Compare commits
3318 Commits
v3.0.0+a8
...
feat/workf
Author | SHA1 | Date | |
---|---|---|---|
2b1762d8da | |||
b056a9c181 | |||
f56c47b550 | |||
f8e35aec7b | |||
0463541d99 | |||
10cf10c16c | |||
e45704833e | |||
0fdcc0af65 | |||
4fc2ed7195 | |||
d0464a5793 | |||
7d4a78e470 | |||
37c87affd0 | |||
3863bd9da3 | |||
4b2e3aa54d | |||
d699efa5bc | |||
b9a1374b8f | |||
411ea75861 | |||
375c9a1c20 | |||
907340b1e1 | |||
0f32d260b7 | |||
92bc04dc87 | |||
929b1f4a41 | |||
6d7b4b8e8a | |||
4a14ee0e01 | |||
f268ea4e39 | |||
78face3481 | |||
5a0e8261bf | |||
0447fa2dcb | |||
fb9b471150 | |||
3f0e0af177 | |||
0228aba06f | |||
1fd6666682 | |||
4fd163698c | |||
cff6600ded | |||
04ddcf53f3 | |||
0539a64569 | |||
224438a108 | |||
81d2d5abae | |||
734e871e8f | |||
b0350e9bc8 | |||
5a3f1f2b22 | |||
f95ce1870c | |||
0719a46372 | |||
0a25efd054 | |||
a8ef4e5be8 | |||
e6fe2540b8 | |||
aadcde3edd | |||
984e609c61 | |||
57e70aaf50 | |||
bfdef120d1 | |||
32da359ba5 | |||
b19ed36b43 | |||
e5a212b5c8 | |||
9b863fb9bc | |||
7cab51745b | |||
18c6ff427e | |||
843f2d71d6 | |||
67540c9ee0 | |||
7f816c9243 | |||
76b888de17 | |||
65a16be299 | |||
1c8ff0ae66 | |||
29eade4880 | |||
86fd1d5b22 | |||
909b78a1cb | |||
2f81f9fb22 | |||
a6d4e4ed57 | |||
3e01c396e1 | |||
0beb08686c | |||
46905175a9 | |||
11085783ef | |||
693c6cf5e4 | |||
77933a0a85 | |||
2a087bf161 | |||
3d57c14bb3 | |||
18f3190857 | |||
fcc056fe6a | |||
c1bfc1f47b | |||
b0fe57ec80 | |||
09cb40786f | |||
18ecfc0521 | |||
14bf87e5e7 | |||
715ce8538b | |||
1987bc9cc5 | |||
0b079df4ae | |||
a514c9e28b | |||
8cf2806489 | |||
eb446471cc | |||
7392d07331 | |||
59d932e9c1 | |||
578c8ce5dd | |||
3d4874dc34 | |||
5aaf2e8873 | |||
f3fd0f6d73 | |||
4468581d2e | |||
da642b7aad | |||
b379e3d187 | |||
6867c79185 | |||
a1705dc6b3 | |||
4af4486dd9 | |||
282a7f32d3 | |||
4c6a88a642 | |||
e41d0b9a76 | |||
a02090b06b | |||
0d9a546d74 | |||
8d99113bef | |||
4309f3bd58 | |||
42370939a8 | |||
654591cbf3 | |||
ad9c954a58 | |||
a703e1b3d3 | |||
e85f2254f0 | |||
8f2cf30191 | |||
296741306c | |||
5386a286fd | |||
803fb393bb | |||
ab944bd13a | |||
514c49d946 | |||
858bcdd3ff | |||
ed79980dd4 | |||
86a74e929a | |||
0d52430481 | |||
4eca802cdd | |||
ff0a25bd9c | |||
ace0eb366b | |||
d971c5fa64 | |||
ae82df0fda | |||
e28262ebd9 | |||
250ee4b11c | |||
b7293d638b | |||
eee863e380 | |||
e509d719ee | |||
1d8f44d356 | |||
7653d21cf5 | |||
46a2d83b84 | |||
79efc6789e | |||
2192210910 | |||
84629df49c | |||
ef6b27ab35 | |||
17420f76b3 | |||
45213aa631 | |||
4381dabbd9 | |||
b4a03fcf42 | |||
714be33850 | |||
5f23fc493d | |||
4fe93e521e | |||
6e6d903f99 | |||
667a2a3d84 | |||
f57b277d5a | |||
e62991c54d | |||
785d584603 | |||
da4aab9233 | |||
591b601fd3 | |||
317b5ebae1 | |||
98a4930a52 | |||
1a596a5684 | |||
84a0a0fa14 | |||
da443973cb | |||
d073d10f9f | |||
2b7e7496f7 | |||
50ab677ea4 | |||
cb81558302 | |||
9259483081 | |||
4ece322f82 | |||
13e8fa733e | |||
3e473ae008 | |||
487fda0226 | |||
74d3b22533 | |||
b5e018972f | |||
2af844385f | |||
540047e26e | |||
4d8b8a2db8 | |||
d581a3289b | |||
d756c9b10a | |||
63d3212bec | |||
136ff011b2 | |||
3bc15a96d5 | |||
43d5bb2038 | |||
8d39eab3a9 | |||
62da69b3e8 | |||
d2852c767b | |||
47f33f1ed1 | |||
1896c6fb44 | |||
47f3515745 | |||
950021a61e | |||
5ee55cf46f | |||
91ef24e15c | |||
230dfdb9ad | |||
6f719b2c7a | |||
02ce3bd303 | |||
4599517c6c | |||
cc747c066c | |||
3ba547a41a | |||
1a37827bdf | |||
16e990b6e6 | |||
be4f3fa5c6 | |||
d0375ec234 | |||
1bf8625b10 | |||
5d6040b636 | |||
ead1b14ee7 | |||
92a9355ddb | |||
7fcf475aec | |||
3f6e8e9d6b | |||
c9655236cc | |||
5cb3fdb64c | |||
ae749ada6e | |||
36b8549f3a | |||
b6f356f067 | |||
a4f1db7c02 | |||
21206bafcf | |||
a047bad391 | |||
909afc266e | |||
4039dd148d | |||
ea0f8b8791 | |||
f412582d60 | |||
c5672adb6b | |||
0e5c3a641a | |||
9015e72e1e | |||
6b05d27c7a | |||
19d0673085 | |||
048b4fe7e8 | |||
e8b83fecff | |||
8883ecb2bf | |||
2f97f1d6d5 | |||
73d6cc824b | |||
acc0a29dca | |||
38c1436f02 | |||
efbdb75568 | |||
8929495aeb | |||
428f0b265f | |||
7daee41ad2 | |||
7cdd7b6ad7 | |||
bc64cde6f9 | |||
4465f97cdf | |||
fface2cda7 | |||
7fcb8959fb | |||
dcf0dc4274 | |||
bb52861896 | |||
f2d26a3a3c | |||
04d8f2dfea | |||
355d4cf4e2 | |||
a3a828779a | |||
8c71ff37ae | |||
ddb65e6034 | |||
8366cd2a00 | |||
ab1ec3720a | |||
3a0ec635c9 | |||
8afe517204 | |||
5eaea9dd64 | |||
71e298b722 | |||
89a039460d | |||
a342e64772 | |||
ef8dcf5fae | |||
90a038c685 | |||
024a156114 | |||
7ea2a135f1 | |||
af2264b6eb | |||
41bf9ec4a3 | |||
520ccdb0a9 | |||
2b36565e9e | |||
f2c3b7c317 | |||
67751a01ab | |||
cb8cdefd59 | |||
f1c846ba5c | |||
3a6ba236f5 | |||
1c7ea57492 | |||
6494e8e551 | |||
513fceac82 | |||
99a8ebe3a0 | |||
3a136420d5 | |||
bd56e9bc81 | |||
43f2398e14 | |||
d0cf98d7f6 | |||
8111dd6cc5 | |||
99e4b87fae | |||
884ec0b5df | |||
9ccfa34e04 | |||
d5aa74623d | |||
d63a614b8b | |||
cbc905a4d6 | |||
b55fc2935e | |||
0544917161 | |||
1161dfe055 | |||
433f347d7e | |||
33a412a24f | |||
9316534d97 | |||
fdaa661245 | |||
f1c195afb7 | |||
6001d3d71d | |||
b9f607be56 | |||
8831d1ee41 | |||
a0be83e370 | |||
8702a63197 | |||
d7f0a7919f | |||
356b5a41a9 | |||
e56a6d85a9 | |||
e22a091d76 | |||
141d02939a | |||
5cb372e9d0 | |||
f95fe68753 | |||
6d33893844 | |||
fc53112d8e | |||
41f7aa6ab4 | |||
9bec755198 | |||
2570497d83 | |||
5d735a714d | |||
6aa87f973e | |||
f793fdf3d4 | |||
3b363d0258 | |||
36e0faea6b | |||
927f8a66e6 | |||
eebc0e7315 | |||
6b173cc66f | |||
b4732a7308 | |||
344a56327a | |||
2e404b7cca | |||
a760bdae9f | |||
4cfd55936c | |||
5c3a27aac6 | |||
d573a23090 | |||
351abd2ca2 | |||
9733cd4199 | |||
9976bc6908 | |||
c68db6e40f | |||
3a50798a52 | |||
a98426d2c6 | |||
504f426f0a | |||
840cbc1d39 | |||
014d6187ab | |||
9fb15fae87 | |||
a07336a020 | |||
0718cc2392 | |||
ce22c0fbaa | |||
935e4632c2 | |||
a83d8810c4 | |||
76b3f8956b | |||
ff8a8a1963 | |||
cb6d0c8851 | |||
67f2616d5a | |||
f8f1740668 | |||
e66d0f7372 | |||
546aaedbe4 | |||
55f8865524 | |||
2d051559d1 | |||
7f650d00de | |||
db9cef0092 | |||
72c34aea75 | |||
edeea5237b | |||
4e6b579526 | |||
6334c4adf5 | |||
66b2366efc | |||
e147379aa7 | |||
5a821384d3 | |||
2bbba323c6 | |||
aa02ebf8f5 | |||
fb3d0c4b12 | |||
8488ab0134 | |||
875231ed3d | |||
43b300498f | |||
5b420653f9 | |||
3d32ce2b58 | |||
e391f3c9a8 | |||
6e7a3f0546 | |||
4a683cc669 | |||
3781e56e57 | |||
267e709ba2 | |||
8ff49109a8 | |||
bac2a757e8 | |||
a4a7b601a1 | |||
fa7f6a6a10 | |||
e92b84955c | |||
61b17c475a | |||
379d68f595 | |||
545c811bf1 | |||
2ba5b44ec4 | |||
7f4ce518b7 | |||
6c66adcd90 | |||
584b513038 | |||
94055ae54a | |||
a79c86b901 | |||
ed81d6d533 | |||
63548c5ea7 | |||
8481db96ed | |||
bb68175fd0 | |||
316131f69b | |||
9721e1382d | |||
03a64275c6 | |||
55bfadfd0b | |||
224b09f8fd | |||
8dca194e2c | |||
3a33bd7881 | |||
d6d0fd313b | |||
95b90d22b5 | |||
249618f6b4 | |||
8109bc5316 | |||
015cec197b | |||
54b0c4f3c9 | |||
60a105103b | |||
67fb2c8129 | |||
09bb61f630 | |||
69ba3a7278 | |||
6e05292813 | |||
859e3d5a61 | |||
fe5d2c023b | |||
b6c259ab92 | |||
0fde82a24b | |||
4f74549f17 | |||
c95c6c5374 | |||
d946cb78e6 | |||
48fc07e049 | |||
5c9046580f | |||
d397e80e0d | |||
c04099a869 | |||
3b7e17c0cc | |||
6cbc69f3b7 | |||
c14aa30956 | |||
3546c41f4a | |||
8e948d3f17 | |||
02928298d9 | |||
df4dab53a8 | |||
8615d53e65 | |||
c8481d29eb | |||
b7a05734bb | |||
eeeb5dc451 | |||
3d33b3e1f5 | |||
7b066681f0 | |||
1177234931 | |||
824702de99 | |||
8604943e89 | |||
b7f63a4065 | |||
dcd11327c1 | |||
c071262c20 | |||
2f4f83280b | |||
301a8fef92 | |||
52fbd1b222 | |||
16dacb5f43 | |||
b5940039f3 | |||
9104979943 | |||
f04462973b | |||
2faed653d7 | |||
23fa2e560a | |||
0cda7943fa | |||
6d776bad7e | |||
86c3acf184 | |||
d32caf7cb1 | |||
e3e8d8af02 | |||
7b6e2bc37f | |||
bbae4045c9 | |||
8910e912c7 | |||
4012388f0a | |||
3c4f43314c | |||
5a163f02a6 | |||
f0db4d36e4 | |||
c2da74c587 | |||
575c7bbfd8 | |||
f102e38076 | |||
9195c8c957 | |||
677918df61 | |||
96e80c71fb | |||
da403ba04c | |||
e4c45012f4 | |||
ef14ba1713 | |||
9e06371178 | |||
a459786d73 | |||
fdf02c33d0 | |||
0a01d86ab1 | |||
5e6df975fd | |||
967a2dad54 | |||
a078efc0f2 | |||
024aa5eb90 | |||
67a343b3e4 | |||
d27392cc2d | |||
9fa8e38163 | |||
4b197cb6d4 | |||
252c9a5f5a | |||
975ba6b74f | |||
284a257c25 | |||
55ad4feb5c | |||
b7555ddae8 | |||
8afc47018b | |||
a97ec88e06 | |||
282d36b640 | |||
58a0709c1e | |||
c04fb451ee | |||
6e697b7b6f | |||
38e7eb8878 | |||
bdf4c4944c | |||
b146993553 | |||
fff29d663d | |||
06f8a3276d | |||
378689a519 | |||
f11ba81a8d | |||
9542883bb5 | |||
14e25bf277 | |||
c69715636d | |||
001bba1719 | |||
a094f4ca2b | |||
9d9592230a | |||
685cda89ff | |||
2c39557dc9 | |||
c238a7f18b | |||
19c5435332 | |||
3079c75a60 | |||
53b6f0dc73 | |||
70a1202deb | |||
9a1aea9caf | |||
388d36b839 | |||
bedb35af8c | |||
dc232438fb | |||
d7edf5aaad | |||
3ad1226d1e | |||
86ca9f122d | |||
2c6772f92f | |||
e6c1e03b8b | |||
c9d95e5758 | |||
10755718b8 | |||
459c7b3b74 | |||
353719f81d | |||
bd4b260c23 | |||
3e389d3f60 | |||
ffb01f1345 | |||
faa0a8236c | |||
e4d73d3659 | |||
6994783c17 | |||
3f9708f166 | |||
bcf0d8a590 | |||
2060ee22f2 | |||
3fd79b837f | |||
1c099e0abb | |||
95cca9493c | |||
779c902402 | |||
99e6bb48ba | |||
c3d6ff5b11 | |||
bba962b82f | |||
78b8cfede3 | |||
e9879b9e1f | |||
e21f3af5ab | |||
2ab7c5f783 | |||
8bbd938be9 | |||
b4cee46936 | |||
48626c40fd | |||
35ebc9e18d | |||
49279bbe74 | |||
8464450a53 | |||
a1001b6d10 | |||
50df641e1b | |||
22dd64dfa4 | |||
0a929ca3de | |||
8c61cda4b8 | |||
9db152bf75 | |||
75663ec81e | |||
40a568c060 | |||
8e7aa74a16 | |||
fcba4382b2 | |||
bf9f7271dd | |||
d3821594df | |||
631ad1596f | |||
dfe32e467d | |||
3575cf3b3b | |||
15cabc4968 | |||
29c3f49182 | |||
21d5969942 | |||
334dcf71c4 | |||
d2149a8380 | |||
6532d9ffa1 | |||
52274087f3 | |||
89db8c83c2 | |||
fc09ab7e13 | |||
9646157ad5 | |||
b89ec2b9c3 | |||
d2fb29cf0d | |||
d1fce4b70b | |||
f50f95a81d | |||
3611029057 | |||
402cf9b0ee | |||
88bee96ca3 | |||
5048fc7c9e | |||
2a35d93a4d | |||
10fac5c085 | |||
58850ded22 | |||
f21ebdfaca | |||
c4f1e94cc4 | |||
dbbcce9f70 | |||
cc52896bd9 | |||
d12314fb8b | |||
07b88e3017 | |||
0b85f2487c | |||
5530d3fcd2 | |||
7b1b24900f | |||
f52fb45276 | |||
fb9f0339a2 | |||
ac501ee742 | |||
2182ccf8d1 | |||
fc674ff1b8 | |||
708ac6a511 | |||
d0e0b64fc8 | |||
a23580664d | |||
0edf01d927 | |||
4af5b9cbf7 | |||
1bf973d46e | |||
72252e3ff7 | |||
8d2596c288 | |||
0ffb7ecaa8 | |||
10f30fc599 | |||
136570aa1d | |||
5a30b507e0 | |||
d47fbf283c | |||
7c24312d3f | |||
905cd8c639 | |||
b13ba55c26 | |||
82747e2260 | |||
910553f49a | |||
faabd83717 | |||
5ad77ece4b | |||
6b3c413a5b | |||
2a923d1f69 | |||
c54a5ce10e | |||
14fbe41834 | |||
64ebe042b5 | |||
5b2ed4ffb4 | |||
a49b8febed | |||
e543db5a5d | |||
670f3aa165 | |||
c0534d6519 | |||
7bc6c23dfa | |||
851ce36250 | |||
d631088566 | |||
f0bf733309 | |||
65af7dd8f8 | |||
74c666aaa2 | |||
45f9aca7e5 | |||
9fb624f390 | |||
962e51320b | |||
44932923eb | |||
ffcf6dfde6 | |||
be52eb153c | |||
bd97c6b708 | |||
9940cbfa87 | |||
77aeb9a421 | |||
2bad8b9f29 | |||
8e943b2ce1 | |||
5d3ab4f333 | |||
1047d08835 | |||
516cc258f9 | |||
7c2aa1dc20 | |||
035f1e12e1 | |||
4c93202ee4 | |||
227046bdb0 | |||
83b123f1f6 | |||
320ef15ee9 | |||
6905c61912 | |||
494bde785e | |||
732ab38ca6 | |||
ba38aa56a5 | |||
0a48c5a712 | |||
133ab91c8d | |||
7a672bd2b2 | |||
7dee6f51a3 | |||
3c029eee29 | |||
1a8f9d1ecb | |||
80d329c900 | |||
89db749d89 | |||
18164fc72a | |||
75de20af6a | |||
cb1509bf52 | |||
10cd814cf7 | |||
8ef38ecc7c | |||
69937d68d2 | |||
40f9e49b5e | |||
98fa234529 | |||
15b33ad501 | |||
fe889235cc | |||
462c1d4c9b | |||
0ed36158c8 | |||
f3c138a208 | |||
61242bf86a | |||
d118d02df4 | |||
58b56e9b1e | |||
1f751f8c21 | |||
ca95a3bd0d | |||
55b40a9425 | |||
90083cc88d | |||
ead754432a | |||
fa9ea93477 | |||
fe0cf2c160 | |||
a681fa4b03 | |||
1cc686734b | |||
82e8b92ba0 | |||
e86658f864 | |||
ad136c2680 | |||
35374ec531 | |||
ed82bf6bb8 | |||
078c9b6964 | |||
1a9d2f1701 | |||
3e93159bce | |||
b57ebe52e4 | |||
ba4616ff89 | |||
dcfbd49e1b | |||
913fc83cbf | |||
6b8ce34eb3 | |||
9508e0c9db | |||
9c720da021 | |||
e1b576c72d | |||
971ccfb081 | |||
43a3c3c7ea | |||
4df1cdb34d | |||
3f860c3523 | |||
d8d0c9af09 | |||
9403672ac0 | |||
94591840a7 | |||
26b91a538a | |||
7ca456d674 | |||
78828b6b9c | |||
166ff9d301 | |||
4f97bd4418 | |||
e0e001758a | |||
c1887135b3 | |||
096d195d6e | |||
7870b90717 | |||
9854b244fd | |||
7d800e1ce3 | |||
1c8b1fbc53 | |||
594a3aef93 | |||
78377469db | |||
fbe6452c45 | |||
3f4ea073d1 | |||
8b7f8eaea2 | |||
88e16ce051 | |||
421440cae0 | |||
421021cede | |||
020d4302d1 | |||
8c59d2e5af | |||
17d451eaa7 | |||
23a06fd06d | |||
010c8e8038 | |||
dfc635223c | |||
37121a3a24 | |||
51b5de799a | |||
eadbe6abf7 | |||
16f48a816f | |||
95838e5559 | |||
3e8d62b1d1 | |||
2acc93eb8e | |||
fbb61f2334 | |||
be85c7972b | |||
3a586fc9c4 | |||
dedead672f | |||
67366921c0 | |||
5a1019d858 | |||
f4ba7be918 | |||
069d8b5812 | |||
24d73d484a | |||
2479a59e5e | |||
7d0ac2c36d | |||
519b892f0c | |||
763dcacfd3 | |||
3599d546e6 | |||
22a84930f6 | |||
d64e17e043 | |||
ba54277011 | |||
5915a4a51c | |||
4580ba0d87 | |||
b9fd2e9e76 | |||
75b65597af | |||
2a3c0ab5d2 | |||
7d61373b82 | |||
7d65555a5a | |||
123f2b2dbc | |||
1e4e42556e | |||
1f6699ac43 | |||
ace8665411 | |||
7fa5bae8fd | |||
f9faca7c91 | |||
594fd3ba6d | |||
44d68f5ed5 | |||
4bda7d7df5 | |||
920c5dd686 | |||
4ce00a32f4 | |||
dcbb25dfea | |||
6c8270dae2 | |||
b19572199f | |||
a673c0aa14 | |||
955ef3bc54 | |||
f002ae8da5 | |||
208bf68ba2 | |||
1aba369c83 | |||
9ac11e793c | |||
9b39888e2f | |||
c1715144f0 | |||
929557bc6f | |||
811dd93912 | |||
9a60dbd5cb | |||
637c5b0747 | |||
27164de8b8 | |||
08e40d6d16 | |||
d905c54795 | |||
dc1e804887 | |||
95fd2ee6ff | |||
5f4eb0c3b3 | |||
d464ce509b | |||
3909e68527 | |||
848e51f72b | |||
52f8c9e16f | |||
5174f382b9 | |||
c7f80cd163 | |||
309e2414ce | |||
6704f77d87 | |||
045d3f6139 | |||
a0bd8c638e | |||
de04a5f441 | |||
40ed218c26 | |||
807c6b41c5 | |||
f6bbcd0589 | |||
ada22a799e | |||
a42ef9c855 | |||
034af2d9f8 | |||
676ccd8ebb | |||
a263a4f4cc | |||
ef0754cdec | |||
8158124679 | |||
5d31df0cb7 | |||
bd63454e51 | |||
062df07de2 | |||
0fc14afcf0 | |||
4a0a1c30db | |||
3432fd72f8 | |||
05a43c41f9 | |||
bb48617101 | |||
aa2f68f608 | |||
fbccce7573 | |||
a35087ee6e | |||
03e463dc89 | |||
d467e138a4 | |||
ba4aaea45b | |||
53eb23b8b6 | |||
8b969053e7 | |||
98a076260b | |||
164877b610 | |||
b3f4f28d76 | |||
acee4bd282 | |||
fc9a7320eb | |||
7c0a083b13 | |||
50d254fdb7 | |||
0cfc1c5f86 | |||
f35dfa06bb | |||
407bca5063 | |||
1419977e89 | |||
a953944894 | |||
a4cdaa245e | |||
105a4234b0 | |||
34c563060f | |||
d45c47db81 | |||
c771a4027f | |||
3fd27b1aa9 | |||
d59e534cad | |||
0c97a1e7e7 | |||
c8b306d9f8 | |||
edd2c54b9e | |||
727cc0dafe | |||
4530bd46dc | |||
c8b109f52e | |||
a2613948d8 | |||
f8392b2f78 | |||
358116bc22 | |||
1e3590111d | |||
063b800280 | |||
3935bf92c8 | |||
066e09b517 | |||
869b4a8d49 | |||
399ebe443e | |||
13919ff300 | |||
634e5652ef | |||
9bdc718df5 | |||
73ca8ccdb3 | |||
f37ffda966 | |||
5a9777d443 | |||
8072c05ee0 | |||
75ff4f4ca3 | |||
30df123221 | |||
06193ddbe8 | |||
ce5122f87c | |||
43ebd68313 | |||
ec19fcafb1 | |||
6fcc7d4c4b | |||
912087e4dc | |||
593fb95213 | |||
6d821b32d3 | |||
297f96c16b | |||
0e53b27655 | |||
35ae9f6e71 | |||
a1d9e6b871 | |||
f05379f965 | |||
e34e6d6e80 | |||
86cb53342a | |||
e3de996525 | |||
25a71a1791 | |||
d16583ad1c | |||
46db1dd18f | |||
4c9344b0ee | |||
cba31efd78 | |||
4d01b5c0f2 | |||
e02af8f518 | |||
c485cf568b | |||
51451cbf21 | |||
0363a06963 | |||
cc280cbef1 | |||
7544eadd48 | |||
7d683b4db6 | |||
60b3c6a201 | |||
88c8cb61f0 | |||
43fbac26df | |||
627444e17c | |||
5601858f4f | |||
b152fbf72f | |||
f95111772a | |||
14ce7cf09c | |||
28a1a6939f | |||
6d2b4013f8 | |||
ca7a7b57bb | |||
c5d0e65a24 | |||
6cc7b55ec5 | |||
883e9973ec | |||
9e7d829906 | |||
456a0a59e0 | |||
4f2bf7e7e8 | |||
77e93888cf | |||
fa54974bff | |||
7ac99d6bc3 | |||
aa82f9360c | |||
5aefa49d7d | |||
b6e9cd4fe2 | |||
6d1057c560 | |||
b4790002c7 | |||
e02700a782 | |||
83ce8ef1ec | |||
19e487b5ee | |||
aa4b56baf2 | |||
d3a2be69f1 | |||
02c087ee37 | |||
cab8d9bb20 | |||
28e6a7139b | |||
1625854eaf | |||
f87b042162 | |||
183e2c3ee0 | |||
098d506b95 | |||
7aa33c352b | |||
bf62553150 | |||
2b08d9e53b | |||
8954953eca | |||
eb2fcbe28a | |||
e78b36a9f7 | |||
144ede031e | |||
8ca37bba33 | |||
a608340c89 | |||
7fecebf7db | |||
b915d74127 | |||
6ec347bd41 | |||
e54843acc9 | |||
0960518088 | |||
21de74fac4 | |||
8ce9b6c51e | |||
b64ade586d | |||
3c44a74ba5 | |||
24d0901d8e | |||
b1b5f70ea6 | |||
6392098961 | |||
2c39aec22d | |||
d066bc6d19 | |||
e487bcd0f7 | |||
e0f8274f49 | |||
69e3513e90 | |||
7e706f02cb | |||
41dad2013a | |||
3f554d6824 | |||
202c5a48c6 | |||
2d71f6f4b8 | |||
0420874f56 | |||
f222b871e9 | |||
8b8d589033 | |||
f4c895257a | |||
10af5a26f2 | |||
1088adeb0a | |||
ad49380cd1 | |||
b2fe24c401 | |||
b128db1d58 | |||
f7f0630d97 | |||
5075e9c899 | |||
3c1549cf5c | |||
9faa53ceb1 | |||
32672cfeda | |||
b5266f89ad | |||
7a3b467ce0 | |||
bdfdf854fc | |||
1c38cce16d | |||
4cdca45228 | |||
bfed08673a | |||
c1aa2b82eb | |||
0a09f84b07 | |||
b7938d9ca9 | |||
977e348a35 | |||
864f2270c3 | |||
8b44d83859 | |||
0b6315de71 | |||
578e682562 | |||
92b49e45bb | |||
b05b8ef677 | |||
382e2139bd | |||
d7ebe3f048 | |||
5c2bdf626b | |||
390a1c9fbb | |||
c46d9b8768 | |||
ef8d9843dd | |||
dc2e1a42bc | |||
1869874433 | |||
94f16b1c69 | |||
cc0482ae8b | |||
fdf9833c39 | |||
5a961bb58e | |||
627750eded | |||
2a3909da94 | |||
e0dddbd38e | |||
231b7a5000 | |||
b7773c9962 | |||
11c501fc80 | |||
7be5743011 | |||
c48e648cbb | |||
29b4ddcc7f | |||
7ee13879e3 | |||
ced297ed21 | |||
3e813ead1f | |||
820ec08e9a | |||
4dd289b337 | |||
b60b1e359e | |||
208286e97a | |||
f7b64304ae | |||
834751e877 | |||
d94d4ef83f | |||
e7a10d310f | |||
682d6998bc | |||
2ce07a4730 | |||
dc9074f65d | |||
45d5ab20ec | |||
b75c56768d | |||
343df03a92 | |||
b57acb7353 | |||
7bf7c16a5d | |||
56340c24c8 | |||
afe9756667 | |||
ff3150a818 | |||
fcea65770f | |||
273271f091 | |||
54dc912c83 | |||
571f50adf7 | |||
368bd6f778 | |||
7481251127 | |||
16664da5b6 | |||
c104807201 | |||
990ce9a1da | |||
604fc006b1 | |||
5a42774fbe | |||
704e016f05 | |||
a1ef079d1f | |||
34a09cb4ca | |||
18095ecc44 | |||
fe19f11abf | |||
c2f074dc2f | |||
e02a557454 | |||
fca60862e2 | |||
94c186bb4c | |||
a22c8cb3a1 | |||
781e8521d5 | |||
d114d0ba95 | |||
cc8b7a74da | |||
388554448a | |||
cadc0839a6 | |||
d5160648d0 | |||
6d0ea42a94 | |||
0f93991087 | |||
2c1100509f | |||
ad5f61e3b5 | |||
f6738d647e | |||
c34b359c36 | |||
77d135967f | |||
ebf26687cb | |||
2f5e923008 | |||
b7296000e4 | |||
fab055995e | |||
1c8991a3df | |||
3d52656176 | |||
d989c7fa34 | |||
a2777decd4 | |||
d219167849 | |||
090db1ab3a | |||
468253aa14 | |||
3ee9a21647 | |||
0d823901ef | |||
7ee55489bb | |||
163ece9aee | |||
3920d5c90d | |||
0f0366f1f3 | |||
4e05dcfe2e | |||
8c63173b0c | |||
30792cb259 | |||
a88f16b81c | |||
fb188ce63e | |||
57ebf735e6 | |||
ec0f6e7248 | |||
93c55ebcf2 | |||
41f2eaa4de | |||
244201b45d | |||
486b8506aa | |||
79ca181276 | |||
dbde08f3d4 | |||
e542608534 | |||
99ee47b79b | |||
005087a652 | |||
e9f5814c6d | |||
c68b55f8e6 | |||
a21f5f259c | |||
7b2e6deaf1 | |||
63f94579c5 | |||
e467ca7f1b | |||
0450c28f14 | |||
e88d7c242f | |||
caea6d11c6 | |||
5615c31799 | |||
4390a051ca | |||
fafa21569a | |||
77a4fabc66 | |||
5cbdcdaa1f | |||
044b6ac07a | |||
774ade679d | |||
bf6c5cbe77 | |||
7dd20090c2 | |||
7c3fb3c54a | |||
2c8521b25d | |||
179a3aaa71 | |||
49423a791d | |||
666b5d7a60 | |||
2a0dbe3b5b | |||
eb48718459 | |||
d4143136d0 | |||
f6ced9f54b | |||
c82ea5a812 | |||
17891ae703 | |||
e94dc47d56 | |||
3dfff278aa | |||
aa7d945b23 | |||
e060fef540 | |||
88db094cf2 | |||
183f66c70c | |||
abc50ce88b | |||
50a0691514 | |||
a255624984 | |||
2630fe3608 | |||
dee6f86d5e | |||
6ca6cf713c | |||
3f7d5b4e0f | |||
91596d9527 | |||
d0a7832326 | |||
75bc43b2a5 | |||
4395ee3c03 | |||
1d2636aa90 | |||
24d9357fdc | |||
74cc409c72 | |||
cc92ce3da5 | |||
7254a6a517 | |||
dc771d9645 | |||
d669f0855d | |||
b2d5b53b5f | |||
ddc148b70b | |||
47ea71d9bd | |||
dccf291f64 | |||
d3a94e5853 | |||
0166d7ba2b | |||
b700809e14 | |||
501cb4c1e2 | |||
56399a650a | |||
e4035a51af | |||
cf83ddea15 | |||
c2d43f007b | |||
a79d5901c7 | |||
7703bf2ca1 | |||
b5e1ba34b3 | |||
a98c37b7a3 | |||
252adb9e70 | |||
40a0b2c366 | |||
cfc4caf231 | |||
23fdf0156f | |||
cdbf40c9b2 | |||
46c9dcb113 | |||
6df79045fa | |||
d776e0a0a9 | |||
e16598c48a | |||
6506ce3e68 | |||
3afa73cd33 | |||
81ea742aea | |||
15d28bfdbf | |||
0e5eac7c21 | |||
0a1c5bea05 | |||
9c290f4575 | |||
500f3046a9 | |||
53f2369d18 | |||
357912285a | |||
0f2b8dd7df | |||
ba2ce72584 | |||
c54c1f603b | |||
9caa2a2043 | |||
86185f2fe3 | |||
dfbcb773da | |||
04c0a83bff | |||
7a30162583 | |||
2c65ffa305 | |||
331a6227cc | |||
eb90ea41fd | |||
94ec3da7b5 | |||
f44496a579 | |||
f134804fe7 | |||
c59c3ae499 | |||
42ee95ee97 | |||
b008fd4a5f | |||
6b850d506a | |||
99fe95ab03 | |||
3f3e0ab9f5 | |||
8b305651f9 | |||
95ecb1a0c1 | |||
bd15874cf6 | |||
52bd2bbb13 | |||
a9fafad5b5 | |||
c5b9c8fc3a | |||
fb5ac78191 | |||
871b9286d1 | |||
c49b436f06 | |||
d2e327add9 | |||
2ab75bc52e | |||
30ab81b6bb | |||
384ad2df6a | |||
78195491bc | |||
94115b5217 | |||
10eec546ad | |||
58aa159a50 | |||
d8f7c19030 | |||
c63390f6e1 | |||
ac3bf81ca4 | |||
cbd451c610 | |||
b0f91f2e75 | |||
3ac68cde66 | |||
a69b1cd598 | |||
65a76a086b | |||
07381e5a26 | |||
6bb378a101 | |||
edd64bd537 | |||
8795ea8b06 | |||
b1ef3370fa | |||
db4af7c287 | |||
78cc5a7825 | |||
438bc70dfd | |||
1f6c868212 | |||
52d15e06bf | |||
3dbb0e1bfb | |||
d6317bc53f | |||
4aca264308 | |||
d9148fb619 | |||
59cb6305b9 | |||
945b9e3a0a | |||
920fc0e751 | |||
34e3c2e000 | |||
d65553841e | |||
446dc6bea1 | |||
92975130bd | |||
a765f01c08 | |||
09803b075d | |||
1062fc4796 | |||
17170e9dab | |||
d69f3a03bb | |||
95f44ff343 | |||
f9c3c07d98 | |||
c91ba2dbe7 | |||
917c2c480e | |||
fee5cd9c7e | |||
b0cce8008a | |||
368c2bf08b | |||
0a70a856e5 | |||
56204e84bc | |||
f1a01c473d | |||
e27819f18f | |||
f1f7778e73 | |||
7763594839 | |||
c965d3eb6b | |||
85879d3013 | |||
4fa66b2ba8 | |||
6cfabc585a | |||
b5f42bedce | |||
fded8bee39 | |||
ec09e21fc2 | |||
7d50e413bc | |||
7df67d077a | |||
625b08cff7 | |||
89b724d222 | |||
6f6d920686 | |||
699dfa222e | |||
288aec7080 | |||
2c754cfce7 | |||
8fa2302956 | |||
ec2b44bfbd | |||
f8bb1f7a3e | |||
9c3405e0c0 | |||
4b78deba92 | |||
d099924ae9 | |||
b761807219 | |||
45259894e0 | |||
94473c541d | |||
0a7d06f8c6 | |||
3288d9b31a | |||
9cb04f6f80 | |||
7269ed2a0a | |||
4092d051e8 | |||
46bc6968b8 | |||
48484e9fc8 | |||
26f7adeaa3 | |||
a12fbc7406 | |||
ba2048dbc6 | |||
497f66e682 | |||
b73216ef81 | |||
469fc49a2f | |||
a36cf2f1dd | |||
5151798a16 | |||
1a9f552a75 | |||
fb1b03960e | |||
74bfb5e1f9 | |||
10e4d8b72d | |||
6c2786201b | |||
bc1bce18b0 | |||
2cb57ef301 | |||
44b49c7f2d | |||
52a5f1f56f | |||
7a295cbfd5 | |||
6f162c5dec | |||
b94ec14853 | |||
54cda8ea42 | |||
0d3d880323 | |||
a74e2108bb | |||
ca5689dc54 | |||
b567d65032 | |||
35ac8e78bd | |||
e90fd96eee | |||
ed72d51969 | |||
942ecbbde4 | |||
79db0e9e93 | |||
d5267357b1 | |||
e085eb63bd | |||
8e470f9b6f | |||
0c17f8604f | |||
054edc4077 | |||
5a9993772d | |||
f2cd9e9ae2 | |||
9f86cfa471 | |||
8c1390166f | |||
1ad98ce999 | |||
83163ddd9a | |||
715686477e | |||
05e203570d | |||
2bd3cf28ea | |||
3cd2d3b764 | |||
4bac36356a | |||
97763f778a | |||
754666ed09 | |||
4c407328f2 | |||
943bedadf2 | |||
667d4deeb7 | |||
adfdb02c1b | |||
24d44ca559 | |||
216dff143e | |||
4047343503 | |||
f2334ec302 | |||
044d4c107a | |||
ae05d34584 | |||
94d0c18cbd | |||
7b49f96472 | |||
9a2c0554de | |||
68fd07a606 | |||
71591d0bee | |||
8014fc2f4f | |||
29112f96d2 | |||
4405c39e48 | |||
1d6be7f7fd | |||
64723f0628 | |||
8982543312 | |||
d8ce20c06f | |||
0ed6a141f1 | |||
33cb6cb4d8 | |||
600e9ecf8d | |||
ca15b8b33e | |||
8562dbaaa8 | |||
db4d35ed45 | |||
65fb6af01f | |||
c6bab14043 | |||
55f19aff3a | |||
1b6586dd8c | |||
b5da7faafb | |||
b13a06f650 | |||
8e4d288f02 | |||
8d4caaabb0 | |||
171a0eaf51 | |||
2469859c01 | |||
cff391aa1d | |||
4fd4aee2ab | |||
5f4a62810e | |||
35b7ae90ae | |||
9ed4d487d2 | |||
69d37217b8 | |||
7afdefb0e5 | |||
f5c5f59220 | |||
9afc909ff0 | |||
176d41d624 | |||
9eed8cdc27 | |||
98e905ee48 | |||
52c2397498 | |||
9f9807d7f7 | |||
11fa87388b | |||
258b0814a8 | |||
dd2057322c | |||
41c5963e41 | |||
ed1456e0cc | |||
15a927b517 | |||
121396f844 | |||
d251124196 | |||
243e76dd80 | |||
cfee8d9804 | |||
68dc3c6cb4 | |||
4196c669a0 | |||
a1398dec91 | |||
c4bec0e81b | |||
a03233bd8a | |||
6fdeeb8ce8 | |||
9993e4b02e | |||
e6b677873a | |||
44e77589b7 | |||
d0c74822eb | |||
383d008529 | |||
59511783fc | |||
605e13eac0 | |||
2a1d7342a7 | |||
d1efabaf2f | |||
577464091c | |||
aaae471910 | |||
56ed76fd95 | |||
5133825efb | |||
99475ab800 | |||
50a266e064 | |||
87bb4d8f6e | |||
fcb60a7a59 | |||
b5dac99411 | |||
a08d22587b | |||
0ea67050f1 | |||
6db19a8dee | |||
ef58635a76 | |||
594e547c3b | |||
2bf747caf6 | |||
cd548f73fd | |||
bb085c5fba | |||
3efb1f6f17 | |||
1ed0d7bf3c | |||
a5fe6c8af6 | |||
3c37245804 | |||
e60af40c8d | |||
421f5b7d75 | |||
3ef36707a8 | |||
00ca9b027a | |||
e81e17ccb6 | |||
b9731cb434 | |||
502570e083 | |||
1f476692da | |||
5fdd25501b | |||
4f00dbe704 | |||
b65c9ad612 | |||
24132a7950 | |||
ef3bf2803f | |||
f87b2364b7 | |||
3e6c49001c | |||
19e0f360e7 | |||
ea40a7844a | |||
0d2e194213 | |||
c6d00387a7 | |||
3de45af734 | |||
526c7e7737 | |||
1811b54727 | |||
95883c2efd | |||
b5a83bbc8a | |||
38851ae19a | |||
71c3955530 | |||
3f8d17d6b7 | |||
b18695df6f | |||
249048aae7 | |||
521da555d6 | |||
c923d094c6 | |||
226721ce51 | |||
af3e316cee | |||
382a55afd3 | |||
e9633a3adb | |||
61224e5cfe | |||
dc581350e6 | |||
64c5b20ce3 | |||
8a79798fa6 | |||
dff466244d | |||
6b462f2ed5 | |||
9c13f1b0fd | |||
7ab3d3861c | |||
8e90468637 | |||
f67bbadf83 | |||
e2942b9b8d | |||
ac942a2034 | |||
0bf5fee1b2 | |||
8114fc7bc2 | |||
f9d2bcce04 | |||
84bf2a03e9 | |||
4ee65d179c | |||
368ff17ed4 | |||
d52a096607 | |||
44b6adfb9f | |||
466a819f06 | |||
e6fd1c3d1f | |||
7caccb11fa | |||
e22c797fa3 | |||
0c5736d9c9 | |||
2d8f7d425c | |||
7d1942e9f0 | |||
5d8cd62e44 | |||
b6dc5c0fee | |||
c1b8e4b501 | |||
65feb92286 | |||
7f6fdf5d39 | |||
40e6dd8464 | |||
79df46bad2 | |||
2f11936db0 | |||
2ba52b8921 | |||
fa3fcd7820 | |||
f45ea1145d | |||
5eb6148336 | |||
49892faee4 | |||
7bb876a79b | |||
f89be8c685 | |||
7e4009a58e | |||
5141e82f88 | |||
8277bfab5e | |||
0af8a0e84b | |||
9bafe4a94f | |||
54e844f7da | |||
111322b015 | |||
859c155e7f | |||
955fef35aa | |||
f3b293b5cc | |||
6efa953172 | |||
06ac16a77d | |||
05c939d41e | |||
cfee02b753 | |||
4f088252db | |||
ca3e826a14 | |||
0cb886b915 | |||
2ec8fd3dc7 | |||
90abd0fe49 | |||
3651cf7ee2 | |||
8eca3bbbcd | |||
73318c2847 | |||
6d10e40c9b | |||
5cf9b75d77 | |||
d4463674cf | |||
ce7172d78c | |||
38b2dedc1d | |||
cd73085eb9 | |||
2497aa5cd8 | |||
089ada8cd1 | |||
35d14fc0f9 | |||
b79bca2c14 | |||
5fc60d0539 | |||
7b97754271 | |||
98dcc8d8b3 | |||
d3c177aaef | |||
3f7ac556c6 | |||
56c052a747 | |||
8087b428cc | |||
0c639bd751 | |||
be6ba57775 | |||
2f8d3022a0 | |||
4da861e980 | |||
9d7dfeb857 | |||
572e6b892a | |||
76750b0121 | |||
3039f92e69 | |||
88963dbe6e | |||
7b2079cf83 | |||
535eb1db16 | |||
01738deb23 | |||
fbff22c94b | |||
5c305b1eeb | |||
990b6b5f6a | |||
2dfcba8654 | |||
d95773f50f | |||
6d111aac90 | |||
f9fc89b3c5 | |||
ab76d54c10 | |||
56245a7406 | |||
bf04e913c2 | |||
cdc49456e8 | |||
37dc2d9d4d | |||
6e1ddb671e | |||
496a2db15c | |||
5292eda0e4 | |||
4ac41bc4b1 | |||
4be4fc6731 | |||
a9fdc77edd | |||
385765faec | |||
adb05cde5b | |||
211e8203f8 | |||
0b9ae74192 | |||
165c57c001 | |||
2514af79a0 | |||
f952f8f685 | |||
484b572023 | |||
cd9baf8092 | |||
81385d7d35 | |||
519bcb38c1 | |||
567d46b646 | |||
030802295b | |||
a495c8c156 | |||
ae6db67068 | |||
3d84e7756a | |||
98431b3de4 | |||
210a3f9aa7 | |||
9332ce639c | |||
84cf8bdc08 | |||
64a6aa0293 | |||
5ae14bffba | |||
0909812c84 | |||
66c0aea9e7 | |||
2bcded78e1 | |||
beb3e5aeb7 | |||
45d172d5a8 | |||
5b6069b916 | |||
766cb887e4 | |||
ef317be1f9 | |||
027b84d1aa | |||
11b670755d | |||
a536719fc3 | |||
8e6d88e98c | |||
f5d95ffed5 | |||
0f1b975d0e | |||
6f9c1c6d4e | |||
811c82a677 | |||
4f0e43ec1b | |||
2fef478497 | |||
6df6abf6f6 | |||
1b70bd1380 | |||
d1d2d5a47d | |||
3798c8bdb0 | |||
c49851e027 | |||
3c43594c26 | |||
c96ae4c331 | |||
ce465acf04 | |||
33ee418d8c | |||
4f1008f31f | |||
6cc629e19d | |||
537ae2f901 | |||
f6db9da06c | |||
a17dbd7df6 | |||
26a7b7b66d | |||
8611ffe32d | |||
98a4cc20a9 | |||
