes API (#3195)
* feat(ui): add axios client generator and simple example

* fix(ui): update client & nodes test code w/ new Edge type

* chore(ui): organize generated files

* chore(ui): update .eslintignore, .prettierignore

* chore(ui): update openapi.json

* feat(backend): fixes for nodes/generator

* feat(ui): generate object args for api client

* feat(ui): more nodes api prototyping

* feat(ui): nodes cancel

* chore(ui): regenerate api client

* fix(ui): disable OG web server socket connection

* fix(ui): fix scrollbar styles typing and prop

just noticed the typo, and made the types stronger.

* feat(ui): add socketio types

* feat(ui): wip nodes

- extract api client method arg types instead of manually declaring them
- update example to display images
- general tidy up

* start building out node translations from frontend state and add notes about missing features

* use reference to sampler_name

* use reference to sampler_name

* add optional apiUrl prop

* feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation

* feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node

* feat(ui): img2img implementation

* feat(ui): get intermediate images working but types are stubbed out

* chore(ui): add support for package mode

* feat(ui): add nodes mode script

* feat(ui): handle random seeds

* fix(ui): fix middleware types

* feat(ui): add rtk action type guard

* feat(ui): disable NodeAPITest

This was polluting the network/socket logs.

* feat(ui): fix parameters panel border color

This commit should be elsewhere but I don't want to break my flow

* feat(ui): make thunk types more consistent

* feat(ui): add type guards for outputs

* feat(ui): load images on socket connect

Rudimentary

* chore(ui): bump redux-toolkit

* docs(ui): update readme

* chore(ui): regenerate api client

* chore(ui): add typescript as dev dependency

I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue.

* feat(ui): begin migrating gallery to nodes

Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way.

* feat(ui): clean up & comment results slice

* fix(ui): separate thunk for initial gallery load so it properly gets index 0

* feat(ui): POST upload working

* fix(ui): restore removed type

* feat(ui): patch api generation for headers access

* chore(ui): regenerate api

* feat(ui): wip gallery migration

* feat(ui): wip gallery migration

* chore(ui): regenerate api

* feat(ui): wip refactor socket events

* feat(ui): disable panels based on app props

* feat(ui): invert logic to be disabled

* disable panels when app mounts

* feat(ui): add support to disableTabs

* docs(ui): organise and update docs

* lang(ui): add toast strings

* feat(ui): wip events, comments, and general refactoring

* feat(ui): add optional token for auth

* feat(ui): export StatusIndicator and ModelSelect for header use

* feat(ui) working on making socket URL dynamic

* feat(ui): dynamic middleware loading

* feat(ui): prep for socket jwt

* feat(ui): migrate cancelation

also updated action names to be event-like instead of declaration-like

sorry, i was scattered and this commit has a lot of unrelated stuff in it.

* fix(ui): fix img2img type

* chore(ui): regenerate api client

* feat(ui): improve InvocationCompleteEvent types

* feat(ui): increase StatusIndicator font size

* fix(ui): fix middleware order for multi-node graphs

* feat(ui): add exampleGraphs object w/ iterations example

* feat(ui): generate iterations graph

* feat(ui): update ModelSelect for nodes API

* feat(ui): add hi-res functionality for txt2img generations

* feat(ui): "subscribe" to particular nodes

feels like a dirty hack but oh well it works

* feat(ui): first steps to node editor ui

* fix(ui): disable event subscription

it is not fully baked just yet

* feat(ui): wip node editor

* feat(ui): remove extraneous field types

* feat(ui): nodes before deleting stuff

* feat(ui): cleanup nodes ui stuff

* feat(ui): hook up nodes to redux

* fix(ui): fix handle

* fix(ui): add basic node edges & connection validation

* feat(ui): add connection validation styling

* feat(ui): increase edge width

* feat(ui): it blends

* feat(ui): wip model handling and graph topology validation

* feat(ui): validation connections w/ graphlib

* docs(ui): update nodes doc

* feat(ui): wip node editor

* chore(ui): rebuild api, update types

* add redux-dynamic-middlewares as a dependency

* feat(ui): add url host transformation

* feat(ui): handle already-connected fields

* feat(ui): rewrite SqliteItemStore in sqlalchemy

* fix(ui): fix sqlalchemy dynamic model instantiation

* feat(ui, nodes): metadata wip

* feat(ui, nodes): models

* feat(ui, nodes): more metadata wip

* feat(ui): wip range/iterate

* fix(nodes): fix sqlite typing

* feat(ui): export new type for invoke component

* tests(nodes): fix test instantiation of ImageField

* feat(nodes): fix LoadImageInvocation

* feat(nodes): add `title` ui hint

* feat(nodes): make ImageField attrs optional

* feat(ui): wip nodes etc

* feat(nodes): roll back sqlalchemy

* fix(nodes): partially address feedback

* fix(backend): roll back changes to pngwriter

* feat(nodes): wip address metadata feedback

* feat(nodes): add seeded rng to RandomRange

* feat(nodes): address feedback

* feat(nodes): move GET images error handling to DiskImageStorage

* feat(nodes): move GET images error handling to DiskImageStorage

* fix(nodes): fix image output schema customization

* feat(ui): img2img/txt2img -> linear

- remove txt2img and img2img tabs
- add linear tab
- add initial image selection to linear parameters accordion

* feat(ui): tidy graph builders

* feat(ui): tidy misc

* feat(ui): improve invocation union types

* feat(ui): wip metadata viewer recall

* feat(ui): move fonts to normal deps

* feat(nodes): fix broken upload

* feat(nodes): add metadata module + tests, thumbnails

- `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service`
- Handles loading/parsing/building metadata, and creating png info objects
- added tests for MetadataModule
- Lifted thumbnail stuff to util

* fix(nodes): revert change to RandomRangeInvocation

* feat(nodes): address feedback

- make metadata a service
- rip out pydantic validation, implement metadata parsing as simple functions
- update tests
- address other minor feedback items

* fix(nodes): fix other tests

* fix(nodes): add metadata service to cli

* fix(nodes): fix latents/image field parsing

* feat(nodes): customise LatentsField schema

* feat(nodes): move metadata parsing to frontend

* fix(nodes): fix metadata test

---------

Co-authored-by: maryhipp <maryhipp@gmail.com>
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 13:10:20 +10:00
fdad62e88b chore: add ".version" and ".last_model" to gitignore (#3208)
Mistakenly closed the previous pr.
2023-04-20 18:26:27 +01:00
955c81acef Merge branch 'main' into patch-1 2023-04-20 18:26:06 +01:00
e1058f3416 update CODEOWNERS for changed team composition (#3234)
Remove @mauwii and @keturn until they are able to reengage with the
development effort. @GreggHelt2 is designated co-codeowner for the
backend.
2023-04-20 17:19:10 +01:00
edf16a253d Merge branch 'main' into patch-1 2023-04-20 14:16:10 +02:00
46f5ef4100 Merge branch 'main' into dev/codeowner-fix-main 2023-04-19 22:40:56 +01:00
b843255236 update CODEOWNERS for changed team composition 2023-04-19 17:37:48 -04:00
3a968e5072 Update NSFW.md
Outdated doc said to change the '.invokeai' file, but it's now named 'invokeai.init' afaik.
2023-04-18 21:18:32 -04:00
b164330e3c replaced remaining print statements with log.*() 2023-04-18 20:49:00 -04:00
69433c9f68 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-18 19:21:53 -04:00
bd8ffd36bf bump to diffusers 0.15.1, remove dangling module 2023-04-18 19:20:38 -04:00
fd80e84ea6 Merge branch 'main' into patch-1 2023-04-18 19:14:28 -04:00
4824237a98 Added CPU instruction for README (#3225)
Since the change itself is quite straight-forward, I'll just describe
the context. Tried using automatic installer on my laptop, kept erroring
out on line 140-something of installer.py, "ERROR: Can not perform a
'--user' install. User site-packages are not visible in this
virtualenv."
Got tired of of fighting with pip so moved on to command line install.
Worked immediately, but at the time lacked instruction for CPU, so
instead of opening any helpful hyperlinks in the readme, took a few
minutes to grab the link from installer.py - thus this pr.
2023-04-18 19:07:37 -04:00
2c9a05eb59 Added CPU instruction for README 2023-04-18 18:46:55 +03:00
2feeb1f44c fix(ui): more responsive layout work 2023-04-18 04:29:31 +12:00
554f353773 fix(ui): Fix Width and Height showing 0 as input 2023-04-18 04:28:58 +12:00
aee27e94c9 fix(ui): Fix site header on really small screens 2023-04-18 01:25:53 +12:00
695893e1ac fix(ui): Improve parameters panel and preview display 2023-04-18 01:09:48 +12:00
b800a8eb2e feat(ui): responsive wip
- Fixed a bunch of padding and margin issues across the app
- Fixed the Invoke logo compressing
- Disabled the visibility of the options panel pin button in tablet and mobile views
- Refined the header menu options in mobile and tablet views
- Refined other site header elements in mobile and tablet views
- Aligned Tab Icons to center in mobile and tablet views
2023-04-18 00:50:09 +12:00
9749ef34b5 layout improvements 2023-04-17 13:30:33 +02:00
9a43362127 Revert "Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207"
This reverts commit 866024ea6c, reversing
changes made to 601cc1f92c.
2023-04-17 13:51:08 +12:00
866024ea6c Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207 2023-04-17 13:50:44 +12:00
601cc1f92c help(ui): Basic responsive updates to demonstrate
Made some basic responsive changes to demonstrate how to go about making changes.

There are a bunch of problems not addressed yet. Like dealing with the resizeable component and etc.
2023-04-17 13:50:13 +12:00
d6a9a4464d feat(ui): Add Basic useResolution Component
This component just classifies `base` and `sm` as mobile, `md` and `lg` as tablet and `xl` and `2xl` as desktop.

This is a basic hook for quicker work with resolutions. Can be modified and adjusted to our needs. All resolution related work can go into this hook.
2023-04-17 13:48:42 +12:00
dac271725a feat(ui): Add Basic Breakpoints 2023-04-17 13:26:10 +12:00
e1fbecfcf7 fix(ui): Syntax issue with the HidePreview icon 2023-04-17 12:42:06 +12:00
2ec4f5af10 remove unused import to pass lint & revert package.json 2023-04-15 21:53:33 +02:00
281662a6e1 chore: add ".version" and ".last_model" to gitignore
Mistakenly closed the previous pr
2023-04-15 21:46:47 +02:00
2edd032ec7 draft mobile layout 2023-04-15 21:34:03 +02:00
aab262d991 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-14 20:12:38 -04:00
47b9910b48 update to diffusers 0.15 and fix code for name changes
- This is a port of #3184 to the main branch
2023-04-14 15:35:03 -04:00
0b0e6fe448 convert remainder of print() to log.info() 2023-04-14 15:15:14 -04:00
c132dbdefa change "ialog" to "log" 2023-04-11 18:48:20 -04:00
f3081e7013 add module-level getLogger() method 2023-04-11 12:23:13 -04:00
f904f14f9e add missing module-level methods 2023-04-11 11:10:43 -04:00
8917a6d99b add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)

This style logs everything through a single logging object and is
identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus
to logging:

  import invokeai.backend.util.logging as ialog

  ialog.debug('this is a debugging message')
  ialog.info('this is a informational message')
  ialog.log(level=logging.CRITICAL, 'get out of dodge')
  ialog.disable(level=logging.INFO)
  ialog.basicConfig(filename='/var/log/invokeai.log')

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add the additional
message decorations.

For more control, the logging module's object-oriented logging style
is also supported. The API is identical to the vanilla logging
usage. In fact, the only thing that has changed is that the
getLogger() method adds a custom formatter to the log messages.

 import logging
 from invokeai.backend.util.logging import InvokeAILogger

 logger = InvokeAILogger.getLogger(__name__)
 fh = logging.FileHandler('/var/invokeai.log')
 logger.addHandler(fh)
 logger.critical('this will be logged to both the console and the log file')
2023-04-11 10:46:38 -04:00
5a4765046e add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)
2023-04-11 09:33:28 -04:00
cee159dfa3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-09 12:08:09 -04:00
cd1b350dae Merge branch 'main' into bugfix/release-updater 2023-04-07 18:56:21 -04:00
8334757af9 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-07 18:55:54 -04:00
bc2b9500e3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-06 15:38:46 -04:00
32857d81c5 prevent legacy CLI crash caused by removal of convert option
- Compensatory change to the CLI that prevents it from crashing
  when it tries to import a model.
- Bug introduced when the "convert" option removed from the model
  manager.
2023-04-06 15:36:05 -04:00
28f75d80d5 Merge branch 'main' into bugfix/release-updater 2023-04-05 18:25:33 -04:00
b917ffa4d7 Merge branch 'main' into bugfix/release-updater 2023-04-05 17:37:27 -04:00
f682fb8040 fix invokeai-update script
- This commit fixes the update script to work again, as well as fixing
  the ambiguity between updating to a tag and updating to a branch.
2023-04-02 11:08:12 -04:00
1171 changed files with 59952 additions and 49334 deletions

24
.github/CODEOWNERS vendored
View File

@ -1,16 +1,16 @@
# continuous integration
/.github/workflows/ @mauwii @lstein @blessedcoolant
/.github/workflows/ @lstein @blessedcoolant
# documentation
/docs/ @lstein @mauwii @tildebyte @blessedcoolant
/mkdocs.yml @lstein @mauwii @blessedcoolant
/docs/ @lstein @blessedcoolant @hipsterusername
/mkdocs.yml @lstein @blessedcoolant
# nodes
/invokeai/app/ @Kyle0654 @blessedcoolant
# installation and configuration
/pyproject.toml @mauwii @lstein @blessedcoolant
/docker/ @mauwii @lstein @blessedcoolant
/pyproject.toml @lstein @blessedcoolant
/docker/ @lstein @blessedcoolant
/scripts/ @ebr @lstein
/installer/ @lstein @ebr
/invokeai/assets @lstein @ebr
@ -18,17 +18,17 @@
/invokeai/version @lstein @blessedcoolant
# web ui
/invokeai/frontend @blessedcoolant @psychedelicious @lstein
/invokeai/backend @blessedcoolant @psychedelicious @lstein
/invokeai/frontend @blessedcoolant @psychedelicious @lstein @maryhipp
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp
# generation, model management, postprocessing
/invokeai/backend @keturn @damian0815 @lstein @blessedcoolant @jpphoto
/invokeai/backend @damian0815 @lstein @blessedcoolant @jpphoto @gregghelt2 @StAlKeR7779
# front ends
/invokeai/frontend/CLI @lstein
/invokeai/frontend/install @lstein @ebr @mauwii
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant
/invokeai/frontend/install @lstein @ebr
/invokeai/frontend/merge @lstein @blessedcoolant
/invokeai/frontend/training @lstein @blessedcoolant
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp

View File

@ -2,8 +2,7 @@ name: mkdocs-material
on:
push:
branches:
- 'main'
- 'development'
- 'refs/heads/v2.3'
permissions:
contents: write
@ -12,6 +11,10 @@ jobs:
mkdocs-material:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout sources
uses: actions/checkout@v3
@ -22,11 +25,15 @@ jobs:
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install -r docs/requirements-mkdocs.txt
pip install ".[docs]"
- name: confirm buildability
run: |
@ -36,7 +43,7 @@ jobs:
--verbose
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
if: ${{ github.ref == 'refs/heads/v2.3' }}
run: |
python -m \
mkdocs gh-deploy \

View File

@ -1,10 +1,16 @@
name: Test invoke.py pip
# This is a dummy stand-in for the actual tests
# we don't need to run python tests on non-Python changes
# But PRs require passing tests to be mergeable
on:
pull_request:
paths:
- '**'
- '!pyproject.toml'
- '!invokeai/**'
- '!tests/**'
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:
@ -19,48 +25,26 @@ jobs:
strategy:
matrix:
python-version:
# - '3.9'
- '3.10'
pytorch:
# - linux-cuda-11_6
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
# - windows-cuda-11_6
# - windows-cuda-11_7
include:
# - pytorch: linux-cuda-11_6
# os: ubuntu-22.04
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $GITHUB_ENV
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_6
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_7
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu117'
# github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
steps:
- run: 'echo "No build required"'
- name: skip
run: echo "no build required"

View File

@ -11,6 +11,7 @@ on:
paths:
- 'pyproject.toml'
- 'invokeai/**'
- 'tests/**'
- '!invokeai/frontend/web/**'
types:
- 'ready_for_review'
@ -32,19 +33,12 @@ jobs:
# - '3.9'
- '3.10'
pytorch:
# - linux-cuda-11_6
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
# - windows-cuda-11_6
# - windows-cuda-11_7
include:
# - pytorch: linux-cuda-11_6
# os: ubuntu-22.04
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $GITHUB_ENV
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
@ -62,14 +56,6 @@ jobs:
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_6
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu116'
# github-env: $env:GITHUB_ENV
# - pytorch: windows-cuda-11_7
# os: windows-2022
# extra-index-url: 'https://download.pytorch.org/whl/cu117'
# github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
env:
@ -80,11 +66,6 @@ jobs:
uses: actions/checkout@v3
- name: set test prompt to main branch validation
if: ${{ github.ref == 'refs/heads/main' }}
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> ${{ matrix.github-env }}
- name: set test prompt to Pull Request validation
if: ${{ github.ref != 'refs/heads/main' }}
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
@ -105,40 +86,38 @@ jobs:
id: run-pytest
run: pytest
- name: set INVOKEAI_OUTDIR
run: >
python -c
"import os;from invokeai.backend.globals import Globals;OUTDIR=os.path.join(Globals.root,str('outputs'));print(f'INVOKEAI_OUTDIR={OUTDIR}')"
>> ${{ matrix.github-env }}
# - name: run invokeai-configure
# env:
# HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
# run: >
# invokeai-configure
# --yes
# --default_only
# --full-precision
# # can't use fp16 weights without a GPU
- name: run invokeai-configure
id: run-preload-models
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
run: >
invokeai-configure
--yes
--default_only
--full-precision
# can't use fp16 weights without a GPU
# - name: run invokeai
# id: run-invokeai
# env:
# # Set offline mode to make sure configure preloaded successfully.
# HF_HUB_OFFLINE: 1
# HF_DATASETS_OFFLINE: 1
# TRANSFORMERS_OFFLINE: 1
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# run: >
# invokeai
# --no-patchmatch
# --no-nsfw_checker
# --precision=float32
# --always_use_cpu
# --use_memory_db
# --outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
# --from_file ${{ env.TEST_PROMPTS }}
- name: run invokeai
id: run-invokeai
env:
# Set offline mode to make sure configure preloaded successfully.
HF_HUB_OFFLINE: 1
HF_DATASETS_OFFLINE: 1
TRANSFORMERS_OFFLINE: 1
run: >
invokeai
--no-patchmatch
--no-nsfw_checker
--from_file ${{ env.TEST_PROMPTS }}
--outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
- name: Archive results
id: archive-results
uses: actions/upload-artifact@v3
with:
name: results
path: ${{ env.INVOKEAI_OUTDIR }}
# - name: Archive results
# env:
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# uses: actions/upload-artifact@v3
# with:
# name: results
# path: ${{ env.INVOKEAI_OUTDIR }}

6
.gitignore vendored
View File

@ -9,6 +9,8 @@ models/ldm/stable-diffusion-v1/model.ckpt
configs/models.user.yaml
config/models.user.yml
invokeai.init
.version
.last_model
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
@ -199,6 +201,10 @@ checkpoints
# If it's a Mac
.DS_Store
# LS: the frontend dist files need to be in the repository in order to
# do a pip network install
# invokeai/frontend/web/dist/*
# Let the frontend manage its own gitignore
!invokeai/frontend/web/*

189
README.md
View File

@ -1,8 +1,11 @@
<div align="center">
![project logo](https://github.com/invoke-ai/InvokeAI/raw/main/docs/assets/invoke_ai_banner.png)
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
# Invoke AI - Generative AI for Professional Creatives
## Image Generation for Stable Diffusion, Custom-Trained Models, and more.
Learn more about us and get started instantly at [invoke.ai](https://invoke.ai)
# InvokeAI: A Stable Diffusion Toolkit
[![discord badge]][discord link]
@ -33,13 +36,32 @@
</div>
InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products.
_**Note: This is an alpha release. Bugs are expected and not all
features are fully implemented. Please use the GitHub [Issues
pages](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen)
to report unexpected problems. Also note that InvokeAI root directory
which contains models, outputs and configuration files, has changed
between the 2.x and 3.x release. If you wish to use your v2.3 root
directory with v3.0, please follow the directions in [Migrating a 2.3
root directory to 3.0](#migrating-to-3).**_
**Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
InvokeAI is a leading creative engine built to empower professionals
and enthusiasts alike. Generate and create stunning visual media using
the latest AI-driven technologies. InvokeAI offers an industry leading
Web Interface, interactive Command Line Interface, and also serves as
the foundation for multiple commercial products.
_Note: InvokeAI is rapidly evolving. Please use the
[Issues](https://github.com/invoke-ai/InvokeAI/issues) tab to report bugs and make feature
requests. Be sure to use the provided templates. They will help us diagnose issues faster._
**Quick links**: [[How to
Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/">Code and
Downloads</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
[<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
Ideas & Q&A</a>]
<div align="center">
@ -49,22 +71,30 @@ requests. Be sure to use the provided templates. They will help us diagnose issu
## Table of Contents
1. [Quick Start](#getting-started-with-invokeai)
2. [Installation](#detailed-installation-instructions)
3. [Hardware Requirements](#hardware-requirements)
4. [Features](#features)
5. [Latest Changes](#latest-changes)
6. [Troubleshooting](#troubleshooting)
7. [Contributing](#contributing)
8. [Contributors](#contributors)
9. [Support](#support)
10. [Further Reading](#further-reading)
Table of Contents 📝
## Getting Started with InvokeAI
**Getting Started**
1. 🏁 [Quick Start](#quick-start)
3. 🖥️ [Hardware Requirements](#hardware-requirements)
**More About Invoke**
1. 🌟 [Features](#features)
2. 📣 [Latest Changes](#latest-changes)
3. 🛠️ [Troubleshooting](#troubleshooting)
**Supporting the Project**
1. 🤝 [Contributing](#contributing)
2. 👥 [Contributors](#contributors)
3. 💕 [Support](#support)
## Quick Start
For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
If upgrading from version 2.3, please read [Migrating a 2.3 root
directory to 3.0](#migrating-to-3) first.
### Automatic Installer (suggested for 1st time users)
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/latest)
@ -73,9 +103,8 @@ For full installation and upgrade instructions, please see:
3. Unzip the file.
4. If you are on Windows, double-click on the `install.bat` script. On
macOS, open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. On Linux, run `install.sh`.
4. **Windows:** double-click on the `install.bat` script. **macOS:** Open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. **Linux:** run `install.sh`.
5. You'll be asked to confirm the location of the folder in which
to install InvokeAI and its image generation model files. Pick a
@ -101,7 +130,7 @@ and go to http://localhost:9090.
10. Type `banana sushi` in the box on the top left and click `Invoke`
### Command-Line Installation (for users familiar with Terminals)
### Command-Line Installation (for developers and users familiar with Terminals)
You must have Python 3.9 or 3.10 installed on your machine. Earlier or later versions are
not supported.
@ -148,6 +177,11 @@ not supported.
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2:_
```sh
@ -172,7 +206,7 @@ not supported.
Be sure to activate the virtual environment each time before re-launching InvokeAI,
using `source .venv/bin/activate` or `.venv\Scripts\activate`.
### Detailed Installation Instructions
## Detailed Installation Instructions
This fork is supported across Linux, Windows and Macintosh. Linux
users can use either an Nvidia-based card (with CUDA support) or an
@ -180,6 +214,87 @@ AMD card (using the ROCm driver). For full installation and upgrade
instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
<a name="migrating-to-3"></a>
### Migrating a v2.3 InvokeAI root directory
The InvokeAI root directory is where the InvokeAI startup file,
installed models, and generated images are stored. It is ordinarily
named `invokeai` and located in your home directory. The contents and
layout of this directory has changed between versions 2.3 and 3.0 and
cannot be used directly.
We currently recommend that you use the installer to create a new root
directory named differently from the 2.3 one, e.g. `invokeai-3` and
then use a migration script to copy your 2.3 models into the new
location. However, if you choose, you can upgrade this directory in
place. This section gives both recipes.
#### Creating a new root directory and migrating old models
This is the safer recipe because it leaves your old root directory in
place to fall back on.
1. Follow the instructions above to create and install InvokeAI in a
directory that has a different name from the 2.3 invokeai directory.
In this example, we will use "invokeai-3"
2. When you are prompted to select models to install, select a minimal
set of models, such as stable-diffusion-v1.5 only.
3. After installation is complete launch `invokeai.sh` (Linux/Mac) or
`invokeai.bat` and select option 8 "Open the developers console". This
will take you to the command line.
4. Issue the command `invokeai-migrate3 --from /path/to/v2.3-root --to
/path/to/invokeai-3-root`. Provide the correct `--from` and `--to`
paths for your v2.3 and v3.0 root directories respectively.
This will copy and convert your old models from 2.3 format to 3.0
format and create a new `models` directory in the 3.0 directory. The
old models directory (which contains the models selected at install
time) will be renamed `models.orig` and can be deleted once you have
confirmed that the migration was successful.
#### Migrating in place
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
without touching the command line. The recipe is as follows>
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
3a. During the alpha release phase, select option [3] and manually
enter the tag name `v3.0.0+a2`.
3b. Once 3.0 is released, select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [7] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and
update it to the 3.0 format. The following files will be replaced:
- The invokeai.init file, replaced by invokeai.yaml
- The models directory
- The configs/models.yaml model index
The original versions of these files will be saved with the suffix
".orig" appended to the end. Once you have confirmed that the upgrade
worked, you can safely remove these files. Alternatively you can
restore a working v2.3 directory by removing the new files and
restoring the ".orig" files' original names.
#### Migration Caveats
The migration script will migrate your invokeai settings and models,
including textual inversion models, LoRAs and merges that you may have
installed previously. However it does **not** migrate the generated
images stored in your 2.3-format outputs directory. The released
version of 3.0 is expected to have an interface for importing an
entire directory of image files as a batch.
## Hardware Requirements
InvokeAI is supported across Linux, Windows and macOS. Linux
@ -198,13 +313,9 @@ We do not recommend the GTX 1650 or 1660 series video cards. They are
unable to run in half-precision mode and do not have sufficient VRAM
to render 512x512 images.
### Memory
**Memory** - At least 12 GB Main Memory RAM.
- At least 12 GB Main Memory RAM.
### Disk
- At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
**Disk** - At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
## Features
@ -220,7 +331,7 @@ The Unified Canvas is a fully integrated canvas implementation with support for
### *Advanced Prompt Syntax*
InvokeAI's advanced prompt syntax allows for token weighting, cross-attention control, and prompt blending, allowing for fine-tuned tweaking of your invocations and exploration of the latent space.
Invoke AI's advanced prompt syntax allows for token weighting, cross-attention control, and prompt blending, allowing for fine-tuned tweaking of your invocations and exploration of the latent space.
### *Command Line Interface*
@ -230,16 +341,12 @@ For users utilizing a terminal-based environment, or who want to take advantage
- *Support for both ckpt and diffusers models*
- *SD 2.0, 2.1 support*
- *Noise Control & Tresholding*
- *Popular Sampler Support*
- *Upscaling & Face Restoration Tools*
- *Embedding Manager & Support*
- *Model Manager & Support*
### Coming Soon
- *Node-Based Architecture & UI*
- And more...
- *Node-Based Architecture*
- *Node-Based Plug-&-Play UI (Beta)*
- *Boards & Gallery Management
### Latest Changes
@ -247,12 +354,12 @@ For our latest changes, view our [Release
Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
[CHANGELOG](docs/CHANGELOG.md).
## Troubleshooting
### Troubleshooting
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
problems and other issues.
## Contributing
## 🤝 Contributing
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
cleanup, testing, or code reviews, is very much encouraged to do so.
@ -271,14 +378,12 @@ to become part of our community.
Welcome to InvokeAI!
### Contributors
### 👥 Contributors
This fork is a combined effort of various people from across the world.
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
their time, hard work and effort.
Thanks to [Weblate](https://weblate.org/) for generously providing translation services to this project.
### Support
For support, please use this repository's GitHub Issues tracking service, or join the Discord.

View File

@ -1,164 +0,0 @@
@echo off
@rem This script will install git (if not found on the PATH variable)
@rem using micromamba (an 8mb static-linked single-file binary, conda replacement).
@rem For users who already have git, this step will be skipped.
@rem Next, it'll download the project's source code.
@rem Then it will download a self-contained, standalone Python and unpack it.
@rem Finally, it'll create the Python virtual environment and preload the models.
@rem This enables a user to install this project without manually installing git or Python
@rem change to the script's directory
PUSHD "%~dp0"
set "no_cache_dir=--no-cache-dir"
if "%1" == "use-cache" (
set "no_cache_dir="
)
echo ***** Installing InvokeAI.. *****
@rem Config
set INSTALL_ENV_DIR=%cd%\installer_files\env
@rem https://mamba.readthedocs.io/en/latest/installation.html
set MICROMAMBA_DOWNLOAD_URL=https://github.com/cmdr2/stable-diffusion-ui/releases/download/v1.1/micromamba.exe
set RELEASE_URL=https://github.com/invoke-ai/InvokeAI
set RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
set PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download
set PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-x86_64-pc-windows-msvc-shared-install_only.tar.gz
set PACKAGES_TO_INSTALL=
call git --version >.tmp1 2>.tmp2
if "%ERRORLEVEL%" NEQ "0" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% git
@rem Cleanup
del /q .tmp1 .tmp2
@rem (if necessary) install git into a contained environment
if "%PACKAGES_TO_INSTALL%" NEQ "" (
@rem download micromamba
echo ***** Downloading micromamba from %MICROMAMBA_DOWNLOAD_URL% to micromamba.exe *****
call curl -L "%MICROMAMBA_DOWNLOAD_URL%" > micromamba.exe
@rem test the mamba binary
echo ***** Micromamba version: *****
call micromamba.exe --version
@rem create the installer env
if not exist "%INSTALL_ENV_DIR%" (
call micromamba.exe create -y --prefix "%INSTALL_ENV_DIR%"
)
echo ***** Packages to install:%PACKAGES_TO_INSTALL% *****
call micromamba.exe install -y --prefix "%INSTALL_ENV_DIR%" -c conda-forge %PACKAGES_TO_INSTALL%
if not exist "%INSTALL_ENV_DIR%" (
echo ----- There was a problem while installing "%PACKAGES_TO_INSTALL%" using micromamba. Cannot continue. -----
pause
exit /b
)
)
del /q micromamba.exe
@rem For 'git' only
set PATH=%INSTALL_ENV_DIR%\Library\bin;%PATH%
@rem Download/unpack/clean up InvokeAI release sourceball
set err_msg=----- InvokeAI source download failed -----
echo Trying to download "%RELEASE_URL%%RELEASE_SOURCEBALL%"
curl -L %RELEASE_URL%%RELEASE_SOURCEBALL% --output InvokeAI.tgz
if %errorlevel% neq 0 goto err_exit
set err_msg=----- InvokeAI source unpack failed -----
tar -zxf InvokeAI.tgz
if %errorlevel% neq 0 goto err_exit
del /q InvokeAI.tgz
set err_msg=----- InvokeAI source copy failed -----
cd InvokeAI-*
xcopy . .. /e /h
if %errorlevel% neq 0 goto err_exit
cd ..
@rem cleanup
for /f %%i in ('dir /b InvokeAI-*') do rd /s /q %%i
rd /s /q .dev_scripts .github docker-build tests
del /q requirements.in requirements-mkdocs.txt shell.nix
echo ***** Unpacked InvokeAI source *****
@rem Download/unpack/clean up python-build-standalone
set err_msg=----- Python download failed -----
curl -L %PYTHON_BUILD_STANDALONE_URL%/%PYTHON_BUILD_STANDALONE% --output python.tgz
if %errorlevel% neq 0 goto err_exit
set err_msg=----- Python unpack failed -----
tar -zxf python.tgz
if %errorlevel% neq 0 goto err_exit
del /q python.tgz
echo ***** Unpacked python-build-standalone *****
@rem create venv
set err_msg=----- problem creating venv -----
.\python\python -E -s -m venv .venv
if %errorlevel% neq 0 goto err_exit
call .venv\Scripts\activate.bat
echo ***** Created Python virtual environment *****
@rem Print venv's Python version
set err_msg=----- problem calling venv's python -----
echo We're running under
.venv\Scripts\python --version
if %errorlevel% neq 0 goto err_exit
set err_msg=----- pip update failed -----
.venv\Scripts\python -m pip install %no_cache_dir% --no-warn-script-location --upgrade pip wheel
if %errorlevel% neq 0 goto err_exit
echo ***** Updated pip and wheel *****
set err_msg=----- requirements file copy failed -----
copy binary_installer\py3.10-windows-x86_64-cuda-reqs.txt requirements.txt
if %errorlevel% neq 0 goto err_exit
set err_msg=----- main pip install failed -----
.venv\Scripts\python -m pip install %no_cache_dir% --no-warn-script-location -r requirements.txt
if %errorlevel% neq 0 goto err_exit
echo ***** Installed Python dependencies *****
set err_msg=----- InvokeAI setup failed -----
.venv\Scripts\python -m pip install %no_cache_dir% --no-warn-script-location -e .
if %errorlevel% neq 0 goto err_exit
copy binary_installer\invoke.bat.in .\invoke.bat
echo ***** Installed invoke launcher script ******
@rem more cleanup
rd /s /q binary_installer installer_files
@rem preload the models
call .venv\Scripts\python ldm\invoke\config\invokeai_configure.py
set err_msg=----- model download clone failed -----
if %errorlevel% neq 0 goto err_exit
deactivate
echo ***** Finished downloading models *****
echo All done! Execute the file invoke.bat in this directory to start InvokeAI
pause
exit
:err_exit
echo %err_msg%
pause
exit

View File

@ -1,235 +0,0 @@
#!/usr/bin/env bash
# ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
set -euo pipefail
IFS=$'\n\t'
function _err_exit {
if test "$1" -ne 0
then
echo -e "Error code $1; Error caught was '$2'"
read -p "Press any key to exit..."
exit
fi
}
# This script will install git (if not found on the PATH variable)
# using micromamba (an 8mb static-linked single-file binary, conda replacement).
# For users who already have git, this step will be skipped.
# Next, it'll download the project's source code.
# Then it will download a self-contained, standalone Python and unpack it.
# Finally, it'll create the Python virtual environment and preload the models.
# This enables a user to install this project without manually installing git or Python
echo -e "\n***** Installing InvokeAI into $(pwd)... *****\n"
export no_cache_dir="--no-cache-dir"
if [ $# -ge 1 ]; then
if [ "$1" = "use-cache" ]; then
export no_cache_dir=""
fi
fi
OS_NAME=$(uname -s)
case "${OS_NAME}" in
Linux*) OS_NAME="linux";;
Darwin*) OS_NAME="darwin";;
*) echo -e "\n----- Unknown OS: $OS_NAME! This script runs only on Linux or macOS -----\n" && exit
esac
OS_ARCH=$(uname -m)
case "${OS_ARCH}" in
x86_64*) ;;
arm64*) ;;
*) echo -e "\n----- Unknown system architecture: $OS_ARCH! This script runs only on x86_64 or arm64 -----\n" && exit
esac
# https://mamba.readthedocs.io/en/latest/installation.html
MAMBA_OS_NAME=$OS_NAME
MAMBA_ARCH=$OS_ARCH
if [ "$OS_NAME" == "darwin" ]; then
MAMBA_OS_NAME="osx"
fi
if [ "$OS_ARCH" == "linux" ]; then
MAMBA_ARCH="aarch64"
fi
if [ "$OS_ARCH" == "x86_64" ]; then
MAMBA_ARCH="64"
fi
PY_ARCH=$OS_ARCH
if [ "$OS_ARCH" == "arm64" ]; then
PY_ARCH="aarch64"
fi
# Compute device ('cd' segment of reqs files) detect goes here
# This needs a ton of work
# Suggestions:
# - lspci
# - check $PATH for nvidia-smi, gtt CUDA/GPU version from output
# - Surely there's a similar utility for AMD?
CD="cuda"
if [ "$OS_NAME" == "darwin" ] && [ "$OS_ARCH" == "arm64" ]; then
CD="mps"
fi
# config
INSTALL_ENV_DIR="$(pwd)/installer_files/env"
MICROMAMBA_DOWNLOAD_URL="https://micro.mamba.pm/api/micromamba/${MAMBA_OS_NAME}-${MAMBA_ARCH}/latest"
RELEASE_URL=https://github.com/invoke-ai/InvokeAI
RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download
if [ "$OS_NAME" == "darwin" ]; then
PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-${PY_ARCH}-apple-darwin-install_only.tar.gz
elif [ "$OS_NAME" == "linux" ]; then
PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-${PY_ARCH}-unknown-linux-gnu-install_only.tar.gz
fi
echo "INSTALLING $RELEASE_SOURCEBALL FROM $RELEASE_URL"
PACKAGES_TO_INSTALL=""
if ! hash "git" &>/dev/null; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL git"; fi
# (if necessary) install git and conda into a contained environment
if [ "$PACKAGES_TO_INSTALL" != "" ]; then
# download micromamba
echo -e "\n***** Downloading micromamba from $MICROMAMBA_DOWNLOAD_URL to micromamba *****\n"
curl -L "$MICROMAMBA_DOWNLOAD_URL" | tar -xvjO bin/micromamba > micromamba
chmod u+x ./micromamba
# test the mamba binary
echo -e "\n***** Micromamba version: *****\n"
./micromamba --version
# create the installer env
if [ ! -e "$INSTALL_ENV_DIR" ]; then
./micromamba create -y --prefix "$INSTALL_ENV_DIR"
fi
echo -e "\n***** Packages to install:$PACKAGES_TO_INSTALL *****\n"
./micromamba install -y --prefix "$INSTALL_ENV_DIR" -c conda-forge "$PACKAGES_TO_INSTALL"
if [ ! -e "$INSTALL_ENV_DIR" ]; then
echo -e "\n----- There was a problem while initializing micromamba. Cannot continue. -----\n"
exit
fi
fi
rm -f micromamba.exe
export PATH="$INSTALL_ENV_DIR/bin:$PATH"
# Download/unpack/clean up InvokeAI release sourceball
_err_msg="\n----- InvokeAI source download failed -----\n"
curl -L $RELEASE_URL/$RELEASE_SOURCEBALL --output InvokeAI.tgz
_err_exit $? _err_msg
_err_msg="\n----- InvokeAI source unpack failed -----\n"
tar -zxf InvokeAI.tgz
_err_exit $? _err_msg
rm -f InvokeAI.tgz
_err_msg="\n----- InvokeAI source copy failed -----\n"
cd InvokeAI-*
cp -r . ..
_err_exit $? _err_msg
cd ..
# cleanup
rm -rf InvokeAI-*/
rm -rf .dev_scripts/ .github/ docker-build/ tests/ requirements.in requirements-mkdocs.txt shell.nix
echo -e "\n***** Unpacked InvokeAI source *****\n"
# Download/unpack/clean up python-build-standalone
_err_msg="\n----- Python download failed -----\n"
curl -L $PYTHON_BUILD_STANDALONE_URL/$PYTHON_BUILD_STANDALONE --output python.tgz
_err_exit $? _err_msg
_err_msg="\n----- Python unpack failed -----\n"
tar -zxf python.tgz
_err_exit $? _err_msg
rm -f python.tgz
echo -e "\n***** Unpacked python-build-standalone *****\n"
# create venv
_err_msg="\n----- problem creating venv -----\n"
if [ "$OS_NAME" == "darwin" ]; then
# patch sysconfig so that extensions can build properly
# adapted from https://github.com/cashapp/hermit-packages/commit/fcba384663892f4d9cfb35e8639ff7a28166ee43
PYTHON_INSTALL_DIR="$(pwd)/python"
SYSCONFIG="$(echo python/lib/python*/_sysconfigdata_*.py)"
TMPFILE="$(mktemp)"
chmod +w "${SYSCONFIG}"
cp "${SYSCONFIG}" "${TMPFILE}"
sed "s,'/install,'${PYTHON_INSTALL_DIR},g" "${TMPFILE}" > "${SYSCONFIG}"
rm -f "${TMPFILE}"
fi
./python/bin/python3 -E -s -m venv .venv
_err_exit $? _err_msg
source .venv/bin/activate
echo -e "\n***** Created Python virtual environment *****\n"
# Print venv's Python version
_err_msg="\n----- problem calling venv's python -----\n"
echo -e "We're running under"
.venv/bin/python3 --version
_err_exit $? _err_msg
_err_msg="\n----- pip update failed -----\n"
.venv/bin/python3 -m pip install $no_cache_dir --no-warn-script-location --upgrade pip
_err_exit $? _err_msg
echo -e "\n***** Updated pip *****\n"
_err_msg="\n----- requirements file copy failed -----\n"
cp binary_installer/py3.10-${OS_NAME}-"${OS_ARCH}"-${CD}-reqs.txt requirements.txt
_err_exit $? _err_msg
_err_msg="\n----- main pip install failed -----\n"
.venv/bin/python3 -m pip install $no_cache_dir --no-warn-script-location -r requirements.txt
_err_exit $? _err_msg
echo -e "\n***** Installed Python dependencies *****\n"
_err_msg="\n----- InvokeAI setup failed -----\n"
.venv/bin/python3 -m pip install $no_cache_dir --no-warn-script-location -e .
_err_exit $? _err_msg
echo -e "\n***** Installed InvokeAI *****\n"
cp binary_installer/invoke.sh.in ./invoke.sh
chmod a+rx ./invoke.sh
echo -e "\n***** Installed invoke launcher script ******\n"
# more cleanup
rm -rf binary_installer/ installer_files/
# preload the models
.venv/bin/python3 scripts/configure_invokeai.py
_err_msg="\n----- model download clone failed -----\n"
_err_exit $? _err_msg
deactivate
echo -e "\n***** Finished downloading models *****\n"
echo "All done! Run the command"
echo " $scriptdir/invoke.sh"
echo "to start InvokeAI."
read -p "Press any key to exit..."
exit

View File

@ -1,36 +0,0 @@
@echo off
PUSHD "%~dp0"
call .venv\Scripts\activate.bat
echo Do you want to generate images using the
echo 1. command-line
echo 2. browser-based UI
echo OR
echo 3. open the developer console
set /p choice="Please enter 1, 2 or 3: "
if /i "%choice%" == "1" (
echo Starting the InvokeAI command-line.
.venv\Scripts\python scripts\invoke.py %*
) else if /i "%choice%" == "2" (
echo Starting the InvokeAI browser-based UI.
.venv\Scripts\python scripts\invoke.py --web %*
) else if /i "%choice%" == "3" (
echo Developer Console
echo Python command is:
where python
echo Python version is:
python --version
echo *************************
echo You are now in the system shell, with the local InvokeAI Python virtual environment activated,
echo so that you can troubleshoot this InvokeAI installation as necessary.
echo *************************
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) else (
echo Invalid selection
pause
exit /b
)
deactivate

View File

@ -1,46 +0,0 @@
#!/usr/bin/env sh
set -eu
. .venv/bin/activate
# set required env var for torch on mac MPS
if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
echo "Do you want to generate images using the"
echo "1. command-line"
echo "2. browser-based UI"
echo "OR"
echo "3. open the developer console"
echo "Please enter 1, 2, or 3:"
read choice
case $choice in
1)
printf "\nStarting the InvokeAI command-line..\n";
.venv/bin/python scripts/invoke.py $*;
;;
2)
printf "\nStarting the InvokeAI browser-based UI..\n";
.venv/bin/python scripts/invoke.py --web $*;
;;
3)
printf "\nDeveloper Console:\n";
printf "Python command is:\n\t";
which python;
printf "Python version is:\n\t";
python --version;
echo "*************************"
echo "You are now in your user shell ($SHELL) with the local InvokeAI Python virtual environment activated,";
echo "so that you can troubleshoot this InvokeAI installation as necessary.";
printf "*************************\n"
echo "*** Type \`exit\` to quit this shell and deactivate the Python virtual environment *** ";
/usr/bin/env "$SHELL";
;;
*)
echo "Invalid selection";
exit
;;
esac

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +0,0 @@
InvokeAI
Project homepage: https://github.com/invoke-ai/InvokeAI
Installation on Windows:
NOTE: You might need to enable Windows Long Paths. If you're not sure,
then you almost certainly need to. Simply double-click the 'WinLongPathsEnabled.reg'
file. Note that you will need to have admin privileges in order to
do this.
Please double-click the 'install.bat' file (while keeping it inside the invokeAI folder).
Installation on Linux and Mac:
Please open the terminal, and run './install.sh' (while keeping it inside the invokeAI folder).
After installation, please run the 'invoke.bat' file (on Windows) or 'invoke.sh'
file (on Linux/Mac) to start InvokeAI.

View File

@ -1,33 +0,0 @@
--prefer-binary
--extra-index-url https://download.pytorch.org/whl/torch_stable.html
--extra-index-url https://download.pytorch.org/whl/cu116
--trusted-host https://download.pytorch.org
accelerate~=0.15
albumentations
diffusers[torch]~=0.11
einops
eventlet
flask_cors
flask_socketio
flaskwebgui==1.0.3
getpass_asterisk
imageio-ffmpeg
pyreadline3
realesrgan
send2trash
streamlit
taming-transformers-rom1504
test-tube
torch-fidelity
torch==1.12.1 ; platform_system == 'Darwin'
torch==1.12.0+cu116 ; platform_system == 'Linux' or platform_system == 'Windows'
torchvision==0.13.1 ; platform_system == 'Darwin'
torchvision==0.13.0+cu116 ; platform_system == 'Linux' or platform_system == 'Windows'
transformers
picklescan
https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip
https://github.com/invoke-ai/clipseg/archive/1f754751c85d7d4255fa681f4491ff5711c1c288.zip
https://github.com/invoke-ai/GFPGAN/archive/3f5d2397361199bc4a91c08bb7d80f04d7805615.zip ; platform_system=='Windows'
https://github.com/invoke-ai/GFPGAN/archive/c796277a1cf77954e5fc0b288d7062d162894248.zip ; platform_system=='Linux' or platform_system=='Darwin'
https://github.com/Birch-san/k-diffusion/archive/363386981fee88620709cf8f6f2eea167bd6cd74.zip
https://github.com/invoke-ai/PyPatchMatch/archive/129863937a8ab37f6bbcec327c994c0f932abdbc.zip

View File

@ -4,6 +4,236 @@ title: Changelog
# :octicons-log-16: **Changelog**
## v2.3.5 <small>(22 May 2023)</small>
This release (along with the post1 and post2 follow-on releases) expands support for additional LoRA and LyCORIS models, upgrades diffusers versions, and fixes a few bugs.
### LoRA and LyCORIS Support Improvement
A number of LoRA/LyCORIS fine-tune files (those which alter the text encoder as well as the unet model) were not having the desired effect in InvokeAI. This bug has now been fixed. Full documentation of LoRA support is available at InvokeAI LoRA Support.
Previously, InvokeAI did not distinguish between LoRA/LyCORIS models based on Stable Diffusion v1.5 vs those based on v2.0 and 2.1, leading to a crash when an incompatible model was loaded. This has now been fixed. In addition, the web pulldown menus for LoRA and Textual Inversion selection have been enhanced to show only those files that are compatible with the currently-selected Stable Diffusion model.
Support for the newer LoKR LyCORIS files has been added.
### Library Updates and Speed/Reproducibility Advancements
The major enhancement in this version is that NVIDIA users no longer need to decide between speed and reproducibility. Previously, if you activated the Xformers library, you would see improvements in speed and memory usage, but multiple images generated with the same seed and other parameters would be slightly different from each other. This is no longer the case. Relative to 2.3.5 you will see improved performance when running without Xformers, and even better performance when Xformers is activated. In both cases, images generated with the same settings will be identical.
Here are the new library versions:
Library Version
Torch 2.0.0
Diffusers 0.16.1
Xformers 0.0.19
Compel 1.1.5
Other Improvements
### Performance Improvements
When a model is loaded for the first time, InvokeAI calculates its checksum for incorporation into the PNG metadata. This process could take up to a minute on network-mounted disks and WSL mounts. This release noticeably speeds up the process.
### Bug Fixes
The "import models from directory" and "import from URL" functionality in the console-based model installer has now been fixed.
When running the WebUI, we have reduced the number of times that InvokeAI reaches out to HuggingFace to fetch the list of embeddable Textual Inversion models. We have also caught and fixed a problem with the updater not correctly detecting when another instance of the updater is running
## v2.3.4 <small>(7 April 2023)</small>
What's New in 2.3.4
This features release adds support for LoRA (Low-Rank Adaptation) and LyCORIS (Lora beYond Conventional) models, as well as some minor bug fixes.
### LoRA and LyCORIS Support
LoRA files contain fine-tuning weights that enable particular styles, subjects or concepts to be applied to generated images. LyCORIS files are an extended variant of LoRA. InvokeAI supports the most common LoRA/LyCORIS format, which ends in the suffix .safetensors. You will find numerous LoRA and LyCORIS models for download at Civitai, and a small but growing number at Hugging Face. Full documentation of LoRA support is available at InvokeAI LoRA Support.( Pre-release note: this page will only be available after release)
To use LoRA/LyCORIS models in InvokeAI:
Download the .safetensors files of your choice and place in /path/to/invokeai/loras. This directory was not present in earlier version of InvokeAI but will be created for you the first time you run the command-line or web client. You can also create the directory manually.
Add withLora(lora-file,weight) to your prompts. The weight is optional and will default to 1.0. A few examples, assuming that a LoRA file named loras/sushi.safetensors is present:
family sitting at dinner table eating sushi withLora(sushi,0.9)
family sitting at dinner table eating sushi withLora(sushi, 0.75)
family sitting at dinner table eating sushi withLora(sushi)
Multiple withLora() prompt fragments are allowed. The weight can be arbitrarily large, but the useful range is roughly 0.5 to 1.0. Higher weights make the LoRA's influence stronger. Negative weights are also allowed, which can lead to some interesting effects.
Generate as you usually would! If you find that the image is too "crisp" try reducing the overall CFG value or reducing individual LoRA weights. As is the case with all fine-tunes, you'll get the best results when running the LoRA on top of the model similar to, or identical with, the one that was used during the LoRA's training. Don't try to load a SD 1.x-trained LoRA into a SD 2.x model, and vice versa. This will trigger a non-fatal error message and generation will not proceed.
You can change the location of the loras directory by passing the --lora_directory option to `invokeai.
### New WebUI LoRA and Textual Inversion Buttons
This version adds two new web interface buttons for inserting LoRA and Textual Inversion triggers into the prompt as shown in the screenshot below.
Clicking on one or the other of the buttons will bring up a menu of available LoRA/LyCORIS or Textual Inversion trigger terms. Select a menu item to insert the properly-formatted withLora() or <textual-inversion> prompt fragment into the positive prompt. The number in parentheses indicates the number of trigger terms currently in the prompt. You may click the button again and deselect the LoRA or trigger to remove it from the prompt, or simply edit the prompt directly.
Currently terms are inserted into the positive prompt textbox only. However, some textual inversion embeddings are designed to be used with negative prompts. To move a textual inversion trigger into the negative prompt, simply cut and paste it.
By default the Textual Inversion menu only shows locally installed models found at startup time in /path/to/invokeai/embeddings. However, InvokeAI has the ability to dynamically download and install additional Textual Inversion embeddings from the HuggingFace Concepts Library. You may choose to display the most popular of these (with five or more likes) in the Textual Inversion menu by going to Settings and turning on "Show Textual Inversions from HF Concepts Library." When this option is activated, the locally-installed TI embeddings will be shown first, followed by uninstalled terms from Hugging Face. See The Hugging Face Concepts Library and Importing Textual Inversion files for more information.
### Minor features and fixes
This release changes model switching behavior so that the command-line and Web UIs save the last model used and restore it the next time they are launched. It also improves the behavior of the installer so that the pip utility is kept up to date.
### Known Bugs in 2.3.4
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise Trojan or backdoor alerts for the codeformer.pth face restoration model, as well as the CIDAS/clipseg and runwayml/stable-diffusion-v1.5 models. These are false positives and can be safely ignored. InvokeAI performs a malware scan on all models as they are loaded. For additional security, you should use safetensors models whenever they are available.
## v2.3.3 <small>(28 March 2023)</small>
This is a bugfix and minor feature release.
### Bugfixes
Since version 2.3.2 the following bugs have been fixed:
Bugs
When using legacy checkpoints with an external VAE, the VAE file is now scanned for malware prior to loading. Previously only the main model weights file was scanned.
Textual inversion will select an appropriate batchsize based on whether xformers is active, and will default to xformers enabled if the library is detected.
The batch script log file names have been fixed to be compatible with Windows.
Occasional corruption of the .next_prefix file (which stores the next output file name in sequence) on Windows systems is now detected and corrected.
Support loading of legacy config files that have no personalization (textual inversion) section.
An infinite loop when opening the developer's console from within the invoke.sh script has been corrected.
Documentation fixes, including a recipe for detecting and fixing problems with the AMD GPU ROCm driver.
Enhancements
It is now possible to load and run several community-contributed SD-2.0 based models, including the often-requested "Illuminati" model.
The "NegativePrompts" embedding file, and others like it, can now be loaded by placing it in the InvokeAI embeddings directory.
If no --model is specified at launch time, InvokeAI will remember the last model used and restore it the next time it is launched.
On Linux systems, the invoke.sh launcher now uses a prettier console-based interface. To take advantage of it, install the dialog package using your package manager (e.g. sudo apt install dialog).
When loading legacy models (safetensors/ckpt) you can specify a custom config file and/or a VAE by placing like-named files in the same directory as the model following this example:
my-favorite-model.ckpt
my-favorite-model.yaml
my-favorite-model.vae.pt # or my-favorite-model.vae.safetensors
### Known Bugs in 2.3.3
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise Trojan or backdoor alerts for the codeformer.pth face restoration model, as well as the CIDAS/clipseg and runwayml/stable-diffusion-v1.5 models. These are false positives and can be safely ignored. InvokeAI performs a malware scan on all models as they are loaded. For additional security, you should use safetensors models whenever they are available.
## v2.3.2 <small>(11 March 2023)</small>
This is a bugfix and minor feature release.
### Bugfixes
Since version 2.3.1 the following bugs have been fixed:
Black images appearing for potential NSFW images when generating with legacy checkpoint models and both --no-nsfw_checker and --ckpt_convert turned on.
Black images appearing when generating from models fine-tuned on Stable-Diffusion-2-1-base. When importing V2-derived models, you may be asked to select whether the model was derived from a "base" model (512 pixels) or the 768-pixel SD-2.1 model.
The "Use All" button was not restoring the Hi-Res Fix setting on the WebUI
When using the model installer console app, models failed to import correctly when importing from directories with spaces in their names. A similar issue with the output directory was also fixed.
Crashes that occurred during model merging.
Restore previous naming of Stable Diffusion base and 768 models.
Upgraded to latest versions of diffusers, transformers, safetensors and accelerate libraries upstream. We hope that this will fix the assertion NDArray > 2**32 issue that MacOS users have had when generating images larger than 768x768 pixels. Please report back.
As part of the upgrade to diffusers, the location of the diffusers-based models has changed from models/diffusers to models/hub. When you launch InvokeAI for the first time, it will prompt you to OK a one-time move. This should be quick and harmless, but if you have modified your models/diffusers directory in some way, for example using symlinks, you may wish to cancel the migration and make appropriate adjustments.
New "Invokeai-batch" script
### Invoke AI Batch
2.3.2 introduces a new command-line only script called invokeai-batch that can be used to generate hundreds of images from prompts and settings that vary systematically. This can be used to try the same prompt across multiple combinations of models, steps, CFG settings and so forth. It also allows you to template prompts and generate a combinatorial list like:
a shack in the mountains, photograph
a shack in the mountains, watercolor
a shack in the mountains, oil painting
a chalet in the mountains, photograph
a chalet in the mountains, watercolor
a chalet in the mountains, oil painting
a shack in the desert, photograph
...
If you have a system with multiple GPUs, or a single GPU with lots of VRAM, you can parallelize generation across the combinatorial set, reducing wait times and using your system's resources efficiently (make sure you have good GPU cooling).
To try invokeai-batch out. Launch the "developer's console" using the invoke launcher script, or activate the invokeai virtual environment manually. From the console, give the command invokeai-batch --help in order to learn how the script works and create your first template file for dynamic prompt generation.
### Known Bugs in 2.3.2
These are known bugs in the release.
The Ancestral DPMSolverMultistepScheduler (k_dpmpp_2a) sampler is not yet implemented for diffusers models and will disappear from the WebUI Sampler menu when a diffusers model is selected.
Windows Defender will sometimes raise a Trojan alert for the codeformer.pth face restoration model. As far as we have been able to determine, this is a false positive and can be safely whitelisted.
## v2.3.1 <small>(22 February 2023)</small>
This is primarily a bugfix release, but it does provide several new features that will improve the user experience.
### Enhanced support for model management
InvokeAI now makes it convenient to add, remove and modify models. You can individually import models that are stored on your local system, scan an entire folder and its subfolders for models and import them automatically, and even directly import models from the internet by providing their download URLs. You also have the option of designating a local folder to scan for new models each time InvokeAI is restarted.
There are three ways of accessing the model management features:
From the WebUI, click on the cube to the right of the model selection menu. This will bring up a form that allows you to import models individually from your local disk or scan a directory for models to import.
Using the Model Installer App
Choose option (5) download and install models from the invoke launcher script to start a new console-based application for model management. You can use this to select from a curated set of starter models, or import checkpoint, safetensors, and diffusers models from a local disk or the internet. The example below shows importing two checkpoint URLs from popular SD sites and a HuggingFace diffusers model using its Repository ID. It also shows how to designate a folder to be scanned at startup time for new models to import.
Command-line users can start this app using the command invokeai-model-install.
Using the Command Line Client (CLI)
The !install_model and !convert_model commands have been enhanced to allow entering of URLs and local directories to scan and import. The first command installs .ckpt and .safetensors files as-is. The second one converts them into the faster diffusers format before installation.
Internally InvokeAI is able to probe the contents of a .ckpt or .safetensors file to distinguish among v1.x, v2.x and inpainting models. This means that you do not need to include "inpaint" in your model names to use an inpainting model. Note that Stable Diffusion v2.x models will be autoconverted into a diffusers model the first time you use it.
Please see INSTALLING MODELS for more information on model management.
### An Improved Installer Experience
The installer now launches a console-based UI for setting and changing commonly-used startup options:
After selecting the desired options, the installer installs several support models needed by InvokeAI's face reconstruction and upscaling features and then launches the interface for selecting and installing models shown earlier. At any time, you can edit the startup options by launching invoke.sh/invoke.bat and entering option (6) change InvokeAI startup options
Command-line users can launch the new configure app using invokeai-configure.
This release also comes with a renewed updater. To do an update without going through a whole reinstallation, launch invoke.sh or invoke.bat and choose option (9) update InvokeAI . This will bring you to a screen that prompts you to update to the latest released version, to the most current development version, or any released or unreleased version you choose by selecting the tag or branch of the desired version.
Command-line users can run this interface by typing invokeai-configure
### Image Symmetry Options
There are now features to generate horizontal and vertical symmetry during generation. The way these work is to wait until a selected step in the generation process and then to turn on a mirror image effect. In addition to generating some cool images, you can also use this to make side-by-side comparisons of how an image will look with more or fewer steps. Access this option from the WebUI by selecting Symmetry from the image generation settings, or within the CLI by using the options --h_symmetry_time_pct and --v_symmetry_time_pct (these can be abbreviated to --h_sym and --v_sym like all other options).
### A New Unified Canvas Look
This release introduces a beta version of the WebUI Unified Canvas. To try it out, open up the settings dialogue in the WebUI (gear icon) and select Use Canvas Beta Layout:
Refresh the screen and go to to Unified Canvas (left side of screen, third icon from the top). The new layout is designed to provide more space to work in and to keep the image controls close to the image itself:
Model conversion and merging within the WebUI
The WebUI now has an intuitive interface for model merging, as well as for permanent conversion of models from legacy .ckpt/.safetensors formats into diffusers format. These options are also available directly from the invoke.sh/invoke.bat scripts.
An easier way to contribute translations to the WebUI
We have migrated our translation efforts to Weblate, a FOSS translation product. Maintaining the growing project's translations is now far simpler for the maintainers and community. Please review our brief translation guide for more information on how to contribute.
Numerous internal bugfixes and performance issues
### Bug Fixes
This releases quashes multiple bugs that were reported in 2.3.0. Major internal changes include upgrading to diffusers 0.13.0, and using the compel library for prompt parsing. See Detailed Change Log for a detailed list of bugs caught and squished.
Summary of InvokeAI command line scripts (all accessible via the launcher menu)
Command Description
invokeai Command line interface
invokeai --web Web interface
invokeai-model-install Model installer with console forms-based front end
invokeai-ti --gui Textual inversion, with a console forms-based front end
invokeai-merge --gui Model merging, with a console forms-based front end
invokeai-configure Startup configuration; can also be used to reinstall support models
invokeai-update InvokeAI software updater
### Known Bugs in 2.3.1
These are known bugs in the release.
MacOS users generating 768x768 pixel images or greater using diffusers models may experience a hard crash with assertion NDArray > 2**32 This appears to be an issu...
## v2.3.0 <small>(15 January 2023)</small>
**Transition to diffusers
@ -264,7 +494,7 @@ sections describe what's new for InvokeAI.
[Manual Installation](installation/020_INSTALL_MANUAL.md).
- The ability to save frequently-used startup options (model to load, steps,
sampler, etc) in a `.invokeai` file. See
[Client](features/CLI.md)
[Client](deprecated/CLI.md)
- Support for AMD GPU cards (non-CUDA) on Linux machines.
- Multiple bugs and edge cases squashed.
@ -387,7 +617,7 @@ sections describe what's new for InvokeAI.
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains for
backward compatibility.
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for [inpainting](features/INPAINTING.md) and
- Support for [inpainting](deprecated/INPAINTING.md) and
[outpainting](features/OUTPAINTING.md)
- img2img runs on all k\* samplers
- Support for
@ -399,7 +629,7 @@ sections describe what's new for InvokeAI.
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E
infinite canvas), and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows
[larger images to be created without duplicating elements](features/CLI.md#this-is-an-example-of-txt2img),
[larger images to be created without duplicating elements](deprecated/CLI.md#this-is-an-example-of-txt2img),
at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control
variation during image generation (see
@ -408,7 +638,7 @@ sections describe what's new for InvokeAI.
of images and tweaking of previous settings.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac
platforms.
- Improved [command-line completion behavior](features/CLI.md) New commands
- Improved [command-line completion behavior](deprecated/CLI.md) New commands
added:
- List command-line history with `!history`
- Search command-line history with `!search`

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 310 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.3 MiB

View File

@ -0,0 +1,54 @@
## Welcome to Invoke AI
We're thrilled to have you here and we're excited for you to contribute.
Invoke AI originated as a project built by the community, and that vision carries forward today as we aim to build the best pro-grade tools available. We work together to incorporate the latest in AI/ML research, making these tools available in over 20 languages to artists and creatives around the world as part of our fully permissive OSS project designed for individual users to self-host and use.
Here are some guidelines to help you get started:
### Technical Prerequisites
Front-end: You'll need a working knowledge of React and TypeScript.
Back-end: Depending on the scope of your contribution, you may need to know SQLite, FastAPI, Python, and Socketio. Also, a good majority of the backend logic involved in processing images is built in a modular way using a concept called "Nodes", which are isolated functions that carry out individual, discrete operations. This design allows for easy contributions of novel pipelines and capabilities.
### How to Submit Contributions
To start contributing, please follow these steps:
1. Familiarize yourself with our roadmap and open projects to see where your skills and interests align. These documents can serve as a source of inspiration.
2. Open a Pull Request (PR) with a clear description of the feature you're adding or the problem you're solving. Make sure your contribution aligns with the project's vision.
3. Adhere to general best practices. This includes assuming interoperability with other nodes, keeping the scope of your functions as small as possible, and organizing your code according to our architecture documents.
### Types of Contributions We're Looking For
We welcome all contributions that improve the project. Right now, we're especially looking for:
1. Quality of life (QOL) enhancements on the front-end.
2. New backend capabilities added through nodes.
3. Incorporating additional optimizations from the broader open-source software community.
### Communication and Decision-making Process
Project maintainers and code owners review PRs to ensure they align with the project's goals. They may provide design or architectural guidance, suggestions on user experience, or provide more significant feedback on the contribution itself. Expect to receive feedback on your submissions, and don't hesitate to ask questions or propose changes.
For more robust discussions, or if you're planning to add capabilities not currently listed on our roadmap, please reach out to us on our Discord server. That way, we can ensure your proposed contribution aligns with the project's direction before you start writing code.
### Code of Conduct and Contribution Expectations
We want everyone in our community to have a positive experience. To facilitate this, we've established a code of conduct and a statement of values that we expect all contributors to adhere to. Please take a moment to review these documents—they're essential to maintaining a respectful and inclusive environment.
By making a contribution to this project, you certify that:
1. The contribution was created in whole or in part by you and you have the right to submit it under the open-source license indicated in this projects GitHub repository; or
2. The contribution is based upon previous work that, to the best of your knowledge, is covered under an appropriate open-source license and you have the right under that license to submit that work with modifications, whether created in whole or in part by you, under the same open-source license (unless you are permitted to submit under a different license); or
3. The contribution was provided directly to you by some other person who certified (1) or (2) and you have not modified it; or
4. You understand and agree that this project and the contribution are public and that a record of the contribution (including all personal information you submit with it, including your sign-off) is maintained indefinitely and may be redistributed consistent with this project or the open-source license(s) involved.
This disclaimer is not a license and does not grant any rights or permissions. You must obtain necessary permissions and licenses, including from third parties, before contributing to this project.
This disclaimer is provided "as is" without warranty of any kind, whether expressed or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose, or non-infringement. In no event shall the authors or copyright holders be liable for any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the contribution or the use or other dealings in the contribution.
---
Remember, your contributions help make this project great. We're excited to see what you'll bring to our community!

View File

@ -19,31 +19,56 @@ An invocation looks like this:
```py
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
type: Literal['upscale'] = 'upscale'
# fmt: off
type: Literal["upscale"] = "upscale"
# Inputs
image: Union[ImageField,None] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2,4] = Field(default=2, description = "The upscale level")
image: Union[ImageField, None] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
results = context.services.generate.upscale_and_reconstruct(
image_list = [[image, 0]],
upscale = (self.level, self.strength),
strength = 0.0, # GFPGAN strength
save_original = False,
image_callback = None,
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
```
Each portion is important to implement correctly.
@ -95,25 +120,67 @@ Finally, note that for all linking, the `type` of the linked fields must match.
If the `name` also matches, then the field can be **automatically linked** to a
previous invocation by name and matching.
### Config
```py
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["upscaling", "image"],
},
}
```
This is an optional configuration for the invocation. It inherits from
pydantic's model `Config` class, and it used primarily to customize the
autogenerated OpenAPI schema.
The UI relies on the OpenAPI schema in two ways:
- An API client & Typescript types are generated from it. This happens at build
time.
- The node editor parses the schema into a template used by the UI to create the
node editor UI. This parsing happens at runtime.
In this example, a `ui` key has been added to the `schema_extra` dict to provide
some tags for the UI, to facilitate filtering nodes.
See the Schema Generation section below for more information.
### Invoke Function
```py
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image.image_type, self.image.image_name)
results = context.services.generate.upscale_and_reconstruct(
image_list = [[image, 0]],
upscale = (self.level, self.strength),
strength = 0.0, # GFPGAN strength
save_original = False,
image_callback = None,
image = context.services.images.get_pil_image(
self.image.image_origin, self.image.image_name
)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
image_type = ImageType.RESULT
image_name = context.services.images.create_name(context.graph_execution_state_id, self.id)
context.services.images.save(image_type, image_name, results[0][0])
# TODO: can this return multiple results?
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image = ImageField(image_type = image_type, image_name = image_name)
image=ImageField(
image_name=image_dto.image_name,
image_origin=image_dto.image_origin,
),
width=image_dto.width,
height=image_dto.height,
)
```
@ -135,9 +202,16 @@ scenarios. If you need functionality, please provide it as a service in the
```py
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal['image'] = 'image'
image: ImageField = Field(default=None, description="The output image")
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
```
Output classes look like an invocation class without the invoke method. Prefer
@ -168,35 +242,36 @@ Here's that `ImageOutput` class, without the needed schema customisation:
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
```
The generated OpenAPI schema, and all clients/types generated from it, will have
the `type` and `image` properties marked as optional, even though we know they
will always have a value by the time we can interact with them via the API.
Here's the same class, but with the schema customisation added:
The OpenAPI schema that results from this `ImageOutput` will have the `type`,
`image`, `width` and `height` properties marked as optional, even though we know
they will always have a value.
```python
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
type: Literal["image"] = "image"
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
# Add schema customization
class Config:
schema_extra = {
'required': [
'type',
'image',
]
}
schema_extra = {"required": ["type", "image", "width", "height"]}
```
The resultant schema (and any API client or types generated from it) will now
have see `type` as string literal `"image"` and `image` as an `ImageField`
object.
With the customization in place, the schema will now show these properties as
required, obviating the need for extensive null checks in client code.
See this `pydantic` issue for discussion on this solution:
<https://github.com/pydantic/pydantic/discussions/4577>

589
docs/deprecated/CLI.md Normal file
View File

@ -0,0 +1,589 @@
---
title: Command-Line Interface
---
# :material-bash: CLI
## **Interactive Command Line Interface**
The InvokeAI command line interface (CLI) provides scriptable access
to InvokeAI's features.Some advanced features are only available
through the CLI, though they eventually find their way into the WebUI.
The CLI is accessible from the `invoke.sh`/`invoke.bat` launcher by
selecting option (1). Alternatively, it can be launched directly from
the command line by activating the InvokeAI environment and giving the
command:
```bash
invokeai
```
After some startup messages, you will be presented with the `invoke> `
prompt. Here you can type prompts to generate images and issue other
commands to load and manipulate generative models. The CLI has a large
number of command-line options that control its behavior. To get a
concise summary of the options, call `invokeai` with the `--help` argument:
```bash
invokeai --help
```
The script uses the readline library to allow for in-line editing, command
history (++up++ and ++down++), autocompletion, and more. To help keep track of
which prompts generated which images, the script writes a log file of image
names and prompts to the selected output directory.
Here is a typical session
```bash
PS1:C:\Users\fred> invokeai
* Initializing, be patient...
* Initializing, be patient...
>> Initialization file /home/lstein/invokeai/invokeai.init found. Loading...
>> Internet connectivity is True
>> InvokeAI, version 2.3.0-rc5
>> InvokeAI runtime directory is "/home/lstein/invokeai"
>> GFPGAN Initialized
>> CodeFormer Initialized
>> ESRGAN Initialized
>> Using device_type cuda
>> xformers memory-efficient attention is available and enabled
(...more initialization messages...)
* Initialization done! Awaiting your command (-h for help, 'q' to quit)
invoke> ashley judd riding a camel -n2 -s150
Outputs:
outputs/img-samples/00009.png: "ashley judd riding a camel" -n2 -s150 -S 416354203
outputs/img-samples/00010.png: "ashley judd riding a camel" -n2 -s150 -S 1362479620
invoke> "there's a fly in my soup" -n6 -g
outputs/img-samples/00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
seeds for individual rows: [2685670268, 1216708065, 2335773498, 822223658, 714542046, 3395302430]
invoke> q
```
![invoke-py-demo](../assets/dream-py-demo.png)
## Arguments
The script recognizes a series of command-line switches that will
change important global defaults, such as the directory for image
outputs and the location of the model weight files.
### List of arguments recognized at the command line
These command-line arguments can be passed to `invoke.py` when you first run it
from the Windows, Mac or Linux command line. Some set defaults that can be
overridden on a per-prompt basis (see
[List of prompt arguments](#list-of-prompt-arguments). Others
| Argument <img width="240" align="right"/> | Shortcut <img width="100" align="right"/> | Default <img width="320" align="right"/> | Description |
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------- | ---------------------------------------------------------------------------------------------------- |
| `--help` | `-h` | | Print a concise help message. |
| `--outdir <path>` | `-o<path>` | `outputs/img_samples` | Location for generated images. |
| `--prompt_as_dir` | `-p` | `False` | Name output directories using the prompt text. |
| `--from_file <path>` | | `None` | Read list of prompts from a file. Use `-` to read from standard input |
| `--model <modelname>` | | `stable-diffusion-1.5` | Loads the initial model specified in configs/models.yaml. |
| `--ckpt_convert ` | | `False` | If provided both .ckpt and .safetensors files will be auto-converted into diffusers format in memory |
| `--autoconvert <path>` | | `None` | On startup, scan the indicated directory for new .ckpt/.safetensor files and automatically convert and import them |
| `--precision` | | `fp16` | Provide `fp32` for full precision mode, `fp16` for half-precision. `fp32` needed for Macintoshes and some NVidia cards. |
| `--png_compression <0-9>` | `-z<0-9>` | `6` | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--safety-checker` | | `False` | Activate safety checker for NSFW and other potentially disturbing imagery |
| `--patchmatch`, `--no-patchmatch` | | `--patchmatch` | Load/Don't load the PatchMatch inpainting extension |
| `--xformers`, `--no-xformers` | | `--xformers` | Load/Don't load the Xformers memory-efficient attention module (CUDA only) |
| `--web` | | `False` | Start in web server mode |
| `--host <ip addr>` | | `localhost` | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
| `--port <port>` | | `9090` | Which port web server should listen for requests on. |
| `--config <path>` | | `configs/models.yaml` | Configuration file for models and their weights. |
| `--iterations <int>` | `-n<int>` | `1` | How many images to generate per prompt. |
| `--width <int>` | `-W<int>` | `512` | Width of generated image |
| `--height <int>` | `-H<int>` | `512` | Height of generated image | `--steps <int>` | `-s<int>` | `50` | How many steps of refinement to apply |
| `--strength <float>` | `-s<float>` | `0.75` | For img2img: how hard to try to match the prompt to the initial image. Ranges from 0.0-0.99, with higher values replacing the initial image completely. |
| `--fit` | `-F` | `False` | For img2img: scale the init image to fit into the specified -H and -W dimensions |
| `--grid` | `-g` | `False` | Save all image series as a grid rather than individually. |
| `--sampler <sampler>` | `-A<sampler>` | `k_lms` | Sampler to use. Use `-h` to get list of available samplers. |
| `--seamless` | | `False` | Create interesting effects by tiling elements of the image. |
| `--embedding_path <path>` | | `None` | Path to pre-trained embedding manager checkpoints, for custom models |
| `--gfpgan_model_path` | | `experiments/pretrained_models/GFPGANv1.4.pth` | Path to GFPGAN model file. |
| `--free_gpu_mem` | | `False` | Free GPU memory after sampling, to allow image decoding and saving in low VRAM conditions |
| `--precision` | | `auto` | Set model precision, default is selected by device. Options: auto, float32, float16, autocast |
!!! warning "These arguments are deprecated but still work"
<div align="center" markdown>
| Argument | Shortcut | Default | Description |
|--------------------|------------|---------------------|--------------|
| `--full_precision` | | `False` | Same as `--precision=fp32`|
| `--weights <path>` | | `None` | Path to weights file; use `--model stable-diffusion-1.4` instead |
| `--laion400m` | `-l` | `False` | Use older LAION400m weights; use `--model=laion400m` instead |
</div>
!!! tip
On Windows systems, you may run into
problems when passing the invoke script standard backslashed path
names because the Python interpreter treats "\" as an escape.
You can either double your slashes (ick): `C:\\path\\to\\my\\file`, or
use Linux/Mac style forward slashes (better): `C:/path/to/my/file`.
## The .invokeai initialization file
To start up invoke.py with your preferred settings, place your desired
startup options in a file in your home directory named `.invokeai` The
file should contain the startup options as you would type them on the
command line (`--steps=10 --grid`), one argument per line, or a
mixture of both using any of the accepted command switch formats:
!!! example "my unmodified initialization file"
```bash title="~/.invokeai" linenums="1"
# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running invokeai-configure again.
# The --root option below points to the folder in which InvokeAI stores its models, configs and outputs.
--root="/Users/mauwii/invokeai"
# the --outdir option controls the default location of image files.
--outdir="/Users/mauwii/invokeai/outputs"
# You may place other frequently-used startup commands here, one or more per line.
# Examples:
# --web --host=0.0.0.0
# --steps=20
# -Ak_euler_a -C10.0
```
!!! note
The initialization file only accepts the command line arguments.
There are additional arguments that you can provide on the `invoke>` command
line (such as `-n` or `--iterations`) that cannot be entered into this file.
Also be alert for empty blank lines at the end of the file, which will cause
an arguments error at startup time.
## List of prompt arguments
After the invoke.py script initializes, it will present you with a `invoke>`
prompt. Here you can enter information to generate images from text
([txt2img](#txt2img)), to embellish an existing image or sketch
([img2img](#img2img)), or to selectively alter chosen regions of the image
([inpainting](#inpainting)).
### txt2img
!!! example ""
```bash
invoke> waterfall and rainbow -W640 -H480
```
This will create the requested image with the dimensions 640 (width)
and 480 (height).
Here are the invoke> command that apply to txt2img:
| Argument <img width="680" align="right"/> | Shortcut <img width="420" align="right"/> | Default <img width="480" align="right"/> | Description |
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| "my prompt" | | | Text prompt to use. The quotation marks are optional. |
| `--width <int>` | `-W<int>` | `512` | Width of generated image |
| `--height <int>` | `-H<int>` | `512` | Height of generated image |
| `--iterations <int>` | `-n<int>` | `1` | How many images to generate from this prompt |
| `--steps <int>` | `-s<int>` | `50` | How many steps of refinement to apply |
| `--cfg_scale <float>` | `-C<float>` | `7.5` | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
| `--seed <int>` | `-S<int>` | `None` | Set the random seed for the next series of images. This can be used to recreate an image generated previously. |
| `--sampler <sampler>` | `-A<sampler>` | `k_lms` | Sampler to use. Use -h to get list of available samplers. |
| `--karras_max <int>` | | `29` | When using k\_\* samplers, set the maximum number of steps before shifting from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts) This value is sticky. [29] |
| `--hires_fix` | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
| `--png_compression <0-9>` | `-z<0-9>` | `6` | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--grid` | `-g` | `False` | Turn on grid mode to return a single image combining all the images generated by this prompt |
| `--individual` | `-i` | `True` | Turn off grid mode (deprecated; leave off --grid instead) |
| `--outdir <path>` | `-o<path>` | `outputs/img_samples` | Temporarily change the location of these images |
| `--seamless` | | `False` | Activate seamless tiling for interesting effects |
| `--seamless_axes` | | `x,y` | Specify which axes to use circular convolution on. |
| `--log_tokenization` | `-t` | `False` | Display a color-coded list of the parsed tokens derived from the prompt |
| `--skip_normalization` | `-x` | `False` | Weighted subprompts will not be normalized. See [Weighted Prompts](../features/OTHER.md#weighted-prompts) |
| `--upscale <int> <float>` | `-U <int> <float>` | `-U 1 0.75` | Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
| `--facetool_strength <float>` | `-G <float> ` | `-G0` | Fix faces (defaults to using the GFPGAN algorithm); argument indicates how hard the algorithm should try (0.0-1.0) |
| `--facetool <name>` | `-ft <name>` | `-ft gfpgan` | Select face restoration algorithm to use: gfpgan, codeformer |
| `--codeformer_fidelity` | `-cf <float>` | `0.75` | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
| `--save_original` | `-save_orig` | `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](../features/VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](../features/VARIATIONS.md) for now to use this. |
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
| `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
| `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
!!! note
the width and height of the image must be multiples of 64. You can
provide different values, but they will be rounded down to the nearest multiple
of 64.
!!! example "This is a example of img2img"
```bash
invoke> waterfall and rainbow -I./vacation-photo.png -W640 -H480 --fit
```
This will modify the indicated vacation photograph by making it more like the
prompt. Results will vary greatly depending on what is in the image. We also ask
to --fit the image into a box no bigger than 640x480. Otherwise the image size
will be identical to the provided photo and you may run out of memory if it is
large.
In addition to the command-line options recognized by txt2img, img2img accepts
additional options:
| Argument <img width="160" align="right"/> | Shortcut | Default | Description |
| ----------------------------------------- | ----------- | ------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `--init_img <path>` | `-I<path>` | `None` | Path to the initialization image |
| `--fit` | `-F` | `False` | Scale the image to fit into the specified -H and -W dimensions |
| `--strength <float>` | `-s<float>` | `0.75` | How hard to try to match the prompt to the initial image. Ranges from 0.0-0.99, with higher values replacing the initial image completely. |
### inpainting
!!! example ""
```bash
invoke> waterfall and rainbow -I./vacation-photo.png -M./vacation-mask.png -W640 -H480 --fit
```
This will do the same thing as img2img, but image alterations will
only occur within transparent areas defined by the mask file specified
by `-M`. You may also supply just a single initial image with the areas
to overpaint made transparent, but you must be careful not to destroy
the pixels underneath when you create the transparent areas. See
[Inpainting](INPAINTING.md) for details.
inpainting accepts all the arguments used for txt2img and img2img, as well as
the --mask (-M) and --text_mask (-tm) arguments:
| Argument <img width="100" align="right"/> | Shortcut | Default | Description |
| ----------------------------------------- | ------------------------ | ------- | ------------------------------------------------------------------------------------------------ |
| `--init_mask <path>` | `-M<path>` | `None` | Path to an image the same size as the initial_image, with areas for inpainting made transparent. |
| `--invert_mask ` | | False | If true, invert the mask so that transparent areas are opaque and vice versa. |
| `--text_mask <prompt> [<float>]` | `-tm <prompt> [<float>]` | <none> | Create a mask from a text prompt describing part of the image |
The mask may either be an image with transparent areas, in which case the
inpainting will occur in the transparent areas only, or a black and white image,
in which case all black areas will be painted into.
`--text_mask` (short form `-tm`) is a way to generate a mask using a text
description of the part of the image to replace. For example, if you have an
image of a breakfast plate with a bagel, toast and scrambled eggs, you can
selectively mask the bagel and replace it with a piece of cake this way:
```bash
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel
```
The algorithm uses <a
href="https://github.com/timojl/clipseg">clipseg</a> to classify different
regions of the image. The classifier puts out a confidence score for each region
it identifies. Generally regions that score above 0.5 are reliable, but if you
are getting too much or too little masking you can adjust the threshold down (to
get more mask), or up (to get less). In this example, by passing `-tm` a higher
value, we are insisting on a more stringent classification.
```bash
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel 0.6
```
### Custom Styles and Subjects
You can load and use hundreds of community-contributed Textual
Inversion models just by typing the appropriate trigger phrase. Please
see [Concepts Library](../features/CONCEPTS.md) for more details.
## Other Commands
The CLI offers a number of commands that begin with "!".
### Postprocessing images
To postprocess a file using face restoration or upscaling, use the `!fix`
command.
#### `!fix`
This command runs a post-processor on a previously-generated image. It takes a
PNG filename or path and applies your choice of the `-U`, `-G`, or `--embiggen`
switches in order to fix faces or upscale. If you provide a filename, the script
will look for it in the current output directory. Otherwise you can provide a
full or partial path to the desired file.
Some examples:
!!! example "Upscale to 4X its original size and fix faces using codeformer"
```bash
invoke> !fix 0000045.4829112.png -G1 -U4 -ft codeformer
```
!!! example "Use the GFPGAN algorithm to fix faces, then upscale to 3X using --embiggen"
```bash
invoke> !fix 0000045.4829112.png -G0.8 -ft gfpgan
>> fixing outputs/img-samples/0000045.4829112.png
>> retrieved seed 4829112 and prompt "boy enjoying a banana split"
>> GFPGAN - Restoring Faces for image seed:4829112
Outputs:
[1] outputs/img-samples/000017.4829112.gfpgan-00.png: !fix "outputs/img-samples/0000045.4829112.png" -s 50 -S -W 512 -H 512 -C 7.5 -A k_lms -G 0.8
```
#### `!mask`
This command takes an image, a text prompt, and uses the `clipseg` algorithm to
automatically generate a mask of the area that matches the text prompt. It is
useful for debugging the text masking process prior to inpainting with the
`--text_mask` argument. See [INPAINTING.md] for details.
### Model selection and importation
The CLI allows you to add new models on the fly, as well as to switch
among them rapidly without leaving the script. There are several
different model formats, each described in the [Model Installation
Guide](../installation/050_INSTALLING_MODELS.md).
#### `!models`
This prints out a list of the models defined in `config/models.yaml'. The active
model is bold-faced
Example:
<pre>
inpainting-1.5 not loaded Stable Diffusion inpainting model
<b>stable-diffusion-1.5 active Stable Diffusion v1.5</b>
waifu-diffusion not loaded Waifu Diffusion v1.4
</pre>
#### `!switch <model>`
This quickly switches from one model to another without leaving the CLI script.
`invoke.py` uses a memory caching system; once a model has been loaded,
switching back and forth is quick. The following example shows this in action.
Note how the second column of the `!models` table changes to `cached` after a
model is first loaded, and that the long initialization step is not needed when
loading a cached model.
#### `!import_model <hugging_face_repo_ID>`
This imports and installs a `diffusers`-style model that is stored on
the [HuggingFace Web Site](https://huggingface.co). You can look up
any [Stable Diffusion diffusers
model](https://huggingface.co/models?library=diffusers) and install it
with a command like the following:
```bash
!import_model prompthero/openjourney
```
#### `!import_model <path/to/diffusers/directory>`
If you have a copy of a `diffusers`-style model saved to disk, you can
import it by passing the path to model's top-level directory.
#### `!import_model <url>`
For a `.ckpt` or `.safetensors` file, if you have a direct download
URL for the file, you can provide it to `!import_model` and the file
will be downloaded and installed for you.
#### `!import_model <path/to/model/weights.ckpt>`
This command imports a new model weights file into InvokeAI, makes it available
for image generation within the script, and writes out the configuration for the
model into `config/models.yaml` for use in subsequent sessions.
Provide `!import_model` with the path to a weights file ending in `.ckpt`. If
you type a partial path and press tab, the CLI will autocomplete. Although it
will also autocomplete to `.vae` files, these are not currenty supported (but
will be soon).
When you hit return, the CLI will prompt you to fill in additional information
about the model, including the short name you wish to use for it with the
`!switch` command, a brief description of the model, the default image width and
height to use with this model, and the model's configuration file. The latter
three fields are automatically filled with reasonable defaults. In the example
below, the bold-faced text shows what the user typed in with the exception of
the width, height and configuration file paths, which were filled in
automatically.
#### `!import_model <path/to/directory_of_models>`
If you provide the path of a directory that contains one or more
`.ckpt` or `.safetensors` files, the CLI will scan the directory and
interactively offer to import the models it finds there. Also see the
`--autoconvert` command-line option.
#### `!edit_model <name_of_model>`
The `!edit_model` command can be used to modify a model that is already defined
in `config/models.yaml`. Call it with the short name of the model you wish to
modify, and it will allow you to modify the model's `description`, `weights` and
other fields.
Example:
<pre>
invoke> <b>!edit_model waifu-diffusion</b>
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
description: <b>Waifu diffusion v1.4beta</b>
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
config: configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512
>> New configuration:
waifu-diffusion:
config: configs/stable-diffusion/v1-inference.yaml
description: Waifu diffusion v1.4beta
weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
height: 512
width: 512
OK to import [n]? y
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
...
</pre>
### History processing
The CLI provides a series of convenient commands for reviewing previous actions,
retrieving them, modifying them, and re-running them.
#### `!history`
The invoke script keeps track of all the commands you issue during a session,
allowing you to re-run them. On Mac and Linux systems, it also writes the
command-line history out to disk, giving you access to the most recent 1000
commands issued.
The `!history` command will return a numbered list of all the commands issued
during the session (Windows), or the most recent 1000 commands (Mac|Linux). You
can then repeat a command by using the command `!NNN`, where "NNN" is the
history line number. For example:
!!! example ""
```bash
invoke> !history
...
[14] happy woman sitting under tree wearing broad hat and flowing garment
[15] beautiful woman sitting under tree wearing broad hat and flowing garment
[18] beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6
[20] watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
[21] surrealist painting of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
...
invoke> !20
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
####`!fetch`
This command retrieves the generation parameters from a previously generated
image and either loads them into the command line (Linux|Mac), or prints them
out in a comment for copy-and-paste (Windows). You may provide either the name
of a file in the current output directory, or a full file path. Specify path to
a folder with image png files, and wildcard \*.png to retrieve the dream command
used to generate the images, and save them to a file commands.txt for further
processing.
!!! example "load the generation command for a single png file"
```bash
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
```
!!! example "fetch the generation commands from a batch of files and store them into `selected.txt`"
```bash
invoke> !fetch outputs\selected-imgs\*.png selected.txt
```
#### `!replay`
This command replays a text file generated by !fetch or created manually
!!! example
```bash
invoke> !replay outputs\selected-imgs\selected.txt
```
!!! note
These commands may behave unexpectedly if given a PNG file that was
not generated by InvokeAI.
#### `!search <search string>`
This is similar to !history but it only returns lines that contain
`search string`. For example:
```bash
invoke> !search surreal
[21] surrealist painting of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
#### `!clear`
This clears the search history from memory and disk. Be advised that this
operation is irreversible and does not issue any warnings!
## Command-line editing and completion
The command-line offers convenient history tracking, editing, and command
completion.
- To scroll through previous commands and potentially edit/reuse them, use the
++up++ and ++down++ keys.
- To edit the current command, use the ++left++ and ++right++ keys to position
the cursor, and then ++backspace++, ++delete++ or insert characters.
- To move to the very beginning of the command, type ++ctrl+a++ (or
++command+a++ on the Mac)
- To move to the end of the command, type ++ctrl+e++.
- To cut a section of the command, position the cursor where you want to start
cutting and type ++ctrl+k++
- To paste a cut section back in, position the cursor where you want to paste,
and type ++ctrl+y++
Windows users can get similar, but more limited, functionality if they launch
`invoke.py` with the `winpty` program and have the `pyreadline3` library
installed:
```batch
> winpty python scripts\invoke.py
```
On the Mac and Linux platforms, when you exit invoke.py, the last 1000 lines of
your command-line history will be saved. When you restart `invoke.py`, you can
access the saved history using the ++up++ key.
In addition, limited command-line completion is installed. In various contexts,
you can start typing your command and press ++tab++. A list of potential
completions will be presented to you. You can then type a little more, hit
++tab++ again, and eventually autocomplete what you want.
When specifying file paths using the one-letter shortcuts, the CLI will attempt
to complete pathnames for you. This is most handy for the `-I` (init image) and
`-M` (init mask) paths. To initiate completion, start the path with a slash
(`/`) or `./`. For example:
```bash
invoke> zebra with a mustache -I./test-pictures<TAB>
-I./test-pictures/Lincoln-and-Parrot.png -I./test-pictures/zebra.jpg -I./test-pictures/madonna.png
-I./test-pictures/bad-sketch.png -I./test-pictures/man_with_eagle/
```
You can then type ++z++, hit ++tab++ again, and it will autofill to `zebra.jpg`.
More text completion features (such as autocompleting seeds) are on their way.