e2bdcc0271 | |||
ffd0f5924b | |||
654dcd453f | |||
cfd827cfad | |||
3cb6d333f6 | |||
498d2ecc2b | |||
4570702dd0 | |||
1d107f30e5 | |||
79084e9e20 | |||
4ebe839d54 | |||
bc16b50302 | |||
4267132926 | |||
e9a294f733 | |||
b69f26c85c | |||
832335998f | |||
1102c12084 | |||
b5cee7d20c | |||
23b4e1cea0 | |||
635a814dfb | |||
c19835c2d0 | |||
ed38eaa10c | |||
b213335316 | |||
ff5c725586 | |||
bf0dfcac2f | |||
842eb4bb0a | |||
89b82b3dc4 | |||
8923201fdf | |||
226409107b | |||
ae986bf873 | |||
503e3bca54 | |||
daf75a1361 | |||
fe4b2d53ed | |||
c39f8b478b | |||
1f82d8013e | |||
e373bfca54 | |||
2ca8611723 | |||
5aa7bfebd4 | |||
fc9b4539a3 | |||
b12cf315a8 | |||
975586bb40 | |||
a7ba142ad9 | |||
0d36bab6cc | |||
c2e7f62701 | |||
1f194e3688 | |||
f9b8b5cff2 | |||
f7c92e1eff | |||
70b8c3dfea | |||
43b30355e4 | |||
a93bd01353 | |||
bb1b8ceaa8 | |||
be8edaf3fd | |||
9cbaefaa81 | |||
cc7c6e5d41 | |||
f2ee8a3da8 | |||
e98d7a52d4 | |||
21e1c0a5f0 | |||
611e241ca7 | |||
6df4af2c79 | |||
0f8606914e | |||
5b1099193d | |||
230131646f | |||
8b1ec2685f | |||
60c2c877d7 | |||
315a056686 | |||
80b0c5eab4 | |||
08dc265e09 | |||
029a95550e | |||
ee6a26a97d | |||
a512fdc0f6 | |||
767a612746 | |||
0a71d6baa1 | |||
37be827e17 | |||
04a9894e77 | |||
f9958de6be | |||
ec10aca91e | |||
2b7dd3e236 | |||
fa884134d9 | |||
18006cab9a | |||
75ea716c13 | |||
d5f7027597 | |||
b1ad777f5a | |||
f65c8092cb | |||
94bfef3543 | |||
c48fd9c083 | |||
f49fc7fb55 | |||
a4b029d03c | |||
d6c9bf5b38 | |||
4f82273fc4 | |||
e54355f0f3 | |||
b2934be6ba | |||
eab67b6a01 | |||
02fa116690 | |||
5190a4c282 | |||
141d438517 | |||
549d2e0485 | |||
09ef57718e | |||
cab8239ba8 | |||
d3d8b71c67 | |||
6eaaa75a5d | |||
ba57ec5907 | |||
b524bf3c04 | |||
cd0e4bc1d7 | |||
9d3cd85bdd | |||
46a8eed33e | |||
9fee3f7b66 | |||
9217a217d4 | |||
b2700ffde4 | |||
511da59793 | |||
409e5d01ba | |||
58d5c61c79 | |||
3d8da67be3 | |||
957ee6d370 | |||
fecad2c014 | |||
550e6ef27a | |||
cc85c98bf3 | |||
75fb3f429f | |||
d63bb39475 | |||
096333ba3f | |||
0b2925709c | |||
7a8f14d595 | |||
59ba9fc0f6 | |||
6e0beb1ed4 | |||
94636ddb03 | |||
746e099f0d | |||
499e89d6f6 | |||
250d530260 | |||
90fa3eebb3 | |||
0aba105a8f | |||
9e2e82a752 | |||
561951ad98 | |||
3ff9961bda | |||
33779b6339 | |||
b35cdc05a5 | |||
9afb5d6ace | |||
50177b8ed9 | |||
c8864e475b | |||
fcf7f4ac77 | |||
29f1c6dc82 | |||
28208e6f49 | |||
c33acf951e | |||
500cd552bc | |||
55d27f71a3 | |||
746c7c59ff | |||
ad96c41156 | |||
27bd127fb0 | |||
f296e5c41e | |||
a67d8376c7 | |||
9f6221fe8c | |||
7587b54787 | |||
7254ffc3e7 | |||
6034fa12de | |||
ce3675fc14 | |||
8acd7eeca5 | |||
7293a6036a | |||
0b11f309ca | |||
6a8eb392b2 | |||
f343ab0302 | |||
824ca92760 | |||
d7d6298ec0 | |||
58a48bf197 | |||
5629d8fa37 | |||
1affb7f647 | |||
69a9dc7b36 | |||
f3ae52ff97 | |||
7479f9cc02 | |||
87ce4ab27c | |||
7c0023ad9e | |||
231e665675 | |||
80fd4c2176 | |||
3b6e425e17 | |||
50415450d8 | |||
06296896a9 | |||
a7399aca0c | |||
d1ea8b1e98 | |||
f851ad7ba0 | |||
591838a84b | |||
c0c2ab3dcf | |||
56023bc725 | |||
2ef6a8995b | |||
d0fee93aac | |||
1bfe9835cf | |||
8e7eae6cc7 | |||
f6522c8971 | |||
a969707e45 | |||
6c8e898f09 | |||
7bad9bcf53 | |||
d42b45116f | |||
d4812bbc8d | |||
3cd05cf6bf | |||
2564301aeb | |||
da0efeaa7f | |||
49cce1eec6 | |||
e9ec5ab85c | |||
17fed1c870 | |||
ade78b9591 | |||
c8fbaf54b6 | |||
f86d388786 | |||
cd2c688562 | |||
2d29ac6f0d | |||
2c2b731386 | |||
2f68a1a76c | |||
930e7bc754 | |||
7d4ace962a | |||
06842f8e0a | |||
c82da330db | |||
628df4ec98 | |||
16b956616f | |||
604cc17a3a | |||
37c9b85549 | |||
8b39b67ec7 | |||
a933977861 | |||
dfb41d8461 | |||
e98f7eda2e | |||
b4a74f6523 | |||
f7aec3b934 | |||
4d5169e16d | |||
a7e44678fb | |||
da0184a786 | |||
f56f19710d | |||
96b7248051 | |||
e77400ab62 | |||
13347f6aec | |||
a9bf387e5e | |||
8258c87a9f | |||
1b1b399fd0 | |||
a8d3e078c0 | |||
6ed7ba57dd | |||
2b3b77a276 | |||
8b8ec68b30 | |||
e20af5aef0 | |||
57e8ec9488 | |||
734a9e4271 | |||
fe924daee3 | |||
750f09fbed | |||
4df581811e | |||
eb70bc2ae4 | |||
5f29526a8e | |||
492bfe002a | |||
809705c30d | |||
f0918edf98 | |||
a846d82fa1 | |||
22f7cf0638 | |||
25c669b1d6 | |||
4367061b19 | |||
0fd13d3604 | |||
72a3e776b2 | |||
af044007d5 | |||
1db2c93f75 | |||
f272a44feb | |||
2539e26c18 | |||
b0738b7f70 | |||
8469d3e95a | |||
ae17d01e1d | |||
f3d3316558 | |||
5a6cefb0ea | |||
1a6f5f0860 | |||
5bfd6cb66f | |||
59caff7ff0 | |||
6487e7d906 | |||
77033eabd3 | |||
b80abdd101 | |||
006d782cc8 | |||
d09dfc3e9b | |||
66f524cae7 | |||
9ba50130a1 | |||
d4cf2d2666 | |||
9aaf67c5b4 | |||
b8b589c150 | |||
d93900a8de | |||
7f4c387080 | |||
80876bbbd1 | |||
7a4ff4c089 | |||
44bf308192 | |||
12e51c84ae | |||
b2eb83deff | |||
0ccc3b509e | |||
4043a4c21c | |||
c8ceb96091 | |||
83f75750a9 | |||
dc96a3e79d | |||
c076f1397e | |||
2568aafc0b | |||
65ed224bfc | |||
b6e369c745 | |||
ecabfc252b | |||
da96a41103 | |||
d162b78767 | |||
eb6c317f04 | |||
6d7223238f | |||
8607d124c5 | |||
23497bf759 | |||
b10cf20eb1 | |||
3d93851dba | |||
9bacd77a79 | |||
1b158f62c4 | |||
6ad565d84c | |||
04229082d6 | |||
03c27412f7 | |||
f0613bb0ef | |||
0e9f92b868 | |||
7d0cc6ec3f | |||
2f8b928486 | |||
0d3c27f46c | |||
cff91f06d3 | |||
1d5d187ba1 | |||
1ac14a1e43 | |||
cfc3a20565 | |||
05ae4e283c | |||
f06fee4581 | |||
9091e19de8 | |||
0a0b7141af | |||
1deca89fde | |||
446fb4a438 | |||
ab5d938a1d | |||
9942af756a | |||
06742faca7 | |||
d2bddf7f91 | |||
91ebf9f76e | |||
bf94412d14 | |||
e080fd1e08 | |||
eeef1e08f8 | |||
b3b94b5a8d | |||
5c9787c145 | |||
cf72eba15c | |||
a6f9396a30 | |||
118d5b387b | |||
02d2cc758d | |||
db545f8801 | |||
b0d72b15b3 | |||
4e0949fa55 | |||
f028342f5b | |||
7021467048 | |||
26ef5249b1 | |||
87424be95d | |||
366952f810 | |||
450e95de59 | |||
0ba8a0ea6c | |||
f4981f26d5 | |||
6bc21984c6 | |||
43d6312587 | |||
0d125bf3e4 | |||
921ccad04d | |||
05c9207e7b | |||
3fc789a7ee | |||
008362918e | |||
8fc75a71ee | |||
82d259f43b | |||
ec48779080 | |||
bc20fe4cb5 | |||
5de42be4a6 | |||
818c55cd53 | |||
0db1e97119 | |||
29ac252501 | |||
880727436c | |||
77c5c18542 | |||
ed76250dba | |||
4d22cafdad | |||
1f9e984b0d | |||
8a4e5f73aa | |||
4599575e65 | |||
242d860a47 | |||
0c1a7e72d4 | |||
11a44b944d | |||
fd7b842419 | |||
5998509888 | |||
403a6e88f2 | |||
c9d452b9d4 | |||
dcc274a2b9 | |||
f404669831 | |||
ce687b28ef | |||
7292d89108 | |||
41d6a38690 | |||
fb8f218901 | |||
e7d9e552a7 | |||
437f45a97f | |||
13ef33ed64 | |||
86d8b46fca | |||
e86925d424 | |||
df53b62048 | |||
55d3f04476 | |||
72ebe2ce68 | |||
7cd8b2f207 | |||
52437205bb | |||
ceebb501a4 | |||
cbe874b964 | |||
e2e5918ee2 | |||
1b131e328a | |||
81654daed7 | |||
746afcd235 | |||
ae0f4efcca | |||
23647336ce | |||
4ca54dd5fa | |||
d3a3067164 | |||
aeac557c41 | |||
af4fd328a6 | |||
c40c7424b6 | |||
a6b907150b | |||
bacdf985f1 | |||
e3519052ae | |||
b0e84c6497 | |||
f784e8412c | |||
1bafbafdd3 | |||
f5ac73b091 | |||
eb642653cb | |||
2c07f54b6e | |||
0691e0a12a | |||
79afcbd07e | |||
f4ead5e07f | |||
6d24ca7f52 | |||
2164da8592 | |||
adfd1e52f4 | |||
0e48c98330 | |||
4121c261a0 | |||
99823d5039 | |||
0abceb0e7b | |||
83d3f2347e | |||
73e25d8dbe | |||
50e00feceb | |||
03594c949a | |||
adb85036e6 | |||
7d7a9273ed | |||
f17ad227cf | |||
f91d01eb38 | |||
adfcb610b6 | |||
d2c55dc011 | |||
cafcd16657 | |||
2537ff0280 | |||
0f5f08e494 | |||
e20c4dc1e8 | |||
6dc4ddef1b | |||
26af5ec341 | |||
10b182f316 | |||
ac84a9f915 | |||
844578ab88 | |||
ff1c40747e | |||
dbfd1bcb5e | |||
444390617f | |||
6cb40d9d7b | |||
ca895a9cd0 | |||
7d27c7b1a4 | |||
6c82229910 | |||
43b1eb8e84 | |||
b10b07220e | |||
c2eb50d1cd | |||
73f3b7f84b | |||
bb18251fad | |||
348bee8981 | |||
078b33bda2 | |||
e82eb0b9fc | |||
ad976e5198 | |||
0e28961e69 | |||
6ce059f063 | |||
1de783b1ce | |||
3f9105be50 | |||
781322a647 | |||
9a1cfadd8b | |||
2a2d988928 | |||
ccceb32a85 | |||
72c519c6ad | |||
af12f67948 | |||
60f5606c2d | |||
24b19166dd | |||
0396bce4f9 | |||
71768f5988 | |||
0fb7328022 | |||
99daa97978 | |||
21617e60e1 | |||
982a568349 | |||
d79d5a4ff7 | |||
9968ff2893 | |||
35dd58e273 | |||
6d82a1019a | |||
6ed1bf7084 | |||
974175be45 | |||
86b8b69e88 | |||
bc9a5038fd | |||
bee678fdd1 | |||
c5caf1e8fe | |||
b163ae6a4d | |||
dca685ac25 | |||
72708eb53c | |||
aae1670080 | |||
e70bedba7d | |||
1e776d2523 | |||
8e06e6abbc | |||
8a0e1b6cfc | |||
2d9bc79ca4 | |||
6886eb094d | |||
6ca0c38ee3 | |||
d633eb1612 | |||
1bbf2f269d | |||
ac22652686 | |||
77cfec5cc8 | |||
3e4420c1ae | |||
f8181ab1b3 | |||
3dfeead9b8 | |||
d3f6c7f983 | |||
390ce9f249 | |||
3da0be7eb9 | |||
8935ae0ea3 | |||
31e5f4bb0e | |||
2164674b01 | |||
8f2a646286 | |||
5ff4dd26bb | |||
e342ca872f | |||
a2aa66f43a | |||
da751da3dd | |||
2b7b3dd4ba | |||
dc1148106d | |||
062a369044 | |||
e4a2f56ad1 | |||
1df30f7260 | |||
514722d67a | |||
5dbde2116f | |||
14c4650801 | |||
f155b03eee | |||
ddaf753f7b | |||
e6d14c708c | |||
7f81a95b20 | |||
6a49eec606 | |||
fd67b18c9a | |||
9affdbbaad | |||
8d300bddd0 | |||
aa2c94be9e | |||
4c79350300 | |||
10e1d623c3 | |||
aa1f827271 | |||
fb113b9077 | |||
bb9460d278 | |||
6edeb4e072 | |||
2bb4e6d5aa | |||
53028feb83 | |||
d983dd371c | |||
17ee17a789 | |||
6b3ec29480 | |||
4a30773d09 | |||
006075483d | |||
1ea9ba84f5 | |||
64bd11541a | |||
52bd29d484 | |||
41b13e83a5 | |||
0d8f9cbe55 | |||
fd75a1dd10 | |||
bfdc8c80f3 | |||
3bb81bedbd | |||
e191f6d4b2 | |||
00988e4972 | |||
7d458eb1ac | |||
b8b46aec09 | |||
4d2b87ea01 | |||
8023a23cec | |||
e4c0102b3c | |||
16d044336f | |||
c4a2808a4b | |||
59716938bf | |||
611f31c057 | |||
b60adc31d0 | |||
a98ed3a5ba | |||
f057d5c85b | |||
918a0dedc0 | |||
218b6d0546 | |||
2183dba5c5 | |||
a491e326c5 | |||
f7bb4c3f05 | |||
57271ad125 | |||
33245b37ad | |||
81d8fb8762 | |||
fc9dacd082 | |||
8b4af69d87 | |||
989d3d7f3c | |||
d2a46b4308 | |||
eb1ba8d74b | |||
4ebde013ea | |||
024f92f9a9 | |||
562c937a14 | |||
5300e353d8 | |||
d78c97f8a8 | |||
52f61698e9 | |||
6f54fe9003 | |||
895917c3ab | |||
be00a837cc | |||
dcb85b0097 | |||
5956c601f7 | |||
b67041dd29 | |||
5b62d97a47 | |||
c02b9db064 | |||
2e19b23eed | |||
f7f20fdfe4 | |||
61aff8540c | |||
2b7807e6a0 | |||
fc19624bd8 | |||
77946bfea5 | |||
d4d4d749f2 | |||
43fe8b1dda | |||
3e441f773f | |||
9c4acb9d3f | |||
451b8c96e5 | |||
b8376a4932 | |||
0d344872f1 | |||
4bfbdb0d97 | |||
049e666412 | |||
83a981b585 | |||
049645d66e | |||
4d732e06de | |||
c90c4a32ee | |||
3ff8c87c09 | |||
f26a423e95 | |||
0100ac8f2d | |||
6a3a776f4e | |||
020031f376 | |||
7053347559 | |||
bf1f6619df | |||
6bdcc32414 | |||
4f39c81dec | |||
3376968cbb | |||
0420d75d2b | |||
3bd9c27a79 | |||
b6522cf2cf | |||
861c0fe76b | |||
13ac5c6899 | |||
05070304ff | |||
af8fc6ff82 | |||
f86d0d1b69 | |||
e6741cee75 | |||
c16da75ac7 | |||
575ebaeb75 | |||
385483ff8e | |||
c7f883d22a | |||
58ff5d3f5b | |||
f060e321eb | |||
dc8c3d8073 | |||
819136c345 | |||
989b68c772 | |||
a6347a1d3c | |||
a00d1e87e4 | |||
c7d24081e2 | |||
17900e5140 | |||
6fa42cb10c | |||
4bea846199 | |||
3dccc4d61e | |||
bf0587da5f | |||
58c0bee325 | |||
b8f43f444a | |||
da76f6fee4 | |||
c4f064bbf3 | |||
0ce8472562 | |||
3e206d4d6a | |||
ce7fa96dbc | |||
a705461c04 | |||
fda7e0a71a | |||
36455f6cac | |||
513b223ef6 | |||
db05445103 | |||
30c3b7a6fc | |||
2d0f932737 | |||
9e9dce44b4 | |||
6fd8543e69 | |||
db48f3230b | |||
397604a094 | |||
f5139b174a | |||
050e5091db | |||
2c5b539d3a | |||
85ad5ef204 | |||
5beb11f4e2 | |||
844d37c642 | |||
b3723d1ccf | |||
bd43751323 | |||
e32cd794f7 | |||
761fc4beb8 | |||
531bc40d3f | |||
676051edb9 | |||
de65b82569 | |||
934f9afd7e | |||
1c01a31ee8 | |||
c5389b3298 | |||
fdbab5ffa9 | |||
a6e544ebd5 | |||
75b0507434 | |||
59c2556e6b | |||
4fe889bbf8 | |||
cbcd416b70 | |||
6fa244a343 | |||
e5a660930c | |||
61291ea105 | |||
840205496a | |||
016797c890 | |||
00e69d5d12 | |||
8e90f9024d | |||
751c4407e4 | |||
6c46304eb8 | |||
0eb31c5710 | |||
6295e56d96 | |||
5202610160 | |||
8d1b8179af | |||
3bdb059eb7 | |||
b0ebd148fa | |||
9f94d0e52a | |||
9c180da58a | |||
57d833035d | |||
c145681488 | |||
3eaf8c3b2f | |||
d9527bf445 | |||
032e9c8165 | |||
dbc3d42afc | |||
d5998ad3ef | |||
a4c8d86faa | |||
f4da66aa0f | |||
7f5a89f567 | |||
2db9b3b2ae | |||
77107dfcbc | |||
e43e198102 | |||
2aefa921fe | |||
11e6ecc1bf | |||
7d337dccc2 | |||
91e903c8ab | |||
efa615a8fd | |||
cf10852ee3 | |||
437532f2f9 | |||
8c449c4756 | |||
fc4e104c61 | |||
4194a0ed99 | |||
7ce5b6504f | |||
aea8ad5670 | |||
97f4475fdf | |||
4f9c728db0 | |||
7ea477abef | |||
d42c394ab7 | |||
61fa960a18 | |||
1969afd038 | |||
2b65e40896 | |||
d6bf6513ef | |||
14659277e7 | |||
cbb90cbdbb | |||
9c59083406 | |||
86b62cfccc | |||
e766ddbcf4 | |||
374b4a1b12 | |||
0cf7a10c5c | |||
1c44a0feba | |||
66cdeba8a1 | |||
d5a75eb833 | |||
8eab96c441 | |||
4754a94102 | |||
5c6f417471 | |||
0beec08d38 | |||
02618a701d | |||
f2a6f0cf21 | |||
07a90c0198 | |||
28031ead70 | |||
4b334be7d0 | |||
de73e4f5b9 | |||
af4579b4d4 | |||
35acb5de76 | |||
225f608556 | |||
00d3cd4aed | |||
5e59edfaf1 | |||
fdc444ed61 | |||
075f9b3a7a | |||
b1d7c9b306 | |||
5607794dbb | |||
c5147d0f57 | |||
6452d0fc28 | |||
5468d9a9fc | |||
75863e7181 | |||
0689e36390 | |||
907ff165be | |||
53c8c3b4f5 | |||
8262c31866 | |||
b940ae8dbb | |||
845d1524ad | |||
6c82b694a7 | |||
f1fcc3fb74 | |||
2dd59d31d0 | |||
78750042f5 | |||
3f79812dc6 | |||
055b2207cb | |||
19cdd5a99b | |||
5db66e00b6 | |||
76337e13f5 | |||
eb4ca4042e | |||
594bf6fef1 | |||
6f2e8d5217 | |||
52ae15c167 | |||
2c4128d44e | |||
01b106d939 | |||
68f1f87c6f | |||
c2c99b8650 | |||
896b77cf56 | |||
6f7d221f57 | |||
fba4085939 | |||
13e7614508 | |||
48ad005732 | |||
9ce4bd1182 | |||
39b7ace273 | |||
319c56f844 | |||
389a0d2810 | |||
fe33acedad | |||
eab18c7385 | |||
8e98085530 | |||
5396e998b3 | |||
fc98089960 | |||
dd0b4dc744 | |||
ddeba190bc | |||
3a610e1a65 | |||
e10e22440d | |||
f4e8a91bcf | |||
ce7fbdb01d | |||
4da6623700 | |||
4e1786d9ae | |||
0e3ca59e49 | |||
e06f2229ac | |||
5962d96f27 | |||
d4854c4fac | |||
585520d8d2 | |||
46801c076f | |||
9370572169 | |||
ace65325ff | |||
e6d890888c | |||
8e7f581065 | |||
98b2734240 | |||
7b428b5240 | |||
85ef3f51e7 | |||
ce08aa350c | |||
ba1a934297 | |||
4e90376d11 | |||
8fdc8a8da5 | |||
52d56e96a5 | |||
c013fe5b5d | |||
ddf7ddc2c1 | |||
4a0774b260 | |||
17e401cb8c | |||
29a590cced | |||
7deafa838b | |||
20757d1c02 | |||
5134de7cfa | |||
b1a6ba552b | |||
cd21d2f2b6 | |||
9dc28373d8 | |||
ffe7d5785b | |||
a2e2f0858d | |||
f73c70ca96 | |||
e2240feae4 | |||
e06348bfab | |||
8fb970d436 | |||
15256ed3a4 | |||
89a15f78dd | |||
8fc20c837b | |||
8dfe196c4f | |||
9e27fd9b90 | |||
2771328853 | |||
a481607d3f | |||
1e3cebbf42 | |||
d523556558 | |||
da523fa32f | |||
ab9b5f3b95 | |||
f32bd5dd10 | |||
190ba5af59 | |||
cb29ac63a8 | |||
603989dc0d | |||
2872ae2aab | |||
b7cdda0781 | |||
267940a77e | |||
f73b45bcb5 | |||
8d77c5ca96 | |||
0795d8764f | |||
2db56306e4 | |||
70fec9ddab | |||
909f538fb5 | |||
bab8b6d240 | |||
f2f49bd8d0 | |||
b8e0810ed1 | |||
6cb9167a1b | |||
09dfcc4277 | |||
82eb1f1075 | |||
187cf906fa | |||
82554b25fe | |||
039091c5d4 | |||
d76bf4444c | |||
82496fee14 | |||
c2b99e7545 | |||
e918168f7a | |||
6e36c275c9 | |||
6affe42310 | |||
170bbd7da3 | |||
f6d5e93020 | |||
f2515d9480 | |||
4d8f17c69d | |||
3a987b2e72 | |||
4e3f58552c | |||
77d9657980 | |||
12cae33dcd | |||
1e5310793c | |||
a0b5930340 | |||
53ed252168 | |||
a683379dda | |||
899aa1d251 | |||
23f4a4ea1a | |||
6aab8f16ce | |||
5f940bf3b3 | |||
8f61413865 | |||
43b6a077fb | |||
1cd814cba0 | |||
a1251c8e04 | |||
509514f11d | |||
c557402dbb | |||
495df9fd1b | |||
3db9a07eea | |||
9fd7eb2e0e | |||
9263f1090e | |||
135ab0a3e8 | |||
b9b89ad210 | |||
72c19987d5 | |||
8439e30798 | |||
84d6578855 | |||
0073fc8619 | |||
2fbc6dc315 | |||
be95fd753e | |||
0724eb9e0a | |||
6a4440e52b | |||
07c48b2fd1 | |||
055f5b2d4b | |||
fface339ae | |||
2ec9dab595 | |||
9f00e055ac | |||
aca5c6de9a | |||
c291b82b94 | |||
f9320475fd | |||
9c3a556813 | |||
0b6ef7eb7d | |||
6ba48af0a9 | |||
40fffec0b6 | |||
23f0c7035c | |||
94787b7251 | |||
d8db618de0 | |||
5ae2fb0d2b | |||
5b1d7a2367 | |||
f3ae9c513e | |||
ff74370eda | |||
19d67b29e7 | |||
52e7e0b31b | |||
446d87516a | |||
e8299d0abb | |||
a28ab654ef | |||
8699fd7050 | |||
2e7fc055c4 | |||
9e65470ada | |||
f4e52fafac | |||
0f7e329e76 | |||
ee7b36cea5 | |||
487455ef2e | |||
a690cca5b5 | |||
f29bafd6ec | |||
632346b2e2 | |||
e201ad2f51 | |||
0f18898865 | |||
700131fab2 | |||
634d6bb8a6 | |||
0aa7193d3b | |||
2fbf245c3d | |||
39c14eb2ac | |||
c89fa4b635 | |||
e943913f58 | |||
4ada094c5c | |||
893e199677 | |||
3c5a0c95b3 | |||
71a07ee5a7 | |||
2a0a765ec4 | |||
ec08151009 | |||
186e98da5e | |||
dea9a5da7a | |||
bda0000acd | |||
4b678f2416 | |||
43fbbfb848 | |||
b71bcab691 | |||
869f418b03 | |||
c364c85915 | |||
3773bfbc74 | |||
949437b4f0 | |||
efcb3a9d08 | |||
35d5ef9118 | |||
b4eeaaa63c | |||
54bd7c7f04 | |||
3240f98f4e | |||
3d4cef0099 | |||
3fa7170566 | |||
187d7c1cab | |||
7fde1f93ea | |||
9685760fac | |||
3f1d5000c0 | |||
ae5cb63f3c | |||
0c18c5d603 | |||
7d49c727a0 | |||
889b77d3d6 | |||
fbbc4b3f69 | |||
bc11296a5e | |||
4e13d3408f | |||
c19d48abd0 | |||
b0fb4950ed | |||
42c440c73f | |||
8bc1fe38b3 | |||
65df821233 | |||
68f2fb2601 | |||
f9459d650e | |||
bd4eaa455a | |||
b59784e521 | |||
769df47863 | |||
1cab89fe8c | |||
e31b2a6ff4 | |||
1c1a72f4c4 | |||
5ac6076944 | |||
9c3c393b84 | |||
112937f1f8 | |||
5d635c7221 | |||
e6bfc382a5 | |||
f970e3792f | |||
3ffca5490e | |||
f803d5cf1e | |||
ab2343da51 | |||
4975b1a704 | |||
e1b756658a | |||
d17450bbe6 | |||
64d676219b | |||
416afd2781 | |||
afa84a149c | |||
be659364c2 | |||
56098f370c | |||
99383c2701 | |||
6e40b543cd | |||
f287c0174b | |||
c955c13b6f | |||
ef31837167 | |||
3d1ad86e8a | |||
b08ad28daa | |||
6c03d9f8f2 | |||
9e01a13d63 | |||
73eeef34c4 | |||
1353bf98b3 | |||
e74eac5c91 | |||
47617b8f63 | |||
9c2a2b313e | |||
32662c5ee8 | |||
a61540859e | |||
c16325a244 | |||
7221a238b3 | |||
af1c1ab51f | |||
e7443867f6 | |||
025cda3815 | |||
84275a3f12 | |||
c5b5195f40 | |||
d661bf832d | |||
d45ff7e100 | |||
9dbffadc6e | |||
11882173e3 | |||
990f34aa15 | |||
f7de000e79 | |||
04c0700762 | |||
5b7eef3d43 | |||
13da881953 | |||
c3a7e35ad8 | |||
53db91ef99 | |||
ec3c15ead0 | |||
0edb31febd | |||
a137f7fe7b | |||
179455ef46 | |||
6eaa7d212d | |||
7c3eb06a71 | |||
6d688ca87d | |||
715e3217d0 | |||
72c1a8db08 | |||
337399ff7c | |||
fbc0694527 | |||
47b1a85e70 | |||
ccf093b189 | |||
ada9b06e48 | |||
7ec1be80ad | |||
6ae10798b0 | |||
ded5ebc745 | |||
65ed43afb9 | |||
3f8e978543 | |||
0c9c7591c6 | |||
0fce35c54c | |||
c82ae74610 | |||
380aa1d7b5 | |||
81ccbc5c6a | |||
bcce70fca6 | |||
1c680a7147 | |||
dcd7e01908 | |||
fca6a5dd3c | |||
e03e43281b | |||
08854b6d68 | |||
0712294c17 | |||
0ea8d3c30c | |||
84a13ff8e1 | |||
3fba262c94 | |||
107ca6bf47 | |||
1d3fda80aa | |||
562d2dd751 | |||
cbfd1d1b27 | |||
f767bf2330 | |||
b1008af696 | |||
956011066d | |||
e039771d07 | |||
cfdaa30d44 | |||
3e2a948007 | |||
af9e8fefce | |||
ba12849685 | |||
f398fe4136 | |||
41e7b008fb | |||
98e6a56714 | |||
cbd5be73d2 | |||
38e6e3b36b | |||
c9233eeca2 | |||
540f40c293 | |||
641b90cc3f | |||
aebd595607 | |||
ed88e72412 | |||
6aefd8600a | |||
ccb43d5a91 | |||
ce58c41553 | |||
9b55eea673 | |||
d9a853857c | |||
29afde7f6e | |||
675a92401c | |||
72a0b727d7 | |||
036e5d7292 | |||
b4e09d4143 | |||
bc3aab93f1 | |||
b61c83e836 | |||
32994a261a | |||
2bc3e36bc0 | |||
6fbb5ce780 | |||
cad3f96831 | |||
6534288b75 | |||
0a2964d8c0 | |||
932112b640 | |||
dabd2bf301 | |||
91112167b1 | |||
5206ddf9b2 | |||
92029e69c6 | |||
5351171d0e | |||
5b047baeb0 | |||
fe78a08e37 | |||
d93d42af4a | |||
b767b5d44c | |||
c9c2229917 | |||
421fcb761b | |||
2e0370d845 | |||
72c891bbac | |||
3074af2e33 | |||
b56be07ab3 | |||
5d59dd4b97 | |||
48a031dbaf | |||
39e66ec934 | |||
eda1c94bd6 | |||
e95cb3aa71 | |||
ab840742b0 | |||
be0603b64c | |||
5b5d5ec978 | |||
ccbfa5d862 | |||
7fa394912d | |||
373beefd13 | |||
6b0a158ffa | |||
c90345d6a3 | |||
bcb962f01f | |||
70b12d9693 | |||
9faffa2245 | |||
f66ead0819 | |||
0a121e139f | |||
6073cb8020 | |||
c487166d9c | |||
7b6159f8d6 | |||
c7b547ea3e | |||
8a1b9d1001 | |||
74ca87ac9e | |||
610c3a4512 | |||
77b0129b4c | |||
e01706f5f5 | |||
f504c7ebbd | |||
a111539059 | |||
cd033f4ead | |||
b1e16aa3db | |||
e1c0ca1ab2 | |||
52948a1bbc | |||
32e7e52d69 | |||
dcbb3dc49a | |||
8fc765694e | |||
ff74de7a60 | |||
07a2da40b8 | |||
d234bf1cb9 | |||
f7230d07db | |||
b265956083 | |||
8e0ba24bf2 | |||
be4705ec32 | |||
4ac0ce59fb | |||
4a2f34f77f | |||
558c26d78f | |||
7daafc03d3 | |||
457e4b7fc5 | |||
d1ecd007ab | |||
7dec2d09f0 | |||
13d182ead2 | |||
401727b0c9 | |||
19e076cd15 | |||
8a14c5db00 | |||
77ad3c959b | |||
952a7a8674 | |||
7b6d91c69f | |||
8f66d826a5 | |||
d270f21c85 | |||
ae72f372be | |||
0d41346417 | |||
76dc47e88d | |||
5ac114576f | |||
29b2e59e65 | |||
96c9db6d2e | |||
82fa39b531 | |||
788dcbde70 | |||
6ab9a5e108 | |||
9769b48661 | |||
8c8eddcc60 | |||
79ca0d0d02 | |||
690331b8c0 | |||
5d5a497ed4 | |||
808b2de709 | |||
2faa7cee37 | |||
467414f214 | |||
194434dbfa | |||
f88a338be0 | |||
8cb19578c2 | |||
54b813c981 | |||
c4a6f25717 | |||
b306247eb5 | |||
5aade31c22 | |||
a45f7ce355 | |||
eb9d74653d | |||
7093e5d033 | |||
565299c7a1 | |||
44662c0c0e | |||
ba783d9466 | |||
759ca317d0 | |||
3454b7654c | |||
19cbda56b6 | |||
bd7b59910d | |||
e71ce83e9c | |||
8600aad12b | |||
9960d7ca2a | |||
48561908b1 | |||
3210f96967 | |||
ad076b1174 | |||
f6752965b7 | |||
30e45eaf47 | |||
0257b4a611 | |||
3c7cf72423 | |||
2a533b275f | |||
25d07891b5 | |||
401fa6deb5 | |||
f68ab55d6b | |||
79d65125c2 | |||
e8d531b987 | |||
545e2f557f | |||
23c1a6b9d5 | |||
d4dfd84525 | |||
eb2a7058bf | |||
56d209842f | |||
0b2f0c05b2 | |||
1e5ae9d986 | |||
f2af82bf73 | |||
6d7fb49a7a | |||
48a8bd4985 | |||
d8437d3036 | |||
a0cb18a12c | |||
b2005d821a | |||
66b12ab0ea | |||
834774ce4c | |||
7cd60214cb | |||
5c58bc6348 | |||
e1d6c09ed2 | |||
8dd4ca5723 | |||
a071873327 | |||
14587464d5 | |||
d858a0c5d8 | |||
abe2a0f9b4 | |||
16e93c6455 | |||
9fb0b0959f | |||
d8f88c09ea | |||
536a397b12 | |||
524888bf3b | |||
271f64068c | |||
50f10ce5d7 | |||
d46261a528 | |||
978016ea51 | |||
4d25d702a1 | |||
d6c914eedc | |||
fba25792f9 | |||
8fc0ce7e38 | |||
9348dc8e0d | |||
d4ec8873f7 | |||
34bff3ba77 | |||
3cf75e48c5 | |||
b5e7384f09 | |||
ee253ea4f1 | |||
430b9c291f | |||
16f53228c2 | |||
28001271b8 | |||
4ab4942e69 | |||
1b42996925 | |||
98a5b3fc24 | |||
944b46908a | |||
af3b7e73ab | |||
23d2af52df | |||
059e427457 | |||
f4b37d4e55 | |||
43cc96255b | |||
37b06a4f41 | |||
4702eb2e6a | |||
5a546e66f1 | |||
fde9fa2fe4 | |||
19fdb70e20 | |||
6861499697 | |||
8274488d2c | |||
91c4e4c9b9 | |||
d1ac50b061 | |||
5f5c93abb4 | |||
6bea7bac36 | |||
a43c900961 | |||
bddc04af96 | |||
50bef87da7 | |||
eb0d55263b | |||
be02a55cac | |||
8a25e22fb0 | |||
90441c4257 | |||
99c1d5c044 | |||
c7dcf1f4a0 | |||
7e3b9f1320 | |||
1c2144794c | |||
10bb05b753 | |||
bc7c0f75a0 | |||
b7a4f3c2cb | |||
9779276a8f | |||
2cfe67bf1f | |||
71e34ac256 | |||
212156cb15 | |||
0b0efa82e9 | |||
a9d7ce8ca4 | |||
d6da7ad922 | |||
7111db2e0d | |||
c910376bb6 | |||
a674fff17a | |||
674f42ba9a | |||
3b1eeda4d4 | |||
6fbd643948 | |||
72a11ec4bc | |||
e9bc8254dd | |||
2a5737c146 | |||
f3b45d0ad9 | |||
4a8172bcd0 | |||
67c8cf4bc2 | |||
a328986b43 | |||
c0a4045d31 | |||
31bb4bfc61 | |||
3db1aa738c | |||
683229e285 | |||
2cedf6aed5 | |||
6238a53fdd | |||
310e401b03 | |||
3568e28b1c | |||
5a6ad99d4e | |||
afb46564e8 | |||
0282aa83c5 | |||
af239fa122 | |||
84af35597d | |||
3b61a3abeb | |||
c1f2a9d56c | |||
222d8b05a6 | |||
cd11d08d74 | |||
acea304348 | |||
c3adb301a0 | |||
b444b8db25 | |||
b8a9b499df | |||
75c5ce46bc | |||
e0a7ec6e95 | |||
25591788c1 | |||
b6b22dc799 | |||
dab03fb646 | |||
d32f9f7cb0 | |||
fabcf276ac | |||
358ced6bab | |||
9bd6b6068c | |||
f6302aa691 | |||
8b62eb364c | |||
6b93c1451f | |||
34cff848c7 | |||
5bf144e6bc | |||
4d9a342437 | |||
7ce43692c2 | |||
23d8a2777e | |||
6733f5bfec | |||
913789d966 | |||
48efcb0ba9 | |||
8e42502dfd | |||
e06a6bb077 | |||
d8ebbd258a | |||
83ec4c983c | |||
c9c61ee459 | |||
83eb511330 | |||
bbdb26511a | |||
b9767e9c6e | |||
f46f8058be | |||
18e2b130fc | |||
0bfa5ffd8e | |||
15175bb998 | |||
b6fabe5146 | |||
964c71dcb0 | |||
3476c58702 | |||
8b4e153acc | |||
00e26ffa9a | |||
1c45d18e6d | |||
a7b8109ac2 | |||
265996d230 | |||
bf2b5b5cd4 | |||
5759a390f9 | |||
130249a2dd | |||
8d7dba937d | |||
d6cb0e54b3 | |||
2f3190ad6c | |||
f9dc5a0530 | |||
f335363a6f | |||
11d78ad75f | |||
2ad95f961c | |||
f2b2ebfffa | |||
dfe338fc50 | |||
c5539b442c | |||
0e178c3bb7 | |||
50218f1595 | |||
cafd97e5bc | |||
d01d5b6fa9 | |||
344d87c9f1 | |||
5b876bd646 | |||
be6f366f6b | |||
4640969037 | |||
d7218d44d7 | |||
2454b51d51 | |||
9cee861b4c | |||
df27218f96 | |||
d582cf2961 | |||
b6cc4df1d8 | |||
e6a84c5ae5 | |||
5fb24197cd | |||
5f7435955e | |||
f4aa28bee0 | |||
3616ac8754 | |||
42fbaf0647 | |||
f7968ef8ce | |||
92d4486214 | |||
6c17607a2b | |||
69ef1e1e56 | |||
0cceb81ec2 | |||
9af61d3ff5 | |||
3001e4c947 | |||
2c956806d7 | |||
be06d4c0af | |||
81817532f8 | |||
ae835f47b6 | |||
8a3072db1a | |||
bd9786564c | |||
b2a5e1922d | |||
f6ecee926f | |||
454c2c0952 | |||
c2b0f83be3 | |||
0f33a98e95 | |||
b27bf7bb0c | |||
0c528f22a7 | |||
d418e763ce | |||
07ce53678b | |||
173d3e6918 | |||
18b6c1a24b | |||
cbecf3cb89 | |||
84645495a9 | |||
6399055f7f | |||
078a829b3a | |||
3333805821 | |||
1cd09a5a53 | |||
a0ccb4385f | |||
26cea7b13d | |||
2c78ac4a13 | |||
018cd00b2f | |||
e715aa075d | |||
681470e508 | |||
5146e92463 | |||
e7370e5ef3 | |||
a73206c105 | |||
0138f52220 | |||
2bc99f5b6c | |||
b11d5970f6 | |||
92a83da416 | |||
e1c7012125 | |||
8e8f9cce0f | |||
06961072c8 | |||
0ec00e3d11 | |||
657e8031bb | |||
10d3bccf32 | |||
b8e53ca135 | |||
24f6fecdd5 | |||
fefe56599f | |||
235c14ca2c | |||
6259142078 | |||
f32a2f135c | |||
f4fe878781 | |||
97b2ec58e2 | |||
3ddbb70bd7 | |||
3dc42869f4 | |||
bdbdcabcdf | |||
294336b046 | |||
fd51edfc81 | |||
fbac11a521 | |||
01b27a03a8 | |||
d9acb0eea6 | |||
1ed72cdbed | |||
d368a1de0c | |||
2933d81118 | |||
888c47d37b | |||
8d88ad3b8d | |||
56f4712814 | |||
78bcaec4da | |||
2cbe98b1b1 | |||
8457fcf7d3 | |||
a9a4081f51 | |||
b9a1aa38e3 | |||
6356dc335f | |||
9f58ed35cf | |||
909fe047e4 | |||
a8fc75b6d0 | |||
74557c8b6e | |||
53cb200f85 | |||
a4dec53b4d | |||
803e1aaa17 | |||
7481508282 | |||
7aa918677e | |||
c6d6b33e3c | |||
54f3686e3b | |||
f78f10bef6 | |||
e9352227f3 | |||
80575344fc | |||
6cb7df75de | |||
1ac787f3c1 | |||
bc5371eeee | |||
ce7803231b | |||
e573a533ae | |||
581be42c75 | |||
90c66aab3d | |||
3e925fbf34 | |||
75b28eb79b | |||
ec7c2f07c6 | |||
2eddd5db7d | |||
82978d3ee5 | |||
b250d1ec86 | |||
48258c4bb8 | |||
d5f90b1a02 | |||
a9e77675a8 | |||
94faa5de14 | |||
7a0154a7b8 | |||
b229fe19aa | |||
04b57c408f | |||
2595c1d86f | |||
c2eb6c33b9 | |||
94e38e9769 | |||
984121d682 | |||
6f1268e2b1 | |||
405054d802 | |||
a901a37433 | |||
e09c07a97d | |||
87feae959d | |||
c21245f590 | |||
fbd6b25b4d | |||
267f0408bb | |||
cc8c34311c | |||
2415dc1235 | |||
8f5fcb188c | |||
f7daa6e71d | |||
3691b55565 | |||
1ee41822bc | |||
f610045a14 | |||
a7cbcae176 | |||
43c51ff157 | |||
cfa3b2419c | |||
d4550b3059 | |||
169ff6368b | |||
71dad6d404 | |||
c21bd806f0 | |||
007d125e40 | |||
716d154957 | |||
685a47cc7d | |||
863336acbb | |||
90ae8ce26a | |||
5b6dd47b9f | |||
5027d0a603 | |||
021e1eca8e | |||
e4d92da3a9 | |||
9204b72383 | |||
6112197edf | |||
a556bf45bb | |||
8c9266359d | |||
ba7345deb4 | |||
56d4ea3252 | |||
5d4d0e795c | |||
233869b56a | |||
5d099f4a49 | |||
752b4d50cf | |||
c1c49d9a76 | |||
7f054431df | |||
b17406a985 | |||
f7d8ae20a6 | |||
41a8f155ed | |||
20fbe81395 | |||
dc1f220b3e | |||
0327eae509 | |||
bb85608890 | |||
6c7668aaca | |||
7759b3f75a | |||
4d337f6abc | |||
92c86fd0b8 | |||
46dc751139 | |||
4cefe37723 | |||
82b73c50a0 | |||
7df7a95299 | |||
85b4b359c2 | |||
cfe81b5e00 | |||
b0c4451324 | |||
d4931522d4 | |||
17e2a35228 | |||
91016d8b29 | |||
9fda21cf40 | |||
809ec7163e | |||
7c9a939b47 | |||
9634c96020 | |||
e0c105f413 | |||
f0bf32c476 | |||
28373dbb98 | |||
4133d77772 | |||
61c426f502 | |||
bf0577c882 | |||
24673fd859 | |||
dc669d1447 | |||
ce4110b9f4 | |||
0f3b7d2b3d | |||
16dc78f6c6 | |||
7a66856785 | |||
c8dfa49d86 | |||
76dd749b1e | |||
67d05d2066 |
@ -20,13 +20,13 @@ def calc_images_mean_L1(image1_path, image2_path):
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('image1_path')
|
||||
parser.add_argument('image2_path')
|
||||
parser.add_argument("image1_path")
|
||||
parser.add_argument("image2_path")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
mean_L1 = calc_images_mean_L1(args.image1_path, args.image2_path)
|
||||
print(mean_L1)