View File

@ -1,589 +0,0 @@
---
title: Command-Line Interface
---
# :material-bash: CLI
## **Interactive Command Line Interface**
The InvokeAI command line interface (CLI) provides scriptable access
to InvokeAI's features.Some advanced features are only available
through the CLI, though they eventually find their way into the WebUI.
The CLI is accessible from the `invoke.sh`/`invoke.bat` launcher by
selecting option (1). Alternatively, it can be launched directly from
the command line by activating the InvokeAI environment and giving the
command:
```bash
invokeai
```
After some startup messages, you will be presented with the `invoke> `
prompt. Here you can type prompts to generate images and issue other
commands to load and manipulate generative models. The CLI has a large
number of command-line options that control its behavior. To get a
concise summary of the options, call `invokeai` with the `--help` argument:
```bash
invokeai --help
```
The script uses the readline library to allow for in-line editing, command
history (++up++ and ++down++), autocompletion, and more. To help keep track of
which prompts generated which images, the script writes a log file of image
names and prompts to the selected output directory.
Here is a typical session
```bash
PS1:C:\Users\fred> invokeai
* Initializing, be patient...
* Initializing, be patient...
>> Initialization file /home/lstein/invokeai/invokeai.init found. Loading...
>> Internet connectivity is True
>> InvokeAI, version 2.3.0-rc5
>> InvokeAI runtime directory is "/home/lstein/invokeai"
>> GFPGAN Initialized
>> CodeFormer Initialized
>> ESRGAN Initialized
>> Using device_type cuda
>> xformers memory-efficient attention is available and enabled
(...more initialization messages...)
* Initialization done! Awaiting your command (-h for help, 'q' to quit)
invoke> ashley judd riding a camel -n2 -s150
Outputs:
outputs/img-samples/00009.png: "ashley judd riding a camel" -n2 -s150 -S 416354203
outputs/img-samples/00010.png: "ashley judd riding a camel" -n2 -s150 -S 1362479620
invoke> "there's a fly in my soup" -n6 -g
outputs/img-samples/00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
seeds for individual rows: [2685670268, 1216708065, 2335773498, 822223658, 714542046, 3395302430]
invoke> q
```
![invoke-py-demo](../assets/dream-py-demo.png)
## Arguments
The script recognizes a series of command-line switches that will
change important global defaults, such as the directory for image
outputs and the location of the model weight files.
### List of arguments recognized at the command line
These command-line arguments can be passed to `invoke.py` when you first run it
from the Windows, Mac or Linux command line. Some set defaults that can be
overridden on a per-prompt basis (see
[List of prompt arguments](#list-of-prompt-arguments). Others
| Argument <img width="240" align="right"/> | Shortcut <img width="100" align="right"/> | Default <img width="320" align="right"/> | Description |
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------- | ---------------------------------------------------------------------------------------------------- |
| `--help` | `-h` | | Print a concise help message. |
| `--outdir <path>` | `-o<path>` | `outputs/img_samples` | Location for generated images. |
| `--prompt_as_dir` | `-p` | `False` | Name output directories using the prompt text. |
| `--from_file <path>` | | `None` | Read list of prompts from a file. Use `-` to read from standard input |
| `--model <modelname>` | | `stable-diffusion-1.5` | Loads the initial model specified in configs/models.yaml. |
| `--ckpt_convert ` | | `False` | If provided both .ckpt and .safetensors files will be auto-converted into diffusers format in memory |
| `--autoconvert <path>` | | `None` | On startup, scan the indicated directory for new .ckpt/.safetensor files and automatically convert and import them |
| `--precision` | | `fp16` | Provide `fp32` for full precision mode, `fp16` for half-precision. `fp32` needed for Macintoshes and some NVidia cards. |
| `--png_compression <0-9>` | `-z<0-9>` | `6` | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--safety-checker` | | `False` | Activate safety checker for NSFW and other potentially disturbing imagery |
| `--patchmatch`, `--no-patchmatch` | | `--patchmatch` | Load/Don't load the PatchMatch inpainting extension |
| `--xformers`, `--no-xformers` | | `--xformers` | Load/Don't load the Xformers memory-efficient attention module (CUDA only) |
| `--web` | | `False` | Start in web server mode |
| `--host <ip addr>` | | `localhost` | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
| `--port <port>` | | `9090` | Which port web server should listen for requests on. |
| `--config <path>` | | `configs/models.yaml` | Configuration file for models and their weights. |
| `--iterations <int>` | `-n<int>` | `1` | How many images to generate per prompt. |
| `--width <int>` | `-W<int>` | `512` | Width of generated image |
| `--height <int>` | `-H<int>` | `512` | Height of generated image | `--steps <int>` | `-s<int>` | `50` | How many steps of refinement to apply |
| `--strength <float>` | `-s<float>` | `0.75` | For img2img: how hard to try to match the prompt to the initial image. Ranges from 0.0-0.99, with higher values replacing the initial image completely. |
| `--fit` | `-F` | `False` | For img2img: scale the init image to fit into the specified -H and -W dimensions |
| `--grid` | `-g` | `False` | Save all image series as a grid rather than individually. |
| `--sampler <sampler>` | `-A<sampler>` | `k_lms` | Sampler to use. Use `-h` to get list of available samplers. |
| `--seamless` | | `False` | Create interesting effects by tiling elements of the image. |
| `--embedding_path <path>` | | `None` | Path to pre-trained embedding manager checkpoints, for custom models |
| `--gfpgan_model_path` | | `experiments/pretrained_models/GFPGANv1.4.pth` | Path to GFPGAN model file. |
| `--free_gpu_mem` | | `False` | Free GPU memory after sampling, to allow image decoding and saving in low VRAM conditions |
| `--precision` | | `auto` | Set model precision, default is selected by device. Options: auto, float32, float16, autocast |
!!! warning "These arguments are deprecated but still work"
<div align="center" markdown>
| Argument | Shortcut | Default | Description |
|--------------------|------------|---------------------|--------------|
| `--full_precision` | | `False` | Same as `--precision=fp32`|
| `--weights <path>` | | `None` | Path to weights file; use `--model stable-diffusion-1.4` instead |
| `--laion400m` | `-l` | `False` | Use older LAION400m weights; use `--model=laion400m` instead |
</div>
!!! tip
On Windows systems, you may run into
problems when passing the invoke script standard backslashed path
names because the Python interpreter treats "\" as an escape.
You can either double your slashes (ick): `C:\\path\\to\\my\\file`, or
use Linux/Mac style forward slashes (better): `C:/path/to/my/file`.
## The .invokeai initialization file
To start up invoke.py with your preferred settings, place your desired
startup options in a file in your home directory named `.invokeai` The
file should contain the startup options as you would type them on the
command line (`--steps=10 --grid`), one argument per line, or a
mixture of both using any of the accepted command switch formats:
!!! example "my unmodified initialization file"
```bash title="~/.invokeai" linenums="1"
# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running invokeai-configure again.
# The --root option below points to the folder in which InvokeAI stores its models, configs and outputs.
--root="/Users/mauwii/invokeai"
# the --outdir option controls the default location of image files.
--outdir="/Users/mauwii/invokeai/outputs"
# You may place other frequently-used startup commands here, one or more per line.
# Examples:
# --web --host=0.0.0.0
# --steps=20
# -Ak_euler_a -C10.0
```
!!! note
The initialization file only accepts the command line arguments.
There are additional arguments that you can provide on the `invoke>` command
line (such as `-n` or `--iterations`) that cannot be entered into this file.
Also be alert for empty blank lines at the end of the file, which will cause
an arguments error at startup time.
## List of prompt arguments
After the invoke.py script initializes, it will present you with a `invoke>`
prompt. Here you can enter information to generate images from text
([txt2img](#txt2img)), to embellish an existing image or sketch
([img2img](#img2img)), or to selectively alter chosen regions of the image
([inpainting](#inpainting)).
### txt2img
!!! example ""
```bash
invoke> waterfall and rainbow -W640 -H480
```
This will create the requested image with the dimensions 640 (width)
and 480 (height).
Here are the invoke> command that apply to txt2img:
| Argument <img width="680" align="right"/> | Shortcut <img width="420" align="right"/> | Default <img width="480" align="right"/> | Description |
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| "my prompt" | | | Text prompt to use. The quotation marks are optional. |
| `--width <int>` | `-W<int>` | `512` | Width of generated image |
| `--height <int>` | `-H<int>` | `512` | Height of generated image |
| `--iterations <int>` | `-n<int>` | `1` | How many images to generate from this prompt |
| `--steps <int>` | `-s<int>` | `50` | How many steps of refinement to apply |
| `--cfg_scale <float>` | `-C<float>` | `7.5` | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
| `--seed <int>` | `-S<int>` | `None` | Set the random seed for the next series of images. This can be used to recreate an image generated previously. |
| `--sampler <sampler>` | `-A<sampler>` | `k_lms` | Sampler to use. Use -h to get list of available samplers. |
| `--karras_max <int>` | | `29` | When using k\_\* samplers, set the maximum number of steps before shifting from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts) This value is sticky. [29] |
| `--hires_fix` | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
| `--png_compression <0-9>` | `-z<0-9>` | `6` | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--grid` | `-g` | `False` | Turn on grid mode to return a single image combining all the images generated by this prompt |
| `--individual` | `-i` | `True` | Turn off grid mode (deprecated; leave off --grid instead) |
| `--outdir <path>` | `-o<path>` | `outputs/img_samples` | Temporarily change the location of these images |
| `--seamless` | | `False` | Activate seamless tiling for interesting effects |
| `--seamless_axes` | | `x,y` | Specify which axes to use circular convolution on. |
| `--log_tokenization` | `-t` | `False` | Display a color-coded list of the parsed tokens derived from the prompt |
| `--skip_normalization` | `-x` | `False` | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
| `--upscale <int> <float>` | `-U <int> <float>` | `-U 1 0.75` | Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
| `--facetool_strength <float>` | `-G <float> ` | `-G0` | Fix faces (defaults to using the GFPGAN algorithm); argument indicates how hard the algorithm should try (0.0-1.0) |
| `--facetool <name>` | `-ft <name>` | `-ft gfpgan` | Select face restoration algorithm to use: gfpgan, codeformer |
| `--codeformer_fidelity` | `-cf <float>` | `0.75` | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
| `--save_original` | `-save_orig` | `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
| `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
| `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
!!! note
the width and height of the image must be multiples of 64. You can
provide different values, but they will be rounded down to the nearest multiple
of 64.
!!! example "This is a example of img2img"
```bash
invoke> waterfall and rainbow -I./vacation-photo.png -W640 -H480 --fit
```
This will modify the indicated vacation photograph by making it more like the
prompt. Results will vary greatly depending on what is in the image. We also ask
to --fit the image into a box no bigger than 640x480. Otherwise the image size
will be identical to the provided photo and you may run out of memory if it is
large.
In addition to the command-line options recognized by txt2img, img2img accepts
additional options:
| Argument <img width="160" align="right"/> | Shortcut | Default | Description |
| ----------------------------------------- | ----------- | ------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `--init_img <path>` | `-I<path>` | `None` | Path to the initialization image |
| `--fit` | `-F` | `False` | Scale the image to fit into the specified -H and -W dimensions |
| `--strength <float>` | `-s<float>` | `0.75` | How hard to try to match the prompt to the initial image. Ranges from 0.0-0.99, with higher values replacing the initial image completely. |
### inpainting
!!! example ""
```bash
invoke> waterfall and rainbow -I./vacation-photo.png -M./vacation-mask.png -W640 -H480 --fit
```
This will do the same thing as img2img, but image alterations will
only occur within transparent areas defined by the mask file specified
by `-M`. You may also supply just a single initial image with the areas
to overpaint made transparent, but you must be careful not to destroy
the pixels underneath when you create the transparent areas. See
[Inpainting](./INPAINTING.md) for details.
inpainting accepts all the arguments used for txt2img and img2img, as well as
the --mask (-M) and --text_mask (-tm) arguments:
| Argument <img width="100" align="right"/> | Shortcut | Default | Description |
| ----------------------------------------- | ------------------------ | ------- | ------------------------------------------------------------------------------------------------ |
| `--init_mask <path>` | `-M<path>` | `None` | Path to an image the same size as the initial_image, with areas for inpainting made transparent. |
| `--invert_mask ` | | False | If true, invert the mask so that transparent areas are opaque and vice versa. |
| `--text_mask <prompt> [<float>]` | `-tm <prompt> [<float>]` | <none> | Create a mask from a text prompt describing part of the image |
The mask may either be an image with transparent areas, in which case the
inpainting will occur in the transparent areas only, or a black and white image,
in which case all black areas will be painted into.
`--text_mask` (short form `-tm`) is a way to generate a mask using a text
description of the part of the image to replace. For example, if you have an
image of a breakfast plate with a bagel, toast and scrambled eggs, you can
selectively mask the bagel and replace it with a piece of cake this way:
```bash
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel
```
The algorithm uses <a
href="https://github.com/timojl/clipseg">clipseg</a> to classify different
regions of the image. The classifier puts out a confidence score for each region
it identifies. Generally regions that score above 0.5 are reliable, but if you
are getting too much or too little masking you can adjust the threshold down (to
get more mask), or up (to get less). In this example, by passing `-tm` a higher
value, we are insisting on a more stringent classification.
```bash
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel 0.6
```
### Custom Styles and Subjects
You can load and use hundreds of community-contributed Textual
Inversion models just by typing the appropriate trigger phrase. Please
see [Concepts Library](CONCEPTS.md) for more details.
## Other Commands
The CLI offers a number of commands that begin with "!".
### Postprocessing images
To postprocess a file using face restoration or upscaling, use the `!fix`
command.
#### `!fix`
This command runs a post-processor on a previously-generated image. It takes a
PNG filename or path and applies your choice of the `-U`, `-G`, or `--embiggen`
switches in order to fix faces or upscale. If you provide a filename, the script
will look for it in the current output directory. Otherwise you can provide a
full or partial path to the desired file.
Some examples:
!!! example "Upscale to 4X its original size and fix faces using codeformer"
```bash
invoke> !fix 0000045.4829112.png -G1 -U4 -ft codeformer
```
!!! example "Use the GFPGAN algorithm to fix faces, then upscale to 3X using --embiggen"
```bash
invoke> !fix 0000045.4829112.png -G0.8 -ft gfpgan
>> fixing outputs/img-samples/0000045.4829112.png
>> retrieved seed 4829112 and prompt "boy enjoying a banana split"
>> GFPGAN - Restoring Faces for image seed:4829112
Outputs:
[1] outputs/img-samples/000017.4829112.gfpgan-00.png: !fix "outputs/img-samples/0000045.4829112.png" -s 50 -S -W 512 -H 512 -C 7.5 -A k_lms -G 0.8
```
#### `!mask`
This command takes an image, a text prompt, and uses the `clipseg` algorithm to
automatically generate a mask of the area that matches the text prompt. It is
useful for debugging the text masking process prior to inpainting with the
`--text_mask` argument. See [INPAINTING.md] for details.
### Model selection and importation
The CLI allows you to add new models on the fly, as well as to switch
among them rapidly without leaving the script. There are several
different model formats, each described in the [Model Installation
Guide](../installation/050_INSTALLING_MODELS.md).
#### `!models`
This prints out a list of the models defined in `config/models.yaml'. The active
model is bold-faced
Example:
<pre>
inpainting-1.5 not loaded Stable Diffusion inpainting model
<b>stable-diffusion-1.5 active Stable Diffusion v1.5</b>
waifu-diffusion not loaded Waifu Diffusion v1.4
</pre>
#### `!switch <model>`
This quickly switches from one model to another without leaving the CLI script.
`invoke.py` uses a memory caching system; once a model has been loaded,
switching back and forth is quick. The following example shows this in action.
Note how the second column of the `!models` table changes to `cached` after a
model is first loaded, and that the long initialization step is not needed when
loading a cached model.
#### `!import_model <hugging_face_repo_ID>`
This imports and installs a `diffusers`-style model that is stored on
the [HuggingFace Web Site](https://huggingface.co). You can look up
any [Stable Diffusion diffusers
model](https://huggingface.co/models?library=diffusers) and install it
with a command like the following:
```bash
!import_model prompthero/openjourney
```
#### `!import_model <path/to/diffusers/directory>`
If you have a copy of a `diffusers`-style model saved to disk, you can
import it by passing the path to model's top-level directory.
#### `!import_model <url>`
For a `.ckpt` or `.safetensors` file, if you have a direct download
URL for the file, you can provide it to `!import_model` and the file
will be downloaded and installed for you.
#### `!import_model <path/to/model/weights.ckpt>`
This command imports a new model weights file into InvokeAI, makes it available
for image generation within the script, and writes out the configuration for the
model into `config/models.yaml` for use in subsequent sessions.
Provide `!import_model` with the path to a weights file ending in `.ckpt`. If
you type a partial path and press tab, the CLI will autocomplete. Although it
will also autocomplete to `.vae` files, these are not currenty supported (but
will be soon).
When you hit return, the CLI will prompt you to fill in additional information
about the model, including the short name you wish to use for it with the
`!switch` command, a brief description of the model, the default image width and
height to use with this model, and the model's configuration file. The latter
three fields are automatically filled with reasonable defaults. In the example
below, the bold-faced text shows what the user typed in with the exception of
the width, height and configuration file paths, which were filled in
automatically.
#### `!import_model <path/to/directory_of_models>`
If you provide the path of a directory that contains one or more
`.ckpt` or `.safetensors` files, the CLI will scan the directory and
interactively offer to import the models it finds there. Also see the
`--autoconvert` command-line option.
#### `!edit_model <name_of_model>`
The `!edit_model` command can be used to modify a model that is already defined
in `config/models.yaml`. Call it with the short name of the model you wish to
modify, and it will allow you to modify the model's `description`, `weights` and
other fields.
Example:
<pre>
invoke> <b>!edit_model waifu-diffusion</b>
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
description: <b>Waifu diffusion v1.4beta</b>
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
config: configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512
>> New configuration:
waifu-diffusion:
config: configs/stable-diffusion/v1-inference.yaml
description: Waifu diffusion v1.4beta
weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
height: 512
width: 512
OK to import [n]? y
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
...
</pre>
### History processing
The CLI provides a series of convenient commands for reviewing previous actions,
retrieving them, modifying them, and re-running them.
#### `!history`
The invoke script keeps track of all the commands you issue during a session,
allowing you to re-run them. On Mac and Linux systems, it also writes the
command-line history out to disk, giving you access to the most recent 1000
commands issued.
The `!history` command will return a numbered list of all the commands issued
during the session (Windows), or the most recent 1000 commands (Mac|Linux). You
can then repeat a command by using the command `!NNN`, where "NNN" is the
history line number. For example:
!!! example ""
```bash
invoke> !history
...
[14] happy woman sitting under tree wearing broad hat and flowing garment
[15] beautiful woman sitting under tree wearing broad hat and flowing garment
[18] beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6
[20] watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
[21] surrealist painting of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
...
invoke> !20
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
####`!fetch`
This command retrieves the generation parameters from a previously generated
image and either loads them into the command line (Linux|Mac), or prints them
out in a comment for copy-and-paste (Windows). You may provide either the name
of a file in the current output directory, or a full file path. Specify path to
a folder with image png files, and wildcard \*.png to retrieve the dream command
used to generate the images, and save them to a file commands.txt for further
processing.
!!! example "load the generation command for a single png file"
```bash
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
```
!!! example "fetch the generation commands from a batch of files and store them into `selected.txt`"
```bash
invoke> !fetch outputs\selected-imgs\*.png selected.txt
```
#### `!replay`
This command replays a text file generated by !fetch or created manually
!!! example
```bash
invoke> !replay outputs\selected-imgs\selected.txt
```
!!! note
These commands may behave unexpectedly if given a PNG file that was
not generated by InvokeAI.
#### `!search <search string>`
This is similar to !history but it only returns lines that contain
`search string`. For example:
```bash
invoke> !search surreal
[21] surrealist painting of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
#### `!clear`
This clears the search history from memory and disk. Be advised that this
operation is irreversible and does not issue any warnings!
## Command-line editing and completion
The command-line offers convenient history tracking, editing, and command
completion.
- To scroll through previous commands and potentially edit/reuse them, use the
++up++ and ++down++ keys.
- To edit the current command, use the ++left++ and ++right++ keys to position
the cursor, and then ++backspace++, ++delete++ or insert characters.
- To move to the very beginning of the command, type ++ctrl+a++ (or
++command+a++ on the Mac)
- To move to the end of the command, type ++ctrl+e++.
- To cut a section of the command, position the cursor where you want to start
cutting and type ++ctrl+k++
- To paste a cut section back in, position the cursor where you want to paste,
and type ++ctrl+y++
Windows users can get similar, but more limited, functionality if they launch
`invoke.py` with the `winpty` program and have the `pyreadline3` library
installed:
```batch
> winpty python scripts\invoke.py
```
On the Mac and Linux platforms, when you exit invoke.py, the last 1000 lines of
your command-line history will be saved. When you restart `invoke.py`, you can
access the saved history using the ++up++ key.
In addition, limited command-line completion is installed. In various contexts,
you can start typing your command and press ++tab++. A list of potential
completions will be presented to you. You can then type a little more, hit
++tab++ again, and eventually autocomplete what you want.
When specifying file paths using the one-letter shortcuts, the CLI will attempt
to complete pathnames for you. This is most handy for the `-I` (init image) and
`-M` (init mask) paths. To initiate completion, start the path with a slash
(`/`) or `./`. For example:
```bash
invoke> zebra with a mustache -I./test-pictures<TAB>
-I./test-pictures/Lincoln-and-Parrot.png -I./test-pictures/zebra.jpg -I./test-pictures/madonna.png
-I./test-pictures/bad-sketch.png -I./test-pictures/man_with_eagle/
```
You can then type ++z++, hit ++tab++ again, and it will autofill to `zebra.jpg`.
More text completion features (such as autocompleting seeds) are on their way.

View File

@ -65,39 +65,21 @@ find out what each concept is for, you can browse the
[Hugging Face concepts library](https://huggingface.co/sd-concepts-library) and
look at examples of what each concept produces.
When you have an idea of a concept you wish to try, go to the command-line
client (CLI) and type a `<` character and the beginning of the Hugging Face
concept name you wish to load. Press ++tab++, and the CLI will show you all
matching concepts. You can also type `<` and hit ++tab++ to get a listing of all
~800 concepts, but be prepared to scroll up to see them all! If there is more
than one match you can continue to type and ++tab++ until the concept is
completed.
To load concepts, you will need to open the Web UI's configuration
dialogue and activate "Show Textual Inversions from HF Concepts
Library". This will then add a list of HF Concepts to the dropdown
"Add Textual Inversion" menu. Select the concept(s) of your choice and
they will be incorporated into the positive prompt. A few concepts are
designed for the negative prompt, in which case you can add them to
the negative prompt box by select the down arrow icon next to the
textual inversion menu.
!!! example
if you type in `<x` and hit ++tab++, you'll be prompted with the completions:
```py
<xatu2> <xatu> <xbh> <xi> <xidiversity> <xioboma> <xuna> <xyz>
```
Now type `id` and press ++tab++. It will be autocompleted to `<xidiversity>`
because this is a unique match.
Finish your prompt and generate as usual. You may include multiple concept terms
in the prompt.
If you have never used this concept before, you will see a message that the TI
model is being downloaded and installed. After this, the concept will be saved
locally (in the `models/sd-concepts-library` directory) for future use.
Several steps happen during downloading and installation, including a scan of
the file for malicious code. Should any errors occur, you will be warned and the
concept will fail to load. Generation will then continue treating the trigger
term as a normal string of characters (e.g. as literal `<ghibli-face>`).
You can also use `<concept-names>` in the WebGUI's prompt textbox. There is no
autocompletion at this time.
There are nearly 1000 HF concepts, more than will fit into a menu. For
this reason we only show the most popular concepts (those which have
received 5 or more likes). If you wish to use a concept that is not on
the list, you may simply type its name surrounded by brackets. For
example, to load the concept named "xidiversity", add `<xidiversity>`
to the positive or negative prompt text.
## Installing your Own TI Files
@ -112,18 +94,11 @@ At startup time, InvokeAI will scan the `embeddings` directory and load any TI
files it finds there. At startup you will see a message similar to this one:
```bash
>> Current embedding manager terms: *, <HOI4-Leader>, <princess-knight>
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
```
Note the `*` trigger term. This is a placeholder term that many early TI
tutorials taught people to use rather than a more descriptive term.
Unfortunately, if you have multiple TI files that all use this term, only the
first one loaded will be triggered by use of the term.
To avoid this problem, you can use the `merge_embeddings.py` script to merge two
or more TI files together. If it encounters a collision of terms, the script
will prompt you to select new terms that do not collide. See
[Textual Inversion](TEXTUAL_INVERSION.md) for details.
The terms you can use will appear in the "Add Textual Inversion"
dropdown menu above the HF Concepts.
## Further Reading

View File

@ -0,0 +1,92 @@
---
title: ControlNet
---
# :material-loupe: ControlNet
## ControlNet
ControlNet
ControlNet is a powerful set of features developed by the open-source community (notably, Stanford researcher [**@ilyasviel**](https://github.com/lllyasviel)) that allows you to apply a secondary neural network model to your image generation process in Invoke.
With ControlNet, you can get more control over the output of your image generation, providing you with a way to direct the network towards generating images that better fit your desired style or outcome.
### How it works
ControlNet works by analyzing an input image, pre-processing that image to identify relevant information that can be interpreted by each specific ControlNet model, and then inserting that control information into the generation process. This can be used to adjust the style, composition, or other aspects of the image to better achieve a specific result.
### Models
As part of the model installation, ControlNet models can be selected including a variety of pre-trained models that have been added to achieve different effects or styles in your generated images. Further ControlNet models may require additional code functionality to also be incorporated into Invoke's Invocations folder. You should expect to follow any installation instructions for ControlNet models loaded outside the default models provided by Invoke. The default models include:
**Canny**:
When the Canny model is used in ControlNet, Invoke will attempt to generate images that match the edges detected.
Canny edge detection works by detecting the edges in an image by looking for abrupt changes in intensity. It is known for its ability to detect edges accurately while reducing noise and false edges, and the preprocessor can identify more information by decreasing the thresholds.
**M-LSD**:
M-LSD is another edge detection algorithm used in ControlNet. It stands for Multi-Scale Line Segment Detector.
It detects straight line segments in an image by analyzing the local structure of the image at multiple scales. It can be useful for architectural imagery, or anything where straight-line structural information is needed for the resulting output.
**Lineart**:
The Lineart model in ControlNet generates line drawings from an input image. The resulting pre-processed image is a simplified version of the original, with only the outlines of objects visible.The Lineart model in ControlNet is known for its ability to accurately capture the contours of the objects in an input sketch.
**Lineart Anime**:
A variant of the Lineart model that generates line drawings with a distinct style inspired by anime and manga art styles.
**Depth**:
A model that generates depth maps of images, allowing you to create more realistic 3D models or to simulate depth effects in post-processing.
**Normal Map (BAE):**
A model that generates normal maps from input images, allowing for more realistic lighting effects in 3D rendering.
**Image Segmentation**:
A model that divides input images into segments or regions, each of which corresponds to a different object or part of the image. (More details coming soon)
**Openpose**:
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
**Mediapipe Face**:
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.
**Tile (experimental)**:
The Tile model fills out details in the image to match the image, rather than the prompt. The Tile Model is a versatile tool that offers a range of functionalities. Its primary capabilities can be boiled down to two main behaviors:
- It can reinterpret specific details within an image and create fresh, new elements.
- It has the ability to disregard global instructions if there's a discrepancy between them and the local context or specific parts of the image. In such cases, it uses the local context to guide the process.
The Tile Model can be a powerful tool in your arsenal for enhancing image quality and details. If there are undesirable elements in your images, such as blurriness caused by resizing, this model can effectively eliminate these issues, resulting in cleaner, crisper images. Moreover, it can generate and add refined details to your images, improving their overall quality and appeal.
**Pix2Pix (experimental)**
With Pix2Pix, you can input an image into the controlnet, and then "instruct" the model to change it using your prompt. For example, you can say "Make it winter" to add more wintry elements to a scene.
**Inpaint**: Coming Soon - Currently this model is available but not functional on the Canvas. An upcoming release will provide additional capabilities for using this model when inpainting.
Each of these models can be adjusted and combined with other ControlNet models to achieve different results, giving you even more control over your image generation process.
## Using ControlNet
To use ControlNet, you can simply select the desired model and adjust both the ControlNet and Pre-processor settings to achieve the desired result. You can also use multiple ControlNet models at the same time, allowing you to achieve even more complex effects or styles in your generated images.
Each ControlNet has two settings that are applied to the ControlNet.
Weight - Strength of the Controlnet model applied to the generation for the section, defined by start/end.
Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the ControlNet applied.
Additionally, each ControlNet section can be expanded in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in when you Invoke.

View File

@ -4,86 +4,13 @@ title: Image-to-Image
# :material-image-multiple: Image-to-Image
Both the Web and command-line interfaces provide an "img2img" feature
that lets you seed your creations with an initial drawing or
photo. This is a really cool feature that tells stable diffusion to
build the prompt on top of the image you provide, preserving the
original's basic shape and layout.
InvokeAI provides an "img2img" feature that lets you seed your
creations with an initial drawing or photo. This is a really cool
feature that tells stable diffusion to build the prompt on top of the
image you provide, preserving the original's basic shape and layout.
See the [WebUI Guide](WEB.md) for a walkthrough of the img2img feature
in the InvokeAI web server. This document describes how to use img2img
in the command-line tool.
## Basic Usage
Launch the command-line client by launching `invoke.sh`/`invoke.bat`
and choosing option (1). Alternative, activate the InvokeAI
environment and issue the command `invokeai`.
Once the `invoke> ` prompt appears, you can start an img2img render by
pointing to a seed file with the `-I` option as shown here:
!!! example ""
```commandline
tree on a hill with a river, nature photograph, national geographic -I./test-pictures/tree-and-river-sketch.png -f 0.85
```
<figure markdown>
| original image | generated image |
| :------------: | :-------------: |
| ![original-image](https://user-images.githubusercontent.com/50542132/193946000-c42a96d8-5a74-4f8a-b4c3-5213e6cadcce.png){ width=320 } | ![generated-image](https://user-images.githubusercontent.com/111189/194135515-53d4c060-e994-4016-8121-7c685e281ac9.png){ width=320 } |
</figure>
The `--init_img` (`-I`) option gives the path to the seed picture. `--strength`
(`-f`) controls how much the original will be modified, ranging from `0.0` (keep
the original intact), to `1.0` (ignore the original completely). The default is
`0.75`, and ranges from `0.25-0.90` give interesting results. Other relevant
options include `-C` (classification free guidance scale), and `-s` (steps).
Unlike `txt2img`, adding steps will continuously change the resulting image and
it will not converge.
You may also pass a `-v<variation_amount>` option to generate `-n<iterations>`
count variants on the original image. This is done by passing the first
generated image back into img2img the requested number of times. It generates
interesting variants.
Note that the prompt makes a big difference. For example, this slight variation
on the prompt produces a very different image:
<figure markdown>
![](https://user-images.githubusercontent.com/111189/194135220-16b62181-b60c-4248-8989-4834a8fd7fbd.png){ width=320 }
<caption markdown>photograph of a tree on a hill with a river</caption>
</figure>
!!! tip
When designing prompts, think about how the images scraped from the internet were
captioned. Very few photographs will be labeled "photograph" or "photorealistic."
They will, however, be captioned with the publication, photographer, camera model,
or film settings.
If the initial image contains transparent regions, then Stable Diffusion will
only draw within the transparent regions, a process called
[`inpainting`](./INPAINTING.md#creating-transparent-regions-for-inpainting).
However, for this to work correctly, the color information underneath the
transparent needs to be preserved, not erased.
!!! warning "**IMPORTANT ISSUE** "
`img2img` does not work properly on initial images smaller
than 512x512. Please scale your image to at least 512x512 before using it.
Larger images are not a problem, but may run out of VRAM on your GPU card. To
fix this, use the --fit option, which downscales the initial image to fit within
the box specified by width x height:
```
tree on a hill with a river, national geographic -I./test-pictures/big-sketch.png -H512 -W512 --fit
```
## How does it actually work, though?
For a walkthrough of using Image-to-Image in the Web UI, see [InvokeAI
Web Server](./WEB.md#image-to-image).
The main difference between `img2img` and `prompt2img` is the starting point.
While `prompt2img` always starts with pure gaussian noise and progressively
@ -99,10 +26,6 @@ seed `1592514025` develops something like this:
!!! example ""
```bash
invoke> "fire" -s10 -W384 -H384 -S1592514025
```
<figure markdown>
![latent steps](../assets/img2img/000019.steps.png){ width=720 }
</figure>
@ -157,17 +80,8 @@ Diffusion has less chance to refine itself, so the result ends up inheriting all
the problems of my bad drawing.
If you want to try this out yourself, all of these are using a seed of
`1592514025` with a width/height of `384`, step count `10`, the default sampler
(`k_lms`), and the single-word prompt `"fire"`:
```bash
invoke> "fire" -s10 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png --strength 0.7
```
The code for rendering intermediates is on my (damian0815's) branch
[document-img2img](https://github.com/damian0815/InvokeAI/tree/document-img2img) -
run `invoke.py` and check your `outputs/img-samples/intermediates` folder while
generating an image.
`1592514025` with a width/height of `384`, step count `10`, the
`k_lms` sampler, and the single-word prompt `"fire"`.
### Compensating for the reduced step count
@ -180,10 +94,6 @@ give each generation 20 steps.
Here's strength `0.4` (note step count `50`, which is `20 ÷ 0.4` to make sure SD
does `20` steps from my image):
```bash
invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
```
<figure markdown>
![000035.1592514025](../assets/img2img/000035.1592514025.png)
</figure>
@ -191,10 +101,6 @@ invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
and here is strength `0.7` (note step count `30`, which is roughly `20 ÷ 0.7` to
make sure SD does `20` steps from my image):
```commandline
invoke> "fire" -s30 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.7
```
<figure markdown>
![000046.1592514025](../assets/img2img/000046.1592514025.png)
</figure>

171
docs/features/LOGGING.md Normal file
View File

@ -0,0 +1,171 @@
---
title: Controlling Logging
---
# :material-image-off: Controlling Logging
## Controlling How InvokeAI Logs Status Messages
InvokeAI logs status messages using a configurable logging system. You
can log to the terminal window, to a designated file on the local
machine, to the syslog facility on a Linux or Mac, or to a properly
configured web server. You can configure several logs at the same
time, and control the level of message logged and the logging format
(to a limited extent).
Three command-line options control logging:
### `--log_handlers <handler1> <handler2> ...`
This option activates one or more log handlers. Options are "console",
"file", "syslog" and "http". To specify more than one, separate them
by spaces:
```bash
invokeai-web --log_handlers console syslog=/dev/log file=C:\Users\fred\invokeai.log
```
The format of these options is described below.
### `--log_format {plain|color|legacy|syslog}`
This controls the format of log messages written to the console. Only
the "console" log handler is currently affected by this setting.
* "plain" provides formatted messages like this:
```bash
[2023-05-24 23:18:2[2023-05-24 23:18:50,352]::[InvokeAI]::DEBUG --> this is a debug message
[2023-05-24 23:18:50,352]::[InvokeAI]::INFO --> this is an informational messages
[2023-05-24 23:18:50,352]::[InvokeAI]::WARNING --> this is a warning
[2023-05-24 23:18:50,352]::[InvokeAI]::ERROR --> this is an error
[2023-05-24 23:18:50,352]::[InvokeAI]::CRITICAL --> this is a critical error
```
* "color" produces similar output, but the text will be color coded to
indicate the severity of the message.
* "legacy" produces output similar to InvokeAI versions 2.3 and earlier:
```bash
### this is a critical error
*** this is an error
** this is a warning
>> this is an informational messages
| this is a debug message
```
* "syslog" produces messages suitable for syslog entries:
```bash
InvokeAI [2691178] <CRITICAL> this is a critical error
InvokeAI [2691178] <ERROR> this is an error
InvokeAI [2691178] <WARNING> this is a warning
InvokeAI [2691178] <INFO> this is an informational messages
InvokeAI [2691178] <DEBUG> this is a debug message
```
(note that the date, time and hostname will be added by the syslog
system)
### `--log_level {debug|info|warning|error|critical}`
Providing this command-line option will cause only messages at the
specified level or above to be emitted.
## Console logging
When "console" is provided to `--log_handlers`, messages will be
written to the command line window in which InvokeAI was launched. By
default, the color formatter will be used unless overridden by
`--log_format`.
## File logging
When "file" is provided to `--log_handlers`, entries will be written
to the file indicated in the path argument. By default, the "plain"
format will be used:
```bash
invokeai-web --log_handlers file=/var/log/invokeai.log
```
## Syslog logging
When "syslog" is requested, entries will be sent to the syslog
system. There are a variety of ways to control where the log message
is sent:
* Send to the local machine using the `/dev/log` socket:
```
invokeai-web --log_handlers syslog=/dev/log
```
* Send to the local machine using a UDP message:
```
invokeai-web --log_handlers syslog=localhost
```
* Send to the local machine using a UDP message on a nonstandard
port:
```
invokeai-web --log_handlers syslog=localhost:512
```
* Send to a remote machine named "loghost" on the local LAN using
facility LOG_USER and UDP packets:
```
invokeai-web --log_handlers syslog=loghost,facility=LOG_USER,socktype=SOCK_DGRAM
```
This can be abbreviated `syslog=loghost`, as LOG_USER and SOCK_DGRAM
are defaults.
* Send to a remote machine named "loghost" using the facility LOCAL0
and using a TCP socket:
```
invokeai-web --log_handlers syslog=loghost,facility=LOG_LOCAL0,socktype=SOCK_STREAM
```
If no arguments are specified (just a bare "syslog"), then the logging
system will look for a UNIX socket named `/dev/log`, and if not found
try to send a UDP message to `localhost`. The Macintosh OS used to
support logging to a socket named `/var/run/syslog`, but this feature
has since been disabled.
## Web logging
If you have access to a web server that is configured to log messages
when a particular URL is requested, you can log using the "http"
method:
```
invokeai-web --log_handlers http=http://my.server/path/to/logger,method=POST
```
The optional [,method=] part can be used to specify whether the URL
accepts GET (default) or POST messages.
Currently password authentication and SSL are not supported.
## Using the configuration file
You can set and forget logging options by adding a "Logging" section
to `invokeai.yaml`:
```
InvokeAI:
[... other settings...]
Logging:
log_handlers:
- console
- syslog=/dev/log
log_level: info
log_format: color
```

View File

@ -71,6 +71,3 @@ under the selected name and register it with InvokeAI.
use InvokeAI conventions - only alphanumeric letters and the
characters ".+-".
## Caveats
This is a new script and may contain bugs.

View File

@ -31,10 +31,22 @@ turned on and off on the command line using `--nsfw_checker` and
At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file (usually
`.invokeai` in your home directory). You can change the default at any
time by opening this file in a text editor and commenting or
uncommenting the line `--nsfw_checker`.
response is stored in the InvokeAI initialization file
(`invokeai.yaml` in the InvokeAI root directory). You can change the
default at any time by opening this file in a text editor and
changing the line `nsfw_checker:` from true to false or vice-versa:
```
...
Features:
esrgan: true
internet_available: true
log_tokenization: false
nsfw_checker: true
patchmatch: true
restore: true
```
## Caveats
@ -79,11 +91,3 @@ generates. However, it does write metadata into the PNG data area,
including the prompt used to generate the image and relevant parameter
settings. These fields can be examined using the `sd-metadata.py`
script that comes with the InvokeAI package.
Note that several other Stable Diffusion distributions offer
wavelet-based "invisible" watermarking. We have experimented with the
library used to generate these watermarks and have reached the
conclusion that while the watermarking library may be adding
watermarks to PNG images, the currently available version is unable to
retrieve them successfully. If and when a functioning version of the
library becomes available, we will offer this feature as well.

View File

@ -18,43 +18,16 @@ Output Example:
## **Seamless Tiling**
The seamless tiling mode causes generated images to seamlessly tile with itself. To use it, add the
`--seamless` option when starting the script which will result in all generated images to tile, or
for each `invoke>` prompt as shown here:
The seamless tiling mode causes generated images to seamlessly tile
with itself creating repetitive wallpaper-like patterns. To use it,
activate the Seamless Tiling option in the Web GUI and then select
whether to tile on the X (horizontal) and/or Y (vertical) axes. Tiling
will then be active for the next set of generations.
A nice prompt to test seamless tiling with is:
```python
invoke> "pond garden with lotus by claude monet" --seamless -s100 -n4
```
By default this will tile on both the X and Y axes. However, you can also specify specific axes to tile on with `--seamless_axes`.
Possible values are `x`, `y`, and `x,y`:
```python
invoke> "pond garden with lotus by claude monet" --seamless --seamless_axes=x -s100 -n4
```
---
## **Shortcuts: Reusing Seeds**
Since it is so common to reuse seeds while refining a prompt, there is now a shortcut as of version
1.11. Provide a `-S` (or `--seed`) switch of `-1` to use the seed of the most recent image
generated. If you produced multiple images with the `-n` switch, then you can go back further
using `-2`, `-3`, etc. up to the first image generated by the previous command. Sorry, but you can't go
back further than one command.
Here's an example of using this to do a quick refinement. It also illustrates using the new `-G`
switch to turn on upscaling and face enhancement (see previous section):
```bash
invoke> a cute child playing hopscotch -G0.5
[...]
outputs/img-samples/000039.3498014304.png: "a cute child playing hopscotch" -s50 -W512 -H512 -C7.5 -mk_lms -S3498014304
# I wonder what it will look like if I bump up the steps and set facial enhancement to full strength?
invoke> a cute child playing hopscotch -G1.0 -s100 -S -1
reusing previous seed 3498014304
[...]
outputs/img-samples/000040.3498014304.png: "a cute child playing hopscotch" -G1.0 -s100 -W512 -H512 -C7.5 -mk_lms -S3498014304
pond garden with lotus by claude monet"
```
---
@ -73,66 +46,27 @@ This will tell the sampler to invest 25% of its effort on the tabby cat aspect o
on the white duck aspect (surprisingly, this example actually works). The prompt weights can use any
combination of integers and floating point numbers, and they do not need to add up to 1.
---
## **Filename Format**
The argument `--fnformat` allows to specify the filename of the
image. Supported wildcards are all arguments what can be set such as
`perlin`, `seed`, `threshold`, `height`, `width`, `gfpgan_strength`,
`sampler_name`, `steps`, `model`, `upscale`, `prompt`, `cfg_scale`,
`prefix`.
The following prompt
```bash
dream> a red car --steps 25 -C 9.8 --perlin 0.1 --fnformat {prompt}_steps.{steps}_cfg.{cfg_scale}_perlin.{perlin}.png
```
generates a file with the name: `outputs/img-samples/a red car_steps.25_cfg.9.8_perlin.0.1.png`
---
## **Thresholding and Perlin Noise Initialization Options**
Two new options are the thresholding (`--threshold`) and the perlin noise initialization (`--perlin`) options. Thresholding limits the range of the latent values during optimization, which helps combat oversaturation with higher CFG scale values. Perlin noise initialization starts with a percentage (a value ranging from 0 to 1) of perlin noise mixed into the initial noise. Both features allow for more variations and options in the course of generating images.
Under the Noise section of the Web UI, you will find two options named
Perlin Noise and Noise Threshold. [Perlin
noise](https://en.wikipedia.org/wiki/Perlin_noise) is a type of
structured noise used to simulate terrain and other natural
textures. The slider controls the percentage of perlin noise that will
be mixed into the image at the beginning of generation. Adding a little
perlin noise to a generation will alter the image substantially.
The noise threshold limits the range of the latent values during
sampling and helps combat the oversharpening seem with higher CFG
scale values.
For better intuition into what these options do in practice:
![here is a graphic demonstrating them both](../assets/truncation_comparison.jpg)
In generating this graphic, perlin noise at initialization was programmatically varied going across on the diagram by values 0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0; and the threshold was varied going down from
0, 1, 2, 3, 4, 5, 10, 20, 100. The other options are fixed, so the initial prompt is as follows (no thresholding or perlin noise):
```bash
invoke> "a portrait of a beautiful young lady" -S 1950357039 -s 100 -C 20 -A k_euler_a --threshold 0 --perlin 0
```
Here's an example of another prompt used when setting the threshold to 5 and perlin noise to 0.2:
```bash
invoke> "a portrait of a beautiful young lady" -S 1950357039 -s 100 -C 20 -A k_euler_a --threshold 5 --perlin 0.2
```
!!! note
currently the thresholding feature is only implemented for the k-diffusion style samplers, and empirically appears to work best with `k_euler_a` and `k_dpm_2_a`. Using 0 disables thresholding. Using 0 for perlin noise disables using perlin noise for initialization. Finally, using 1 for perlin noise uses only perlin noise for initialization.
---
## **Simplified API**
For programmers who wish to incorporate stable-diffusion into other products, this repository
includes a simplified API for text to image generation, which lets you create images from a prompt
in just three lines of code:
```bash
from ldm.generate import Generate
g = Generate()
outputs = g.txt2img("a unicorn in manhattan")
```
Outputs is a list of lists in the format [filename1,seed1],[filename2,seed2]...].
Please see the documentation in ldm/generate.py for more information.
---
In generating this graphic, perlin noise at initialization was
programmatically varied going across on the diagram by values 0.0,
0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0; and the threshold was varied
going down from 0, 1, 2, 3, 4, 5, 10, 20, 100. The other options are
fixed using the prompt "a portrait of a beautiful young lady" a CFG of
20, 100 steps, and a seed of 1950357039.

View File

@ -8,12 +8,6 @@ title: Postprocessing
This extension provides the ability to restore faces and upscale images.
Face restoration and upscaling can be applied at the time you generate the
images, or at any later time against a previously-generated PNG file, using the
[!fix](#fixing-previously-generated-images) command.
[Outpainting and outcropping](OUTPAINTING.md) can only be applied after the
fact.
## Face Fixing
The default face restoration module is GFPGAN. The default upscale is
@ -23,8 +17,7 @@ Real-ESRGAN. For an alternative face restoration module, see
As of version 1.14, environment.yaml will install the Real-ESRGAN package into
the standard install location for python packages, and will put GFPGAN into a
subdirectory of "src" in the InvokeAI directory. Upscaling with Real-ESRGAN
should "just work" without further intervention. Simply pass the `--upscale`
(`-U`) option on the `invoke>` command line, or indicate the desired scale on
should "just work" without further intervention. Simply indicate the desired scale on
the popup in the Web GUI.
**GFPGAN** requires a series of downloadable model files to work. These are
@ -41,48 +34,75 @@ reconstruction.
### Upscaling
`-U : <upscaling_factor> <upscaling_strength>`
Open the upscaling dialog by clicking on the "expand" icon located
above the image display area in the Web UI:
The upscaling prompt argument takes two values. The first value is a scaling
factor and should be set to either `2` or `4` only. This will either scale the
image 2x or 4x respectively using different models.
<figure markdown>
![upscale1](../assets/features/upscale-dialog.png)
</figure>
You can set the scaling stength between `0` and `1.0` to control intensity of
the of the scaling. This is handy because AI upscalers generally tend to smooth
out texture details. If you wish to retain some of those for natural looking
results, we recommend using values between `0.5 to 0.8`.
There are three different upscaling parameters that you can
adjust. The first is the scale itself, either 2x or 4x.
If you do not explicitly specify an upscaling_strength, it will default to 0.75.
The second is the "Denoising Strength." Higher values will smooth out
the image and remove digital chatter, but may lose fine detail at
higher values.
Third, "Upscale Strength" allows you to adjust how the You can set the
scaling stength between `0` and `1.0` to control the intensity of the
scaling. AI upscalers generally tend to smooth out texture details. If
you wish to retain some of those for natural looking results, we
recommend using values between `0.5 to 0.8`.
[This figure](../assets/features/upscaling-montage.png) illustrates
the effects of denoising and strength. The original image was 512x512,
4x scaled to 2048x2048. The "original" version on the upper left was
scaled using simple pixel averaging. The remainder use the ESRGAN
upscaling algorithm at different levels of denoising and strength.
<figure markdown>
![upscaling](../assets/features/upscaling-montage.png){ width=720 }
</figure>
Both denoising and strength default to 0.75.
### Face Restoration
`-G : <facetool_strength>`
InvokeAI offers alternative two face restoration algorithms,
[GFPGAN](https://github.com/TencentARC/GFPGAN) and
[CodeFormer](https://huggingface.co/spaces/sczhou/CodeFormer). These
algorithms improve the appearance of faces, particularly eyes and
mouths. Issues with faces are less common with the latest set of
Stable Diffusion models than with the original 1.4 release, but the
restoration algorithms can still make a noticeable improvement in
certain cases. You can also apply restoration to old photographs you
upload.
This prompt argument controls the strength of the face restoration that is being
applied. Similar to upscaling, values between `0.5 to 0.8` are recommended.
To access face restoration, click the "smiley face" icon in the
toolbar above the InvokeAI image panel. You will be presented with a
dialog that offers a choice between the two algorithm and sliders that
allow you to adjust their parameters. Alternatively, you may open the
left-hand accordion panel labeled "Face Restoration" and have the
restoration algorithm of your choice applied to generated images
automatically.
You can use either one or both without any conflicts. In cases where you use
both, the image will be first upscaled and then the face restoration process
will be executed to ensure you get the highest quality facial features.
`--save_orig`
Like upscaling, there are a number of parameters that adjust the face
restoration output. GFPGAN has a single parameter, `strength`, which
controls how much the algorithm is allowed to adjust the
image. CodeFormer has two parameters, `strength`, and `fidelity`,
which together control the quality of the output image as described in
the [CodeFormer project
page](https://shangchenzhou.com/projects/CodeFormer/). Default values
are 0.75 for both parameters, which achieves a reasonable balance
between changing the image too much and not enough.
When you use either `-U` or `-G`, the final result you get is upscaled or face
modified. If you want to save the original Stable Diffusion generation, you can
use the `-save_orig` prompt argument to save the original unaffected version
too.
[This figure](../assets/features/restoration-montage.png) illustrates
the effects of adjusting GFPGAN and CodeFormer parameters.
### Example Usage
```bash
invoke> "superman dancing with a panda bear" -U 2 0.6 -G 0.4
```
This also works with img2img:
```bash
invoke> "a man wearing a pineapple hat" -I path/to/your/file.png -U 2 0.5 -G 0.6
```
<figure markdown>
![upscaling](../assets/features/restoration-montage.png){ width=720 }
</figure>
!!! note
@ -95,69 +115,8 @@ invoke> "a man wearing a pineapple hat" -I path/to/your/file.png -U 2 0.5 -G 0.6
process is complete. While the image generation is taking place, you will still be able to preview
the base images.
If you wish to stop during the image generation but want to upscale or face
restore a particular generated image, pass it again with the same prompt and
generated seed along with the `-U` and `-G` prompt arguments to perform those
actions.
## CodeFormer Support
This repo also allows you to perform face restoration using
[CodeFormer](https://github.com/sczhou/CodeFormer).
In order to setup CodeFormer to work, you need to download the models like with
GFPGAN. You can do this either by running `invokeai-configure` or by manually
downloading the
[model file](https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth)
and saving it to `ldm/invoke/restoration/codeformer/weights` folder.
You can use `-ft` prompt argument to swap between CodeFormer and the default
GFPGAN. The above mentioned `-G` prompt argument will allow you to control the
strength of the restoration effect.
### CodeFormer Usage
The following command will perform face restoration with CodeFormer instead of
the default gfpgan.
`<prompt> -G 0.8 -ft codeformer`
### Other Options
- `-cf` - cf or CodeFormer Fidelity takes values between `0` and `1`. 0 produces
high quality results but low accuracy and 1 produces lower quality results but
higher accuacy to your original face.
The following command will perform face restoration with CodeFormer. CodeFormer
will output a result that is closely matching to the input face.
`<prompt> -G 1.0 -ft codeformer -cf 0.9`
The following command will perform face restoration with CodeFormer. CodeFormer
will output a result that is the best restoration possible. This may deviate
slightly from the original face. This is an excellent option to use in
situations when there is very little facial data to work with.
`<prompt> -G 1.0 -ft codeformer -cf 0.1`
## Fixing Previously-Generated Images
It is easy to apply face restoration and/or upscaling to any
previously-generated file. Just use the syntax
`!fix path/to/file.png <options>`. For example, to apply GFPGAN at strength 0.8
and upscale 2X for a file named `./outputs/img-samples/000044.2945021133.png`,
just run:
```bash
invoke> !fix ./outputs/img-samples/000044.2945021133.png -G 0.8 -U 2
```
A new file named `000044.2945021133.fixed.png` will be created in the output
directory. Note that the `!fix` command does not replace the original file,
unlike the behavior at generate time.
## How to disable
If, for some reason, you do not wish to load the GFPGAN and/or ESRGAN libraries,
you can disable them on the invoke.py command line with the `--no_restore` and
`--no_upscale` options, respectively.
`--no_esrgan` options, respectively.

View File

@ -4,77 +4,12 @@ title: Prompting-Features
# :octicons-command-palette-24: Prompting-Features
## **Reading Prompts from a File**
You can automate `invoke.py` by providing a text file with the prompts you want
to run, one line per prompt. The text file must be composed with a text editor
(e.g. Notepad) and not a word processor. Each line should look like what you
would type at the invoke> prompt:
```bash
"a beautiful sunny day in the park, children playing" -n4 -C10
"stormy weather on a mountain top, goats grazing" -s100
"innovative packaging for a squid's dinner" -S137038382
```
Then pass this file's name to `invoke.py` when you invoke it:
```bash
python scripts/invoke.py --from_file "/path/to/prompts.txt"
```
You may also read a series of prompts from standard input by providing
a filename of `-`. For example, here is a python script that creates a
matrix of prompts, each one varying slightly:
```bash
#!/usr/bin/env python
adjectives = ['sunny','rainy','overcast']
samplers = ['k_lms','k_euler_a','k_heun']
cfg = [7.5, 9, 11]
for adj in adjectives:
for samp in samplers:
for cg in cfg:
print(f'a {adj} day -A{samp} -C{cg}')
```
Its output looks like this (abbreviated):
```bash
a sunny day -Aklms -C7.5
a sunny day -Aklms -C9
a sunny day -Aklms -C11
a sunny day -Ak_euler_a -C7.5
a sunny day -Ak_euler_a -C9
...
a overcast day -Ak_heun -C9
a overcast day -Ak_heun -C11
```
To feed it to invoke.py, pass the filename of "-"
```bash
python matrix.py | python scripts/invoke.py --from_file -
```
When the script is finished, each of the 27 combinations
of adjective, sampler and CFG will be executed.
The command-line interface provides `!fetch` and `!replay` commands
which allow you to read the prompts from a single previously-generated
image or a whole directory of them, write the prompts to a file, and
then replay them. Or you can create your own file of prompts and feed
them to the command-line client from within an interactive session.
See [Command-Line Interface](CLI.md) for details.
---
## **Negative and Unconditioned Prompts**
Any words between a pair of square brackets will instruct Stable Diffusion to
attempt to ban the concept from the generated image.
Any words between a pair of square brackets will instruct Stable
Diffusion to attempt to ban the concept from the generated image. The
same effect is achieved by placing words in the "Negative Prompts"
textbox in the Web UI.
```text
this is a test prompt [not really] to make you understand [cool] how this works.
@ -87,7 +22,9 @@ Here's a prompt that depicts what it does.
original prompt:
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve"`
`#!bash parameters: steps=20, dimensions=512x768, CFG=7.5, Scheduler=k_euler_a, seed=1654590180`
<figure markdown>
@ -99,7 +36,8 @@ That image has a woman, so if we want the horse without a rider, we can
influence the image not to have a woman by putting [woman] in the prompt, like
this:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]"`
(same parameters as above)
<figure markdown>
@ -110,7 +48,8 @@ this:
That's nice - but say we also don't want the image to be quite so blue. We can
add "blue" to the list of negative prompts, so it's now [woman blue]:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]"`
(same parameters as above)
<figure markdown>
@ -121,7 +60,8 @@ add "blue" to the list of negative prompts, so it's now [woman blue]:
Getting close - but there's no sense in having a saddle when our horse doesn't
have a rider, so we'll add one more negative prompt: [woman blue saddle].
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]"`
(same parameters as above)
<figure markdown>
@ -261,19 +201,6 @@ Prompt2prompt `.swap()` is not compatible with xformers, which will be temporari
The `prompt2prompt` code is based off
[bloc97's colab](https://github.com/bloc97/CrossAttentionControl).
Note that `prompt2prompt` is not currently working with the runwayML inpainting
model, and may never work due to the way this model is set up. If you attempt to
use `prompt2prompt` you will get the original image back. However, since this
model is so good at inpainting, a good substitute is to use the `clipseg` text
masking option:
```bash
invoke> a fluffy cat eating a hotdog
Outputs:
[1010] outputs/000025.2182095108.png: a fluffy cat eating a hotdog
invoke> a smiling dog eating a hotdog -I 000025.2182095108.png -tm cat
```
### Escaping parantheses () and speech marks ""
If the model you are using has parentheses () or speech marks "" as part of its
@ -374,6 +301,5 @@ summoning up the concept of some sort of scifi creature? Let's find out.
Indeed, removing the word "hybrid" produces an image that is more like what we'd
expect.
In conclusion, prompt blending is great for exploring creative space, but can be
difficult to direct. A forthcoming release of InvokeAI will feature more
deterministic prompt weighting.
In conclusion, prompt blending is great for exploring creative space,
but takes some trial and error to achieve the desired effect.

View File

@ -46,11 +46,19 @@ start the front end by selecting choice (3):
```sh
Do you want to generate images using the
1. command-line
2. browser-based UI
3. textual inversion training
4. open the developer console
Please enter 1, 2, 3, or 4: [1] 3
1: Browser-based UI
2: Command-line interface
3: Run textual inversion training
4: Merge models (diffusers type only)
5: Download and install models
6: Change InvokeAI startup options
7: Re-run the configure script to fix a broken install
8: Open the developer console
9: Update InvokeAI
10: Command-line help
Q: Quit
Please enter 1-10, Q: [1]
```
From the command line, with the InvokeAI virtual environment active,

View File

@ -6,9 +6,7 @@ title: Variations
## Intro
Release 1.13 of SD-Dream adds support for image variations.
You are able to do the following:
InvokeAI's support for variations enables you to do the following:
1. Generate a series of systematic variations of an image, given a prompt. The
amount of variation from one image to the next can be controlled.
@ -30,19 +28,7 @@ The prompt we will use throughout is:
This will be indicated as `#!bash "prompt"` in the examples below.
First we let SD create a series of images in the usual way, in this case
requesting six iterations:
```bash
invoke> lucy lawless as xena, warrior princess, character portrait, high resolution -n6
...
Outputs:
./outputs/Xena/000001.1579445059.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S1579445059
./outputs/Xena/000001.1880768722.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S1880768722
./outputs/Xena/000001.332057179.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S332057179
./outputs/Xena/000001.2224800325.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S2224800325
./outputs/Xena/000001.465250761.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S465250761
./outputs/Xena/000001.3357757885.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -S3357757885
```
requesting six iterations.
<figure markdown>
![var1](../assets/variation_walkthru/000001.3357757885.png)
@ -53,22 +39,16 @@ Outputs:
## Step 2 - Generating Variations
Let's try to generate some variations. Using the same seed, we pass the argument
`-v0.1` (or --variant_amount), which generates a series of variations each
differing by a variation amount of 0.2. This number ranges from `0` to `1.0`,
with higher numbers being larger amounts of variation.
Let's try to generate some variations on this image. We select the "*"
symbol in the line of icons above the image in order to fix the prompt
and seed. Then we open up the "Variations" section of the generation
panel and use the slider to set the variation amount to 0.2. The
higher this value, the more each generated image will differ from the
previous one.
```bash
invoke> "prompt" -n6 -S3357757885 -v0.2
...
Outputs:
./outputs/Xena/000002.784039624.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 784039624:0.2 -S3357757885
./outputs/Xena/000002.3647897225.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.2 -S3357757885
./outputs/Xena/000002.917731034.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 917731034:0.2 -S3357757885
./outputs/Xena/000002.4116285959.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 4116285959:0.2 -S3357757885
./outputs/Xena/000002.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 1614299449:0.2 -S3357757885
./outputs/Xena/000002.1335553075.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 1335553075:0.2 -S3357757885
```
Now we run the prompt a second time, requesting six iterations. You
will see six images that are thematically related to each other. Try
increasing and decreasing the variation amount and see what happens.
### **Variation Sub Seeding**

View File

@ -299,14 +299,6 @@ initial image" icons are located.
See the [Unified Canvas Guide](UNIFIED_CANVAS.md)
## Parting remarks
This concludes the walkthrough, but there are several more features that you can
explore. Please check out the [Command Line Interface](CLI.md) documentation for
further explanation of the advanced features that were not covered here.
The WebUI is only rapid development. Check back regularly for updates!
## Reference
### Additional Options
@ -349,11 +341,9 @@ the settings configured in the toolbar.
See below for additional documentation related to each feature:
- [Core Prompt Settings](./CLI.md)
- [Variations](./VARIATIONS.md)
- [Upscaling](./POSTPROCESS.md#upscaling)
- [Image to Image](./IMG2IMG.md)
- [Inpainting](./INPAINTING.md)
- [Other](./OTHER.md)
#### Invocation Gallery

View File

@ -13,28 +13,16 @@ Build complex scenes by combine and modifying multiple images in a stepwise
fashion. This feature combines img2img, inpainting and outpainting in
a single convenient digital artist-optimized user interface.
### * The [Command Line Interface (CLI)](CLI.md)
Scriptable access to InvokeAI's features.
## Image Generation
### * [Prompt Engineering](PROMPTS.md)
Get the images you want with the InvokeAI prompt engineering language.
## * [Post-Processing](POSTPROCESS.md)
Restore mangled faces and make images larger with upscaling. Also see the [Embiggen Upscaling Guide](EMBIGGEN.md).
## * The [Concepts Library](CONCEPTS.md)
Add custom subjects and styles using HuggingFace's repository of embeddings.
### * [Image-to-Image Guide for the CLI](IMG2IMG.md)
### * [Image-to-Image Guide](IMG2IMG.md)
Use a seed image to build new creations in the CLI.
### * [Inpainting Guide for the CLI](INPAINTING.md)
Selectively erase and replace portions of an existing image in the CLI.
### * [Outpainting Guide for the CLI](OUTPAINTING.md)
Extend the borders of the image with an "outcrop" function within the CLI.
### * [Generating Variations](VARIATIONS.md)
Have an image you like and want to generate many more like it? Variations
are the ticket.
@ -57,6 +45,9 @@ Personalize models by adding your own style or subjects.
## * [The NSFW Checker](NSFW.md)
Prevent InvokeAI from displaying unwanted racy images.
## * [Controlling Logging](LOGGING.md)
Control how InvokeAI logs status messages.
## * [Miscellaneous](OTHER.md)
Run InvokeAI on Google Colab, generate images with repeating patterns,
batch process a file of prompts, increase the "creativity" of image

View File

@ -13,6 +13,7 @@ title: Home
<div align="center" markdown>
[![project logo](assets/invoke_ai_banner.png)](https://github.com/invoke-ai/InvokeAI)
[![discord badge]][discord link]
@ -67,7 +68,7 @@ title: Home
implementation of Stable Diffusion, the open source text-to-image and
image-to-image generator. It provides a streamlined process with various new
features and options to aid the image generation process. It runs on Windows,
Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM.
Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
**Quick links**: [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>]
[<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a
@ -131,17 +132,13 @@ This method is recommended for those familiar with running Docker containers
- [WebUI overview](features/WEB.md)
- [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md)
- [WebUI Unified Canvas for Img2Img, inpainting and outpainting](features/UNIFIED_CANVAS.md)
<!-- separator -->
### The InvokeAI Command Line Interface
- [Command Line Interace Reference Guide](features/CLI.md)
<!-- separator -->
### Image Management
- [Image2Image](features/IMG2IMG.md)
- [Inpainting](features/INPAINTING.md)
- [Outpainting](features/OUTPAINTING.md)
- [Adding custom styles and subjects](features/CONCEPTS.md)
- [Upscaling and Face Reconstruction](features/POSTPROCESS.md)
- [Embiggen upscaling](features/EMBIGGEN.md)
- [Other Features](features/OTHER.md)
<!-- separator -->
@ -156,83 +153,60 @@ This method is recommended for those familiar with running Docker containers
- [Prompt Syntax](features/PROMPTS.md)
- [Generating Variations](features/VARIATIONS.md)
## :octicons-log-16: Latest Changes
## :octicons-log-16: Important Changes Since Version 2.3
### v2.3.0 <small>(9 February 2023)</small>
### Nodes
#### Migration to Stable Diffusion `diffusers` models
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
Previous versions of InvokeAI supported the original model file format introduced with Stable Diffusion 1.4. In the original format, known variously as "checkpoint", or "legacy" format, there is a single large weights file ending with `.ckpt` or `.safetensors`. Though this format has served the community well, it has a number of disadvantages, including file size, slow loading times, and a variety of non-standard variants that require special-case code to handle. In addition, because checkpoint files are actually a bundle of multiple machine learning sub-models, it is hard to swap different sub-models in and out, or to share common sub-models. A new format, introduced by the StabilityAI company in collaboration with HuggingFace, is called `diffusers` and consists of a directory of individual models. The most immediate benefit of `diffusers` is that they load from disk very quickly. A longer term benefit is that in the near future `diffusers` models will be able to share common sub-models, dramatically reducing disk space when you have multiple fine-tune models derived from the same base.
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
When you perform a new install of version 2.3.0, you will be offered the option to install the `diffusers` versions of a number of popular SD models, including Stable Diffusion versions 1.5 and 2.1 (including the 768x768 pixel version of 2.1). These will act and work just like the checkpoint versions. Do not be concerned if you already have a lot of ".ckpt" or ".safetensors" models on disk! InvokeAI 2.3.0 can still load these and generate images from them without any extra intervention on your part.
### Command-Line Interface Retired
To take advantage of the optimized loading times of `diffusers` models, InvokeAI offers options to convert legacy checkpoint models into optimized `diffusers` models. If you use the `invokeai` command line interface, the relevant commands are:
The original "invokeai" command-line interface has been retired. The
`invokeai` command will now launch a new command-line client that can
be used by developers to create and test nodes. It is not intended to
be used for routine image generation or manipulation.
* `!convert_model` -- Take the path to a local checkpoint file or a URL that is pointing to one, convert it into a `diffusers` model, and import it into InvokeAI's models registry file.
* `!optimize_model` -- If you already have a checkpoint model in your InvokeAI models file, this command will accept its short name and convert it into a like-named `diffusers` model, optionally deleting the original checkpoint file.
* `!import_model` -- Take the local path of either a checkpoint file or a `diffusers` model directory and import it into InvokeAI's registry file. You may also provide the ID of any diffusers model that has been published on the [HuggingFace models repository](https://huggingface.co/models?pipeline_tag=text-to-image&sort=downloads) and it will be downloaded and installed automatically.
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
The WebGUI offers similar functionality for model management.
### ControlNet
For advanced users, new command-line options provide additional functionality. Launching `invokeai` with the argument `--autoconvert <path to directory>` takes the path to a directory of checkpoint files, automatically converts them into `diffusers` models and imports them. Each time the script is launched, the directory will be scanned for new checkpoint files to be loaded. Alternatively, the `--ckpt_convert` argument will cause any checkpoint or safetensors model that is already registered with InvokeAI to be converted into a `diffusers` model on the fly, allowing you to take advantage of future diffusers-only features without explicitly converting the model and saving it to disk.
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
Please see [INSTALLING MODELS](https://invoke-ai.github.io/InvokeAI/installation/050_INSTALLING_MODELS/) for more information on model management in both the command-line and Web interfaces.
### New Schedulers
#### Support for the `XFormers` Memory-Efficient Crossattention Package
The list of schedulers has been completely revamped and brought up to date:
On CUDA (Nvidia) systems, version 2.3.0 supports the `XFormers` library. Once installed, the`xformers` package dramatically reduces the memory footprint of loaded Stable Diffusion models files and modestly increases image generation speed. `xformers` will be installed and activated automatically if you specify a CUDA system at install time.
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
The caveat with using `xformers` is that it introduces slightly non-deterministic behavior, and images generated using the same seed and other settings will be subtly different between invocations. Generally the changes are unnoticeable unless you rapidly shift back and forth between images, but to disable `xformers` and restore fully deterministic behavior, you may launch InvokeAI using the `--no-xformers` option. This is most conveniently done by opening the file `invokeai/invokeai.init` with a text editor, and adding the line `--no-xformers` at the bottom.
#### A Negative Prompt Box in the WebUI
There is now a separate text input box for negative prompts in the WebUI. This is convenient for stashing frequently-used negative prompts ("mangled limbs, bad anatomy"). The `[negative prompt]` syntax continues to work in the main prompt box as well.
To see exactly how your prompts are being parsed, launch `invokeai` with the `--log_tokenization` option. The console window will then display the tokenization process for both positive and negative prompts.
#### Model Merging
Version 2.3.0 offers an intuitive user interface for merging up to three Stable Diffusion models using an intuitive user interface. Model merging allows you to mix the behavior of models to achieve very interesting effects. To use this, each of the models must already be imported into InvokeAI and saved in `diffusers` format, then launch the merger using a new menu item in the InvokeAI launcher script (`invoke.sh`, `invoke.bat`) or directly from the command line with `invokeai-merge --gui`. You will be prompted to select the models to merge, the proportions in which to mix them, and the mixing algorithm. The script will create a new merged `diffusers` model and import it into InvokeAI for your use.
See [MODEL MERGING](https://invoke-ai.github.io/InvokeAI/features/MODEL_MERGING/) for more details.
#### Textual Inversion Training
Textual Inversion (TI) is a technique for training a Stable Diffusion model to emit a particular subject or style when triggered by a keyword phrase. You can perform TI training by placing a small number of images of the subject or style in a directory, and choosing a distinctive trigger phrase, such as "pointillist-style". After successful training, The subject or style will be activated by including `<pointillist-style>` in your prompt.
Previous versions of InvokeAI were able to perform TI, but it required using a command-line script with dozens of obscure command-line arguments. Version 2.3.0 features an intuitive TI frontend that will build a TI model on top of any `diffusers` model. To access training you can launch from a new item in the launcher script or from the command line using `invokeai-ti --gui`.
See [TEXTUAL INVERSION](https://invoke-ai.github.io/InvokeAI/features/TEXTUAL_INVERSION/) for further details.
#### A New Installer Experience
The InvokeAI installer has been upgraded in order to provide a smoother and hopefully more glitch-free experience. In addition, InvokeAI is now packaged as a PyPi project, allowing developers and power-users to install InvokeAI with the command `pip install InvokeAI --use-pep517`. Please see [Installation](#installation) for details.
Developers should be aware that the `pip` installation procedure has been simplified and that the `conda` method is no longer supported at all. Accordingly, the `environments_and_requirements` directory has been deleted from the repository.
#### Command-line name changes
All of InvokeAI's functionality, including the WebUI, command-line interface, textual inversion training and model merging, can all be accessed from the `invoke.sh` and `invoke.bat` launcher scripts. The menu of options has been expanded to add the new functionality. For the convenience of developers and power users, we have normalized the names of the InvokeAI command-line scripts:
* `invokeai` -- Command-line client
* `invokeai --web` -- Web GUI
* `invokeai-merge --gui` -- Model merging script with graphical front end
* `invokeai-ti --gui` -- Textual inversion script with graphical front end
* `invokeai-configure` -- Configuration tool for initializing the `invokeai` directory and selecting popular starter models.
For backward compatibility, the old command names are also recognized, including `invoke.py` and `configure-invokeai.py`. However, these are deprecated and will eventually be removed.
Developers should be aware that the locations of the script's source code has been moved. The new locations are:
* `invokeai` => `ldm/invoke/CLI.py`
* `invokeai-configure` => `ldm/invoke/config/configure_invokeai.py`
* `invokeai-ti`=> `ldm/invoke/training/textual_inversion.py`
* `invokeai-merge` => `ldm/invoke/merge_diffusers`
Developers are strongly encouraged to perform an "editable" install of InvokeAI using `pip install -e . --use-pep517` in the Git repository, and then to call the scripts using their 2.3.0 names, rather than executing the scripts directly. Developers should also be aware that the several important data files have been relocated into a new directory named `invokeai`. This includes the WebGUI's `frontend` and `backend` directories, and the `INITIAL_MODELS.yaml` files used by the installer to select starter models. Eventually all InvokeAI modules will be in subdirectories of `invokeai`.
Please see [2.3.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v2.3.0) for further details.
For older changelogs, please visit the
**[CHANGELOG](CHANGELOG/#v223-2-december-2022)**.
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
## :material-target: Troubleshooting
@ -268,8 +242,3 @@ free to send me an email if you use and like the script.
Original portions of the software are Copyright (c) 2022-23
by [The InvokeAI Team](https://github.com/invoke-ai).
## :octicons-book-24: Further Reading
Please see the original README for more information on this software and
underlying algorithm, located in the file
[README-CompViz.md](other/README-CompViz.md).

View File

@ -89,7 +89,7 @@ experimental versions later.
sudo apt update
sudo apt install -y software-properties-common
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt install python3.10 python3-pip python3.10-venv
sudo apt install -y python3.10 python3-pip python3.10-venv
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
```

View File

@ -216,7 +216,7 @@ manager, please follow these steps:
9. Run the command-line- or the web- interface:
From within INVOKEAI_ROOT, activate the environment
(with `source .venv/bin/activate` or `.venv\scripts\activate), and then run
(with `source .venv/bin/activate` or `.venv\scripts\activate`), and then run
the script `invokeai`. If the virtual environment you selected is NOT inside
INVOKEAI_ROOT, then you must specify the path to the root directory by adding
`--root_dir \path\to\invokeai` to the commands below:

View File

@ -87,18 +87,18 @@ Prior to installing PyPatchMatch, you need to take the following steps:
sudo pacman -S --needed base-devel
```
2. Install `opencv`:
2. Install `opencv` and `blas`:
```sh
sudo pacman -S opencv
sudo pacman -S opencv blas
```
or for CUDA support
```sh
sudo pacman -S opencv-cuda
sudo pacman -S opencv-cuda blas
```
3. Fix the naming of the `opencv` package configuration file:
```sh

View File

@ -38,6 +38,7 @@ echo https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist
echo.
echo See %INSTRUCTIONS% for more details.
echo.
echo "For the best user experience we suggest enlarging or maximizing this window now."
pause
@rem ---------------------------- check Python version ---------------

View File

@ -25,7 +25,8 @@ done
if [ -z "$PYTHON" ]; then
echo "A suitable Python interpreter could not be found"
echo "Please install Python 3.9 or higher before running this script. See instructions at $INSTRUCTIONS for help."
echo "Please install Python $MINIMUM_PYTHON_VERSION or higher (maximum $MAXIMUM_PYTHON_VERSION) before running this script. See instructions at $INSTRUCTIONS for help."
echo "For the best user experience we suggest enlarging or maximizing this window now."
read -p "Press any key to exit"
exit -1
fi

View File

@ -149,7 +149,7 @@ class Installer:
return venv_dir
def install(self, root: str = "~/invokeai", version: str = "latest", yes_to_all=False, find_links: Path = None) -> None:
def install(self, root: str = "~/invokeai-3", version: str = "latest", yes_to_all=False, find_links: Path = None) -> None:
"""
Install the InvokeAI application into the given runtime path
@ -247,8 +247,8 @@ class InvokeAiInstance:
pip[
"install",
"--require-virtualenv",
"torch",
"torchvision",
"torch~=2.0.0",
"torchvision>=0.14.1",
"--force-reinstall",
"--find-links" if find_links is not None else None,
find_links,

View File

@ -293,6 +293,8 @@ def introduction() -> None:
"3. Create initial configuration files.",
"",
"[i]At any point you may interrupt this program and resume later.",
"",
"[b]For the best user experience, please enlarge or maximize this window",
),
)
)

View File

@ -7,42 +7,42 @@ call .venv\Scripts\activate.bat
set INVOKEAI_ROOT=.
:start
echo Do you want to generate images using the
echo 1. command-line interface
echo 2. browser-based UI
echo 3. run textual inversion training
echo 4. merge models (diffusers type only)
echo 5. download and install models
echo 6. change InvokeAI startup options
echo 7. re-run the configure script to fix a broken install
echo 8. open the developer console
echo 9. update InvokeAI
echo 10. command-line help
echo Q - quit
set /P restore="Please enter 1-10, Q: [2] "
if not defined restore set restore=2
IF /I "%restore%" == "1" (
echo Desired action:
echo 1. Generate images with the browser-based interface
echo 2. Explore InvokeAI nodes using a command-line interface
echo 3. Run textual inversion training
echo 4. Merge models (diffusers type only)
echo 5. Download and install models
echo 6. Change InvokeAI startup options
echo 7. Re-run the configure script to fix a broken install or to complete a major upgrade
echo 8. Open the developer console
echo 9. Update InvokeAI
echo 10. Command-line help
echo Q - Quit
set /P choice="Please enter 1-10, Q: [2] "
if not defined choice set choice=2
IF /I "%choice%" == "1" (
echo Starting the InvokeAI browser-based UI..
python .venv\Scripts\invokeai-web.exe %*
) ELSE IF /I "%choice%" == "2" (
echo Starting the InvokeAI command-line..
python .venv\Scripts\invokeai.exe %*
) ELSE IF /I "%restore%" == "2" (
echo Starting the InvokeAI browser-based UI..
python .venv\Scripts\invokeai.exe --web %*
) ELSE IF /I "%restore%" == "3" (
) ELSE IF /I "%choice%" == "3" (
echo Starting textual inversion training..
python .venv\Scripts\invokeai-ti.exe --gui
) ELSE IF /I "%restore%" == "4" (
) ELSE IF /I "%choice%" == "4" (
echo Starting model merging script..
python .venv\Scripts\invokeai-merge.exe --gui
) ELSE IF /I "%restore%" == "5" (
) ELSE IF /I "%choice%" == "5" (
echo Running invokeai-model-install...
python .venv\Scripts\invokeai-model-install.exe
) ELSE IF /I "%restore%" == "6" (
) ELSE IF /I "%choice%" == "6" (
echo Running invokeai-configure...
python .venv\Scripts\invokeai-configure.exe --skip-sd-weight --skip-support-models
) ELSE IF /I "%restore%" == "7" (
) ELSE IF /I "%choice%" == "7" (
echo Running invokeai-configure...
python .venv\Scripts\invokeai-configure.exe --yes --default_only
) ELSE IF /I "%restore%" == "8" (
) ELSE IF /I "%choice%" == "8" (
echo Developer Console
echo Python command is:
where python
@ -54,15 +54,15 @@ IF /I "%restore%" == "1" (
echo *************************
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k
) ELSE IF /I "%restore%" == "9" (
) ELSE IF /I "%choice%" == "9" (
echo Running invokeai-update...
python .venv\Scripts\invokeai-update.exe %*
) ELSE IF /I "%restore%" == "10" (
) ELSE IF /I "%choice%" == "10" (
echo Displaying command line help...
python .venv\Scripts\invokeai.exe --help %*
pause
exit /b
) ELSE IF /I "%restore%" == "q" (
) ELSE IF /I "%choice%" == "q" (
echo Goodbye!
goto ending
) ELSE (