|
||||
|
@ -1,25 +1,9 @@
|
||||
# use this file as a whitelist
|
||||
*
|
||||
!invokeai
|
||||
!ldm
|
||||
!pyproject.toml
|
||||
!docker/docker-entrypoint.sh
|
||||
!LICENSE
|
||||
|
||||
# ignore frontend/web but whitelist dist
|
||||
invokeai/frontend/web/
|
||||
!invokeai/frontend/web/dist/
|
||||
|
||||
# ignore invokeai/assets but whitelist invokeai/assets/web
|
||||
invokeai/assets/
|
||||
!invokeai/assets/web/
|
||||
|
||||
# Guard against pulling in any models that might exist in the directory tree
|
||||
**/*.pt*
|
||||
**/*.ckpt
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
**/__pycache__/
|
||||
**/*.py[cod]
|
||||
|
||||
# Distribution / packaging
|
||||
**/*.egg-info/
|
||||
**/*.egg
|
||||
**/node_modules
|
||||
**/__pycache__
|
||||
**/*.egg-info
|
@ -1 +1,2 @@
|
||||
b3dccfaeb636599c02effc377cdd8a87d658256c
|
||||
218b6d0546b990fc449c876fb99f44b50c4daa35
|
||||
|
1
.gitattributes
vendored
@ -2,3 +2,4 @@
|
||||
# Only affects text files and ignores other file types.
|
||||
# For more info see: https://www.aleksandrhovhannisyan.com/blog/crlf-vs-lf-normalizing-line-endings-in-git/
|
||||
* text=auto
|
||||
docker/** text eol=lf
|
38
.github/CODEOWNERS
vendored
@ -1,34 +1,34 @@
|
||||
# continuous integration
|
||||
/.github/workflows/ @lstein @blessedcoolant
|
||||
/.github/workflows/ @lstein @blessedcoolant @hipsterusername
|
||||
|
||||
# documentation
|
||||
/docs/ @lstein @blessedcoolant @hipsterusername
|
||||
/mkdocs.yml @lstein @blessedcoolant
|
||||
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
|
||||
/mkdocs.yml @lstein @blessedcoolant @hipsterusername @Millu
|
||||
|
||||
# nodes
|
||||
/invokeai/app/ @Kyle0654 @blessedcoolant
|
||||
/invokeai/app/ @Kyle0654 @blessedcoolant @psychedelicious @brandonrising @hipsterusername
|
||||
|
||||
# installation and configuration
|
||||
/pyproject.toml @lstein @blessedcoolant
|
||||
/docker/ @lstein @blessedcoolant
|
||||
/scripts/ @ebr @lstein
|
||||
/installer/ @lstein @ebr
|
||||
/invokeai/assets @lstein @ebr
|
||||
/invokeai/configs @lstein
|
||||
/invokeai/version @lstein @blessedcoolant
|
||||
/pyproject.toml @lstein @blessedcoolant @hipsterusername
|
||||
/docker/ @lstein @blessedcoolant @hipsterusername
|
||||
/scripts/ @ebr @lstein @hipsterusername
|
||||
/installer/ @lstein @ebr @hipsterusername
|
||||
/invokeai/assets @lstein @ebr @hipsterusername
|
||||
/invokeai/configs @lstein @hipsterusername
|
||||
/invokeai/version @lstein @blessedcoolant @hipsterusername
|
||||
|
||||
# web ui
|
||||
/invokeai/frontend @blessedcoolant @psychedelicious @lstein @maryhipp
|
||||
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp
|
||||
/invokeai/frontend @blessedcoolant @psychedelicious @lstein @maryhipp @hipsterusername
|
||||
/invokeai/backend @blessedcoolant @psychedelicious @lstein @maryhipp @hipsterusername
|
||||
|
||||
# generation, model management, postprocessing
|
||||
/invokeai/backend @damian0815 @lstein @blessedcoolant @jpphoto @gregghelt2 @StAlKeR7779
|
||||
/invokeai/backend @damian0815 @lstein @blessedcoolant @gregghelt2 @StAlKeR7779 @brandonrising @ryanjdick @hipsterusername
|
||||
|
||||
# front ends
|
||||
/invokeai/frontend/CLI @lstein
|
||||
/invokeai/frontend/install @lstein @ebr
|
||||
/invokeai/frontend/merge @lstein @blessedcoolant
|
||||
/invokeai/frontend/training @lstein @blessedcoolant
|
||||
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp
|
||||
/invokeai/frontend/CLI @lstein @hipsterusername
|
||||
/invokeai/frontend/install @lstein @ebr @hipsterusername
|
||||
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
|
||||
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
|
||||
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername
|
||||
|
||||
|
||||
|
17
.github/ISSUE_TEMPLATE/FEATURE_REQUEST.yml
vendored
@ -1,5 +1,5 @@
|
||||
name: Feature Request
|
||||
description: Commit a idea or Request a new feature
|
||||
description: Contribute a idea or request a new feature
|
||||
title: '[enhancement]: '
|
||||
labels: ['enhancement']
|
||||
# assignees:
|
||||
@ -9,14 +9,14 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this Feature request!
|
||||
Thanks for taking the time to fill out this feature request!
|
||||
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: Is there an existing issue for this?
|
||||
description: |
|
||||
Please make use of the [search function](https://github.com/invoke-ai/InvokeAI/labels/enhancement)
|
||||
to see if a simmilar issue already exists for the feature you want to request
|
||||
to see if a similar issue already exists for the feature you want to request
|
||||
options:
|
||||
- label: I have searched the existing issues
|
||||
required: true
|
||||
@ -34,12 +34,9 @@ body:
|
||||
id: whatisexpected
|
||||
attributes:
|
||||
label: What should this feature add?
|
||||
description: Please try to explain the functionality this feature should add
|
||||
description: Explain the functionality this feature should add. Feature requests should be for single features. Please create multiple requests if you want to request multiple features.
|
||||
placeholder: |
|
||||
Instead of one huge textfield, it would be nice to have forms for bug-reports, feature-requests, ...
|
||||
Great benefits with automatic labeling, assigning and other functionalitys not available in that form
|
||||
via old-fashioned markdown-templates. I would also love to see the use of a moderator bot 🤖 like
|
||||
https://github.com/marketplace/actions/issue-moderator-with-commands to auto close old issues and other things
|
||||
I'd like a button that creates an image of banana sushi every time I press it. Each image should be different. There should be a toggle next to the button that enables strawberry mode, in which the images are of strawberry sushi instead.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
@ -51,6 +48,6 @@ body:
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: Aditional Content
|
||||
label: Additional Content
|
||||
description: Add any other context or screenshots about the feature request here.
|
||||
placeholder: This is a Mockup of the design how I imagine it <screenshot>
|
||||
placeholder: This is a mockup of the design how I imagine it <screenshot>
|
||||
|
51
.github/pull_request_template.md
vendored
Normal file
@ -0,0 +1,51 @@
|
||||
## What type of PR is this? (check all applicable)
|
||||
|
||||
- [ ] Refactor
|
||||
- [ ] Feature
|
||||
- [ ] Bug Fix
|
||||
- [ ] Optimization
|
||||
- [ ] Documentation Update
|
||||
- [ ] Community Node Submission
|
||||
|
||||
|
||||
## Have you discussed this change with the InvokeAI team?
|
||||
- [ ] Yes
|
||||
- [ ] No, because:
|
||||
|
||||
|
||||
## Have you updated all relevant documentation?
|
||||
- [ ] Yes
|
||||
- [ ] No
|
||||
|
||||
|
||||
## Description
|
||||
|
||||
|
||||
## Related Tickets & Documents
|
||||
|
||||
<!--
|
||||
For pull requests that relate or close an issue, please include them
|
||||
below.
|
||||
|
||||
For example having the text: "closes #1234" would connect the current pull
|
||||
request to issue 1234. And when we merge the pull request, Github will
|
||||
automatically close the issue.
|
||||
-->
|
||||
|
||||
- Related Issue #
|
||||
- Closes #
|
||||
|
||||
## QA Instructions, Screenshots, Recordings
|
||||
|
||||
<!--
|
||||
Please provide steps on how to test changes, any hardware or
|
||||
software specifications as well as any other pertinent information.
|
||||
-->
|
||||
|
||||
## Added/updated tests?
|
||||
|
||||
- [ ] Yes
|
||||
- [ ] No : _please replace this line with details on why tests
|
||||
have not been included_
|
||||
|
||||
## [optional] Are there any post deployment tasks we need to perform?
|
83
.github/workflows/build-container.yml
vendored
@ -3,17 +3,15 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- 'main'
|
||||
- 'update/ci/docker/*'
|
||||
- 'update/docker/*'
|
||||
- 'dev/ci/docker/*'
|
||||
- 'dev/docker/*'
|
||||
paths:
|
||||
- 'pyproject.toml'
|
||||
- '.dockerignore'
|
||||
- 'invokeai/**'
|
||||
- 'docker/Dockerfile'
|
||||
- 'docker/docker-entrypoint.sh'
|
||||
- 'workflows/build-container.yml'
|
||||
tags:
|
||||
- 'v*.*.*'
|
||||
- 'v*'
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
@ -26,23 +24,27 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
flavor:
|
||||
- rocm
|
||||
- cuda
|
||||
- cpu
|
||||
include:
|
||||
- flavor: rocm
|
||||
pip-extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
|
||||
- flavor: cuda
|
||||
pip-extra-index-url: ''
|
||||
- flavor: cpu
|
||||
pip-extra-index-url: 'https://download.pytorch.org/whl/cpu'
|
||||
gpu-driver:
|
||||
- cuda
|
||||
- cpu
|
||||
- rocm
|
||||
runs-on: ubuntu-latest
|
||||
name: ${{ matrix.flavor }}
|
||||
name: ${{ matrix.gpu-driver }}
|
||||
env:
|
||||
PLATFORMS: 'linux/amd64,linux/arm64'
|
||||
DOCKERFILE: 'docker/Dockerfile'
|
||||
# torch/arm64 does not support GPU currently, so arm64 builds
|
||||
# would not be GPU-accelerated.
|
||||
# re-enable arm64 if there is sufficient demand.
|
||||
# PLATFORMS: 'linux/amd64,linux/arm64'
|
||||
PLATFORMS: 'linux/amd64'
|
||||
steps:
|
||||
- name: Free up more disk space on the runner
|
||||
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
|
||||
run: |
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
||||
sudo swapoff /mnt/swapfile
|
||||
sudo rm -rf /mnt/swapfile
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
@ -53,7 +55,7 @@ jobs:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
images: |
|
||||
ghcr.io/${{ github.repository }}
|
||||
${{ vars.DOCKERHUB_REPOSITORY }}
|
||||
${{ env.DOCKERHUB_REPOSITORY }}
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=ref,event=tag
|
||||
@ -62,8 +64,8 @@ jobs:
|
||||
type=pep440,pattern={{major}}
|
||||
type=sha,enable=true,prefix=sha-,format=short
|
||||
flavor: |
|
||||
latest=${{ matrix.flavor == 'cuda' && github.ref == 'refs/heads/main' }}
|
||||
suffix=-${{ matrix.flavor }},onlatest=false
|
||||
latest=${{ matrix.gpu-driver == 'cuda' && github.ref == 'refs/heads/main' }}
|
||||
suffix=-${{ matrix.gpu-driver }},onlatest=false
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
@ -81,34 +83,33 @@ jobs:
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Login to Docker Hub
|
||||
if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
# - name: Login to Docker Hub
|
||||
# if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: docker/login-action@v2
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
|
||||
- name: Build container
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
file: ${{ env.DOCKERFILE }}
|
||||
file: docker/Dockerfile
|
||||
platforms: ${{ env.PLATFORMS }}
|
||||
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
build-args: PIP_EXTRA_INDEX_URL=${{ matrix.pip-extra-index-url }}
|
||||
cache-from: |
|
||||
type=gha,scope=${{ github.ref_name }}-${{ matrix.flavor }}
|
||||
type=gha,scope=main-${{ matrix.flavor }}
|
||||
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.flavor }}
|
||||
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
type=gha,scope=main-${{ matrix.gpu-driver }}
|
||||
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
|
||||
- name: Docker Hub Description
|
||||
if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
uses: peter-evans/dockerhub-description@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
repository: ${{ vars.DOCKERHUB_REPOSITORY }}
|
||||
short-description: ${{ github.event.repository.description }}
|
||||
# - name: Docker Hub Description
|
||||
# if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: peter-evans/dockerhub-description@v3
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
# repository: ${{ vars.DOCKERHUB_REPOSITORY }}
|
||||
# short-description: ${{ github.event.repository.description }}
|
||||
|
9
.github/workflows/close-inactive-issues.yml
vendored
@ -1,11 +1,11 @@
|
||||
name: Close inactive issues
|
||||
on:
|
||||
schedule:
|
||||
- cron: "00 6 * * *"
|
||||
- cron: "00 4 * * *"
|
||||
|
||||
env:
|
||||
DAYS_BEFORE_ISSUE_STALE: 14
|
||||
DAYS_BEFORE_ISSUE_CLOSE: 28
|
||||
DAYS_BEFORE_ISSUE_STALE: 30
|
||||
DAYS_BEFORE_ISSUE_CLOSE: 14
|
||||
|
||||
jobs:
|
||||
close-issues:
|
||||
@ -14,7 +14,7 @@ jobs:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
- uses: actions/stale@v8
|
||||
with:
|
||||
days-before-issue-stale: ${{ env.DAYS_BEFORE_ISSUE_STALE }}
|
||||
days-before-issue-close: ${{ env.DAYS_BEFORE_ISSUE_CLOSE }}
|
||||
@ -23,5 +23,6 @@ jobs:
|
||||
close-issue-message: "Due to inactivity, this issue was automatically closed. If you are still experiencing the issue, please recreate the issue."
|
||||
days-before-pr-stale: -1
|
||||
days-before-pr-close: -1
|
||||
exempt-issue-labels: "Active Issue"
|
||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
operations-per-run: 500
|
||||
|
4
.github/workflows/lint-frontend.yml
vendored
@ -2,8 +2,6 @@ name: Lint frontend
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- 'invokeai/frontend/web/**'
|
||||
types:
|
||||
- 'ready_for_review'
|
||||
- 'opened'
|
||||
@ -11,8 +9,6 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- 'main'
|
||||
paths:
|
||||
- 'invokeai/frontend/web/**'
|
||||
merge_group:
|
||||
workflow_dispatch:
|
||||
|
||||
|
4
.github/workflows/mkdocs-material.yml
vendored
@ -2,7 +2,7 @@ name: mkdocs-material
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- 'refs/heads/v2.3'
|
||||
- 'refs/heads/main'
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
@ -43,7 +43,7 @@ jobs:
|
||||
--verbose
|
||||
|
||||
- name: deploy to gh-pages
|
||||
if: ${{ github.ref == 'refs/heads/v2.3' }}
|
||||
if: ${{ github.ref == 'refs/heads/main' }}
|
||||
run: |
|
||||
python -m \
|
||||
mkdocs gh-deploy \
|
||||
|
20
.github/workflows/pyflakes.yml
vendored
@ -1,20 +0,0 @@
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- development
|
||||
- 'release-candidate-*'
|
||||
|
||||
jobs:
|
||||
pyflakes:
|
||||
name: runner / pyflakes
|
||||
if: github.event.pull_request.draft == false
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: pyflakes
|
||||
uses: reviewdog/action-pyflakes@v1
|
||||
with:
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
reporter: github-pr-review
|
2
.github/workflows/pypi-release.yml
vendored
@ -28,7 +28,7 @@ jobs:
|
||||
run: twine check dist/*
|
||||
|
||||
- name: check PyPI versions
|
||||
if: github.ref == 'refs/heads/main' || github.ref == 'refs/heads/v2.3'
|
||||
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
|
||||
run: |
|
||||
pip install --upgrade requests
|
||||
python -c "\
|
||||
|
24
.github/workflows/style-checks.yml
vendored
Normal file
@ -0,0 +1,24 @@
|
||||
name: style checks
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches: main
|
||||
|
||||
jobs:
|
||||
ruff:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
- name: Install dependencies with pip
|
||||
run: |
|
||||
pip install ruff
|
||||
|
||||
- run: ruff check --output-format=github .
|
||||
- run: ruff format --check .
|
50
.github/workflows/test-invoke-pip-skip.yml
vendored
@ -1,50 +0,0 @@
|
||||
name: Test invoke.py pip
|
||||
|
||||
# This is a dummy stand-in for the actual tests
|
||||
# we don't need to run python tests on non-Python changes
|
||||
# But PRs require passing tests to be mergeable
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- '**'
|
||||
- '!pyproject.toml'
|
||||
- '!invokeai/**'
|
||||
- '!tests/**'
|
||||
- 'invokeai/frontend/web/**'
|
||||
merge_group:
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
matrix:
|
||||
if: github.event.pull_request.draft == false
|
||||
strategy:
|
||||
matrix:
|
||||
python-version:
|
||||
- '3.10'
|
||||
pytorch:
|
||||
- linux-cuda-11_7
|
||||
- linux-rocm-5_2
|
||||
- linux-cpu
|
||||
- macos-default
|
||||
- windows-cpu
|
||||
include:
|
||||
- pytorch: linux-cuda-11_7
|
||||
os: ubuntu-22.04
|
||||
- pytorch: linux-rocm-5_2
|
||||
os: ubuntu-22.04
|
||||
- pytorch: linux-cpu
|
||||
os: ubuntu-22.04
|
||||
- pytorch: macos-default
|
||||
os: macOS-12
|
||||
- pytorch: windows-cpu
|
||||
os: windows-2022
|
||||
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- name: skip
|
||||
run: echo "no build required"
|
24
.github/workflows/test-invoke-pip.yml
vendored
@ -3,16 +3,7 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- 'main'
|
||||
paths:
|
||||
- 'pyproject.toml'
|
||||
- 'invokeai/**'
|
||||
- '!invokeai/frontend/web/**'
|
||||
pull_request:
|
||||
paths:
|
||||
- 'pyproject.toml'
|
||||
- 'invokeai/**'
|
||||
- 'tests/**'
|
||||
- '!invokeai/frontend/web/**'
|
||||
types:
|
||||
- 'ready_for_review'
|
||||
- 'opened'
|
||||
@ -65,10 +56,23 @@ jobs:
|
||||
id: checkout-sources
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Check for changed python files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@v37
|
||||
with:
|
||||
files_yaml: |
|
||||
python:
|
||||
- 'pyproject.toml'
|
||||
- 'invokeai/**'
|
||||
- '!invokeai/frontend/web/**'
|
||||
- 'tests/**'
|
||||
|
||||
- name: set test prompt to main branch validation
|
||||
if: steps.changed-files.outputs.python_any_changed == 'true'
|
||||
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
|
||||
|
||||
- name: setup python
|
||||
if: steps.changed-files.outputs.python_any_changed == 'true'
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
@ -76,6 +80,7 @@ jobs:
|
||||
cache-dependency-path: pyproject.toml
|
||||
|
||||
- name: install invokeai
|
||||
if: steps.changed-files.outputs.python_any_changed == 'true'
|
||||
env:
|
||||
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
|
||||
run: >
|
||||
@ -83,6 +88,7 @@ jobs:
|
||||
--editable=".[test]"
|
||||
|
||||
- name: run pytest
|
||||
if: steps.changed-files.outputs.python_any_changed == 'true'
|
||||
id: run-pytest
|
||||
run: pytest
|
||||
|
||||
|
50
.gitignore
vendored
@ -1,22 +1,4 @@
|
||||
# ignore default image save location and model symbolic link
|
||||
.idea/
|
||||
embeddings/
|
||||
outputs/
|
||||
models/ldm/stable-diffusion-v1/model.ckpt
|
||||
**/restoration/codeformer/weights
|
||||
|
||||
# ignore user models config
|
||||
configs/models.user.yaml
|
||||
config/models.user.yml
|
||||
invokeai.init
|
||||
.version
|
||||
.last_model
|
||||
|
||||
# ignore the Anaconda/Miniconda installer used while building Docker image
|
||||
anaconda.sh
|
||||
|
||||
# ignore a directory which serves as a place for initial images
|
||||
inputs/
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
@ -38,7 +20,6 @@ develop-eggs/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
@ -79,6 +60,7 @@ cov.xml
|
||||
.pytest.ini
|
||||
cover/
|
||||
junit/
|
||||
notes/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
@ -151,12 +133,10 @@ celerybeat.pid
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
.venv*
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
@ -189,41 +169,17 @@ cython_debug/
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
src
|
||||
**/__pycache__/
|
||||
outputs
|
||||
|
||||
# Logs and associated folders
|
||||
# created from generated embeddings.
|
||||
logs
|
||||
testtube
|
||||
checkpoints
|
||||
# If it's a Mac
|
||||
.DS_Store
|
||||
|
||||
# Let the frontend manage its own gitignore
|
||||
# !invokeai/frontend/web/*
|
||||
!invokeai/frontend/web/*
|
||||
|
||||
# Scratch folder
|
||||
.scratch/
|
||||
.vscode/
|
||||
gfpgan/
|
||||
models/ldm/stable-diffusion-v1/*.sha256
|
||||
|
||||
|
||||
# GFPGAN model files
|
||||
gfpgan/
|
||||
|
||||
# config file (will be created by installer)
|
||||
configs/models.yaml
|
||||
|
||||
# ignore initfile
|
||||
.invokeai
|
||||
|
||||
# ignore environment.yml and requirements.txt
|
||||
# these are links to the real files in environments-and-requirements
|
||||
environment.yml
|
||||
requirements.txt
|
||||
|
||||
# source installer files
|
||||
installer/*zip
|
||||
|
24
.pre-commit-config.yaml
Normal file
@ -0,0 +1,24 @@
|
||||
# See https://pre-commit.com/ for usage and config
|
||||
repos:
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: black
|
||||
name: black
|
||||
stages: [commit]
|
||||
language: system
|
||||
entry: black
|
||||
types: [python]
|
||||
|
||||
- id: flake8
|
||||
name: flake8
|
||||
stages: [commit]
|
||||
language: system
|
||||
entry: flake8
|
||||
types: [python]
|
||||
|
||||
- id: isort
|
||||
name: isort
|
||||
stages: [commit]
|
||||
language: system
|
||||
entry: isort
|
||||
types: [python]
|
189
LICENSE
@ -1,21 +1,176 @@
|
||||
MIT License
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
Copyright (c) 2022 InvokeAI Team
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
1. Definitions.
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
|
||||
|
290
LICENSE-SDXL.txt
Normal file
@ -0,0 +1,290 @@
|
||||
Copyright (c) 2023 Stability AI
|
||||
CreativeML Open RAIL++-M License dated July 26, 2023
|
||||
|
||||
Section I: PREAMBLE
|
||||
|
||||
Multimodal generative models are being widely adopted and used, and
|
||||
have the potential to transform the way artists, among other
|
||||
individuals, conceive and benefit from AI or ML technologies as a tool
|
||||
for content creation.
|
||||
|
||||
Notwithstanding the current and potential benefits that these
|
||||
artifacts can bring to society at large, there are also concerns about
|
||||
potential misuses of them, either due to their technical limitations
|
||||
or ethical considerations.
|
||||
|
||||
In short, this license strives for both the open and responsible
|
||||
downstream use of the accompanying model. When it comes to the open
|
||||
character, we took inspiration from open source permissive licenses
|
||||
regarding the grant of IP rights. Referring to the downstream
|
||||
responsible use, we added use-based restrictions not permitting the
|
||||
use of the model in very specific scenarios, in order for the licensor
|
||||
to be able to enforce the license in case potential misuses of the
|
||||
Model may occur. At the same time, we strive to promote open and
|
||||
responsible research on generative models for art and content
|
||||
generation.
|
||||
|
||||
Even though downstream derivative versions of the model could be
|
||||
released under different licensing terms, the latter will always have
|
||||
to include - at minimum - the same use-based restrictions as the ones
|
||||
in the original license (this license). We believe in the intersection
|
||||
between open and responsible AI development; thus, this agreement aims
|
||||
to strike a balance between both in order to enable responsible
|
||||
open-science in the field of AI.
|
||||
|
||||
This CreativeML Open RAIL++-M License governs the use of the model
|
||||
(and its derivatives) and is informed by the model card associated
|
||||
with the model.
|
||||
|
||||
NOW THEREFORE, You and Licensor agree as follows:
|
||||
|
||||
Definitions
|
||||
|
||||
"License" means the terms and conditions for use, reproduction, and
|
||||
Distribution as defined in this document.
|
||||
|
||||
"Data" means a collection of information and/or content extracted from
|
||||
the dataset used with the Model, including to train, pretrain, or
|
||||
otherwise evaluate the Model. The Data is not licensed under this
|
||||
License.
|
||||
|
||||
"Output" means the results of operating a Model as embodied in
|
||||
informational content resulting therefrom.
|
||||
|
||||
"Model" means any accompanying machine-learning based assemblies
|
||||
(including checkpoints), consisting of learnt weights, parameters
|
||||
(including optimizer states), corresponding to the model architecture
|
||||
as embodied in the Complementary Material, that have been trained or
|
||||
tuned, in whole or in part on the Data, using the Complementary
|
||||
Material.
|
||||
|
||||
"Derivatives of the Model" means all modifications to the Model, works
|
||||
based on the Model, or any other model which is created or initialized
|
||||
by transfer of patterns of the weights, parameters, activations or
|
||||
output of the Model, to the other model, in order to cause the other
|
||||
model to perform similarly to the Model, including - but not limited
|
||||
to - distillation methods entailing the use of intermediate data
|
||||
representations or methods based on the generation of synthetic data
|
||||
by the Model for training the other model.
|
||||
|
||||
"Complementary Material" means the accompanying source code and
|
||||
scripts used to define, run, load, benchmark or evaluate the Model,
|
||||
and used to prepare data for training or evaluation, if any. This
|
||||
includes any accompanying documentation, tutorials, examples, etc, if
|
||||
any.
|
||||
|
||||
"Distribution" means any transmission, reproduction, publication or
|
||||
other sharing of the Model or Derivatives of the Model to a third
|
||||
party, including providing the Model as a hosted service made
|
||||
available by electronic or other remote means - e.g. API-based or web
|
||||
access.
|
||||
|
||||
"Licensor" means the copyright owner or entity authorized by the
|
||||
copyright owner that is granting the License, including the persons or
|
||||
entities that may have rights in the Model and/or distributing the
|
||||
Model.
|
||||
|
||||
"You" (or "Your") means an individual or Legal Entity exercising
|
||||
permissions granted by this License and/or making use of the Model for
|
||||
whichever purpose and in any field of use, including usage of the
|
||||
Model in an end-use application - e.g. chatbot, translator, image
|
||||
generator.
|
||||
|
||||
"Third Parties" means individuals or legal entities that are not under
|
||||
common control with Licensor or You.
|
||||
|
||||
"Contribution" means any work of authorship, including the original
|
||||
version of the Model and any modifications or additions to that Model
|
||||
or Derivatives of the Model thereof, that is intentionally submitted
|
||||
to Licensor for inclusion in the Model by the copyright owner or by an
|
||||
individual or Legal Entity authorized to submit on behalf of the
|
||||
copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent to
|
||||
the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control
|
||||
systems, and issue tracking systems that are managed by, or on behalf
|
||||
of, the Licensor for the purpose of discussing and improving the
|
||||
Model, but excluding communication that is conspicuously marked or
|
||||
otherwise designated in writing by the copyright owner as "Not a
|
||||
Contribution."
|
||||
|
||||
"Contributor" means Licensor and any individual or Legal Entity on
|
||||
behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Model.
|
||||
|
||||
Section II: INTELLECTUAL PROPERTY RIGHTS
|
||||
|
||||
Both copyright and patent grants apply to the Model, Derivatives of
|
||||
the Model and Complementary Material. The Model and Derivatives of the
|
||||
Model are subject to additional terms as described in
|
||||
|
||||
Section III.
|
||||
|
||||
Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare, publicly display, publicly
|
||||
perform, sublicense, and distribute the Complementary Material, the
|
||||
Model, and Derivatives of the Model.
|
||||
|
||||
Grant of Patent License. Subject to the terms and conditions of this
|
||||
License and where and as applicable, each Contributor hereby grants to
|
||||
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
|
||||
irrevocable (except as stated in this paragraph) patent license to
|
||||
make, have made, use, offer to sell, sell, import, and otherwise
|
||||
transfer the Model and the Complementary Material, where such license
|
||||
applies only to those patent claims licensable by such Contributor
|
||||
that are necessarily infringed by their Contribution(s) alone or by
|
||||
combination of their Contribution(s) with the Model to which such
|
||||
Contribution(s) was submitted. If You institute patent litigation
|
||||
against any entity (including a cross-claim or counterclaim in a
|
||||
lawsuit) alleging that the Model and/or Complementary Material or a
|
||||
Contribution incorporated within the Model and/or Complementary
|
||||
Material constitutes direct or contributory patent infringement, then
|
||||
any patent licenses granted to You under this License for the Model
|
||||
and/or Work shall terminate as of the date such litigation is asserted
|
||||
or filed.
|
||||
|
||||
Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
|
||||
|
||||
Distribution and Redistribution. You may host for Third Party remote
|
||||
access purposes (e.g. software-as-a-service), reproduce and distribute
|
||||
copies of the Model or Derivatives of the Model thereof in any medium,
|
||||
with or without modifications, provided that You meet the following
|
||||
conditions: Use-based restrictions as referenced in paragraph 5 MUST
|
||||
be included as an enforceable provision by You in any type of legal
|
||||
agreement (e.g. a license) governing the use and/or distribution of
|
||||
the Model or Derivatives of the Model, and You shall give notice to
|
||||
subsequent users You Distribute to, that the Model or Derivatives of
|
||||
the Model are subject to paragraph 5. This provision does not apply to
|
||||
the use of Complementary Material. You must give any Third Party
|
||||
recipients of the Model or Derivatives of the Model a copy of this
|
||||
License; You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; You must retain all copyright,
|
||||
patent, trademark, and attribution notices excluding those notices
|
||||
that do not pertain to any part of the Model, Derivatives of the
|
||||
Model. You may add Your own copyright statement to Your modifications
|
||||
and may provide additional or different license terms and conditions -
|
||||
respecting paragraph 4.a. - for use, reproduction, or Distribution of
|
||||
Your modifications, or for any such Derivatives of the Model as a
|
||||
whole, provided Your use, reproduction, and Distribution of the Model
|
||||
otherwise complies with the conditions stated in this License.
|
||||
|
||||
Use-based restrictions. The restrictions set forth in Attachment A are
|
||||
considered Use-based restrictions. Therefore You cannot use the Model
|
||||
and the Derivatives of the Model for the specified restricted
|
||||
uses. You may use the Model subject to this License, including only
|
||||
for lawful purposes and in accordance with the License. Use may
|
||||
include creating any content with, finetuning, updating, running,
|
||||
training, evaluating and/or reparametrizing the Model. You shall
|
||||
require all of Your users who use the Model or a Derivative of the
|
||||
Model to comply with the terms of this paragraph (paragraph 5).
|
||||
|
||||
The Output You Generate. Except as set forth herein, Licensor claims
|
||||
no rights in the Output You generate using the Model. You are
|
||||
accountable for the Output you generate and its subsequent uses. No
|
||||
use of the output can contravene any provision as stated in the
|
||||
License.
|
||||
|
||||
Section IV: OTHER PROVISIONS
|
||||
|
||||
Updates and Runtime Restrictions. To the maximum extent permitted by
|
||||
law, Licensor reserves the right to restrict (remotely or otherwise)
|
||||
usage of the Model in violation of this License.
|
||||
|
||||
Trademarks and related. Nothing in this License permits You to make
|
||||
use of Licensors’ trademarks, trade names, logos or to otherwise
|
||||
suggest endorsement or misrepresent the relationship between the
|
||||
parties; and any rights not expressly granted herein are reserved by
|
||||
the Licensors.
|
||||
|
||||
Disclaimer of Warranty. Unless required by applicable law or agreed to
|
||||
in writing, Licensor provides the Model and the Complementary Material
|
||||
(and each Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Model, Derivatives of
|
||||
the Model, and the Complementary Material and assume any risks
|
||||
associated with Your exercise of permissions under this License.
|
||||
|
||||
Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise, unless
|
||||
required by applicable law (such as deliberate and grossly negligent
|
||||
acts) or agreed to in writing, shall any Contributor be liable to You
|
||||
for damages, including any direct, indirect, special, incidental, or
|
||||
consequential damages of any character arising as a result of this
|
||||
License or out of the use or inability to use the Model and the
|
||||
Complementary Material (including but not limited to damages for loss
|
||||
of goodwill, work stoppage, computer failure or malfunction, or any
|
||||
and all other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
Accepting Warranty or Additional Liability. While redistributing the
|
||||
Model, Derivatives of the Model and the Complementary Material
|
||||
thereof, You may choose to offer, and charge a fee for, acceptance of
|
||||
support, warranty, indemnity, or other liability obligations and/or
|
||||
rights consistent with this License. However, in accepting such
|
||||
obligations, You may act only on Your own behalf and on Your sole
|
||||
responsibility, not on behalf of any other Contributor, and only if
|
||||
You agree to indemnify, defend, and hold each Contributor harmless for
|
||||
any liability incurred by, or claims asserted against, such
|
||||
Contributor by reason of your accepting any such warranty or
|
||||
additional liability.
|
||||
|
||||
If any provision of this License is held to be invalid, illegal or
|
||||
unenforceable, the remaining provisions shall be unaffected thereby
|
||||
and remain valid as if such provision had not been set forth herein.
|
||||
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
Attachment A
|
||||
|
||||
Use Restrictions
|
||||
|
||||
You agree not to use the Model or Derivatives of the Model:
|
||||
|
||||
* In any way that violates any applicable national, federal, state,
|
||||
local or international law or regulation;
|
||||
|
||||
* For the purpose of exploiting, harming or attempting to exploit or
|
||||
harm minors in any way;
|
||||
|
||||
* To generate or disseminate verifiably false information and/or
|
||||
content with the purpose of harming others;
|
||||
|
||||
* To generate or disseminate personal identifiable information that
|
||||
can be used to harm an individual;
|
||||
|
||||
* To defame, disparage or otherwise harass others;
|
||||
|
||||
* For fully automated decision making that adversely impacts an
|
||||
individual’s legal rights or otherwise creates or modifies a
|
||||
binding, enforceable obligation;
|
||||
|
||||
* For any use intended to or which has the effect of discriminating
|
||||
against or harming individuals or groups based on online or offline
|
||||
social behavior or known or predicted personal or personality
|
||||
characteristics;
|
||||
|
||||
* To exploit any of the vulnerabilities of a specific group of persons
|
||||
based on their age, social, physical or mental characteristics, in
|
||||
order to materially distort the behavior of a person pertaining to
|
||||
that group in a manner that causes or is likely to cause that person
|
||||
or another person physical or psychological harm;
|
||||
|
||||
* For any use intended to or which has the effect of discriminating
|
||||
against individuals or groups based on legally protected
|
||||
characteristics or categories;
|
||||
|
||||
* To provide medical advice and medical results interpretation;
|
||||
|
||||
* To generate or disseminate information for the purpose to be used
|
||||
for administration of justice, law enforcement, immigration or
|
||||
asylum processes, such as predicting an individual will commit
|
||||
fraud/crime commitment (e.g. by text profiling, drawing causal
|
||||
relationships between assertions made in documents, indiscriminate
|
||||
and arbitrarily-targeted use).
|
||||
|
21
Makefile
Normal file
@ -0,0 +1,21 @@
|
||||
# simple Makefile with scripts that are otherwise hard to remember
|
||||
# to use, run from the repo root `make <command>`
|
||||
|
||||
# Runs ruff, fixing any safely-fixable errors and formatting
|
||||
ruff:
|
||||
ruff check . --fix
|
||||
ruff format .
|
||||
|
||||
# Runs ruff, fixing all errors it can fix and formatting
|
||||
ruff-unsafe:
|
||||
ruff check . --fix --unsafe-fixes
|
||||
ruff format .
|
||||
|
||||
# Runs mypy, using the config in pyproject.toml
|
||||
mypy:
|
||||
mypy scripts/invokeai-web.py
|
||||
|
||||
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
|
||||
# (many files are ignored by the config, so this is useful for checking all files)
|
||||
mypy-all:
|
||||
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
|
143
README.md
@ -3,8 +3,8 @@
|
||||

|
||||
|
||||
# Invoke AI - Generative AI for Professional Creatives
|
||||
## Image Generation for Stable Diffusion, Custom-Trained Models, and more.
|
||||
Learn more about us and get started instantly at [invoke.ai](https://invoke.ai)
|
||||
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
|
||||
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
|
||||
|
||||
|
||||
[![discord badge]][discord link]
|
||||
@ -36,15 +36,6 @@
|
||||
|
||||
</div>
|
||||
|
||||
_**Note: This is an alpha release. Bugs are expected and not all
|
||||
features are fully implemented. Please use the GitHub [Issues
|
||||
pages](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen)
|
||||
to report unexpected problems. Also note that InvokeAI root directory
|
||||
which contains models, outputs and configuration files, has changed
|
||||
between the 2.x and 3.x release. If you wish to use your v2.3 root
|
||||
directory with v3.0, please follow the directions in [Migrating a 2.3
|
||||
root directory to 3.0](#migrating-to-3).**_
|
||||
|
||||
InvokeAI is a leading creative engine built to empower professionals
|
||||
and enthusiasts alike. Generate and create stunning visual media using
|
||||
the latest AI-driven technologies. InvokeAI offers an industry leading
|
||||
@ -52,16 +43,16 @@ Web Interface, interactive Command Line Interface, and also serves as
|
||||
the foundation for multiple commercial products.
|
||||
|
||||
**Quick links**: [[How to
|
||||
Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a
|
||||
Install](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)] [<a
|
||||
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
|
||||
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
|
||||
Tutorials</a>] [<a
|
||||
href="https://github.com/invoke-ai/InvokeAI/">Code and
|
||||
Downloads</a>] [<a
|
||||
href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
|
||||
Tutorials</a>]
|
||||
[<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
|
||||
[<a
|
||||
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
|
||||
Ideas & Q&A</a>]
|
||||
Ideas & Q&A</a>]
|
||||
[<a
|
||||
href="https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/">Contributing</a>]
|
||||
|
||||
<div align="center">
|
||||
|
||||
@ -90,7 +81,7 @@ Table of Contents 📝
|
||||
## Quick Start
|
||||
|
||||
For full installation and upgrade instructions, please see:
|
||||
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
|
||||
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)
|
||||
|
||||
If upgrading from version 2.3, please read [Migrating a 2.3 root
|
||||
directory to 3.0](#migrating-to-3) first.
|
||||
@ -132,8 +123,10 @@ and go to http://localhost:9090.
|
||||
|
||||
### Command-Line Installation (for developers and users familiar with Terminals)
|
||||
|
||||
You must have Python 3.9 or 3.10 installed on your machine. Earlier or later versions are
|
||||
not supported.
|
||||
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
|
||||
later versions are not supported.
|
||||
Node.js also needs to be installed along with yarn (can be installed with
|
||||
the command `npm install -g yarn` if needed)
|
||||
|
||||
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
|
||||
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
|
||||
@ -168,7 +161,7 @@ not supported.
|
||||
_For Windows/Linux with an NVIDIA GPU:_
|
||||
|
||||
```terminal
|
||||
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu117
|
||||
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
|
||||
```
|
||||
|
||||
_For Linux with an AMD GPU:_
|
||||
@ -182,7 +175,7 @@ not supported.
|
||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
```
|
||||
|
||||
_For Macintoshes, either Intel or M1/M2:_
|
||||
_For Macintoshes, either Intel or M1/M2/M3:_
|
||||
|
||||
```sh
|
||||
pip install InvokeAI --use-pep517
|
||||
@ -191,16 +184,18 @@ not supported.
|
||||
6. Configure InvokeAI and install a starting set of image generation models (you only need to do this once):
|
||||
|
||||
```terminal
|
||||
invokeai-configure
|
||||
invokeai-configure --root .
|
||||
```
|
||||
Don't miss the dot at the end!
|
||||
|
||||
7. Launch the web server (do it every time you run InvokeAI):
|
||||
|
||||
```terminal
|
||||
invokeai --web
|
||||
invokeai-web
|
||||
```
|
||||
|
||||
8. Point your browser to http://localhost:9090 to bring up the web interface.
|
||||
|
||||
9. Type `banana sushi` in the box on the top left and click `Invoke`.
|
||||
|
||||
Be sure to activate the virtual environment each time before re-launching InvokeAI,
|
||||
@ -255,19 +250,24 @@ old models directory (which contains the models selected at install
|
||||
time) will be renamed `models.orig` and can be deleted once you have
|
||||
confirmed that the migration was successful.
|
||||
|
||||
If you wish, you can pass the 2.3 root directory to both `--from` and
|
||||
`--to` in order to update in place. Warning: this directory will no
|
||||
longer be usable with InvokeAI 2.3.
|
||||
|
||||
#### Migrating in place
|
||||
|
||||
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
|
||||
without touching the command line. The recipe is as follows>
|
||||
without touching the command line. ***This recipe does not work on
|
||||
Windows platforms due to a bug in the Windows version of the 2.3
|
||||
upgrade script.** See the next section for a Windows recipe.
|
||||
|
||||
##### For Mac and Linux Users:
|
||||
|
||||
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
|
||||
|
||||
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
|
||||
|
||||
3a. During the alpha release phase, select option [3] and manually
|
||||
enter the tag name `v3.0.0+a2`.
|
||||
|
||||
3b. Once 3.0 is released, select option [1] to upgrade to the latest release.
|
||||
3. Select option [1] to upgrade to the latest release.
|
||||
|
||||
4. Once the upgrade is finished you will be returned to the launcher
|
||||
menu. Select option [7] "Re-run the configure script to fix a broken
|
||||
@ -286,14 +286,50 @@ worked, you can safely remove these files. Alternatively you can
|
||||
restore a working v2.3 directory by removing the new files and
|
||||
restoring the ".orig" files' original names.
|
||||
|
||||
#### Migration Caveats
|
||||
##### For Windows Users:
|
||||
|
||||
Windows Users can upgrade with the
|
||||
|
||||
1. Enter the 2.3 root directory you wish to upgrade
|
||||
2. Launch `invoke.sh` or `invoke.bat`
|
||||
3. Select the "Developer's console" option [8]
|
||||
4. Type the following commands
|
||||
|
||||
```
|
||||
pip install "invokeai @ https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v3.0.0" --use-pep517 --upgrade
|
||||
invokeai-configure --root .
|
||||
```
|
||||
(Replace `v3.0.0` with the current release number if this document is out of date).
|
||||
|
||||
The first command will install and upgrade new software to run
|
||||
InvokeAI. The second will prepare the 2.3 directory for use with 3.0.
|
||||
You may now launch the WebUI in the usual way, by selecting option [1]
|
||||
from the launcher script
|
||||
|
||||
#### Migrating Images
|
||||
|
||||
The migration script will migrate your invokeai settings and models,
|
||||
including textual inversion models, LoRAs and merges that you may have
|
||||
installed previously. However it does **not** migrate the generated
|
||||
images stored in your 2.3-format outputs directory. The released
|
||||
version of 3.0 is expected to have an interface for importing an
|
||||
entire directory of image files as a batch.
|
||||
images stored in your 2.3-format outputs directory. To do this, you
|
||||
need to run an additional step:
|
||||
|
||||
1. From a working InvokeAI 3.0 root directory, start the launcher and
|
||||
enter menu option [8] to open the "developer's console".
|
||||
|
||||
2. At the developer's console command line, type the command:
|
||||
|
||||
```bash
|
||||
invokeai-import-images
|
||||
```
|
||||
|
||||
3. This will lead you through the process of confirming the desired
|
||||
source and destination for the imported images. The images will
|
||||
appear in the gallery board of your choice, and contain the
|
||||
original prompt, model name, and other parameters used to generate
|
||||
the image.
|
||||
|
||||
(Many kudos to **techjedi** for contributing this script.)