View File

@ -1,5 +1,10 @@
#!/bin/bash
# MIT License
# Coauthored by Lincoln Stein, Eugene Brodsky and Joshua Kimsey
# Copyright 2023, The InvokeAI Development Team
####
# This launch script assumes that:
# 1. it is located in the runtime directory,
@ -11,85 +16,168 @@
set -eu
# ensure we're in the correct folder in case user's CWD is somewhere else
# Ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
. .venv/bin/activate
export INVOKEAI_ROOT="$scriptdir"
PARAMS=$@
# set required env var for torch on mac MPS
# Check to see if dialog is installed (it seems to be fairly standard, but good to check regardless) and if the user has passed the --no-tui argument to disable the dialog TUI
tui=true
if command -v dialog &>/dev/null; then
# This must use $@ to properly loop through the arguments passed by the user
for arg in "$@"; do
if [ "$arg" == "--no-tui" ]; then
tui=false
# Remove the --no-tui argument to avoid errors later on when passing arguments to InvokeAI
PARAMS=$(echo "$PARAMS" | sed 's/--no-tui//')
break
fi
done
else
tui=false
fi
# Set required env var for torch on mac MPS
if [ "$(uname -s)" == "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
if [ "$0" != "bash" ]; then
while true
do
echo "Do you want to generate images using the"
echo "1. command-line interface"
echo "2. browser-based UI"
echo "3. run textual inversion training"
echo "4. merge models (diffusers type only)"
echo "5. download and install models"
echo "6. change InvokeAI startup options"
echo "7. re-run the configure script to fix a broken install"
echo "8. open the developer console"
echo "9. update InvokeAI"
echo "10. command-line help"
echo "Q - Quit"
echo ""
read -p "Please enter 1-10, Q: [2] " yn
choice=${yn:='2'}
case $choice in
1)
echo "Starting the InvokeAI command-line..."
invokeai $@
;;
2)
echo "Starting the InvokeAI browser-based UI..."
invokeai --web $@
;;
3)
echo "Starting Textual Inversion:"
invokeai-ti --gui $@
;;
4)
echo "Merging Models:"
invokeai-merge --gui $@
;;
5)
invokeai-model-install --root ${INVOKEAI_ROOT}
;;
6)
invokeai-configure --root ${INVOKEAI_ROOT} --skip-sd-weights --skip-support-models
;;
7)
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only
;;
8)
echo "Developer Console:"
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
;;
9)
echo "Update:"
invokeai-update
;;
10)
invokeai --help
;;
[qQ])
exit 0
;;
*)
echo "Invalid selection"
exit;;
# Primary function for the case statement to determine user input
do_choice() {
case $1 in
1)
clear
printf "Generate images with a browser-based interface\n"
invokeai-web $PARAMS
;;
2)
clear
printf "Explore InvokeAI nodes using a command-line interface\n"
invokeai $PARAMS
;;
3)
clear
printf "Textual inversion training\n"
invokeai-ti --gui $PARAMS
;;
4)
clear
printf "Merge models (diffusers type only)\n"
invokeai-merge --gui $PARAMS
;;
5)
clear
printf "Download and install models\n"
invokeai-model-install --root ${INVOKEAI_ROOT}
;;
6)
clear
printf "Change InvokeAI startup options\n"
invokeai-configure --root ${INVOKEAI_ROOT} --skip-sd-weights --skip-support-models
;;
7)
clear
printf "Re-run the configure script to fix a broken install or to complete a major upgrade\n"
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only
;;
8)
clear
printf "Open the developer console\n"
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
;;
9)
clear
printf "Update InvokeAI\n"
invokeai-update
;;
10)
clear
printf "Command-line help\n"
invokeai --help
;;
"HELP 1")
clear
printf "Command-line help\n"
invokeai --help
;;
*)
clear
printf "Exiting...\n"
exit
;;
esac
done
clear
}
# Dialog-based TUI for launcing Invoke functions
do_dialog() {
options=(
1 "Generate images with a browser-based interface"
2 "Explore InvokeAI nodes using a command-line interface"
3 "Textual inversion training"
4 "Merge models (diffusers type only)"
5 "Download and install models"
6 "Change InvokeAI startup options"
7 "Re-run the configure script to fix a broken install or to complete a major upgrade"
8 "Open the developer console"
9 "Update InvokeAI")
choice=$(dialog --clear \
--backtitle "\Zb\Zu\Z3InvokeAI" \
--colors \
--title "What would you like to do?" \
--ok-label "Run" \
--cancel-label "Exit" \
--help-button \
--help-label "CLI Help" \
--menu "Select an option:" \
0 0 0 \
"${options[@]}" \
2>&1 >/dev/tty) || clear
do_choice "$choice"
clear
}
# Command-line interface for launching Invoke functions
do_line_input() {
clear
printf " ** For a more attractive experience, please install the 'dialog' utility using your package manager. **\n\n"
printf "What would you like to do?\n"
printf "1: Generate images using the browser-based interface\n"
printf "2: Explore InvokeAI nodes using the command-line interface\n"
printf "3: Run textual inversion training\n"
printf "4: Merge models (diffusers type only)\n"
printf "5: Download and install models\n"
printf "6: Change InvokeAI startup options\n"
printf "7: Re-run the configure script to fix a broken install\n"
printf "8: Open the developer console\n"
printf "9: Update InvokeAI\n"
printf "10: Command-line help\n"
printf "Q: Quit\n\n"
read -p "Please enter 1-10, Q: [1] " yn
choice=${yn:='1'}
do_choice $choice
clear
}
# Main IF statement for launching Invoke with either the TUI or CLI, and for checking if the user is in the developer console
if [ "$0" != "bash" ]; then
while true; do
if $tui; then
# .dialogrc must be located in the same directory as the invoke.sh script
export DIALOGRC="./.dialogrc"
do_dialog
else
do_line_input
fi
done
else # in developer console
python --version
echo "Press ^D to exit"
printf "Press ^D to exit\n"
export PS1="(InvokeAI) \u@\h \w> "
fi

View File

@ -1,24 +1,34 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from logging import Logger
import os
from argparse import Namespace
from invokeai.app.services.metadata import PngMetadataService, MetadataServiceBase
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
)
from invokeai.app.services.board_images import (
BoardImagesService,
BoardImagesServiceDependencies,
)
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.metadata import CoreMetadataService
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from invokeai.backend.util.logging import InvokeAILogger
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.image_storage import DiskImageStorage
from ..services.image_file_storage import DiskImageFileStorage
from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from ..services.model_manager_service import ModelManagerService
from .events import FastAPIEventService
@ -38,52 +48,91 @@ def check_internet() -> bool:
return False
logger = InvokeAILogger.getLogger()
class ApiDependencies:
"""Contains and initializes all dependencies for the API"""
invoker: Invoker = None
@staticmethod
def initialize(config, event_handler_id: int):
Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert
# TODO: Use a logger
print(f">> Internet connectivity is {Globals.internet_available}")
def initialize(config, event_handler_id: int, logger: Logger = logger):
logger.info(f"Internet connectivity is {config.internet_available}")
events = FastAPIEventService(event_handler_id)
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../../outputs")
)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
metadata = PngMetadataService()
images = DiskImageStorage(f'{output_folder}/images', metadata_service=metadata)
output_folder = config.output_path
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
db_location = config.db_path
db_location.parent.mkdir(parents=True, exist_ok=True)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
)
urls = LocalUrlService()
metadata = CoreMetadataService()
image_record_storage = SqliteImageRecordStorage(db_location)
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
latents = ForwardCacheLatentsStorage(
DiskLatentsStorage(f"{output_folder}/latents")
)
board_record_storage = SqliteBoardRecordStorage(db_location)
board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
boards = BoardService(
services=BoardServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
board_images = BoardImagesService(
services=BoardImagesServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
images = ImageService(
services=ImageServiceDependencies(
board_image_record_storage=board_image_record_storage,
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
)
services = InvocationServices(
model_manager=get_model_manager(config),
model_manager=ModelManagerService(config,logger),
events=events,
latents=latents,
images=images,
metadata=metadata,
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
restoration=RestorationServices(config, logger),
configuration=config,
logger=logger,
)
create_system_graphs(services.graph_library)

View File

@ -45,7 +45,7 @@ class FastAPIEventService(EventServiceBase):
)
except Empty:
await asyncio.sleep(0.001)
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:

View File

@ -1,34 +0,0 @@
from typing import Optional
from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import InvokeAIMetadata
class ImageResponseMetadata(BaseModel):
"""An image's metadata. Used only in HTTP responses."""
created: int = Field(description="The creation timestamp of the image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
invokeai: Optional[InvokeAIMetadata] = Field(
description="The image's InvokeAI-specific metadata"
)
class ImageResponse(BaseModel):
"""The response type for images"""
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
image_url: str = Field(description="The url of the image")
thumbnail_url: str = Field(description="The url of the image's thumbnail")
metadata: ImageResponseMetadata = Field(description="The image's metadata")
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")

View File

@ -0,0 +1,69 @@
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from invokeai.app.services.board_record_storage import BoardRecord, BoardChanges
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.models.image_record import ImageDTO
from ..dependencies import ApiDependencies
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
@board_images_router.post(
"/",
operation_id="create_board_image",
responses={
201: {"description": "The image was added to a board successfully"},
},
status_code=201,
)
async def create_board_image(
board_id: str = Body(description="The id of the board to add to"),
image_name: str = Body(description="The name of the image to add"),
):
"""Creates a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.add_image_to_board(board_id=board_id, image_name=image_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to add to board")
@board_images_router.delete(
"/",
operation_id="remove_board_image",
responses={
201: {"description": "The image was removed from the board successfully"},
},
status_code=201,
)
async def remove_board_image(
board_id: str = Body(description="The id of the board"),
image_name: str = Body(description="The name of the image to remove"),
):
"""Deletes a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(board_id=board_id, image_name=image_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
@board_images_router.get(
"/{board_id}",
operation_id="list_board_images",
response_model=OffsetPaginatedResults[ImageDTO],
)
async def list_board_images(
board_id: str = Path(description="The id of the board"),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of boards per page"),
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a list of images for a board"""
results = ApiDependencies.invoker.services.board_images.get_images_for_board(
board_id,
)
return results

View File

@ -0,0 +1,117 @@
from typing import Optional, Union
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from invokeai.app.services.board_record_storage import BoardChanges
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from ..dependencies import ApiDependencies
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
@boards_router.post(
"/",
operation_id="create_board",
responses={
201: {"description": "The board was created successfully"},
},
status_code=201,
response_model=BoardDTO,
)
async def create_board(
board_name: str = Query(description="The name of the board to create"),
) -> BoardDTO:
"""Creates a board"""
try:
result = ApiDependencies.invoker.services.boards.create(board_name=board_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to create board")
@boards_router.get("/{board_id}", operation_id="get_board", response_model=BoardDTO)
async def get_board(
board_id: str = Path(description="The id of board to get"),
) -> BoardDTO:
"""Gets a board"""
try:
result = ApiDependencies.invoker.services.boards.get_dto(board_id=board_id)
return result
except Exception as e:
raise HTTPException(status_code=404, detail="Board not found")
@boards_router.patch(
"/{board_id}",
operation_id="update_board",
responses={
201: {
"description": "The board was updated successfully",
},
},
status_code=201,
response_model=BoardDTO,
)
async def update_board(
board_id: str = Path(description="The id of board to update"),
changes: BoardChanges = Body(description="The changes to apply to the board"),
) -> BoardDTO:
"""Updates a board"""
try:
result = ApiDependencies.invoker.services.boards.update(
board_id=board_id, changes=changes
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
@boards_router.delete("/{board_id}", operation_id="delete_board")
async def delete_board(
board_id: str = Path(description="The id of board to delete"),
include_images: Optional[bool] = Query(
description="Permanently delete all images on the board", default=False
),
) -> None:
"""Deletes a board"""
try:
if include_images is True:
ApiDependencies.invoker.services.images.delete_images_on_board(
board_id=board_id
)
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
else:
ApiDependencies.invoker.services.boards.delete(board_id=board_id)
except Exception as e:
# TODO: Does this need any exception handling at all?
pass
@boards_router.get(
"/",
operation_id="list_boards",
response_model=Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]],
)
async def list_boards(
all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
offset: Optional[int] = Query(default=None, description="The page offset"),
limit: Optional[int] = Query(
default=None, description="The number of boards per page"
),
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
"""Gets a list of boards"""
if all:
return ApiDependencies.invoker.services.boards.get_all()
elif offset is not None and limit is not None:
return ApiDependencies.invoker.services.boards.get_many(
offset,
limit,
)
else:
raise HTTPException(
status_code=400,
detail="Invalid request: Must provide either 'all' or both 'offset' and 'limit'",
)

View File

@ -1,128 +1,241 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import io
from datetime import datetime, timezone
import json
import os
from typing import Any
import uuid
from fastapi import HTTPException, Path, Query, Request, UploadFile
from fastapi.responses import FileResponse, Response
from typing import Optional
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.routing import APIRouter
from fastapi.responses import FileResponse
from PIL import Image
from invokeai.app.api.models.images import ImageResponse, ImageResponseMetadata
from invokeai.app.services.metadata import InvokeAIMetadata
from invokeai.app.models.image import (
ImageCategory,
ResourceOrigin,
)
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.image_record import (
ImageDTO,
ImageRecordChanges,
ImageUrlsDTO,
)
from invokeai.app.services.item_storage import PaginatedResults
from ...services.image_storage import ImageType
from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"])
@images_router.get("/{image_type}/{image_name}", operation_id="get_image")
async def get_image(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
) -> FileResponse | Response:
"""Gets a result"""
path = ApiDependencies.invoker.services.images.get_path(
image_type=image_type, image_name=image_name
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail"
)
async def get_thumbnail(
image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"),
) -> FileResponse | Response:
"""Gets a thumbnail"""
path = ApiDependencies.invoker.services.images.get_path(
image_type=image_type, image_name=image_name, is_thumbnail=True
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.post(
"/uploads/",
"/",
operation_id="upload_image",
responses={
201: {
"description": "The image was uploaded successfully",
"model": ImageResponse,
},
201: {"description": "The image was uploaded successfully"},
415: {"description": "Image upload failed"},
},
status_code=201,
response_model=ImageDTO,
)
async def upload_image(
file: UploadFile, request: Request, response: Response
) -> ImageResponse:
file: UploadFile,
request: Request,
response: Response,
image_category: ImageCategory = Query(description="The category of the image"),
is_intermediate: bool = Query(description="Whether this is an intermediate image"),
session_id: Optional[str] = Query(
default=None, description="The session ID associated with this upload, if any"
),
) -> ImageDTO:
"""Uploads an image"""
if not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await file.read()
try:
img = Image.open(io.BytesIO(contents))
pil_image = Image.open(io.BytesIO(contents))
except:
# Error opening the image
raise HTTPException(status_code=415, detail="Failed to read image")
filename = f"{uuid.uuid4()}_{str(int(datetime.now(timezone.utc).timestamp()))}.png"
try:
image_dto = ApiDependencies.invoker.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.EXTERNAL,
image_category=image_category,
session_id=session_id,
is_intermediate=is_intermediate,
)
(image_path, thumbnail_path, ctime) = ApiDependencies.invoker.services.images.save(
ImageType.UPLOAD, filename, img
)
response.status_code = 201
response.headers["Location"] = image_dto.image_url
invokeai_metadata = ApiDependencies.invoker.services.metadata.get_metadata(img)
return image_dto
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to create image")
res = ImageResponse(
image_type=ImageType.UPLOAD,
image_name=filename,
image_url=f"api/v1/images/{ImageType.UPLOAD.value}/{filename}",
thumbnail_url=f"api/v1/images/{ImageType.UPLOAD.value}/thumbnails/{os.path.splitext(filename)[0]}.webp",
metadata=ImageResponseMetadata(
created=ctime,
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
response.status_code = 201
response.headers["Location"] = request.url_for(
"get_image", image_type=ImageType.UPLOAD.value, image_name=filename
)
@images_router.delete("/{image_name}", operation_id="delete_image")
async def delete_image(
image_name: str = Path(description="The name of the image to delete"),
) -> None:
"""Deletes an image"""
return res
try:
ApiDependencies.invoker.services.images.delete(image_name)
except Exception as e:
# TODO: Does this need any exception handling at all?
pass
@images_router.patch(
"/{image_name}",
operation_id="update_image",
response_model=ImageDTO,
)
async def update_image(
image_name: str = Path(description="The name of the image to update"),
image_changes: ImageRecordChanges = Body(
description="The changes to apply to the image"
),
) -> ImageDTO:
"""Updates an image"""
try:
return ApiDependencies.invoker.services.images.update(image_name, image_changes)
except Exception as e:
raise HTTPException(status_code=400, detail="Failed to update image")
@images_router.get(
"/{image_name}/metadata",
operation_id="get_image_metadata",
response_model=ImageDTO,
)
async def get_image_metadata(
image_name: str = Path(description="The name of image to get"),
) -> ImageDTO:
"""Gets an image's metadata"""
try:
return ApiDependencies.invoker.services.images.get_dto(image_name)
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_name}",
operation_id="get_image_full",
response_class=Response,
responses={
200: {
"description": "Return the full-resolution image",
"content": {"image/png": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> FileResponse:
"""Gets a full-resolution image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(image_name)
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
return FileResponse(
path,
media_type="image/png",
filename=image_name,
content_disposition_type="inline",
)
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_name}/thumbnail",
operation_id="get_image_thumbnail",
response_class=Response,
responses={
200: {
"description": "Return the image thumbnail",
"content": {"image/webp": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_thumbnail(
image_name: str = Path(description="The name of thumbnail image file to get"),
) -> FileResponse:
"""Gets a thumbnail image file"""
try:
path = ApiDependencies.invoker.services.images.get_path(
image_name, thumbnail=True
)
if not ApiDependencies.invoker.services.images.validate_path(path):
raise HTTPException(status_code=404)
return FileResponse(
path, media_type="image/webp", content_disposition_type="inline"
)
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/{image_name}/urls",
operation_id="get_image_urls",
response_model=ImageUrlsDTO,
)
async def get_image_urls(
image_name: str = Path(description="The name of the image whose URL to get"),
) -> ImageUrlsDTO:
"""Gets an image and thumbnail URL"""
try:
image_url = ApiDependencies.invoker.services.images.get_url(image_name)
thumbnail_url = ApiDependencies.invoker.services.images.get_url(
image_name, thumbnail=True
)
return ImageUrlsDTO(
image_name=image_name,
image_url=image_url,
thumbnail_url=thumbnail_url,
)
except Exception as e:
raise HTTPException(status_code=404)
@images_router.get(
"/",
operation_id="list_images",
responses={200: {"model": PaginatedResults[ImageResponse]}},
operation_id="list_images_with_metadata",
response_model=OffsetPaginatedResults[ImageDTO],
)
async def list_images(
image_type: ImageType = Query(
default=ImageType.RESULT, description="The type of images to get"
async def list_images_with_metadata(
image_origin: Optional[ResourceOrigin] = Query(
default=None, description="The origin of images to list"
),
page: int = Query(default=0, description="The page of images to get"),
per_page: int = Query(default=10, description="The number of images per page"),
) -> PaginatedResults[ImageResponse]:
categories: Optional[list[ImageCategory]] = Query(
default=None, description="The categories of image to include"
),
is_intermediate: Optional[bool] = Query(
default=None, description="Whether to list intermediate images"
),
board_id: Optional[str] = Query(
default=None, description="The board id to filter by"
),
offset: int = Query(default=0, description="The page offset"),
limit: int = Query(default=10, description="The number of images per page"),
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a list of images"""
result = ApiDependencies.invoker.services.images.list(image_type, page, per_page)
return result
image_dtos = ApiDependencies.invoker.services.images.get_many(
offset,
limit,
image_origin,
categories,
is_intermediate,
board_id,
)
return image_dtos

View File

@ -1,21 +1,18 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
import shutil
import asyncio
from typing import Annotated, Any, List, Literal, Optional, Union
from typing import Literal, Optional, Union
from fastapi import Query, Body
from fastapi.routing import APIRouter, HTTPException
from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path
from ..dependencies import ApiDependencies
from invokeai.backend.globals import Globals, global_converted_ckpts_dir
from invokeai.backend.args import Args
from invokeai.backend import BaseModelType, ModelType
from invokeai.backend.model_management import AddModelResult
from invokeai.backend.model_management.models import OPENAPI_MODEL_CONFIGS, SchedulerPredictionType
MODEL_CONFIGS = Union[tuple(OPENAPI_MODEL_CONFIGS)]
models_router = APIRouter(prefix="/v1/models", tags=["models"])
class VaeRepo(BaseModel):
repo_id: str = Field(description="The repo ID to use for this VAE")
path: Optional[str] = Field(description="The path to the VAE")
@ -23,6 +20,15 @@ class VaeRepo(BaseModel):
class ModelInfo(BaseModel):
description: Optional[str] = Field(description="A description of the model")
model_name: str = Field(description="The name of the model")
model_type: str = Field(description="The type of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['folder'] = 'folder'
vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model")
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class CkptModelInfo(ModelInfo):
format: Literal['ckpt'] = 'ckpt'
@ -33,12 +39,8 @@ class CkptModelInfo(ModelInfo):
width: Optional[int] = Field(description="The width of the model")
height: Optional[int] = Field(description="The height of the model")
class DiffusersModelInfo(ModelInfo):
format: Literal['diffusers'] = 'diffusers'
vae: Optional[VaeRepo] = Field(description="The VAE repo to use for this model")
repo_id: Optional[str] = Field(description="The repo ID to use for this model")
path: Optional[str] = Field(description="The path to the model")
class SafetensorsModelInfo(CkptModelInfo):
format: Literal['safetensors'] = 'safetensors'
class CreateModelRequest(BaseModel):
name: str = Field(description="The name of the model")
@ -49,18 +51,24 @@ class CreateModelResponse(BaseModel):
info: Union[CkptModelInfo, DiffusersModelInfo] = Field(discriminator="format", description="The model info")
status: str = Field(description="The status of the API response")
class ImportModelResponse(BaseModel):
name: str = Field(description="The name of the imported model")
# base_model: str = Field(description="The base model")
# model_type: str = Field(description="The model type")
info: AddModelResult = Field(description="The model info")
status: str = Field(description="The status of the API response")
class ConversionRequest(BaseModel):
name: str = Field(description="The name of the new model")
info: CkptModelInfo = Field(description="The converted model info")
save_location: str = Field(description="The path to save the converted model weights")
class ConvertedModelResponse(BaseModel):
name: str = Field(description="The name of the new model")
info: DiffusersModelInfo = Field(description="The converted model info")
class ModelsList(BaseModel):
models: dict[str, Annotated[Union[(CkptModelInfo,DiffusersModelInfo)], Field(discriminator="format")]]
models: list[MODEL_CONFIGS]
@models_router.get(
@ -68,13 +76,19 @@ class ModelsList(BaseModel):
operation_id="list_models",
responses={200: {"model": ModelsList }},
)
async def list_models() -> ModelsList:
async def list_models(
base_model: Optional[BaseModelType] = Query(
default=None, description="Base model"
),
model_type: Optional[ModelType] = Query(
default=None, description="The type of model to get"
),
) -> ModelsList:
"""Gets a list of models"""
models_raw = ApiDependencies.invoker.services.model_manager.list_models()
models_raw = ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
@models_router.post(
"/",
operation_id="update_model",
@ -96,6 +110,39 @@ async def update_model(
return model_response
@models_router.post(
"/import",
operation_id="import_model",
responses= {
201: {"description" : "The model imported successfully"},
404: {"description" : "The model could not be found"},
},
status_code=201,
response_model=ImportModelResponse
)
async def import_model(
name: str = Query(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = Query(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
) -> ImportModelResponse:
""" Add a model using its local path, repo_id, or remote URL """
items_to_import = {name}
prediction_types = { x.value: x for x in SchedulerPredictionType }
logger = ApiDependencies.invoker.services.logger
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import = items_to_import,
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
)
if info := installed_models.get(name):
logger.info(f'Successfully imported {name}, got {info}')
return ImportModelResponse(
name = name,
info = info,
status = "success",
)
else:
logger.error(f'Model {name} not imported')
raise HTTPException(status_code=404, detail=f'Model {name} not found')
@models_router.delete(
"/{model_name}",
@ -112,19 +159,20 @@ async def update_model(
async def delete_model(model_name: str) -> None:
"""Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names()
logger = ApiDependencies.invoker.services.logger
model_exists = model_name in model_names
# check if model exists
print(f">> Checking for model {model_name}...")
logger.info(f"Checking for model {model_name}...")
if model_exists:
print(f">> Deleting Model: {model_name}")
logger.info(f"Deleting Model: {model_name}")
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
print(f">> Model Deleted: {model_name}")
logger.info(f"Model Deleted: {model_name}")
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
else:
print(f">> Model not found")
logger.error("Model not found")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
@ -248,4 +296,4 @@ async def delete_model(model_name: str) -> None:
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e:
# except Exception as e:

View File

@ -2,8 +2,7 @@
from typing import Annotated, List, Optional, Union
from fastapi import Body, Path, Query
from fastapi.responses import Response
from fastapi import Body, HTTPException, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic.fields import Field
@ -76,7 +75,7 @@ async def get_session(
"""Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
else:
return session
@ -99,7 +98,7 @@ async def add_node(
"""Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.add_node(node)
@ -108,9 +107,9 @@ async def add_node(
) # TODO: can this be done automatically, or add node through an API?
return session.id
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.put(
@ -132,7 +131,7 @@ async def update_node(
"""Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.update_node(node_path, node)
@ -141,9 +140,9 @@ async def update_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.delete(
@ -162,7 +161,7 @@ async def delete_node(
"""Deletes a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.delete_node(node_path)
@ -171,9 +170,9 @@ async def delete_node(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.post(
@ -192,7 +191,7 @@ async def add_edge(
"""Adds an edge to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
session.add_edge(edge)
@ -201,9 +200,9 @@ async def add_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
# TODO: the edge being in the path here is really ugly, find a better solution
@ -226,7 +225,7 @@ async def delete_edge(
"""Deletes an edge from the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
try:
edge = Edge(
@ -239,9 +238,9 @@ async def delete_edge(
) # TODO: can this be done automatically, or add node through an API?
return session
except NodeAlreadyExecutedError:
return Response(status_code=400)
raise HTTPException(status_code=400)
except IndexError:
return Response(status_code=400)
raise HTTPException(status_code=400)
@session_router.put(
@ -259,14 +258,14 @@ async def invoke_session(
all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations"
),
) -> None:
) -> Response:
"""Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
return Response(status_code=404)
raise HTTPException(status_code=404)
if session.is_complete():
return Response(status_code=400)
raise HTTPException(status_code=400)
ApiDependencies.invoker.invoke(session, invoke_all=all)
return Response(status_code=202)
@ -281,7 +280,7 @@ async def invoke_session(
)
async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"),
) -> None:
) -> Response:
"""Invokes a session"""
ApiDependencies.invoker.cancel(session_id)
return Response(status_code=202)

View File

@ -3,6 +3,7 @@ import asyncio
from inspect import signature
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
@ -10,13 +11,21 @@ from fastapi.openapi.utils import get_openapi
from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware
from pathlib import Path
from pydantic.schema import schema
from ..backend import Args
#This should come early so that modules can log their initialization properly
from .services.config import InvokeAIAppConfig
from ..backend.util.logging import InvokeAILogger
app_config = InvokeAIAppConfig.get_config()
app_config.parse_args()
logger = InvokeAILogger.getLogger(config=app_config)
import invokeai.frontend.web as web_dir
from .api.dependencies import ApiDependencies
from .api.routers import images, sessions, models
from .api.routers import sessions, models, images, boards, board_images
from .api.sockets import SocketIO
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
# Create the app
@ -33,30 +42,21 @@ app.add_middleware(
middleware_id=event_handler_id,
)
# Add CORS
# TODO: use configuration for this
origins = []
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
socket_io = SocketIO(app)
config = {}
# Add startup event to load dependencies
@app.on_event("startup")
async def startup_event():
config = Args()
config.parse_args()
app.add_middleware(
CORSMiddleware,
allow_origins=app_config.allow_origins,
allow_credentials=app_config.allow_credentials,
allow_methods=app_config.allow_methods,
allow_headers=app_config.allow_headers,
)
ApiDependencies.initialize(
config=config, event_handler_id=event_handler_id
config=app_config, event_handler_id=event_handler_id, logger=logger
)
@ -74,10 +74,13 @@ async def shutdown_event():
app.include_router(sessions.session_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(models.models_router, prefix="/api")
app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api")
# Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow?
@ -117,6 +120,22 @@ def custom_openapi():
invoker_schema["output"] = outputs_ref
from invokeai.backend.model_management.models import get_model_config_enums
for model_config_format_enum in set(get_model_config_enums()):
name = model_config_format_enum.__qualname__
if name in openapi_schema["components"]["schemas"]:
# print(f"Config with name {name} already defined")
continue
# "BaseModelType":{"title":"BaseModelType","description":"An enumeration.","enum":["sd-1","sd-2"],"type":"string"}
openapi_schema["components"]["schemas"][name] = dict(
title=name,
description="An enumeration.",
type="string",
enum=list(v.value for v in model_config_format_enum),
)
app.openapi_schema = openapi_schema
return app.openapi_schema
@ -124,8 +143,7 @@ def custom_openapi():
app.openapi = custom_openapi
# Override API doc favicons
app.mount("/static", StaticFiles(directory="static/dream_web"), name="static")
app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], 'static/dream_web')), name="static")
@app.get("/docs", include_in_schema=False)
def overridden_swagger():
@ -145,16 +163,20 @@ def overridden_redoc():
)
# Must mount *after* the other routes else it borks em
app.mount("/",
StaticFiles(directory=Path(web_dir.__path__[0],"dist"),
html=True
), name="ui"
)
def invoke_api():
# Start our own event loop for eventing usage
# TODO: determine if there's a better way to do this
loop = asyncio.new_event_loop()
config = uvicorn.Config(app=app, host="0.0.0.0", port=9090, loop=loop)
config = uvicorn.Config(app=app, host=app_config.host, port=app_config.port, loop=loop)
# Use access_log to turn off logging
server = uvicorn.Server(config)
loop.run_until_complete(server.serve())
if __name__ == "__main__":
invoke_api()

View File

@ -2,14 +2,15 @@
from abc import ABC, abstractmethod
import argparse
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints
from typing import Any, Callable, Iterable, Literal, Union, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field
import networkx as nx
import matplotlib.pyplot as plt
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation
from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState, LibraryGraph, GraphInvocation, Edge
from ..services.graph import GraphExecutionState, LibraryGraph, Edge
from ..services.invoker import Invoker
@ -46,7 +47,7 @@ def add_parsers(
commands: list[type],
command_field: str = "type",
exclude_fields: list[str] = ["id", "type"],
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
add_arguments: Union[Callable[[argparse.ArgumentParser], None],None] = None
):
"""Adds parsers for each command to the subparsers"""
@ -71,7 +72,7 @@ def add_parsers(
def add_graph_parsers(
subparsers,
graphs: list[LibraryGraph],
add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
):
for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description)
@ -229,7 +230,7 @@ class HistoryCommand(BaseCommand):
for i in range(min(self.count, len(history))):
entry_id = history[-1 - i]
entry = context.get_session().graph.get_node(entry_id)
print(f"{entry_id}: {get_invocation_command(entry)}")
logger.info(f"{entry_id}: {get_invocation_command(entry)}")
class SetDefaultCommand(BaseCommand):
@ -284,3 +285,19 @@ class DrawExecutionGraphCommand(BaseCommand):
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()
class SortedHelpFormatter(argparse.HelpFormatter):
def _iter_indented_subactions(self, action):
try:
get_subactions = action._get_subactions
except AttributeError:
pass
else:
self._indent()
if isinstance(action, argparse._SubParsersAction):
for subaction in sorted(get_subactions(), key=lambda x: x.dest):
yield subaction
else:
for subaction in get_subactions():
yield subaction
self._dedent()

View File

@ -10,9 +10,11 @@ import shlex
from pathlib import Path
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
from ...backend import ModelManager, Globals
import invokeai.backend.util.logging as logger
from ...backend import ModelManager
from ..invocations.baseinvocation import BaseInvocation
from .commands import BaseCommand
from ..services.invocation_services import InvocationServices
# singleton object, class variable
completer = None
@ -130,13 +132,13 @@ class Completer(object):
readline.redisplay()
self.linebuffer = None
def set_autocompleter(model_manager: ModelManager) -> Completer:
def set_autocompleter(services: InvocationServices) -> Completer:
global completer
if completer:
return completer
completer = Completer(model_manager)
completer = Completer(services.model_manager)
readline.set_completer(completer.complete)
# pyreadline3 does not have a set_auto_history() method
@ -152,7 +154,7 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
readline.parse_and_bind("set skip-completed-text on")
readline.parse_and_bind("set show-all-if-ambiguous on")
histfile = Path(Globals.root, ".invoke_history")
histfile = Path(services.configuration.root_dir / ".invoke_history")
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)
@ -160,8 +162,8 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
pass
except OSError: # file likely corrupted
newname = f"{histfile}.old"
print(
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
logger.error(
f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
)
histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile)

View File

@ -1,39 +1,55 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import argparse
import os
import re
import shlex
import sys
import time
from typing import (
Union,
get_type_hints,
)
from typing import Union, get_type_hints, Optional
from pydantic import BaseModel
from pydantic import BaseModel, ValidationError
from pydantic.fields import Field
from invokeai.app.services.metadata import PngMetadataService
from .services.default_graphs import create_system_graphs
# This should come early so that the logger can pick up its configuration options
from .services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger().getLogger(config=config)
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
)
from invokeai.app.services.board_images import (
BoardImagesService,
BoardImagesServiceDependencies,
)
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.metadata import CoreMetadataService
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from .services.default_graphs import (default_text_to_image_graph_id,
create_system_graphs)
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers, get_graph_execution_history
from .cli.commands import (BaseCommand, CliContext, ExitCli,
SortedHelpFormatter, add_graph_parsers, add_parsers)
from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, ExposedNodeInput, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.image_storage import DiskImageStorage
from .services.graph import (Edge, EdgeConnection, GraphExecutionState,
GraphInvocation, LibraryGraph,
are_connection_types_compatible)
from .services.image_file_storage import DiskImageFileStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
from .services.invoker import Invoker
from .services.model_manager_service import ModelManagerService
from .services.processor import DefaultInvocationProcessor
from .services.restoration_services import RestorationServices
from .services.sqlite import SqliteItemStorage
@ -44,7 +60,6 @@ class CliCommand(BaseModel):
class InvalidArgs(Exception):
pass
def add_invocation_args(command_parser):
# Add linking capability
command_parser.add_argument(
@ -65,7 +80,7 @@ def add_invocation_args(command_parser):
def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
# Create invocation parser
parser = argparse.ArgumentParser()
parser = argparse.ArgumentParser(formatter_class=SortedHelpFormatter)
def exit(*args, **kwargs):
raise InvalidArgs
@ -182,54 +197,105 @@ def invoke_all(context: CliContext):
# Print any errors
if context.session.has_error():
for n in context.session.errors:
print(
context.invoker.services.logger.error(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
)
raise SessionError()
def invoke_cli():
config = Args()
config.parse_args()
model_manager = get_model_manager(config)
# get the optional list of invocations to execute on the command line
parser = config.get_parser()
parser.add_argument('commands',nargs='*')
invocation_commands = parser.parse_args().commands
# This initializes the autocompleter and returns it.
# Currently nothing is done with the returned Completer
# object, but the object can be used to change autocompletion
# behavior on the fly, if desired.
completer = set_autocompleter(model_manager)
# get the optional file to read commands from.
# Simplest is to use it for STDIN
if infile := config.from_file:
sys.stdin = open(infile,"r")
model_manager = ModelManagerService(config,logger)
events = EventServiceBase()
metadata = PngMetadataService()
output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs")
)
output_folder = config.output_path
# TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db")
if config.use_memory_db:
db_location = ":memory:"
else:
db_location = config.db_path
db_location.parent.mkdir(parents=True,exist_ok=True)
logger.info(f'InvokeAI database location is "{db_location}"')
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
)
urls = LocalUrlService()
metadata = CoreMetadataService()
image_record_storage = SqliteImageRecordStorage(db_location)
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
board_record_storage = SqliteBoardRecordStorage(db_location)
board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
boards = BoardService(
services=BoardServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
board_images = BoardImagesService(
services=BoardImagesServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
images = ImageService(
services=ImageServiceDependencies(
board_image_record_storage=board_image_record_storage,
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
metadata=metadata,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
)
services = InvocationServices(
model_manager=model_manager,
events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images', metadata_service=metadata),
metadata=metadata,
images=images,
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config),
restoration=RestorationServices(config,logger=logger),
logger=logger,
configuration=config,
)
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
set_autocompleter(services)
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
@ -241,10 +307,18 @@ def invoke_cli():
# print(services.session_manager.list())
context = CliContext(invoker, session, parser)
set_autocompleter(services)
while True:
command_line_args_exist = len(invocation_commands) > 0
done = False
while not done:
try:
cmd_input = input("invoke> ")
if command_line_args_exist:
cmd_input = invocation_commands.pop(0)
done = len(invocation_commands) == 0
else:
cmd_input = input("invoke> ")
except (KeyboardInterrupt, EOFError):
# Ctrl-c exits
break
@ -273,7 +347,7 @@ def invoke_cli():
# Parse invocation
command: CliCommand = None # type:ignore
system_graph: LibraryGraph|None = None
system_graph: Optional[LibraryGraph] = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
@ -365,12 +439,15 @@ def invoke_cli():
invoke_all(context)
except InvalidArgs:
print('Invalid command, use "help" to list commands')
invoker.services.logger.warning('Invalid command, use "help" to list commands')
continue
except ValidationError:
invoker.services.logger.warning('Invalid command arguments, run "<command> --help" for summary')
except SessionError:
# Start a new session
print("Session error: creating a new session")
invoker.services.logger.warning("Session error: creating a new session")
context.reset()
except ExitCli:

View File

@ -1,12 +1,16 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from __future__ import annotations
from abc import ABC, abstractmethod
from inspect import signature
from typing import get_args, get_type_hints, Dict, List, Literal, TypedDict
from typing import (TYPE_CHECKING, Dict, List, Literal, TypedDict, get_args,
get_type_hints)
from pydantic import BaseModel, Field
from pydantic import BaseConfig, BaseModel, Field
from ..services.invocation_services import InvocationServices
if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices
class InvocationContext:
@ -62,8 +66,13 @@ class BaseInvocation(ABC, BaseModel):
@classmethod
def get_invocations_map(cls):
# Get the type strings out of the literals and into a dictionary
return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseInvocation.get_all_subclasses()))
return dict(
map(
lambda t: (get_args(get_type_hints(t)["type"])[0], t),
BaseInvocation.get_all_subclasses(),
)
)
@classmethod
def get_output_type(cls):
return signature(cls.invoke).return_annotation
@ -72,10 +81,11 @@ class BaseInvocation(ABC, BaseModel):
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
"""Invoke with provided context and return outputs."""
pass
#fmt: off
# fmt: off
id: str = Field(description="The id of this node. Must be unique among all nodes.")
#fmt: on
is_intermediate: bool = Field(default=False, description="Whether or not this node is an intermediate node.")
# fmt: on
# TODO: figure out a better way to provide these hints
@ -92,16 +102,21 @@ class UIConfig(TypedDict, total=False):
"image",
"latents",
"model",
"control",
"image_collection",
"vae_model",
"lora_model",
],
]
tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict):
ui: UIConfig
class InvocationConfig(BaseModel.Config):
class InvocationConfig(BaseConfig):
"""Customizes pydantic's BaseModel.Config class for use by Invocations.
Provide `schema_extra` a `ui` dict to add hints for generated UIs.