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
@ -305,9 +341,12 @@ AMD card (using the ROCm driver).
|
||||
|
||||
You will need one of the following:
|
||||
|
||||
- An NVIDIA-based graphics card with 4 GB or more VRAM memory.
|
||||
- An NVIDIA-based graphics card with 4 GB or more VRAM memory. 6-8 GB
|
||||
of VRAM is highly recommended for rendering using the Stable
|
||||
Diffusion XL models
|
||||
- An Apple computer with an M1 chip.
|
||||
- An AMD-based graphics card with 4GB or more VRAM memory. (Linux only)
|
||||
- An AMD-based graphics card with 4GB or more VRAM memory (Linux
|
||||
only), 6-8 GB for XL rendering.
|
||||
|
||||
We do not recommend the GTX 1650 or 1660 series video cards. They are
|
||||
unable to run in half-precision mode and do not have sufficient VRAM
|
||||
@ -329,24 +368,24 @@ InvokeAI offers a locally hosted Web Server & React Frontend, with an industry l
|
||||
|
||||
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
|
||||
|
||||
### *Advanced Prompt Syntax*
|
||||
### *Workflows & Nodes*
|
||||
|
||||
Invoke AI's advanced prompt syntax allows for token weighting, cross-attention control, and prompt blending, allowing for fine-tuned tweaking of your invocations and exploration of the latent space.
|
||||
InvokeAI offers a fully featured workflow management solution, enabling users to combine the power of nodes based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
|
||||
|
||||
### *Command Line Interface*
|
||||
### *Board & Gallery Management*
|
||||
|
||||
For users utilizing a terminal-based environment, or who want to take advantage of CLI features, InvokeAI offers an extensive and actively supported command-line interface that provides the full suite of generation functionality available in the tool.
|
||||
Invoke AI provides an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
|
||||
|
||||
### Other features
|
||||
|
||||
- *Support for both ckpt and diffusers models*
|
||||
- *SD 2.0, 2.1 support*
|
||||
- *Upscaling & Face Restoration Tools*
|
||||
- *SD 2.0, 2.1, XL support*
|
||||
- *Upscaling Tools*
|
||||
- *Embedding Manager & Support*
|
||||
- *Model Manager & Support*
|
||||
- *Workflow creation & management*
|
||||
- *Node-Based Architecture*
|
||||
- *Node-Based Plug-&-Play UI (Beta)*
|
||||
- *Boards & Gallery Management
|
||||
|
||||
|
||||
### Latest Changes
|
||||
|
||||
@ -356,21 +395,19 @@ Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
|
||||
|
||||
### Troubleshooting
|
||||
|
||||
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
|
||||
problems and other issues.
|
||||
Please check out our **[Troubleshooting Guide](https://invoke-ai.github.io/InvokeAI/installation/010_INSTALL_AUTOMATED/#troubleshooting)** to get solutions for common installation
|
||||
problems and other issues. For more help, please join our [Discord][discord link]
|
||||
|
||||
## 🤝 Contributing
|
||||
## Contributing
|
||||
|
||||
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
|
||||
cleanup, testing, or code reviews, is very much encouraged to do so.
|
||||
|
||||
To join, just raise your hand on the InvokeAI Discord server (#dev-chat) or the GitHub discussion board.
|
||||
|
||||
If you'd like to help with translation, please see our [translation guide](docs/other/TRANSLATION.md).
|
||||
Get started with contributing by reading our [Contribution documentation](https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/), joining the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) or the GitHub discussion board.
|
||||
|
||||
If you are unfamiliar with how
|
||||
to contribute to GitHub projects, here is a
|
||||
[Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github). A full set of contribution guidelines, along with templates, are in progress. You can **make your pull request against the "main" branch**.
|
||||
to contribute to GitHub projects, we have a new contributor checklist you can follow to get started contributing:
|
||||
[New Contributor Checklist](https://invoke-ai.github.io/InvokeAI/contributing/contribution_guides/newContributorChecklist/).
|
||||
|
||||
We hope you enjoy using our software as much as we enjoy creating it,
|
||||
and we hope that some of those of you who are reading this will elect
|
||||
@ -378,7 +415,7 @@ to become part of our community.
|
||||
|
||||
Welcome to InvokeAI!
|
||||
|
||||
### 👥 Contributors
|
||||
### Contributors
|
||||
|
||||
This fork is a combined effort of various people from across the world.
|
||||
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
|
||||
@ -386,7 +423,7 @@ their time, hard work and effort.
|
||||
|
||||
### Support
|
||||
|
||||
For support, please use this repository's GitHub Issues tracking service, or join the Discord.
|
||||
For support, please use this repository's GitHub Issues tracking service, or join the [Discord][discord link].
|
||||
|
||||
Original portions of the software are Copyright (c) 2023 by respective contributors.
|
||||
|
||||
|
15
docker/.env.sample
Normal file
@ -0,0 +1,15 @@
|
||||
## Make a copy of this file named `.env` and fill in the values below.
|
||||
## Any environment variables supported by InvokeAI can be specified here,
|
||||
## in addition to the examples below.
|
||||
|
||||
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
|
||||
# Outputs will also be stored here by default.
|
||||
# This **must** be an absolute path.
|
||||
INVOKEAI_ROOT=
|
||||
|
||||
# Get this value from your HuggingFace account settings page.
|
||||
# HUGGING_FACE_HUB_TOKEN=
|
||||
|
||||
## optional variables specific to the docker setup.
|
||||
# GPU_DRIVER=cuda # or rocm
|
||||
# CONTAINER_UID=1000
|
@ -1,107 +1,124 @@
|
||||
# syntax=docker/dockerfile:1
|
||||
# syntax=docker/dockerfile:1.4
|
||||
|
||||
ARG PYTHON_VERSION=3.9
|
||||
##################
|
||||
## base image ##
|
||||
##################
|
||||
FROM --platform=${TARGETPLATFORM} python:${PYTHON_VERSION}-slim AS python-base
|
||||
## Builder stage
|
||||
|
||||
LABEL org.opencontainers.image.authors="mauwii@outlook.de"
|
||||
FROM library/ubuntu:23.04 AS builder
|
||||
|
||||
# Prepare apt for buildkit cache
|
||||
RUN rm -f /etc/apt/apt.conf.d/docker-clean \
|
||||
&& echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' >/etc/apt/apt.conf.d/keep-cache
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
|
||||
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
apt update && apt-get install -y \
|
||||
git \
|
||||
python3-venv \
|
||||
python3-pip \
|
||||
build-essential
|
||||
|
||||
# Install dependencies
|
||||
RUN \
|
||||
--mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
apt-get update \
|
||||
&& apt-get install -y \
|
||||
--no-install-recommends \
|
||||
libgl1-mesa-glx=20.3.* \
|
||||
libglib2.0-0=2.66.* \
|
||||
libopencv-dev=4.5.*
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
|
||||
# Set working directory and env
|
||||
ARG APPDIR=/usr/src
|
||||
ARG APPNAME=InvokeAI
|
||||
WORKDIR ${APPDIR}
|
||||
ENV PATH ${APPDIR}/${APPNAME}/bin:$PATH
|
||||
# Keeps Python from generating .pyc files in the container
|
||||
ENV PYTHONDONTWRITEBYTECODE 1
|
||||
# Turns off buffering for easier container logging
|
||||
ENV PYTHONUNBUFFERED 1
|
||||
# Don't fall back to legacy build system
|
||||
ENV PIP_USE_PEP517=1
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
ARG TORCH_VERSION=2.1.0
|
||||
ARG TORCHVISION_VERSION=0.16
|
||||
ARG GPU_DRIVER=cuda
|
||||
ARG TARGETPLATFORM="linux/amd64"
|
||||
# unused but available
|
||||
ARG BUILDPLATFORM
|
||||
|
||||
#######################
|
||||
## build pyproject ##
|
||||
#######################
|
||||
FROM python-base AS pyproject-builder
|
||||
WORKDIR ${INVOKEAI_SRC}
|
||||
|
||||
# Install build dependencies
|
||||
RUN \
|
||||
--mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
apt-get update \
|
||||
&& apt-get install -y \
|
||||
--no-install-recommends \
|
||||
build-essential=12.9 \
|
||||
gcc=4:10.2.* \
|
||||
python3-dev=3.9.*
|
||||
# Install pytorch before all other pip packages
|
||||
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
|
||||
# x86_64/CUDA is default
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
python3 -m venv ${VIRTUAL_ENV} &&\
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
|
||||
elif [ "$GPU_DRIVER" = "rocm" ]; then \
|
||||
extra_index_url_arg="--index-url https://download.pytorch.org/whl/rocm5.6"; \
|
||||
else \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
|
||||
fi &&\
|
||||
pip install $extra_index_url_arg \
|
||||
torch==$TORCH_VERSION \
|
||||
torchvision==$TORCHVISION_VERSION
|
||||
|
||||
# Prepare pip for buildkit cache
|
||||
ARG PIP_CACHE_DIR=/var/cache/buildkit/pip
|
||||
ENV PIP_CACHE_DIR ${PIP_CACHE_DIR}
|
||||
RUN mkdir -p ${PIP_CACHE_DIR}
|
||||
# Install the local package.
|
||||
# Editable mode helps use the same image for development:
|
||||
# the local working copy can be bind-mounted into the image
|
||||
# at path defined by ${INVOKEAI_SRC}
|
||||
COPY invokeai ./invokeai
|
||||
COPY pyproject.toml ./
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
# xformers + triton fails to install on arm64
|
||||
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
|
||||
pip install -e ".[xformers]"; \
|
||||
else \
|
||||
pip install -e "."; \
|
||||
fi
|
||||
|
||||
# Create virtual environment
|
||||
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
|
||||
python3 -m venv "${APPNAME}" \
|
||||
--upgrade-deps
|
||||
# #### Build the Web UI ------------------------------------
|
||||
|
||||
# Install requirements
|
||||
COPY --link pyproject.toml .
|
||||
COPY --link invokeai/version/invokeai_version.py invokeai/version/__init__.py invokeai/version/
|
||||
ARG PIP_EXTRA_INDEX_URL
|
||||
ENV PIP_EXTRA_INDEX_URL ${PIP_EXTRA_INDEX_URL}
|
||||
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
|
||||
"${APPNAME}"/bin/pip install .
|
||||
FROM node:18 AS web-builder
|
||||
WORKDIR /build
|
||||
COPY invokeai/frontend/web/ ./
|
||||
RUN --mount=type=cache,target=/usr/lib/node_modules \
|
||||
npm install --include dev
|
||||
RUN --mount=type=cache,target=/usr/lib/node_modules \
|
||||
yarn vite build
|
||||
|
||||
# Install pyproject.toml
|
||||
COPY --link . .
|
||||
RUN --mount=type=cache,target=${PIP_CACHE_DIR} \
|
||||
"${APPNAME}/bin/pip" install .
|
||||
|
||||
# Build patchmatch
|
||||
#### Runtime stage ---------------------------------------
|
||||
|
||||
FROM library/ubuntu:23.04 AS runtime
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
|
||||
RUN apt update && apt install -y --no-install-recommends \
|
||||
git \
|
||||
curl \
|
||||
vim \
|
||||
tmux \
|
||||
ncdu \
|
||||
iotop \
|
||||
bzip2 \
|
||||
gosu \
|
||||
magic-wormhole \
|
||||
libglib2.0-0 \
|
||||
libgl1-mesa-glx \
|
||||
python3-venv \
|
||||
python3-pip \
|
||||
build-essential \
|
||||
libopencv-dev \
|
||||
libstdc++-10-dev &&\
|
||||
apt-get clean && apt-get autoclean
|
||||
|
||||
|
||||
ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
ENV INVOKEAI_ROOT=/invokeai
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
|
||||
|
||||
# --link requires buldkit w/ dockerfile syntax 1.4
|
||||
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
|
||||
COPY --link --from=builder ${VIRTUAL_ENV} ${VIRTUAL_ENV}
|
||||
COPY --link --from=web-builder /build/dist ${INVOKEAI_SRC}/invokeai/frontend/web/dist
|
||||
|
||||
# Link amdgpu.ids for ROCm builds
|
||||
# contributed by https://github.com/Rubonnek
|
||||
RUN mkdir -p "/opt/amdgpu/share/libdrm" &&\
|
||||
ln -s "/usr/share/libdrm/amdgpu.ids" "/opt/amdgpu/share/libdrm/amdgpu.ids"
|
||||
|
||||
WORKDIR ${INVOKEAI_SRC}
|
||||
|
||||
# build patchmatch
|
||||
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
|
||||
RUN python3 -c "from patchmatch import patch_match"
|
||||
|
||||
#####################
|
||||
## runtime image ##
|
||||
#####################
|
||||
FROM python-base AS runtime
|
||||
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R 1000:1000 ${INVOKEAI_ROOT}
|
||||
|
||||
# Create a new user
|
||||
ARG UNAME=appuser
|
||||
RUN useradd \
|
||||
--no-log-init \
|
||||
-m \
|
||||
-U \
|
||||
"${UNAME}"
|
||||
|
||||
# Create volume directory
|
||||
ARG VOLUME_DIR=/data
|
||||
RUN mkdir -p "${VOLUME_DIR}" \
|
||||
&& chown -hR "${UNAME}:${UNAME}" "${VOLUME_DIR}"
|
||||
|
||||
# Setup runtime environment
|
||||
USER ${UNAME}:${UNAME}
|
||||
COPY --chown=${UNAME}:${UNAME} --from=pyproject-builder ${APPDIR}/${APPNAME} ${APPNAME}
|
||||
ENV INVOKEAI_ROOT ${VOLUME_DIR}
|
||||
ENV TRANSFORMERS_CACHE ${VOLUME_DIR}/.cache
|
||||
ENV INVOKE_MODEL_RECONFIGURE "--yes --default_only"
|
||||
EXPOSE 9090
|
||||
ENTRYPOINT [ "invokeai" ]
|
||||
CMD [ "--web", "--host", "0.0.0.0", "--port", "9090" ]
|
||||
VOLUME [ "${VOLUME_DIR}" ]
|
||||
COPY docker/docker-entrypoint.sh ./
|
||||
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
|
||||
CMD ["invokeai-web", "--host", "0.0.0.0"]
|
||||
|
78
docker/README.md
Normal file
@ -0,0 +1,78 @@
|
||||
# InvokeAI Containerized
|
||||
|
||||
All commands are to be run from the `docker` directory: `cd docker`
|
||||
|
||||
#### Linux
|
||||
|
||||
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
|
||||
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
|
||||
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
|
||||
3. Ensure docker daemon is able to access the GPU.
|
||||
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
|
||||
#### macOS
|
||||
|
||||
1. Ensure Docker has at least 16GB RAM
|
||||
2. Enable VirtioFS for file sharing
|
||||
3. Enable `docker compose` V2 support
|
||||
|
||||
This is done via Docker Desktop preferences
|
||||
|
||||
## Quickstart
|
||||
|
||||
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
||||
a. the desired location of the InvokeAI runtime directory, or
|
||||
b. an existing, v3.0.0 compatible runtime directory.
|
||||
1. `docker compose up`
|
||||
|
||||
The image will be built automatically if needed.
|
||||
|
||||
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
|
||||
|
||||
### Use a GPU
|
||||
|
||||
- Linux is *recommended* for GPU support in Docker.
|
||||
- WSL2 is *required* for Windows.
|
||||
- only `x86_64` architecture is supported.
|
||||
|
||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||
|
||||
## Customize
|
||||
|
||||
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
|
||||
|
||||
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
|
||||
|
||||
Example (values are optional, but setting `INVOKEAI_ROOT` is highly recommended):
|
||||
|
||||
```bash
|
||||
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
|
||||
HUGGINGFACE_TOKEN=the_actual_token
|
||||
CONTAINER_UID=1000
|
||||
GPU_DRIVER=cuda
|
||||
```
|
||||
|
||||
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
||||
|
||||
## Even Moar Customizing!
|
||||
|
||||
See the `docker-compose.yml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
|
||||
|
||||
### Reconfigure the runtime directory
|
||||
|
||||
Can be used to download additional models from the supported model list
|
||||
|
||||
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
|
||||
|
||||
```yaml
|
||||
command:
|
||||
- invokeai-configure
|
||||
- --yes
|
||||
```
|
||||
|
||||
Or install models:
|
||||
|
||||
```yaml
|
||||
command:
|
||||
- invokeai-model-install
|
||||
```
|
@ -1,51 +1,11 @@
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
# If you want to build a specific flavor, set the CONTAINER_FLAVOR environment variable
|
||||
# e.g. CONTAINER_FLAVOR=cpu ./build.sh
|
||||
# Possible Values are:
|
||||
# - cpu
|
||||
# - cuda
|
||||
# - rocm
|
||||
# Don't forget to also set it when executing run.sh
|
||||
# if it is not set, the script will try to detect the flavor by itself.
|
||||
#
|
||||
# Doc can be found here:
|
||||
# https://invoke-ai.github.io/InvokeAI/installation/040_INSTALL_DOCKER/
|
||||
build_args=""
|
||||
|
||||
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
|
||||
cd "$SCRIPTDIR" || exit 1
|
||||
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
|
||||
|
||||
source ./env.sh
|
||||
echo "docker compose build args:"
|
||||
echo $build_args
|
||||
|
||||
DOCKERFILE=${INVOKE_DOCKERFILE:-./Dockerfile}
|
||||
|
||||
# print the settings
|
||||
echo -e "You are using these values:\n"
|
||||
echo -e "Dockerfile:\t\t${DOCKERFILE}"
|
||||
echo -e "index-url:\t\t${PIP_EXTRA_INDEX_URL:-none}"
|
||||
echo -e "Volumename:\t\t${VOLUMENAME}"
|
||||
echo -e "Platform:\t\t${PLATFORM}"
|
||||
echo -e "Container Registry:\t${CONTAINER_REGISTRY}"
|
||||
echo -e "Container Repository:\t${CONTAINER_REPOSITORY}"
|
||||
echo -e "Container Tag:\t\t${CONTAINER_TAG}"
|
||||
echo -e "Container Flavor:\t${CONTAINER_FLAVOR}"
|
||||
echo -e "Container Image:\t${CONTAINER_IMAGE}\n"
|
||||
|
||||
# Create docker volume
|
||||
if [[ -n "$(docker volume ls -f name="${VOLUMENAME}" -q)" ]]; then
|
||||
echo -e "Volume already exists\n"
|
||||
else
|
||||
echo -n "creating docker volume "
|
||||
docker volume create "${VOLUMENAME}"
|
||||
fi
|
||||
|
||||
# Build Container
|
||||
docker build \
|
||||
--platform="${PLATFORM:-linux/amd64}" \
|
||||
--tag="${CONTAINER_IMAGE:-invokeai}" \
|
||||
${CONTAINER_FLAVOR:+--build-arg="CONTAINER_FLAVOR=${CONTAINER_FLAVOR}"} \
|
||||
${PIP_EXTRA_INDEX_URL:+--build-arg="PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}"} \
|
||||
${PIP_PACKAGE:+--build-arg="PIP_PACKAGE=${PIP_PACKAGE}"} \
|
||||
--file="${DOCKERFILE}" \
|
||||
..
|
||||
docker compose build $build_args
|
||||
|
52
docker/docker-compose.yml
Normal file
@ -0,0 +1,52 @@
|
||||
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
|
||||
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
invokeai:
|
||||
image: "local/invokeai:latest"
|
||||
# edit below to run on a container runtime other than nvidia-container-runtime.
|
||||
# not yet tested with rocm/AMD GPUs
|
||||
# Comment out the "deploy" section to run on CPU only
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities: [gpu]
|
||||
# For AMD support, comment out the deploy section above and uncomment the devices section below:
|
||||
#devices:
|
||||
# - /dev/kfd:/dev/kfd
|
||||
# - /dev/dri:/dev/dri
|
||||
build:
|
||||
context: ..
|
||||
dockerfile: docker/Dockerfile
|
||||
|
||||
# variables without a default will automatically inherit from the host environment
|
||||
environment:
|
||||
- INVOKEAI_ROOT
|
||||
- HF_HOME
|
||||
|
||||
# Create a .env file in the same directory as this docker-compose.yml file
|
||||
# and populate it with environment variables. See .env.sample
|
||||
env_file:
|
||||
- .env
|
||||
|
||||
ports:
|
||||
- "${INVOKEAI_PORT:-9090}:9090"
|
||||
volumes:
|
||||
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
|
||||
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
|
||||
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
|
||||
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
|
||||
tty: true
|
||||
stdin_open: true
|
||||
|
||||
# # Example of running alternative commands/scripts in the container
|
||||
# command:
|
||||
# - bash
|
||||
# - -c
|
||||
# - |
|
||||
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
|
||||
# invokeai-nodes-web --host 0.0.0.0
|
65
docker/docker-entrypoint.sh
Executable file
@ -0,0 +1,65 @@
|
||||
#!/bin/bash
|
||||
set -e -o pipefail
|
||||
|
||||
### Container entrypoint
|
||||
# Runs the CMD as defined by the Dockerfile or passed to `docker run`
|
||||
# Can be used to configure the runtime dir
|
||||
# Bypass by using ENTRYPOINT or `--entrypoint`
|
||||
|
||||
### Set INVOKEAI_ROOT pointing to a valid runtime directory
|
||||
# Otherwise configure the runtime dir first.
|
||||
|
||||
### Configure the InvokeAI runtime directory (done by default)):
|
||||
# docker run --rm -it <this image> --configure
|
||||
# or skip with --no-configure
|
||||
|
||||
### Set the CONTAINER_UID envvar to match your user.
|
||||
# Ensures files created in the container are owned by you:
|
||||
# docker run --rm -it -v /some/path:/invokeai -e CONTAINER_UID=$(id -u) <this image>
|
||||
# Default UID: 1000 chosen due to popularity on Linux systems. Possibly 501 on MacOS.
|
||||
|
||||
USER_ID=${CONTAINER_UID:-1000}
|
||||
USER=ubuntu
|
||||
usermod -u ${USER_ID} ${USER} 1>/dev/null
|
||||
|
||||
configure() {
|
||||
# Configure the runtime directory
|
||||
if [[ -f ${INVOKEAI_ROOT}/invokeai.yaml ]]; then
|
||||
echo "${INVOKEAI_ROOT}/invokeai.yaml exists. InvokeAI is already configured."
|
||||
echo "To reconfigure InvokeAI, delete the above file."
|
||||
echo "======================================================================"
|
||||
else
|
||||
mkdir -p "${INVOKEAI_ROOT}"
|
||||
chown --recursive ${USER} "${INVOKEAI_ROOT}"
|
||||
gosu ${USER} invokeai-configure --yes --default_only
|
||||
fi
|
||||
}
|
||||
|
||||
## Skip attempting to configure.
|
||||
## Must be passed first, before any other args.
|
||||
if [[ $1 != "--no-configure" ]]; then
|
||||
configure
|
||||
else
|
||||
shift
|
||||
fi
|
||||
|
||||
### Set the $PUBLIC_KEY env var to enable SSH access.
|
||||
# We do not install openssh-server in the image by default to avoid bloat.
|
||||
# but it is useful to have the full SSH server e.g. on Runpod.
|
||||
# (use SCP to copy files to/from the image, etc)
|
||||
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
|
||||
apt-get update
|
||||
apt-get install -y openssh-server
|
||||
pushd "$HOME"
|
||||
mkdir -p .ssh
|
||||
echo "${PUBLIC_KEY}" > .ssh/authorized_keys
|
||||
chmod -R 700 .ssh
|
||||
popd
|
||||
service ssh start
|
||||
fi
|
||||
|
||||
|
||||
cd "${INVOKEAI_ROOT}"
|
||||
|
||||
# Run the CMD as the Container User (not root).
|
||||
exec gosu ${USER} "$@"
|
@ -1,54 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# This file is used to set environment variables for the build.sh and run.sh scripts.
|
||||
|
||||
# Try to detect the container flavor if no PIP_EXTRA_INDEX_URL got specified
|
||||
if [[ -z "$PIP_EXTRA_INDEX_URL" ]]; then
|
||||
|
||||
# Activate virtual environment if not already activated and exists
|
||||
if [[ -z $VIRTUAL_ENV ]]; then
|
||||
[[ -e "$(dirname "${BASH_SOURCE[0]}")/../.venv/bin/activate" ]] \
|
||||
&& source "$(dirname "${BASH_SOURCE[0]}")/../.venv/bin/activate" \
|
||||
&& echo "Activated virtual environment: $VIRTUAL_ENV"
|
||||
fi
|
||||
|
||||
# Decide which container flavor to build if not specified
|
||||
if [[ -z "$CONTAINER_FLAVOR" ]] && python -c "import torch" &>/dev/null; then
|
||||
# Check for CUDA and ROCm
|
||||
CUDA_AVAILABLE=$(python -c "import torch;print(torch.cuda.is_available())")
|
||||
ROCM_AVAILABLE=$(python -c "import torch;print(torch.version.hip is not None)")
|
||||
if [[ "${CUDA_AVAILABLE}" == "True" ]]; then
|
||||
CONTAINER_FLAVOR="cuda"
|
||||
elif [[ "${ROCM_AVAILABLE}" == "True" ]]; then
|
||||
CONTAINER_FLAVOR="rocm"
|
||||
else
|
||||
CONTAINER_FLAVOR="cpu"
|
||||
fi
|
||||
fi
|
||||
|
||||
# Set PIP_EXTRA_INDEX_URL based on container flavor
|
||||
if [[ "$CONTAINER_FLAVOR" == "rocm" ]]; then
|
||||
PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/rocm"
|
||||
elif [[ "$CONTAINER_FLAVOR" == "cpu" ]]; then
|
||||
PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
|
||||
# elif [[ -z "$CONTAINER_FLAVOR" || "$CONTAINER_FLAVOR" == "cuda" ]]; then
|
||||
# PIP_PACKAGE=${PIP_PACKAGE-".[xformers]"}
|
||||
fi
|
||||
fi
|
||||
|
||||
# Variables shared by build.sh and run.sh
|
||||
REPOSITORY_NAME="${REPOSITORY_NAME-$(basename "$(git rev-parse --show-toplevel)")}"
|
||||
REPOSITORY_NAME="${REPOSITORY_NAME,,}"
|
||||
VOLUMENAME="${VOLUMENAME-"${REPOSITORY_NAME}_data"}"
|
||||
ARCH="${ARCH-$(uname -m)}"
|
||||
PLATFORM="${PLATFORM-linux/${ARCH}}"
|
||||
INVOKEAI_BRANCH="${INVOKEAI_BRANCH-$(git branch --show)}"
|
||||
CONTAINER_REGISTRY="${CONTAINER_REGISTRY-"ghcr.io"}"
|
||||
CONTAINER_REPOSITORY="${CONTAINER_REPOSITORY-"$(whoami)/${REPOSITORY_NAME}"}"
|
||||
CONTAINER_FLAVOR="${CONTAINER_FLAVOR-cuda}"
|
||||
CONTAINER_TAG="${CONTAINER_TAG-"${INVOKEAI_BRANCH##*/}-${CONTAINER_FLAVOR}"}"
|
||||
CONTAINER_IMAGE="${CONTAINER_REGISTRY}/${CONTAINER_REPOSITORY}:${CONTAINER_TAG}"
|
||||
CONTAINER_IMAGE="${CONTAINER_IMAGE,,}"
|
||||
|
||||
# enable docker buildkit
|
||||
export DOCKER_BUILDKIT=1
|
@ -1,41 +1,11 @@
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
# How to use: https://invoke-ai.github.io/InvokeAI/installation/040_INSTALL_DOCKER/
|
||||
# This script is provided for backwards compatibility with the old docker setup.
|
||||
# it doesn't do much aside from wrapping the usual docker compose CLI.
|
||||
|
||||
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
|
||||
cd "$SCRIPTDIR" || exit 1
|
||||
|
||||
source ./env.sh
|
||||
|
||||
# Create outputs directory if it does not exist
|
||||
[[ -d ./outputs ]] || mkdir ./outputs
|
||||
|
||||
echo -e "You are using these values:\n"
|
||||
echo -e "Volumename:\t${VOLUMENAME}"
|
||||
echo -e "Invokeai_tag:\t${CONTAINER_IMAGE}"
|
||||
echo -e "local Models:\t${MODELSPATH:-unset}\n"
|
||||
|
||||
docker run \
|
||||
--interactive \
|
||||
--tty \
|
||||
--rm \
|
||||
--platform="${PLATFORM}" \
|
||||
--name="${REPOSITORY_NAME}" \
|
||||
--hostname="${REPOSITORY_NAME}" \
|
||||
--mount type=volume,volume-driver=local,source="${VOLUMENAME}",target=/data \
|
||||
--mount type=bind,source="$(pwd)"/outputs/,target=/data/outputs/ \
|
||||
${MODELSPATH:+--mount="type=bind,source=${MODELSPATH},target=/data/models"} \
|
||||
${HUGGING_FACE_HUB_TOKEN:+--env="HUGGING_FACE_HUB_TOKEN=${HUGGING_FACE_HUB_TOKEN}"} \
|
||||
--publish=9090:9090 \
|
||||
--cap-add=sys_nice \
|
||||
${GPU_FLAGS:+--gpus="${GPU_FLAGS}"} \
|
||||
"${CONTAINER_IMAGE}" ${@:+$@}
|
||||
|
||||
echo -e "\nCleaning trash folder ..."
|
||||
for f in outputs/.Trash*; do
|
||||
if [ -e "$f" ]; then
|
||||
rm -Rf "$f"
|
||||
break
|
||||
fi
|
||||
done
|
||||
docker compose up -d
|
||||
docker compose logs -f
|
||||
|
60
docker/runpod-readme.md
Normal file
@ -0,0 +1,60 @@
|
||||
# InvokeAI - A Stable Diffusion Toolkit
|
||||
|
||||
Stable Diffusion distribution by InvokeAI: https://github.com/invoke-ai
|
||||
|
||||
The Docker image tracks the `main` branch of the InvokeAI project, which means it includes the latest features, but may contain some bugs.
|
||||
|
||||
Your working directory is mounted under the `/workspace` path inside the pod. The models are in `/workspace/invokeai/models`, and outputs are in `/workspace/invokeai/outputs`.
|
||||
|
||||
> **Only the /workspace directory will persist between pod restarts!**
|
||||
|
||||
> **If you _terminate_ (not just _stop_) the pod, the /workspace will be lost.**
|
||||
|
||||
## Quickstart
|
||||
|
||||
1. Launch a pod from this template. **It will take about 5-10 minutes to run through the initial setup**. Be patient.
|
||||
1. Wait for the application to load.
|
||||
- TIP: you know it's ready when the CPU usage goes idle
|
||||
- You can also check the logs for a line that says "_Point your browser at..._"
|
||||
1. Open the Invoke AI web UI: click the `Connect` => `connect over HTTP` button.
|
||||
1. Generate some art!
|
||||
|
||||
## Other things you can do
|
||||
|
||||
At any point you may edit the pod configuration and set an arbitrary Docker command. For example, you could run a command to downloads some models using `curl`, or fetch some images and place them into your outputs to continue a working session.
|
||||
|
||||
If you need to run *multiple commands*, define them in the Docker Command field like this:
|
||||
|
||||
`bash -c "cd ${INVOKEAI_ROOT}/outputs; wormhole receive 2-foo-bar; invoke.py --web --host 0.0.0.0"`
|
||||
|
||||
### Copying your data in and out of the pod
|
||||
|
||||
This image includes a couple of handy tools to help you get the data into the pod (such as your custom models or embeddings), and out of the pod (such as downloading your outputs). Here are your options for getting your data in and out of the pod:
|
||||
|
||||
- **SSH server**:
|
||||
1. Make sure to create and set your Public Key in the RunPod settings (follow the official instructions)
|
||||
1. Add an exposed port 22 (TCP) in the pod settings!
|
||||
1. When your pod restarts, you will see a new entry in the `Connect` dialog. Use this SSH server to `scp` or `sftp` your files as necessary, or SSH into the pod using the fully fledged SSH server.
|
||||
|
||||
- [**Magic Wormhole**](https://magic-wormhole.readthedocs.io/en/latest/welcome.html):
|
||||
1. On your computer, `pip install magic-wormhole` (see above instructions for details)
|
||||
1. Connect to the command line **using the "light" SSH client** or the browser-based console. _Currently there's a bug where `wormhole` isn't available when connected to "full" SSH server, as described above_.
|
||||
1. `wormhole send /workspace/invokeai/outputs` will send the entire `outputs` directory. You can also send individual files.
|
||||
1. Once packaged, you will see a `wormhole receive <123-some-words>` command. Copy it
|
||||
1. Paste this command into the terminal on your local machine to securely download the payload.
|
||||
1. It works the same in reverse: you can `wormhole send` some models from your computer to the pod. Again, save your files somewhere in `/workspace` or they will be lost when the pod is stopped.
|
||||
|
||||
- **RunPod's Cloud Sync feature** may be used to sync the persistent volume to cloud storage. You could, for example, copy the entire `/workspace` to S3, add some custom models to it, and copy it back from S3 when launching new pod configurations. Follow the Cloud Sync instructions.
|
||||
|
||||
|
||||
### Disable the NSFW checker
|
||||
|
||||
The NSFW checker is enabled by default. To disable it, edit the pod configuration and set the following command:
|
||||
|
||||
```
|
||||
invoke --web --host 0.0.0.0 --no-nsfw_checker
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
Template ©2023 Eugene Brodsky [ebr](https://github.com/ebr)
|
@ -488,7 +488,7 @@ sections describe what's new for InvokeAI.
|
||||
|
||||
- A choice of installer scripts that automate installation and configuration.
|
||||
See
|
||||
[Installation](installation/index.md).
|
||||
[Installation](installation/INSTALLATION.md).
|
||||
- A streamlined manual installation process that works for both Conda and
|
||||
PIP-only installs. See
|
||||
[Manual Installation](installation/020_INSTALL_MANUAL.md).
|
||||
@ -617,8 +617,6 @@ sections describe what's new for InvokeAI.
|
||||
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains for
|
||||
backward compatibility.
|
||||
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
|
||||
- Support for [inpainting](deprecated/INPAINTING.md) and
|
||||
[outpainting](features/OUTPAINTING.md)
|
||||
- img2img runs on all k\* samplers
|
||||
- Support for
|
||||
[negative prompts](features/PROMPTS.md#negative-and-unconditioned-prompts)
|
||||
@ -659,7 +657,7 @@ sections describe what's new for InvokeAI.
|
||||
|
||||
## v1.13 <small>(3 September 2022)</small>
|
||||
|
||||
- Support image variations (see [VARIATIONS](features/VARIATIONS.md)
|
||||
- Support image variations (see [VARIATIONS](deprecated/VARIATIONS.md)
|
||||
([Kevin Gibbons](https://github.com/bakkot) and many contributors and
|
||||
reviewers)
|
||||
- Supports a Google Colab notebook for a standalone server running on Google
|
||||
|
BIN
docs/assets/contributing/resize_invocation.png
Normal file
After Width: | Height: | Size: 7.1 KiB |
BIN
docs/assets/contributing/resize_node_editor.png
Normal file
After Width: | Height: | Size: 17 KiB |
BIN
docs/assets/control-panel-2.png
Normal file
After Width: | Height: | Size: 415 KiB |
Before Width: | Height: | Size: 310 KiB After Width: | Height: | Size: 297 KiB |
BIN
docs/assets/installing-models/model-installer-controlnet.png
Normal file
After Width: | Height: | Size: 57 KiB |
BIN
docs/assets/invoke-control-panel-1.png
Normal file
After Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 983 KiB After Width: | Height: | Size: 1.1 MiB |
Before Width: | Height: | Size: 101 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 29 KiB After Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 148 KiB After Width: | Height: | Size: 76 KiB |
Before Width: | Height: | Size: 637 KiB After Width: | Height: | Size: 729 KiB |
BIN
docs/assets/lora-example-0.png
Normal file
After Width: | Height: | Size: 530 KiB |
BIN
docs/assets/lora-example-1.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
docs/assets/lora-example-2.png
Normal file
After Width: | Height: | Size: 8.5 KiB |
BIN
docs/assets/lora-example-3.png
Normal file
After Width: | Height: | Size: 409 KiB |
BIN
docs/assets/nodes/groupsallscale.png
Normal file
After Width: | Height: | Size: 228 KiB |
BIN
docs/assets/nodes/groupsconditioning.png
Normal file
After Width: | Height: | Size: 194 KiB |
BIN
docs/assets/nodes/groupscontrol.png
Normal file
After Width: | Height: | Size: 209 KiB |
BIN
docs/assets/nodes/groupsimgvae.png
Normal file
After Width: | Height: | Size: 114 KiB |
BIN
docs/assets/nodes/groupsiterate.png
Normal file
After Width: | Height: | Size: 187 KiB |
BIN
docs/assets/nodes/groupslora.png
Normal file
After Width: | Height: | Size: 112 KiB |
BIN
docs/assets/nodes/groupsmultigenseeding.png
Normal file
After Width: | Height: | Size: 132 KiB |
BIN
docs/assets/nodes/groupsnoise.png
Normal file
After Width: | Height: | Size: 167 KiB |
BIN
docs/assets/nodes/groupsrandseed.png
Normal file
After Width: | Height: | Size: 70 KiB |
BIN
docs/assets/nodes/linearview.png
Normal file
After Width: | Height: | Size: 59 KiB |
BIN
docs/assets/nodes/nodescontrol.png
Normal file
After Width: | Height: | Size: 439 KiB |
BIN
docs/assets/nodes/nodesi2i.png
Normal file
After Width: | Height: | Size: 563 KiB |
BIN
docs/assets/nodes/nodest2i.png
Normal file
After Width: | Height: | Size: 353 KiB |
Before Width: | Height: | Size: 501 KiB After Width: | Height: | Size: 421 KiB |
Before Width: | Height: | Size: 473 KiB After Width: | Height: | Size: 585 KiB |
Before Width: | Height: | Size: 557 KiB After Width: | Height: | Size: 598 KiB |
Before Width: | Height: | Size: 340 KiB After Width: | Height: | Size: 438 KiB |
BIN
docs/assets/prompt_syntax/sdxl-prompt-concatenated.png
Normal file
After Width: | Height: | Size: 64 KiB |
BIN
docs/assets/prompt_syntax/sdxl-prompt.png
Normal file
After Width: | Height: | Size: 42 KiB |
1
docs/assets/sdxl-graphs/sdxl-base-example1.json
Normal file
1
docs/assets/sdxl-graphs/sdxl-base-refine-example1.json
Normal file
BIN
docs/assets/send-to-icon.png
Normal file
After Width: | Height: | Size: 41 KiB |
BIN
docs/assets/troubleshooting/broken-dependency.png
Normal file
After Width: | Height: | Size: 131 KiB |
BIN
docs/assets/upscaling.png
Normal file
After Width: | Height: | Size: 637 KiB |
@ -1,42 +1,43 @@
|
||||
## Welcome to Invoke AI
|
||||
|
||||
We're thrilled to have you here and we're excited for you to contribute.
|
||||
# Contributing
|
||||
|
||||
Invoke AI originated as a project built by the community, and that vision carries forward today as we aim to build the best pro-grade tools available. We work together to incorporate the latest in AI/ML research, making these tools available in over 20 languages to artists and creatives around the world as part of our fully permissive OSS project designed for individual users to self-host and use.
|
||||
|
||||
Here are some guidelines to help you get started:
|
||||
|
||||
### Technical Prerequisites
|
||||
# Methods of Contributing to Invoke AI
|
||||
Anyone who wishes to contribute to InvokeAI, whether features, bug fixes, code cleanup, testing, code reviews, documentation or translation is very much encouraged to do so.
|
||||
|
||||
Front-end: You'll need a working knowledge of React and TypeScript.
|
||||
## Development
|
||||
If you’d like to help with development, please see our [development guide](contribution_guides/development.md).
|
||||
|
||||
Back-end: Depending on the scope of your contribution, you may need to know SQLite, FastAPI, Python, and Socketio. Also, a good majority of the backend logic involved in processing images is built in a modular way using a concept called "Nodes", which are isolated functions that carry out individual, discrete operations. This design allows for easy contributions of novel pipelines and capabilities.
|
||||
**New Contributors:** If you’re unfamiliar with contributing to open source projects, take a look at our [new contributor guide](contribution_guides/newContributorChecklist.md).
|
||||
|
||||
### How to Submit Contributions
|
||||
## Nodes
|
||||
If you’d like to add a Node, please see our [nodes contribution guide](../nodes/contributingNodes.md).
|
||||
|
||||
To start contributing, please follow these steps:
|
||||
## Support and Triaging
|
||||
Helping support other users in [Discord](https://discord.gg/ZmtBAhwWhy) and on Github are valuable forms of contribution that we greatly appreciate.
|
||||
|
||||
1. Familiarize yourself with our roadmap and open projects to see where your skills and interests align. These documents can serve as a source of inspiration.
|
||||
2. Open a Pull Request (PR) with a clear description of the feature you're adding or the problem you're solving. Make sure your contribution aligns with the project's vision.
|
||||
3. Adhere to general best practices. This includes assuming interoperability with other nodes, keeping the scope of your functions as small as possible, and organizing your code according to our architecture documents.
|
||||
We receive many issues and requests for help from users. We're limited in bandwidth relative to our the user base, so providing answers to questions or helping identify causes of issues is very helpful. By doing this, you enable us to spend time on the highest priority work.
|
||||
|
||||
### Types of Contributions We're Looking For
|
||||
## Documentation
|
||||
If you’d like to help with documentation, please see our [documentation guide](contribution_guides/documentation.md).
|
||||
|
||||
We welcome all contributions that improve the project. Right now, we're especially looking for:
|
||||
## Translation
|
||||
If you'd like to help with translation, please see our [translation guide](contribution_guides/translation.md).
|
||||
|
||||
1. Quality of life (QOL) enhancements on the front-end.
|
||||
2. New backend capabilities added through nodes.
|
||||
3. Incorporating additional optimizations from the broader open-source software community.
|
||||
## Tutorials
|
||||
Please reach out to @imic or @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy) to help create tutorials for InvokeAI.
|
||||
|
||||
### Communication and Decision-making Process
|
||||
We hope you enjoy using our software as much as we enjoy creating it, and we hope that some of those of you who are reading this will elect to become part of our contributor community.
|
||||
|
||||
Project maintainers and code owners review PRs to ensure they align with the project's goals. They may provide design or architectural guidance, suggestions on user experience, or provide more significant feedback on the contribution itself. Expect to receive feedback on your submissions, and don't hesitate to ask questions or propose changes.
|
||||
|
||||
For more robust discussions, or if you're planning to add capabilities not currently listed on our roadmap, please reach out to us on our Discord server. That way, we can ensure your proposed contribution aligns with the project's direction before you start writing code.
|
||||
# Contributors
|
||||
|
||||
### Code of Conduct and Contribution Expectations
|
||||
This project is a combined effort of dedicated people from across the world. [Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for their time, hard work and effort.
|
||||
|
||||
We want everyone in our community to have a positive experience. To facilitate this, we've established a code of conduct and a statement of values that we expect all contributors to adhere to. Please take a moment to review these documents—they're essential to maintaining a respectful and inclusive environment.
|
||||
# Code of Conduct
|
||||
|
||||
The InvokeAI community is a welcoming place, and we want your help in maintaining that. Please review our [Code of Conduct](https://github.com/invoke-ai/InvokeAI/blob/main/CODE_OF_CONDUCT.md) to learn more - it's essential to maintaining a respectful and inclusive environment.
|
||||
|
||||
By making a contribution to this project, you certify that:
|
||||
|
||||
@ -48,6 +49,11 @@ By making a contribution to this project, you certify that:
|
||||
This disclaimer is not a license and does not grant any rights or permissions. You must obtain necessary permissions and licenses, including from third parties, before contributing to this project.
|
||||
|
||||
This disclaimer is provided "as is" without warranty of any kind, whether expressed or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose, or non-infringement. In no event shall the authors or copyright holders be liable for any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the contribution or the use or other dealings in the contribution.
|
||||
# Support
|
||||
|
||||
For support, please use this repository's [GitHub Issues](https://github.com/invoke-ai/InvokeAI/issues), or join the [Discord](https://discord.gg/ZmtBAhwWhy).
|
||||
|
||||
Original portions of the software are Copyright (c) 2023 by respective contributors.
|
||||
|
||||
---
|
||||
|
||||
|
@ -1,58 +1,243 @@
|
||||
# Invocations
|
||||
# Nodes
|
||||
|
||||
Invocations represent a single operation, its inputs, and its outputs. These
|
||||
operations and their outputs can be chained together to generate and modify
|
||||
images.
|
||||
Features in InvokeAI are added in the form of modular nodes systems called
|
||||
**Invocations**.
|
||||
|
||||
## Creating a new invocation
|
||||
An Invocation is simply a single operation that takes in some inputs and gives
|
||||
out some outputs. We can then chain multiple Invocations together to create more
|
||||
complex functionality.
|
||||
|
||||
To create a new invocation, either find the appropriate module file in
|
||||
`/ldm/invoke/app/invocations` to add your invocation to, or create a new one in
|
||||
that folder. All invocations in that folder will be discovered and made
|
||||
available to the CLI and API automatically. Invocations make use of
|
||||
[typing](https://docs.python.org/3/library/typing.html) and
|
||||
[pydantic](https://pydantic-docs.helpmanual.io/) for validation and integration
|
||||
into the CLI and API.
|
||||
## Invocations Directory
|
||||
|
||||
An invocation looks like this:
|
||||
InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These can be used as examples to create your own nodes.
|
||||
|
||||
New nodes should be added to a subfolder in `nodes` direction found at the root level of the InvokeAI installation location. Nodes added to this folder will be able to be used upon application startup.
|
||||
|
||||
Example `nodes` subfolder structure:
|
||||
```py
|
||||
├── __init__.py # Invoke-managed custom node loader
|
||||
│
|
||||
├── cool_node
|
||||
│ ├── __init__.py # see example below
|
||||
│ └── cool_node.py
|
||||
│
|
||||
└── my_node_pack
|
||||
├── __init__.py # see example below
|
||||
├── tasty_node.py
|
||||
├── bodacious_node.py
|
||||
├── utils.py
|
||||
└── extra_nodes
|
||||
└── fancy_node.py
|
||||
```
|
||||
|
||||
Each node folder must have an `__init__.py` file that imports its nodes. Only nodes imported in the `__init__.py` file are loaded.
|
||||
See the README in the nodes folder for more examples:
|
||||
|
||||
```py
|
||||
class UpscaleInvocation(BaseInvocation):
|
||||
"""Upscales an image."""
|
||||
from .cool_node import CoolInvocation
|
||||
```
|
||||
|
||||
# fmt: off
|
||||
type: Literal["upscale"] = "upscale"
|
||||
|
||||
## Creating A New Invocation
|
||||
|
||||
In order to understand the process of creating a new Invocation, let us actually
|
||||
create one.
|
||||
|
||||
In our example, let us create an Invocation that will take in an image, resize
|
||||
it and output the resized image.
|
||||
|
||||
The first set of things we need to do when creating a new Invocation are -
|
||||
|
||||
- Create a new class that derives from a predefined parent class called
|
||||
`BaseInvocation`.
|
||||
- Every Invocation must have a `docstring` that describes what this Invocation
|
||||
does.
|
||||
- While not strictly required, we suggest every invocation class name ends in
|
||||
"Invocation", eg "CropImageInvocation".
|
||||
- Every Invocation must use the `@invocation` decorator to provide its unique
|
||||
invocation type. You may also provide its title, tags and category using the
|
||||
decorator.
|
||||
- Invocations are strictly typed. We make use of the native
|
||||
[typing](https://docs.python.org/3/library/typing.html) library and the
|
||||
installed [pydantic](https://pydantic-docs.helpmanual.io/) library for
|
||||
validation.
|
||||
|
||||
So let us do that.
|
||||
|
||||
```python
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
```
|
||||
|
||||
That's great.
|
||||
|
||||
Now we have setup the base of our new Invocation. Let us think about what inputs
|
||||
our Invocation takes.
|
||||
|
||||
- We need an `image` that we are going to resize.
|
||||
- We will need new `width` and `height` values to which we need to resize the
|
||||
image to.
|
||||
|
||||
### **Inputs**
|
||||
|
||||
Every Invocation input must be defined using the `InputField` function. This is
|
||||
a wrapper around the pydantic `Field` function, which handles a few extra things
|
||||
and provides type hints. Like everything else, this should be strictly typed and
|
||||
defined.
|
||||
|
||||
So let us create these inputs for our Invocation. First up, the `image` input we
|
||||
need. Generally, we can use standard variable types in Python but InvokeAI
|
||||
already has a custom `ImageField` type that handles all the stuff that is needed
|
||||
for image inputs.
|
||||
|
||||
But what is this `ImageField` ..? It is a special class type specifically
|
||||
written to handle how images are dealt with in InvokeAI. We will cover how to
|
||||
create your own custom field types later in this guide. For now, let's go ahead
|
||||
and use it.
|
||||
|
||||
```python
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
|
||||
# Inputs
|
||||
image: Union[ImageField, None] = Field(description="The input image", default=None)
|
||||
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
|
||||
level: Literal[2, 4] = Field(default=2, description="The upscale level")
|
||||
# fmt: on
|
||||
image: ImageField = InputField(description="The input image")
|
||||
```
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["upscaling", "image"],
|
||||
},
|
||||
}
|
||||
Let us break down our input code.
|
||||
|
||||
```python
|
||||
image: ImageField = InputField(description="The input image")
|
||||
```
|
||||
|
||||
| Part | Value | Description |
|
||||
| --------- | ------------------------------------------- | ------------------------------------------------------------------------------- |
|
||||
| Name | `image` | The variable that will hold our image |
|
||||
| Type Hint | `ImageField` | The types for our field. Indicates that the image must be an `ImageField` type. |
|
||||
| Field | `InputField(description="The input image")` | The image variable is an `InputField` which needs a description. |
|
||||
|
||||
Great. Now let us create our other inputs for `width` and `height`
|
||||
|
||||
```python
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The input image")
|
||||
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
```
|
||||
|
||||
As you might have noticed, we added two new arguments to the `InputField`
|
||||
definition for `width` and `height`, called `gt` and `le`. They stand for
|
||||
_greater than or equal to_ and _less than or equal to_.
|
||||
|
||||
These impose contraints on those fields, and will raise an exception if the
|
||||
values do not meet the constraints. Field constraints are provided by
|
||||
**pydantic**, so anything you see in the **pydantic docs** will work.
|
||||
|
||||
**Note:** _Any time it is possible to define constraints for our field, we
|
||||
should do it so the frontend has more information on how to parse this field._
|
||||
|
||||
Perfect. We now have our inputs. Let us do something with these.
|
||||
|
||||
### **Invoke Function**
|
||||
|
||||
The `invoke` function is where all the magic happens. This function provides you
|
||||
the `context` parameter that is of the type `InvocationContext` which will give
|
||||
you access to the current context of the generation and all the other services
|
||||
that are provided by it by InvokeAI.
|
||||
|
||||
Let us create this function first.
|
||||
|
||||
```python
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The input image")
|
||||
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
def invoke(self, context: InvocationContext):
|
||||
pass
|
||||
```
|
||||
|
||||
### **Outputs**
|
||||
|
||||
The output of our Invocation will be whatever is returned by this `invoke`
|
||||
function. Like with our inputs, we need to strongly type and define our outputs
|
||||
too.
|
||||
|
||||
What is our output going to be? Another image. Normally you'd have to create a
|
||||
type for this but InvokeAI already offers you an `ImageOutput` type that handles
|
||||
all the necessary info related to image outputs. So let us use that.
|
||||
|
||||
We will cover how to create your own output types later in this guide.
|
||||
|
||||
```python
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
from invokeai.app.invocations.image import ImageOutput
|
||||
|
||||
@invocation('resize')
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
'''Resizes an image'''
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The input image")
|
||||
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get_pil_image(
|
||||
self.image.image_origin, self.image.image_name
|
||||
)
|
||||
results = context.services.restoration.upscale_and_reconstruct(
|
||||
image_list=[[image, 0]],
|
||||
upscale=(self.level, self.strength),
|
||||
strength=0.0, # GFPGAN strength
|
||||
save_original=False,
|
||||
image_callback=None,
|
||||
)
|
||||
pass
|
||||
```
|
||||
|
||||
# Results are image and seed, unwrap for now
|
||||
# TODO: can this return multiple results?
|
||||
image_dto = context.services.images.create(
|
||||
image=results[0][0],
|
||||
Perfect. Now that we have our Invocation setup, let us do what we want to do.
|
||||
|
||||
- We will first load the image using one of the services provided by InvokeAI to
|
||||
load the image.
|
||||
- We will resize the image using `PIL` to our input data.
|
||||
- We will output this image in the format we set above.
|
||||
|
||||
So let's do that.
|
||||
|
||||
```python
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
from invokeai.app.invocations.image import ImageOutput, ResourceOrigin, ImageCategory
|
||||
|
||||
@invocation("resize")
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
"""Resizes an image"""
|
||||
|
||||
image: ImageField = InputField(description="The input image")
|
||||
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
|
||||
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# Load the image using InvokeAI's predefined Image Service. Returns the PIL image.
|
||||
image = context.services.images.get_pil_image(self.image.image_name)
|
||||
|
||||
# Resizing the image
|
||||
resized_image = image.resize((self.width, self.height))
|
||||
|
||||
# Save the image using InvokeAI's predefined Image Service. Returns the prepared PIL image.
|
||||
output_image = context.services.images.create(
|
||||
image=resized_image,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
@ -60,218 +245,176 @@ class UpscaleInvocation(BaseInvocation):
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
# Returning the Image
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=image_dto.image_name,
|
||||
image_origin=image_dto.image_origin,
|
||||
image_name=output_image.image_name,
|
||||
),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
Each portion is important to implement correctly.
|
||||
|
||||
### Class definition and type
|
||||
|
||||
```py
|
||||
class UpscaleInvocation(BaseInvocation):
|
||||
"""Upscales an image."""
|
||||
type: Literal['upscale'] = 'upscale'
|
||||
```
|
||||
|
||||
All invocations must derive from `BaseInvocation`. They should have a docstring
|
||||
that declares what they do in a single, short line. They should also have a
|
||||
`type` with a type hint that's `Literal["command_name"]`, where `command_name`
|
||||
is what the user will type on the CLI or use in the API to create this
|
||||
invocation. The `command_name` must be unique. The `type` must be assigned to
|
||||
the value of the literal in the type hint.
|
||||
|
||||
### Inputs
|
||||
|
||||
```py
|
||||
# Inputs
|
||||
image: Union[ImageField,None] = Field(description="The input image")
|
||||
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
|
||||
level: Literal[2,4] = Field(default=2, description="The upscale level")
|
||||
```
|
||||
|
||||
Inputs consist of three parts: a name, a type hint, and a `Field` with default,
|
||||
description, and validation information. For example:
|
||||
|
||||
| Part | Value | Description |
|
||||
| --------- | ------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Name | `strength` | This field is referred to as `strength` |
|
||||
| Type Hint | `float` | This field must be of type `float` |
|
||||
| Field | `Field(default=0.75, gt=0, le=1, description="The strength")` | The default value is `0.75`, the value must be in the range (0,1], and help text will show "The strength" for this field. |
|
||||
|
||||
Notice that `image` has type `Union[ImageField,None]`. The `Union` allows this
|
||||
field to be parsed with `None` as a value, which enables linking to previous
|
||||
invocations. All fields should either provide a default value or allow `None` as
|
||||
a value, so that they can be overwritten with a linked output from another
|
||||
invocation.
|
||||
|
||||
The special type `ImageField` is also used here. All images are passed as
|
||||
`ImageField`, which protects them from pydantic validation errors (since images
|
||||
only ever come from links).
|
||||
|
||||
Finally, note that for all linking, the `type` of the linked fields must match.
|
||||
If the `name` also matches, then the field can be **automatically linked** to a
|
||||
previous invocation by name and matching.
|
||||
|
||||
### Config
|
||||
|
||||
```py
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["upscaling", "image"],
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
This is an optional configuration for the invocation. It inherits from
|
||||
pydantic's model `Config` class, and it used primarily to customize the
|
||||
autogenerated OpenAPI schema.
|
||||
|
||||
The UI relies on the OpenAPI schema in two ways:
|
||||
|
||||
- An API client & Typescript types are generated from it. This happens at build
|
||||
time.
|
||||
- The node editor parses the schema into a template used by the UI to create the
|
||||
node editor UI. This parsing happens at runtime.
|
||||
|
||||
In this example, a `ui` key has been added to the `schema_extra` dict to provide
|
||||
some tags for the UI, to facilitate filtering nodes.
|
||||
|
||||
See the Schema Generation section below for more information.
|
||||
|
||||
### Invoke Function
|
||||
|
||||
```py
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get_pil_image(
|
||||
self.image.image_origin, self.image.image_name
|
||||
)
|
||||
results = context.services.restoration.upscale_and_reconstruct(
|
||||
image_list=[[image, 0]],
|
||||
upscale=(self.level, self.strength),
|
||||
strength=0.0, # GFPGAN strength
|
||||
save_original=False,
|
||||
image_callback=None,
|
||||
)
|
||||
|
||||
# Results are image and seed, unwrap for now
|
||||
# TODO: can this return multiple results?
|
||||
image_dto = context.services.images.create(
|
||||
image=results[0][0],
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(
|
||||
image_name=image_dto.image_name,
|
||||
image_origin=image_dto.image_origin,
|
||||
),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
width=output_image.width,
|
||||
height=output_image.height,
|
||||
)
|
||||
```
|
||||
|
||||
The `invoke` function is the last portion of an invocation. It is provided an
|
||||
`InvocationContext` which contains services to perform work as well as a
|
||||
`session_id` for use as needed. It should return a class with output values that
|
||||
derives from `BaseInvocationOutput`.
|
||||
**Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a
|
||||
certain way that the images need to be dispatched in order to be stored and read
|
||||
correctly. In 99% of the cases when dealing with an image output, you can simply
|
||||
copy-paste the template above.
|
||||
|
||||
Before being called, the invocation will have all of its fields set from
|
||||
defaults, inputs, and finally links (overriding in that order).
|
||||
### Customization
|
||||
|
||||
Assume that this invocation may be running simultaneously with other
|
||||
invocations, may be running on another machine, or in other interesting
|
||||
scenarios. If you need functionality, please provide it as a service in the
|
||||
`InvocationServices` class, and make sure it can be overridden.
|
||||
We can use the `@invocation` decorator to provide some additional info to the
|
||||
UI, like a custom title, tags and category.
|
||||
|
||||
### Outputs
|
||||
|
||||
```py
|
||||
class ImageOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output an image"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["image_output"] = "image_output"
|
||||
image: ImageField = Field(default=None, description="The output image")
|
||||
width: int = Field(description="The width of the image in pixels")
|
||||
height: int = Field(description="The height of the image in pixels")
|
||||
# fmt: on
|
||||
|
||||
class Config:
|
||||
schema_extra = {"required": ["type", "image", "width", "height"]}
|
||||
```
|
||||
|
||||
Output classes look like an invocation class without the invoke method. Prefer
|
||||
to use an existing output class if available, and prefer to name inputs the same
|
||||
as outputs when possible, to promote automatic invocation linking.
|
||||
|
||||
## Schema Generation
|
||||
|
||||
Invocation, output and related classes are used to generate an OpenAPI schema.
|
||||
|
||||
### Required Properties
|
||||
|
||||
The schema generation treat all properties with default values as optional. This
|
||||
makes sense internally, but when when using these classes via the generated
|
||||
schema, we end up with e.g. the `ImageOutput` class having its `image` property
|
||||
marked as optional.
|
||||
|
||||
We know that this property will always be present, so the additional logic
|
||||
needed to always check if the property exists adds a lot of extraneous cruft.
|
||||
|
||||
To fix this, we can leverage `pydantic`'s
|
||||
[schema customisation](https://docs.pydantic.dev/usage/schema/#schema-customization)
|
||||
to mark properties that we know will always be present as required.
|
||||
|
||||
Here's that `ImageOutput` class, without the needed schema customisation:
|
||||
We also encourage providing a version. This must be a
|
||||
[semver](https://semver.org/) version string ("$MAJOR.$MINOR.$PATCH"). The UI
|
||||
will let users know if their workflow is using a mismatched version of the node.
|
||||
|
||||
```python
|
||||
class ImageOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output an image"""
|
||||
@invocation("resize", title="My Resizer", tags=["resize", "image"], category="My Invocations", version="1.0.0")
|
||||
class ResizeInvocation(BaseInvocation):
|
||||
"""Resizes an image"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["image_output"] = "image_output"
|
||||
image: ImageField = Field(default=None, description="The output image")
|
||||
width: int = Field(description="The width of the image in pixels")
|
||||
height: int = Field(description="The height of the image in pixels")
|
||||
# fmt: on
|
||||
image: ImageField = InputField(description="The input image")
|
||||
...
|
||||
```
|
||||
|
||||
The OpenAPI schema that results from this `ImageOutput` will have the `type`,
|
||||
`image`, `width` and `height` properties marked as optional, even though we know
|
||||
they will always have a value.
|
||||
That's it. You made your own **Resize Invocation**.
|
||||
|
||||
## Result
|
||||
|
||||
Once you make your Invocation correctly, the rest of the process is fully
|
||||
automated for you.
|
||||
|
||||
When you launch InvokeAI, you can go to `http://localhost:9090/docs` and see
|
||||
your new Invocation show up there with all the relevant info.
|
||||
|
||||

|
||||
|
||||
When you launch the frontend UI, you can go to the Node Editor tab and find your
|
||||
new Invocation ready to be used.
|
||||
|
||||

|
||||
|
||||
## Contributing Nodes
|
||||
|
||||
Once you've created a Node, the next step is to share it with the community! The
|
||||
best way to do this is to submit a Pull Request to add the Node to the
|
||||
[Community Nodes](nodes/communityNodes) list. If you're not sure how to do that,
|
||||
take a look a at our [contributing nodes overview](contributingNodes).
|
||||
|
||||
## Advanced
|
||||
|
||||
### Custom Output Types
|
||||
|
||||
Like with custom inputs, sometimes you might find yourself needing custom
|
||||
outputs that InvokeAI does not provide. We can easily set one up.
|
||||
|
||||
Now that you are familiar with Invocations and Inputs, let us use that knowledge
|
||||
to create an output that has an `image` field, a `color` field and a `string`
|
||||
field.
|
||||
|
||||
- An invocation output is a class that derives from the parent class of
|
||||
`BaseInvocationOutput`.
|
||||
- All invocation outputs must use the `@invocation_output` decorator to provide
|
||||
their unique output type.
|
||||
- Output fields must use the provided `OutputField` function. This is very
|
||||
similar to the `InputField` function described earlier - it's a wrapper around
|
||||
`pydantic`'s `Field()`.
|
||||
- It is not mandatory but we recommend using names ending with `Output` for
|
||||
output types.
|
||||
- It is not mandatory but we highly recommend adding a `docstring` to describe
|
||||
what your output type is for.
|
||||
|
||||
Now that we know the basic rules for creating a new output type, let us go ahead
|
||||
and make it.
|
||||
|
||||
```python
|
||||
class ImageOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output an image"""
|
||||
from .baseinvocation import BaseInvocationOutput, OutputField, invocation_output
|
||||
from .primitives import ImageField, ColorField
|
||||
|
||||
# fmt: off
|
||||
type: Literal["image_output"] = "image_output"
|
||||
image: ImageField = Field(default=None, description="The output image")
|
||||
width: int = Field(description="The width of the image in pixels")
|
||||
height: int = Field(description="The height of the image in pixels")
|
||||
# fmt: on
|
||||
@invocation_output('image_color_string_output')
|
||||
class ImageColorStringOutput(BaseInvocationOutput):
|
||||
'''Base class for nodes that output a single image'''
|
||||
|
||||
# Add schema customization
|
||||
class Config:
|
||||
schema_extra = {"required": ["type", "image", "width", "height"]}
|
||||
image: ImageField = OutputField(description="The image")
|
||||
color: ColorField = OutputField(description="The color")
|
||||
text: str = OutputField(description="The string")
|
||||
```
|
||||
|
||||
With the customization in place, the schema will now show these properties as
|
||||
required, obviating the need for extensive null checks in client code.
|
||||
That's all there is to it.
|
||||
|
||||
See this `pydantic` issue for discussion on this solution:
|
||||
<https://github.com/pydantic/pydantic/discussions/4577>
|
||||
<!-- TODO: DANGER - we probably do not want people to create their own field types, because this requires a lot of work on the frontend to accomodate.
|
||||
|
||||
### Custom Input Fields
|
||||
|
||||
Now that you know how to create your own Invocations, let us dive into slightly
|
||||
more advanced topics.
|
||||
|
||||
While creating your own Invocations, you might run into a scenario where the
|
||||
existing input types in InvokeAI do not meet your requirements. In such cases,
|
||||
you can create your own input types.
|
||||
|
||||
Let us create one as an example. Let us say we want to create a color input
|
||||
field that represents a color code. But before we start on that here are some
|
||||
general good practices to keep in mind.
|
||||
|
||||
**Good Practices**
|
||||
|
||||
- There is no naming convention for input fields but we highly recommend that
|
||||
you name it something appropriate like `ColorField`.
|
||||
- It is not mandatory but it is heavily recommended to add a relevant
|
||||
`docstring` to describe your input field.
|
||||
- Keep your field in the same file as the Invocation that it is made for or in
|
||||
another file where it is relevant.
|
||||
|
||||
All input types a class that derive from the `BaseModel` type from `pydantic`.
|
||||
So let's create one.
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel
|
||||
|
||||
class ColorField(BaseModel):
|
||||
'''A field that holds the rgba values of a color'''
|
||||
pass
|
||||
```
|
||||
|
||||
Perfect. Now let us create our custom inputs for our field. This is exactly
|
||||
similar how you created input fields for your Invocation. All the same rules
|
||||
apply. Let us create four fields representing the _red(r)_, _blue(b)_,
|
||||
_green(g)_ and _alpha(a)_ channel of the color.
|
||||
|
||||
```python
|
||||
class ColorField(BaseModel):
|
||||
'''A field that holds the rgba values of a color'''
|
||||
r: int = Field(ge=0, le=255, description="The red channel")
|
||||
g: int = Field(ge=0, le=255, description="The green channel")
|
||||
b: int = Field(ge=0, le=255, description="The blue channel")
|
||||
a: int = Field(ge=0, le=255, description="The alpha channel")
|
||||
```
|
||||
|
||||
That's it. We now have a new input field type that we can use in our Invocations
|
||||
like this.
|
||||
|
||||
```python
|
||||
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
|
||||
```
|
||||
|
||||
### Custom Components For Frontend
|
||||
|
||||
Every backend input type should have a corresponding frontend component so the
|
||||
UI knows what to render when you use a particular field type.
|
||||
|
||||
If you are using existing field types, we already have components for those. So
|
||||
you don't have to worry about creating anything new. But this might not always
|
||||
be the case. Sometimes you might want to create new field types and have the
|
||||
frontend UI deal with it in a different way.
|
||||
|
||||
This is where we venture into the world of React and Javascript and create our
|
||||
own new components for our Invocations. Do not fear the world of JS. It's
|
||||
actually pretty straightforward.
|
||||
|
||||
Let us create a new component for our custom color field we created above. When
|
||||
we use a color field, let us say we want the UI to display a color picker for
|
||||
the user to pick from rather than entering values. That is what we will build
|
||||
now.
|
||||
-->
|
||||
|
@ -35,49 +35,244 @@ access.
|
||||
|
||||
## Backend
|
||||
|
||||
The backend is contained within the `./invokeai/backend` folder structure. To
|
||||
get started however please install the development dependencies.
|
||||
The backend is contained within the `./invokeai/backend` and `./invokeai/app` directories.
|
||||
To get started please install the development dependencies.
|
||||
|
||||
From the root of the repository run the following command. Note the use of `"`.
|
||||
|
||||
```zsh
|
||||
pip install ".[test]"
|
||||
pip install ".[dev,test]"
|
||||
```
|
||||
|
||||
This in an optional group of packages which is defined within the
|
||||
`pyproject.toml` and will be required for testing the changes you make the the
|
||||
code.
|
||||
These are optional groups of packages which are defined within the `pyproject.toml`
|
||||
and will be required for testing the changes you make to the code.
|
||||
|
||||
### Running Tests
|
||||
### Tests
|
||||
|
||||
We use [pytest](https://docs.pytest.org/en/7.2.x/) for our test suite. Tests can
|
||||
be found under the `./tests` folder and can be run with a single `pytest`
|
||||
command. Optionally, to review test coverage you can append `--cov`.
|
||||
See the [tests documentation](./TESTS.md) for information about running and writing tests.
|
||||
### Reloading Changes
|
||||
|
||||
```zsh
|
||||
pytest --cov
|
||||
```
|
||||
Experimenting with changes to the Python source code is a drag if you have to re-start the server —
|
||||
and re-load those multi-gigabyte models —
|
||||
after every change.
|
||||
|
||||
Test outcomes and coverage will be reported in the terminal. In addition a more
|
||||
detailed report is created in both XML and HTML format in the `./coverage`
|
||||
folder. The HTML one in particular can help identify missing statements
|
||||
requiring tests to ensure coverage. This can be run by opening
|
||||
`./coverage/html/index.html`.
|
||||
For a faster development workflow, add the `--dev_reload` flag when starting the server.
|
||||
The server will watch for changes to all the Python files in the `invokeai` directory and apply those changes to the
|
||||
running server on the fly.
|
||||
|
||||
For example.
|
||||
This will allow you to avoid restarting the server (and reloading models) in most cases, but there are some caveats; see
|
||||
the [jurigged documentation](https://github.com/breuleux/jurigged#caveats) for details.
|
||||
|
||||
```zsh
|
||||
pytest --cov; open ./coverage/html/index.html
|
||||
```
|
||||
|
||||
??? info "HTML coverage report output"
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
## Front End
|
||||
|
||||
<!--#TODO: get input from blessedcoolant here, for the moment inserted the frontend README via snippets extension.-->
|
||||
|
||||
--8<-- "invokeai/frontend/web/README.md"
|
||||
|
||||
## Developing InvokeAI in VSCode
|
||||
|
||||
VSCode offers some nice tools:
|
||||
|
||||
- python debugger
|
||||
- automatic `venv` activation
|
||||
- remote dev (e.g. run InvokeAI on a beefy linux desktop while you type in
|
||||
comfort on your macbook)
|
||||
|
||||
### Setup
|
||||
|
||||
You'll need the
|
||||
[Python](https://marketplace.visualstudio.com/items?itemName=ms-python.python)
|
||||
and
|
||||
[Pylance](https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance)
|
||||
extensions installed first.
|
||||
|
||||
It's also really handy to install the `Jupyter` extensions:
|
||||
|
||||
- [Jupyter](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter)
|
||||
- [Jupyter Cell Tags](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-jupyter-cell-tags)
|
||||
- [Jupyter Notebook Renderers](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter-renderers)
|
||||
- [Jupyter Slide Show](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-jupyter-slideshow)
|
||||
|
||||
#### InvokeAI workspace
|
||||
|
||||
Creating a VSCode workspace for working on InvokeAI is highly recommended. It
|
||||
can hold InvokeAI-specific settings and configs.
|
||||
|
||||
To make a workspace:
|
||||
|
||||
- Open the InvokeAI repo dir in VSCode
|
||||
- `File` > `Save Workspace As` > save it _outside_ the repo
|
||||
|
||||
#### Default python interpreter (i.e. automatic virtual environment activation)
|
||||
|
||||
- Use command palette to run command
|
||||
`Preferences: Open Workspace Settings (JSON)`
|
||||
- Add `python.defaultInterpreterPath` to `settings`, pointing to your `venv`'s
|
||||
python
|
||||
|
||||
Should look something like this:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
// I like to have all InvokeAI-related folders in my workspace
|
||||
"folders": [
|
||||
{
|
||||
// repo root
|
||||
"path": "InvokeAI"
|
||||
},
|
||||
{
|
||||
// InvokeAI root dir, where `invokeai.yaml` lives
|
||||
"path": "/path/to/invokeai_root"
|
||||
}
|
||||
],
|
||||
"settings": {
|
||||
// Where your InvokeAI `venv`'s python executable lives
|
||||
"python.defaultInterpreterPath": "/path/to/invokeai_root/.venv/bin/python"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Now when you open the VSCode integrated terminal, or do anything that needs to
|
||||
run python, it will automatically be in your InvokeAI virtual environment.
|
||||
|
||||
Bonus: When you create a Jupyter notebook, when you run it, you'll be prompted
|
||||
for the python interpreter to run in. This will default to your `venv` python,
|
||||
and so you'll have access to the same python environment as the InvokeAI app.
|
||||
|
||||
This is _super_ handy.
|
||||
|
||||
#### Enabling Type-Checking with Pylance
|
||||
|
||||
We use python's typing system in InvokeAI. PR reviews will include checking that types are present and correct. We don't enforce types with `mypy` at this time, but that is on the horizon.
|
||||
|
||||
Using a code analysis tool to automatically type check your code (and types) is very important when writing with types. These tools provide immediate feedback in your editor when types are incorrect, and following their suggestions lead to fewer runtime bugs.
|
||||
|
||||
Pylance, installed at the beginning of this guide, is the de-facto python LSP (language server protocol). It provides type checking in the editor (among many other features). Once installed, you do need to enable type checking manually:
|
||||
|
||||
- Open a python file
|
||||
- Look along the status bar in VSCode for `{ } Python`
|
||||
- Click the `{ }`
|
||||
- Turn type checking on - basic is fine
|
||||
|
||||
You'll now see red squiggly lines where type issues are detected. Hover your cursor over the indicated symbols to see what's wrong.
|
||||
|
||||
In 99% of cases when the type checker says there is a problem, there really is a problem, and you should take some time to understand and resolve what it is pointing out.
|
||||
|
||||
#### Debugging configs with `launch.json`
|
||||
|
||||
Debugging configs are managed in a `launch.json` file. Like most VSCode configs,
|
||||
these can be scoped to a workspace or folder.
|
||||
|
||||
Follow the [official guide](https://code.visualstudio.com/docs/python/debugging)
|
||||
to set up your `launch.json` and try it out.
|
||||
|
||||
Now we can create the InvokeAI debugging configs:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
// Run the InvokeAI backend & serve the pre-built UI
|
||||
"name": "InvokeAI Web",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "scripts/invokeai-web.py",
|
||||
"args": [
|
||||
// Your InvokeAI root dir (where `invokeai.yaml` lives)
|
||||
"--root",
|
||||
"/path/to/invokeai_root",
|
||||
// Access the app from anywhere on your local network
|
||||
"--host",
|
||||
"0.0.0.0"
|
||||
],
|
||||
"justMyCode": true
|
||||
},
|
||||
{
|
||||
// Run the nodes-based CLI
|
||||
"name": "InvokeAI CLI",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "scripts/invokeai-cli.py",
|
||||
"justMyCode": true
|
||||
},
|
||||
{
|
||||
// Run tests
|
||||
"name": "InvokeAI Test",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"module": "pytest",
|
||||
"args": ["--capture=no"],
|
||||
"justMyCode": true
|
||||
},
|
||||
{
|
||||
// Run a single test
|
||||
"name": "InvokeAI Single Test",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"module": "pytest",
|
||||
"args": [
|
||||
// Change this to point to the specific test you are working on
|
||||
"tests/nodes/test_invoker.py"
|
||||
],
|
||||
"justMyCode": true
|
||||
},
|
||||
{
|
||||
// This is the default, useful to just run a single file
|
||||
"name": "Python: File",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"justMyCode": true
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
You'll see these configs in the debugging configs drop down. Running them will
|
||||
start InvokeAI with attached debugger, in the correct environment, and work just
|
||||
like the normal app.
|
||||
|
||||
Enjoy debugging InvokeAI with ease (not that we have any bugs of course).
|
||||
|
||||
#### Remote dev
|
||||
|
||||
This is very easy to set up and provides the same very smooth experience as
|
||||
local development. Environments and debugging, as set up above, just work,
|
||||
though you'd need to recreate the workspace and debugging configs on the remote.
|
||||
|
||||
Consult the
|
||||
[official guide](https://code.visualstudio.com/docs/remote/remote-overview) to
|
||||
get it set up.
|
||||
|
||||
Suggest using VSCode's included settings sync so that your remote dev host has
|
||||
all the same app settings and extensions automagically.
|
||||
|
||||
##### One remote dev gotcha
|
||||
|
||||
I've found the automatic port forwarding to be very flakey. You can disable it
|
||||
in `Preferences: Open Remote Settings (ssh: hostname)`. Search for
|
||||
`remote.autoForwardPorts` and untick the box.
|
||||
|
||||
To forward ports very reliably, use SSH on the remote dev client (e.g. your
|
||||
macbook). Here's how to forward both backend API port (`9090`) and the frontend
|
||||
live dev server port (`5173`):
|
||||
|
||||
```bash
|
||||
ssh \
|
||||
-L 9090:localhost:9090 \
|
||||
-L 5173:localhost:5173 \
|
||||
user@remote-dev-host
|
||||
```
|
||||
|
||||
The forwarding stops when you close the terminal window, so suggest to do this
|
||||
_outside_ the VSCode integrated terminal in case you need to restart VSCode for
|
||||
an extension update or something
|
||||
|
||||
Now, on your remote dev client, you can open `localhost:9090` and access the UI,
|
||||
now served from the remote dev host, just the same as if it was running on the
|
||||
client.
|
||||
|
1213
docs/contributing/MODEL_MANAGER.md
Normal file
89
docs/contributing/TESTS.md
Normal file
@ -0,0 +1,89 @@
|
||||
# InvokeAI Backend Tests
|
||||
|
||||
We use `pytest` to run the backend python tests. (See [pyproject.toml](/pyproject.toml) for the default `pytest` options.)
|
||||
|
||||
## Fast vs. Slow
|
||||
All tests are categorized as either 'fast' (no test annotation) or 'slow' (annotated with the `@pytest.mark.slow` decorator).
|
||||
|
||||
'Fast' tests are run to validate every PR, and are fast enough that they can be run routinely during development.
|
||||
|
||||
'Slow' tests are currently only run manually on an ad-hoc basis. In the future, they may be automated to run nightly. Most developers are only expected to run the 'slow' tests that directly relate to the feature(s) that they are working on.
|
||||
|
||||
As a rule of thumb, tests should be marked as 'slow' if there is a chance that they take >1s (e.g. on a CPU-only machine with slow internet connection). Common examples of slow tests are tests that depend on downloading a model, or running model inference.
|
||||
|
||||
## Running Tests
|
||||
|
||||
Below are some common test commands:
|
||||
```bash
|
||||
# Run the fast tests. (This implicitly uses the configured default option: `-m "not slow"`.)
|
||||
pytest tests/
|
||||
|
||||
# Equivalent command to run the fast tests.
|
||||
pytest tests/ -m "not slow"
|
||||
|
||||
# Run the slow tests.
|
||||
pytest tests/ -m "slow"
|
||||
|
||||
# Run the slow tests from a specific file.
|
||||
pytest tests/path/to/slow_test.py -m "slow"
|
||||
|
||||
# Run all tests (fast and slow).
|
||||
pytest tests -m ""
|
||||
```
|
||||
|
||||
## Test Organization
|
||||
|
||||
All backend tests are in the [`tests/`](/tests/) directory. This directory mirrors the organization of the `invokeai/` directory. For example, tests for `invokeai/model_management/model_manager.py` would be found in `tests/model_management/test_model_manager.py`.
|
||||
|
||||
TODO: The above statement is aspirational. A re-organization of legacy tests is required to make it true.
|
||||
|
||||
## Tests that depend on models
|
||||
|
||||
There are a few things to keep in mind when adding tests that depend on models.
|
||||
|
||||
1. If a required model is not already present, it should automatically be downloaded as part of the test setup.
|
||||
2. If a model is already downloaded, it should not be re-downloaded unnecessarily.
|
||||
3. Take reasonable care to keep the total number of models required for the tests low. Whenever possible, re-use models that are already required for other tests. If you are adding a new model, consider including a comment to explain why it is required/unique.