View File

@ -1,16 +1,19 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import Literal, Optional
from typing import Literal
import numpy as np
import numpy.random
from pydantic import Field
from pydantic import Field, validator
from invokeai.app.models.image import ImageField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from .baseinvocation import (
BaseInvocation,
InvocationConfig,
InvocationContext,
BaseInvocationOutput,
UIConfig,
)
@ -23,8 +26,29 @@ class IntCollectionOutput(BaseInvocationOutput):
collection: list[int] = Field(default=[], description="The int collection")
class FloatCollectionOutput(BaseInvocationOutput):
"""A collection of floats"""
type: Literal["float_collection"] = "float_collection"
# Outputs
collection: list[float] = Field(default=[], description="The float collection")
class ImageCollectionOutput(BaseInvocationOutput):
"""A collection of images"""
type: Literal["image_collection"] = "image_collection"
# Outputs
collection: list[ImageField] = Field(default=[], description="The output images")
class Config:
schema_extra = {"required": ["type", "collection"]}
class RangeInvocation(BaseInvocation):
"""Creates a range"""
"""Creates a range of numbers from start to stop with step"""
type: Literal["range"] = "range"
@ -33,12 +57,34 @@ class RangeInvocation(BaseInvocation):
stop: int = Field(default=10, description="The stop of the range")
step: int = Field(default=1, description="The step of the range")
@validator("stop")
def stop_gt_start(cls, v, values):
if "start" in values and v <= values["start"]:
raise ValueError("stop must be greater than start")
return v
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(
collection=list(range(self.start, self.stop, self.step))
)
class RangeOfSizeInvocation(BaseInvocation):
"""Creates a range from start to start + size with step"""
type: Literal["range_of_size"] = "range_of_size"
# Inputs
start: int = Field(default=0, description="The start of the range")
size: int = Field(default=1, description="The number of values")
step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(
collection=list(range(self.start, self.start + self.size, self.step))
)
class RandomRangeInvocation(BaseInvocation):
"""Creates a collection of random numbers"""
@ -50,11 +96,11 @@ class RandomRangeInvocation(BaseInvocation):
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
size: int = Field(default=1, description="The number of values to generate")
seed: Optional[int] = Field(
seed: int = Field(
ge=0,
le=np.iinfo(np.int32).max,
description="The seed for the RNG",
default_factory=lambda: numpy.random.randint(0, np.iinfo(np.int32).max),
le=SEED_MAX,
description="The seed for the RNG (omit for random)",
default_factory=get_random_seed,
)
def invoke(self, context: InvocationContext) -> IntCollectionOutput:
@ -62,3 +108,27 @@ class RandomRangeInvocation(BaseInvocation):
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)
class ImageCollectionInvocation(BaseInvocation):
"""Load a collection of images and provide it as output."""
# fmt: off
type: Literal["image_collection"] = "image_collection"
# Inputs
images: list[ImageField] = Field(
default=[], description="The image collection to load"
)
# fmt: on
def invoke(self, context: InvocationContext) -> ImageCollectionOutput:
return ImageCollectionOutput(collection=self.images)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"type_hints": {
"images": "image_collection",
}
},
}

View File

@ -0,0 +1,273 @@
from typing import Literal, Optional, Union, List
from pydantic import BaseModel, Field
import re
import torch
from compel import Compel
from compel.prompt_parser import (Blend, Conjunction,
CrossAttentionControlSubstitute,
FlattenedPrompt, Fragment)
from ...backend.util.devices import torch_dtype
from ...backend.model_management import ModelType
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .model import ClipField
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(
default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
class CompelOutput(BaseInvocationOutput):
"""Compel parser output"""
#fmt: off
type: Literal["compel_output"] = "compel_output"
conditioning: ConditioningField = Field(default=None, description="Conditioning")
#fmt: on
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
type: Literal["compel"] = "compel"
prompt: str = Field(default="", description="Prompt")
clip: ClipField = Field(None, description="Clip to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
)
def _lora_loader():
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model
)
except Exception:
# print(e)
#import traceback
# print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
text_encoder_info as text_encoder:
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
)
conjunction = Compel.parse_prompt_string(self.prompt)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(
prompt)
# TODO: long prompt support
# if not self.truncate_long_prompts:
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(
tokenizer, conjunction),
cross_attention_control_args=options.get(
"cross_attention_control", None),)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (c, ec))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in blend.prompts
]
)
elif type(prompt) is Conjunction:
conjunction: Conjunction = prompt
return sum(
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in conjunction.prompts
]
)
else:
return len(
get_tokens_for_prompt_object(
tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> List[str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_conjunction(
c: Conjunction, tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
this_display_label_prefix = display_label_prefix
log_tokenization_for_prompt_object(
p,
tokenizer,
display_label_prefix=this_display_label_prefix
)
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
original_fragments = []
edited_fragments = []
for f in flattened_prompt.children:
if type(f) is CrossAttentionControlSubstitute:
original_fragments += f.original
edited_fragments += f.edited
else:
original_fragments.append(f)
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text(
text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")

View File

@ -0,0 +1,565 @@
# Invocations for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import float, bool
import cv2
import numpy as np
from typing import Literal, Optional, Union, List, Dict
from PIL import Image
from pydantic import BaseModel, Field, validator
from ..models.image import ImageField, ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from controlnet_aux import (
CannyDetector,
HEDdetector,
LineartDetector,
LineartAnimeDetector,
MidasDetector,
MLSDdetector,
NormalBaeDetector,
OpenposeDetector,
PidiNetDetector,
ContentShuffleDetector,
ZoeDetector,
MediapipeFaceDetector,
SamDetector,
LeresDetector,
)
from controlnet_aux.util import HWC3, ade_palette
from .image import ImageOutput, PILInvocationConfig
CONTROLNET_DEFAULT_MODELS = [
###########################################
# lllyasviel sd v1.5, ControlNet v1.0 models
##############################################
"lllyasviel/sd-controlnet-canny",
"lllyasviel/sd-controlnet-depth",
"lllyasviel/sd-controlnet-hed",
"lllyasviel/sd-controlnet-seg",
"lllyasviel/sd-controlnet-openpose",
"lllyasviel/sd-controlnet-scribble",
"lllyasviel/sd-controlnet-normal",
"lllyasviel/sd-controlnet-mlsd",
#############################################
# lllyasviel sd v1.5, ControlNet v1.1 models
#############################################
"lllyasviel/control_v11p_sd15_canny",
"lllyasviel/control_v11p_sd15_openpose",
"lllyasviel/control_v11p_sd15_seg",
# "lllyasviel/control_v11p_sd15_depth", # broken
"lllyasviel/control_v11f1p_sd15_depth",
"lllyasviel/control_v11p_sd15_normalbae",
"lllyasviel/control_v11p_sd15_scribble",
"lllyasviel/control_v11p_sd15_mlsd",
"lllyasviel/control_v11p_sd15_softedge",
"lllyasviel/control_v11p_sd15s2_lineart_anime",
"lllyasviel/control_v11p_sd15_lineart",
"lllyasviel/control_v11p_sd15_inpaint",
# "lllyasviel/control_v11u_sd15_tile",
# problem (temporary?) with huffingface "lllyasviel/control_v11u_sd15_tile",
# so for now replace "lllyasviel/control_v11f1e_sd15_tile",
"lllyasviel/control_v11e_sd15_shuffle",
"lllyasviel/control_v11e_sd15_ip2p",
"lllyasviel/control_v11f1e_sd15_tile",
#################################################
# thibaud sd v2.1 models (ControlNet v1.0? or v1.1?
##################################################
"thibaud/controlnet-sd21-openpose-diffusers",
"thibaud/controlnet-sd21-canny-diffusers",
"thibaud/controlnet-sd21-depth-diffusers",
"thibaud/controlnet-sd21-scribble-diffusers",
"thibaud/controlnet-sd21-hed-diffusers",
"thibaud/controlnet-sd21-zoedepth-diffusers",
"thibaud/controlnet-sd21-color-diffusers",
"thibaud/controlnet-sd21-openposev2-diffusers",
"thibaud/controlnet-sd21-lineart-diffusers",
"thibaud/controlnet-sd21-normalbae-diffusers",
"thibaud/controlnet-sd21-ade20k-diffusers",
##############################################
# ControlNetMediaPipeface, ControlNet v1.1
##############################################
# ["CrucibleAI/ControlNetMediaPipeFace", "diffusion_sd15"], # SD 1.5
# diffusion_sd15 needs to be passed to from_pretrained() as subfolder arg
# hacked t2l to split to model & subfolder if format is "model,subfolder"
"CrucibleAI/ControlNetMediaPipeFace,diffusion_sd15", # SD 1.5
"CrucibleAI/ControlNetMediaPipeFace", # SD 2.1?
]
CONTROLNET_NAME_VALUES = Literal[tuple(CONTROLNET_DEFAULT_MODELS)]
CONTROLNET_MODE_VALUES = Literal[tuple(["balanced", "more_prompt", "more_control", "unbalanced"])]
# crop and fill options not ready yet
# CONTROLNET_RESIZE_VALUES = Literal[tuple(["just_resize", "crop_resize", "fill_resize"])]
class ControlField(BaseModel):
image: ImageField = Field(default=None, description="The control image")
control_model: Optional[str] = Field(default=None, description="The ControlNet model to use")
# control_weight: Optional[float] = Field(default=1, description="weight given to controlnet")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(default=0, ge=0, le=1,
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
# resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@validator("control_weight")
def abs_le_one(cls, v):
"""validate that all abs(values) are <=1"""
if isinstance(v, list):
for i in v:
if abs(i) > 1:
raise ValueError('all abs(control_weight) must be <= 1')
else:
if abs(v) > 1:
raise ValueError('abs(control_weight) must be <= 1')
return v
class Config:
schema_extra = {
"required": ["image", "control_model", "control_weight", "begin_step_percent", "end_step_percent"],
"ui": {
"type_hints": {
"control_weight": "float",
# "control_weight": "number",
}
}
}
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# fmt: off
type: Literal["control_output"] = "control_output"
control: ControlField = Field(default=None, description="The control info")
# fmt: on
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
# fmt: off
type: Literal["controlnet"] = "controlnet"
# Inputs
image: ImageField = Field(default=None, description="The control image")
control_model: CONTROLNET_NAME_VALUES = Field(default="lllyasviel/sd-controlnet-canny",
description="control model used")
control_weight: Union[float, List[float]] = Field(default=1.0, description="The weight given to the ControlNet")
begin_step_percent: float = Field(default=0, ge=0, le=1,
description="When the ControlNet is first applied (% of total steps)")
end_step_percent: float = Field(default=1, ge=0, le=1,
description="When the ControlNet is last applied (% of total steps)")
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode used")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number",
"control_weight": "float",
}
},
}
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
image=self.image,
control_model=self.control_model,
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
control_mode=self.control_mode,
),
)
class ImageProcessorInvocation(BaseInvocation, PILInvocationConfig):
"""Base class for invocations that preprocess images for ControlNet"""
# fmt: off
type: Literal["image_processor"] = "image_processor"
# Inputs
image: ImageField = Field(default=None, description="The image to process")
# fmt: on
def run_processor(self, image):
# superclass just passes through image without processing
return image
def invoke(self, context: InvocationContext) -> ImageOutput:
raw_image = context.services.images.get_pil_image(self.image.image_name)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
# FIXME: what happened to image metadata?
# metadata = context.services.metadata.build_metadata(
# session_id=context.graph_execution_state_id, node=self
# )
# currently can't see processed image in node UI without a showImage node,
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
image_dto = context.services.images.create(
image=processed_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.CONTROL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate
)
"""Builds an ImageOutput and its ImageField"""
processed_image_field = ImageField(image_name=image_dto.image_name)
return ImageOutput(
image=processed_image_field,
# width=processed_image.width,
width = image_dto.width,
# height=processed_image.height,
height = image_dto.height,
# mode=processed_image.mode,
)
class CannyImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Canny edge detection for ControlNet"""
# fmt: off
type: Literal["canny_image_processor"] = "canny_image_processor"
# Input
low_threshold: int = Field(default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)")
high_threshold: int = Field(default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)")
# fmt: on
def run_processor(self, image):
canny_processor = CannyDetector()
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
return processed_image
class HedImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies HED edge detection to image"""
# fmt: off
type: Literal["hed_image_processor"] = "hed_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# safe not supported in controlnet_aux v0.0.3
# safe: bool = Field(default=False, description="whether to use safe mode")
scribble: bool = Field(default=False, description="Whether to use scribble mode")
# fmt: on
def run_processor(self, image):
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = hed_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
# safe not supported in controlnet_aux v0.0.3
# safe=self.safe,
scribble=self.scribble,
)
return processed_image
class LineartImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art processing to image"""
# fmt: off
type: Literal["lineart_image_processor"] = "lineart_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
coarse: bool = Field(default=False, description="Whether to use coarse mode")
# fmt: on
def run_processor(self, image):
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
processed_image = lineart_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
coarse=self.coarse)
return processed_image
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies line art anime processing to image"""
# fmt: off
type: Literal["lineart_anime_image_processor"] = "lineart_anime_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
def run_processor(self, image):
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
class OpenposeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Openpose processing to image"""
# fmt: off
type: Literal["openpose_image_processor"] = "openpose_image_processor"
# Inputs
hand_and_face: bool = Field(default=False, description="Whether to use hands and face mode")
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
def run_processor(self, image):
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = openpose_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,
)
return processed_image
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Midas depth processing to image"""
# fmt: off
type: Literal["midas_depth_image_processor"] = "midas_depth_image_processor"
# Inputs
a_mult: float = Field(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
bg_th: float = Field(default=0.1, ge=0, description="Midas parameter `bg_th`")
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = Field(default=False, description="whether to use depth and normal mode")
# fmt: on
def run_processor(self, image):
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(image,
a=np.pi * self.a_mult,
bg_th=self.bg_th,
# dept_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal=self.depth_and_normal,
)
return processed_image
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies NormalBae processing to image"""
# fmt: off
type: Literal["normalbae_image_processor"] = "normalbae_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
def run_processor(self, image):
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution)
return processed_image
class MlsdImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies MLSD processing to image"""
# fmt: off
type: Literal["mlsd_image_processor"] = "mlsd_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
thr_v: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = Field(default=0.1, ge=0, description="MLSD parameter `thr_d`")
# fmt: on
def run_processor(self, image):
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
thr_v=self.thr_v,
thr_d=self.thr_d)
return processed_image
class PidiImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies PIDI processing to image"""
# fmt: off
type: Literal["pidi_image_processor"] = "pidi_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
safe: bool = Field(default=False, description="Whether to use safe mode")
scribble: bool = Field(default=False, description="Whether to use scribble mode")
# fmt: on
def run_processor(self, image):
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
scribble=self.scribble)
return processed_image
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies content shuffle processing to image"""
# fmt: off
type: Literal["content_shuffle_image_processor"] = "content_shuffle_image_processor"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
h: Optional[int] = Field(default=512, ge=0, description="Content shuffle `h` parameter")
w: Optional[int] = Field(default=512, ge=0, description="Content shuffle `w` parameter")
f: Optional[int] = Field(default=256, ge=0, description="Content shuffle `f` parameter")
# fmt: on
def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
h=self.h,
w=self.w,
f=self.f
)
return processed_image
# should work with controlnet_aux >= 0.0.4 and timm <= 0.6.13
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies Zoe depth processing to image"""
# fmt: off
type: Literal["zoe_depth_image_processor"] = "zoe_depth_image_processor"
# fmt: on
def run_processor(self, image):
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies mediapipe face processing to image"""
# fmt: off
type: Literal["mediapipe_face_processor"] = "mediapipe_face_processor"
# Inputs
max_faces: int = Field(default=1, ge=1, description="Maximum number of faces to detect")
min_confidence: float = Field(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
# fmt: on
def run_processor(self, image):
# MediaPipeFaceDetector throws an error if image has alpha channel
# so convert to RGB if needed
if image.mode == 'RGBA':
image = image.convert('RGB')
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
return processed_image
class LeresImageProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies leres processing to image"""
# fmt: off
type: Literal["leres_image_processor"] = "leres_image_processor"
# Inputs
thr_a: float = Field(default=0, description="Leres parameter `thr_a`")
thr_b: float = Field(default=0, description="Leres parameter `thr_b`")
boost: bool = Field(default=False, description="Whether to use boost mode")
detect_resolution: int = Field(default=512, ge=0, description="The pixel resolution for detection")
image_resolution: int = Field(default=512, ge=0, description="The pixel resolution for the output image")
# fmt: on
def run_processor(self, image):
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor(image,
thr_a=self.thr_a,
thr_b=self.thr_b,
boost=self.boost,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution)
return processed_image
class TileResamplerProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
# fmt: off
type: Literal["tile_image_processor"] = "tile_image_processor"
# Inputs
#res: int = Field(default=512, ge=0, le=1024, description="The pixel resolution for each tile")
down_sampling_rate: float = Field(default=1.0, ge=1.0, le=8.0, description="Down sampling rate")
# fmt: on
# tile_resample copied from sd-webui-controlnet/scripts/processor.py
def tile_resample(self,
np_img: np.ndarray,
res=512, # never used?
down_sampling_rate=1.0,
):
np_img = HWC3(np_img)
if down_sampling_rate < 1.1:
return np_img
H, W, C = np_img.shape
H = int(float(H) / float(down_sampling_rate))
W = int(float(W) / float(down_sampling_rate))
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
return np_img
def run_processor(self, img):
np_img = np.array(img, dtype=np.uint8)
processed_np_image = self.tile_resample(np_img,
#res=self.tile_size,
down_sampling_rate=self.down_sampling_rate
)
processed_image = Image.fromarray(processed_np_image)
return processed_image
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation, PILInvocationConfig):
"""Applies segment anything processing to image"""
# fmt: off
type: Literal["segment_anything_processor"] = "segment_anything_processor"
# fmt: on
def run_processor(self, image):
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
np_img = np.array(image, dtype=np.uint8)
processed_image = segment_anything_processor(np_img)
return processed_image
class SamDetectorReproducibleColors(SamDetector):
# overriding SamDetector.show_anns() method to use reproducible colors for segmentation image
# base class show_anns() method randomizes colors,
# which seems to also lead to non-reproducible image generation
# so using ADE20k color palette instead
def show_anns(self, anns: List[Dict]):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
h, w = anns[0]['segmentation'].shape
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB")
palette = ade_palette()
for i, ann in enumerate(sorted_anns):
m = ann['segmentation']
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8)
# doing modulo just in case number of annotated regions exceeds number of colors in palette
ann_color = palette[i % len(palette)]
img[:, :] = ann_color
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
return np.array(final_img, dtype=np.uint8)

View File

@ -7,9 +7,9 @@ import numpy
from PIL import Image, ImageOps
from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageField, ImageType
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from .image import ImageOutput
class CvInvocationConfig(BaseModel):
@ -26,24 +26,23 @@ class CvInvocationConfig(BaseModel):
class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
"""Simple inpaint using opencv."""
#fmt: off
# fmt: off
type: Literal["cv_inpaint"] = "cv_inpaint"
# Inputs
image: ImageField = Field(default=None, description="The image to inpaint")
mask: ImageField = Field(default=None, description="The mask to use when inpainting")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
mask = context.services.images.get(self.mask.image_type, self.mask.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
mask = context.services.images.get_pil_image(self.mask.image_name)
# Convert to cv image/mask
# TODO: consider making these utility functions
cv_image = cv.cvtColor(numpy.array(image.convert("RGB")), cv.COLOR_RGB2BGR)
cv_mask = numpy.array(ImageOps.invert(mask))
cv_mask = numpy.array(ImageOps.invert(mask.convert("L")))
# Inpaint
cv_inpainted = cv.inpaint(cv_image, cv_mask, 3, cv.INPAINT_TELEA)
@ -52,18 +51,17 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
# TODO: consider making a utility function
image_inpainted = Image.fromarray(cv.cvtColor(cv_inpainted, cv.COLOR_BGR2RGB))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=image_inpainted,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
context.services.images.save(image_type, image_name, image_inpainted, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_inpainted,
)

View File

@ -1,124 +1,80 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from functools import partial
from typing import Literal, Optional, Union
from typing import Literal, Optional, get_args
import numpy as np
from torch import Tensor
import torch
from pydantic import Field
from pydantic import BaseModel, Field
from invokeai.app.models.image import (ColorField, ImageCategory, ImageField,
ResourceOrigin)
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.generator.inpaint import infill_methods
from invokeai.app.models.image import ImageField, ImageType
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.generator import Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState
from ..util.step_callback import stable_diffusion_step_callback
from .baseinvocation import BaseInvocation, InvocationConfig, InvocationContext
from .image import ImageOutput
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from .model import UNetField, VaeField
from .compel import ConditioningField
from contextlib import contextmanager, ExitStack, ContextDecorator
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = (
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
class SDImageInvocation(BaseModel):
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
from .latent import get_scheduler
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
"type_hints": {
"model": "model",
},
},
}
class OldModelContext(ContextDecorator):
model: StableDiffusionGeneratorPipeline
def __init__(self, model):
self.model = model
def __enter__(self):
return self.model
def __exit__(self, *exc):
return False
class OldModelInfo:
name: str
hash: str
context: OldModelContext
def __init__(self, name: str, hash: str, model: StableDiffusionGeneratorPipeline):
self.name = name
self.hash = hash
self.context = OldModelContext(
model=model,
)
# Text to image
class TextToImageInvocation(BaseInvocation, SDImageInvocation):
"""Generates an image using text2img."""
class InpaintInvocation(BaseInvocation):
"""Generates an image using inpaint."""
type: Literal["txt2img"] = "txt2img"
type: Literal["inpaint"] = "inpaint"
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use (omit for random)", default_factory=get_random_seed)
steps: int = Field(default=30, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet model")
vae: VaeField = Field(default=None, description="Vae model")
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
# fmt: on
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Txt2Img(model).generate(
prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generate_output = next(outputs)
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(
image_type, image_name, generate_output.image, metadata
)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=generate_output.image,
)
class ImageToImageInvocation(TextToImageInvocation):
"""Generates an image using img2img."""
type: Literal["img2img"] = "img2img"
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
image: Optional[ImageField] = Field(description="The input image")
strength: float = Field(
default=0.75, gt=0, le=1, description="The strength of the original image"
)
@ -127,81 +83,41 @@ class ImageToImageInvocation(TextToImageInvocation):
description="Whether or not the result should be fit to the aspect ratio of the input image",
)
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
)
mask = None
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Img2Img(model).generate(
prompt=self.prompt,
init_image=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
result_image = generator_output.image
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)
class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint."""
type: Literal["inpaint"] = "inpaint"
# Inputs
mask: Union[ImageField, None] = Field(description="The mask")
mask: Optional[ImageField] = Field(description="The mask")
seam_size: int = Field(default=96, ge=1, description="The seam inpaint size (px)")
seam_blur: int = Field(
default=16, ge=0, description="The seam inpaint blur radius (px)"
)
seam_strength: float = Field(
default=0.75, gt=0, le=1, description="The seam inpaint strength"
)
seam_steps: int = Field(
default=30, ge=1, description="The number of steps to use for seam inpaint"
)
tile_size: int = Field(
default=32, ge=1, description="The tile infill method size (px)"
)
infill_method: INFILL_METHODS = Field(
default=DEFAULT_INFILL_METHOD,
description="The method used to infill empty regions (px)",
)
inpaint_width: Optional[int] = Field(
default=None,
multiple_of=8,
gt=0,
description="The width of the inpaint region (px)",
)
inpaint_height: Optional[int] = Field(
default=None,
multiple_of=8,
gt=0,
description="The height of the inpaint region (px)",
)
inpaint_fill: Optional[ColorField] = Field(
default=ColorField(r=127, g=127, b=127, a=255),
description="The solid infill method color",
)
inpaint_replace: float = Field(
default=0.0,
ge=0.0,
@ -209,6 +125,14 @@ class InpaintInvocation(ImageToImageInvocation):
description="The amount by which to replace masked areas with latent noise",
)
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["stable-diffusion", "image"],
},
}
def dispatch_progress(
self,
context: InvocationContext,
@ -222,60 +146,101 @@ class InpaintInvocation(ImageToImageInvocation):
source_node_id=source_node_id,
)
def get_conditioning(self, context):
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
return (uc, c, extra_conditioning_info)
@contextmanager
def load_model_old_way(self, context, scheduler):
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
#unet = unet_info.context.model
#vae = vae_info.context.model
with ExitStack() as stack:
loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
with vae_info as vae,\
unet_info as unet,\
ModelPatcher.apply_lora_unet(unet, loras):
device = context.services.model_manager.mgr.cache.execution_device
dtype = context.services.model_manager.mgr.cache.precision
pipeline = StableDiffusionGeneratorPipeline(
vae=vae,
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
precision="float16" if dtype == torch.float16 else "float32",
execution_device=device,
)
yield OldModelInfo(
name=self.unet.unet.model_name,
hash="<NO-HASH>",
model=pipeline,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = (
None
if self.image is None
else context.services.images.get(
self.image.image_type, self.image.image_name
)
else context.services.images.get_pil_image(self.image.image_name)
)
mask = (
None
if self.mask is None
else context.services.images.get(self.mask.image_type, self.mask.image_name)
else context.services.images.get_pil_image(self.mask.image_name)
)
# Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Inpaint(model).generate(
prompt=self.prompt,
init_img=image,
init_mask=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
conditioning = self.get_conditioning(context)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
with self.load_model_old_way(context, scheduler) as model:
outputs = Inpaint(model).generate(
conditioning=conditioning,
scheduler=scheduler,
init_image=image,
mask_image=mask,
step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict(
exclude={"positive_conditioning", "negative_conditioning", "scheduler", "image", "mask"}
), # Shorthand for passing all of the parameters above manually
)
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one.
generator_output = next(outputs)
result_image = generator_output.image
# Results are image and seed, unwrap for now and ignore the seed
# TODO: pre-seed?
# TODO: can this return multiple results? Should it?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=generator_output.image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -3,10 +3,10 @@
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from PIL import Image, ImageFilter, ImageOps, ImageChops
from pydantic import BaseModel, Field
from ..models.image import ImageField, ImageType
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
@ -30,32 +30,14 @@ class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image"] = "image"
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: Optional[int] = Field(default=None, description="The width of the image in pixels")
height: Optional[int] = Field(default=None, description="The height of the image in pixels")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {
"required": ["type", "image", "width", "height", "mode"]
}
def build_image_output(
image_type: ImageType, image_name: str, image: Image.Image
) -> ImageOutput:
"""Builds an ImageOutput and its ImageField"""
image_field = ImageField(
image_name=image_name,
image_type=image_type,
)
return ImageOutput(
image=image_field,
width=image.width,
height=image.height,
mode=image.mode,
)
schema_extra = {"required": ["type", "image", "width", "height"]}
class MaskOutput(BaseInvocationOutput):
@ -64,6 +46,8 @@ class MaskOutput(BaseInvocationOutput):
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
width: int = Field(description="The width of the mask in pixels")
height: int = Field(description="The height of the mask in pixels")
# fmt: on
class Config:
@ -82,16 +66,17 @@ class LoadImageInvocation(BaseInvocation):
type: Literal["load_image"] = "load_image"
# Inputs
image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image")
image: Optional[ImageField] = Field(
default=None, description="The image to load"
)
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(self.image_type, self.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
return build_image_output(
image_type=self.image_type,
image_name=self.image_name,
image=image,
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
@ -101,32 +86,32 @@ class ShowImageInvocation(BaseInvocation):
type: Literal["show_image"] = "show_image"
# Inputs
image: ImageField = Field(default=None, description="The image to show")
image: Optional[ImageField] = Field(
default=None, description="The image to show"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
if image:
image.show()
# TODO: how to handle failure?
return build_image_output(
image_type=self.image.image_type,
image_name=self.image.image_name,
image=image,
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
class CropImageInvocation(BaseInvocation, PILInvocationConfig):
class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
"""Crops an image to a specified box. The box can be outside of the image."""
# fmt: off
type: Literal["crop"] = "crop"
type: Literal["img_crop"] = "img_crop"
# Inputs
image: ImageField = Field(default=None, description="The image to crop")
image: Optional[ImageField] = Field(default=None, description="The image to crop")
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
@ -134,58 +119,51 @@ class CropImageInvocation(BaseInvocation, PILInvocationConfig):
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_crop = Image.new(
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
)
image_crop.paste(image, (-self.x, -self.y))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_crop, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image_dto = context.services.images.create(
image=image_crop,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
"""Pastes an image into another image."""
# fmt: off
type: Literal["paste"] = "paste"
type: Literal["img_paste"] = "img_paste"
# Inputs
base_image: ImageField = Field(default=None, description="The base image")
image: ImageField = Field(default=None, description="The image to paste")
base_image: Optional[ImageField] = Field(default=None, description="The base image")
image: Optional[ImageField] = Field(default=None, description="The image to paste")
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get(
self.base_image.image_type, self.base_image.image_name
)
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
base_image = context.services.images.get_pil_image(self.base_image.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
mask = (
None
if self.mask is None
else ImageOps.invert(
context.services.images.get(self.mask.image_type, self.mask.image_name)
context.services.images.get_pil_image(self.mask.image_name)
)
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
@ -201,20 +179,19 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
new_image.paste(base_image, (abs(min_x), abs(min_y)))
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=new_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, new_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=new_image,
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@ -225,48 +202,150 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
type: Literal["tomask"] = "tomask"
# Inputs
image: ImageField = Field(default=None, description="The image to create the mask from")
image: Optional[ImageField] = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
# fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_mask = image.split()[-1]
if self.invert:
image_mask = ImageOps.invert(image_mask)
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=image_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
return MaskOutput(
mask=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
context.services.images.save(image_type, image_name, image_mask, metadata)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
# fmt: off
type: Literal["img_mul"] = "img_mul"
# Inputs
image1: Optional[ImageField] = Field(default=None, description="The first image to multiply")
image2: Optional[ImageField] = Field(default=None, description="The second image to multiply")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image1 = context.services.images.get_pil_image(self.image1.image_name)
image2 = context.services.images.get_pil_image(self.image2.image_name)
multiply_image = ImageChops.multiply(image1, image2)
image_dto = context.services.images.create(
image=multiply_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class BlurInvocation(BaseInvocation, PILInvocationConfig):
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
"""Gets a channel from an image."""
# fmt: off
type: Literal["img_chan"] = "img_chan"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to get the channel from")
channel: IMAGE_CHANNELS = Field(default="A", description="The channel to get")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
channel_image = image.getchannel(self.channel)
image_dto = context.services.images.create(
image=channel_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
"""Converts an image to a different mode."""
# fmt: off
type: Literal["img_conv"] = "img_conv"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to convert")
mode: IMAGE_MODES = Field(default="L", description="The mode to convert to")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
converted_image = image.convert(self.mode)
image_dto = context.services.images.create(
image=converted_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
"""Blurs an image"""
# fmt: off
type: Literal["blur"] = "blur"
type: Literal["img_blur"] = "img_blur"
# Inputs
image: ImageField = Field(default=None, description="The image to blur")
image: Optional[ImageField] = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
blur = (
ImageFilter.GaussianBlur(self.radius)
@ -275,74 +354,171 @@ class BlurInvocation(BaseInvocation, PILInvocationConfig):
)
blur_image = image.filter(blur)
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=blur_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, blur_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=blur_image
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class LerpInvocation(BaseInvocation, PILInvocationConfig):
PIL_RESAMPLING_MODES = Literal[
"nearest",
"box",
"bilinear",
"hamming",
"bicubic",
"lanczos",
]
PIL_RESAMPLING_MAP = {
"nearest": Image.Resampling.NEAREST,
"box": Image.Resampling.BOX,
"bilinear": Image.Resampling.BILINEAR,
"hamming": Image.Resampling.HAMMING,
"bicubic": Image.Resampling.BICUBIC,
"lanczos": Image.Resampling.LANCZOS,
}
class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
"""Resizes an image to specific dimensions"""
# fmt: off
type: Literal["img_resize"] = "img_resize"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
resize_image = image.resize(
(self.width, self.height),
resample=resample_mode,
)
image_dto = context.services.images.create(
image=resize_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
"""Scales an image by a factor"""
# fmt: off
type: Literal["img_scale"] = "img_scale"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the image")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
width = int(image.width * self.scale_factor)
height = int(image.height * self.scale_factor)
resize_image = image.resize(
(width, height),
resample=resample_mode,
)
image_dto = context.services.images.create(
image=resize_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Linear interpolation of all pixels of an image"""
# fmt: off
type: Literal["lerp"] = "lerp"
type: Literal["img_lerp"] = "img_lerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
image_arr = image_arr * (self.max - self.min) + self.max
lerp_image = Image.fromarray(numpy.uint8(image_arr))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=lerp_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, lerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=lerp_image
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Inverse linear interpolation of all pixels of an image"""
# fmt: off
type: Literal["ilerp"] = "ilerp"
type: Literal["img_ilerp"] = "img_ilerp"
# Inputs
image: ImageField = Field(default=None, description="The image to lerp")
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = (
@ -354,16 +530,17 @@ class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=ilerp_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, ilerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=ilerp_image
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -0,0 +1,230 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import Literal, Optional, get_args
import numpy as np
import math
from PIL import Image, ImageOps
from pydantic import Field
from invokeai.app.invocations.image import ImageOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.patchmatch import PatchMatch
from ..models.image import ColorField, ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
InvocationContext,
)
def infill_methods() -> list[str]:
methods = [
"tile",
"solid",
]
if PatchMatch.patchmatch_available():
methods.insert(0, "patchmatch")
return methods
INFILL_METHODS = Literal[tuple(infill_methods())]
DEFAULT_INFILL_METHOD = (
"patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
)
def infill_patchmatch(im: Image.Image) -> Image.Image:
if im.mode != "RGBA":
return im
# Skip patchmatch if patchmatch isn't available
if not PatchMatch.patchmatch_available():
return im
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
im_patched_np = PatchMatch.inpaint(
im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3
)
im_patched = Image.fromarray(im_patched_np, mode="RGB")
return im_patched
def get_tile_images(image: np.ndarray, width=8, height=8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False,
)
def tile_fill_missing(
im: Image.Image, tile_size: int = 16, seed: Optional[int] = None
) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
tile_size_tuple = (tile_size, tile_size)
# Get the image as tiles of a specified size
tiles = get_tile_images(a, *tile_size_tuple).copy()
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
if len(filtered_tiles) == 0:
return im
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum()
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[
rng.choice(filtered_tiles.shape[0], replace_count), :, :, :
]
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
return si
class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color"""
type: Literal["infill_rgba"] = "infill_rgba"
image: Optional[ImageField] = Field(
default=None, description="The image to infill"
)
color: ColorField = Field(
default=ColorField(r=127, g=127, b=127, a=255),
description="The color to use to infill",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InfillTileInvocation(BaseInvocation):
"""Infills transparent areas of an image with tiles of the image"""
type: Literal["infill_tile"] = "infill_tile"
image: Optional[ImageField] = Field(
default=None, description="The image to infill"
)
tile_size: int = Field(default=32, ge=1, description="The tile size (px)")
seed: int = Field(
ge=0,
le=SEED_MAX,
description="The seed to use for tile generation (omit for random)",
default_factory=get_random_seed,
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
infilled = tile_fill_missing(
image.copy(), seed=self.seed, tile_size=self.tile_size
)
infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class InfillPatchMatchInvocation(BaseInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm"""
type: Literal["infill_patchmatch"] = "infill_patchmatch"
image: Optional[ImageField] = Field(
default=None, description="The image to infill"
)
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
if PatchMatch.patchmatch_available():
infilled = infill_patchmatch(image.copy())
else:
raise ValueError("PatchMatch is not available on this system")
image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -1,265 +1,124 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
from typing import Literal, Optional
from pydantic import BaseModel, Field
import torch
from typing import List, Literal, Optional, Union
from invokeai.app.invocations.util.choose_model import choose_model
import einops
import torch
from diffusers import ControlNetModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import BaseModel, Field, validator
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput, build_image_output
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers
from diffusers import DiffusionPipeline
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline,
image_resized_to_grid_as_tensor)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import torch_dtype
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
latents_name: Optional[str] = Field(
default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
type: Literal["latent_output"] = "latent_output"
latents: LatentsField = Field(default=None, description="The output latents")
#fmt: on
type: Literal["latents_output"] = "latents_output"
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
#fmt: off
type: Literal["noise_output"] = "noise_output"
noise: LatentsField = Field(default=None, description="The output noise")
# Inputs
latents: LatentsField = Field(default=None, description="The output latents")
width: int = Field(description="The width of the latents in pixels")
height: int = Field(description="The height of the latents in pixels")
#fmt: on
# TODO: this seems like a hack
scheduler_map = dict(
ddim=diffusers.DDIMScheduler,
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
k_euler=diffusers.EulerDiscreteScheduler,
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
k_heun=diffusers.HeunDiscreteScheduler,
k_lms=diffusers.LMSDiscreteScheduler,
plms=diffusers.PNDMScheduler,
)
def build_latents_output(latents_name: str, latents: torch.Tensor):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
SAMPLER_NAME_VALUES = Literal[
tuple(list(scheduler_map.keys()))
tuple(list(SCHEDULER_MAP.keys()))
]
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
scheduler_class = scheduler_map.get(scheduler_name,'ddim')
scheduler = scheduler_class.from_config(model.scheduler.config)
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelInfo,
scheduler_name: str,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(
scheduler_name, SCHEDULER_MAP['ddim'])
orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict())
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **
scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
generator = torch.Generator(device=use_device).manual_seed(seed)
x = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=use_device,
generator=generator,
).to(device)
# if self.perlin > 0.0:
# perlin_noise = self.get_perlin_noise(
# width // self.downsampling_factor, height // self.downsampling_factor
# )
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x
def random_seed():
return random.randint(0, np.iinfo(np.uint32).max)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", default_factory=random_seed)
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
def invoke(self, context: InvocationContext) -> NoiseOutput:
device = torch.device(choose_torch_device())
noise = get_noise(self.width, self.height, device, self.seed)
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, noise)
return NoiseOutput(
noise=LatentsField(latents_name=name)
)
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from a prompt."""
"""Generates latents from conditionings."""
type: Literal["t2l"] = "t2l"
# Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
model: str = Field(default="", description="The model to use (currently ignored)")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = choose_model(model_manager, self.model)
model_name = model_info['model_name']
model_hash = model_info['hash']
model: StableDiffusionGeneratorPipeline = model_info['model']
model.scheduler = get_scheduler(
model=model,
scheduler_name=self.scheduler
)
if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]:
configure_model_padding(component,
self.seamless,
self.seamless_axes
)
@validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError('cfg_scale must be greater than 1')
else:
configure_model_padding(model,
self.seamless,
self.seamless_axes
)
return model
def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model)
conditioning_data = ConditioningData(
uc,
c,
self.cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0,#threshold,
warmup=0.2,#warmup,
h_symmetry_time_pct=None,#h_symmetry_time_pct,
v_symmetry_time_pct=None#v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(model.scheduler, eta=None)#ddim_eta)
return conditioning_data
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
if v < 1:
raise ValueError('cfg_scale must be greater than 1')
return v
# Schema customisation
class Config(InvocationConfig):
@ -267,58 +126,314 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model"
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
}
},
}
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.5, description="The strength of the latents to use")
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, source_node_id: str,
intermediate_state: PipelineIntermediateState) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def get_conditioning_data(
self, context: InvocationContext, scheduler) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(
self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(
self.negative_conditioning.conditioning_name)
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
text_embeddings=c,
guidance_scale=self.cfg_scale,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None # v_symmetry_time_pct,
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
scheduler,
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
generator=torch.Generator(device=uc.device).manual_seed(0),
)
return conditioning_data
def create_pipeline(
self, unet, scheduler) -> StableDiffusionGeneratorPipeline:
# TODO:
# configure_model_padding(
# unet,
# self.seamless,
# self.seamless_axes,
# )
class FakeVae:
class FakeVaeConfig:
def __init__(self):
self.block_out_channels = [0]
def __init__(self):
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
precision="float16" if unet.dtype == torch.float16 else "float32",
)
def prep_control_data(
self,
context: InvocationContext,
# really only need model for dtype and device
model: StableDiffusionGeneratorPipeline,
control_input: List[ControlField],
latents_shape: List[int],
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
# assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8
if control_input is None:
control_list = None
elif isinstance(control_input, list) and len(control_input) == 0:
control_list = None
elif isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
control_list = control_input
else:
control_list = None
if (control_list is None):
control_data = None
# from above handling, any control that is not None should now be of type list[ControlField]
else:
# FIXME: add checks to skip entry if model or image is None
# and if weight is None, populate with default 1.0?
control_data = []
control_models = []
for control_info in control_list:
# handle control models
if ("," in control_info.control_model):
control_model_split = control_info.control_model.split(",")
control_name = control_model_split[0]
control_subfolder = control_model_split[1]
print("Using HF model subfolders")
print(" control_name: ", control_name)
print(" control_subfolder: ", control_subfolder)
control_model = ControlNetModel.from_pretrained(
control_name, subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(
model.device)
else:
control_model = ControlNetModel.from_pretrained(
control_info.control_model, torch_dtype=model.unet.dtype).to(model.device)
control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(
control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
# and do real check for classifier_free_guidance?
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
control_image = model.prepare_control_image(
image=input_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=control_width_resize,
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
)
control_item = ControlNetData(
model=control_model, image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,)
control_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return control_data
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
# TODO: Verify the noise is the right size
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype
)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
timesteps, _ = model.get_img2img_timesteps(
self.steps,
self.strength,
device=model.device,
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
result_latents, result_attention_map_saver = model.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
callback=step_callback
)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.set(name, result_latents)
return LatentsOutput(
latents=LatentsField(latents_name=name)
)
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to use as a base image")
strength: float = Field(
default=0.7, ge=0, le=1,
description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
"cfg_scale": "number",
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=unet.device, dtype=latent.dtype)
timesteps, _ = pipeline.get_img2img_timesteps(
self.steps,
self.strength,
device=unet.device,
)
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
# Latent to image
@ -328,17 +443,18 @@ class LatentsToImageInvocation(BaseInvocation):
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
model: str = Field(default="", description="The model to use")
latents: Optional[LatentsField] = Field(
description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Decode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {
"model": "model"
}
},
}
@ -346,26 +462,173 @@ class LatentsToImageInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info['model']
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
with vae_info as vae:
if self.tiled or context.services.configuration.tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
with torch.inference_mode():
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
image = vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
context.services.images.save(image_type, image_name, image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image
)
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
torch.cuda.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear",
"bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to resize")
width: int = Field(
ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(
ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents, size=(self.height // 8, self.width // 8),
mode=self.mode, antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to scale")
scale_factor: float = Field(
gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents, scale_factor=self.scale_factor, mode=self.mode,
antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
type: Literal["i2l"] = "i2l"
# Inputs
image: Optional[ImageField] = Field(description="The image to encode")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Encode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
# image = context.services.images.get(
# self.image.image_type, self.image.image_name
# )
image = context.services.images.get_pil_image(self.image.image_name)
#vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
with vae_info as vae:
if self.tiled:
vae.enable_tiling()
else:
vae.disable_tiling()
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
latents = 0.18215 * latents
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, latents)
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents)

View File

@ -3,8 +3,14 @@
from typing import Literal
from pydantic import BaseModel, Field
import numpy as np
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class MathInvocationConfig(BaseModel):
@ -21,19 +27,30 @@ class MathInvocationConfig(BaseModel):
class IntOutput(BaseInvocationOutput):
"""An integer output"""
#fmt: off
# fmt: off
type: Literal["int_output"] = "int_output"
a: int = Field(default=None, description="The output integer")
#fmt: on
# fmt: on
class FloatOutput(BaseInvocationOutput):
"""A float output"""
# fmt: off
type: Literal["float_output"] = "float_output"
param: float = Field(default=None, description="The output float")
# fmt: on
class AddInvocation(BaseInvocation, MathInvocationConfig):
"""Adds two numbers"""
#fmt: off
# fmt: off
type: Literal["add"] = "add"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a + self.b)
@ -41,11 +58,12 @@ class AddInvocation(BaseInvocation, MathInvocationConfig):
class SubtractInvocation(BaseInvocation, MathInvocationConfig):
"""Subtracts two numbers"""
#fmt: off
# fmt: off
type: Literal["sub"] = "sub"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a - self.b)
@ -53,11 +71,12 @@ class SubtractInvocation(BaseInvocation, MathInvocationConfig):
class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
"""Multiplies two numbers"""
#fmt: off
# fmt: off
type: Literal["mul"] = "mul"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a * self.b)
@ -65,11 +84,26 @@ class MultiplyInvocation(BaseInvocation, MathInvocationConfig):
class DivideInvocation(BaseInvocation, MathInvocationConfig):
"""Divides two numbers"""
#fmt: off
# fmt: off
type: Literal["div"] = "div"
a: int = Field(default=0, description="The first number")
b: int = Field(default=0, description="The second number")
#fmt: on
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=int(self.a / self.b))
class RandomIntInvocation(BaseInvocation):
"""Outputs a single random integer."""
# fmt: off
type: Literal["rand_int"] = "rand_int"
low: int = Field(default=0, description="The inclusive low value")
high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
# fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=np.random.randint(self.low, self.high))

View File

@ -0,0 +1,308 @@
import copy
from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load submodel")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(
default=None, description="Info to load submodel"
)
class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model")
class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class ClipField(BaseModel):
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
class ModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["model_loader_output"] = "model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
class MainModelField(BaseModel):
"""Main model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
class LoRAModelField(BaseModel):
"""LoRA model field"""
model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model")
class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
type: Literal["main_model_loader"] = "main_model_loader"
model: MainModelField = Field(description="The model to load")
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Model Loader",
"tags": ["model", "loader"],
"type_hints": {"model": "model"},
},
}
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
),
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae,
),
),
)
class LoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["lora_loader_output"] = "lora_loader_output"
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
# fmt: on
class LoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
type: Literal["lora_loader"] = "lora_loader"
lora: Union[LoRAModelField, None] = Field(
default=None, description="Lora model name"
)
weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Lora Loader",
"tags": ["lora", "loader"],
"type_hints": {"lora": "lora_model"},
},
}
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unkown lora name: {lora_name}!")
if self.unet is not None and any(
lora.model_name == lora_name for lora in self.unet.loras
):
raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(
lora.model_name == lora_name for lora in self.clip.loras
):
raise Exception(f'Lora "{lora_name}" already applied to clip')
output = LoraLoaderOutput()
if self.unet is not None:
output.unet = copy.deepcopy(self.unet)
output.unet.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = copy.deepcopy(self.clip)
output.clip.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
return output
class VAEModelField(BaseModel):
"""Vae model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
class VaeLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["vae_loader_output"] = "vae_loader_output"
vae: VaeField = Field(default=None, description="Vae model")
# fmt: on
class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput"""
type: Literal["vae_loader"] = "vae_loader"
vae_model: VAEModelField = Field(description="The VAE to load")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "VAE Loader",
"tags": ["vae", "loader"],
"type_hints": {"vae_model": "vae_model"},
},
}
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
base_model = self.vae_model.base_model
model_name = self.vae_model.model_name
model_type = ModelType.Vae
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=model_name,
model_type=model_type,
):
raise Exception(f"Unkown vae name: {model_name}!")
return VaeLoaderOutput(
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
)
)

View File

@ -0,0 +1,134 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
import math
from typing import Literal
from pydantic import Field, validator
import torch
from invokeai.app.invocations.latent import LatentsField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationConfig,
InvocationContext,
)
"""
Utilities
"""
def get_noise(
width: int,
height: int,
device: torch.device,
seed: int = 0,
latent_channels: int = 4,
downsampling_factor: int = 8,
use_cpu: bool = True,
perlin: float = 0.0,
):
"""Generate noise for a given image size."""
noise_device_type = "cpu" if (use_cpu or device.type == "mps") else device.type
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
generator = torch.Generator(device=noise_device_type).manual_seed(seed)
noise_tensor = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=noise_device_type,
generator=generator,
).to(device)
return noise_tensor
"""
Nodes
"""
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output"""
# fmt: off
type: Literal["noise_output"] = "noise_output"
# Inputs
noise: LatentsField = Field(default=None, description="The output noise")
width: int = Field(description="The width of the noise in pixels")
height: int = Field(description="The height of the noise in pixels")
# fmt: on
def build_noise_output(latents_name: str, latents: torch.Tensor):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
type: Literal["noise"] = "noise"
# Inputs
seed: int = Field(
ge=0,
le=SEED_MAX,
description="The seed to use",
default_factory=get_random_seed,
)
width: int = Field(
default=512,
multiple_of=8,
gt=0,
description="The width of the resulting noise",
)
height: int = Field(
default=512,
multiple_of=8,
gt=0,
description="The height of the resulting noise",
)
use_cpu: bool = Field(
default=True,
description="Use CPU for noise generation (for reproducible results across platforms)",
)
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "noise"],
},
}
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo SEED_MAX to ensure it is within the valid range."""
return v % SEED_MAX
def invoke(self, context: InvocationContext) -> NoiseOutput:
noise = get_noise(
width=self.width,
height=self.height,
device=choose_torch_device(),
seed=self.seed,
use_cpu=self.use_cpu,
)
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise)