|
||||
|
||||
There are several utilities to help with model setup for tests. Here is a sample test that depends on a model:
|
||||
```python
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
|
||||
from invokeai.backend.util.test_utils import install_and_load_model
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_model(model_installer, torch_device):
|
||||
model_info = install_and_load_model(
|
||||
model_installer=model_installer,
|
||||
model_path_id_or_url="HF/dummy_model_id",
|
||||
model_name="dummy_model",
|
||||
base_model=BaseModelType.StableDiffusion1,
|
||||
model_type=ModelType.Dummy,
|
||||
)
|
||||
|
||||
dummy_input = build_dummy_input(torch_device)
|
||||
|
||||
with torch.no_grad(), model_info as model:
|
||||
model.to(torch_device, dtype=torch.float32)
|
||||
output = model(dummy_input)
|
||||
|
||||
# Validate output...
|
||||
|
||||
```
|
||||
|
||||
## Test Coverage
|
||||
|
||||
To review test coverage, append `--cov` to your pytest command:
|
||||
```bash
|
||||
pytest tests/ --cov
|
||||
```
|
||||
|
||||
Test outcomes and coverage will be reported in the terminal. In addition, a more detailed report is created in both XML and HTML format in the `./coverage` folder. The HTML output is particularly helpful in identifying untested statements where coverage should be improved. The HTML report can be viewed by opening `./coverage/html/index.html`.
|
||||
|
||||
??? info "HTML coverage report output"
|
||||
|
||||

|
||||
|
||||

|
@ -0,0 +1,75 @@
|
||||
# Contributing to the Frontend
|
||||
|
||||
# InvokeAI Web UI
|
||||
|
||||
- [InvokeAI Web UI](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#invokeai-web-ui)
|
||||
- [Stack](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#stack)
|
||||
- [Contributing](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#contributing)
|
||||
- [Dev Environment](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#dev-environment)
|
||||
- [Production builds](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#production-builds)
|
||||
|
||||
The UI is a fairly straightforward Typescript React app, with the Unified Canvas being more complex.
|
||||
|
||||
Code is located in `invokeai/frontend/web/` for review.
|
||||
|
||||
## Stack
|
||||
|
||||
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). We lean heavily on RTK:
|
||||
|
||||
- `createAsyncThunk` for HTTP requests
|
||||
- `createEntityAdapter` for fetching images and models
|
||||
- `createListenerMiddleware` for workflows
|
||||
|
||||
The API client and associated types are generated from the OpenAPI schema. See API_CLIENT.md.
|
||||
|
||||
Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a simple socket.io redux middleware to help).
|
||||
|
||||
[Chakra-UI](https://github.com/chakra-ui/chakra-ui) & [Mantine](https://github.com/mantinedev/mantine) for components and styling.
|
||||
|
||||
[Konva](https://github.com/konvajs/react-konva) for the canvas, but we are pushing the limits of what is feasible with it (and HTML canvas in general). We plan to rebuild it with [PixiJS](https://github.com/pixijs/pixijs) to take advantage of WebGL's improved raster handling.
|
||||
|
||||
[Vite](https://vitejs.dev/) for bundling.
|
||||
|
||||
Localisation is via [i18next](https://github.com/i18next/react-i18next), but translation happens on our [Weblate](https://hosted.weblate.org/engage/invokeai/) project. Only the English source strings should be changed on this repo.
|
||||
|
||||
## Contributing
|
||||
|
||||
Thanks for your interest in contributing to the InvokeAI Web UI!
|
||||
|
||||
We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](https://discord.gg/ZmtBAhwWhy) if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
|
||||
|
||||
### Dev Environment
|
||||
|
||||
**Setup**
|
||||
|
||||
1. Install [node](https://nodejs.org/en/download/). You can confirm node is installed with:
|
||||
```bash
|
||||
node --version
|
||||
```
|
||||
2. Install [yarn classic](https://classic.yarnpkg.com/lang/en/) and confirm it is installed by running this:
|
||||
```bash
|
||||
npm install --global yarn
|
||||
yarn --version
|
||||
```
|
||||
|
||||
From `invokeai/frontend/web/` run `yarn install` to get everything set up.
|
||||
|
||||
Start everything in dev mode:
|
||||
1. Ensure your virtual environment is running
|
||||
2. Start the dev server: `yarn dev`
|
||||
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
|
||||
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
|
||||
|
||||
### VSCode Remote Dev
|
||||
|
||||
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out. Suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
|
||||
|
||||
`ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host`
|
||||
|
||||
### Production builds
|
||||
|
||||
For a number of technical and logistical reasons, we need to commit UI build artefacts to the repo.
|
||||
|
||||
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
|
||||
|
||||
To build for production, run `yarn build`.
|
49
docs/contributing/contribution_guides/development.md
Normal file
@ -0,0 +1,49 @@
|
||||
# Development
|
||||
|
||||
## **What do I need to know to help?**
|
||||
|
||||
If you are looking to help to with a code contribution, InvokeAI uses several different technologies under the hood: Python (Pydantic, FastAPI, diffusers) and Typescript (React, Redux Toolkit, ChakraUI, Mantine, Konva). Familiarity with StableDiffusion and image generation concepts is helpful, but not essential.
|
||||
|
||||
|
||||
## **Get Started**
|
||||
|
||||
To get started, take a look at our [new contributors checklist](newContributorChecklist.md)
|
||||
|
||||
Once you're setup, for more information, you can review the documentation specific to your area of interest:
|
||||
|
||||
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
|
||||
* #### [Frontend Documentation](./contributingToFrontend.md)
|
||||
* #### [Node Documentation](../INVOCATIONS.md)
|
||||
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
|
||||
|
||||
|
||||
|
||||
If you don't feel ready to make a code contribution yet, no problem! You can also help out in other ways, such as [documentation](documentation.md), [translation](translation.md) or helping support other users and triage issues as they're reported in GitHub.
|
||||
|
||||
There are two paths to making a development contribution:
|
||||
|
||||
1. Choosing an open issue to address. Open issues can be found in the [Issues](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen) section of the InvokeAI repository. These are tagged by the issue type (bug, enhancement, etc.) along with the “good first issues” tag denoting if they are suitable for first time contributors.
|
||||
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item you’d like to help with, reach out to the contributor assigned to the item to see how you can help.
|
||||
2. Opening a new issue or feature to add. **Please make sure you have searched through existing issues before creating new ones.**
|
||||
|
||||
*Regardless of what you choose, please post in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord before you start development in order to confirm that the issue or feature is aligned with the current direction of the project. We value our contributors time and effort and want to ensure that no one’s time is being misspent.*
|
||||
|
||||
## Best Practices:
|
||||
* Keep your pull requests small. Smaller pull requests are more likely to be accepted and merged
|
||||
* Comments! Commenting your code helps reviewers easily understand your contribution
|
||||
* Use Python and Typescript’s typing systems, and consider using an editor with [LSP](https://microsoft.github.io/language-server-protocol/) support to streamline development
|
||||
* Make all communications public. This ensure knowledge is shared with the whole community
|
||||
|
||||
## **Where can I go for help?**
|
||||
|
||||
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
|
||||
|
||||
For frontend related work, **@psychedelicious** is the best person to reach out to.
|
||||
|
||||
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@psychedelicious**.
|
||||
|
||||
|
||||
## **What does the Code of Conduct mean for me?**
|
||||
|
||||
Our [Code of Conduct](../../CODE_OF_CONDUCT.md) means that you are responsible for treating everyone on the project with respect and courtesy regardless of their identity. If you are the victim of any inappropriate behavior or comments as described in our Code of Conduct, we are here for you and will do the best to ensure that the abuser is reprimanded appropriately, per our code.
|
||||
|
13
docs/contributing/contribution_guides/documentation.md
Normal file
@ -0,0 +1,13 @@
|
||||
# Documentation
|
||||
|
||||
Documentation is an important part of any open source project. It provides a clear and concise way to communicate how the software works, how to use it, and how to troubleshoot issues. Without proper documentation, it can be difficult for users to understand the purpose and functionality of the project.
|
||||
|
||||
## Contributing
|
||||
|
||||
All documentation is maintained in the InvokeAI GitHub repository. If you come across documentation that is out of date or incorrect, please submit a pull request with the necessary changes.
|
||||
|
||||
When updating or creating documentation, please keep in mind InvokeAI is a tool for everyone, not just those who have familiarity with generative art.
|
||||
|
||||
## Help & Questions
|
||||
|
||||
Please ping @imic or @hipsterusername in the [Discord](https://discord.com/channels/1020123559063990373/1049495067846524939) if you have any questions.
|
@ -0,0 +1,68 @@
|
||||
# New Contributor Guide
|
||||
|
||||
If you're a new contributor to InvokeAI or Open Source Projects, this is the guide for you.
|
||||
|
||||
## New Contributor Checklist
|
||||
- [x] Set up your local development environment & fork of InvokAI by following [the steps outlined here](../../installation/020_INSTALL_MANUAL.md#developer-install)
|
||||
- [x] Set up your local tooling with [this guide](InvokeAI/contributing/LOCAL_DEVELOPMENT/#developing-invokeai-in-vscode). Feel free to skip this step if you already have tooling you're comfortable with.
|
||||
- [x] Familiarize yourself with [Git](https://www.atlassian.com/git) & our project structure by reading through the [development documentation](development.md)
|
||||
- [x] Join the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord
|
||||
- [x] Choose an issue to work on! This can be achieved by asking in the #dev-chat channel, tackling a [good first issue](https://github.com/invoke-ai/InvokeAI/contribute) or finding an item on the [roadmap](https://github.com/orgs/invoke-ai/projects/7). If nothing in any of those places catches your eye, feel free to work on something of interest to you!
|
||||
- [x] Make your first Pull Request with the guide below
|
||||
- [x] Happy development! Don't be afraid to ask for help - we're happy to help you contribute!
|
||||
|
||||
|
||||
## How do I make a contribution?
|
||||
|
||||
Never made an open source contribution before? Wondering how contributions work in our project? Here's a quick rundown!
|
||||
|
||||
Before starting these steps, ensure you have your local environment [configured for development](../LOCAL_DEVELOPMENT.md).
|
||||
|
||||
1. Find a [good first issue](https://github.com/invoke-ai/InvokeAI/contribute) that you are interested in addressing or a feature that you would like to add. Then, reach out to our team in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord to ensure you are setup for success.
|
||||
2. Fork the [InvokeAI](https://github.com/invoke-ai/InvokeAI) repository to your GitHub profile. This means that you will have a copy of the repository under **your-GitHub-username/InvokeAI**.
|
||||
3. Clone the repository to your local machine using:
|
||||
```bash
|
||||
git clone https://github.com/your-GitHub-username/InvokeAI.git
|
||||
```
|
||||
If you're unfamiliar with using Git through the commandline, [GitHub Desktop](https://desktop.github.com) is a easy-to-use alternative with a UI. You can do all the same steps listed here, but through the interface.
|
||||
4. Create a new branch for your fix using:
|
||||
```bash
|
||||
git checkout -b branch-name-here
|
||||
```
|
||||
5. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
|
||||
6. Add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index:
|
||||
```bash
|
||||
git add -A
|
||||
```
|
||||
7. Store the contents of the index with a descriptive message.
|
||||
```bash
|
||||
git commit -m "Insert a short message of the changes made here"
|
||||
```
|
||||
8. Push the changes to the remote repository using
|
||||
```bash
|
||||
git push origin branch-name-here
|
||||
```
|
||||
9. Submit a pull request to the **main** branch of the InvokeAI repository. If you're not sure how to, [follow this guide](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request)
|
||||
10. Title the pull request with a short description of the changes made and the issue or bug number associated with your change. For example, you can title an issue like so "Added more log outputting to resolve #1234".
|
||||
11. In the description of the pull request, explain the changes that you made, any issues you think exist with the pull request you made, and any questions you have for the maintainer. It's OK if your pull request is not perfect (no pull request is), the reviewer will be able to help you fix any problems and improve it!
|
||||
12. Wait for the pull request to be reviewed by other collaborators.
|
||||
13. Make changes to the pull request if the reviewer(s) recommend them.
|
||||
14. Celebrate your success after your pull request is merged!
|
||||
|
||||
If you’d like to learn more about contributing to Open Source projects, here is a [Getting Started Guide](https://opensource.com/article/19/7/create-pull-request-github).
|
||||
|
||||
|
||||
## Best Practices:
|
||||
* Keep your pull requests small. Smaller pull requests are more likely to be accepted and merged
|
||||
* Comments! Commenting your code helps reviewers easily understand your contribution
|
||||
* Use Python and Typescript’s typing systems, and consider using an editor with [LSP](https://microsoft.github.io/language-server-protocol/) support to streamline development
|
||||
* Make all communications public. This ensure knowledge is shared with the whole community
|
||||
|
||||
|
||||
## **Where can I go for help?**
|
||||
|
||||
If you need help, you can ask questions in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord.
|
||||
|
||||
For frontend related work, **@pyschedelicious** is the best person to reach out to.
|
||||
|
||||
For backend related work, please reach out to **@blessedcoolant**, **@lstein**, **@StAlKeR7779** or **@pyschedelicious**.
|
19
docs/contributing/contribution_guides/translation.md
Normal file
@ -0,0 +1,19 @@
|
||||
# Translation
|
||||
|
||||
InvokeAI uses [Weblate](https://weblate.org/) for translation. Weblate is a FOSS project providing a scalable translation service. Weblate automates the tedious parts of managing translation of a growing project, and the service is generously provided at no cost to FOSS projects like InvokeAI.
|
||||
|
||||
## Contributing
|
||||
|
||||
If you'd like to contribute by adding or updating a translation, please visit our [Weblate project](https://hosted.weblate.org/engage/invokeai/). You'll need to sign in with your GitHub account (a number of other accounts are supported, including Google).
|
||||
|
||||
Once signed in, select a language and then the Web UI component. From here you can Browse and Translate strings from English to your chosen language. Zen mode offers a simpler translation experience.
|
||||
|
||||
Your changes will be attributed to you in the automated PR process; you don't need to do anything else.
|
||||
|
||||
## Help & Questions
|
||||
|
||||
Please check Weblate's [documentation](https://docs.weblate.org/en/latest/index.html) or ping @Harvestor on [Discord](https://discord.com/channels/1020123559063990373/1049495067846524939) if you have any questions.
|
||||
|
||||
## Thanks
|
||||
|
||||
Thanks to the InvokeAI community for their efforts to translate the project!
|
11
docs/contributing/contribution_guides/tutorials.md
Normal file
@ -0,0 +1,11 @@
|
||||
# Tutorials
|
||||
|
||||
Tutorials help new & existing users expand their abilty to use InvokeAI to the full extent of our features and services.
|
||||
|
||||
Currently, we have a set of tutorials available on our [YouTube channel](https://www.youtube.com/@invokeai), but as InvokeAI continues to evolve with new updates, we want to ensure that we are giving our users the resources they need to succeed.
|
||||
|
||||
Tutorials can be in the form of videos or article walkthroughs on a subject of your choice. We recommend focusing tutorials on the key image generation methods, or on a specific component within one of the image generation methods.
|
||||
|
||||
## Contributing
|
||||
|
||||
Please reach out to @imic or @hipsterusername on [Discord](https://discord.gg/ZmtBAhwWhy) to help create tutorials for InvokeAI.
|
@ -211,8 +211,8 @@ Here are the invoke> command that apply to txt2img:
|
||||
| `--facetool <name>` | `-ft <name>` | `-ft gfpgan` | Select face restoration algorithm to use: gfpgan, codeformer |
|
||||
| `--codeformer_fidelity` | `-cf <float>` | `0.75` | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
|
||||
| `--save_original` | `-save_orig` | `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
|
||||
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](../features/VARIATIONS.md). |
|
||||
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](../features/VARIATIONS.md) for now to use this. |
|
||||
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](VARIATIONS.md). |
|
||||
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](VARIATIONS.md) for now to use this. |
|
||||
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
|
||||
| `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
|
||||
| `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
|
||||
|
131
docs/deprecated/VARIATIONS.md
Normal file
@ -0,0 +1,131 @@
|
||||
---
|
||||
title: Variations
|
||||
---
|
||||
|
||||
# :material-tune-variant: Variations
|
||||
|
||||
## Intro
|
||||
|
||||
InvokeAI's support for variations enables you to do the following:
|
||||
|
||||
1. Generate a series of systematic variations of an image, given a prompt. The
|
||||
amount of variation from one image to the next can be controlled.
|
||||
|
||||
2. Given two or more variations that you like, you can combine them in a
|
||||
weighted fashion.
|
||||
|
||||
!!! Information ""
|
||||
|
||||
This cheat sheet provides a quick guide for how this works in practice, using
|
||||
variations to create the desired image of Xena, Warrior Princess.
|
||||
|
||||
## Step 1 -- Find a base image that you like
|
||||
|
||||
The prompt we will use throughout is:
|
||||
|
||||
`#!bash "lucy lawless as xena, warrior princess, character portrait, high resolution."`
|
||||
|
||||
This will be indicated as `#!bash "prompt"` in the examples below.
|
||||
|
||||
First we let SD create a series of images in the usual way, in this case
|
||||
requesting six iterations.
|
||||
|
||||
<figure markdown>
|
||||

|
||||
<figcaption> Seed 3357757885 looks nice </figcaption>
|
||||
</figure>
|
||||
|
||||
---
|
||||
|
||||
## Step 2 - Generating Variations
|
||||
|
||||
Let's try to generate some variations on this image. We select the "*"
|
||||
symbol in the line of icons above the image in order to fix the prompt
|
||||
and seed. Then we open up the "Variations" section of the generation
|
||||
panel and use the slider to set the variation amount to 0.2. The
|
||||
higher this value, the more each generated image will differ from the
|
||||
previous one.
|
||||
|
||||
Now we run the prompt a second time, requesting six iterations. You
|
||||
will see six images that are thematically related to each other. Try
|
||||
increasing and decreasing the variation amount and see what happens.
|
||||
|
||||
### **Variation Sub Seeding**
|
||||
|
||||
Note that the output for each image has a `-V` option giving the "variant
|
||||
subseed" for that image, consisting of a seed followed by the variation amount
|
||||
used to generate it.
|
||||
|
||||
This gives us a series of closely-related variations, including the two shown
|
||||
here.
|
||||
|
||||
<figure markdown>
|
||||

|
||||
<figcaption>subseed 3647897225</figcaption>
|
||||
</figure>
|
||||
|
||||
<figure markdown>
|
||||

|
||||
<figcaption>subseed 1614299449</figcaption>
|
||||
</figure>
|
||||
|
||||
I like the expression on Xena's face in the first one (subseed 3647897225), and
|
||||
the armor on her shoulder in the second one (subseed 1614299449). Can we combine
|
||||
them to get the best of both worlds?
|
||||
|
||||
We combine the two variations using `-V` (`--with_variations`). Again, we must
|
||||
provide the seed for the originally-chosen image in order for this to work.
|
||||
|
||||
```bash
|
||||
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1
|
||||
Outputs:
|
||||
./outputs/Xena/000003.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1 -S3357757885
|
||||
```
|
||||
|
||||
Here we are providing equal weights (0.1 and 0.1) for both the subseeds. The
|
||||
resulting image is close, but not exactly what I wanted:
|
||||
|
||||
<figure markdown>
|
||||

|
||||
<figcaption> subseed 1614299449 </figcaption>
|
||||
</figure>
|
||||
|
||||
We could either try combining the images with different weights, or we can
|
||||
generate more variations around the almost-but-not-quite image. We do the
|
||||
latter, using both the `-V` (combining) and `-v` (variation strength) options.
|
||||
Note that we use `-n6` to generate 6 variations:
|
||||
|
||||
```bash
|
||||
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1 -v0.05 -n6
|
||||
Outputs:
|
||||
./outputs/Xena/000004.3279757577.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3279757577:0.05 -S3357757885
|
||||
./outputs/Xena/000004.2853129515.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2853129515:0.05 -S3357757885
|
||||
./outputs/Xena/000004.3747154981.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3747154981:0.05 -S3357757885
|
||||
./outputs/Xena/000004.2664260391.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2664260391:0.05 -S3357757885
|
||||
./outputs/Xena/000004.1642517170.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,1642517170:0.05 -S3357757885
|
||||
./outputs/Xena/000004.2183375608.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2183375608:0.05 -S3357757885
|
||||
```
|
||||
|
||||
This produces six images, all slight variations on the combination of the chosen
|
||||
two images. Here's the one I like best:
|
||||
|
||||
<figure markdown>
|
||||

|
||||
<figcaption> subseed 3747154981 </figcaption>
|
||||
</figure>
|
||||
|
||||
As you can see, this is a very powerful tool, which when combined with subprompt
|
||||
weighting, gives you great control over the content and quality of your
|
||||
generated images.
|
||||
|
||||
## Variations and Samplers
|
||||
|
||||
The sampler you choose has a strong effect on variation strength. Some
|
||||
samplers, such as `k_euler_a` are very "creative" and produce significant
|
||||
amounts of image-to-image variation even when the seed is fixed and the
|
||||
`-v` argument is very low. Others are more deterministic. Feel free to
|
||||
experiment until you find the combination that you like.
|
||||
|
||||
Also be aware of the [Perlin Noise](../features/OTHER.md#thresholding-and-perlin-noise-initialization-options)
|
||||
feature, which provides another way of introducing variability into your
|
||||
image generation requests.
|
@ -1,106 +0,0 @@
|
||||
---
|
||||
title: Concepts Library
|
||||
---
|
||||
|
||||
# :material-library-shelves: The Hugging Face Concepts Library and Importing Textual Inversion files
|
||||
|
||||
## Using Textual Inversion Files
|
||||
|
||||
Textual inversion (TI) files are small models that customize the output of
|
||||
Stable Diffusion image generation. They can augment SD with specialized subjects
|
||||
and artistic styles. They are also known as "embeds" in the machine learning
|
||||
world.
|
||||
|
||||
Each TI file introduces one or more vocabulary terms to the SD model. These are
|
||||
known in InvokeAI as "triggers." Triggers are often, but not always, denoted
|
||||
using angle brackets as in "<trigger-phrase>". The two most common type of
|
||||
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
|
||||
different TI training packages. InvokeAI supports both formats, but its
|
||||
[built-in TI training system](TEXTUAL_INVERSION.md) produces `.pt`.
|
||||
|
||||
The [Hugging Face company](https://huggingface.co/sd-concepts-library) has
|
||||
amassed a large ligrary of >800 community-contributed TI files covering a
|
||||
broad range of subjects and styles. InvokeAI has built-in support for this
|
||||
library which downloads and merges TI files automatically upon request. You can
|
||||
also install your own or others' TI files by placing them in a designated
|
||||
directory.
|
||||
|
||||
### An Example
|
||||
|
||||
Here are a few examples to illustrate how it works. All these images were
|
||||
generated using the command-line client and the Stable Diffusion 1.5 model:
|
||||
|
||||
| Japanese gardener | Japanese gardener <ghibli-face> | Japanese gardener <hoi4-leaders> | Japanese gardener <cartoona-animals> |
|
||||
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |
|
||||
|  |  |  |  |
|
||||
|
||||
You can also combine styles and concepts:
|
||||
|
||||
<figure markdown>
|
||||
| A portrait of <alf> in <cartoona-animal> style |
|
||||
| :--------------------------------------------------------: |
|
||||
|  |
|
||||
</figure>
|
||||
## Using a Hugging Face Concept
|
||||
|
||||
!!! warning "Authenticating to HuggingFace"
|
||||
|
||||
Some concepts require valid authentication to HuggingFace. Without it, they will not be downloaded
|
||||
and will be silently ignored.
|
||||
|
||||
If you used an installer to install InvokeAI, you may have already set a HuggingFace token.
|
||||
If you skipped this step, you can:
|
||||
|
||||
- run the InvokeAI configuration script again (if you used a manual installer): `invokeai-configure`
|
||||
- set one of the `HUGGINGFACE_TOKEN` or `HUGGING_FACE_HUB_TOKEN` environment variables to contain your token
|
||||
|
||||
Finally, if you already used any HuggingFace library on your computer, you might already have a token
|
||||
in your local cache. Check for a hidden `.huggingface` directory in your home folder. If it
|
||||
contains a `token` file, then you are all set.
|
||||
|
||||
|
||||
Hugging Face TI concepts are downloaded and installed automatically as you
|
||||
require them. This requires your machine to be connected to the Internet. To
|
||||
find out what each concept is for, you can browse the
|
||||
[Hugging Face concepts library](https://huggingface.co/sd-concepts-library) and
|
||||
look at examples of what each concept produces.
|
||||
|
||||
To load concepts, you will need to open the Web UI's configuration
|
||||
dialogue and activate "Show Textual Inversions from HF Concepts
|
||||
Library". This will then add a list of HF Concepts to the dropdown
|
||||
"Add Textual Inversion" menu. Select the concept(s) of your choice and
|
||||
they will be incorporated into the positive prompt. A few concepts are
|
||||
designed for the negative prompt, in which case you can add them to
|
||||
the negative prompt box by select the down arrow icon next to the
|
||||
textual inversion menu.
|
||||
|
||||
There are nearly 1000 HF concepts, more than will fit into a menu. For
|
||||
this reason we only show the most popular concepts (those which have
|
||||
received 5 or more likes). If you wish to use a concept that is not on
|
||||
the list, you may simply type its name surrounded by brackets. For
|
||||
example, to load the concept named "xidiversity", add `<xidiversity>`
|
||||
to the positive or negative prompt text.
|
||||
|
||||
## Installing your Own TI Files
|
||||
|
||||
You may install any number of `.pt` and `.bin` files simply by copying them into
|
||||
the `embeddings` directory of the InvokeAI runtime directory (usually `invokeai`
|
||||
in your home directory). You may create subdirectories in order to organize the
|
||||
files in any way you wish. Be careful not to overwrite one file with another.
|
||||
For example, TI files generated by the Hugging Face toolkit share the named
|
||||
`learned_embedding.bin`. You can use subdirectories to keep them distinct.
|
||||
|
||||
At startup time, InvokeAI will scan the `embeddings` directory and load any TI
|
||||
files it finds there. At startup you will see a message similar to this one:
|
||||
|
||||
```bash
|
||||
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
|
||||
```
|
||||
|
||||
The terms you can use will appear in the "Add Textual Inversion"
|
||||
dropdown menu above the HF Concepts.
|
||||
|
||||
## Further Reading
|
||||
|
||||
Please see [the repository](https://github.com/rinongal/textual_inversion) and
|
||||
associated paper for details and limitations.
|
287
docs/features/CONFIGURATION.md
Normal file
@ -0,0 +1,287 @@
|
||||
---
|
||||
title: Configuration
|
||||
---
|
||||
|
||||
# :material-tune-variant: InvokeAI Configuration
|
||||
|
||||
## Intro
|
||||
|
||||
InvokeAI has numerous runtime settings which can be used to adjust
|
||||
many aspects of its operations, including the location of files and
|
||||
directories, memory usage, and performance. These settings can be
|
||||
viewed and customized in several ways:
|
||||
|
||||
1. By editing settings in the `invokeai.yaml` file.
|
||||
2. By setting environment variables.
|
||||
3. On the command-line, when InvokeAI is launched.
|
||||
|
||||
In addition, the most commonly changed settings are accessible
|
||||
graphically via the `invokeai-configure` script.
|
||||
|
||||
### How the Configuration System Works
|
||||
|
||||
When InvokeAI is launched, the very first thing it needs to do is to
|
||||
find its "root" directory, which contains its configuration files,
|
||||
installed models, its database of images, and the folder(s) of
|
||||
generated images themselves. In this document, the root directory will
|
||||
be referred to as ROOT.
|
||||
|
||||
#### Finding the Root Directory
|
||||
|
||||
To find its root directory, InvokeAI uses the following recipe:
|
||||
|
||||
1. It first looks for the argument `--root <path>` on the command line
|
||||
it was launched from, and uses the indicated path if present.
|
||||
|
||||
2. Next it looks for the environment variable INVOKEAI_ROOT, and uses
|
||||
the directory path found there if present.
|
||||
|
||||
3. If neither of these are present, then InvokeAI looks for the
|
||||
folder containing the `.venv` Python virtual environment directory for
|
||||
the currently active environment. This directory is checked for files
|
||||
expected inside the InvokeAI root before it is used.
|
||||
|
||||
4. Finally, InvokeAI looks for a directory in the current user's home
|
||||
directory named `invokeai`.
|
||||
|
||||
#### Reading the InvokeAI Configuration File
|
||||
|
||||
Once the root directory has been located, InvokeAI looks for a file
|
||||
named `ROOT/invokeai.yaml`, and if present reads configuration values
|
||||
from it. The top of this file looks like this:
|
||||
|
||||
```
|
||||
InvokeAI:
|
||||
Web Server:
|
||||
host: localhost
|
||||
port: 9090
|
||||
allow_origins: []
|
||||
allow_credentials: true
|
||||
allow_methods:
|
||||
- '*'
|
||||
allow_headers:
|
||||
- '*'
|
||||
Features:
|
||||
esrgan: true
|
||||
internet_available: true
|
||||
log_tokenization: false
|
||||
patchmatch: true
|
||||
restore: true
|
||||
...
|
||||
```
|
||||
|
||||
This lines in this file are used to establish default values for
|
||||
Invoke's settings. In the above fragment, the Web Server's listening
|
||||
port is set to 9090 by the `port` setting.
|
||||
|
||||
You can edit this file with a text editor such as "Notepad" (do not
|
||||
use Word or any other word processor). When editing, be careful to
|
||||
maintain the indentation, and do not add extraneous text, as syntax
|
||||
errors will prevent InvokeAI from launching. A basic guide to the
|
||||
format of YAML files can be found
|
||||
[here](https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/).
|
||||
|
||||
You can fix a broken `invokeai.yaml` by deleting it and running the
|
||||
configuration script again -- option [6] in the launcher, "Re-run the
|
||||
configure script".
|
||||
|
||||
#### Reading Environment Variables
|
||||
|
||||
Next InvokeAI looks for defined environment variables in the format
|
||||
`INVOKEAI_<setting_name>`, for example `INVOKEAI_port`. Environment
|
||||
variable values take precedence over configuration file variables. On
|
||||
a Macintosh system, for example, you could change the port that the
|
||||
web server listens on by setting the environment variable this way:
|
||||
|
||||
```
|
||||
export INVOKEAI_port=8000
|
||||
invokeai-web
|
||||
```
|
||||
|
||||
Please check out these
|
||||
[Macintosh](https://phoenixnap.com/kb/set-environment-variable-mac)
|
||||
and
|
||||
[Windows](https://phoenixnap.com/kb/windows-set-environment-variable)
|
||||
guides for setting temporary and permanent environment variables.
|
||||
|
||||
#### Reading the Command Line
|
||||
|
||||
Lastly, InvokeAI takes settings from the command line, which override
|
||||
everything else. The command-line settings have the same name as the
|
||||
corresponding configuration file settings, preceded by a `--`, for
|
||||
example `--port 8000`.
|
||||
|
||||
If you are using the launcher (`invoke.sh` or `invoke.bat`) to launch
|
||||
InvokeAI, then just pass the command-line arguments to the launcher:
|
||||
|
||||
```
|
||||
invoke.bat --port 8000 --host 0.0.0.0
|
||||
```
|
||||
|
||||
The arguments will be applied when you select the web server option
|
||||
(and the other options as well).
|
||||
|
||||
If, on the other hand, you prefer to launch InvokeAI directly from the
|
||||
command line, you would first activate the virtual environment (known
|
||||
as the "developer's console" in the launcher), and run `invokeai-web`:
|
||||
|
||||
```
|
||||
> C:\Users\Fred\invokeai\.venv\scripts\activate
|
||||
(.venv) > invokeai-web --port 8000 --host 0.0.0.0
|
||||
```
|
||||
|
||||
You can get a listing and brief instructions for each of the
|
||||
command-line options by giving the `--help` argument:
|
||||
|
||||
```
|
||||
(.venv) > invokeai-web --help
|
||||
usage: InvokeAI [-h] [--host HOST] [--port PORT] [--allow_origins [ALLOW_ORIGINS ...]] [--allow_credentials | --no-allow_credentials] [--allow_methods [ALLOW_METHODS ...]]
|
||||
[--allow_headers [ALLOW_HEADERS ...]] [--esrgan | --no-esrgan] [--internet_available | --no-internet_available] [--log_tokenization | --no-log_tokenization]
|
||||
[--patchmatch | --no-patchmatch] [--restore | --no-restore]
|
||||
[--always_use_cpu | --no-always_use_cpu] [--free_gpu_mem | --no-free_gpu_mem] [--max_loaded_models MAX_LOADED_MODELS] [--max_cache_size MAX_CACHE_SIZE]
|
||||
[--max_vram_cache_size MAX_VRAM_CACHE_SIZE] [--gpu_mem_reserved GPU_MEM_RESERVED] [--precision {auto,float16,float32,autocast}]
|
||||
[--sequential_guidance | --no-sequential_guidance] [--xformers_enabled | --no-xformers_enabled] [--tiled_decode | --no-tiled_decode] [--root ROOT]
|
||||
[--autoimport_dir AUTOIMPORT_DIR] [--lora_dir LORA_DIR] [--embedding_dir EMBEDDING_DIR] [--controlnet_dir CONTROLNET_DIR] [--conf_path CONF_PATH]
|
||||
[--models_dir MODELS_DIR] [--legacy_conf_dir LEGACY_CONF_DIR] [--db_dir DB_DIR] [--outdir OUTDIR] [--from_file FROM_FILE]
|
||||
[--use_memory_db | --no-use_memory_db] [--model MODEL] [--log_handlers [LOG_HANDLERS ...]] [--log_format {plain,color,syslog,legacy}]
|
||||
[--log_level {debug,info,warning,error,critical}] [--version | --no-version]
|
||||
```
|
||||
|
||||
## The Configuration Settings
|
||||
|
||||
The configuration settings are divided into several distinct
|
||||
groups in `invokeia.yaml`:
|
||||
|
||||
### Web Server
|
||||
|
||||
| Setting | Default Value | Description |
|
||||
|----------|----------------|--------------|
|
||||
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
|
||||
| `port` | `9090` | Network port number that the web server will listen on |
|
||||
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
|
||||
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
|
||||
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
|
||||
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
|
||||
|
||||
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].
|
||||
|
||||
### Features
|
||||
|
||||
These configuration settings allow you to enable and disable various InvokeAI features:
|
||||
|
||||
| Setting | Default Value | Description |
|
||||
|----------|----------------|--------------|
|
||||
| `esrgan` | `true` | Activate the ESRGAN upscaling options|
|
||||
| `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet |
|
||||
| `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected |
|
||||
| `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting |
|
||||
|
||||
### Generation
|
||||
|
||||
These options tune InvokeAI's memory and performance characteristics.
|
||||
|
||||
| Setting | Default Value | Description |
|
||||
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `sequential_guidance` | `false` | Calculate guidance in serial rather than in parallel, lowering memory requirements at the cost of some performance loss |
|
||||
| `attention_type` | `auto` | Select the type of attention to use. One of `auto`,`normal`,`xformers`,`sliced`, or `torch-sdp` |
|
||||
| `attention_slice_size` | `auto` | When "sliced" attention is selected, set the slice size. One of `auto`, `balanced`, `max` or the integers 1-8|
|
||||
| `force_tiled_decode` | `false` | Force the VAE step to decode in tiles, reducing memory consumption at the cost of performance |
|
||||
|
||||
### Device
|
||||
|
||||
These options configure the generation execution device.
|
||||
|
||||
| Setting | Default Value | Description |
|
||||
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `device` | `auto` | Preferred execution device. One of `auto`, `cpu`, `cuda`, `cuda:1`, `mps`. `auto` will choose the device depending on the hardware platform and the installed torch capabilities. |
|
||||
| `precision` | `auto` | Floating point precision. One of `auto`, `float16` or `float32`. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system |
|
||||
|
||||
|
||||
### Paths
|
||||
|
||||
These options set the paths of various directories and files used by
|
||||
InvokeAI. Relative paths are interpreted relative to INVOKEAI_ROOT, so
|
||||
if INVOKEAI_ROOT is `/home/fred/invokeai` and the path is
|
||||
`autoimport/main`, then the corresponding directory will be located at
|
||||
`/home/fred/invokeai/autoimport/main`.
|
||||
|
||||
| Setting | Default Value | Description |
|
||||
|----------|----------------|--------------|
|
||||
| `autoimport_dir` | `autoimport/main` | At startup time, read and import any main model files found in this directory |
|
||||
| `lora_dir` | `autoimport/lora` | At startup time, read and import any LoRA/LyCORIS models found in this directory |
|
||||
| `embedding_dir` | `autoimport/embedding` | At startup time, read and import any textual inversion (embedding) models found in this directory |
|
||||
| `controlnet_dir` | `autoimport/controlnet` | At startup time, read and import any ControlNet models found in this directory |
|
||||
| `conf_path` | `configs/models.yaml` | Location of the `models.yaml` model configuration file |
|
||||
| `models_dir` | `models` | Location of the directory containing models installed by InvokeAI's model manager |
|
||||
| `legacy_conf_dir` | `configs/stable-diffusion` | Location of the directory containing the .yaml configuration files for legacy checkpoint models |
|
||||
| `db_dir` | `databases` | Location of the directory containing InvokeAI's image, schema and session database |
|
||||
| `outdir` | `outputs` | Location of the directory in which the gallery of generated and uploaded images will be stored |
|
||||
| `use_memory_db` | `false` | Keep database information in memory rather than on disk; this will not preserve image gallery information across restarts |
|
||||
|
||||
Note that the autoimport directories will be searched recursively,
|
||||
allowing you to organize the models into folders and subfolders in any
|
||||
way you wish. In addition, while we have split up autoimport
|
||||
directories by the type of model they contain, this isn't
|
||||
necessary. You can combine different model types in the same folder
|
||||
and InvokeAI will figure out what they are. So you can easily use just
|
||||
one autoimport directory by commenting out the unneeded paths:
|
||||
|
||||
```
|
||||
Paths:
|
||||
autoimport_dir: autoimport
|
||||
# lora_dir: null
|
||||
# embedding_dir: null
|
||||
# controlnet_dir: null
|
||||
```
|
||||
|
||||
### Logging
|
||||
|
||||
These settings control the information, warning, and debugging
|
||||
messages printed to the console log while InvokeAI is running:
|
||||
|
||||
| Setting | Default Value | Description |
|
||||
|----------|----------------|--------------|
|
||||
| `log_handlers` | `console` | This controls where log messages are sent, and can be a list of one or more destinations. Values include `console`, `file`, `syslog` and `http`. These are described in more detail below |
|
||||
| `log_format` | `color` | This controls the formatting of the log messages. Values are `plain`, `color`, `legacy` and `syslog` |
|
||||
| `log_level` | `debug` | This filters messages according to the level of severity and can be one of `debug`, `info`, `warning`, `error` and `critical`. For example, setting to `warning` will display all messages at the warning level or higher, but won't display "debug" or "info" messages |
|
||||
|
||||
Several different log handler destinations are available, and multiple destinations are supported by providing a list:
|
||||
|
||||
```
|
||||
log_handlers:
|
||||
- console
|
||||
- syslog=localhost
|
||||
- file=/var/log/invokeai.log
|
||||
```
|
||||
|
||||
* `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
|
||||
|
||||
* `syslog` is only available on Linux and Macintosh systems. It uses
|
||||
the operating system's "syslog" facility to write log file entries
|
||||
locally or to a remote logging machine. `syslog` offers a variety
|
||||
of configuration options:
|
||||
|
||||
```
|
||||
syslog=/dev/log` - log to the /dev/log device
|
||||
syslog=localhost` - log to the network logger running on the local machine
|
||||
syslog=localhost:512` - same as above, but using a non-standard port
|
||||
syslog=fredserver,facility=LOG_USER,socktype=SOCK_DRAM`
|
||||
- Log to LAN-connected server "fredserver" using the facility LOG_USER and datagram packets.
|
||||
```
|
||||
|
||||
* `http` can be used to log to a remote web server. The server must be
|
||||
properly configured to receive and act on log messages. The option
|
||||
accepts the URL to the web server, and a `method` argument
|
||||
indicating whether the message should be submitted using the GET or
|
||||
POST method.
|
||||
|
||||
```
|
||||
http=http://my.server/path/to/logger,method=POST
|
||||
```
|
||||
|
||||
The `log_format` option provides several alternative formats:
|
||||
|
||||
* `color` - default format providing time, date and a message, using text colors to distinguish different log severities
|
||||
* `plain` - same as above, but monochrome text only
|
||||
* `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
|
||||
* `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.
|
@ -1,27 +1,63 @@
|
||||
---
|
||||
title: ControlNet
|
||||
title: Control Adapters
|
||||
---
|
||||
|
||||
# :material-loupe: ControlNet
|
||||
# :material-loupe: Control Adapters
|
||||
|
||||
## ControlNet
|
||||
|
||||
ControlNet
|
||||
ControlNet is a powerful set of features developed by the open-source
|
||||
community (notably, Stanford researcher
|
||||
[**@ilyasviel**](https://github.com/lllyasviel)) that allows you to
|
||||
apply a secondary neural network model to your image generation
|
||||
process in Invoke.
|
||||
|
||||
ControlNet is a powerful set of features developed by the open-source community (notably, Stanford researcher [**@ilyasviel**](https://github.com/lllyasviel)) that allows you to apply a secondary neural network model to your image generation process in Invoke.
|
||||
With ControlNet, you can get more control over the output of your
|
||||
image generation, providing you with a way to direct the network
|
||||
towards generating images that better fit your desired style or
|
||||
outcome.
|
||||
|
||||
With ControlNet, you can get more control over the output of your image generation, providing you with a way to direct the network towards generating images that better fit your desired style or outcome.
|
||||
ControlNet works by analyzing an input image, pre-processing that
|
||||
image to identify relevant information that can be interpreted by each
|
||||
specific ControlNet model, and then inserting that control information
|
||||
into the generation process. This can be used to adjust the style,
|
||||
composition, or other aspects of the image to better achieve a
|
||||
specific result.
|
||||
|
||||
#### Installation
|
||||
|
||||
InvokeAI provides access to a series of ControlNet models that provide
|
||||
different effects or styles in your generated images.
|
||||
|
||||
To install ControlNet Models:
|
||||
|
||||
1. The easiest way to install them is
|
||||
to use the InvokeAI model installer application. Use the
|
||||
`invoke.sh`/`invoke.bat` launcher to select item [4] and then navigate
|
||||
to the CONTROLNETS section. Select the models you wish to install and
|
||||
press "APPLY CHANGES". You may also enter additional HuggingFace
|
||||
repo_ids in the "Additional models" textbox.
|
||||
2. Using the "Add Model" function of the model manager, enter the HuggingFace Repo ID of the ControlNet. The ID is in the format "author/repoName"
|
||||
|
||||
|
||||
### How it works
|
||||
_Be aware that some ControlNet models require additional code
|
||||
functionality in order to work properly, so just installing a
|
||||
third-party ControlNet model may not have the desired effect._ Please
|
||||
read and follow the documentation for installing a third party model
|
||||
not currently included among InvokeAI's default list.
|
||||
|
||||
ControlNet works by analyzing an input image, pre-processing that image to identify relevant information that can be interpreted by each specific ControlNet model, and then inserting that control information into the generation process. This can be used to adjust the style, composition, or other aspects of the image to better achieve a specific result.
|
||||
Currently InvokeAI **only** supports 🤗 Diffusers-format ControlNet models. These are
|
||||
folders that contain the files `config.json` and/or
|
||||
`diffusion_pytorch_model.safetensors` and
|
||||
`diffusion_pytorch_model.fp16.safetensors`. The name of the folder is
|
||||
the name of the model.
|
||||
|
||||
🤗 Diffusers-format ControlNet models are available at HuggingFace
|
||||
(http://huggingface.co) and accessed via their repo IDs (identifiers
|
||||
in the format "author/modelname").
|
||||
|
||||
### Models
|
||||
|
||||
As part of the model installation, ControlNet models can be selected including a variety of pre-trained models that have been added to achieve different effects or styles in your generated images. Further ControlNet models may require additional code functionality to also be incorporated into Invoke's Invocations folder. You should expect to follow any installation instructions for ControlNet models loaded outside the default models provided by Invoke. The default models include:
|
||||
|
||||
#### ControlNet Models
|
||||
The models currently supported include:
|
||||
|
||||
**Canny**:
|
||||
|
||||
@ -52,6 +88,8 @@ A model that generates normal maps from input images, allowing for more realisti
|
||||
**Image Segmentation**:
|
||||
A model that divides input images into segments or regions, each of which corresponds to a different object or part of the image. (More details coming soon)
|
||||
|
||||
**QR Code Monster**:
|
||||
A model that helps generate creative QR codes that still scan. Can also be used to create images with text, logos or shapes within them.
|
||||
|
||||
**Openpose**:
|
||||
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
|
||||
@ -60,7 +98,7 @@ The OpenPose control model allows for the identification of the general pose of
|
||||
|
||||
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.
|
||||
|
||||
**Tile (experimental)**:
|
||||
**Tile**:
|
||||
|
||||
The Tile model fills out details in the image to match the image, rather than the prompt. The Tile Model is a versatile tool that offers a range of functionalities. Its primary capabilities can be boiled down to two main behaviors:
|
||||
|
||||
@ -73,12 +111,10 @@ The Tile Model can be a powerful tool in your arsenal for enhancing image qualit
|
||||
|
||||
With Pix2Pix, you can input an image into the controlnet, and then "instruct" the model to change it using your prompt. For example, you can say "Make it winter" to add more wintry elements to a scene.
|
||||
|
||||
**Inpaint**: Coming Soon - Currently this model is available but not functional on the Canvas. An upcoming release will provide additional capabilities for using this model when inpainting.
|
||||
|
||||
Each of these models can be adjusted and combined with other ControlNet models to achieve different results, giving you even more control over your image generation process.
|
||||
|
||||
|
||||
## Using ControlNet
|
||||
### Using ControlNet
|
||||
|
||||
To use ControlNet, you can simply select the desired model and adjust both the ControlNet and Pre-processor settings to achieve the desired result. You can also use multiple ControlNet models at the same time, allowing you to achieve even more complex effects or styles in your generated images.
|
||||
|
||||
@ -90,3 +126,54 @@ Weight - Strength of the Controlnet model applied to the generation for the sect
|
||||
Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the ControlNet applied.
|
||||
|
||||
Additionally, each ControlNet section can be expanded in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in when you Invoke.
|
||||
|
||||
## T2I-Adapter
|
||||
[T2I-Adapter](https://github.com/TencentARC/T2I-Adapter) is a tool similar to ControlNet that allows for control over the generation process by providing control information during the generation process. T2I-Adapter models tend to be smaller and more efficient than ControlNets.
|
||||
|
||||
##### Installation
|
||||
To install T2I-Adapter Models:
|
||||
|
||||
1. The easiest way to install models is
|
||||
to use the InvokeAI model installer application. Use the
|
||||
`invoke.sh`/`invoke.bat` launcher to select item [5] and then navigate
|
||||
to the T2I-Adapters section. Select the models you wish to install and
|
||||
press "APPLY CHANGES". You may also enter additional HuggingFace
|
||||
repo_ids in the "Additional models" textbox.
|
||||
2. Using the "Add Model" function of the model manager, enter the HuggingFace Repo ID of the T2I-Adapter. The ID is in the format "author/repoName"
|
||||
|
||||
#### Usage
|
||||
Each T2I Adapter has two settings that are applied.
|
||||
|
||||
Weight - Strength of the model applied to the generation for the section, defined by start/end.
|
||||
|
||||
Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the ControlNet applied.
|
||||
|
||||
Additionally, each section can be expanded with the "Show Advanced" button in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in during the generation process.
|
||||
|
||||
|
||||
## IP-Adapter
|
||||
|
||||
[IP-Adapter](https://ip-adapter.github.io) is a tooling that allows for image prompt capabilities with text-to-image diffusion models. IP-Adapter works by analyzing the given image prompt to extract features, then passing those features to the UNet along with any other conditioning provided.
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
#### Installation
|
||||
There are several ways to install IP-Adapter models with an existing InvokeAI installation:
|
||||
|
||||
1. Through the command line interface launched from the invoke.sh / invoke.bat scripts, option [4] to download models.
|
||||
2. Through the Model Manager UI with models from the *Tools* section of [www.models.invoke.ai](https://www.models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
|
||||
3. **Advanced -- Not recommended ** Manually downloading the IP-Adapter and Image Encoder files - Image Encoder folders shouid be placed in the `models\any\clip_vision` folders. IP Adapter Model folders should be placed in the relevant `ip-adapter` folder of relevant base model folder of Invoke root directory. For example, for the SDXL IP-Adapter, files should be added to the `model/sdxl/ip_adapter/` folder.
|
||||
|
||||
#### Using IP-Adapter
|
||||
|
||||
IP-Adapter can be used by navigating to the *Control Adapters* options and enabling IP-Adapter.
|
||||
|
||||
IP-Adapter requires an image to be used as the Image Prompt. It can also be used in conjunction with text prompts, Image-to-Image, Inpainting, Outpainting, ControlNets and LoRAs.
|
||||
|
||||
|
||||
Each IP-Adapter has two settings that are applied to the IP-Adapter:
|
||||
|
||||
* Weight - Strength of the IP-Adapter model applied to the generation for the section, defined by start/end
|
||||
* Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the IP-Adapter applied.
|
||||
|
53
docs/features/LORAS.md
Normal file
@ -0,0 +1,53 @@
|
||||
---
|
||||
title: LoRAs & LCM-LoRAs
|
||||
---
|
||||
|
||||
# :material-library-shelves: LoRAs & LCM-LoRAs
|
||||
|
||||
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
|
||||
|
||||
## LoRAs
|
||||
|
||||
Low-Rank Adaptation (LoRA) files are models that customize the output of Stable Diffusion
|
||||
image generation. Larger than embeddings, but much smaller than full
|
||||
models, they augment SD with improved understanding of subjects and
|
||||
artistic styles.
|
||||
|
||||
Unlike TI files, LoRAs do not introduce novel vocabulary into the
|
||||
model's known tokens. Instead, LoRAs augment the model's weights that
|
||||
are applied to generate imagery. LoRAs may be supplied with a
|
||||
"trigger" word that they have been explicitly trained on, or may
|
||||
simply apply their effect without being triggered.
|
||||
|
||||
LoRAs are typically stored in .safetensors files, which are the most
|
||||
secure way to store and transmit these types of weights. You may
|
||||
install any number of `.safetensors` LoRA files simply by copying them
|
||||
into the `autoimport/lora` directory of the corresponding InvokeAI models
|
||||
directory (usually `invokeai` in your home directory).
|
||||
|
||||
To use these when generating, open the LoRA menu item in the options
|
||||
panel, select the LoRAs you want to apply and ensure that they have
|
||||
the appropriate weight recommended by the model provider. Typically,
|
||||
most LoRAs perform best at a weight of .75-1.
|
||||
|
||||
|
||||
## LCM-LoRAs
|
||||
Latent Consistency Models (LCMs) allowed a reduced number of steps to be used to generate images with Stable Diffusion. These are created by distilling base models, creating models that only require a small number of steps to generate images. However, LCMs require that any fine-tune of a base model be distilled to be used as an LCM.
|
||||
|
||||
LCM-LoRAs are models that provide the benefit of LCMs but are able to be used as LoRAs and applied to any fine tune of a base model. LCM-LoRAs are created by training a small number of adapters, rather than distilling the entire fine-tuned base model. The resulting LoRA can be used the same way as a standard LoRA, but with a greatly reduced step count. This enables SDXL images to be generated up to 10x faster than without the use of LCM-LoRAs.
|
||||
|
||||
|
||||
**Using LCM-LoRAs**
|
||||
|
||||
LCM-LoRAs are natively supported in InvokeAI throughout the application. To get started, install any diffusers format LCM-LoRAs using the model manager and select it in the LoRA field.
|
||||
|
||||
There are a number parameter differences when using LCM-LoRAs and standard generation:
|
||||
|
||||
- When using LCM-LoRAs, the LoRA strength should be lower than if using a standard LoRA, with 0.35 recommended as a starting point.
|
||||
- The LCM scheduler should be used for generation
|
||||
- CFG-Scale should be reduced to ~1
|
||||
- Steps should be reduced in the range of 4-8
|
||||
|
||||
Standard LoRAs can also be used alongside LCM-LoRAs, but will also require a lower strength, with 0.45 being recommended as a starting point.
|
||||
|
||||
More information can be found here: https://huggingface.co/blog/lcm_lora#fast-inference-with-sdxl-lcm-loras
|
@ -2,17 +2,51 @@
|
||||
title: Model Merging
|
||||
---
|
||||
|
||||
# :material-image-off: Model Merging
|
||||
|
||||
## How to Merge Models
|
||||
|
||||
As of version 2.3, InvokeAI comes with a script that allows you to
|
||||
merge two or three diffusers-type models into a new merged model. The
|
||||
InvokeAI provides the ability to merge two or three diffusers-type models into a new merged model. The
|
||||
resulting model will combine characteristics of the original, and can
|
||||
be used to teach an old model new tricks.
|
||||
|
||||
## How to Merge Models
|
||||
|
||||
Model Merging can be be done by navigating to the Model Manager and clicking the "Merge Models" tab. From there, you can select the models and settings you want to use to merge th models.
|
||||
|
||||
## Settings
|
||||
|
||||
* Model Selection: there are three multiple choice fields that
|
||||
display all the diffusers-style models that InvokeAI knows about.
|
||||
If you do not see the model you are looking for, then it is probably
|
||||
a legacy checkpoint model and needs to be converted using the
|
||||
"Convert" option in the Web-based Model Manager tab.
|
||||
|
||||
You must select at least two models to merge. The third can be left
|
||||
at "None" if you desire.
|
||||
|
||||
* Alpha: This is the ratio to use when combining models. It ranges
|
||||
from 0 to 1. The higher the value, the more weight is given to the
|
||||
2d and (optionally) 3d models. So if you have two models named "A"
|
||||
and "B", an alpha value of 0.25 will give you a merged model that is
|
||||
25% A and 75% B.
|
||||
|
||||
* Interpolation Method: This is the method used to combine
|
||||
weights. The options are "weighted_sum" (the default), "sigmoid",
|
||||
"inv_sigmoid" and "add_difference". Each produces slightly different
|
||||
results. When three models are in use, only "add_difference" is
|
||||
available.
|
||||
|
||||
* Save Location: The location you want the merged model to be saved in. Default is in the InvokeAI root folder
|
||||
|
||||
* Name for merged model: This is the name for the new model. Please
|
||||
use InvokeAI conventions - only alphanumeric letters and the
|
||||
characters ".+-".
|
||||
|
||||
* Ignore Mismatches / Force: Not all models are compatible with each other. The merge
|
||||
script will check for compatibility and refuse to merge ones that
|
||||
are incompatible. Set this checkbox to try merging anyway.
|
||||
|
||||
|
||||
|
||||
You may run the merge script by starting the invoke launcher
|
||||
(`invoke.sh` or `invoke.bat`) and choosing the option for _merge
|
||||
(`invoke.sh` or `invoke.bat`) and choosing the option (4) for _merge
|
||||
models_. This will launch a text-based interactive user interface that
|
||||
prompts you to select the models to merge, how to merge them, and the
|
||||
merged model name.
|
||||
@ -40,34 +74,4 @@ this to get back.
|
||||
If the merge runs successfully, it will create a new diffusers model
|
||||
under the selected name and register it with InvokeAI.
|
||||
|
||||
## The Settings
|
||||
|
||||
* Model Selection -- there are three multiple choice fields that
|
||||
display all the diffusers-style models that InvokeAI knows about.
|
||||
If you do not see the model you are looking for, then it is probably
|
||||
a legacy checkpoint model and needs to be converted using the
|
||||
`invoke` command-line client and its `!optimize` command. You
|
||||
must select at least two models to merge. The third can be left at
|
||||
"None" if you desire.
|
||||
|
||||
* Alpha -- This is the ratio to use when combining models. It ranges
|
||||
from 0 to 1. The higher the value, the more weight is given to the
|
||||
2d and (optionally) 3d models. So if you have two models named "A"
|
||||
and "B", an alpha value of 0.25 will give you a merged model that is
|
||||
25% A and 75% B.
|
||||
|
||||
* Interpolation Method -- This is the method used to combine
|
||||
weights. The options are "weighted_sum" (the default), "sigmoid",
|
||||
"inv_sigmoid" and "add_difference". Each produces slightly different
|
||||
results. When three models are in use, only "add_difference" is
|
||||
available. (TODO: cite a reference that describes what these
|
||||
interpolation methods actually do and how to decide among them).
|
||||
|
||||
* Force -- Not all models are compatible with each other. The merge
|
||||
script will check for compatibility and refuse to merge ones that
|
||||
are incompatible. Set this checkbox to try merging anyway.
|
||||
|
||||
* Name for merged model - This is the name for the new model. Please
|
||||
use InvokeAI conventions - only alphanumeric letters and the
|
||||
characters ".+-".
|
||||
|
||||
|
@ -1,93 +0,0 @@
|
||||
---
|
||||
title: The NSFW Checker
|
||||
---
|
||||
|
||||
# :material-image-off: NSFW Checker
|
||||
|
||||
## The NSFW ("Safety") Checker
|
||||
|
||||
The Stable Diffusion image generation models will produce sexual
|
||||
imagery if deliberately prompted, and will occasionally produce such
|
||||
images when this is not intended. Such images are colloquially known
|
||||
as "Not Safe for Work" (NSFW). This behavior is due to the nature of
|
||||
the training set that Stable Diffusion was trained on, which culled
|
||||
millions of "aesthetic" images from the Internet.
|
||||
|
||||
You may not wish to be exposed to these images, and in some
|
||||
jurisdictions it may be illegal to publicly distribute such imagery,
|
||||
including mounting a publicly-available server that provides
|
||||
unfiltered images to the public. Furthermore, the [Stable Diffusion
|
||||
weights
|
||||
License](https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE-ModelWeights.txt)
|
||||
forbids the model from being used to "exploit any of the
|
||||
vulnerabilities of a specific group of persons."
|
||||
|
||||
For these reasons Stable Diffusion offers a "safety checker," a
|
||||
machine learning model trained to recognize potentially disturbing
|
||||
imagery. When a potentially NSFW image is detected, the checker will
|
||||
blur the image and paste a warning icon on top. The checker can be
|
||||
turned on and off on the command line using `--nsfw_checker` and
|
||||
`--no-nsfw_checker`.
|
||||
|
||||
At installation time, InvokeAI will ask whether the checker should be
|
||||
activated by default (neither argument given on the command line). The
|
||||
response is stored in the InvokeAI initialization file
|
||||
(`invokeai.yaml` in the InvokeAI root directory). You can change the
|
||||
default at any time by opening this file in a text editor and
|
||||
changing the line `nsfw_checker:` from true to false or vice-versa:
|
||||
|
||||
|
||||
```
|
||||
...
|
||||
Features:
|
||||
esrgan: true
|
||||
internet_available: true
|
||||
log_tokenization: false
|
||||
nsfw_checker: true
|
||||
patchmatch: true
|
||||
restore: true
|
||||
```
|
||||
|
||||
## Caveats
|
||||
|
||||
There are a number of caveats that you need to be aware of.
|
||||
|
||||
### Accuracy
|
||||
|
||||
The checker is [not perfect](https://arxiv.org/abs/2210.04610).It will
|
||||
occasionally flag innocuous images (false positives), and will
|
||||
frequently miss violent and gory imagery (false negatives). It rarely
|
||||
fails to flag sexual imagery, but this has been known to happen. For
|
||||
these reasons, the InvokeAI team prefers to refer to the software as a
|
||||
"NSFW Checker" rather than "safety checker."
|
||||
|
||||
### Memory Usage and Performance
|
||||
|
||||
The NSFW checker consumes an additional 1.2G of GPU VRAM on top of the
|
||||
3.4G of VRAM used by Stable Diffusion v1.5 (this is with
|
||||
half-precision arithmetic). This means that the checker will not run
|
||||
successfully on GPU cards with less than 6GB VRAM, and will reduce the
|
||||
size of the images that you can produce.
|
||||
|
||||
The checker also introduces a slight performance penalty. Images will
|
||||
take ~1 second longer to generate when the checker is
|
||||
activated. Generally this is not noticeable.
|
||||
|
||||
### Intermediate Images in the Web UI
|
||||
|
||||
The checker only operates on the final image produced by the Stable
|
||||
Diffusion algorithm. If you are using the Web UI and have enabled the
|
||||
display of intermediate images, you will briefly be exposed to a
|
||||
low-resolution (mosaicized) version of the final image before it is
|
||||
flagged by the checker and replaced by a fully blurred version. You
|
||||
are encouraged to turn **off** intermediate image rendering when you
|
||||
are using the checker. Future versions of InvokeAI will apply
|
||||
additional blurring to intermediate images when the checker is active.
|
||||
|
||||
### Watermarking
|
||||
|
||||
InvokeAI does not apply any sort of watermark to images it
|
||||
generates. However, it does write metadata into the PNG data area,
|
||||
including the prompt used to generate the image and relevant parameter
|
||||
settings. These fields can be examined using the `sd-metadata.py`
|
||||
script that comes with the InvokeAI package.
|
@ -16,21 +16,24 @@ Output Example:
|
||||
|
||||
---
|
||||
|
||||
## **Seamless Tiling**
|
||||
## **Invisible Watermark**
|
||||
|
||||
The seamless tiling mode causes generated images to seamlessly tile
|
||||
with itself creating repetitive wallpaper-like patterns. To use it,
|
||||
activate the Seamless Tiling option in the Web GUI and then select
|
||||
whether to tile on the X (horizontal) and/or Y (vertical) axes. Tiling
|
||||
will then be active for the next set of generations.
|
||||
In keeping with the principles for responsible AI generation, and to
|
||||
help AI researchers avoid synthetic images contaminating their
|
||||
training sets, InvokeAI adds an invisible watermark to each of the
|
||||
final images it generates. The watermark consists of the text
|
||||
"InvokeAI" and can be viewed using the
|
||||
[invisible-watermarks](https://github.com/ShieldMnt/invisible-watermark)
|
||||
tool.
|
||||
|
||||
A nice prompt to test seamless tiling with is:
|
||||
Watermarking is controlled using the `invisible-watermark` setting in
|
||||
`invokeai.yaml`. To turn it off, add the following line under the `Features`
|
||||
category.
|
||||
|
||||
```
|
||||
pond garden with lotus by claude monet"
|
||||
invisible_watermark: false
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## **Weighted Prompts**
|
||||
|
||||
@ -39,34 +42,10 @@ priority to them, by adding `:<percent>` to the end of the section you wish to u
|
||||
example consider this prompt:
|
||||
|
||||
```bash
|
||||
tabby cat:0.25 white duck:0.75 hybrid
|
||||
(tabby cat):0.25 (white duck):0.75 hybrid
|
||||
```
|
||||
|
||||
This will tell the sampler to invest 25% of its effort on the tabby cat aspect of the image and 75%
|
||||
on the white duck aspect (surprisingly, this example actually works). The prompt weights can use any
|
||||
combination of integers and floating point numbers, and they do not need to add up to 1.
|
||||
|
||||
## **Thresholding and Perlin Noise Initialization Options**
|
||||
|
||||
Under the Noise section of the Web UI, you will find two options named
|
||||
Perlin Noise and Noise Threshold. [Perlin
|
||||
noise](https://en.wikipedia.org/wiki/Perlin_noise) is a type of
|
||||
structured noise used to simulate terrain and other natural
|
||||
textures. The slider controls the percentage of perlin noise that will
|
||||
be mixed into the image at the beginning of generation. Adding a little
|
||||
perlin noise to a generation will alter the image substantially.
|
||||
|
||||
The noise threshold limits the range of the latent values during
|
||||
sampling and helps combat the oversharpening seem with higher CFG
|
||||
scale values.
|
||||
|
||||
For better intuition into what these options do in practice:
|
||||
|
||||

|
||||
|
||||
In generating this graphic, perlin noise at initialization was
|
||||
programmatically varied going across on the diagram by values 0.0,
|
||||
0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1.0; and the threshold was varied
|
||||
going down from 0, 1, 2, 3, 4, 5, 10, 20, 100. The other options are
|
||||
fixed using the prompt "a portrait of a beautiful young lady" a CFG of
|
||||
20, 100 steps, and a seed of 1950357039.
|
||||
|
@ -4,35 +4,13 @@ title: Postprocessing
|
||||
|
||||
# :material-image-edit: Postprocessing
|
||||
|
||||
## Intro
|
||||
|
||||
This extension provides the ability to restore faces and upscale images.
|
||||
This sections details the ability to improve faces and upscale images.
|
||||
|
||||
## Face Fixing
|
||||
|
||||
The default face restoration module is GFPGAN. The default upscale is
|
||||
Real-ESRGAN. For an alternative face restoration module, see
|
||||
[CodeFormer Support](#codeformer-support) below.
|
||||
As of InvokeAI 3.0, the easiest way to improve faces created during image generation is through the Inpainting functionality of the Unified Canvas. Simply add the image containing the faces that you would like to improve to the canvas, mask the face to be improved and run the invocation. For best results, make sure to use an inpainting specific model; these are usually identified by the "-inpainting" term in the model name.
|
||||
|
||||
As of version 1.14, environment.yaml will install the Real-ESRGAN package into
|
||||
the standard install location for python packages, and will put GFPGAN into a
|
||||
subdirectory of "src" in the InvokeAI directory. Upscaling with Real-ESRGAN
|
||||
should "just work" without further intervention. Simply indicate the desired scale on
|
||||
the popup in the Web GUI.
|
||||
|
||||
**GFPGAN** requires a series of downloadable model files to work. These are
|
||||
loaded when you run `invokeai-configure`. If GFPAN is failing with an
|
||||
error, please run the following from the InvokeAI directory:
|
||||
|
||||
```bash
|
||||
invokeai-configure
|
||||
```
|
||||
|
||||
If you do not run this script in advance, the GFPGAN module will attempt to
|
||||
download the models files the first time you try to perform facial
|
||||
reconstruction.
|
||||
|
||||
### Upscaling
|
||||
## Upscaling
|
||||
|
||||
Open the upscaling dialog by clicking on the "expand" icon located
|
||||
above the image display area in the Web UI:
|
||||
@ -41,82 +19,23 @@ above the image display area in the Web UI:
|
||||

|
||||
</figure>
|
||||
|
||||
There are three different upscaling parameters that you can
|
||||
adjust. The first is the scale itself, either 2x or 4x.
|
||||
The default upscaling option is Real-ESRGAN x2 Plus, which will scale your image by a factor of two. This means upscaling a 512x512 image will result in a new 1024x1024 image.
|
||||
|
||||
The second is the "Denoising Strength." Higher values will smooth out
|
||||
the image and remove digital chatter, but may lose fine detail at
|
||||
higher values.
|
||||
Other options are the x4 upscalers, which will scale your image by a factor of 4.
|
||||
|
||||
Third, "Upscale Strength" allows you to adjust how the You can set the
|
||||
scaling stength between `0` and `1.0` to control the intensity of the
|
||||
scaling. AI upscalers generally tend to smooth out texture details. If
|
||||
you wish to retain some of those for natural looking results, we
|
||||
recommend using values between `0.5 to 0.8`.
|
||||
|
||||
[This figure](../assets/features/upscaling-montage.png) illustrates
|
||||
the effects of denoising and strength. The original image was 512x512,
|
||||
4x scaled to 2048x2048. The "original" version on the upper left was
|
||||
scaled using simple pixel averaging. The remainder use the ESRGAN
|
||||
upscaling algorithm at different levels of denoising and strength.
|
||||
|
||||
<figure markdown>
|
||||
{ width=720 }
|
||||
</figure>
|
||||
|
||||
Both denoising and strength default to 0.75.
|
||||
|
||||
### Face Restoration
|
||||
|
||||
InvokeAI offers alternative two face restoration algorithms,
|
||||
[GFPGAN](https://github.com/TencentARC/GFPGAN) and
|
||||
[CodeFormer](https://huggingface.co/spaces/sczhou/CodeFormer). These
|
||||
algorithms improve the appearance of faces, particularly eyes and
|
||||
mouths. Issues with faces are less common with the latest set of
|
||||
Stable Diffusion models than with the original 1.4 release, but the
|
||||
restoration algorithms can still make a noticeable improvement in
|
||||
certain cases. You can also apply restoration to old photographs you
|
||||
upload.
|
||||
|
||||
To access face restoration, click the "smiley face" icon in the
|
||||
toolbar above the InvokeAI image panel. You will be presented with a
|
||||
dialog that offers a choice between the two algorithm and sliders that
|
||||
allow you to adjust their parameters. Alternatively, you may open the
|
||||
left-hand accordion panel labeled "Face Restoration" and have the
|
||||
restoration algorithm of your choice applied to generated images
|
||||
automatically.
|
||||
|
||||
|
||||
Like upscaling, there are a number of parameters that adjust the face
|
||||
restoration output. GFPGAN has a single parameter, `strength`, which
|
||||
controls how much the algorithm is allowed to adjust the
|
||||
image. CodeFormer has two parameters, `strength`, and `fidelity`,
|
||||
which together control the quality of the output image as described in
|
||||
the [CodeFormer project
|
||||
page](https://shangchenzhou.com/projects/CodeFormer/). Default values
|
||||
are 0.75 for both parameters, which achieves a reasonable balance
|
||||
between changing the image too much and not enough.
|
||||
|
||||
[This figure](../assets/features/restoration-montage.png) illustrates
|
||||
the effects of adjusting GFPGAN and CodeFormer parameters.
|
||||
|
||||
<figure markdown>
|
||||
{ width=720 }
|
||||
</figure>
|
||||
|
||||
!!! note
|
||||
|
||||
GFPGAN and Real-ESRGAN are both memory intensive. In order to avoid crashes and memory overloads
|
||||
Real-ESRGAN is memory intensive. In order to avoid crashes and memory overloads
|
||||
during the Stable Diffusion process, these effects are applied after Stable Diffusion has completed
|
||||
its work.
|
||||
|
||||
In single image generations, you will see the output right away but when you are using multiple
|
||||
iterations, the images will first be generated and then upscaled and face restored after that
|
||||
iterations, the images will first be generated and then upscaled after that
|
||||
process is complete. While the image generation is taking place, you will still be able to preview
|
||||
the base images.
|
||||
|
||||
## How to disable
|
||||
|
||||
If, for some reason, you do not wish to load the GFPGAN and/or ESRGAN libraries,
|
||||
you can disable them on the invoke.py command line with the `--no_restore` and
|
||||
`--no_esrgan` options, respectively.
|
||||
If, for some reason, you do not wish to load the ESRGAN libraries,
|
||||
you can disable them on the invoke.py command line with the `--no_esrgan` options.
|
||||
|
@ -4,80 +4,6 @@ title: Prompting-Features
|
||||
|
||||
# :octicons-command-palette-24: Prompting-Features
|
||||
|
||||
## **Negative and Unconditioned Prompts**
|
||||
|
||||
Any words between a pair of square brackets will instruct Stable
|
||||
Diffusion to attempt to ban the concept from the generated image. The
|
||||
same effect is achieved by placing words in the "Negative Prompts"
|
||||
textbox in the Web UI.
|
||||
|
||||
```text
|
||||
this is a test prompt [not really] to make you understand [cool] how this works.
|
||||
```
|
||||
|
||||
In the above statement, the words 'not really cool` will be ignored by Stable
|
||||
Diffusion.
|
||||
|
||||
Here's a prompt that depicts what it does.
|
||||
|
||||
original prompt:
|
||||
|
||||
`#!bash "A fantastical translucent pony made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve"`
|
||||
|
||||
`#!bash parameters: steps=20, dimensions=512x768, CFG=7.5, Scheduler=k_euler_a, seed=1654590180`
|
||||
|
||||
<figure markdown>
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
That image has a woman, so if we want the horse without a rider, we can
|
||||
influence the image not to have a woman by putting [woman] in the prompt, like
|
||||
this:
|
||||
|
||||
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]"`
|
||||
(same parameters as above)
|
||||
|
||||
<figure markdown>
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
That's nice - but say we also don't want the image to be quite so blue. We can
|
||||
add "blue" to the list of negative prompts, so it's now [woman blue]:
|
||||
|
||||
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]"`
|
||||
(same parameters as above)
|
||||
|
||||
<figure markdown>
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
Getting close - but there's no sense in having a saddle when our horse doesn't
|
||||
have a rider, so we'll add one more negative prompt: [woman blue saddle].
|
||||
|
||||
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]"`
|
||||
(same parameters as above)
|
||||
|
||||
<figure markdown>
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
!!! notes "Notes about this feature:"
|
||||
|
||||
* The only requirement for words to be ignored is that they are in between a pair of square brackets.
|
||||
* You can provide multiple words within the same bracket.
|
||||
* You can provide multiple brackets with multiple words in different places of your prompt. That works just fine.
|
||||
* To improve typical anatomy problems, you can add negative prompts like `[bad anatomy, extra legs, extra arms, extra fingers, poorly drawn hands, poorly drawn feet, disfigured, out of frame, tiling, bad art, deformed, mutated]`.
|
||||
|
||||
---
|
||||
|
||||
## **Prompt Syntax Features**
|
||||
|
||||
The InvokeAI prompting language has the following features:
|
||||
@ -102,9 +28,6 @@ The following syntax is recognised:
|
||||
`a tall thin man (picking (apricots)1.3)1.1`. (`+` is equivalent to 1.1, `++`
|
||||
is pow(1.1,2), `+++` is pow(1.1,3), etc; `-` means 0.9, `--` means pow(0.9,2),
|
||||
etc.)
|
||||
- attention also applies to `[unconditioning]` so
|
||||
`a tall thin man picking apricots [(ladder)0.01]` will _very gently_ nudge SD
|
||||
away from trying to draw the man on a ladder
|
||||
|
||||
You can use this to increase or decrease the amount of something. Starting from
|
||||
this prompt of `a man picking apricots from a tree`, let's see what happens if
|
||||
@ -150,7 +73,7 @@ Or, alternatively, with more man:
|
||||
| ---------------------------------------------- | ---------------------------------------------- | ---------------------------------------------- | ---------------------------------------------- |
|
||||
|  |  |  |  |
|
||||
|
||||
### Blending between prompts
|
||||
### Prompt Blending
|
||||
|
||||
- `("a tall thin man picking apricots", "a tall thin man picking pears").blend(1,1)`
|
||||
- The existing prompt blending using `:<weight>` will continue to be supported -
|
||||
@ -168,6 +91,24 @@ Or, alternatively, with more man:
|
||||
See the section below on "Prompt Blending" for more information about how this
|
||||
works.
|
||||
|
||||
### Prompt Conjunction
|
||||
Join multiple clauses together to create a conjoined prompt. Each clause will be passed to CLIP separately.
|
||||
|
||||
For example, the prompt:
|
||||
|
||||
```bash
|
||||
"A mystical valley surround by towering granite cliffs, watercolor, warm"
|
||||
```
|
||||
|
||||
Can be used with .and():
|
||||
```bash
|
||||
("A mystical valley", "surround by towering granite cliffs", "watercolor", "warm").and()
|
||||
```
|
||||
|
||||
Each will give you different results - try them out and see what you prefer!
|
||||
|
||||
|
||||
|
||||
### Cross-Attention Control ('prompt2prompt')
|
||||
|
||||
Sometimes an image you generate is almost right, and you just want to change one
|
||||
@ -179,7 +120,7 @@ Generate an image with a given prompt, record the seed of the image, and then
|
||||
use the `prompt2prompt` syntax to substitute words in the original prompt for
|
||||
words in a new prompt. This works for `img2img` as well.
|
||||
|
||||
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because of the word words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
|
||||
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because the words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
|
||||
- `a cat playing with a ball in the forest`
|
||||
- `a dog playing with a ball in the forest`
|
||||
|
||||
@ -190,7 +131,7 @@ For example, consider the prompt `a cat.swap(dog) playing with a ball in the for
|
||||
|
||||
- For multiple word swaps, use parentheses: `a (fluffy cat).swap(barking dog) playing with a ball in the forest`.
|
||||
- To swap a comma, use quotes: `a ("fluffy, grey cat").swap("big, barking dog") playing with a ball in the forest`.
|
||||
- Supports options `t_start` and `t_end` (each 0-1) loosely corresponding to bloc97's `prompt_edit_tokens_start/_end` but with the math swapped to make it easier to
|
||||
- Supports options `t_start` and `t_end` (each 0-1) loosely corresponding to (bloc97's)[(https://github.com/bloc97/CrossAttentionControl)] `prompt_edit_tokens_start/_end` but with the math swapped to make it easier to
|
||||
intuitively understand. `t_start` and `t_end` are used to control on which steps cross-attention control should run. With the default values `t_start=0` and `t_end=1`, cross-attention control is active on every step of image generation. Other values can be used to turn cross-attention control off for part of the image generation process.
|
||||
- For example, if doing a diffusion with 10 steps for the prompt is `a cat.swap(dog, t_start=0.3, t_end=1.0) playing with a ball in the forest`, the first 3 steps will be run as `a cat playing with a ball in the forest`, while the last 7 steps will run as `a dog playing with a ball in the forest`, but the pixels that represent `dog` will be locked to the pixels that would have represented `cat` if the `cat` prompt had been used instead.
|
||||
- Conversely, for `a cat.swap(dog, t_start=0, t_end=0.7) playing with a ball in the forest`, the first 7 steps will run as `a dog playing with a ball in the forest` with the pixels that represent `dog` locked to the same pixels that would have represented `cat` if the `cat` prompt was being used instead. The final 3 steps will just run `a cat playing with a ball in the forest`.
|
||||
@ -201,7 +142,7 @@ Prompt2prompt `.swap()` is not compatible with xformers, which will be temporari
|
||||
The `prompt2prompt` code is based off
|
||||
[bloc97's colab](https://github.com/bloc97/CrossAttentionControl).
|
||||
|
||||
### Escaping parantheses () and speech marks ""
|
||||
### Escaping parentheses and speech marks
|
||||
|
||||
If the model you are using has parentheses () or speech marks "" as part of its
|
||||
syntax, you will need to "escape" these using a backslash, so that`(my_keyword)`
|
||||
@ -212,23 +153,16 @@ the parentheses as part of the prompt syntax and it will get confused.
|
||||
|
||||
## **Prompt Blending**
|
||||
|
||||
You may blend together different sections of the prompt to explore the AI's
|
||||
You may blend together prompts to explore the AI's
|
||||
latent semantic space and generate interesting (and often surprising!)
|
||||
variations. The syntax is:
|
||||
|
||||
```bash
|
||||
blue sphere:0.25 red cube:0.75 hybrid
|
||||
("prompt #1", "prompt #2").blend(0.25, 0.75)
|
||||
```
|
||||
|
||||
This will tell the sampler to blend 25% of the concept of a blue sphere with 75%
|
||||
of the concept of a red cube. The blend weights can use any combination of
|
||||
integers and floating point numbers, and they do not need to add up to 1.
|
||||
Everything to the left of the `:XX` up to the previous `:XX` is used for
|
||||
merging, so the overall effect is:
|
||||
|
||||
```bash
|
||||
0.25 * "blue sphere" + 0.75 * "white duck" + hybrid
|
||||
```
|
||||
This will tell the sampler to blend 25% of the concept of prompt #1 with 75%
|
||||
of the concept of prompt #2. It is recommended to keep the sum of the weights to around 1.0, but interesting things might happen if you go outside of this range.
|
||||
|
||||
Because you are exploring the "mind" of the AI, the AI's way of mixing two
|
||||
concepts may not match yours, leading to surprising effects. To illustrate, here
|
||||
@ -236,13 +170,14 @@ are three images generated using various combinations of blend weights. As
|
||||
usual, unless you fix the seed, the prompts will give you different results each
|
||||
time you run them.
|
||||
|
||||
<figure markdown>
|
||||
Let's examine how this affects image generation results:
|
||||
|
||||
### "blue sphere, red cube, hybrid"
|
||||
|
||||
</figure>
|
||||
```bash
|
||||
"blue sphere, red cube, hybrid"
|
||||
```
|
||||
|
||||
This example doesn't use melding at all and represents the default way of mixing
|
||||
This example doesn't use blending at all and represents the default way of mixing
|
||||
concepts.
|
||||
|
||||
<figure markdown>
|
||||
@ -251,55 +186,123 @@ concepts.
|
||||
|
||||
</figure>
|
||||
|
||||
It's interesting to see how the AI expressed the concept of "cube" as the four
|
||||
quadrants of the enclosing frame. If you look closely, there is depth there, so
|
||||
the enclosing frame is actually a cube.
|
||||
It's interesting to see how the AI expressed the concept of "cube" within the sphere. If you look closely, there is depth there, so the enclosing frame is actually a cube.
|
||||
|
||||
<figure markdown>
|
||||
|
||||
### "blue sphere:0.25 red cube:0.75 hybrid"
|
||||
```bash
|
||||
("blue sphere", "red cube").blend(0.25, 0.75)
|
||||
```
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
Now that's interesting. We get neither a blue sphere nor a red cube, but a red
|
||||
sphere embedded in a brick wall, which represents a melding of concepts within
|
||||
the AI's "latent space" of semantic representations. Where is Ludwig
|
||||
Wittgenstein when you need him?
|
||||
Now that's interesting. We get an image with a resemblance of a red cube, with a hint of blue shadows which represents a melding of concepts within the AI's "latent space" of semantic representations.
|
||||
|
||||
<figure markdown>
|
||||
|
||||
### "blue sphere:0.75 red cube:0.25 hybrid"
|
||||
```bash
|
||||
("blue sphere", "red cube").blend(0.75, 0.25)
|
||||
```
|
||||
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
Definitely more blue-spherey. The cube is gone entirely, but it's really cool
|
||||
abstract art.
|
||||
Definitely more blue-spherey.
|
||||
|
||||
<figure markdown>
|
||||
|
||||
### "blue sphere:0.5 red cube:0.5 hybrid"
|
||||
```bash
|
||||
("blue sphere", "red cube").blend(0.5, 0.5)
|
||||
```
|
||||
</figure>
|
||||
|
||||
<figure markdown>
|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
Whoa...! I see blue and red, but no spheres or cubes. Is the word "hybrid"
|
||||
summoning up the concept of some sort of scifi creature? Let's find out.
|
||||
|
||||
Whoa...! I see blue and red, and if I squint, spheres and cubes.
|
||||
|
||||
|
||||
|
||||
## Dynamic Prompts
|
||||
|
||||
Dynamic Prompts are a powerful feature designed to produce a variety of prompts based on user-defined options. Using a special syntax, you can construct a prompt with multiple possibilities, and the system will automatically generate a series of permutations based on your settings. This is extremely beneficial for ideation, exploring various scenarios, or testing different concepts swiftly and efficiently.
|
||||
|
||||
### Structure of a Dynamic Prompt
|
||||
|
||||
A Dynamic Prompt comprises of regular text, supplemented with alternatives enclosed within curly braces {} and separated by a vertical bar |. For example: {option1|option2|option3}. The system will then select one of the options to include in the final prompt. This flexible system allows for options to be placed throughout the text as needed.
|
||||
|
||||
Furthermore, Dynamic Prompts can designate multiple selections from a single group of options. This feature is triggered by prefixing the options with a numerical value followed by $$. For example, in {2$$option1|option2|option3}, the system will select two distinct options from the set.
|
||||
### Creating Dynamic Prompts
|
||||
|
||||
To create a Dynamic Prompt, follow these steps:
|
||||
|
||||
Draft your sentence or phrase, identifying words or phrases with multiple possible options.
|
||||
Encapsulate the different options within curly braces {}.
|
||||
Within the braces, separate each option using a vertical bar |.
|
||||
If you want to include multiple options from a single group, prefix with the desired number and $$.
|
||||
|
||||
For instance: A {house|apartment|lodge|cottage} in {summer|winter|autumn|spring} designed in {style1|style2|style3}.
|
||||
### How Dynamic Prompts Work
|
||||
|
||||
Once a Dynamic Prompt is configured, the system generates an array of combinations using the options provided. Each group of options in curly braces is treated independently, with the system selecting one option from each group. For a prefixed set (e.g., 2$$), the system will select two distinct options.
|
||||
|
||||
For example, the following prompts could be generated from the above Dynamic Prompt:
|
||||
|
||||
A house in summer designed in style1, style2
|
||||
A lodge in autumn designed in style3, style1
|
||||
A cottage in winter designed in style2, style3
|
||||
And many more!
|
||||
|
||||
When the `Combinatorial` setting is on, Invoke will disable the "Images" selection, and generate every combination up until the setting for Max Prompts is reached.
|
||||
When the `Combinatorial` setting is off, Invoke will randomly generate combinations up until the setting for Images has been reached.
|
||||
|
||||
|
||||
|
||||
### Tips and Tricks for Using Dynamic Prompts
|
||||
|
||||
Below are some useful strategies for creating Dynamic Prompts:
|
||||
|
||||
Utilize Dynamic Prompts to generate a wide spectrum of prompts, perfect for brainstorming and exploring diverse ideas.
|
||||
Ensure that the options within a group are contextually relevant to the part of the sentence where they are used. For instance, group building types together, and seasons together.
|
||||
Apply the 2$$ prefix when you want to incorporate more than one option from a single group. This becomes quite handy when mixing and matching different elements.
|
||||
Experiment with different quantities for the prefix. For example, 3$$ will select three distinct options.
|
||||
Be aware of coherence in your prompts. Although the system can generate all possible combinations, not all may semantically make sense. Therefore, carefully choose the options for each group.
|
||||
Always review and fine-tune the generated prompts as needed. While Dynamic Prompts can help you generate a multitude of combinations, the final polishing and refining remain in your hands.
|
||||
|
||||
|
||||
## SDXL Prompting
|
||||
|
||||
Prompting with SDXL is slightly different than prompting with SD1.5 or SD2.1 models - SDXL expects a prompt _and_ a style.
|
||||
|
||||
|
||||
### Prompting
|
||||
<figure markdown>
|
||||
|
||||
### "blue sphere:0.5 red cube:0.5"
|
||||
|
||||

|
||||

|
||||
|
||||
</figure>
|
||||
|
||||
Indeed, removing the word "hybrid" produces an image that is more like what we'd
|
||||
expect.
|
||||
In the prompt box, enter a positive or negative prompt as you normally would.