View File

@ -0,0 +1,236 @@
import io
from typing import Literal, Optional, Any
# from PIL.Image import Image
import PIL.Image
from matplotlib.ticker import MaxNLocator
from matplotlib.figure import Figure
from pydantic import BaseModel, Field
import numpy as np
import matplotlib.pyplot as plt
from easing_functions import (
LinearInOut,
QuadEaseInOut, QuadEaseIn, QuadEaseOut,
CubicEaseInOut, CubicEaseIn, CubicEaseOut,
QuarticEaseInOut, QuarticEaseIn, QuarticEaseOut,
QuinticEaseInOut, QuinticEaseIn, QuinticEaseOut,
SineEaseInOut, SineEaseIn, SineEaseOut,
CircularEaseIn, CircularEaseInOut, CircularEaseOut,
ExponentialEaseInOut, ExponentialEaseIn, ExponentialEaseOut,
ElasticEaseIn, ElasticEaseInOut, ElasticEaseOut,
BackEaseIn, BackEaseInOut, BackEaseOut,
BounceEaseIn, BounceEaseInOut, BounceEaseOut)
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from ...backend.util.logging import InvokeAILogger
from .collections import FloatCollectionOutput
class FloatLinearRangeInvocation(BaseInvocation):
"""Creates a range"""
type: Literal["float_range"] = "float_range"
# Inputs
start: float = Field(default=5, description="The first value of the range")
stop: float = Field(default=10, description="The last value of the range")
steps: int = Field(default=30, description="number of values to interpolate over (including start and stop)")
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps))
return FloatCollectionOutput(
collection=param_list
)
EASING_FUNCTIONS_MAP = {
"Linear": LinearInOut,
"QuadIn": QuadEaseIn,
"QuadOut": QuadEaseOut,
"QuadInOut": QuadEaseInOut,
"CubicIn": CubicEaseIn,
"CubicOut": CubicEaseOut,
"CubicInOut": CubicEaseInOut,
"QuarticIn": QuarticEaseIn,
"QuarticOut": QuarticEaseOut,
"QuarticInOut": QuarticEaseInOut,
"QuinticIn": QuinticEaseIn,
"QuinticOut": QuinticEaseOut,
"QuinticInOut": QuinticEaseInOut,
"SineIn": SineEaseIn,
"SineOut": SineEaseOut,
"SineInOut": SineEaseInOut,
"CircularIn": CircularEaseIn,
"CircularOut": CircularEaseOut,
"CircularInOut": CircularEaseInOut,
"ExponentialIn": ExponentialEaseIn,
"ExponentialOut": ExponentialEaseOut,
"ExponentialInOut": ExponentialEaseInOut,
"ElasticIn": ElasticEaseIn,
"ElasticOut": ElasticEaseOut,
"ElasticInOut": ElasticEaseInOut,
"BackIn": BackEaseIn,
"BackOut": BackEaseOut,
"BackInOut": BackEaseInOut,
"BounceIn": BounceEaseIn,
"BounceOut": BounceEaseOut,
"BounceInOut": BounceEaseInOut,
}
EASING_FUNCTION_KEYS: Any = Literal[
tuple(list(EASING_FUNCTIONS_MAP.keys()))
]
# actually I think for now could just use CollectionOutput (which is list[Any]
class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps"""
type: Literal["step_param_easing"] = "step_param_easing"
# Inputs
# fmt: off
easing: EASING_FUNCTION_KEYS = Field(default="Linear", description="The easing function to use")
num_steps: int = Field(default=20, description="number of denoising steps")
start_value: float = Field(default=0.0, description="easing starting value")
end_value: float = Field(default=1.0, description="easing ending value")
start_step_percent: float = Field(default=0.0, description="fraction of steps at which to start easing")
end_step_percent: float = Field(default=1.0, description="fraction of steps after which to end easing")
# if None, then start_value is used prior to easing start
pre_start_value: Optional[float] = Field(default=None, description="value before easing start")
# if None, then end value is used prior to easing end
post_end_value: Optional[float] = Field(default=None, description="value after easing end")
mirror: bool = Field(default=False, description="include mirror of easing function")
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# alt_mirror: bool = Field(default=False, description="alternative mirroring by dual easing")
show_easing_plot: bool = Field(default=False, description="show easing plot")
# fmt: on
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
log_diagnostics = False
# convert from start_step_percent to nearest step <= (steps * start_step_percent)
# start_step = int(np.floor(self.num_steps * self.start_step_percent))
start_step = int(np.round(self.num_steps * self.start_step_percent))
# convert from end_step_percent to nearest step >= (steps * end_step_percent)
# end_step = int(np.ceil((self.num_steps - 1) * self.end_step_percent))
end_step = int(np.round((self.num_steps - 1) * self.end_step_percent))
# end_step = int(np.ceil(self.num_steps * self.end_step_percent))
num_easing_steps = end_step - start_step + 1
# num_presteps = max(start_step - 1, 0)
num_presteps = start_step
num_poststeps = self.num_steps - (num_presteps + num_easing_steps)
prelist = list(num_presteps * [self.pre_start_value])
postlist = list(num_poststeps * [self.post_end_value])
if log_diagnostics:
context.services.logger.debug("start_step: " + str(start_step))
context.services.logger.debug("end_step: " + str(end_step))
context.services.logger.debug("num_easing_steps: " + str(num_easing_steps))
context.services.logger.debug("num_presteps: " + str(num_presteps))
context.services.logger.debug("num_poststeps: " + str(num_poststeps))
context.services.logger.debug("prelist size: " + str(len(prelist)))
context.services.logger.debug("postlist size: " + str(len(postlist)))
context.services.logger.debug("prelist: " + str(prelist))
context.services.logger.debug("postlist: " + str(postlist))
easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics:
context.services.logger.debug("easing class: " + str(easing_class))
easing_list = list()
if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2
# and create reverse copy of list to append
# if number of steps is odd, squeeze duration down to ceil(number_of_steps/2)
# and create reverse copy of list[1:end-1]
# but if even then number_of_steps/2 === ceil(number_of_steps/2), so can just use ceil always
base_easing_duration = int(np.ceil(num_easing_steps/2.0))
if log_diagnostics: context.services.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = (num_easing_steps % 2 == 0) # even number of steps
easing_function = easing_class(start=self.start_value,
end=self.end_value,
duration=base_easing_duration - 1)
base_easing_vals = list()
for step_index in range(base_easing_duration):
easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val)
if log_diagnostics:
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
if even_num_steps:
mirror_easing_vals = list(reversed(base_easing_vals))
else:
mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
if log_diagnostics:
context.services.logger.debug("base easing vals: " + str(base_easing_vals))
context.services.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
easing_list = base_easing_vals + mirror_easing_vals
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
# elif self.alt_mirror: # function mirroring (unintuitive behavior (at least to me))
# # half_ease_duration = round(num_easing_steps - 1 / 2)
# half_ease_duration = round((num_easing_steps - 1) / 2)
# easing_function = easing_class(start=self.start_value,
# end=self.end_value,
# duration=half_ease_duration,
# )
#
# mirror_function = easing_class(start=self.end_value,
# end=self.start_value,
# duration=half_ease_duration,
# )
# for step_index in range(num_easing_steps):
# if step_index <= half_ease_duration:
# step_val = easing_function.ease(step_index)
# else:
# step_val = mirror_function.ease(step_index - half_ease_duration)
# easing_list.append(step_val)
# if log_diagnostics: logger.debug(step_index, step_val)
#
else: # no mirroring (default)
easing_function = easing_class(start=self.start_value,
end=self.end_value,
duration=num_easing_steps - 1)
for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index)
easing_list.append(step_val)
if log_diagnostics:
context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
if log_diagnostics:
context.services.logger.debug("prelist size: " + str(len(prelist)))
context.services.logger.debug("easing_list size: " + str(len(easing_list)))
context.services.logger.debug("postlist size: " + str(len(postlist)))
param_list = prelist + easing_list + postlist
if self.show_easing_plot:
plt.figure()
plt.xlabel("Step")
plt.ylabel("Param Value")
plt.title("Per-Step Values Based On Easing: " + self.easing)
plt.bar(range(len(param_list)), param_list)
# plt.plot(param_list)
ax = plt.gca()
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
im = PIL.Image.open(buf)
im.show()
buf.close()
# output array of size steps, each entry list[i] is param value for step i
return FloatCollectionOutput(
collection=param_list
)

View File

@ -3,7 +3,7 @@
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .math import IntOutput
from .math import IntOutput, FloatOutput
# Pass-through parameter nodes - used by subgraphs
@ -16,3 +16,13 @@ class ParamIntInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a)
class ParamFloatInvocation(BaseInvocation):
"""A float parameter"""
#fmt: off
type: Literal["param_float"] = "param_float"
param: float = Field(default=0.0, description="The float value")
#fmt: on
def invoke(self, context: InvocationContext) -> FloatOutput:
return FloatOutput(param=self.param)

View File

@ -2,8 +2,8 @@ from typing import Literal
from pydantic.fields import Field
from .baseinvocation import BaseInvocationOutput
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from dynamicprompts.generators import RandomPromptGenerator, CombinatorialPromptGenerator
class PromptOutput(BaseInvocationOutput):
"""Base class for invocations that output a prompt"""
@ -20,3 +20,38 @@ class PromptOutput(BaseInvocationOutput):
'prompt',
]
}
class PromptCollectionOutput(BaseInvocationOutput):
"""Base class for invocations that output a collection of prompts"""
# fmt: off
type: Literal["prompt_collection_output"] = "prompt_collection_output"
prompt_collection: list[str] = Field(description="The output prompt collection")
count: int = Field(description="The size of the prompt collection")
# fmt: on
class Config:
schema_extra = {"required": ["type", "prompt_collection", "count"]}
class DynamicPromptInvocation(BaseInvocation):
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
type: Literal["dynamic_prompt"] = "dynamic_prompt"
prompt: str = Field(description="The prompt to parse with dynamicprompts")
max_prompts: int = Field(default=1, description="The number of prompts to generate")
combinatorial: bool = Field(
default=False, description="Whether to use the combinatorial generator"
)
def invoke(self, context: InvocationContext) -> PromptCollectionOutput:
if self.combinatorial:
generator = CombinatorialPromptGenerator()
prompts = generator.generate(self.prompt, max_prompts=self.max_prompts)
else:
generator = RandomPromptGenerator()
prompts = generator.generate(self.prompt, num_images=self.max_prompts)
return PromptCollectionOutput(prompt_collection=prompts, count=len(prompts))

View File

@ -1,22 +1,24 @@
from typing import Literal, Union
from typing import Literal, Optional
from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from .image import ImageOutput
class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image."""
#fmt: off
# fmt: off
type: Literal["restore_face"] = "restore_face"
# Inputs
image: Union[ImageField, None] = Field(description="The input image")
image: Optional[ImageField] = Field(description="The input image")
strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" )
#fmt: on
# fmt: on
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
@ -26,9 +28,7 @@ class RestoreFaceInvocation(BaseInvocation):
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=None,
@ -39,18 +39,17 @@ class RestoreFaceInvocation(BaseInvocation):
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@ -1,25 +1,25 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Union
from typing import Literal, Optional
from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType
from invokeai.app.models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput, build_image_output
from .image import ImageOutput
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
#fmt: off
# fmt: off
type: Literal["upscale"] = "upscale"
# Inputs
image: Union[ImageField, None] = Field(description="The input image", default=None)
image: Optional[ImageField] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
#fmt: on
# fmt: on
# Schema customisation
class Config(InvocationConfig):
@ -30,9 +30,7 @@ class UpscaleInvocation(BaseInvocation):
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
image = context.services.images.get_pil_image(self.image.image_name)
results = context.services.restoration.upscale_and_reconstruct(
image_list=[[image, 0]],
upscale=(self.level, self.strength),
@ -43,18 +41,17 @@ class UpscaleInvocation(BaseInvocation):
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
image_dto = context.services.images.create(
image=results[0][0],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@ -1,14 +0,0 @@
from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model."""
if model_manager.valid_model(model_name):
model = model_manager.get_model(model_name)
else:
model = model_manager.get_model()
print(
f"* Warning: '{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead."
)
return model

View File

@ -1,29 +1,90 @@
from enum import Enum
from typing import Optional
from typing import Optional, Tuple
from pydantic import BaseModel, Field
class ImageType(str, Enum):
RESULT = "results"
INTERMEDIATE = "intermediates"
UPLOAD = "uploads"
from invokeai.app.util.metaenum import MetaEnum
def is_image_type(obj):
try:
ImageType(obj)
except ValueError:
return False
return True
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image).
- INTERNAL: The resource was created by the application.
- EXTERNAL: The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
INTERNAL = "internal"
"""The resource was created by the application."""
EXTERNAL = "external"
"""The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
class InvalidOriginException(ValueError):
"""Raised when a provided value is not a valid ResourceOrigin.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid resource origin."):
super().__init__(message)
class ImageCategory(str, Enum, metaclass=MetaEnum):
"""The category of an image.
- GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose.
- MASK: The image is a mask image.
- CONTROL: The image is a ControlNet control image.
- USER: The image is a user-provide image.
- OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes.
"""
GENERAL = "general"
"""GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose."""
MASK = "mask"
"""MASK: The image is a mask image."""
CONTROL = "control"
"""CONTROL: The image is a ControlNet control image."""
USER = "user"
"""USER: The image is a user-provide image."""
OTHER = "other"
"""OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes."""
class InvalidImageCategoryException(ValueError):
"""Raised when a provided value is not a valid ImageCategory.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid image category."):
super().__init__(message)
class ImageField(BaseModel):
"""An image field used for passing image objects between invocations"""
image_type: ImageType = Field(
default=ImageType.RESULT, description="The type of the image"
)
image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config:
schema_extra = {"required": ["image_type", "image_name"]}
schema_extra = {"required": ["image_name"]}
class ColorField(BaseModel):
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")

View File

@ -0,0 +1,93 @@
from typing import Optional, Union, List
from pydantic import BaseModel, Extra, Field, StrictFloat, StrictInt, StrictStr
class ImageMetadata(BaseModel):
"""
Core generation metadata for an image/tensor generated in InvokeAI.
Also includes any metadata from the image's PNG tEXt chunks.
Generated by traversing the execution graph, collecting the parameters of the nearest ancestors
of a given node.
Full metadata may be accessed by querying for the session in the `graph_executions` table.
"""
class Config:
extra = Extra.allow
"""
This lets the ImageMetadata class accept arbitrary additional fields. The CoreMetadataService
won't add any fields that are not already defined, but other a different metadata service
implementation might.
"""
type: Optional[StrictStr] = Field(
default=None,
description="The type of the ancestor node of the image output node.",
)
"""The type of the ancestor node of the image output node."""
positive_conditioning: Optional[StrictStr] = Field(
default=None, description="The positive conditioning."
)
"""The positive conditioning"""
negative_conditioning: Optional[StrictStr] = Field(
default=None, description="The negative conditioning."
)
"""The negative conditioning"""
width: Optional[StrictInt] = Field(
default=None, description="Width of the image/latents in pixels."
)
"""Width of the image/latents in pixels"""
height: Optional[StrictInt] = Field(
default=None, description="Height of the image/latents in pixels."
)
"""Height of the image/latents in pixels"""
seed: Optional[StrictInt] = Field(
default=None, description="The seed used for noise generation."
)
"""The seed used for noise generation"""
# cfg_scale: Optional[StrictFloat] = Field(
# cfg_scale: Union[float, list[float]] = Field(
cfg_scale: Union[StrictFloat, List[StrictFloat]] = Field(
default=None, description="The classifier-free guidance scale."
)
"""The classifier-free guidance scale"""
steps: Optional[StrictInt] = Field(
default=None, description="The number of steps used for inference."
)
"""The number of steps used for inference"""
scheduler: Optional[StrictStr] = Field(
default=None, description="The scheduler used for inference."
)
"""The scheduler used for inference"""
model: Optional[StrictStr] = Field(
default=None, description="The model used for inference."
)
"""The model used for inference"""
strength: Optional[StrictFloat] = Field(
default=None,
description="The strength used for image-to-image/latents-to-latents.",
)
"""The strength used for image-to-image/latents-to-latents."""
latents: Optional[StrictStr] = Field(
default=None, description="The ID of the initial latents."
)
"""The ID of the initial latents"""
vae: Optional[StrictStr] = Field(
default=None, description="The VAE used for decoding."
)
"""The VAE used for decoding"""
unet: Optional[StrictStr] = Field(
default=None, description="The UNet used dor inference."
)
"""The UNet used dor inference"""
clip: Optional[StrictStr] = Field(
default=None, description="The CLIP Encoder used for conditioning."
)
"""The CLIP Encoder used for conditioning"""
extra: Optional[StrictStr] = Field(
default=None,
description="Uploaded image metadata, extracted from the PNG tEXt chunk.",
)
"""Uploaded image metadata, extracted from the PNG tEXt chunk."""

View File

@ -0,0 +1,253 @@
from abc import ABC, abstractmethod
import sqlite3
import threading
from typing import Optional, cast
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.image_record import (
ImageRecord,
deserialize_image_record,
)
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_images_for_board(
self,
board_id: str,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets images for a board."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
@abstractmethod
def get_image_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of images for a board."""
pass
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
_filename: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
def __init__(self, filename: str) -> None:
super().__init__()
self._filename = filename
self._conn = sqlite3.connect(filename, check_same_thread=False)
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor()
self._lock = threading.Lock()
try:
self._lock.acquire()
# Enable foreign keys
self._conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `board_images` junction table."""
# Create the `board_images` junction table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS board_images (
board_id TEXT NOT NULL,
image_name TEXT NOT NULL,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
-- enforce one-to-many relationship between boards and images using PK
-- (we can extend this to many-to-many later)
PRIMARY KEY (image_name),
FOREIGN KEY (board_id) REFERENCES boards (board_id) ON DELETE CASCADE,
FOREIGN KEY (image_name) REFERENCES images (image_name) ON DELETE CASCADE
);
"""
)
# Add index for board id
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id ON board_images (board_id);
"""
)
# Add index for board id, sorted by created_at
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_board_images_board_id_created_at ON board_images (board_id, created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_board_images_updated_at
AFTER UPDATE
ON board_images FOR EACH ROW
BEGIN
UPDATE board_images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE board_id = old.board_id AND image_name = old.image_name;
END;
"""
)
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT INTO board_images (board_id, image_name)
VALUES (?, ?)
ON CONFLICT (image_name) DO UPDATE SET board_id = ?;
""",
(board_id, image_name, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM board_images
WHERE board_id = ? AND image_name = ?;
""",
(board_id, image_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_images_for_board(
self,
board_id: str,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[ImageRecord]:
# TODO: this isn't paginated yet?
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = list(map(lambda r: deserialize_image_record(dict(r)), result))
self._cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, self._cursor.fetchone()[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return OffsetPaginatedResults(
items=images, offset=offset, limit=limit, total=count
)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT board_id
FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
result = self._cursor.fetchone()
if result is None:
return None
return cast(str, result[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_image_count_for_board(self, board_id: str) -> int:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT COUNT(*) FROM board_images WHERE board_id = ?;
""",
(board_id,),
)
count = cast(int, self._cursor.fetchone()[0])
return count
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()

View File

@ -0,0 +1,142 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import List, Union, Optional
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.board_record_storage import (
BoardRecord,
BoardRecordStorageBase,
)
from invokeai.app.services.image_record_storage import (
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.models.image_record import ImageDTO, image_record_to_dto
from invokeai.app.services.urls import UrlServiceBase
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_images_for_board(
self,
board_id: str,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets images for a board."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
class BoardImagesServiceDependencies:
"""Service dependencies for the BoardImagesService."""
board_image_records: BoardImageRecordStorageBase
board_records: BoardRecordStorageBase
image_records: ImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
def __init__(
self,
board_image_record_storage: BoardImageRecordStorageBase,
image_record_storage: ImageRecordStorageBase,
board_record_storage: BoardRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
):
self.board_image_records = board_image_record_storage
self.image_records = image_record_storage
self.board_records = board_record_storage
self.urls = url
self.logger = logger
class BoardImagesService(BoardImagesServiceABC):
_services: BoardImagesServiceDependencies
def __init__(self, services: BoardImagesServiceDependencies):
self._services = services
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
self._services.board_image_records.add_image_to_board(board_id, image_name)
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
self._services.board_image_records.remove_image_from_board(board_id, image_name)
def get_images_for_board(
self,
board_id: str,
) -> OffsetPaginatedResults[ImageDTO]:
image_records = self._services.board_image_records.get_images_for_board(
board_id
)
image_dtos = list(
map(
lambda r: image_record_to_dto(
r,
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
board_id,
),
image_records.items,
)
)
return OffsetPaginatedResults[ImageDTO](
items=image_dtos,
offset=image_records.offset,
limit=image_records.limit,
total=image_records.total,
)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
board_id = self._services.board_image_records.get_board_for_image(image_name)
return board_id
def board_record_to_dto(
board_record: BoardRecord, cover_image_name: Optional[str], image_count: int
) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.dict(exclude={'cover_image_name'}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@ -0,0 +1,329 @@
from abc import ABC, abstractmethod
from typing import Optional, cast
import sqlite3
import threading
from typing import Optional, Union
import uuid
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import (
BoardRecord,
deserialize_board_record,
)
from pydantic import BaseModel, Field, Extra
class BoardChanges(BaseModel, extra=Extra.forbid):
board_name: Optional[str] = Field(description="The board's new name.")
cover_image_name: Optional[str] = Field(
description="The name of the board's new cover image."
)
class BoardRecordNotFoundException(Exception):
"""Raised when an board record is not found."""
def __init__(self, message="Board record not found"):
super().__init__(message)
class BoardRecordSaveException(Exception):
"""Raised when an board record cannot be saved."""
def __init__(self, message="Board record not saved"):
super().__init__(message)
class BoardRecordDeleteException(Exception):
"""Raised when an board record cannot be deleted."""
def __init__(self, message="Board record not deleted"):
super().__init__(message)
class BoardRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the board record store."""
@abstractmethod
def delete(self, board_id: str) -> None:
"""Deletes a board record."""
pass
@abstractmethod
def save(
self,
board_name: str,
) -> BoardRecord:
"""Saves a board record."""
pass
@abstractmethod
def get(
self,
board_id: str,
) -> BoardRecord:
"""Gets a board record."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
"""Updates a board record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
"""Gets many board records."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardRecord]:
"""Gets all board records."""
pass
class SqliteBoardRecordStorage(BoardRecordStorageBase):
_filename: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
def __init__(self, filename: str) -> None:
super().__init__()
self._filename = filename
self._conn = sqlite3.connect(filename, check_same_thread=False)
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor()
self._lock = threading.Lock()
try:
self._lock.acquire()
# Enable foreign keys
self._conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `boards` table and `board_images` junction table."""
# Create the `boards` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS boards (
board_id TEXT NOT NULL PRIMARY KEY,
board_name TEXT NOT NULL,
cover_image_name TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME,
FOREIGN KEY (cover_image_name) REFERENCES images (image_name) ON DELETE SET NULL
);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_boards_created_at ON boards (created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_boards_updated_at
AFTER UPDATE
ON boards FOR EACH ROW
BEGIN
UPDATE boards SET updated_at = current_timestamp
WHERE board_id = old.board_id;
END;
"""
)
def delete(self, board_id: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
except Exception as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
board_name: str,
) -> BoardRecord:
try:
board_id = str(uuid.uuid4())
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO boards (board_id, board_name)
VALUES (?, ?);
""",
(board_id, board_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get(
self,
board_id: str,
) -> BoardRecord:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
result = cast(Union[sqlite3.Row, None], self._cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordNotFoundException from e
finally:
self._lock.release()
if result is None:
raise BoardRecordNotFoundException
return BoardRecord(**dict(result))
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
try:
self._lock.acquire()
# Change the name of a board
if changes.board_name is not None:
self._cursor.execute(
f"""--sql
UPDATE boards
SET board_name = ?
WHERE board_id = ?;
""",
(changes.board_name, board_id),
)
# Change the cover image of a board
if changes.cover_image_name is not None:
self._cursor.execute(
f"""--sql
UPDATE boards
SET cover_image_name = ?
WHERE board_id = ?;
""",
(changes.cover_image_name, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
finally:
self._lock.release()
return self.get(board_id)
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardRecord]:
try:
self._lock.acquire()
# Get all the boards
self._cursor.execute(
"""--sql
SELECT *
FROM boards
ORDER BY created_at DESC
LIMIT ? OFFSET ?;
""",
(limit, offset),
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = list(map(lambda r: deserialize_board_record(dict(r)), result))
# Get the total number of boards
self._cursor.execute(
"""--sql
SELECT COUNT(*)
FROM boards
WHERE 1=1;
"""
)
count = cast(int, self._cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](
items=boards, offset=offset, limit=limit, total=count
)
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
def get_all(
self,
) -> list[BoardRecord]:
try:
self._lock.acquire()
# Get all the boards
self._cursor.execute(
"""--sql
SELECT *
FROM boards
ORDER BY created_at DESC
"""
)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
boards = list(map(lambda r: deserialize_board_record(dict(r)), result))
return boards
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()

View File

@ -0,0 +1,185 @@
from abc import ABC, abstractmethod
from logging import Logger
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.board_images import board_record_to_dto
from invokeai.app.services.board_record_storage import (
BoardChanges,
BoardRecordStorageBase,
)
from invokeai.app.services.image_record_storage import (
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.urls import UrlServiceBase
class BoardServiceABC(ABC):
"""High-level service for board management."""
@abstractmethod
def create(
self,
board_name: str,
) -> BoardDTO:
"""Creates a board."""
pass
@abstractmethod
def get_dto(
self,
board_id: str,
) -> BoardDTO:
"""Gets a board."""
pass
@abstractmethod
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
"""Updates a board."""
pass
@abstractmethod
def delete(
self,
board_id: str,
) -> None:
"""Deletes a board."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[BoardDTO]:
"""Gets many boards."""
pass
@abstractmethod
def get_all(
self,
) -> list[BoardDTO]:
"""Gets all boards."""
pass
class BoardServiceDependencies:
"""Service dependencies for the BoardService."""
board_image_records: BoardImageRecordStorageBase
board_records: BoardRecordStorageBase
image_records: ImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
def __init__(
self,
board_image_record_storage: BoardImageRecordStorageBase,
image_record_storage: ImageRecordStorageBase,
board_record_storage: BoardRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
):
self.board_image_records = board_image_record_storage
self.image_records = image_record_storage
self.board_records = board_record_storage
self.urls = url
self.logger = logger
class BoardService(BoardServiceABC):
_services: BoardServiceDependencies
def __init__(self, services: BoardServiceDependencies):
self._services = services
def create(
self,
board_name: str,
) -> BoardDTO:
board_record = self._services.board_records.save(board_name)
return board_record_to_dto(board_record, None, 0)
def get_dto(self, board_id: str) -> BoardDTO:
board_record = self._services.board_records.get(board_id)
cover_image = self._services.image_records.get_most_recent_image_for_board(
board_record.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
board_id
)
return board_record_to_dto(board_record, cover_image_name, image_count)
def update(
self,
board_id: str,
changes: BoardChanges,
) -> BoardDTO:
board_record = self._services.board_records.update(board_id, changes)
cover_image = self._services.image_records.get_most_recent_image_for_board(
board_record.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
board_id
)
return board_record_to_dto(board_record, cover_image_name, image_count)
def delete(self, board_id: str) -> None:
self._services.board_records.delete(board_id)
def get_many(
self, offset: int = 0, limit: int = 10
) -> OffsetPaginatedResults[BoardDTO]:
board_records = self._services.board_records.get_many(offset, limit)
board_dtos = []
for r in board_records.items:
cover_image = self._services.image_records.get_most_recent_image_for_board(
r.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
r.board_id
)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return OffsetPaginatedResults[BoardDTO](
items=board_dtos, offset=offset, limit=limit, total=len(board_dtos)
)
def get_all(self) -> list[BoardDTO]:
board_records = self._services.board_records.get_all()
board_dtos = []
for r in board_records:
cover_image = self._services.image_records.get_most_recent_image_for_board(
r.board_id
)
if cover_image:
cover_image_name = cover_image.image_name
else:
cover_image_name = None
image_count = self._services.board_image_records.get_image_count_for_board(
r.board_id
)
board_dtos.append(board_record_to_dto(r, cover_image_name, image_count))
return board_dtos

View File

@ -0,0 +1,543 @@
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
'''Invokeai configuration system.
Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has a top-level key of "InvokeAI" and subheadings for each of the
categories returned by `invokeai --help`. The file looks like this:
[file: invokeai.yaml]
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
autoimport_dir: null
Models:
model: stable-diffusion-1.5
embeddings: true
Memory/Performance:
xformers_enabled: false
sequential_guidance: false
precision: float16
max_loaded_models: 4
always_use_cpu: false
free_gpu_mem: false
Features:
nsfw_checker: true
restore: true
esrgan: true
patchmatch: true
internet_available: true
log_tokenization: false
Web Server:
host: 127.0.0.1
port: 8081
allow_origins: []
allow_credentials: true
allow_methods:
- '*'
allow_headers:
- '*'
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing any
OmegaConf dictionary object initialization time:
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig()
conf.parse_args(conf=omegaconf)
InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv`
at initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv:
conf.parse_args(argv=['--xformers_enabled'])
It is also possible to set a value at initialization time. However, if
you call parse_args() it may be overwritten.
conf = InvokeAIAppConfig(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
# False
To avoid this, use `get_config()` to retrieve the application-wide
configuration object. This will retain any properties set at object
creation time:
conf = InvokeAIAppConfig.get_config(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
# True
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<setting>", as in:
export INVOKEAI_port=8080
Order of precedence (from highest):
1) initialization options
2) command line options
3) environment variable options
4) config file options
5) pydantic defaults
Typical usage at the top level file:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig.get_config()
conf.parse_args()
print(conf.nsfw_checker)
Typical usage in a backend module:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig.get_config()
print(conf.nsfw_checker)
Computed properties:
The InvokeAIAppConfig object has a series of properties that
resolve paths relative to the runtime root directory. They each return
a Path object:
root_path - path to InvokeAI root
output_path - path to default outputs directory
model_conf_path - path to models.yaml
conf - alias for the above
embedding_path - path to the embeddings directory
lora_path - path to the LoRA directory
In most cases, you will want to create a single InvokeAIAppConfig
object for the entire application. The InvokeAIAppConfig.get_config() function
does this:
config = InvokeAIAppConfig.get_config()
config.parse_args() # read values from the command line/config file
print(config.root)
# Subclassing
If you wish to create a similar class, please subclass the
`InvokeAISettings` class and define a Literal field named "type",
which is set to the desired top-level name. For example, to create a
"InvokeBatch" configuration, define like this:
class InvokeBatch(InvokeAISettings):
type: Literal["InvokeBatch"] = "InvokeBatch"
node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources')
cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources')
This will now read and write from the "InvokeBatch" section of the
config file, look for environment variables named INVOKEBATCH_*, and
accept the command-line arguments `--node_count` and `--cpu_count`. The
two configs are kept in separate sections of the config file:
# invokeai.yaml
InvokeBatch:
Resources:
node_count: 1
cpu_count: 8
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
...
'''
from __future__ import annotations
import argparse
import pydoc
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path('invokeai.yaml')
DB_FILE = Path('invokeai.db')
LEGACY_INIT_FILE = Path('invokeai.init')
class InvokeAISettings(BaseSettings):
'''
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
'''
initconf : ClassVar[DictConfig] = None
argparse_groups : ClassVar[Dict] = {}
def parse_args(self, argv: list=sys.argv[1:]):
parser = self.get_parser()
opt = parser.parse_args(argv)
for name in self.__fields__:
if name not in self._excluded():
setattr(self, name, getattr(opt,name))
def to_yaml(self)->str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)['type'])[0]
field_dict = dict({type:dict()})
for name,field in self.__fields__.items():
if name in cls._excluded():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self,name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value,Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
@classmethod
def add_parser_arguments(cls, parser):
if 'type' in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)['type'])[0]
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config,'env_prefix') else settings_stanza.upper()
initconf = cls.initconf.get(settings_stanza) \
if cls.initconf and settings_stanza in cls.initconf \
else OmegaConf.create()
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key,value in os.environ.items():
upcase_environ[key.upper()] = value
fields = cls.__fields__
cls.argparse_groups = {}
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category","Uncategorized")
env_name = env_prefix + '_' + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
field.default = upcase_environ[env_name.upper()]
cls.add_field_argument(parser, name, field)
field.default = current_default
@classmethod
def cmd_name(self, command_field: str='type')->str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return 'Uncategorized'
@classmethod
def get_parser(cls)->ArgumentParser:
parser = PagingArgumentParser(
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self)->List[str]:
return ['type','initconf']
class Config:
env_file_encoding = 'utf-8'
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override = None):
field_type = get_type_hints(cls).get(name)
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field_type) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
elif get_origin(field_type) == list:
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs='*',
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
help=field.field_info.description,
)
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
help=field.field_info.description,
)
def _find_root()->Path:
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif (
os.environ.get("VIRTUAL_ENV")
and (Path(os.environ.get("VIRTUAL_ENV"), "..", INIT_FILE).exists()
or
Path(os.environ.get("VIRTUAL_ENV"), "..", LEGACY_INIT_FILE).exists()
)
):
root = Path(os.environ.get("VIRTUAL_ENV"), "..").resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
return root
class InvokeAIAppConfig(InvokeAISettings):
'''
Generate images using Stable Diffusion. Use "invokeai" to launch
the command-line client (recommended for experts only), or
"invokeai-web" to launch the web server. Global options
can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by
setting environment variables INVOKEAI_<setting>.
'''
singleton_config: ClassVar[InvokeAIAppConfig] = None
singleton_init: ClassVar[Dict] = None
#fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server')
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server')
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server')
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server')
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
restore : bool = Field(default=True, description="Enable/disable face restoration code", category='Features')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport/main', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default='autoimport/lora', description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default='autoimport/embedding', description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
controlnet_dir : Path = Field(default='autoimport/controlnet', description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal[tuple(['plain','color','syslog','legacy'])] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="debug", description="Emit logging messages at this level or higher", category="Logging")
#fmt: on
def parse_args(self, argv: List[str]=None, conf: DictConfig = None, clobber=False):
'''
Update settings with contents of init file, environment, and
command-line settings.
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
:param clobber: ovewrite any initialization parameters passed during initialization
'''
# Set the runtime root directory. We parse command-line switches here
# in order to pick up the --root_dir option.
super().parse_args(argv)
if conf is None:
try:
conf = OmegaConf.load(self.root_dir / INIT_FILE)
except:
pass
InvokeAISettings.initconf = conf
# parse args again in order to pick up settings in configuration file
super().parse_args(argv)
if self.singleton_init and not clobber:
hints = get_type_hints(self.__class__)
for k in self.singleton_init:
setattr(self,k,parse_obj_as(hints[k],self.singleton_init[k]))
@classmethod
def get_config(cls,**kwargs)->InvokeAIAppConfig:
'''
This returns a singleton InvokeAIAppConfig configuration object.
'''
if cls.singleton_config is None \
or type(cls.singleton_config)!=cls \
or (kwargs and cls.singleton_init != kwargs):
cls.singleton_config = cls(**kwargs)
cls.singleton_init = kwargs
return cls.singleton_config
@property
def root_path(self)->Path:
'''
Path to the runtime root directory
'''
if self.root:
return Path(self.root).expanduser()
else:
return self.find_root()
@property
def root_dir(self)->Path:
'''
Alias for above.
'''
return self.root_path
def _resolve(self,partial_path:Path)->Path:
return (self.root_path / partial_path).resolve()
@property
def init_file_path(self)->Path:
'''
Path to invokeai.yaml
'''
return self._resolve(INIT_FILE)
@property
def output_path(self)->Path:
'''
Path to defaults outputs directory.
'''
return self._resolve(self.outdir)
@property
def db_path(self)->Path:
'''
Path to the invokeai.db file.
'''
return self._resolve(self.db_dir) / DB_FILE
@property
def model_conf_path(self)->Path:
'''
Path to models configuration file.
'''
return self._resolve(self.conf_path)
@property
def legacy_conf_path(self)->Path:
'''
Path to directory of legacy configuration files (e.g. v1-inference.yaml)
'''
return self._resolve(self.legacy_conf_dir)
@property
def models_path(self)->Path:
'''
Path to the models directory
'''
return self._resolve(self.models_dir)
@property
def autoconvert_path(self)->Path:
'''
Path to the directory containing models to be imported automatically at startup.
'''
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
# the following methods support legacy calls leftover from the Globals era
@property
def full_precision(self)->bool:
"""Return true if precision set to float32"""
return self.precision=='float32'
@property
def disable_xformers(self)->bool:
"""Return true if xformers_enabled is false"""
return not self.xformers_enabled
@property
def try_patchmatch(self)->bool:
"""Return true if patchmatch true"""
return self.patchmatch
@staticmethod
def find_root()->Path:
'''
Choose the runtime root directory when not specified on command line or
init file.
'''
return _find_root()
class PagingArgumentParser(argparse.ArgumentParser):
'''
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
'''
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def get_invokeai_config(**kwargs)->InvokeAIAppConfig:
'''
Legacy function which returns InvokeAIAppConfig.get_config()
'''
return InvokeAIAppConfig.get_config(**kwargs)

View File

@ -1,4 +1,6 @@
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.latent import LatentsToImageInvocation, TextToLatentsInvocation
from ..invocations.noise import NoiseInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
@ -16,38 +18,45 @@ def create_text_to_image() -> LibraryGraph:
nodes={
'width': ParamIntInvocation(id='width', a=512),
'height': ParamIntInvocation(id='height', a=512),
'seed': ParamIntInvocation(id='seed', a=-1),
'3': NoiseInvocation(id='3'),
'4': TextToLatentsInvocation(id='4'),
'5': LatentsToImageInvocation(id='5')
'4': CompelInvocation(id='4'),
'5': CompelInvocation(id='5'),
'6': TextToLatentsInvocation(id='6'),
'7': LatentsToImageInvocation(id='7'),
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='4', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='4', field='height')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='4', field='noise')),
Edge(source=EdgeConnection(node_id='4', field='latents'), destination=EdgeConnection(node_id='5', field='latents')),
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='6', field='noise')),
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')),
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')),
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')),
]
),
exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='prompt'),
ExposedNodeInput(node_path='4', field='prompt', alias='positive_prompt'),
ExposedNodeInput(node_path='5', field='prompt', alias='negative_prompt'),
ExposedNodeInput(node_path='width', field='a', alias='width'),
ExposedNodeInput(node_path='height', field='a', alias='height')
ExposedNodeInput(node_path='height', field='a', alias='height'),
ExposedNodeInput(node_path='seed', field='a', alias='seed'),
],
exposed_outputs=[
ExposedNodeOutput(node_path='5', field='image', alias='image')
ExposedNodeOutput(node_path='7', field='image', alias='image')
])
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
# TODO: Uncomment this when we are ready to fix this up to prevent breaking changes
graphs: list[LibraryGraph] = list()
text_to_image = graph_library.get(default_text_to_image_graph_id)
# text_to_image = graph_library.get(default_text_to_image_graph_id)
# TODO: Check if the graph is the same as the default one, and if not, update it
#if text_to_image is None:
# # TODO: Check if the graph is the same as the default one, and if not, update it
# #if text_to_image is None:
text_to_image = create_text_to_image()
graph_library.set(text_to_image)

View File

@ -1,9 +1,9 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any
from invokeai.app.api.models.images import ProgressImage
from typing import Any, Optional
from invokeai.app.models.image import ProgressImage
from invokeai.app.util.misc import get_timestamp
from invokeai.app.services.model_manager_service import BaseModelType, ModelType, SubModelType, ModelInfo
class EventServiceBase:
session_event: str = "session_event"
@ -27,7 +27,7 @@ class EventServiceBase:
graph_execution_state_id: str,
node: dict,
source_node_id: str,
progress_image: ProgressImage | None,
progress_image: Optional[ProgressImage],
step: int,
total_steps: int,
) -> None:
@ -101,3 +101,53 @@ class EventServiceBase:
graph_execution_state_id=graph_execution_state_id,
),
)
def emit_model_load_started (
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
) -> None:
"""Emitted when a model is requested"""
self.__emit_session_event(
event_name="model_load_started",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
),
)
def emit_model_load_completed(
self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
model_info: ModelInfo,
) -> None:
"""Emitted when a model is correctly loaded (returns model info)"""
self.__emit_session_event(
event_name="model_load_completed",
payload=dict(
graph_execution_state_id=graph_execution_state_id,
node=node,
source_node_id=source_node_id,
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=submodel,
model_info=model_info,
),
)