|
||||
|
||||
For the style box you can enter a style that you want the image to be generated in. You can use styles from this example list, or any other style you wish: anime, photographic, digital art, comic book, fantasy art, analog film, neon punk, isometric, low poly, origami, line art, cinematic, 3d model, pixel art, etc.
|
||||
|
||||
|
||||
### Concatenated Prompts
|
||||
|
||||
|
||||
InvokeAI also has the option to concatenate the prompt and style inputs, by pressing the "link" button in the Positive Prompt box.
|
||||
|
||||
This concatenates the prompt & style inputs, and passes the joined prompt and style to the SDXL model.
|
||||

|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
In conclusion, prompt blending is great for exploring creative space,
|
||||
but takes some trial and error to achieve the desired effect.
|
@ -1,295 +0,0 @@
|
||||
---
|
||||
title: Textual-Inversion
|
||||
---
|
||||
|
||||
# :material-file-document: Textual Inversion
|
||||
|
||||
## **Personalizing Text-to-Image Generation**
|
||||
|
||||
You may personalize the generated images to provide your own styles or objects
|
||||
by training a new LDM checkpoint and introducing a new vocabulary to the fixed
|
||||
model as a (.pt) embeddings file. Alternatively, you may use or train
|
||||
HuggingFace Concepts embeddings files (.bin) from
|
||||
<https://huggingface.co/sd-concepts-library> and its associated
|
||||
notebooks.
|
||||
|
||||
## **Hardware and Software Requirements**
|
||||
|
||||
You will need a GPU to perform training in a reasonable length of
|
||||
time, and at least 12 GB of VRAM. We recommend using the [`xformers`
|
||||
library](../installation/070_INSTALL_XFORMERS.md) to accelerate the
|
||||
training process further. During training, about ~8 GB is temporarily
|
||||
needed in order to store intermediate models, checkpoints and logs.
|
||||
|
||||
## **Preparing for Training**
|
||||
|
||||
To train, prepare a folder that contains 3-5 images that illustrate
|
||||
the object or concept. It is good to provide a variety of examples or
|
||||
poses to avoid overtraining the system. Format these images as PNG
|
||||
(preferred) or JPG. You do not need to resize or crop the images in
|
||||
advance, but for more control you may wish to do so.
|
||||
|
||||
Place the training images in a directory on the machine InvokeAI runs
|
||||
on. We recommend placing them in a subdirectory of the
|
||||
`text-inversion-training-data` folder located in the InvokeAI root
|
||||
directory, ordinarily `~/invokeai` (Linux/Mac), or
|
||||
`C:\Users\your_name\invokeai` (Windows). For example, to create an
|
||||
embedding for the "psychedelic" style, you'd place the training images
|
||||
into the directory
|
||||
`~invokeai/text-inversion-training-data/psychedelic`.
|
||||
|
||||
## **Launching Training Using the Console Front End**
|
||||
|
||||
InvokeAI 2.3 and higher comes with a text console-based training front
|
||||
end. From within the `invoke.sh`/`invoke.bat` Invoke launcher script,
|
||||
start the front end by selecting choice (3):
|
||||
|
||||
```sh
|
||||
Do you want to generate images using the
|
||||
1: Browser-based UI
|
||||
2: Command-line interface
|
||||
3: Run textual inversion training
|
||||
4: Merge models (diffusers type only)
|
||||
5: Download and install models
|
||||
6: Change InvokeAI startup options
|
||||
7: Re-run the configure script to fix a broken install
|
||||
8: Open the developer console
|
||||
9: Update InvokeAI
|
||||
10: Command-line help
|
||||
Q: Quit
|
||||
|
||||
Please enter 1-10, Q: [1]
|
||||
```
|
||||
|
||||
From the command line, with the InvokeAI virtual environment active,
|
||||
you can launch the front end with the command `invokeai-ti --gui`.
|
||||
|
||||
This will launch a text-based front end that will look like this:
|
||||
|
||||
<figure markdown>
|
||||

|
||||
</figure>
|
||||
|
||||
The interface is keyboard-based. Move from field to field using
|
||||
control-N (^N) to move to the next field and control-P (^P) to the
|
||||
previous one. <Tab> and <shift-TAB> work as well. Once a field is
|
||||
active, use the cursor keys. In a checkbox group, use the up and down
|
||||
cursor keys to move from choice to choice, and <space> to select a
|
||||
choice. In a scrollbar, use the left and right cursor keys to increase
|
||||
and decrease the value of the scroll. In textfields, type the desired
|
||||
values.
|
||||
|
||||
The number of parameters may look intimidating, but in most cases the
|
||||
predefined defaults work fine. The red circled fields in the above
|
||||
illustration are the ones you will adjust most frequently.
|
||||
|
||||
### Model Name
|
||||
|
||||
This will list all the diffusers models that are currently
|
||||
installed. Select the one you wish to use as the basis for your
|
||||
embedding. Be aware that if you use a SD-1.X-based model for your
|
||||
training, you will only be able to use this embedding with other
|
||||
SD-1.X-based models. Similarly, if you train on SD-2.X, you will only
|
||||
be able to use the embeddings with models based on SD-2.X.
|
||||
|
||||
### Trigger Term
|
||||
|
||||
This is the prompt term you will use to trigger the embedding. Type a
|
||||
single word or phrase you wish to use as the trigger, example
|
||||
"psychedelic" (without angle brackets). Within InvokeAI, you will then
|
||||
be able to activate the trigger using the syntax `<psychedelic>`.
|
||||
|
||||
### Initializer
|
||||
|
||||
This is a single character that is used internally during the training
|
||||
process as a placeholder for the trigger term. It defaults to "*" and
|
||||
can usually be left alone.
|
||||
|
||||
### Resume from last saved checkpoint
|
||||
|
||||
As training proceeds, textual inversion will write a series of
|
||||
intermediate files that can be used to resume training from where it
|
||||
was left off in the case of an interruption. This checkbox will be
|
||||
automatically selected if you provide a previously used trigger term
|
||||
and at least one checkpoint file is found on disk.
|
||||
|
||||
Note that as of 20 January 2023, resume does not seem to be working
|
||||
properly due to an issue with the upstream code.
|
||||
|
||||
### Data Training Directory
|
||||
|
||||
This is the location of the images to be used for training. When you
|
||||
select a trigger term like "my-trigger", the frontend will prepopulate
|
||||
this field with `~/invokeai/text-inversion-training-data/my-trigger`,
|
||||
but you can change the path to wherever you want.
|
||||
|
||||
### Output Destination Directory
|
||||
|
||||
This is the location of the logs, checkpoint files, and embedding
|
||||
files created during training. When you select a trigger term like
|
||||
"my-trigger", the frontend will prepopulate this field with
|
||||
`~/invokeai/text-inversion-output/my-trigger`, but you can change the
|
||||
path to wherever you want.
|
||||
|
||||
### Image resolution
|
||||
|
||||
The images in the training directory will be automatically scaled to
|
||||
the value you use here. For best results, you will want to use the
|
||||
same default resolution of the underlying model (512 pixels for
|
||||
SD-1.5, 768 for the larger version of SD-2.1).
|
||||
|
||||
### Center crop images
|
||||
|
||||
If this is selected, your images will be center cropped to make them
|
||||
square before resizing them to the desired resolution. Center cropping
|
||||
can indiscriminately cut off the top of subjects' heads for portrait
|
||||
aspect images, so if you have images like this, you may wish to use a
|
||||
photoeditor to manually crop them to a square aspect ratio.
|
||||
|
||||
### Mixed precision
|
||||
|
||||
Select the floating point precision for the embedding. "no" will
|
||||
result in a full 32-bit precision, "fp16" will provide 16-bit
|
||||
precision, and "bf16" will provide mixed precision (only available
|
||||
when XFormers is used).
|
||||
|
||||
### Max training steps
|
||||
|
||||
How many steps the training will take before the model converges. Most
|
||||
training sets will converge with 2000-3000 steps.
|
||||
|
||||
### Batch size
|
||||
|
||||
This adjusts how many training images are processed simultaneously in
|
||||
each step. Higher values will cause the training process to run more
|
||||
quickly, but use more memory. The default size will run with GPUs with
|
||||
as little as 12 GB.
|
||||
|
||||
### Learning rate
|
||||
|
||||
The rate at which the system adjusts its internal weights during
|
||||
training. Higher values risk overtraining (getting the same image each
|
||||
time), and lower values will take more steps to train a good
|
||||
model. The default of 0.0005 is conservative; you may wish to increase
|
||||
it to 0.005 to speed up training.
|
||||
|
||||
### Scale learning rate by number of GPUs, steps and batch size
|
||||
|
||||
If this is selected (the default) the system will adjust the provided
|
||||
learning rate to improve performance.
|
||||
|
||||
### Use xformers acceleration
|
||||
|
||||
This will activate XFormers memory-efficient attention. You need to
|
||||
have XFormers installed for this to have an effect.
|
||||
|
||||
### Learning rate scheduler
|
||||
|
||||
This adjusts how the learning rate changes over the course of
|
||||
training. The default "constant" means to use a constant learning rate
|
||||
for the entire training session. The other values scale the learning
|
||||
rate according to various formulas.
|
||||
|
||||
Only "constant" is supported by the XFormers library.
|
||||
|
||||
### Gradient accumulation steps
|
||||
|
||||
This is a parameter that allows you to use bigger batch sizes than
|
||||
your GPU's VRAM would ordinarily accommodate, at the cost of some
|
||||
performance.
|
||||
|
||||
### Warmup steps
|
||||
|
||||
If "constant_with_warmup" is selected in the learning rate scheduler,
|
||||
then this provides the number of warmup steps. Warmup steps have a
|
||||
very low learning rate, and are one way of preventing early
|
||||
overtraining.
|
||||
|
||||
## The training run
|
||||
|
||||
Start the training run by advancing to the OK button (bottom right)
|
||||
and pressing <enter>. A series of progress messages will be displayed
|
||||
as the training process proceeds. This may take an hour or two,
|
||||
depending on settings and the speed of your system. Various log and
|
||||
checkpoint files will be written into the output directory (ordinarily
|
||||
`~/invokeai/text-inversion-output/my-model/`)
|
||||
|
||||
At the end of successful training, the system will copy the file
|
||||
`learned_embeds.bin` into the InvokeAI root directory's `embeddings`
|
||||
directory, using a subdirectory named after the trigger token. For
|
||||
example, if the trigger token was `psychedelic`, then look for the
|
||||
embeddings file in
|
||||
`~/invokeai/embeddings/psychedelic/learned_embeds.bin`
|
||||
|
||||
You may now launch InvokeAI and try out a prompt that uses the trigger
|
||||
term. For example `a plate of banana sushi in <psychedelic> style`.
|
||||
|
||||
## **Training with the Command-Line Script**
|
||||
|
||||
Training can also be done using a traditional command-line script. It
|
||||
can be launched from within the "developer's console", or from the
|
||||
command line after activating InvokeAI's virtual environment.
|
||||
|
||||
It accepts a large number of arguments, which can be summarized by
|
||||
passing the `--help` argument:
|
||||
|
||||
```sh
|
||||
invokeai-ti --help
|
||||
```
|
||||
|
||||
Typical usage is shown here:
|
||||
```sh
|
||||
invokeai-ti \
|
||||
--model=stable-diffusion-1.5 \
|
||||
--resolution=512 \
|
||||
--learnable_property=style \
|
||||
--initializer_token='*' \
|
||||
--placeholder_token='<psychedelic>' \
|
||||
--train_data_dir=/home/lstein/invokeai/training-data/psychedelic \
|
||||
--output_dir=/home/lstein/invokeai/text-inversion-training/psychedelic \
|
||||
--scale_lr \
|
||||
--train_batch_size=8 \
|
||||
--gradient_accumulation_steps=4 \
|
||||
--max_train_steps=3000 \
|
||||
--learning_rate=0.0005 \
|
||||
--resume_from_checkpoint=latest \
|
||||
--lr_scheduler=constant \
|
||||
--mixed_precision=fp16 \
|
||||
--only_save_embeds
|
||||
```
|
||||
|
||||
## Using Embeddings
|
||||
|
||||
After training completes, the resultant embeddings will be saved into your `$INVOKEAI_ROOT/embeddings/<trigger word>/learned_embeds.bin`.
|
||||
|
||||
These will be automatically loaded when you start InvokeAI.
|
||||
|
||||
Add the trigger word, surrounded by angle brackets, to use that embedding. For example, if your trigger word was `terence`, use `<terence>` in prompts. This is the same syntax used by the HuggingFace concepts library.
|
||||
|
||||
**Note:** `.pt` embeddings do not require the angle brackets.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### `Cannot load embedding for <trigger>. It was trained on a model with token dimension 1024, but the current model has token dimension 768`
|
||||
|
||||
Messages like this indicate you trained the embedding on a different base model than the currently selected one.
|
||||
|
||||
For example, in the error above, the training was done on SD2.1 (768x768) but it was used on SD1.5 (512x512).
|
||||
|
||||
## Reading
|
||||
|
||||
For more information on textual inversion, please see the following
|
||||
resources:
|
||||
|
||||
* The [textual inversion repository](https://github.com/rinongal/textual_inversion) and
|
||||
associated paper for details and limitations.
|
||||
* [HuggingFace's textual inversion training
|
||||
page](https://huggingface.co/docs/diffusers/training/text_inversion)
|
||||
* [HuggingFace example script
|
||||
documentation](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion)
|
||||
(Note that this script is similar to, but not identical, to
|
||||
`textual_inversion`, but produces embed files that are completely compatible.
|
||||
|
||||
---
|
||||
|
||||
copyright (c) 2023, Lincoln Stein and the InvokeAI Development Team
|
55
docs/features/TEXTUAL_INVERSIONS.md
Normal file
@ -0,0 +1,55 @@
|
||||
## Using Textual Inversion Files
|
||||
|
||||
Textual inversion (TI) files are small models that customize the output of
|
||||
Stable Diffusion image generation. They can augment SD with specialized subjects
|
||||
and artistic styles. They are also known as "embeds" in the machine learning
|
||||
world.
|
||||
|
||||
Each TI file introduces one or more vocabulary terms to the SD model. These are
|
||||
known in InvokeAI as "triggers." Triggers are denoted using angle brackets
|
||||
as in "<trigger-phrase>". The two most common type of
|
||||
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
|
||||
different TI training packages. InvokeAI supports both formats, but its
|
||||
[built-in TI training system](TRAINING.md) produces `.pt`.
|
||||
|
||||
[Hugging Face](https://huggingface.co/sd-concepts-library) has
|
||||
amassed a large library of >800 community-contributed TI files covering a
|
||||
broad range of subjects and styles. You can also install your own or others' TI files
|
||||
by placing them in the designated directory for the compatible model type
|
||||
|
||||
### An Example
|
||||
|
||||
Here are a few examples to illustrate how it works. All these images
|
||||
were generated using the legacy command-line client and the Stable
|
||||
Diffusion 1.5 model:
|
||||
|
||||
| Japanese gardener | Japanese gardener <ghibli-face> | Japanese gardener <hoi4-leaders> | Japanese gardener <cartoona-animals> |
|
||||
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |
|
||||
|  |  |  |  |
|
||||
|
||||
You can also combine styles and concepts:
|
||||
|
||||
<figure markdown>
|
||||
| A portrait of <alf> in <cartoona-animal> style |
|
||||
| :--------------------------------------------------------: |
|
||||
|  |
|
||||
</figure>
|
||||
|
||||
|
||||
## Installing your Own TI Files
|
||||
|
||||
You may install any number of `.pt` and `.bin` files simply by copying them into
|
||||
the `embedding` directory of the corresponding InvokeAI models directory (usually `invokeai`
|
||||
in your home directory). For example, you can simply move a Stable Diffusion 1.5 embedding file to
|
||||
the `sd-1/embedding` folder. Be careful not to overwrite one file with another.
|
||||
For example, TI files generated by the Hugging Face toolkit share the named
|
||||
`learned_embedding.bin`. You can rename these, or use subdirectories to keep them distinct.
|
||||
|
||||
At startup time, InvokeAI will scan the various `embedding` directories and load any TI
|
||||
files it finds there for compatible models. At startup you will see a message similar to this one:
|
||||
|
||||
```bash
|
||||
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
|
||||
```
|
||||
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
|
||||
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.
|
281
docs/features/TRAINING.md
Normal file
@ -0,0 +1,281 @@
|
||||
---
|
||||
title: Training
|
||||
---
|
||||
|
||||
# :material-file-document: Training
|
||||
|
||||
# Textual Inversion Training
|
||||
## **Personalizing Text-to-Image Generation**
|
||||
|
||||
You may personalize the generated images to provide your own styles or objects
|
||||
by training a new LDM checkpoint and introducing a new vocabulary to the fixed
|
||||
model as a (.pt) embeddings file. Alternatively, you may use or train
|
||||
HuggingFace Concepts embeddings files (.bin) from
|
||||
<https://huggingface.co/sd-concepts-library> and its associated
|
||||
notebooks.
|
||||
|
||||
## **Hardware and Software Requirements**
|
||||
|
||||
You will need a GPU to perform training in a reasonable length of
|
||||
time, and at least 12 GB of VRAM. We recommend using the [`xformers`
|
||||
library](../installation/070_INSTALL_XFORMERS.md) to accelerate the
|
||||
training process further. During training, about ~8 GB is temporarily
|
||||
needed in order to store intermediate models, checkpoints and logs.
|
||||
|
||||
## **Preparing for Training**
|
||||
|
||||
To train, prepare a folder that contains 3-5 images that illustrate
|
||||
the object or concept. It is good to provide a variety of examples or
|
||||
poses to avoid overtraining the system. Format these images as PNG
|
||||
(preferred) or JPG. You do not need to resize or crop the images in
|
||||
advance, but for more control you may wish to do so.
|
||||
|
||||
Place the training images in a directory on the machine InvokeAI runs
|
||||
on. We recommend placing them in a subdirectory of the
|
||||
`text-inversion-training-data` folder located in the InvokeAI root
|
||||
directory, ordinarily `~/invokeai` (Linux/Mac), or
|
||||
`C:\Users\your_name\invokeai` (Windows). For example, to create an
|
||||
embedding for the "psychedelic" style, you'd place the training images
|
||||
into the directory
|
||||
`~invokeai/text-inversion-training-data/psychedelic`.
|
||||
|
||||
## **Launching Training Using the Console Front End**
|
||||
|
||||
InvokeAI 2.3 and higher comes with a text console-based training front
|
||||
end. From within the `invoke.sh`/`invoke.bat` Invoke launcher script,
|
||||
start training tool selecting choice (3):
|
||||
|
||||
```sh
|
||||
1 "Generate images with a browser-based interface"
|
||||
2 "Explore InvokeAI nodes using a command-line interface"
|
||||
3 "Textual inversion training"
|
||||
4 "Merge models (diffusers type only)"
|
||||
5 "Download and install models"
|
||||
6 "Change InvokeAI startup options"
|
||||
7 "Re-run the configure script to fix a broken install or to complete a major upgrade"
|
||||
8 "Open the developer console"
|
||||
9 "Update InvokeAI"
|
||||
```
|
||||
|
||||
Alternatively, you can select option (8) or from the command line, with the InvokeAI virtual environment active,
|
||||
you can then launch the front end with the command `invokeai-ti --gui`.
|
||||
|
||||
This will launch a text-based front end that will look like this:
|
||||
|
||||
<figure markdown>
|
||||

|
||||
</figure>
|
||||
|
||||
The interface is keyboard-based. Move from field to field using
|
||||
control-N (^N) to move to the next field and control-P (^P) to the
|
||||
previous one. <Tab> and <shift-TAB> work as well. Once a field is
|
||||
active, use the cursor keys. In a checkbox group, use the up and down
|
||||
cursor keys to move from choice to choice, and <space> to select a
|
||||
choice. In a scrollbar, use the left and right cursor keys to increase
|
||||
and decrease the value of the scroll. In textfields, type the desired
|
||||
values.
|
||||
|
||||
The number of parameters may look intimidating, but in most cases the
|
||||
predefined defaults work fine. The red circled fields in the above
|
||||
illustration are the ones you will adjust most frequently.
|
||||
|
||||
### Model Name
|
||||
|
||||
This will list all the diffusers models that are currently
|
||||
installed. Select the one you wish to use as the basis for your
|
||||
embedding. Be aware that if you use a SD-1.X-based model for your
|
||||
training, you will only be able to use this embedding with other
|
||||
SD-1.X-based models. Similarly, if you train on SD-2.X, you will only
|
||||
be able to use the embeddings with models based on SD-2.X.
|
||||
|
||||
### Trigger Term
|
||||
|
||||
This is the prompt term you will use to trigger the embedding. Type a
|
||||
single word or phrase you wish to use as the trigger, example
|
||||
"psychedelic" (without angle brackets). Within InvokeAI, you will then
|
||||
be able to activate the trigger using the syntax `<psychedelic>`.
|
||||
|
||||
### Initializer
|
||||
|
||||
This is a single character that is used internally during the training
|
||||
process as a placeholder for the trigger term. It defaults to "*" and
|
||||
can usually be left alone.
|
||||
|
||||
### Resume from last saved checkpoint
|
||||
|
||||
As training proceeds, textual inversion will write a series of
|
||||
intermediate files that can be used to resume training from where it
|
||||
was left off in the case of an interruption. This checkbox will be
|
||||
automatically selected if you provide a previously used trigger term
|
||||
and at least one checkpoint file is found on disk.
|
||||
|
||||
Note that as of 20 January 2023, resume does not seem to be working
|
||||
properly due to an issue with the upstream code.
|
||||
|
||||
### Data Training Directory
|
||||
|
||||
This is the location of the images to be used for training. When you
|
||||
select a trigger term like "my-trigger", the frontend will prepopulate
|
||||
this field with `~/invokeai/text-inversion-training-data/my-trigger`,
|
||||
but you can change the path to wherever you want.
|
||||
|
||||
### Output Destination Directory
|
||||
|
||||
This is the location of the logs, checkpoint files, and embedding
|
||||
files created during training. When you select a trigger term like
|
||||
"my-trigger", the frontend will prepopulate this field with
|
||||
`~/invokeai/text-inversion-output/my-trigger`, but you can change the
|
||||
path to wherever you want.
|
||||
|
||||
### Image resolution
|
||||
|
||||
The images in the training directory will be automatically scaled to
|
||||
the value you use here. For best results, you will want to use the
|
||||
same default resolution of the underlying model (512 pixels for
|
||||
SD-1.5, 768 for the larger version of SD-2.1).
|
||||
|
||||
### Center crop images
|
||||
|
||||
If this is selected, your images will be center cropped to make them
|
||||
square before resizing them to the desired resolution. Center cropping
|
||||
can indiscriminately cut off the top of subjects' heads for portrait
|
||||
aspect images, so if you have images like this, you may wish to use a
|
||||
photoeditor to manually crop them to a square aspect ratio.
|
||||
|
||||
### Mixed precision
|
||||
|
||||
Select the floating point precision for the embedding. "no" will
|
||||
result in a full 32-bit precision, "fp16" will provide 16-bit
|
||||
precision, and "bf16" will provide mixed precision (only available
|
||||
when XFormers is used).
|
||||
|
||||
### Max training steps
|
||||
|
||||
How many steps the training will take before the model converges. Most
|
||||
training sets will converge with 2000-3000 steps.
|
||||
|
||||
### Batch size
|
||||
|
||||
This adjusts how many training images are processed simultaneously in
|
||||
each step. Higher values will cause the training process to run more
|
||||
quickly, but use more memory. The default size will run with GPUs with
|
||||
as little as 12 GB.
|
||||
|
||||
### Learning rate
|
||||
|
||||
The rate at which the system adjusts its internal weights during
|
||||
training. Higher values risk overtraining (getting the same image each
|
||||
time), and lower values will take more steps to train a good
|
||||
model. The default of 0.0005 is conservative; you may wish to increase
|
||||
it to 0.005 to speed up training.
|
||||
|
||||
### Scale learning rate by number of GPUs, steps and batch size
|
||||
|
||||
If this is selected (the default) the system will adjust the provided
|
||||
learning rate to improve performance.
|
||||
|
||||
### Use xformers acceleration
|
||||
|
||||
This will activate XFormers memory-efficient attention. You need to
|
||||
have XFormers installed for this to have an effect.
|
||||
|
||||
### Learning rate scheduler
|
||||
|
||||
This adjusts how the learning rate changes over the course of
|
||||
training. The default "constant" means to use a constant learning rate
|
||||
for the entire training session. The other values scale the learning
|
||||
rate according to various formulas.
|
||||
|
||||
Only "constant" is supported by the XFormers library.
|
||||
|
||||
### Gradient accumulation steps
|
||||
|
||||
This is a parameter that allows you to use bigger batch sizes than
|
||||
your GPU's VRAM would ordinarily accommodate, at the cost of some
|
||||
performance.
|
||||
|
||||
### Warmup steps
|
||||
|
||||
If "constant_with_warmup" is selected in the learning rate scheduler,
|
||||
then this provides the number of warmup steps. Warmup steps have a
|
||||
very low learning rate, and are one way of preventing early
|
||||
overtraining.
|
||||
|
||||
## The training run
|
||||
|
||||
Start the training run by advancing to the OK button (bottom right)
|
||||
and pressing <enter>. A series of progress messages will be displayed
|
||||
as the training process proceeds. This may take an hour or two,
|
||||
depending on settings and the speed of your system. Various log and
|
||||
checkpoint files will be written into the output directory (ordinarily
|
||||
`~/invokeai/text-inversion-output/my-model/`)
|
||||
|
||||
At the end of successful training, the system will copy the file
|
||||
`learned_embeds.bin` into the InvokeAI root directory's `embeddings`
|
||||
directory, using a subdirectory named after the trigger token. For
|
||||
example, if the trigger token was `psychedelic`, then look for the
|
||||
embeddings file in
|
||||
`~/invokeai/embeddings/psychedelic/learned_embeds.bin`
|
||||
|
||||
You may now launch InvokeAI and try out a prompt that uses the trigger
|
||||
term. For example `a plate of banana sushi in <psychedelic> style`.
|
||||
|
||||
## **Training with the Command-Line Script**
|
||||
|
||||
Training can also be done using a traditional command-line script. It
|
||||
can be launched from within the "developer's console", or from the
|
||||
command line after activating InvokeAI's virtual environment.
|
||||
|
||||
It accepts a large number of arguments, which can be summarized by
|
||||
passing the `--help` argument:
|
||||
|
||||
```sh
|
||||
invokeai-ti --help
|
||||
```
|
||||
|
||||
Typical usage is shown here:
|
||||
```sh
|
||||
invokeai-ti \
|
||||
--model=stable-diffusion-1.5 \
|
||||
--resolution=512 \
|
||||
--learnable_property=style \
|
||||
--initializer_token='*' \
|
||||
--placeholder_token='<psychedelic>' \
|
||||
--train_data_dir=/home/lstein/invokeai/training-data/psychedelic \
|
||||
--output_dir=/home/lstein/invokeai/text-inversion-training/psychedelic \
|
||||
--scale_lr \
|
||||
--train_batch_size=8 \
|
||||
--gradient_accumulation_steps=4 \
|
||||
--max_train_steps=3000 \
|
||||
--learning_rate=0.0005 \
|
||||
--resume_from_checkpoint=latest \
|
||||
--lr_scheduler=constant \
|
||||
--mixed_precision=fp16 \
|
||||
--only_save_embeds
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### `Cannot load embedding for <trigger>. It was trained on a model with token dimension 1024, but the current model has token dimension 768`
|
||||
|
||||
Messages like this indicate you trained the embedding on a different base model than the currently selected one.
|
||||
|
||||
For example, in the error above, the training was done on SD2.1 (768x768) but it was used on SD1.5 (512x512).
|
||||
|
||||
## Reading
|
||||
|
||||
For more information on textual inversion, please see the following
|
||||
resources:
|
||||
|
||||
* The [textual inversion repository](https://github.com/rinongal/textual_inversion) and
|
||||
associated paper for details and limitations.
|
||||
* [HuggingFace's textual inversion training
|
||||
page](https://huggingface.co/docs/diffusers/training/text_inversion)
|
||||
* [HuggingFace example script
|
||||
documentation](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion)
|
||||
(Note that this script is similar to, but not identical, to
|
||||
`textual_inversion`, but produces embed files that are completely compatible.
|
||||
|
||||
---
|
||||
|
||||
copyright (c) 2023, Lincoln Stein and the InvokeAI Development Team
|
336
docs/features/UTILITIES.md
Normal file
@ -0,0 +1,336 @@
|
||||
---
|
||||
title: Command-line Utilities
|
||||
---
|
||||
|
||||
# :material-file-document: Utilities
|
||||
|
||||
# Command-line Utilities
|
||||
|
||||
InvokeAI comes with several scripts that are accessible via the
|
||||
command line. To access these commands, start the "developer's
|
||||
console" from the launcher (`invoke.bat` menu item [7]). Users who are
|
||||
familiar with Python can alternatively activate InvokeAI's virtual
|
||||
environment (typically, but not necessarily `invokeai/.venv`).
|
||||
|
||||
In the developer's console, type the script's name to run it. To get a
|
||||
synopsis of what a utility does and the command-line arguments it
|
||||
accepts, pass it the `-h` argument, e.g.
|
||||
|
||||
```bash
|
||||
invokeai-merge -h
|
||||
```
|
||||
## **invokeai-web**
|
||||
|
||||
This script launches the web server and is effectively identical to
|
||||
selecting option [1] in the launcher. An advantage of launching the
|
||||
server from the command line is that you can override any setting
|
||||
configuration option in `invokeai.yaml` using like-named command-line
|
||||
arguments. For example, to temporarily change the size of the RAM
|
||||
cache to 7 GB, you can launch as follows:
|
||||
|
||||
```bash
|
||||
invokeai-web --ram 7
|
||||
```
|
||||
|
||||
## **invokeai-merge**
|
||||
|
||||
This is the model merge script, the same as launcher option [3]. Call
|
||||
it with the `--gui` command-line argument to start the interactive
|
||||
console-based GUI. Alternatively, you can run it non-interactively
|
||||
using command-line arguments as illustrated in the example below which
|
||||
merges models named `stable-diffusion-1.5` and `inkdiffusion` into a new model named
|
||||
`my_new_model`:
|
||||
|
||||
```bash
|
||||
invokeai-merge --force --base-model sd-1 --models stable-diffusion-1.5 inkdiffusion --merged_model_name my_new_model
|
||||
```
|
||||
|
||||
## **invokeai-ti**
|
||||
|
||||
This is the textual inversion training script that is run by launcher
|
||||
option [2]. Call it with `--gui` to run the interactive console-based
|
||||
front end. It can also be run non-interactively. It has about a
|
||||
zillion arguments, but a typical training session can be launched
|
||||
with:
|
||||
|
||||
```bash
|
||||
invokeai-ti --model stable-diffusion-1.5 \
|
||||
--placeholder_token 'jello' \
|
||||
--learnable_property object \
|
||||
--num_train_epochs 50 \
|
||||
--train_data_dir /path/to/training/images \
|
||||
--output_dir /path/to/trained/model
|
||||
```
|
||||
|
||||
(Note that \\ is the Linux/Mac long-line continuation character. Use ^
|
||||
in Windows).
|
||||
|
||||
## **invokeai-install**
|
||||
|
||||
This is the console-based model install script that is run by launcher
|
||||
option [4]. If called without arguments, it will launch the
|
||||
interactive console-based interface. It can also be used
|
||||
non-interactively to list, add and remove models as shown by these
|
||||
examples:
|
||||
|
||||
* This will download and install three models from CivitAI, HuggingFace,
|
||||
and local disk:
|
||||
|
||||
```bash
|
||||
invokeai-install --add https://civitai.com/api/download/models/161302 ^
|
||||
gsdf/Counterfeit-V3.0 ^
|
||||
D:\Models\merge_model_two.safetensors
|
||||
```
|
||||
(Note that ^ is the Windows long-line continuation character. Use \\ on
|
||||
Linux/Mac).
|
||||
|
||||
* This will list installed models of type `main`:
|
||||
|
||||
```bash
|
||||
invokeai-model-install --list-models main
|
||||
```
|
||||
|
||||
* This will delete the models named `voxel-ish` and `realisticVision`:
|
||||
|
||||
```bash
|
||||
invokeai-model-install --delete voxel-ish realisticVision
|
||||
```
|
||||
|
||||
## **invokeai-configure**
|
||||
|
||||
This is the console-based configure script that ran when InvokeAI was
|
||||
first installed. You can run it again at any time to change the
|
||||
configuration, repair a broken install.
|
||||
|
||||
Called without any arguments, `invokeai-configure` enters interactive
|
||||
mode with two screens. The first screen is a form that provides access
|
||||
to most of InvokeAI's configuration options. The second screen lets
|
||||
you download, add, and delete models interactively. When you exit the
|
||||
second screen, the script will add any missing "support models"
|
||||
needed for core functionality, and any selected "sd weights" which are
|
||||
the model checkpoint/diffusers files.
|
||||
|
||||
This behavior can be changed via a series of command-line
|
||||
arguments. Here are some of the useful ones:
|
||||
|
||||
* `invokeai-configure --skip-sd-weights --skip-support-models`
|
||||
This will run just the configuration part of the utility, skipping
|
||||
downloading of support models and stable diffusion weights.
|
||||
|
||||
* `invokeai-configure --yes`
|
||||
This will run the configure script non-interactively. It will set the
|
||||
configuration options to their default values, install/repair support
|
||||
models, and download the "recommended" set of SD models.
|
||||
|
||||
* `invokeai-configure --yes --default_only`
|
||||
This will run the configure script non-interactively. In contrast to
|
||||
the previous command, it will only download the default SD model,
|
||||
Stable Diffusion v1.5
|
||||
|
||||
* `invokeai-configure --yes --default_only --skip-sd-weights`
|
||||
This is similar to the previous command, but will not download any
|
||||
SD models at all. It is usually used to repair a broken install.
|
||||
|
||||
By default, `invokeai-configure` runs on the currently active InvokeAI
|
||||
root folder. To run it against a different root, pass it the `--root
|
||||
</path/to/root>` argument.
|
||||
|
||||
Lastly, you can use `invokeai-configure` to create a working root
|
||||
directory entirely from scratch. Assuming you wish to make a root directory
|
||||
named `InvokeAI-New`, run this command:
|
||||
|
||||
```bash
|
||||
invokeai-configure --root InvokeAI-New --yes --default_only
|
||||
```
|
||||
This will create a minimally functional root directory. You can now
|
||||
launch the web server against it with `invokeai-web --root InvokeAI-New`.
|
||||
|
||||
## **invokeai-update**
|
||||
|
||||
This is the interactive console-based script that is run by launcher
|
||||
menu item [8] to update to a new version of InvokeAI. It takes no
|
||||
command-line arguments.
|
||||
|
||||
## **invokeai-metadata**
|
||||
|
||||
This is a script which takes a list of InvokeAI-generated images and
|
||||
outputs their metadata in the same JSON format that you get from the
|
||||
`</>` button in the Web GUI. For example:
|
||||
|
||||
```bash
|
||||
$ invokeai-metadata ffe2a115-b492-493c-afff-7679aa034b50.png
|
||||
ffe2a115-b492-493c-afff-7679aa034b50.png:
|
||||
{
|
||||
"app_version": "3.1.0",
|
||||
"cfg_scale": 8.0,
|
||||
"clip_skip": 0,
|
||||
"controlnets": [],
|
||||
"generation_mode": "sdxl_txt2img",
|
||||
"height": 1024,
|
||||
"loras": [],
|
||||
"model": {
|
||||
"base_model": "sdxl",
|
||||
"model_name": "stable-diffusion-xl-base-1.0",
|
||||
"model_type": "main"
|
||||
},
|
||||
"negative_prompt": "",
|
||||
"negative_style_prompt": "",
|
||||
"positive_prompt": "military grade sushi dinner for shock troopers",
|
||||
"positive_style_prompt": "",
|
||||
"rand_device": "cpu",
|
||||
"refiner_cfg_scale": 7.5,
|
||||
"refiner_model": {
|
||||
"base_model": "sdxl-refiner",
|
||||
"model_name": "sd_xl_refiner_1.0",
|
||||
"model_type": "main"
|
||||
},
|
||||
"refiner_negative_aesthetic_score": 2.5,
|
||||
"refiner_positive_aesthetic_score": 6.0,
|
||||
"refiner_scheduler": "euler",
|
||||
"refiner_start": 0.8,
|
||||
"refiner_steps": 20,
|
||||
"scheduler": "euler",
|
||||
"seed": 387129902,
|
||||
"steps": 25,
|
||||
"width": 1024
|
||||
}
|
||||
```
|
||||
|
||||
You may list multiple files on the command line.
|
||||
|
||||
## **invokeai-import-images**
|
||||
|
||||
InvokeAI uses a database to store information about images it
|
||||
generated, and just copying the image files from one InvokeAI root
|
||||
directory to another does not automatically import those images into
|
||||
the destination's gallery. This script allows you to bulk import
|
||||
images generated by one instance of InvokeAI into a gallery maintained
|
||||
by another. It also works on images generated by older versions of
|
||||
InvokeAI, going way back to version 1.
|
||||
|
||||
This script has an interactive mode only. The following example shows
|
||||
it in action:
|
||||
|
||||
```bash
|
||||
$ invokeai-import-images
|
||||
===============================================================================
|
||||
This script will import images generated by earlier versions of
|
||||
InvokeAI into the currently installed root directory:
|
||||
/home/XXXX/invokeai-main
|
||||
If this is not what you want to do, type ctrl-C now to cancel.
|
||||
===============================================================================
|
||||
= Configuration & Settings
|
||||
Found invokeai.yaml file at /home/XXXX/invokeai-main/invokeai.yaml:
|
||||
Database : /home/XXXX/invokeai-main/databases/invokeai.db
|
||||
Outputs : /home/XXXX/invokeai-main/outputs/images
|
||||
|
||||
Use these paths for import (yes) or choose different ones (no) [Yn]:
|
||||
Inputs: Specify absolute path containing InvokeAI .png images to import: /home/XXXX/invokeai-2.3/outputs/images/
|
||||
Include files from subfolders recursively [yN]?
|
||||
|
||||
Options for board selection for imported images:
|
||||
1) Select an existing board name. (found 4)
|
||||
2) Specify a board name to create/add to.
|
||||
3) Create/add to board named 'IMPORT'.
|
||||
4) Create/add to board named 'IMPORT' with the current datetime string appended (.e.g IMPORT_20230919T203519Z).
|
||||
5) Create/add to board named 'IMPORT' with a the original file app_version appended (.e.g IMPORT_2.2.5).
|
||||
Specify desired board option: 3
|
||||
|
||||
===============================================================================
|
||||
= Import Settings Confirmation
|
||||
|
||||
Database File Path : /home/XXXX/invokeai-main/databases/invokeai.db
|
||||
Outputs/Images Directory : /home/XXXX/invokeai-main/outputs/images
|
||||
Import Image Source Directory : /home/XXXX/invokeai-2.3/outputs/images/
|
||||
Recurse Source SubDirectories : No
|
||||
Count of .png file(s) found : 5785
|
||||
Board name option specified : IMPORT
|
||||
Database backup will be taken at : /home/XXXX/invokeai-main/databases/backup
|
||||
|
||||
Notes about the import process:
|
||||
- Source image files will not be modified, only copied to the outputs directory.
|
||||
- If the same file name already exists in the destination, the file will be skipped.
|
||||
- If the same file name already has a record in the database, the file will be skipped.
|
||||
- Invoke AI metadata tags will be updated/written into the imported copy only.
|
||||
- On the imported copy, only Invoke AI known tags (latest and legacy) will be retained (dream, sd-metadata, invokeai, invokeai_metadata)
|
||||
- A property 'imported_app_version' will be added to metadata that can be viewed in the UI's metadata viewer.
|
||||
- The new 3.x InvokeAI outputs folder structure is flat so recursively found source imges will all be placed into the single outputs/images folder.
|
||||
|
||||
Do you wish to continue with the import [Yn] ?
|
||||
|
||||
Making DB Backup at /home/lstein/invokeai-main/databases/backup/backup-20230919T203519Z-invokeai.db...Done!
|
||||
|
||||
===============================================================================
|
||||
Importing /home/XXXX/invokeai-2.3/outputs/images/17d09907-297d-4db3-a18a-60b337feac66.png
|
||||
... (5785 more lines) ...
|
||||
===============================================================================
|
||||
= Import Complete - Elpased Time: 0.28 second(s)
|
||||
|
||||
Source File(s) : 5785
|
||||
Total Imported : 5783
|
||||
Skipped b/c file already exists on disk : 1
|
||||
Skipped b/c file already exists in db : 0
|
||||
Errors during import : 1
|
||||
```
|
||||
## **invokeai-db-maintenance**
|
||||
|
||||
This script helps maintain the integrity of your InvokeAI database by
|
||||
finding and fixing three problems that can arise over time:
|
||||
|
||||
1. An image was manually deleted from the outputs directory, leaving a
|
||||
dangling image record in the InvokeAI database. This will cause a
|
||||
black image to appear in the gallery. This is an "orphaned database
|
||||
image record." The script can fix this by running a "clean"
|
||||
operation on the database, removing the orphaned entries.
|
||||
|
||||
2. An image is present in the outputs directory but there is no
|
||||
corresponding entry in the database. This can happen when the image
|
||||
is added manually to the outputs directory, or if a crash occurred
|
||||
after the image was generated but before the database was
|
||||
completely updated. The symptom is that the image is present in the
|
||||
outputs folder but doesn't appear in the InvokeAI gallery. This is
|
||||
called an "orphaned image file." The script can fix this problem by
|
||||
running an "archive" operation in which orphaned files are moved
|
||||
into a directory named `outputs/images-archive`. If you wish, you
|
||||
can then run `invokeai-image-import` to reimport these images back
|
||||
into the database.
|
||||
|
||||
3. The thumbnail for an image is missing, again causing a black
|
||||
gallery thumbnail. This is fixed by running the "thumbnaiils"
|
||||
operation, which simply regenerates and re-registers the missing
|
||||
thumbnail.
|
||||
|
||||
You can find and fix all three of these problems in a single go by
|
||||
executing this command:
|
||||
|
||||
```bash
|
||||
invokeai-db-maintenance --operation all
|
||||
```
|
||||
|
||||
Or you can run just the clean and thumbnail operations like this:
|
||||
|
||||
```bash
|
||||
invokeai-db-maintenance -operation clean, thumbnail
|
||||
```
|
||||
|
||||
If called without any arguments, the script will ask you which
|
||||
operations you wish to perform.
|
||||
|
||||
## **invokeai-migrate3**
|
||||
|
||||
This script will migrate settings and models (but not images!) from an
|
||||
InvokeAI v2.3 root folder to an InvokeAI 3.X folder. Call it with the
|
||||
source and destination root folders like this:
|
||||
|
||||
```bash
|
||||
invokeai-migrate3 --from ~/invokeai-2.3 --to invokeai-3.1.1
|
||||
```
|
||||
|
||||
Both directories must previously have been properly created and
|
||||
initialized by `invokeai-configure`. If you wish to migrate the images
|
||||
contained in the older root as well, you can use the
|
||||
`invokeai-image-migrate` script described earlier.
|
||||
|
||||
---
|
||||
|
||||
Copyright (c) 2023, Lincoln Stein and the InvokeAI Development Team
|