View File

@ -3,7 +3,6 @@
import copy
import itertools
import uuid
from types import NoneType
from typing import (
Annotated,
Any,
@ -26,6 +25,8 @@ from ..invocations.baseinvocation import (
InvocationContext,
)
# in 3.10 this would be "from types import NoneType"
NoneType = type(None)
class EdgeConnection(BaseModel):
node_id: str = Field(description="The id of the node for this edge connection")
@ -60,6 +61,31 @@ def get_input_field(node: BaseInvocation, field: str) -> Any:
node_input_field = node_inputs.get(field) or None
return node_input_field
def is_union_subtype(t1, t2):
t1_args = get_args(t1)
t2_args = get_args(t2)
if not t1_args:
# t1 is a single type
return t1 in t2_args
else:
# t1 is a Union, check that all of its types are in t2_args
return all(arg in t2_args for arg in t1_args)
def is_list_or_contains_list(t):
t_args = get_args(t)
# If the type is a List
if get_origin(t) is list:
return True
# If the type is a Union
elif t_args:
# Check if any of the types in the Union is a List
for arg in t_args:
if get_origin(arg) is list:
return True
return False
def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
if not from_type:
@ -85,7 +111,8 @@ def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
if to_type in get_args(from_type):
return True
if not issubclass(from_type, to_type):
# if not issubclass(from_type, to_type):
if not is_union_subtype(from_type, to_type):
return False
else:
return False
@ -135,6 +162,7 @@ class GraphInvocationOutput(BaseInvocationOutput):
# TODO: Fill this out and move to invocations
class GraphInvocation(BaseInvocation):
"""Execute a graph"""
type: Literal["graph"] = "graph"
# TODO: figure out how to create a default here
@ -162,6 +190,7 @@ class IterateInvocationOutput(BaseInvocationOutput):
# TODO: Fill this out and move to invocations
class IterateInvocation(BaseInvocation):
"""Iterates over a list of items"""
type: Literal["iterate"] = "iterate"
collection: list[Any] = Field(
@ -361,7 +390,7 @@ class Graph(BaseModel):
from_node = self.get_node(edge.source.node_id)
to_node = self.get_node(edge.destination.node_id)
except NodeNotFoundError:
raise InvalidEdgeError("One or both nodes don't exist")
raise InvalidEdgeError("One or both nodes don't exist: {edge.source.node_id} -> {edge.destination.node_id}")
# Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
@ -372,41 +401,41 @@ class Graph(BaseModel):
g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g):
raise InvalidEdgeError(f'Edge creates a cycle in the graph')
raise InvalidEdgeError(f'Edge creates a cycle in the graph: {edge.source.node_id} -> {edge.destination.node_id}')
# Validate that the field types are compatible
if not are_connections_compatible(
from_node, edge.source.field, to_node, edge.destination.field
):
raise InvalidEdgeError(f'Fields are incompatible')
raise InvalidEdgeError(f'Fields are incompatible: cannot connect {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid(
edge.destination.node_id, new_input=edge.source
):
raise InvalidEdgeError(f'Iterator input type does not match iterator output type')
raise InvalidEdgeError(f'Iterator input type does not match iterator output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid(
edge.source.node_id, new_output=edge.destination
):
raise InvalidEdgeError(f'Iterator output type does not match iterator input type')
raise InvalidEdgeError(f'Iterator output type does not match iterator input type:, {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid(
edge.destination.node_id, new_input=edge.source
):
raise InvalidEdgeError(f'Collector output type does not match collector input type')
raise InvalidEdgeError(f'Collector output type does not match collector input type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
# Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid(
edge.source.node_id, new_output=edge.destination
):
raise InvalidEdgeError(f'Collector input type does not match collector output type')
raise InvalidEdgeError(f'Collector input type does not match collector output type: {edge.source.node_id}.{edge.source.field} to {edge.destination.node_id}.{edge.destination.field}')
def has_node(self, node_path: str) -> bool:
@ -692,7 +721,11 @@ class Graph(BaseModel):
input_root_type = next(t[0] for t in type_degrees if t[1] == 0) # type: ignore
# Verify that all outputs are lists
if not all((get_origin(f) == list for f in output_fields)):
# if not all((get_origin(f) == list for f in output_fields)):
# return False
# Verify that all outputs are lists
if not all(is_list_or_contains_list(f) for f in output_fields):
return False
# Verify that all outputs match the input type (are a base class or the same class)
@ -711,6 +744,13 @@ class Graph(BaseModel):
g.add_edges_from(set([(e.source.node_id, e.destination.node_id) for e in self.edges]))
return g
def nx_graph_with_data(self) -> nx.DiGraph:
"""Returns a NetworkX DiGraph representing the data and layout of this graph"""
g = nx.DiGraph()
g.add_nodes_from([n for n in self.nodes.items()])
g.add_edges_from(set([(e.source.node_id, e.destination.node_id) for e in self.edges]))
return g
def nx_graph_flat(
self, nx_graph: Optional[nx.DiGraph] = None, prefix: Optional[str] = None
) -> nx.DiGraph:
@ -805,7 +845,7 @@ class GraphExecutionState(BaseModel):
]
}
def next(self) -> BaseInvocation | None:
def next(self) -> Optional[BaseInvocation]:
"""Gets the next node ready to execute."""
# TODO: enable multiple nodes to execute simultaneously by tracking currently executing nodes
@ -816,11 +856,9 @@ class GraphExecutionState(BaseModel):
if next_node is None:
prepared_id = self._prepare()
# TODO: prepare multiple nodes at once?
# while prepared_id is not None and not isinstance(self.graph.nodes[prepared_id], IterateInvocation):
# prepared_id = self._prepare()
if prepared_id is not None:
# Prepare as many nodes as we can
while prepared_id is not None:
prepared_id = self._prepare()
next_node = self._get_next_node()
# Get values from edges
@ -967,14 +1005,30 @@ class GraphExecutionState(BaseModel):
# Get flattened source graph
g = self.graph.nx_graph_flat()
# Find next unprepared node where all source nodes are executed
# Find next node that:
# - was not already prepared
# - is not an iterate node whose inputs have not been executed
# - does not have an unexecuted iterate ancestor
sorted_nodes = nx.topological_sort(g)
next_node_id = next(
(
n
for n in sorted_nodes
# exclude nodes that have already been prepared
if n not in self.source_prepared_mapping
and all((e[0] in self.executed for e in g.in_edges(n)))
# exclude iterate nodes whose inputs have not been executed
and not (
isinstance(self.graph.get_node(n), IterateInvocation) # `n` is an iterate node...
and not all((e[0] in self.executed for e in g.in_edges(n))) # ...that has unexecuted inputs
)
# exclude nodes who have unexecuted iterate ancestors
and not any(
(
isinstance(self.graph.get_node(a), IterateInvocation) # `a` is an iterate ancestor of `n`...
and a not in self.executed # ...that is not executed
for a in nx.ancestors(g, n) # for all ancestors `a` of node `n`
)
)
),
None,
)
@ -1071,9 +1125,22 @@ class GraphExecutionState(BaseModel):
)
def _get_next_node(self) -> Optional[BaseInvocation]:
"""Gets the deepest node that is ready to be executed"""
g = self.execution_graph.nx_graph()
sorted_nodes = nx.topological_sort(g)
next_node = next((n for n in sorted_nodes if n not in self.executed), None)
# Depth-first search with pre-order traversal is a depth-first topological sort
sorted_nodes = nx.dfs_preorder_nodes(g)
next_node = next(
(
n
for n in sorted_nodes
if n not in self.executed # the node must not already be executed...
and all((e[0] in self.executed for e in g.in_edges(n))) # ...and all its inputs must be executed
),
None,
)
if next_node is None:
return None

View File

@ -0,0 +1,189 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict, Optional, Union
from PIL.Image import Image as PILImageType
from PIL import Image, PngImagePlugin
from send2trash import send2trash
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
# TODO: Should these excpetions subclass existing python exceptions?
class ImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message="Image file not found"):
super().__init__(message)
class ImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message="Image file not saved"):
super().__init__(message)
class ImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message="Image file not deleted"):
super().__init__(message)
class ImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, image_name: str) -> PILImageType:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets the internal path to an image or thumbnail."""
pass
# TODO: We need to validate paths before starlette makes the FileResponse, else we get a
# 500 internal server error. I don't like having this method on the service.
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates the path given for an image or thumbnail."""
pass
@abstractmethod
def save(
self,
image: PILImageType,
image_name: str,
metadata: Optional[ImageMetadata] = None,
thumbnail_size: int = 256,
) -> None:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""
__output_folder: Path
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[Path, PILImageType]
__max_cache_size: int
def __init__(self, output_folder: Union[str, Path]):
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder: Path = (
output_folder if isinstance(output_folder, Path) else Path(output_folder)
)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
# Validate required output folders at launch
self.__validate_storage_folders()
def get(self, image_name: str) -> PILImageType:
try:
image_path = self.get_path(image_name)
cache_item = self.__get_cache(image_path)
if cache_item:
return cache_item
image = Image.open(image_path)
self.__set_cache(image_path, image)
return image
except FileNotFoundError as e:
raise ImageFileNotFoundException from e
def save(
self,
image: PILImageType,
image_name: str,
metadata: Optional[ImageMetadata] = None,
thumbnail_size: int = 256,
) -> None:
try:
self.__validate_storage_folders()
image_path = self.get_path(image_name)
if metadata is not None:
pnginfo = PngImagePlugin.PngInfo()
pnginfo.add_text("invokeai", metadata.json())
image.save(image_path, "PNG", pnginfo=pnginfo)
else:
image.save(image_path, "PNG")
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(thumbnail_name, thumbnail=True)
thumbnail_image = make_thumbnail(image, thumbnail_size)
thumbnail_image.save(thumbnail_path)
self.__set_cache(image_path, image)
self.__set_cache(thumbnail_path, thumbnail_image)
except Exception as e:
raise ImageFileSaveException from e
def delete(self, image_name: str) -> None:
try:
image_path = self.get_path(image_name)
if image_path.exists():
send2trash(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(thumbnail_name, True)
if thumbnail_path.exists():
send2trash(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
except Exception as e:
raise ImageFileDeleteException from e
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(self, image_name: str, thumbnail: bool = False) -> Path:
path = self.__output_folder / image_name
if thumbnail:
thumbnail_name = get_thumbnail_name(image_name)
path = self.__thumbnails_folder / thumbnail_name
return path
def validate_path(self, path: Union[str, Path]) -> bool:
"""Validates the path given for an image or thumbnail."""
path = path if isinstance(path, Path) else Path(path)
return path.exists()
def __validate_storage_folders(self) -> None:
"""Checks if the required output folders exist and create them if they don't"""
folders: list[Path] = [self.__output_folder, self.__thumbnails_folder]
for folder in folders:
folder.mkdir(parents=True, exist_ok=True)
def __get_cache(self, image_name: Path) -> Optional[PILImageType]:
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: Path, image: PILImageType):
if not image_name in self.__cache:
self.__cache[image_name] = image
self.__cache_ids.put(
image_name
) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size:
cache_id = self.__cache_ids.get()
if cache_id in self.__cache:
del self.__cache[cache_id]

View File

@ -0,0 +1,498 @@
from abc import ABC, abstractmethod
from datetime import datetime
from typing import Generic, Optional, TypeVar, cast
import sqlite3
import threading
from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.models.image import (
ImageCategory,
ResourceOrigin,
)
from invokeai.app.services.models.image_record import (
ImageRecord,
ImageRecordChanges,
deserialize_image_record,
)
T = TypeVar("T", bound=BaseModel)
class OffsetPaginatedResults(GenericModel, Generic[T]):
"""Offset-paginated results"""
# fmt: off
items: list[T] = Field(description="Items")
offset: int = Field(description="Offset from which to retrieve items")
limit: int = Field(description="Limit of items to get")
total: int = Field(description="Total number of items in result")
# fmt: on
# TODO: Should these excpetions subclass existing python exceptions?
class ImageRecordNotFoundException(Exception):
"""Raised when an image record is not found."""
def __init__(self, message="Image record not found"):
super().__init__(message)
class ImageRecordSaveException(Exception):
"""Raised when an image record cannot be saved."""
def __init__(self, message="Image record not saved"):
super().__init__(message)
class ImageRecordDeleteException(Exception):
"""Raised when an image record cannot be deleted."""
def __init__(self, message="Image record not deleted"):
super().__init__(message)
class ImageRecordStorageBase(ABC):
"""Low-level service responsible for interfacing with the image record store."""
# TODO: Implement an `update()` method
@abstractmethod
def get(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> None:
"""Updates an image record."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
"""Gets a page of image records."""
pass
# TODO: The database has a nullable `deleted_at` column, currently unused.
# Should we implement soft deletes? Would need coordination with ImageFileStorage.
@abstractmethod
def delete(self, image_name: str) -> None:
"""Deletes an image record."""
pass
@abstractmethod
def delete_many(self, image_names: list[str]) -> None:
"""Deletes many image records."""
pass
@abstractmethod
def save(
self,
image_name: str,
image_origin: ResourceOrigin,
image_category: ImageCategory,
width: int,
height: int,
session_id: Optional[str],
node_id: Optional[str],
metadata: Optional[ImageMetadata],
is_intermediate: bool = False,
) -> datetime:
"""Saves an image record."""
pass
@abstractmethod
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
"""Gets the most recent image for a board."""
pass
class SqliteImageRecordStorage(ImageRecordStorageBase):
_filename: str
_conn: sqlite3.Connection
_cursor: sqlite3.Cursor
_lock: threading.Lock
def __init__(self, filename: str) -> None:
super().__init__()
self._filename = filename
self._conn = sqlite3.connect(filename, check_same_thread=False)
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor()
self._lock = threading.Lock()
try:
self._lock.acquire()
# Enable foreign keys
self._conn.execute("PRAGMA foreign_keys = ON;")
self._create_tables()
self._conn.commit()
finally:
self._lock.release()
def _create_tables(self) -> None:
"""Creates the `images` table."""
# Create the `images` table.
self._cursor.execute(
"""--sql
CREATE TABLE IF NOT EXISTS images (
image_name TEXT NOT NULL PRIMARY KEY,
-- This is an enum in python, unrestricted string here for flexibility
image_origin TEXT NOT NULL,
-- This is an enum in python, unrestricted string here for flexibility
image_category TEXT NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
session_id TEXT,
node_id TEXT,
metadata TEXT,
is_intermediate BOOLEAN DEFAULT FALSE,
board_id TEXT,
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Soft delete, currently unused
deleted_at DATETIME
);
"""
)
# Create the `images` table indices.
self._cursor.execute(
"""--sql
CREATE UNIQUE INDEX IF NOT EXISTS idx_images_image_name ON images(image_name);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_origin ON images(image_origin);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_image_category ON images(image_category);
"""
)
self._cursor.execute(
"""--sql
CREATE INDEX IF NOT EXISTS idx_images_created_at ON images(created_at);
"""
)
# Add trigger for `updated_at`.
self._cursor.execute(
"""--sql
CREATE TRIGGER IF NOT EXISTS tg_images_updated_at
AFTER UPDATE
ON images FOR EACH ROW
BEGIN
UPDATE images SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE image_name = old.image_name;
END;
"""
)
def get(self, image_name: str) -> Optional[ImageRecord]:
try:
self._lock.acquire()
self._cursor.execute(
f"""--sql
SELECT * FROM images
WHERE image_name = ?;
""",
(image_name,),
)
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordNotFoundException from e
finally:
self._lock.release()
if not result:
raise ImageRecordNotFoundException
return deserialize_image_record(dict(result))
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> None:
try:
self._lock.acquire()
# Change the category of the image
if changes.image_category is not None:
self._cursor.execute(
f"""--sql
UPDATE images
SET image_category = ?
WHERE image_name = ?;
""",
(changes.image_category, image_name),
)
# Change the session associated with the image
if changes.session_id is not None:
self._cursor.execute(
f"""--sql
UPDATE images
SET session_id = ?
WHERE image_name = ?;
""",
(changes.session_id, image_name),
)
# Change the image's `is_intermediate`` flag
if changes.is_intermediate is not None:
self._cursor.execute(
f"""--sql
UPDATE images
SET is_intermediate = ?
WHERE image_name = ?;
""",
(changes.is_intermediate, image_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordSaveException from e
finally:
self._lock.release()
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
try:
self._lock.acquire()
# Manually build two queries - one for the count, one for the records
count_query = """--sql
SELECT COUNT(*)
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
images_query = """--sql
SELECT images.*
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
query_conditions = ""
query_params = []
if image_origin is not None:
query_conditions += """--sql
AND images.image_origin = ?
"""
query_params.append(image_origin.value)
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = list(map(lambda c: c.value, set(categories)))
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
query_conditions += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Unpack the included categories into the query params
for c in category_strings:
query_params.append(c)
if is_intermediate is not None:
query_conditions += """--sql
AND images.is_intermediate = ?
"""
query_params.append(is_intermediate)
if board_id is not None:
query_conditions += """--sql
AND board_images.board_id = ?
"""
query_params.append(board_id)
query_pagination = """--sql
ORDER BY images.created_at DESC LIMIT ? OFFSET ?
"""
# Final images query with pagination
images_query += query_conditions + query_pagination + ";"
# Add all the parameters
images_params = query_params.copy()
images_params.append(limit)
images_params.append(offset)
# Build the list of images, deserializing each row
self._cursor.execute(images_query, images_params)
result = cast(list[sqlite3.Row], self._cursor.fetchall())
images = list(map(lambda r: deserialize_image_record(dict(r)), result))
# Set up and execute the count query, without pagination
count_query += query_conditions + ";"
count_params = query_params.copy()
self._cursor.execute(count_query, count_params)
count = cast(int, self._cursor.fetchone()[0])
except sqlite3.Error as e:
self._conn.rollback()
raise e
finally:
self._lock.release()
return OffsetPaginatedResults(
items=images, offset=offset, limit=limit, total=count
)
def delete(self, image_name: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM images
WHERE image_name = ?;
""",
(image_name,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def delete_many(self, image_names: list[str]) -> None:
try:
placeholders = ",".join("?" for _ in image_names)
self._lock.acquire()
# Construct the SQLite query with the placeholders
query = f"DELETE FROM images WHERE image_name IN ({placeholders})"
# Execute the query with the list of IDs as parameters
self._cursor.execute(query, image_names)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
finally:
self._lock.release()
def save(
self,
image_name: str,
image_origin: ResourceOrigin,
image_category: ImageCategory,
session_id: Optional[str],
width: int,
height: int,
node_id: Optional[str],
metadata: Optional[ImageMetadata],
is_intermediate: bool = False,
) -> datetime:
try:
metadata_json = (
None if metadata is None else metadata.json(exclude_none=True)
)
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO images (
image_name,
image_origin,
image_category,
width,
height,
node_id,
session_id,
metadata,
is_intermediate
)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);
""",
(
image_name,
image_origin.value,
image_category.value,
width,
height,
node_id,
session_id,
metadata_json,
is_intermediate,
),
)
self._conn.commit()
self._cursor.execute(
"""--sql
SELECT created_at
FROM images
WHERE image_name = ?;
""",
(image_name,),
)
created_at = datetime.fromisoformat(self._cursor.fetchone()[0])
return created_at
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordSaveException from e
finally:
self._lock.release()
def get_most_recent_image_for_board(
self, board_id: str
) -> Optional[ImageRecord]:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT images.*
FROM images
JOIN board_images ON images.image_name = board_images.image_name
WHERE board_images.board_id = ?
ORDER BY images.created_at DESC
LIMIT 1;
""",
(board_id,),
)
result = cast(Optional[sqlite3.Row], self._cursor.fetchone())
finally:
self._lock.release()
if result is None:
return None
return deserialize_image_record(dict(result))

View File

@ -1,238 +0,0 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os
from glob import glob
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict, List, Tuple
from PIL.Image import Image
import PIL.Image as PILImage
from invokeai.app.api.models.images import ImageResponse, ImageResponseMetadata
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import (
InvokeAIMetadata,
MetadataServiceBase,
build_invokeai_metadata_pnginfo,
)
from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.util.misc import get_timestamp
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class ImageStorageBase(ABC):
"""Responsible for storing and retrieving images."""
@abstractmethod
def get(self, image_type: ImageType, image_name: str) -> Image:
"""Retrieves an image as PIL Image."""
pass
@abstractmethod
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
"""Gets a paginated list of images."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the path to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image path."""
pass
@abstractmethod
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> Tuple[str, str, int]:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image path, thumbnail path, and created timestamp."""
pass
@abstractmethod
def delete(self, image_type: ImageType, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass
def create_name(self, context_id: str, node_id: str) -> str:
"""Creates a unique contextual image filename."""
return f"{context_id}_{node_id}_{str(get_timestamp())}.png"
class DiskImageStorage(ImageStorageBase):
"""Stores images on disk"""
__output_folder: str
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, Image]
__max_cache_size: int
__metadata_service: MetadataServiceBase
def __init__(self, output_folder: str, metadata_service: MetadataServiceBase):
self.__output_folder = output_folder
self.__cache = dict()
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__metadata_service = metadata_service
Path(output_folder).mkdir(parents=True, exist_ok=True)
# TODO: don't hard-code. get/save/delete should maybe take subpath?
for image_type in ImageType:
Path(os.path.join(output_folder, image_type)).mkdir(
parents=True, exist_ok=True
)
Path(os.path.join(output_folder, image_type, "thumbnails")).mkdir(
parents=True, exist_ok=True
)
def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]:
dir_path = os.path.join(self.__output_folder, image_type)
image_paths = glob(f"{dir_path}/*.png")
count = len(image_paths)
sorted_image_paths = sorted(
glob(f"{dir_path}/*.png"), key=os.path.getctime, reverse=True
)
page_of_image_paths = sorted_image_paths[
page * per_page : (page + 1) * per_page
]
page_of_images: List[ImageResponse] = []
for path in page_of_image_paths:
filename = os.path.basename(path)
img = PILImage.open(path)
invokeai_metadata = self.__metadata_service.get_metadata(img)
page_of_images.append(
ImageResponse(
image_type=image_type.value,
image_name=filename,
# TODO: DiskImageStorage should not be building URLs...?
image_url=f"api/v1/images/{image_type.value}/{filename}",
thumbnail_url=f"api/v1/images/{image_type.value}/thumbnails/{os.path.splitext(filename)[0]}.webp",
# TODO: Creation of this object should happen elsewhere (?), just making it fit here so it works
metadata=ImageResponseMetadata(
created=int(os.path.getctime(path)),
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
)
page_count_trunc = int(count / per_page)
page_count_mod = count % per_page
page_count = page_count_trunc if page_count_mod == 0 else page_count_trunc + 1
return PaginatedResults[ImageResponse](
items=page_of_images,
page=page,
pages=page_count,
per_page=per_page,
total=count,
)
def get(self, image_type: ImageType, image_name: str) -> Image:
image_path = self.get_path(image_type, image_name)
cache_item = self.__get_cache(image_path)
if cache_item:
return cache_item
image = PILImage.open(image_path)
self.__set_cache(image_path, image)
return image
# TODO: make this a bit more flexible for e.g. cloud storage
def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
if is_thumbnail:
path = os.path.join(
self.__output_folder, image_type, "thumbnails", basename
)
else:
path = os.path.join(self.__output_folder, image_type, basename)
return path
def validate_path(self, path: str) -> bool:
try:
os.stat(path)
return True
except Exception:
return False
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> Tuple[str, str, int]:
image_path = self.get_path(image_type, image_name)
# TODO: Reading the image and then saving it strips the metadata...
if metadata:
pnginfo = build_invokeai_metadata_pnginfo(metadata=metadata)
image.save(image_path, "PNG", pnginfo=pnginfo)
else:
image.save(image_path) # this saved image has an empty info
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, is_thumbnail=True)
thumbnail_image = make_thumbnail(image)
thumbnail_image.save(thumbnail_path)
self.__set_cache(image_path, image)
self.__set_cache(thumbnail_path, thumbnail_image)
return (image_path, thumbnail_path, int(os.path.getctime(image_path)))
def delete(self, image_type: ImageType, image_name: str) -> None:
image_path = self.get_path(image_type, image_name)
thumbnail_path = self.get_path(image_type, image_name, True)
if os.path.exists(image_path):
os.remove(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
if os.path.exists(thumbnail_path):
os.remove(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
def __get_cache(self, image_name: str) -> Image:
return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: str, image: Image):
if not image_name in self.__cache:
self.__cache[image_name] = image
self.__cache_ids.put(
image_name
) # TODO: this should refresh position for LRU cache
if len(self.__cache) > self.__max_cache_size:
cache_id = self.__cache_ids.get()
del self.__cache[cache_id]

View File

@ -0,0 +1,381 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import Optional, TYPE_CHECKING, Union
from PIL.Image import Image as PILImageType
from invokeai.app.models.image import (
ImageCategory,
ResourceOrigin,
InvalidImageCategoryException,
InvalidOriginException,
)
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.image_record_storage import (
ImageRecordDeleteException,
ImageRecordNotFoundException,
ImageRecordSaveException,
ImageRecordStorageBase,
OffsetPaginatedResults,
)
from invokeai.app.services.models.image_record import (
ImageRecord,
ImageDTO,
ImageRecordChanges,
image_record_to_dto,
)
from invokeai.app.services.image_file_storage import (
ImageFileDeleteException,
ImageFileNotFoundException,
ImageFileSaveException,
ImageFileStorageBase,
)
from invokeai.app.services.item_storage import ItemStorageABC, PaginatedResults
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.app.services.resource_name import NameServiceBase
from invokeai.app.services.urls import UrlServiceBase
if TYPE_CHECKING:
from invokeai.app.services.graph import GraphExecutionState
class ImageServiceABC(ABC):
"""High-level service for image management."""
@abstractmethod
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
is_intermediate: bool = False,
) -> ImageDTO:
"""Creates an image, storing the file and its metadata."""
pass
@abstractmethod
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
"""Updates an image."""
pass
@abstractmethod
def get_pil_image(self, image_name: str) -> PILImageType:
"""Gets an image as a PIL image."""
pass
@abstractmethod
def get_record(self, image_name: str) -> ImageRecord:
"""Gets an image record."""
pass
@abstractmethod
def get_dto(self, image_name: str) -> ImageDTO:
"""Gets an image DTO."""
pass
@abstractmethod
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's path."""
pass
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image's path."""
pass
@abstractmethod
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
"""Gets an image's or thumbnail's URL."""
pass
@abstractmethod
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
pass
@abstractmethod
def delete(self, image_name: str):
"""Deletes an image."""
pass
@abstractmethod
def delete_images_on_board(self, board_id: str):
"""Deletes all images on a board."""
pass
class ImageServiceDependencies:
"""Service dependencies for the ImageService."""
image_records: ImageRecordStorageBase
image_files: ImageFileStorageBase
board_image_records: BoardImageRecordStorageBase
metadata: MetadataServiceBase
urls: UrlServiceBase
logger: Logger
names: NameServiceBase
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
def __init__(
self,
image_record_storage: ImageRecordStorageBase,
image_file_storage: ImageFileStorageBase,
board_image_record_storage: BoardImageRecordStorageBase,
metadata: MetadataServiceBase,
url: UrlServiceBase,
logger: Logger,
names: NameServiceBase,
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
):
self.image_records = image_record_storage
self.image_files = image_file_storage
self.board_image_records = board_image_record_storage
self.metadata = metadata
self.urls = url
self.logger = logger
self.names = names
self.graph_execution_manager = graph_execution_manager
class ImageService(ImageServiceABC):
_services: ImageServiceDependencies
def __init__(self, services: ImageServiceDependencies):
self._services = services
def create(
self,
image: PILImageType,
image_origin: ResourceOrigin,
image_category: ImageCategory,
node_id: Optional[str] = None,
session_id: Optional[str] = None,
is_intermediate: bool = False,
) -> ImageDTO:
if image_origin not in ResourceOrigin:
raise InvalidOriginException
if image_category not in ImageCategory:
raise InvalidImageCategoryException
image_name = self._services.names.create_image_name()
metadata = self._get_metadata(session_id, node_id)
(width, height) = image.size
try:
# TODO: Consider using a transaction here to ensure consistency between storage and database
self._services.image_records.save(
# Non-nullable fields
image_name=image_name,
image_origin=image_origin,
image_category=image_category,
width=width,
height=height,
# Meta fields
is_intermediate=is_intermediate,
# Nullable fields
node_id=node_id,
session_id=session_id,
metadata=metadata,
)
self._services.image_files.save(
image_name=image_name,
image=image,
metadata=metadata,
)
image_dto = self.get_dto(image_name)
return image_dto
except ImageRecordSaveException:
self._services.logger.error("Failed to save image record")
raise
except ImageFileSaveException:
self._services.logger.error("Failed to save image file")
raise
except Exception as e:
self._services.logger.error("Problem saving image record and file")
raise e
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> ImageDTO:
try:
self._services.image_records.update(image_name, changes)
return self.get_dto(image_name)
except ImageRecordSaveException:
self._services.logger.error("Failed to update image record")
raise
except Exception as e:
self._services.logger.error("Problem updating image record")
raise e
def get_pil_image(self, image_name: str) -> PILImageType:
try:
return self._services.image_files.get(image_name)
except ImageFileNotFoundException:
self._services.logger.error("Failed to get image file")
raise
except Exception as e:
self._services.logger.error("Problem getting image file")
raise e
def get_record(self, image_name: str) -> ImageRecord:
try:
return self._services.image_records.get(image_name)
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise
except Exception as e:
self._services.logger.error("Problem getting image record")
raise e
def get_dto(self, image_name: str) -> ImageDTO:
try:
image_record = self._services.image_records.get(image_name)
image_dto = image_record_to_dto(
image_record,
self._services.urls.get_image_url(image_name),
self._services.urls.get_image_url(image_name, True),
self._services.board_image_records.get_board_for_image(image_name),
)
return image_dto
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")
raise
except Exception as e:
self._services.logger.error("Problem getting image DTO")
raise e
def get_path(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self._services.image_files.get_path(image_name, thumbnail)
except Exception as e:
self._services.logger.error("Problem getting image path")
raise e
def validate_path(self, path: str) -> bool:
try:
return self._services.image_files.validate_path(path)
except Exception as e:
self._services.logger.error("Problem validating image path")
raise e
def get_url(self, image_name: str, thumbnail: bool = False) -> str:
try:
return self._services.urls.get_image_url(image_name, thumbnail)
except Exception as e:
self._services.logger.error("Problem getting image path")
raise e
def get_many(
self,
offset: int = 0,
limit: int = 10,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
try:
results = self._services.image_records.get_many(
offset,
limit,
image_origin,
categories,
is_intermediate,
board_id,
)
image_dtos = list(
map(
lambda r: image_record_to_dto(
r,
self._services.urls.get_image_url(r.image_name),
self._services.urls.get_image_url(r.image_name, True),
self._services.board_image_records.get_board_for_image(
r.image_name
),
),
results.items,
)
)
return OffsetPaginatedResults[ImageDTO](
items=image_dtos,
offset=results.offset,
limit=results.limit,
total=results.total,
)
except Exception as e:
self._services.logger.error("Problem getting paginated image DTOs")
raise e
def delete(self, image_name: str):
try:
self._services.image_files.delete(image_name)
self._services.image_records.delete(image_name)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image record")
raise
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image file")
raise
except Exception as e:
self._services.logger.error("Problem deleting image record and file")
raise e
def delete_images_on_board(self, board_id: str):
try:
images = self._services.board_image_records.get_images_for_board(board_id)
image_name_list = list(
map(
lambda r: r.image_name,
images.items,
)
)
for image_name in image_name_list:
self._services.image_files.delete(image_name)
self._services.image_records.delete_many(image_name_list)
except ImageRecordDeleteException:
self._services.logger.error(f"Failed to delete image records")
raise
except ImageFileDeleteException:
self._services.logger.error(f"Failed to delete image files")
raise
except Exception as e:
self._services.logger.error("Problem deleting image records and files")
raise e
def _get_metadata(
self, session_id: Optional[str] = None, node_id: Optional[str] = None
) -> Optional[ImageMetadata]:
"""Get the metadata for a node."""
metadata = None
if node_id is not None and session_id is not None:
session = self._services.graph_execution_manager.get(session_id)
metadata = self._services.metadata.create_image_metadata(session, node_id)
return metadata

View File

@ -5,7 +5,7 @@ from abc import ABC, abstractmethod
from queue import Queue
from pydantic import BaseModel, Field
from typing import Optional
class InvocationQueueItem(BaseModel):
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
@ -22,7 +22,7 @@ class InvocationQueueABC(ABC):
pass
@abstractmethod
def put(self, item: InvocationQueueItem | None) -> None:
def put(self, item: Optional[InvocationQueueItem]) -> None:
pass
@abstractmethod
@ -57,7 +57,7 @@ class MemoryInvocationQueue(InvocationQueueABC):
return item
def put(self, item: InvocationQueueItem | None) -> None:
def put(self, item: Optional[InvocationQueueItem]) -> None:
self.__queue.put(item)
def cancel(self, graph_execution_state_id: str) -> None:

View File

@ -1,50 +1,68 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.backend import ModelManager
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from __future__ import annotations
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from logging import Logger
from invokeai.app.services.board_images import BoardImagesServiceABC
from invokeai.app.services.boards import BoardServiceABC
from invokeai.app.services.images import ImageServiceABC
from invokeai.app.services.model_manager_service import ModelManagerServiceBase
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.latent_storage import LatentsStorageBase
from invokeai.app.services.restoration_services import RestorationServices
from invokeai.app.services.invocation_queue import InvocationQueueABC
from invokeai.app.services.item_storage import ItemStorageABC
from invokeai.app.services.config import InvokeAISettings
from invokeai.app.services.graph import GraphExecutionState, LibraryGraph
from invokeai.app.services.invoker import InvocationProcessorABC
from .events import EventServiceBase
from .latent_storage import LatentsStorageBase
from .image_storage import ImageStorageBase
from .restoration_services import RestorationServices
from .invocation_queue import InvocationQueueABC
from .item_storage import ItemStorageABC
class InvocationServices:
"""Services that can be used by invocations"""
events: EventServiceBase
latents: LatentsStorageBase
images: ImageStorageBase
metadata: MetadataServiceBase
queue: InvocationQueueABC
model_manager: ModelManager
restoration: RestorationServices
# NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_library: ItemStorageABC["LibraryGraph"]
graph_execution_manager: ItemStorageABC["GraphExecutionState"]
# TODO: Just forward-declared everything due to circular dependencies. Fix structure.
board_images: "BoardImagesServiceABC"
boards: "BoardServiceABC"
configuration: "InvokeAISettings"
events: "EventServiceBase"
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"]
graph_library: "ItemStorageABC"["LibraryGraph"]
images: "ImageServiceABC"
latents: "LatentsStorageBase"
logger: "Logger"
model_manager: "ModelManagerServiceBase"
processor: "InvocationProcessorABC"
queue: "InvocationQueueABC"
restoration: "RestorationServices"
def __init__(
self,
model_manager: ModelManager,
events: EventServiceBase,
latents: LatentsStorageBase,
images: ImageStorageBase,
metadata: MetadataServiceBase,
queue: InvocationQueueABC,
graph_library: ItemStorageABC["LibraryGraph"],
graph_execution_manager: ItemStorageABC["GraphExecutionState"],
processor: "InvocationProcessorABC",
restoration: RestorationServices,
self,
board_images: "BoardImagesServiceABC",
boards: "BoardServiceABC",
configuration: "InvokeAISettings",
events: "EventServiceBase",
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"],
graph_library: "ItemStorageABC"["LibraryGraph"],
images: "ImageServiceABC",
latents: "LatentsStorageBase",
logger: "Logger",
model_manager: "ModelManagerServiceBase",
processor: "InvocationProcessorABC",
queue: "InvocationQueueABC",
restoration: "RestorationServices",
):
self.model_manager = model_manager
self.board_images = board_images
self.boards = boards
self.boards = boards
self.configuration = configuration
self.events = events
self.latents = latents
self.images = images
self.metadata = metadata
self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager
self.graph_library = graph_library
self.images = images
self.latents = latents
self.logger = logger
self.model_manager = model_manager
self.processor = processor
self.queue = queue
self.restoration = restoration

View File

@ -1,14 +1,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from abc import ABC
from threading import Event, Thread
from typing import Optional
from ..invocations.baseinvocation import InvocationContext
from .graph import Graph, GraphExecutionState
from .invocation_queue import InvocationQueueABC, InvocationQueueItem
from .invocation_queue import InvocationQueueItem
from .invocation_services import InvocationServices
from .item_storage import ItemStorageABC
class Invoker:
"""The invoker, used to execute invocations"""
@ -21,8 +18,9 @@ class Invoker:
def invoke(
self, graph_execution_state: GraphExecutionState, invoke_all: bool = False
) -> str | None:
"""Determines the next node to invoke and returns the id of the invoked node, or None if there are no nodes to execute"""
) -> Optional[str]:
"""Determines the next node to invoke and enqueues it, preparing if needed.
Returns the id of the queued node, or `None` if there are no nodes left to enqueue."""
# Get the next invocation
invocation = graph_execution_state.next()
@ -44,12 +42,12 @@ class Invoker:
return invocation.id
def create_execution_state(self, graph: Graph | None = None) -> GraphExecutionState:
def create_execution_state(self, graph: Optional[Graph] = None) -> GraphExecutionState:
"""Creates a new execution state for the given graph"""
new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state)
return new_state
def cancel(self, graph_execution_state_id: str) -> None:
"""Cancels the given execution state"""
self.services.queue.cancel(graph_execution_state_id)
@ -71,18 +69,12 @@ class Invoker:
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
def stop(self) -> None:
"""Stops the invoker. A new invoker will have to be created to execute further."""
# First stop all services
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
self.services.queue.put(None)

View File

@ -1,10 +1,9 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import os
from abc import ABC, abstractmethod
from pathlib import Path
from queue import Queue
from typing import Dict
from typing import Dict, Union, Optional
import torch
@ -16,7 +15,7 @@ class LatentsStorageBase(ABC):
pass
@abstractmethod
def set(self, name: str, data: torch.Tensor) -> None:
def save(self, name: str, data: torch.Tensor) -> None:
pass
@abstractmethod
@ -47,8 +46,8 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
self.__set_cache(name, latent)
return latent
def set(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.set(name, data)
def save(self, name: str, data: torch.Tensor) -> None:
self.__underlying_storage.save(name, data)
self.__set_cache(name, data)
def delete(self, name: str) -> None:
@ -56,7 +55,7 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
if name in self.__cache:
del self.__cache[name]
def __get_cache(self, name: str) -> torch.Tensor|None:
def __get_cache(self, name: str) -> Optional[torch.Tensor]:
return None if name not in self.__cache else self.__cache[name]
def __set_cache(self, name: str, data: torch.Tensor):
@ -70,24 +69,26 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
class DiskLatentsStorage(LatentsStorageBase):
"""Stores latents in a folder on disk without caching"""
__output_folder: str
__output_folder: Union[str, Path]
def __init__(self, output_folder: str):
self.__output_folder = output_folder
Path(output_folder).mkdir(parents=True, exist_ok=True)
def __init__(self, output_folder: Union[str, Path]):
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder.mkdir(parents=True, exist_ok=True)
def get(self, name: str) -> torch.Tensor:
latent_path = self.get_path(name)
return torch.load(latent_path)
def set(self, name: str, data: torch.Tensor) -> None:
def save(self, name: str, data: torch.Tensor) -> None:
self.__output_folder.mkdir(parents=True, exist_ok=True)
latent_path = self.get_path(name)
torch.save(data, latent_path)
def delete(self, name: str) -> None:
latent_path = self.get_path(name)
os.remove(latent_path)
latent_path.unlink()
def get_path(self, name: str) -> str:
return os.path.join(self.__output_folder, name)
def get_path(self, name: str) -> Path:
return self.__output_folder / name

View File

@ -1,96 +1,142 @@
import json
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, TypedDict
from PIL import Image, PngImagePlugin
from pydantic import BaseModel
from typing import Any, Optional
import networkx as nx
from invokeai.app.models.image import ImageType, is_image_type
class MetadataImageField(TypedDict):
"""Pydantic-less ImageField, used for metadata parsing."""
image_type: ImageType
image_name: str
class MetadataLatentsField(TypedDict):
"""Pydantic-less LatentsField, used for metadata parsing."""
latents_name: str
# TODO: This is a placeholder for `InvocationsUnion` pending resolution of circular imports
NodeMetadata = Dict[
str, str | int | float | bool | MetadataImageField | MetadataLatentsField
]
class InvokeAIMetadata(TypedDict, total=False):
"""InvokeAI-specific metadata format."""
session_id: Optional[str]
node: Optional[NodeMetadata]
def build_invokeai_metadata_pnginfo(
metadata: InvokeAIMetadata | None,
) -> PngImagePlugin.PngInfo:
"""Builds a PngInfo object with key `"invokeai"` and value `metadata`"""
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai", json.dumps(metadata))
return pnginfo
from invokeai.app.models.metadata import ImageMetadata
from invokeai.app.services.graph import Graph, GraphExecutionState
class MetadataServiceBase(ABC):
@abstractmethod
def get_metadata(self, image: Image.Image) -> InvokeAIMetadata | None:
"""Gets the InvokeAI metadata from a PIL Image, skipping invalid values"""
pass
"""Handles building metadata for nodes, images, and outputs."""
@abstractmethod
def build_metadata(
self, session_id: str, node: BaseModel
) -> InvokeAIMetadata | None:
"""Builds an InvokeAIMetadata object"""
def create_image_metadata(
self, session: GraphExecutionState, node_id: str
) -> ImageMetadata:
"""Builds an ImageMetadata object for a node."""
pass
class PngMetadataService(MetadataServiceBase):
"""Handles loading and building metadata for images."""
class CoreMetadataService(MetadataServiceBase):
_ANCESTOR_TYPES = ["t2l", "l2l"]
"""The ancestor types that contain the core metadata"""
# TODO: Use `InvocationsUnion` to **validate** metadata as representing a fully-functioning node
def _load_metadata(self, image: Image.Image) -> dict | None:
"""Loads a specific info entry from a PIL Image."""
_ANCESTOR_PARAMS = ["type", "steps", "model", "cfg_scale", "scheduler", "strength"]
"""The core metadata parameters in the ancestor types"""
try:
info = image.info.get("invokeai")
_NOISE_FIELDS = ["seed", "width", "height"]
"""The core metadata parameters in the noise node"""
if type(info) is not str:
return None
loaded_metadata = json.loads(info)
if type(loaded_metadata) is not dict:
return None
if len(loaded_metadata.items()) == 0:
return None
return loaded_metadata
except:
return None
def get_metadata(self, image: Image.Image) -> dict | None:
"""Retrieves an image's metadata as a dict"""
loaded_metadata = self._load_metadata(image)
return loaded_metadata
def build_metadata(self, session_id: str, node: BaseModel) -> InvokeAIMetadata:
metadata = InvokeAIMetadata(session_id=session_id, node=node.dict())
def create_image_metadata(
self, session: GraphExecutionState, node_id: str
) -> ImageMetadata:
metadata = self._build_metadata_from_graph(session, node_id)
return metadata
def _find_nearest_ancestor(self, G: nx.DiGraph, node_id: str) -> Optional[str]:
"""
Finds the id of the nearest ancestor (of a valid type) of a given node.
Parameters:
G (nx.DiGraph): The execution graph, converted in to a networkx DiGraph. Its nodes must
have the same data as the execution graph.
node_id (str): The ID of the node.
Returns:
str | None: The ID of the nearest ancestor, or None if there are no valid ancestors.
"""
# Retrieve the node from the graph
node = G.nodes[node_id]
# If the node type is one of the core metadata node types, return its id
if node.get("type") in self._ANCESTOR_TYPES:
return node.get("id")
# Else, look for the ancestor in the predecessor nodes
for predecessor in G.predecessors(node_id):
result = self._find_nearest_ancestor(G, predecessor)
if result:
return result
# If there are no valid ancestors, return None
return None
def _get_additional_metadata(
self, graph: Graph, node_id: str
) -> Optional[dict[str, Any]]:
"""
Returns additional metadata for a given node.
Parameters:
graph (Graph): The execution graph.
node_id (str): The ID of the node.
Returns:
dict[str, Any] | None: A dictionary of additional metadata.
"""
metadata = {}
# Iterate over all edges in the graph
for edge in graph.edges:
dest_node_id = edge.destination.node_id
dest_field = edge.destination.field
source_node_dict = graph.nodes[edge.source.node_id].dict()
# If the destination node ID matches the given node ID, gather necessary metadata
if dest_node_id == node_id:
# Prompt
if dest_field == "positive_conditioning":
metadata["positive_conditioning"] = source_node_dict.get("prompt")
# Negative prompt
if dest_field == "negative_conditioning":
metadata["negative_conditioning"] = source_node_dict.get("prompt")
# Seed, width and height
if dest_field == "noise":
for field in self._NOISE_FIELDS:
metadata[field] = source_node_dict.get(field)
return metadata
def _build_metadata_from_graph(
self, session: GraphExecutionState, node_id: str
) -> ImageMetadata:
"""
Builds an ImageMetadata object for a node.
Parameters:
session (GraphExecutionState): The session.
node_id (str): The ID of the node.
Returns:
ImageMetadata: The metadata for the node.
"""
# We need to do all the traversal on the execution graph
graph = session.execution_graph
# Find the nearest `t2l`/`l2l` ancestor of the given node
ancestor_id = self._find_nearest_ancestor(graph.nx_graph_with_data(), node_id)
# If no ancestor was found, return an empty ImageMetadata object
if ancestor_id is None:
return ImageMetadata()
ancestor_node = graph.get_node(ancestor_id)
# Grab all the core metadata from the ancestor node
ancestor_metadata = {
param: val
for param, val in ancestor_node.dict().items()
if param in self._ANCESTOR_PARAMS
}
# Get this image's prompts and noise parameters
addl_metadata = self._get_additional_metadata(graph, ancestor_id)
# If additional metadata was found, add it to the main metadata
if addl_metadata is not None:
ancestor_metadata.update(addl_metadata)
return ImageMetadata(**ancestor_metadata)

Some files were not shown because too many files have changed in this diff Show More